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Abstract

Statistical disclosure control is important for the dissemination of statistical

outputs. There is an increasing need for greater confidentiality protection during

data collection and processing by National Statistical Offices. In particular, various

transactions and remote sensing signals are examples of useful but very detailed

big data that can be highly sensitive. Moreover, possible conflicts of interest may

arise for data suppliers who operate commercially. In this paper, we formulate

statistical disclosure control for data collection and processing as an optimisation

problem. Even when it is difficult to specify and solve the problem unequivocally,

the formulation can still provide the basis for comparing different disclosure control

methods. We develop a general compartmented system that adapts and implements

non-perturbative methods in the related fields of linking sensitive data and secure

computation. We illustrate how the system can be configured to yield variously

required tables and microdata sets with sufficiently low disclosure risks.

Keywords: Non-survey big data, statistical disclosure control, confidentiality protection,

trusted execution environment

1 Introduction

“Survey respondents are usually provided with an assurance that their responses will be

treated confidentially. These assurances may relate to the way their responses will be

handled within the agency conducting the survey or they may relate to the nature of the

statistical outputs of the survey...” (Skinner, 2009). To protect confidentiality, statistical

disclosure control (SDC), also known as statistical disclosure limitation (SDL), has long

been an important topic when it comes to the dissemination of statistics in the form of

tables, queries or microdata sets. Many techniques for assessing identification risks and

methods for controlling (or limiting) these risks have been developed. See e.g. Elliot and

Domingo Ferrer (2018) for a recent overview.



Meanwhile, there is an increasing need for greater protection of confidentiality as the

National Statistical Office (NSO) collects and processes big data, en route to the statistical

outputs. On the one hand, the ever-more digitalised life form has created a multitude of

non-survey big data sources, offering potentially many opportunities for better, quicker

and richer statistical outputs, which would have been either extremely demanding or

simply infeasible based on traditional surveys. On the other hand, the regulations for

protecting confidentiality are being strengthened, and public critical awareness is rising

(e.g. Zuboff, 2019) against the detrimental effects when the confidentiality of individual’s

(or other data subject’s) data is breached. In particular, the EU’s General Data Protection

Regulation (GDPR) requires that businesses and agencies that handle personal data must

implement measures to safeguard the data, which could raise barriers for an NSO which

would like to use such data for statistical purposes.

The projects of ESSnet Big Data II (2020) organised by Eurostat provide examples of

big data for official statistics. The legacy projects (from ESSnet Big Data I) are Online

job vacancies and enterprise characteristics, Electricity smart meters, Maritime Automatic

Identification System (AIS) and Mobile phone data. The sources being piloted in ESSnet

Big Data II are Financial transactions (of many types) and Earth Observation (EO),

especially the Sentinels of the EU Copernicus Programme. Table 1 groups the most

important non-survey big data sources we have in mind for this paper into four types : (i)

administrative registers, or simply Register, (ii) various financial transactions, or simply

Transaction, (ii) Remote sensing, where the sensors can be either fixed or mobile, and

(iv) Internet. In particular, many new sources of transactions and remote sensing signals

obviously have great potential for official statistics.

Table 1: Non-survey big data sources by type.

Type of source Example of data

Register
vital events, diagnoses

wage, income tax, VAT, welfare payments

Transaction

scanner data price, point-of-sales receipt
bankcard or giro payment

B2B or B2P invoice
property sales contracts, ownership registration

Remote sensing, fixed
smart meter readings

weather station readings
traffic loop signals

Remote sensing, mobile

satellite images, drone images
airborne laser scanning

maritime AIS, lorry tracking signals
mobile phone signals

Internet
web pages

social media posts

When collecting and processing sensitive data from surveys or administrative sources,

the NSO applies pseudonymisation as the standard practice regulated by the GDPR,
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whereby direct identifiers such as Person Identification Number or Name-Surname are

replaced by a master key that exists only within the NSO. The data including the master

key are encrypted before storage. The information that allows pseudonymisation to be

reversed is kept separately from the data. Moreover, any statistical outputs produced on

the basis of these data are subject to SDC treatment before dissemination.

Despite the protection provided by pseudonymisation and output disclosure control,

our experiences suggest that confidentiality related issues can contribute to either stop

or considerably slow down the development of many new big data sources residing with

private companies or commercial operators. The data in these sources can typically

be much more detailed than in traditional sources and, hence, potentially much more

sensitive. For instance, mobile phone locations are much more detailed than any travel

data that can be collected by questioning survey respondents, and detailed locations can

obviously be personally sensitive. An equally important issue that often arises is when

the data exist in a number of competing businesses. For instance, to acquire purchase

transactions data from a supermarket chain, but not its competitors, may easily create

conflicts of interest and cause reluctance to comply. For the sake of brevity here, we do

not go into the many other confidentiality related issues we have experienced, but simply

notice that any of them can easily lead to a lengthy process, whereby the NSO needs to

justify its request and negotiate compliance.

We argue that offering greater protection of confidentiality (beyond pseudonymisation)

during data collection and processing can help to alleviate the pressure, making it easier

to gain trust and acceptance from data owners, stakeholders and the public, and thereby

smooth the access to useful new big data sources. Specifically, in the remainder of this

paper, we shall focus on three key aspects of an approach to secure data collection and

processing: conceptual framework, means and opportunities. The discussion will draw

on related fields of so-called privacy-preserving computation and data linkage techniques

(e.g. PPT Task Team, 2019; Christen et al., 2020).

In Section 2, we describe the concepts central to our approach. Our usage of the

terminology will be clarified, where difference and ambiguity exist between SDC and the

related fields. We then propose a general protocol governing secure data collection and

processing. Finally, we shall formulate SDC for secure big data collection and processing

as an optimisation problem, which differs to the formulation for dissemination of statistical

outputs given by Skinner (2009).

Given the conceptual framework, we develop a compartmented system in Section 3.

Configuring the system in various ways to suit different situations can provide the means

to greatly reduce the disclosure risks during data collection and processing. The design

is inspired by the relevant ideas underlying the so-called trusted execution environment

(TEE, GlobalPlatform, 2011) which, narrowly speaking, refers to a secure area (enclave) of

the main processor of a device, such as a smart phone, whose memory or execution state is

invisible to any other process, including the device’s operating system. Sabt et al. (2015)

point to the separation kernel as a fundamental element in all TEE implementations.

Similarly, on entry to the compartmented system, any data set is divided into separate

packages of unit IDs and attributes, and the processes that are most critical to disclosure
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risks are isolated from one another and inaccessible to the process owner.

Instead of merely considering the undertakings required of secure data collection and

processing as extra troubles, we prefer to welcome them as the means for providing oppor-

tunities to better, quicker and richer data that can both improve and enlarge the outputs

of official statistics. Unlike (sample or census) survey data that arise from probing the

respondents for the required information, many non-survey data (such as Transactions)

derive their content directly from automatic digital records. Such a content-orientated

approach can have advantages compared to unit-orientated surveys, provided the target

measurement is factual and the digital records can form a reliable basis of the responses

that one ideally could have obtained by surveying the subjects. For instance, purchase

transactions can give more accurate measures of the actual expenditure on the corre-

sponding occasions than those based on diary reports by the sampled household. Not

only does this remove the survey response burden, it can also be quicker to adapt the

information needs than changing and implementing the designed survey instruments.

In Section 4, we outline several applications where remote sensing and transactions

data can either replace or enhance existing sample surveys, or provide new statistics that

are either infeasible or impractical via surveys. Of course, non-survey big data can have

their own challenges regarding linkage, coverage (or selection) and measurement, such

that statistical adjustments and uncertainty assessment are generally required. Although

secure data collection and processing neither can nor is intended to solve all these problems

directly, it is often a critical and necessary part of solutions to using non-survey big data

for official statistics.

Some final remarks including future research topics will be given in Section 5.

2 Conceptual framework

2.1 Central concepts

Identity disclosure, or re-identification, occurs when a hypothetical intruder can determine

the identity of the subject (individual or other unit) of a record or a data item. Attribute

disclosure occurs when the intruder can determine (or estimate) the value of a sensitive

attribute for an identified subject. Note that the term inferential or prediction disclosure

is sometimes used when disclosure is associated with some non-negligible uncertainty.

Following Skinner (2009), the confidentiality of a subject might be said to be protected,

if the risk of identity and attribute disclosure is sufficiently low for this subject. On the

one hand, it is not a sensible aim to completely eliminate the disclosure risk, if the data

are to have any use at all. On the other hand, some method of SDC is needed, in order

to keep the disclosure risk sufficiently low. There are broadly two approaches, referred to

as safe setting and safe data (Marsh et al., 1994). The safe setting at the NSO regarding

data collection and processing is a different matter to that for dissemination of statistical

outputs. In this paper, we focus on safe data during collection and processing.

There are then at least four parties relevant to the discussion: one or several data

suppliers, the subjects of the data, the NSO and a hypothetical intruder. The party of data
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suppliers, who acts on behalf of the data subjects, exists rarely in SDC for survey data,

whereas the suppliers of administrative data tend to have a different status and interests

than many suppliers of transaction or remote sensing data who operate commercially.

The concepts described so far are well-established in the literature of SDC. Below we

describe some other important concepts to our approach, which arise from the field of

privacy-preserving computation. According to PPT Task Team (2019), set in the context

of multi-party computation, input privacy means that a Computing Party (i.e. the NSO)

cannot access or derive any input value provided by Input Parties (i.e. data suppliers),

nor access intermediate values or statistical results during the processing of data “unless

the value has been specifically selected for disclosure”. In addition, policy enforcement

is implemented if the Input Parties can exercise positive control on which computations

can be performed by the Computing Parties on sensitive inputs, and which results can be

published to which Result Parties (e.g. users of official statistics or researchers).

Clearly, input privacy as such would be unacceptably restrictive in the context of secure

data collection and processing for official statistics. It is also clearly unacceptable for data

suppliers to have control when it comes to the outputs of official statistics. Meanwhile,

since it is reasonable to avoid any undue damage to the commercial interests of the data

suppliers, we propose to incorporate an element of policy enforcement in the protocol

(Section 2.2), whereby a mutual agreement is reached between the NSO and each data

supplier and the means of confidentiality protection established.

A couple of additional notes on the terminology are necessary. First, the term “input”

here needs to be distinguished from that in “input SDC” (e.g. Elliot and Domingo-Ferrer,

2018), where the disseminated statistical output (by the NSO) can be viewed as input to

the receivers. Next, privacy and privacy-preserving are widely used terms in the fields of

multi-party computation and data linkage. There are however reasons for distinguishing

between confidentiality (which concerns data) and privacy (which concerns data subjects).

For instance, as Elliot and Domingo-Ferrer (2018) point out, one should not assume that

one has adequately protected privacy by controlling disclosure.

Finally, the concept of TEE in privacy-preserving technology is central to our ap-

proach. TEE is conceived as a processing environment that runs alongside the standard

operating system, such as Android. It provides isolated execution of applications while

securing the relevant data and cryptographic keys. In comparison, a debit card with an

integrated circuit chip is a familiar example of a different technology, called secure el-

ement, which has more limited functionality compared to TEE. GlobalPlatform (2011)

specifies a TEE standard, although currently there still exist several definitions of TEE,

as well as a range of TEE implementations that are only partially compliant with this

standard or even non-compliant (e.g. Intel SGX). Nevertheless, Sabt et al. (2015) point

to the separation kernel as a fundamental element that is shared across this family of

environments, to which we return in Section 3.1.

2.2 Protocol

We shall use the term protocol to refer to the agreed formal procedure or system of rules

governing secure data collection and processing, which allows for implementing policy
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enforcement based on mutual agreements between the NSO and the data suppliers.

Data supplier A Data supplier B Data owner A Data owner B

Linkage UnitNSO

[1]

[2][2]

[3][3]

[1]

[3][3]

[2][2]

Figure 1: Protocols for secure big data collection and processing (left) and three-party
linkage of sensitive data (right). Communication steps: [1] agreement, [2] specified data
packages, [3] feedbacks (left) or linkage results (right).

Our proposed general protocol for secure big data collection and processing is shown

in the left part of Figure 1. For comparison, the well-established three-party protocol for

linking sensitive data is shown to the right, which is reproduced from Figure 4.1(a) of

Christen et al. (2020). As we explain below, the two protocols are very different to each

other although both ostensibly contain three communication steps.

Under the protocol for three-party linkage, two data owners perform linkage of their

sensitive data using a third party, known as the linkage unit. At the first step, the two

data owners make agreement between themselves, including the preprocessing, encoding

and encryption methods and the associated secret keys. At the second step, only the

specified linkage keys are sent as data packages from the data owners to the linkage unit,

but not any attribute data otherwise. At the third step, having performed the linkage

as agreed, the linkage unit sends the record identifiers for the pairs classified as matches

back to the data owners as linkage results. The data owners can now either exchange

the matched records based on these record identifiers, which have nothing to do with the

identifiers of the data subjects, or send them to a data consumer.

For the proposed protocol for secure big data collection and processing, there can be

any number of data suppliers depending on the situation. The illustration with two data

suppliers in Figure 1 is used to underline that generally linkage across different sources

may be needed. At the first step, mutual agreement is now made between the NSO and

each data supplier, which enables a data supplier to exercise policy enforcement pertaining

to data collection and processing. It is also possible to restrict certain statistical outputs

that are in conflict with the commercial interest of the data supplier, as long as it is based

on mutual agreement. At the second step, each data supplier sends the specified data

packages — to be described in detail in Section 3. At the third step, feedback is sent from

the NSO to a data supplier, provided that it is specified in the agreement between them.

For example, the feedback could be a report on the input data quality or an overview

of the processed results with respect to the protocol. It may also be possible to send

back certain statistical outputs, which make use of the input data and are of interest to

the data supplier; these would need to satisfy the confidentiality control applied to any

outputs disseminated by the NSO.
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We notice that the proposed protocol is structured in the same way as the traditional

protocols for survey and administrative data. For instance, formally there exists a mutual

agreement between the NSO and each survey unit, by which consent is obtained from the

data subject and a pledge of confidentiality is made by the NSO. However, the contents

of communication would differ across the protocols. For instance, policy enforcement by

agreement is not a traditional concept; or, the NSO sometimes gives a monetary reward as

feedback to a survey respondent, but such an incentive is generally deemed inappropriate

for administrative or big data suppliers. Above all, data delivery at the second step will

be very different, as to be described in Section 3.

We notice also that successful execution of the proposed protocol requires efforts from

both the data suppliers and the NSO. In practice, it would be helpful to strengthen the

routines or mechanisms, which can ensure both smooth data transfer (e.g. when iteration

is necessary due to accidents) and the fidelity of implementation to the agreed protocol.

Detailed elaboration of these elements are beyond the scope of this paper.

2.3 SDC as an optimisation problem

Following Skinner (2009), let D be the survey data and f(D) the statistical output result-

ing from SDC method f(·). Let R[f(D)] and U [f(D)] be, respectively, the measures of

disclosure risk and utility of f(D). The data D has both maximum utility and maximum

disclosure risk, such that for any candidate SDC method one can assume generally

R[f(D)] ≤ R[D] and U [f(D)] ≤ U [D].

This allows Skinner (2009) to formulate the trade-off between disclosure risk and utility

of disseminated statistical outputs as the following optimisation problem.

For given D and ε, find f(·) which maximises U [f(D)],

subject to R[f(D)] < ε.
(1)

As Skinner (2009) notes, even when it is difficult to specify R(·), U(·) and ε unequivocally

in a given situation, the optimisation problem (1) can still serve as a conceptual motivation

when comparing different SDC methods.

Table 2: Type of SDC method for statistical outputs by format.

Format Type of SDC method

Table Non-perturbative (cell suppression, variable recoding), Perturbative
Query Query restriction, Query perturbation
Microdata Masking (non-perturbative, perturbative), Synthetic (i.e. artificial) data

Elliot and Domingo-Ferrer (2018) classify existing SDC methods given the format

of the statistical output, as summarised in Table 2 here, where a perturbative method

operates by introducing noise or distortion in the output, whereas the output would be
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coarsened or less detailed although it can remain truthful by a non-perturbative method.

Generally speaking, in terms of the optimisation problem (1), any good SDC method

should aim to produce the output f(D) whose utility is as close as possible to that of D,

while providing sufficiently strong confidentiality protection when the output is sensitive.

Although perturbative SDC methods are useful for disseminating statistical outputs,

they are inadmissible for secure big data collection and processing, if they would distort

the resulting official statistics. For example, the processed population census data should

not distort the ethnicity statistics through intentional perturbation, although perturbation

may be applied to a released census table or public query of the census results on the

topic of ethnicity. Meanwhile, certain non-perturbative methods may be acceptable, such

as restrictions against any query for a single payment transaction, when such queries are

unnecessary because the purpose is, say, to make retail turnover statistics. To be able to

assess SDC methods generally for data collection and processing, we propose to formulate

the trade-off between disclosure risk and utility of big data (to the NSO in producing

official statistics) as the following optimisation problem.

Denote by Dinput the data to be collected and processed, and denote by g(Dinput) an

SDC method that is applicable during data collection and processing.

For given Dinput and u, find g(·) which minimises R[D],

subject to U [D] ≥ u, where D = g(Dinput).
(2)

As with SDC for outputs, even when it is difficult to specify R(·), U(·) and u unequivocally

in a given situation, the formulation (2) can still be used to compare different SDC

methods g(·). Note that the output D = g(Dinput) resulting from (2) may be the basis

of disseminated outputs and therefore D may be subject to (1) later on. In other words,

the two optimisation problems (1) and (2) serve different purposes generally.

3 A compartmented system

3.1 TEE mechanism

As mentioned in Section 1, the NSO relies routinely on pseudonymisation for confidential-

ity protection during collection and processing of survey and administrative register data.

Figure 2 illustrates the typical data flows from input data to statistical data, separated

by horizontal dotted lines. As indicated in Figure 2, the input data may be combined

with other statistical data at the NSO, to which editing, imputation, weighting and other

statistical methods can be applied for Processing. Despite pseudonymisation, disclosure

risks exist in two particular respects.

r1. Input survey data and most input administrative register data are organised around

statistical units, for which a unit ID (or pseudo-ID) is used for linkage and, possibly,

process administration, including response chasing or recontact in surveys.

r2. It is customary that all the attributes of the same unit stay together during data

processing, and they are possibly supplemented by combining with other data sources.
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Thus, pseudonymisation is clearly not a solution to the SDC optimisation problem (2).

Processing Linkage (pseudo ID)
Processing

Unit
(identified)

Unit
(without ID)

NSO NSO

Unit
(identified)

Unit
(without ID)

Input data

Statistical data

Sample Register 1 Register 2

Statistical
Register

Weighted
Sample

Figure 2: Flows of survey and register data during collection and processing.

We propose to implement the TEE mechanism as defined below, which only makes

use of non-perturbative SDC methods, in order to address the optimisation problem (2).

The implementation pertains to data delivery and the subsequent necessary tasks before

feedback in the governing protocol (Figure 1).

First, the “separation principle” (Kelman et al. 2002) is a mechanism for linking

sensitive data, where each participant (or involved party) has access only to the data

that are necessary to its role defined in the protocol. In the three-party linkage protocol

(Figure 1, right), the linkage unit has access only to the agreed linkage keys but not any

other attributes, the data owners have access only to the record identifiers of the matched

pairs but not the data subject identifiers of the other party, and the final user has access

only to the linked attributes but not any identifiers. The separation principle can be

considered to operationalise the data minimisation principle of the GDPR.

Next, as a technique for secure computation, TEE implements the “separation kernel”

first introduced by Rushby (1981). Basically, the system is divided into several partitions,

with a strong isolation between them, except for a carefully controlled interface for com-

munications between the partitions. The idea is clearly similar to the separation principle.

In addition, the process owner is denied access to the data within the most security-critical

processes, which can be considered as an extension to the separation principle.

We shall refer to data isolation according to the separation principle for data linkage

(between identifiers and attributes, as well as between different attributes) and process

(hence, data) access restriction in TEE technology as the TEE mechanism.

3.2 System outline

We have developed a compartmented system as a general approach to implement the TEE

mechanism for secure data collection and processing. As shown in Figure 3, the system

consists of four chambers (or partitions): Extract, Linkage, Grouping and Result. Any

input data is divided into separate packages of unit IDs (where available) and attributes,

before they are delivered to the NSO. Only the results of each chamber are transferred
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between them, while the data in separate chambers and processes are inaccessible to each

other. Moreover, statisticians at the NSO are denied access to all the chambers (with

solid outlines in Figure 3) except Result, so that it is not possible for them to obtain

the microdata that are being processed in the chambers Extract, Linkage and Grouping.

Thus, the approach deals with the SDC optimisation problem (2) by removing the afore-

mentioned critical aspects (r1) and (r2) related to the data flows under pseudonymisation

(Figure 2), such that disclosure risks are greatly reduced.

Source with unit ID

Source without unit ID

Package
[ j, L ]

NSO frame

L = Linkage key
j = Record identifier
y = Attributes

ID = Unit ID
L = Linkage key
i = Record identifier
x = Attributes

h = 1, ..., H = Domain index
Uh = Population domain of IDs
Rh =  Group of record identifiers

Extract Linkage

ResultGrouping

Package
[ j, y ]

Package
[ i, x ]

Package
[ i, L ]

Package
[ i, ID ]

Linkage
[ L, i, j ]

Linkage
[ i, x, y ]

Domains 
of IDs

[ h, Uh ]

Groups 
of “i"

[ h, Rh ]

Domain total
(X, Y) by h

Figure 3: Compartmented system for secure data collection and processing.

As a motivating example, consider combining (debit card) payment transactions from

supplier A, which is a source with unit ID (Figure 3) in this case, and (receipts of)

purchase transactions from supplier B, which is a source without unit ID. From each

payment transaction one obtains the total monetary value of the purchase, denoted by

x and the cardholder ID, and given each purchase transaction one can break x down by

relevant products (price, quantity and value), denoted by y. Let Dinput contain the data

[ID, x] from supplier A and [x, y] from supplier B. Let D∗ be the joint data [ID, x, y] per

payment-purchase transaction, which is sensitive. Let g(Dinput) be the results, denoted by

[h,X, Y ], which target the expenditure distribution (over the product groups) for different

population domains (i.e. subpopulations), say, age-groups h = 1, .., H. We shall naturally

assume that [h,X, Y ] is not sensitive.

For the SDC optimisation problem (2), we require g(Dinput) to be the same as what one

can obtain from D∗ directly without applying any SDC method, given which U [g(Dinput)]

achieves the required utility. Below we explain how this can be accomplished using the
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compartmented system. The corresponding data flow is shown in Figure 4, which allows

for a more direct comparison to the approach of pseudonymisation.

Combine data 
[ i, x, y ]

Total [ X, Y | h ]

With unit ID Without unit ID

NSO

Source A
Record: i

Domain

Input data

Statistical data

Source B
Record: j

Linkage
[ L, i, j ]

LID x L y

Domain
Hashing 
ID h
[ h, i ]

Aggregation

Figure 4: Flows of data through compartmented system.

Extract The input data are not data matrices organised around identified units.

Here, the payment transactions from supplier A are a source with unit (cardholder)

ID, which allows for disaggregation of expenditures by population domains h. As can be

seen in Figure 3, unit ID and attribute x are sent in separate data packages, organised

around the payment transactions, with a common but ad hoc record identifier i that has

nothing to do with the unit ID. It is the record identifier that will follow the data from

a supplier. For linkage to the purchases from supplier B, a de-identified key (i.e without

any direct unit identifier) is created, denoted by L, which is composed of <time, outlet,

value> of each payment-purchase transaction. Note that such de-identified linkage keys

are often possible for linking big data sources, as will be discussed below under Linkage.

Similarly, purchase transactions from supplier B are separated into data packages of

linkage key L and attribute y, where the record identifier j is unrelated to i above.

Notice that the products and the associated attributes (price, quantity, value) are not

sensitive on their own, as long as they are separated from the cardholder ID. In situations

with rich attributes, such as when one of the sources to be linked is the population census,

one can divide all the attributes into separate input data packages, say, y1, y2, ..., yK , each

of which is associated with the same record identifier, in order to reduce the disclosure

risks. The following operations remain otherwise the same.

Linkage Only the attributes that need to be processed jointly are to be linked, and

linkage is virtually based on the three-party protocol governed by the separation principle.
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To start with, de-identified linkage keys are possible for linking big data sources,

when the underlying transactions (or other events) are not directly based on unit ID in

reality. Linking debit card payment and purchase transactions above provides an example.

As another example, consider invoice-based business-to-business (B2B) payments, say,

in two different sources: source A of the invoices and source B of the actual payment

transactions. The matched data would contain attributes such as due date, objective,

quantity, value/VAT, etc. They would involve identified units of businesses and bank

account owners. However, to link the invoices from supplier A and the payments from

supplier B, one can just use the invoice number as the de-identified linkage key.

Of course, in some situations unit ID may still need to be the linkage key, such as when

linking the total of person-to-business payments of each business from a data supplier to

the sample of a related business survey conducted by the NSO. The NSO can implement

the three-party linkage protocol virtually in the Linkage chamber, where the pairing of

matched encrypted unit IDs is separated from the joining of the attributes associated

with the linked records. Thus, as can be seen in Figure 3, whether or not the linkage key

is de-identified, the linkage operation is completed in two steps:

I. linking only the record identifiers across the two sources: [L, i, j],

II. joining the attributes to yield [i, x, y] via the matched record identifiers above.

Note that only the record identifier i from source A (with unit ID) is retained in the linked

data, because only the unit ID is needed for generating results by population domains. The

record identifier j from source B is dropped to minimise the number of values associated

with the linked objects. Next, step I above only needs to be performed once, whereas

step II can be repeated to create multiple linked datasets of different attributes. Finally,

the Linkage chamber is implemented as a TEE-like enclave, so that the NSO statistician

only has access to the linked data [i, x, y] afterwards, but not the input data packages or

the intermediate data set [L, i, j].

Grouping Domain classification of unit ID is always separated from linkage of attributes.

The domains h = 1, ..., H are defined based on the NSO’s relevant population frame.

Each Uh is the set of unit IDs belonging to the corresponding population domain. The

transformation from unit ID to domain index is formally a hash function from [ID, i]

to [h, i], which yields each Rh as the set of the corresponding record identifiers i. The

Grouping chamber is also implemented as a TEE-like enclave.

In cases where de-identified linkage keys can be used for linking data across sources,

the Grouping chamber is the only place in the system, which uses the input unit ID.

Interception of [h,Rh] outside the Grouping chamber would not lead to identification of

the in-source units (e.g. cardholders here), since Rh contains only the record identifiers.

Result We have now [h, i] from the Grouping chamber and [i, x, y] from the Linkage

chamber. This allows one to produce the corresponding domain cross-classified counts

(X, Y ), i.e. the expenditure distribution for each specific age-group here.
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Note that, in this example, the resulting expenditure distribution g(Dinput) = [h,X, Y ]

is biased due to the unavoidable errors of coverage and classification (of product groups),

but has virtually no variance compared to estimating the target distribution based on

the traditional Consumer Expenditure Survey. Zhang (2020) develops audit sampling

inference for such big data statistics.

4 Opportunities and illustrations

Below we give some illustrations of the various ways of configuring the compartmented

system and the resulting g(Dinput) in different formats.

4.1 Sample contingency tables

The expenditure table g(Dinput) in Section 3.2 is based on all the data in the relevant

sources. Below is an example of g(Dinput) as sample contingency tables.

Register-based employment statistics in recent years clearly show a large increase in the

number of people with multiple jobs in Norway. Suppose one is interested in the statistics

of job-related travel patterns of people with multiple jobs. On the one hand, correct

classification is not always possible based on Register data. For instance, an employer

may have multiple locations, all of which are not necessarily included in the Business

Register. But even when they are, it is not always clear where an employee works, if the

work place locality of an employee is not directly recorded in the administrative sources.

On the other hand, mobile phones can provide accurate location and movement data.

But it is not always clear whether the presence at a given location is job-related, or if the

algorithm can correctly handle the temporal variations of travel patterns.

Schenkel and Zhang (2020) develop a method for adjusting the misclassification errors

of two fallible classifiers observed in a non-probability sample, for which one only needs

contingency tables of the joint classification, but not linked data at the individual level.

The compartmented system (Figure 3) can be used to obtain sample two-way tables

(X, Y ) of the two classifiers, where x is based on the Register data at the NSO and y on

mobile phone locations. One only needs to configure the Extract chamber as follows.

• The NSO draws a sample from the target population given the statistical reference

time point of interest, which is the input source with unit ID. Send only the list of

telephone numbers associated with the sample to a telephone company.

• The telephone company is only able to classify a subset of the telephone numbers it

receives, not least because it does not have a monopoly in the market. The company

returns its classifications pertaining to the reference time point and the associated

telephone numbers, in separate data packages.

The linkage key is the encrypted telephone number. The resulting g(Dinput) are domain-

specific two-way tables (X, Y ). Disclosure risks are low both ways: the NSO does not

have access to the individual classifications by the telephone company, nor the other way

around. Moreover, the telephone company cannot validly estimate its market share based
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on the telephone numbers that belong to its customers in the NSO sample, since it does

not know the sampling design. If deemed appropriate and agreed in the protocol, the NSO

can send the estimated misclassification errors (of y based on mobile phone locations) to

the telephone company, as a feedback (Figure 1). We refer to Schenkel and Zhang (2020)

for the details of the estimation method.

4.2 Big data as auxiliary information for sample surveys

To fix the idea, consider retail turnover statistics. Denote by s the sample of business units

taken by the NSO, where πk is the sample inclusion probability of k ∈ s. To simplify the

elaboration, suppose unstratified sampling design here; the adaption to stratified sampling

is straightforward except some extra complications of the notation. Let yk be the turnover

excluding VAT for k ∈ s, which is the target measurement. Let xk be the total of debit

card payments to k ∈ U , where U is the population of business units. The ratio estimator

of the total turnover Y =
∑

k∈U yk is given by

Ŷ = X

∑
k∈s yk/πk∑
k∈s xk/πk

.

Note that xk is the sum of all debit card payment transactions, denoted by Ωk for k ∈ U ,

where xki is the payment associated with transaction i ∈ Ωk, such that xk =
∑

i∈Ωk
xki.

Due to the different VAT applied to different products, xk would have been neither equal

nor proportional to yk, even if all the payments had been by debit card.

Let g(Dinput) consist of pseudonymised sample data {(yk, xk) : k ∈ s} and the auxiliary

total X, given which the utility is considered to be achieved for the SDC optimisation

problem (2). The auxiliary big data over all the payment transactions are given by

DB = {xki : k ∈ U, i ∈ Ωk}.

Suppose it is agreed that disclosure risk is sufficiently low if the NSO obtains g(Dinput)

but not DB. The compartmented system (Figure 3) can be configured as follows.

• Extract Let the debit card payment transactions be the source with (business) unit ID

and attribute xki. Let the NSO sample be the second source with attribute yk. The

linkage key is the encrypted unit ID.

• Linkage Record linkage here amounts to linkage of the records from both sources first,

and de-duplication/aggregation of xki to xk by the linkage key afterwards. The linked

data are {(xk, y∗k) : k ∈ U}, where y∗k = yk if k ∈ s and y∗k is missing if k 6∈ s.

• Grouping Each Rh consists of the encrypted unit IDs, for domain h = 1, ..., H.

• Result Aggregation of xk over the linked data yields X. Dropping the linked data with

missing y∗k yields the pseudonymised sample data {(yk, xk) : k ∈ s}.

14



4.3 De-identified housing rental microdata

The (housing) Rental Market Survey has two well-known practical difficulties. First, the

population of housing rental objects is typically unknown in its entirety based on the

available Register data on population, address, tax, etc. Second, surveying and tracking

a sample of rental objects can be resource demanding, especially at the time an address is

first drawn into the sample and following a change of tenants. Since the rents are mostly

paid by standing orders in online banking, combination with such Transaction data can

potentially provide a more efficient and cost-effective approach, as discussed below.

To fix the idea, let NA be the number of potential housing rental objects in the NSO’s

sampling frame based on Register data. Let the true number of rental objects be given as

N = pNA, where p is an unknown constant. Let the size of the initial address sample be

nA. Again, for simplicity of elaboration, we do not explicate any stratified design here,

although an adaption is straightforward in concept. Suppose that n of the addresses are

verified to be rental objects after canvassing, where E(n) = nAp = nAN/NA with respect

to the sampling design. An estimator of N is then given by

N̂ = NAn/nA

whose sampling variance is given by

V (N̂) =
NA

nA
(NA − nA)p(1− p)

Next, let M be the number rental objects among the NA frame units, for which

standing orders for rent can be found in the payment transactions data. This requires

connecting the payer and the address of each standing order in the source, which is

sensitive. The compartmented system can be used for confidentiality protection, as will

be explained further below. For the moment, let us illustrate first how in principle the

data can be combined with the sample above administered by the NSO.

Suppose m among the M objects can be matched to the n sample rental objects,

where the linkage key is address. One can now greatly reduce the cost of surveying the

tenants or owners for these matched objects, both when the address is first drawn into

the sample and following a change of tenants. Moreover, let θ = M/N be the unknown

constant, such that E(m) = θpnA with respect to the sampling design. We have

E(n)

E(m)
M =

pnA
θpnA

θN = N

such that the Lincoln-Petersen estimator of N is given by

Ñ = nM/m

Note that the estimator Ñ is traditionally motivated from a model-based perspective,

where (n,M,m) are all considered as random variables; see e.g. Wolter (1986). Zhang

(2019) establishes model consistency of Ñ by treating one of the sources, say, M as fixed,
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so that only (n,m) are random variables. This conditional approach to inference can be

applied to the setting here, where the randomness of (n,m) derives only from the sampling

design. An approximate sampling variance of Ñ is given by

V (Ñ)
.
=

M

E(m)3
E(n)E(n−m)

(
M − E(m)

)
=
NA

nA
(NA − nA)

p

θ
(1− θ)

It follows that the relative efficiency (RE) of Ñ against N̂ is given by

RE =
V (Ñ)

V (N̂)
=

1− θ
(1− p)θ

In the extreme case of p = 1 while θ < 1, where the NSO’s sampling frame is perfect, the

estimator N̂ would naturally have zero variance and dominates the estimator Ñ . At the

other end, in the extreme case of θ = 1 while p < 1, where one can identify the objects

perfectly using the Transaction data, the estimator Ñ would naturally have zero variance

and dominates the estimator N̂ . As an illustration of a practical situation, according to

the information available at ssb.no, the initial sample of the Rental Market Survey 2020

has nA = 35286 and n = 9727, giving p̂ = 0.276. It follows that the estimator Ñ using

Transaction data could be more efficient than the one-sample estimator N̂ if

θ > 1/(2− p̂) = 0.580

i.e. roughly at least 60% of the rental objects can be identified from the standing orders.

Let the input data Dinput consist of two microdata sets. The first one is the NSO’s

sampling frame, where each record i corresponds to one of the NA addresses, with associ-

ated dwelling physical characteristics xi from the Register data at the NSO, including the

address, the locality (such as postcode), whether the address is known to be a housing

rental object from the past, and the sample indicator δi ∈ {0, 1}. The second one arises

from Transaction data, where each record j corresponds to one of the M rental objects,

the address and the associated rent yj (possibly over several months) according to the

algorithm for classifying the standing orders.

Let g(Dinput) be the set of microdata from linking the two input data sets, where

the linkage key is the address. Each record in g(Dinput) is given by (i, xi, δi, y
∗
i ), where

i is the record number in the NSO’s sampling frame, and y∗i is either the rent identified

in the Transaction data or missing, denoted by y∗i = 0 for convenience. Since g(Dinput)

contains neither person ID nor address, we consider it to have sufficiently low disclosure

risks. It has the same utility for Rental Market statistics as the microdata set containing

additionally both person ID and address. For instance, we have

n =

NA∑
i=1

δi and M =

NA∑
i=1

I(y∗i > 0) and m =

NA∑
i=1

δi I(y∗i > 0)

While it is possible for the NSO to carry out additional operations on the sample addresses

with missing rents in the Transaction data based on the corresponding record numbers i,
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the interception of i in g(Dinput) does not carry any high risk of identity disclosure.

The compartmented system (Figure 3) can be configured as below to obtain g(Dinput).

• Extract The attribute data package derived from the NSO’s sampling frame contains

(i, xi, δi) with NA records, whereas that from the Transaction data supplier contains

records (j, yj). Each source sends a data package of linkage keys (i, Li) and (j, Lj).

Unit ID is not otherwise needed in this case.

• Linkage The linkage key is the address. The Transaction data records that cannot be

matched are removed. The linked records (i, xi, δi, y
∗
i ) are as defined above.

• Grouping No domain classification is needed, beyond what can be determined given

the preprocessed locality and dwelling physical characteristics in xi.

• Result Microdata set g(Dinput) as defined above.

Record linkage here has removed any addresses in the Transaction data which are outside

the NSO’s sampling frame. One can apply the usual editing procedures for outliers or

values that are otherwise deemed inappropriate. The number of objects with rents from

the Transaction data would be much larger than the sample size n of any Rental Market

Survey. The objects with changing tenants are automatically tracked over time by this

approach. Finally, the NSO retains the choice whether and what to do with the NA −M
addresses for which no rents are identified in the Transaction data.

4.4 Network business structure

The trade (or other) relationships among the businesses can be represented by a graph,

denoted by G = (U,A), where the businesses are the nodes in U , and a directed edge

from node k to node l exists if business k sells to l, denoted by (kl) ∈ A. Each connected

sub-graph of G can be referred to as a network. Values can be added to G to form a

valued graph, e.g. xkl can be the total value of sales from k to l over a given period and

xk =
∑

l∈U xkl the total turnover of business k in the economy defined by U . One can e.g.

let zk = 1 if business k trades internationally and 0 otherwise.

Various network parameters can be used to describe the business structure represented

by G. For instance, density and transitivity are at the maximum value 1, if the structure

of the network is complete, where everyone sells to everyone else. Or, a measure of the

openness of the economy can be defined based on the lengths of the short paths that

connect each business to one that is engaged in import or export (with z = 1). See e.g.

an analysis of the Belgian production network (Dhyne et al., 2015), where the data are

based on mandatory reporting to the Belgian tax authority.

Let g(Dinput) be the pseudonymised valued graph G, where the values {xkl : k 6= l ∈ U}
are based on the business to business (B2B) invoices, given which the utility is considered

to be achieved for the SDC optimisation problem (2). The business unit ID associated

with the nodes in g(Dinput) is the master key of the NSO, which is meaningless to any

outsider.
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Let Ωkl be all the invoices from seller k to buyer l, such that xkl =
∑

i∈Ωkl
xi, where

xi is the value of invoice i. Let the invoice data DB be the valued multigraph GB, where

Ωkl are the edges from k to l in GB, with associated values {xi : i ∈ Ωkl}. Suppose it is

agreed that disclosure risk is sufficiently low if the NSO obtains g(Dinput) but not DB.

Let there be two data suppliers of B2B invoices and payment transactions, respectively.

The linkage key L between them is the invoice number, the purpose of which is to remove

the void invoices due to outstanding payment. Each invoice i is associated with the

business ID of both the seller k and the buyer l, the invoice value xi, the invoice data and

due date. Each payment j is associated with the payment value and date.

The compartmented system (Figure 3) can be configured as follows.

• Extract One can create three separate data packages for the invoices: (a) the seller ID

k and record number κ, (b) the buyer ID l and record number `, and (c) the invoice i

with the invoice value and dates, the associated record numbers (κ, `) and the linkage

key L. Only one data package of is needed for the payments, with the linkage key L

and payment value and date.

• Linkage Record linkage in this case amounts to de-duplication of the data package

(c), whereby all the non-void invoices (i, xi) are accumulated for each distinct pair of

(κ, `). The results can be given in three data tables: the valued adjacency matrix [xκ`],

the sellers κ with the associated sales value xκ, and the buyers ` with the associated

expenditure value x`. The data packages (a) and (b) are simply retained.

• Grouping The data package (a) of seller ID can be used to group the record number

κ into population domains, say, by NACE and export/import status. Similarly for

domain classification of the buyers using the data package (b).

• Result The pseudonymised valued graph g(Dinput) can be created, where each node is

associated with the seller record number κ, or the buyer record number `, or both.

Various networks can be constructed given g(Dinput). For instance, for a sales network

of the businesses in a given NACE group Uh, one can start with all the edges that originate

from the nodes in Uh, and include wave-by-wave the down-stream edges (and businesses)

that originate from the additional nodes in the previous wave, until no more edges can

be added. Transitivity of sales relationships or network ‘distance’ to export can now be

analysed for the businesses in Uh based on this network.

Unlike a mandatory reporting system of such detailed information, using Transaction

data does not place any burden on the business community, and the subsequent analysis

of business structure is not based on identified units.

5 Final remarks

We have formulated SDC for data collection and processing as an optimisation problem,

for which pseudonymisation is not a solution. We have also developed a flexible approach

based on the compartmented system that implements the TEE mechanism, together with
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the general protocol governing the communications between the NSO and the data sup-

pliers. As we have illustrated, the system can be configured to obtain various table data

and microdata sets originated from non-survey big data sources.

With respect to the three benign parties involved, the proposed approach provides

much stronger protection of the confidentiality of the data subjects during data collection

and processing. It provides a mechanism for avoiding any undue damage to the commercial

interests of the data suppliers, or their pledges of confidentiality protection to their users

or clients who are the data subjects. In return we argue that this would make it easier

for the NSO to gain trust and acceptance from data owners, stakeholders and the public,

and thereby smooth the access to useful new big data sources.

The hypothetical malicious intruder would basically need to gain control over the entire

compartmented system, in order to achieve what otherwise could have been achieved just

by gaining access to the pseudonymised dataset during collection and processing. For

instance, intercepting any dataset between Linkage (or Grouping) and Result chambers

does not give the intruder access to any identifiers, whereas intercepting the dataset

between Extract and Grouping chambers would only give the (pseudonymised) identifiers

but without any associated attributes.

The formulation (2) can provide a rigorous basis for comparing different configurations

of the compartmented system, given suitable measures of the associated disclosure risk.

Various measures of disclosure risks have been proposed in the context of SDC for dissem-

ination of statistical outputs. See e.g. Fuller (1993), Skinner and Elliot (2002), Skinner

and Shlomo (2008). However, their relevance to the compartmented system is not obvi-

ous. For instance, the TEE mechanism implements access restriction to microdata in the

Linkage chamber, given which the disclosure risk of any unique data record would seem

to have been removed by stipulation. Developing formal measures of disclosure risk R(·)
that are relevant to (2) is a topic for future research.

Our focus in this paper has been on confidentiality protection during big data collection

and processing. We have also indicated that statistical methods for adjustments and

uncertainty assessment are generally required. More broadly, as discussed by Zhang et al.

(2020), a greater emphasis should be given to statistical design, which deals conceptually

with two central questions: (i) which data to collect, (ii) how to collect and use the data.

It is essential to have a clear idea before contracting the protocol with a big data supplier,

not only about the potential uses of a given source throughout the statistical system, but

also the possibilities of combining it with other sources. Systematic statistical designs are

important to develop a sustainable official statistical system, where non-survey big data

sources are becoming more and more important.
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