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Abstract 

The relationship between new digital manufacturing technologies (also known as 
Industry 4.0) and environmental performance has become a subject of interest for both 
academia and policymakers. An analysis of the impact of robot usage on air 
environment mediated by energy consumption and moderated by population density is 
developed and tested using a longitudinal dataset from 74 countries and regions 
worldwide during 1993-2019. We find the use of robots exacerbates air pollution and 
climate warming because enhanced productivity and energy efficiency in light of robot 
usage offer an incentive to expand production and consumption, and thus increase total 
energy consumption that finally leads to air deterioration. By decomposing the total 
effect into the direct and the indirect effect, we find that, though industrial robots 
weakly contribute to reduction in greenhouse gas emission, the indirect adverse impact 
dominates the direct benefit. In addition, the nexus between robot usage and air 
environment is conditional on population density which, at large, mitigates the direct 
effect while amplifies the indirect effect of the adoption of robots on air environment. 
This study emphasizes the importance of energy consumption and population density 
in understanding the mechanisms underlying the relationship between robot usage and 
air environment, which provides both theoretical and practical implications for the 
balance of industrial intelligentization and ecological environment. 
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1. Introduction 

Air pollution and climate change have become principle threats to ecosystem, 

human health and sustainable development. The World Health Organization (WHO)’s 

2014 urban air quality database indicated the air quality continues to deteriorate in most 

cities and 88% of the people is exposed to air pollution. In light of carbon dioxide (CO2), 

methane (CH4), and greenhouse gas (GHG) emissions, the climate change has also been 

an increasing important matter that continuously trigger alarms when the global 

elevation in temperature is more likely to occur. Considering that air quality and climate 

change account for 50% and 40% of environmental health and ecosystem vitality, as 

reported in the 2020 Environmental Performance Index (Wendling et al., 2020), the 

analysis of the determining factors of air environment measured by both indicators is 

important not only for academia, but also imperative for industry organizations, 

government agencies, and puts the public in a better position to achieve sustainable 

development.  

Existing literature in the field of environmental studies has identified some factors. 

They were economic, policy, demographic, external shock, and technology factors. 

Economic factors cover a wide range of variables such as economic growth (Zhu et al., 

2019), financial development (Nasir et al., 2019), foreign direct investment (FDI) and 

trade (Yasmeen et al., 2019), energy (Chien et al., 2021), and infrastructure investment 

(Huang et al., 2020). Policy factors mainly refer to environmental taxes and regulations 

(Neves et al., 2020; Wu et al., 2021). Population level and urbanization were viewed as 

two main demographic variables that impact on CO2 emission (Sadorsky, 2014).  
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Recent studies shifted their attention to the impact of external shocks such as 

financial crisis and the breakout of the Coronavirus disease 2019 (COVID-19) on 

energy intensity and carbon emission (Wang and Zhang, 2021; Wang et al., 2021; Wang 

et al., 2022b; Wang et al., 2022c). With fast development in technology from the start 

of fourth Industrial Revolution, researchers have been paying renewed attention to the 

impact of technology progress on air pollution, though the debate has never ceased 

since the pioneering studies by Ehrlich and Holdren (1971) and Simon (1973). The 

subsequent studies also suggested that technology provides a solution to mitigate 

pollution (Ausubel and Sladovich, 1989, Grossman and Krueger, 1991; Shi and Lai, 

2013), while the following studies provided mixed results (Afonso et al., 2021; Shao et 

al., 2021; Yi et al., 2020). In spite of the above extensive research carried out on factors 

thought to influence air environment, no study has thoroughly analyzed the link 

between industrial robots and air environment. 

The International Federation of Robotics (IFR) defines an industrial robot as an 

automatically controlled, multipurpose, and reprogrammable machine. An analysis by 

McKinsey Global Institute (MGI, 2017) reported that, by 2030, 400 million (15%) of 

the global labor force could be displaced by automation under a midpoint adoption 

scenario. This suggested that as a symbol of artificial intelligence under Industry 4.0 

(Dantas et al., 2020; Elpidio et al., 2020; Wang et al., 2022a), industrial robots have 

increasingly penetrated into the production process and would bring significant 

economic and social consequences (Acemoglu and Restrepo, 2019, 2021; Acemoglu 

and Autor, 2011; Lei, 2021). In addition to the literature that focused on discussing labor 
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market implications of the robot usage (Acemoglu and Restrepo, 2018a; Acemoglu and 

Restrepo, 2020), the mounting literature also concerned the impact of robots adoption 

on economic growth (Aghion et al., 2019), energy consumption (An et al., 2020; Wang 

et al., 2022a), productivity (Kromann et al., 2020; Ballestar et al., 2020), innovation 

(Liu et al., 2020), and the social implication on equity (Lei, 2021). 

However, the profound implications of robot usage on environment, air quality and 

climate change in particular, was almost neglected, and policy support to promote the 

adoption of robots in many countries was generally lack of formal environmental 

assessments (Dusik et al., 2018). Even less clear was through which channels and under 

what conditions the automation technology affects air environment. These 

considerations motivate us to answer three main questions: 1) do industrial robots 

reduce air pollution or combat climate change; 2) through which channels robotics 

influence the air environment; and 3) does the nexus between industrial robots and air 

environmental performance vary with some other factors? The answers to these 

questions have important and rich implications not only to policy makers, academics, 

business practitioners but to the public as a whole. 

How do industrial robots affect air environment? Inspired by Simon (1973) who 

argued that the advance of technology produces unintended side effects that are 

typically proportional to its intended effects in size, we developed a theoretical 

framework, dissembling the complex change to air environment the new-generation 

technology is likely to bring into the direct and the indirect effect, and hypothesized the 

total effect depends on the relative size of the two. Intuitively, the expected benefits 
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robots bring to environment may include reduced material losses in manufacturing and 

supply chain operations, opportunities for digitized environmental monitoring and 

environmental accounting systems, and the smart circulation system that transforms the 

waste into high-quality secondary raw material (Dusik et al., 2018; Wilts, et al., 2021).  

However, the negative environmental externality may arise, attributed to increased 

energy intensity, more electronic waste from proliferated production in electronics that 

heavily use industrial robots, higher consumption of energy-saving products, and rising 

demand for upstream material and energy inputs. Thus, we hypothesized that the 

indirect effect of industrial robots on air environment depends on the impact of robots 

on energy consumption, and the impact of energy consumption on air environment. 

With regard to the nexus between robots and energy, we argued that three countervailing 

forces work systematically and co-determine the impact, among which the energy-

efficiency or energy-saving effect leads to the opposite directional change in robot use 

and energy consumption (Yi et al., 2013: Xu and Lin, 2018, amongst others), while the 

rebound effect (take-back effect) and scale effect move the variation of robot use and 

energy demand in the same direction (Ertel, 2019; Vivanco et al., 2016, amongst others). 

The relation between energy consumption and air environment is less complex. Many 

studies and research reports have shown energy consumption is the main cause of air 

pollution (Afonso et al., 2021) and increased carbon dioxide emissions (Rafindadi, 

2016; Rahman and Kashem, 2017). 

Our contribution not only lies in identifying the direct effect of robots from its 

indirect effect on air environment. We also extended the mediated modelling to identify 
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the role of one demographic factor—population density—in moderating the direct, the 

indirect, and the total effect of technology advance on environmental performance. On 

one hand, countries or regions with denser population have more environmental 

concerns that affect their choices in robotics technology. In addition, the productivity 

gains by replacing labor with robots in denser areas are smaller since sufficient labor 

supply reduces the gap between labor cost and capital cost. This leads to a lower level 

of robot adoption. In both cases, the direct impact of robot usage on air environment 

could be mitigated. However, this moderation effect of population density may vary 

depending on the country’s environmental performance, innovation capacity and its 

industry characteristics. 

We also analyzed how population density moderates the robots-air environment 

nexus through its influence on the indirect effect. First, the energy-saving effect is 

stronger in countries or regions with higher density of population because of the 

economics of scale resulting from better infrastructure, such as denser road networks 

and electoral grids. Second, the scale effect is stronger since countries with a higher 

level of population density usually have higher economic growth driven by productivity 

boom in light of the use of robots. Third, the rebound effect is also shaped by population 

density. Even though the energy efficiency was improved, the lower price for more 

energy-saving products may lead to higher energy consumption in denser countries or 

regions. Due to the heterogeneous effects on the countervailing forces, we hypothesized 

the relation between the use of industrial robots and energy consumption would be 

conditional on the density of population.  
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To achieve the goals, we constructed a cross-country panel data covering 74 

countries during 1993-2019 and applied a structural equation model (SEM) to estimate 

a system of two important equations with bootstrapping approach to determine the 

statistical significance of the indirect effect. Our results disclosed that the use of robots 

significantly increases nitrous oxide (NOx), CO2, CH4, and GHG emissions, while has 

a minimum impact on PM2.5 concentration. More specifically, the direct contribution 

of industrial robots to improve air environment is, at large, not as strong as we expected. 

The use of robots in production is conductive to combat global warming by reduction 

of CO2, CH4, and GHG emissions, but this effect is occasionally insignificant. In terms 

of air quality, the use of robots has negligible impact on PM2.5 concentration and 

induces more NOx emission. 

However, we found significant and larger adverse impact of robots on air 

environment transmitted through energy consumption. Comparing the size of the direct 

and the indirect effect, we find the latter has a strong dominant power over the former. 

The moderated mediation analysis suggests that the direct effect of robot usage is 

mitigated while the indirect effect is amplified in denser regions or areas at country 

level. Interestingly, when we focus on the use of robots at manufacturing industry, the 

indirect effect gets smaller as population density rises. These results imply that we have 

to abate the scale and the rebound effect or to further enhance the energy efficiency in 

the use of robots to reduce its adverse impact on the air environment.  

Our paper is closest to Yi et al. (2020) which investigated the impacts of three types 

of technical progress on haze pollution—the neutral, the labor-saving, the capital-
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saving and the energy-saving technologies. They used the counts of invention patents 

as a measure for neutral technology, the years of education for labor-saving technology, 

the ratio of GDP to capital stock for capital-saving technology, and energy consumption 

per unit of GDP for energy-saving technology. We are different from them not only in 

the measure of technology progress but also in the theoretical modelling and 

econometric estimations. Existing studies including Yi et al. (2020) explored the total 

impact of technology advance on air environment, while few decomposed the total into 

the direct and indirect effects; many of them studied the general-purpose technology 

advance on air environment, though few analyzed the specific automation technology, 

robotics in particular, on heterogeneous air environmental indicators including both air 

quality and climate change; the technology-environment nexus could also be varying 

with local market conditions, while this conditional effect was rarely looked into in 

current research.  

We filled in these research gaps and contributed in multiple aspects. First, we 

provided a systemic theoretical perspective that answers the question of why the use of 

industrial robots has significant influence on air environment; Second, following the 

theoretical analyses, we constructed a structural equation model that estimates the size 

of the direct and the indirect effect, respectively, of robotics on air environment, and 

furthermore, we adopted the bootstrap method to test whether the indirect effect is 

statistically significant. Third, we investigated the role of population density in 

moderating the relation between use of robots and air environment. This moderated 

mediation effect was first identified in our paper. Fourth, we conducted analysis not 
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only at the country level but also at the industry level, and presented heterogeneous 

findings taking a country’s innovation capacity and environmental performance into 

account.   

 The next Section reviewed the literature on the determinants of air environment 

and the literature on the influence of industrial robots. Section 3 presented theories and 

illustrated how we developed hypotheses, followed by data descriptions, variable 

definitions and the econometric specifications. The main results with supplementary 

analysis were presented in Sections 5 and 6. The final section concluded with policy 

implications. 

 

2. Literature review 

2.1 Literature on the determining factors of air environment 

Our paper is closely related to the literature that study the determining factors of 

air environment. We classified them into five main strands, focusing on the impacts of 

economic, policy, demographic, external shocks, and technological indicators, 

respectively.  

Amongst the five types of determinants, economic variables play the most 

important role with a long and extensive academic debate, such as economic growth 

(Zhu et al., 2019, amongst others), financial development (Nasir et al., 2019, amongst 

others), trade and FDI (Yasmeen et al., 2019; Omri, 2018, amongst others), energy 

(Chien et al., 2021, amongst others), and infrastructure investment (Huang et al., 2020; 

Rasool et al., 2019, amongst others). In terms of economic growth, Nasir et al. (2019) 
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found financial and economic development have significant long-run relationships with 

environmental degradation. In terms of FDI and trade, there were two competing 

arguments: the pollution-haven and the pollution-halo hypothesis. The first stated the 

FDI leads to environmental degradation because host countries intend to attract FDI by 

relaxing their environmental regulations; the second stated FDI and trading bring high 

technologies and good management practices that help reducing carbon emissions. 

Along these two lines of arguments, there were mixed and inconclusive empirical 

findings. Some confirmed the pollution-haven hypothesis (Hanif et al., 2019; Shahbaz 

et al., 2018; Zhang and Zhou, 2016), while others found FDI either exerts positive 

environmental externality (Tang and Tan, 2015; Paramati et al., 2017; Zhu et al., 2016) 

or has a nonlinear relation with carbon emissions (Alshubiri and Elheddad, 2019; Omri, 

2018; Yasmeen et al., 2019). Though the transformation of energy structure from non-

renewable to renewable and the abatement of solid fuels help reducing air pollution 

(Chien et al., 2021; Meng et al., 2019), the increase in total energy use results in higher 

emissions (Narayanan and Sahu, 2014, amongst others) and energy intensity plays a 

similar role (Sadorsky, 2014). In terms of infrastructure investment, Huang et al. (2020) 

showed the investment in infrastructure leads to increase in air pollution. And Rasool 

et al. (2019) stated the transport infrastructure plays an imperative role.  

The second strand of literature explored the impact of policy factors such as taxes 

(Chien et al., 2021) and regulations (Neves et al., 2020; Wu et al., 2021). For example, 

Chien et al. (2021) found environment tax works in reducing carbon emission. Both 

Neves et al. (2020) and Wu et al. (2021) found environmental regulation is effective in 
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cutting CO2 emissions in the long-run as well.  

The third line of research focused on demographic factors (Cole and Neumayer, 

2004; Sadorsky, 2014). Cole and Neumayer (2004) presented the first study examining 

the impact of demographic factors on sulfur dioxide. They found a U-shaped relation 

between population level with the pollutant, while urbanization and average house size 

playing insignificant role. Sadorsky (2014) also found an insignificant effect of 

urbanization on CO2 emissions, while the opposite results were obtained by Zhang and 

Lin (2012).  

The fourth strand of literature analyzed the external shocks such as the financial 

crisis and the breakout of the Coronavirus disease 2019 (COVID-19) on carbon 

emission (Wang et al., 2021; Wang et al., 2022b). Wang et al. (2021), using data from 

55 industries, investigated the driving factors for the change in carbon intensity before 

and after financial crisis, by decomposing the change at sector-level. Wang et al. (2022b) 

used two new method to simulate the carbon emissions of China, India, U.S., and E.U. 

under the pandemic-free scenario and facilitated our understanding of the impact of the 

pandemic on carbon emissions in 2020. 

The fifth strand of literature was closest to our study that investigates the impact 

of technology progress on air pollution (Ehrlich and Holdren, 1971; Grossman and 

Krueger, 1991; Yi et al., 2020; amongst others). Ehrlich and Holdren (1971) and 

Grossman and Krueger (1991) were among the first to build the theoretical framework 

linking environmental impact with technology, suggesting that technology provides a 

solution to mitigate pollution due to growth of population. However, the empirical 
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evidence with regard to such impacts is quite mixed. Some scholars identified the 

reduction of CO2 emission has strong dependence on technological knowledge (Afonso 

et al., 2021). A few others argued that the advance of technology is not sufficient to 

avoid the massive climate change induced by greenhouse gas emissions (Shao et al., 

2021; Stokey,1998). The inconsistent findings mainly resulted from two reasons, one 

of which is the lack of a clear analysis into the transmission mechanism and the other 

is neglecting the context that moderates the relation between technical progress and air 

pollution.  

We identify a few research gaps based on the above literature review: First, 

existing studies explore the total impact of technology advance on air environment, 

while few decompose the total into the direct and the indirect effect; Second, though 

the general-purpose technology advance has been studied on air quality, few investigate 

the impact of the specific automation technology, robotics in particular, on 

heterogeneous air environmental indicators of air pollution and climate change. Third, 

the impact of technology on air environment could be changing with the variation in 

local market conditions. This conditional impact that shapes the relation between 

adoption of new technology and air environment is largely overlooked.  

2.2 Literature on the influence of industrial robots 

The fast development and adoption of automation technologies exemplified by 

automatic vehicles, industrial robots, and artificial intelligence in the past few decades 

generate significant social and economic implications (Acemoglu and Restrepo, 2019; 

Lei, 2021). Many existing studies focus on the influence of industrial robots on labor 



13 
 

market out of the concern that machines are competing with human beings (Acemoglu 

and Restrepo, 2021; Acemoglu and Autor, 2011). 

Some scholars saw the adoption of industrial robots as the harbinger of joblessness. 

Workers, especially those of low-skill, are increasingly replaced by robotics with lower 

payment (Graetz and Michaels, 2018; Acemoglu and Restrepo, 2020). Others viewed 

robots used in the new industrial revolution, like previous technologies, will ultimately 

boost demand for labor and increase their income share (Acemoglu and Restrepo, 

2018b).  

The opposite conclusions were reached because of three different working 

mechanisms—productivity effect, displacement effect, and reinstatement effect 

(Acemoglu and Restrepo, 2019). The productivity effect arises, when more expensive 

labors were replaced with cheaper machines, there would be a reduction in production 

costs and a rise in production. Thus, the productivity enhances the demand of labor. The 

displacement effect results when more tasks that were previously taken by labor were 

transferred to industrial robots. It reduces job availability and lowers labor demand and 

wages. The reinstatement effect was due to the comparative advantage of labor in doing 

more complex and innovative tasks. Automation standardizes the production process 

with a great portion of high-skill workers to be shifted out of routine tasks to create new 

production contents or to engage in new labor-intensive tasks. The balance between the 

three effects leads to various labor market implications.  

In addition to the debates relating robots use with employment, wage and income 

share, the literature also touches upon the economic influence of industrial robots in 
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economic growth (Aghion et al., 2019; Berg et al., 2018), energy consumption (Wang 

et al., 2022a), productivity (Kromann et al., 2020; Ballestar et al., 2020), technology 

advance (Liu et al., 2020), and the social impact (Lei, 2021). 

 

3. Hypothesis development: how do industrial robots affect 

air environment? 

3.1 The impact of robots on air environment mediated by energy consumption 

The advance of technology often produces unintended side effects, typically 

proportional in size to its intended ones (Simon, 1973). The invent and adoption of 

industrial robots greatly enhances the productivity and saves labor from taking dirty, 

dangerous, and routine works, though its environmental impact is ambiguous and lack 

of a formal assessment. When discussing the link between technology and environment, 

existing literature often mixed two effects—the direct and the indirect effect, and 

neglects the context when the new technology was deployed. We herein developed a 

theoretical framework arguing that the total effect actually depends on the relative size 

of the two. This was summarized into the first hypothesis: 

H1: The total mediated effect depends on the relative size of the direct and indirect 

effect. 

In terms of the direct effect, Dusik et al. (2018) pointed out the benefits that robots 

directly bring to environment include reduced material losses in manufacturing and 

supply chain operations, and opportunities for digitized environmental monitoring and 

environmental accounting systems. In addition, Wilts et al. (2021) emphasized the use 
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of industrial robots (based on optical recognition and intelligent evaluation algorithms) 

enables a circular economy that could transform the organic waste or solid waste into 

high-quality secondary raw material, and achieve the sustainability goals. Therefore, 

we proposed the second hypothesis with regard to the direct effect of robot usage on air 

environment: 

H2: The use of industrial robots is expected to bring direct benefits to air environment. 

However, the increasing use of industrial robots may exert unexpected responses, 

that is, negative environmental externality through the other channel. The adverse 

impacts of robot adoption on environment are mainly attributed to increased total 

energy intensity of operations, more electronic waste from proliferated production in 

electronic appliances and equipment that heavily rely on industrial robots, higher 

consumption of energy-saving products, and more demand for upstream material and 

energy inputs. 

Some researchers believe air pollution was reduced due to technology innovation 

since it demands less energy (Grossman and Krueger, 1991; Shi and Lai, 2013; Yi et al., 

2020; Xu et al., 2021), while others suggested the technology development aggravates 

air pollution driven by more energy consumption (Simon, 1973; Ausubel and Sladovich, 

1989). Both strands of literature underscore the importance of energy, but they did not 

distinguish its indirect effect from the direct effect, neither modelling nor testing the 

relative size of each. Based on such a debate, we proposed the second hypothesis 

regarding the indirect effect of robot usage on air environment: 

H3: The indirect effect of robot usage on air environment depends on, (a) the impact of 
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robots on energy consumption, and (b) the impact of energy consumption on air 

environment.  

In the last decades, the adoption of industrial robots, as an important component 

of technology advance, has experienced a steady growth and become prevalent in many 

industries (Pires, 2007; IFR, 2020). Past researches pointed out that technological 

progress is often associated with energy consumption (e.g. Acemoglu et al., 2016; Ertel, 

2019). In particular, Uhlmann et al. (2016) and Dusik et al. (2018) claimed that the 

large-scale applications of industrial robots are more likely to give rise to more energy 

consumption. However, they did not provide solid statistical and econometric analysis.  

Theoretically, there are three effects that work systematically and co-determine the 

impact of robots use on energy consumption. One of them is the pushing force that 

leads to the opposite directional change in robots use and energy consumption; the other 

two are pulling forces that move the variation of robot use and energy demand along 

the same direction. The pushing force includes the energy-efficiency or energy-saving 

effect (Yi et al., 2013; Shi and Lai, 2013; Sohag et al., 2015; Xu and Lin, 2018), and 

the pulling force consists of scale and rebound effect (Ertel, 2019; Vivanco et al., 2016).  

Some researchers believe technology decreases energy consumption by improving 

energy efficiency (Yin et al., 2018; Yi et al., 2020). First, when production activities 

were automated by application of industrial robots, the total outputs would be increased 

given the same amount of energy, and this reduces the per-unit energy cost. Second, the 

design and the use of robots itself could be biased towards energy-saving, when the 

performance of robotics is usually characterized by the ratio of locomotion kinetic 
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energy to the input mechanical energy. The energy efficiency of locomotion is the key 

to determine the overall energy efficiency that depends on the robots’ material 

properties, geometric sizes, actuation states, and the optimization of operation (Carabin 

et al., 2017; Shui et al., 2017). The design, selection and adoption of these energy-

saving robots leave some leeway for energy saving.   

However, the effectiveness of energy-saving effect may be undermined in some 

situations. Metcalf and Hassett (1999) showed that even though developed technology 

produces energy-saving of input significantly, the actual savings are much less than 

those supporters of energy-saving effect claimed. In addition, robots can play roles in 

impacting energy consumption through the “rebound effect” (or “takeback effect”), 

which describes that as energy price lowers due to lower costs saved from improved 

energy efficiency, this tends to motivate manufacturers to substitute energy factor for 

other more expensive factors such as labor and capital (Lin and Zhao, 2016). Thus, even 

though energy efficiency has been improved, it is unlikely to lessen total energy 

consumption (Herring, 2004; Alcott, 2005; Herring, 2006; Ertel, 2019). Besides the 

rebound effect, there was another pushing force termed as “scale effect” (Yi et al., 2020). 

The application of robots increases the total factor productivity and boosts economic 

growth as well as the total demand for products and services. Higher consumption in 

the general equilibrium may lead to more demand for energy.  

We summarized these theoretical arguments into the hypothesis below: 

H3(a): The impact of robots on energy consumption depends on the countervailing 

forces of energy-saving, rebound and scale effect. 
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Compared with the complex impacts of industrial robots on energy consumption, 

the relationship between energy consumption and environment is monotonic (An et al., 

2020; Jin and Hu, 2021). As the role of air environment is vital as discussed in Section 

1, we mainly focus on the air environmental performance including air quality and 

climate change indicators defined by Environmental Performance Index (Wendling et 

al., 2020).  

According to the International Energy Agency (IEA 2015), energy is responsible 

for 80% of CO2 emission and for 2/3 of total greenhouse gas emissions. Similarly, 

European Environment Agency (2004) indicated “the environmental problems directly 

related to energy production and consumption include air pollution, climate 

change……The emission of air pollutants from fossil fuel combustion is the major 

cause of urban air pollution. Burning fossil fuels is also the main contributor to the 

emission of greenhouse gases.” In addition to the data evidence provided by these 

energy and environmental research agencies, many studies have shown energy 

consumption is the main cause of air pollution (e.g. Afonso et al., 2021) and increased 

carbon dioxide emissions (Soytas et al., 2007; Rafindadi, 2016; Rahman and Kashem, 

2017). Based on the data and empirical evidence, we summarized the relation between 

energy consumption and air environment in H3(b).  

H3(b): The rising energy consumption leads to deterioration of air environment. 

3.2 The moderated mediating effect of robots on air environment 

Previous research suggested that the population plays an ineligible role in shaping 

the natural environment and affecting energy demand (Ehrlich and Holdren, 1971; 
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O'Neill et al., 2005; Mamun, et al., 2014; Ohlan, 2015; Rahman, 2020; Rahman and 

Alam, 2021). As early as 1971, Ehrlich and Holdren stated “population growth causes 

a disproportionate negative impact on the environment” and the smog problem is 

related to population distribution. Rahman (2020) noted that the population density is 

positively related to the energy consumption and CO2 emissions, and the similar results 

were found in Bangladesh by Rahman and Alam (2021), in European Union nations by 

York (2007), and in China by Wang et al. (2014).  

These studies either analyzed the population-environment nexus or the population-

energy association, while none of them viewed population as a key condition that 

moderates the relation between technology and environment. As far as we know, we are 

the first to analyze the role of the distribution of population in moderating the total 

effect of technology advance on environment performance. Hereby, we offered a 

theoretical rationale to explore how population density moderates the direct and indirect 

effect, respectively. 

In countries with higher population density, on one hand, the environmental risks 

that accompany the adoption of robots, if any, could be weaker, since people in denser 

areas have more environmental concerns and are more demanding in the selection of 

robotics that were biased towards energy-saving and environmental-friendly 

technologies. On the other hand, the labor costs relative to the capital costs were usually 

lower in countries with sufficient labor supply. Thus, the productivity gains from 

replacing labor with robots were smaller in densely populated countries, and this leads 

to less applications of robots at the country level, also mitigating their direct impacts of 
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robot usage on air environment.   

However, a few exceptions should be noted. The conditional effect of population 

density may vary due to country heterogeneity or industry characteristics. For example, 

in countries with worse environment performance or slower technical progress, the 

population growth is more likely driven by the fast expansion of secondary industry 

that has a higher penetration of automation technology. In these scenarios, the direct 

impacts of robots are more likely to be stronger. These considerations lead us to propose 

the fourth hypothesis which is an extension of H1:    

H4: The direct impact of robot usage on air environment is conditional on population 

density.  

Next, we analyze how population density affects the technology-environment 

nexus through its impact on the indirect effect. That is, the energy response to the use 

of robots may vary with the density of population. We argued that, in countries with 

higher population density, infrastructures such as road networks and electoral grids are 

usually better developed. Higher density of population helps to facilitate economies of 

scale and this enhances the energy-saving effect, leading to lower environmental 

damages (Sadorsky, 2014). However, countries with denser population distributed 

across limited urban area have higher demand for industrial clusters and multi-story 

high buildings (Resch et al., 2016; Lariviere and Lafrance, 1999). This induces more 

economic activities and leads to higher energy demand (scale effect). The rebound 

effect can also be shaped by population density. People who live in more urbanized and 

denser areas tend to consumer more energy-intensive products such as motor vehicles, 
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air conditioners, microwave ovens, which require more energy (Bilgili, et al., 2017). 

Even though the energy efficiency was improved, the lower price for energy-saving 

products may lead to higher aggregate spending on these products due to both 

substitution effect and income effect in more dense areas. Based on the heterogeneous 

effects on the countervailing forces, the relation between robots use and energy 

consumption may as well depend on the density of population. This argument was 

summarized into the fifth hypothesis: 

H5: The indirect impact of robot usage on air environment is also conditional on 

population density, through its moderation on the relation between robot usage and 

energy consumption. 

Figure 1 summarizes the above hypothesis conceptual model and presents the 

moderated mediation mechanisms that is put forward in this study. 

 
Figure 1. Proposed Research Model 
 
 

4. Data, variables and methodology 
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4.1 The sample and data sources 

   To test the hypotheses, we constructed a national-level dataset from a combination 

of various sources. The two major data sources for this study were the World 

Development Indicators (WDI) and Worldwide Governance Indicators (WGI) database 

provided by the World Bank1and the International Federation of Robotics (IFR)2. The 

former contained the segmented information on a variety of topics, such as economic-

related indictors, environment-related indicators, governance-related indicators, etc.; 

and the latter provided data on the stock of robots and new robot installations by type, 

country, industry and application, which has been used in several previous studies (such 

as Acemoglu and Restrepo, 2021). We also collected and used two indices: the Global 

Innovation Index (GII)3  from the World Intellectual Property Organization and the 

Environmental Performance Index (EPI)4 from the Yale Center for Environmental Law 

& Policy (Wendling et al., 2020) to identify countries into high-innovation performance, 

low-innovation performance, high-environmental performance and low-environmental 

performance, respectively. 

The IFR covered data on the use of robots around the world since 1993 but the 

breakdown by customer industry starts in different years. Our sample includes 75 

countries and regions with tracked record for robot usage. After merging various 

datasets and omitting the missing statistics, our final sample consists of 74 countries 

and regions in the world from 1993 to 2019, leading to an unbalanced panel of 702 

 
1 The data is available from https://databank.worldbank.org/home.aspx. 
2 The data is collected from https://ifr.org/. 
3 The GII was collected from the World Intellectual Property Organization. 
https://www.wipo.int/global_innovation_index/en/. 
4 The EPI data were collected from https://epi.yale.edu/downloads. 
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country-year observations. 

4.2 Variables 

   All variables and their definitions used to assemble the country-year database were 

summarized in Table 1. 

Table 1. Variables and definitions 

Variables Definition 

Dependent variables:  

NOx Total nitrous oxide emissions (logs), in units of thousand metric tons. 

PM2.5 PM2.5 air pollution, mean annual exposure (logs), in units of micrograms 

per cubic meter. 

CO2 CO2 emissions (logs), in units of kilotons. 

CH4 Methane emissions (logs), in units of kilotons. 

GHG Greenhouse gas emissions (logs), in units of kilotons. 

Independent variable:  

Robot usage The number of the stock of robots in use (logs). 

Mediator:   

Energy consumption Total final energy consumption (logs), in units of kilojoules. 

Moderator:  

Population density Population divided by land area in square kilometers (logs). 

Control variables:  

GDP GDP per capita (logs). 

FDI Share of inward and outward FDI in GDP. 

Openness Share of exports of goods and services in GDP. 

Innovation capacity Per capita patent applications (logs). 

Physical capital Gross capital formation to GDP ratio. 

Human capital Share of total working-age population with advanced education. 

Industrial structure Share of industrial output in GDP. 

Population structure Share of population ages 65 and above (logs). 

Regulatory quality The country's score on the aggregate indicator, collected directly from 

DataBank database. 

 

Dependent variables 

We measured environmental performance from two dimensions: air quality and 

climate change. We employed NOx emissions and annual average PM2.5 concentration 

as the measure of air quality, and emissions of CO2, CH4 and GHG to measure climate 
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change. Compared with existing studies that use either PM2.5 concentration for haze 

pollution (Xu and Lin, 2018; Xu et al., 2021; Yi et al., 2020) or CO2 emission for air 

quality (Rahman, 2020; Rahman and Alam, 2021; Simon, 1973; Wang and Zhu, 2020), 

we considered impacts of automation technology on different aspects of environmental 

performance. 

Independent variable 

We use the logarithm of industry-level stocks of industrial robots as the independent 

variable, similar to Fan et al. (2021) and Yang and Hou (2020). The IFR data on the 

stock of robot usage covers a wide range of industrial sectors such as agriculture, 

forestry and fishing, mining and quarrying, construction, manufacturing, education, 

utilities, and the unspecified, and etc. The database also provides more detailed 

information based on subsector classification. For example, the industrial robot data 

were available for manufacturing subsectors, such as automotive, metals, electronics, 

food and beverages, glass, paper, pharmaceuticals cosmetics, rubber and plastic, 

semiconductors, textiles, wood and furniture, and etc. To make the classification 

consistent, we dropped the robot data with unspecified industry category. We also 

conducted a sub-sample supplementary analysis focusing on the manufacturing 

industry.  

Mediation and moderation variables 

To understand why and under what conditions robot usage influences air 

environment would deepen our understanding of how to achieve environmental goals 

of reducing pollution and combating climate change. For this reason, we considered the 
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logarithm of total final energy consumption as a mediator in explaining how robots use 

associates with different aspects of environmental performance. Suggested by Borck 

and Schrauth (2021), Chen et al. (2020) and Erdogan (2021), we employed population 

density, measured by the logarithm of population divided by land area in square 

kilometers, as the moderator. It captured whether and how the effect of robot use is 

conditional on the population density. 

Control variables 

We controlled for a series of factors that affect a country’s environmental 

performance: GDP per capita, FDI, openness, innovation capacity, physical capital, 

human capital, industrial structure, population structure and governance efficiency. 

First, the impact robot use on environmental performance could be confounded by 

a country’s economic size or economic growth (Grossman and Krueger, 1991), we thus 

control for this impact using the logarithm of GDP per capita. FDI is also an important 

confounder that may produce entirely different outcomes for local environment (Cole 

et al., 2011; Golub et al., 2011). For instance, foreign investment sourced from countries 

with higher environment standards may bring green technologies and has positive 

impact on host country’s environmental performance (Eskeland and Harrison, 2003). It 

is equally possible foreign investors treat the FDI destinations as the “pollution haven” 

and generate negative environmental externality (Sapkota and Bastola, 2017). We thus 

controlled for FDI, measured as a nation’s inward and outward FDI scaled by its GDP. 

Similarly, following Ma and Wang (2021), we controlled for the impact of trade 

openness measured by exports of goods and services divided by GDP. 
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We also considered heterogeneous technological progress such as neutral 

technological progress, capital-saving technological progress and labor-saving 

technological progress that were frequently overlooked in the literature as further 

controls (Yi et al., 2020). We log-linearized the number of patent applications over total 

population to proxy neutral technological progress. Capital-saving technological 

progress was captured by gross capital formation over local GDP and labor-saving 

technological progress was measured using the ratio of labors having advanced 

education to total working-age population. 

The degree of industrialization is also closely associated with national 

environmental performance which was measured by the proportion of the industrial 

output value to GDP. Moreover, we controlled for the impact of demographics on 

environment. For example, aging could induce either industrial adaptation or new 

technology adoption, both of which may have influential impact on environment (Wang 

and Li, 2021). We used the population aged sixty-five and above relative to the total 

population to measure the change of this demographic trend. Finally, as suggested by 

Ibrahim and Ajide (2021), we included an institutional factor, measured by regulatory 

quality, to control the effect of government intervention on environmental performance. 

4.3 Models and estimation methods 

Based on the above hypotheses (see Figure 1), the impact of robot usage on air 

environment through energy consumption and the moderating role of population 

density were tested with a two-equation model. The conceptual framework can be 

formulated into a system of energy and environment equations: 
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𝐸𝑛𝑒𝑟𝑔𝑦௜௧ = 𝛼଴ + 𝛼ଵ𝑅𝑜𝑏𝑜𝑡௜௧ + 𝛼ଶ𝑃𝑜𝑝𝑑𝑒𝑛௜௧ + 𝛼ଷ𝑅𝑜𝑏𝑜𝑡௜௧ × 𝑃𝑜𝑝𝑑𝑒𝑛௜௧ + 𝑋௜௧
ᇱ 𝛩 + 𝜀௜௧     (1) 

𝐸𝑛𝑣𝑟𝑚𝑡௜௧ = 𝛽଴ + 𝛽ଵ𝐸𝑛𝑒𝑟𝑔𝑦௜௧ + 𝛽ଶ𝑅𝑜𝑏𝑜𝑡௜௧ + 𝛽ଷ𝑃𝑜𝑝𝑑𝑒𝑛௜௧ + 𝛽ସ𝑅𝑜𝑏𝑜𝑡௜௧ × 𝑃𝑜𝑝𝑑𝑒𝑛௜௧ +

𝑋௜௧
ᇱ Γ + 𝑢௜௧                                                                  (2) 

where 𝐸𝑛𝑣𝑟𝑚𝑡௜௧  denotes the air environment in country 𝑖  and year 𝑡  (the 

dependent variable); 𝑅𝑜𝑏𝑜𝑡௜௧ is the industrial robot usage (the independent variable); 

𝐸𝑛𝑒𝑟𝑔𝑦௜௧  denotes the total energy consumption (the mediator); 𝑃𝑜𝑝𝑑𝑒𝑛௜௧  refers to 

population density (the moderator); 𝑋௜௧ is the vector of control variables and 𝜀௜௧ and 

𝑢௜௧  are the error terms of the energy and environment equations, respectively. This 

framework fits into the procedures suggested by Baron and Kenny (1986) and Muller 

et al. (2005). 

Table 2 describes the total effect, indirect effect, and direct effect in the constrained 

and the full model based on our two-equation framework. First, we consider a 

constrained model where only the mediator is included. When the moderation effect is 

excluded the model, it captures the indirect effect of robots on the environment through 

energy consumption. Next, we consider the role of population density in moderating 

the relation between robot and energy consumption and between robot and air 

environment. In the full model, the mediating and moderating effects together 

determine the impact of robots on environmental performance. When the moderator 

variable is included, the direct and indirect effects depend on the level of population 

density. 
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Table 2. Total, direct, and indirect effects of a 1% increase in robots 
 Constraints Total effect Direct effect Indirect effect 

Model without 

moderation effect 

𝛽ଷ = 0, 𝛽ସ = 0 

𝛼ଶ = 0, 𝛼ଷ = 0 

𝛽ଶ + 𝛽ଵ𝛼ଵ 

(H1) 

𝛽ଶ 

(H2) 

𝛽ଵ𝛼ଵ 

(H3) 

Full model None 𝛽ଶ + 𝛽ଵ𝛼ଵ

+ (𝛽ସ + 𝛽ଵ𝛼ଷ)

∗ 𝑃𝑜𝑝𝑑𝑒𝑛௜௧ 

𝛽ଶ + 𝛽ସ

∗ 𝑃𝑜𝑝𝑑𝑒𝑛௜௧  

(H4) 

𝛽ଵ(𝛼ଵ + 𝛼ଷ

∗ 𝑃𝑜𝑝𝑑𝑒𝑛௜௧) 

(H5) 
Notes: the total effect is the summation of direct and indirect effects obtained from equations (1) 
and (2). The model with no moderation effect is a simplification of the framework where four 
constraints are imposed to exclude population density. H1 to H5 in the bracket correspond to each 
hypothesis in the section 3. 

To analyse the direct and indirect effects of robot usage on air environment, we 

first constructed a Structural Equation Model (SEM) in Stata 16.0 based on equations 

(1) and (2) excluding the moderator. We implemented a bootstrapping method to 

determine the statistical significance of the indirect effects. It performs better than the 

traditional causal steps approach in terms of its statistical power as well as Type I error 

(MacKinnon et al., 2002). The 95% bias-corrected confidence interval and 5000 

bootstrap resamples were applied. We further explore how the direct and indirect effect 

of robot usage on environment through energy consumption was moderated by 

population density (Baron and Kenny, 1986; MacKinnon, 2008). The moderated 

mediation analysis was also performed in Stata 16.0. All controls were included across 

the models. 

 

5. Main empirical results 

   Table 3 presents the means, standard deviations, and pairwise correlations across 

all variables of interests. There is no multicollinearity issue since the mean VIF is 2.04 

and the VIF for each repressor is less than 4.06. 
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Table 3. Descriptive statistics and correlation coefficients 

Variables Mean S.D. 1 2 3 4 5 6 7 8 9 10 11 12 
1 Robot usage 5.34 4.39 1.00            
2 Energy consumption 13.85 1.57 0.39 1.00           
3 Population density 4.47 1.55 0.17 -0.20 1.00          
4 GDP 9.23 1.31 0.40 -0.04 0.05 1.00         
5 FDI 7.89 28.75 0.01 -0.18 0.20 0.13 1.00        
6 Openness 46.02 33.13 0.02 -0.44 0.53 0.29 0.29 1.00       
7 Innovation capacity -8.91 1.45 0.29 0.11 0.02 0.65 0.11 0.19 1.00      
8 Physical capital 23.84 6.01 -0.01 0.16 0.05 -0.14 0.02 0.05 0.03 1.00     
9 Human capital 79.56 5.88 -0.15 -0.10 -0.13 0.23 0.00 0.04 0.13 0.01 1.00    
10 Industrial structure 29.09 9.70 -0.15 0.18 -0.25 -0.19 -0.11 -0.06 0.15 0.26 0.01 1.00   
11 Population structure -2.32 0.64 0.38 -0.05 0.04 0.42 0.08 0.06 0.39 -0.09 0.02 -0.56 1.00  
12 Regulatory quality 0.60 0.96 0.34 -0.12 0.10 0.79 0.16 0.35 0.56 -0.17 0.33 -0.34 0.46 1.00 

 

To examine whether energy consumption mediates the relation between robot usage 

and environmental performance, we first conducted mediation analysis through 5000 

bootstrap resampling. Table 4 presents the estimation results of the total effect, direct 

effect and indirect effect of robot usage on air environment. The total effects related to 

Hypothesis 1 in Models 2 to 6 indicate that the environmental performance deteriorates 

as more robots were adopted. Specifically, a one standard deviation increase in robot 

usage is associated with an increase of emission in CO2 and GHG equivalent to 0.9%, 

followed by the emissions of NOx and CH4 equivalent to 0.85%, and a rise of PM2.5 

concentration equivalent to 0.06%. 

The direct effects are presented in Models 2 to 6, in which robot usage is only 

significantly and positively associated with NOx emissions (b = 0.010, p < 0.1  in 

Model 2) while plays insignificant role in the rest of four environmental indicators. It 

indicates that the environmental risks induced by the use of industrial robots do not 

seem to be offset by the benefits they bring to the environment including reduction in 

material losses, smart recycling systems, digitized environmental monitoring, etc. This 
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might be because factors such as environmental awareness or technology levels differ 

across countries, limiting the positive role of robot usage in optimizing climate change. 

Therefore, Hypothesis 2 was weakly supported. In addition, the significantly positive 

effect of energy consumption on NOx suggests a partial mediating effect ( b =

0.942, p < 0.01 in Model 2), and this raises our concerns of indirect effects. 

 Model 1 of Table 4 shows the impact of the use of robots on energy consumption, 

and finds that robot usage significantly increases total energy consumption ( b =

0.196, p < 0.01 in Model 1). It implies that the energy-saving effect was dominated 

by the rebound and scale effects, and thus the use of robots fails to reduce total energy 

consumption. This result echoes arguments in Wei et al. (2019) and Yi et al. (2020). 

Therefore, Hypothesis 3(a) was supported. We also find that the coefficients of energy 

consumption for all environmental indicators are positive and significant across Models 

2 to 6, consistent with the findings in An et al. (2020). This result supports Hypothesis 

3(b), suggesting that less energy consumption helps reducing air pollution and 

combating climate change. 

We find that robot usage has positive and significant indirect effects on all kinds of 

air indicators through the mediation of energy consumption. The ratio of indirect effect 

on NOx relative to total effect is 94.8% and the ratio of indirect effect on PM2.5 is 76.9% 

( b = 0.184, p < 0.01, 95% CI = [0.159, 0.209] in Model 2; b = 0.010, p < 0.05,

95% CI = [0.0004, 0.020] in Model 3). Given that the indirect effect and direct effects 

on climate change have opposite signs, suppressing effects arise (MacKinnon, 2008; 

Shrout and Bolger, 2002). The impact of robot use on climate change is dominated by 
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the indirect effect mediated by energy consumption. Our findings provide a fresh 

perspective to explain for the seemingly contradictory relationship between technology 

advance and environmental deterioration. The rebound and scale effects caused by 

robot expansion assumes the major responsibility, making the robots’ energy-saving 

effect become less effective in ameliorating air quality. Therefore, Hypothesis 3 was 

supported.  

Table 4. Mediation effects: energy consumption as a mediator between robot usage 
and air environment 

 (1) EC (2) NOx (3) PM2.5 (4) CO2 (5) CH4 (6) GHG 
EC  0.942*** 0.047** 1.064*** 1.025*** 1.047*** 
  (0.017) (0.019) (0.015) (0.017) (0.012) 
Robot usage       
Total effect 0.196*** 0.194*** 0.013** 0.205*** 0.196*** 0.203*** 
 (0.010) (0.011)  (0.006) (0.012) (0.011) (0.011) 
Direct effect  0.010* 0.003 -0.003 -0.004 -0.002 
  (0.006) (0.007) (0.005) (0.006) (0.004) 
Indirect effect  0.184*** 0.010** 0.208*** 0.200*** 0.205*** 
  (0.013) (0.005) (0.015) (0.014) (0.014) 
LL 95% CI  0.159 0.0004 0.179 0.173 0.177 
UL 95% CI  0.209 0.020 0.237 0.227 0.233 
Controls Yes Yes Yes Yes Yes Yes 
Observations 702 702 381 702 702 702 

Notes: * (**, ***) denotes significance at the 10% (5%, 1%) level with bootstrap standard errors in 
parentheses. CI is the 95% bootstrap confidence interval calculated based on 5000 bootstrap 
resampling. LU is the lower limit, UL is the upper limit, and EC is energy consumption. 
 

We presented the moderation analysis with the inclusion of population density and 

its interaction with robot use in Table 5. When the interaction term was added, we find 

a significantly positive impact of robot use on energy consumption (b = 0.130, p <

0.01  in Model 1). The coefficients of robot usage for climate change indicators in 

Models 4-6 are still significant and positive (b = 0.048, p < 0.01 in Model 4; b =

0.038, p < 0.01 in Model 5; b = 0.046, p < 0.01 in Model 6), consistent with the 

total effects in Models 3-5 of Table 4. 

However, the impacts of robot use on two air quality indicators become 
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insignificant (b = 0.010, p > 0.1  in Model 2; b = −0.018, p > 0.1  in Model 3). 

Population density is positively associated with both energy consumption and air 

environment, except for NOx in Model 2. Our result, consistent with findings of Mamun, 

et al. (2014), Pham et al. (2020) and Rahman (2020), implies that the denser the 

population, the greater the energy consumption, and the worse the air quality would be. 

The moderating effect of population density on the relation between robot use and 

energy consumption is positive but insignificant (b = 0.010, p > 0.1  in Model 1). 

Similarly, the relation between robot use and NOx or PM2.5 is not conditional on 

population density (b = 0.003, p > 0.1 in Model 2; b = 0.001, p > 0.1 in Model 3). 

As a comparison, estimations in Models 4-6 suggest that the increasing emissions of 

CO2, CH4, and GHG in light of robot use are mitigated in countries with denser 

population (b = −0.016, p < 0.01  in Model 4; b = −0.010, p < 0.01  in Model 5; 

b = −0.014, p < 0.01  in Model 6). This is possibly because, on one hand, the 

adoption of robots in denser countries or regions has more environmental concerns. On 

the other hand, relatively sufficient labor supply in densely populated countries 

indicates the smaller productivity gains from replacing labor with robots, which leads 

to less applications of robots that may mitigate their direct impacts of robot usage on 

air environment. 

When population density is at its mean, a 1% increase of robot usage reduces 

emissions of CO2, CH4 and GHG by 0.024%, 0.007% and 0.017%, respectively. In 

particular, when population density is one standard deviation below the mean, a 1% 

increase of the number of robots decreases emissions of CO2, CH4 and GHG by 0.001%, 
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0.001% and 0.005%, respectively. As population density increases from the mean to 

one standard deviation above the mean, the growth of robots decreases emissions of 

CO2, CH4 and GHG by an additional 0.024%, 0.008% and 0.021%, respectively. 

Therefore, Hypothesis 4 is supported. 

In addition to focusing on the interaction terms of robot and population density, we 

further explore exactly how population density moderates the direct robot-environment 

nexus. We find the heterogeneous conditional effect of population density on air quality 

and climate change. In detail, population density positively moderates the relation 

between robots and NOx emissions (b = 0.024, p < 0.01 ), while produces negative 

moderating effects on the direct impacts of robots on CO2 and GHG emissions (b =

−0.024, p < 0.01; b = −0.017, p < 0.01). Such a relationship is also illustrated on the 

left of Figure 3 below. 

Table 5. Moderation effects: Population density as a moderator between robot 
usage, energy consumption and air environment 

Variables (1) EC (2) NOx (3) PM2.5 (4) CO2 (5) CH4 (6) GHG 
Robot usage 0.130*** 0.010 -0.018 0.048*** 0.038*** 0.046*** 
 (0.030) (0.013) (0.016) (0.011) (0.013) (0.009) 
Popden 0.115* -0.145*** 0.141*** 0.229*** 0.046* 0.173*** 
 (0.060) (0.026) (0.030) (0.022) (0.027) (0.019) 
Robot* 
Popden 

0.010 0.003 0.001 -0.016*** -0.010*** -0.014*** 

 (0.007) (0.003) (0.003) (0.003) (0.003) (0.002) 
EC  0.965*** 0.022 1.046*** 1.032*** 1.037*** 
  (0.016) (0.017) (0.014) (0.017) (0.012) 
       
Controls Yes Yes Yes Yes Yes Yes 
Observations 702 702 381 702 702 702 

Notes: * (**, ***) denotes significance at the 10% (5%, 1%) level with bootstrap standard errors in 
parentheses. EC is energy consumption and Popden is population density. 

After showing the moderation effects in Table 5, we attempt to visualize the size of 

moderation effects of population density on energy consumption (Figure 2) and on 

environmental performance (Figure 3). In Figure 2 we plot the effect of robots on 
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energy consumption based on equation (1). The function is evaluated at the 10, 25, 50, 

75 and 90 percentiles of the distributions of robots and population density. Both the 

position and the slope of the curve depend on the moderator (population density). In 

the plot, the slope is positive and turns slightly larger with the increase of population 

density. There is an upward shift of the curve as well, indicating that given the same 

distribution of robots use, the initial energy consumption is higher in countries with 

denser population. 

 
Notes: The plots show relationship between energy consumption (y axis) and robots (x axis) based on equation (1). 
The function is evaluated at the 10, 25, 50, 75 and 90 percentiles (%iles) of the distributions of both robots 
(movement from one point to the next in the line) and population density (a shift of the line upwards). The control 
variables from equation (1) are evaluated at their sample mean. 

Figure 2. Moderation impact of population density on the relation between robot 
usage and energy consumption 

We also used bootstrapping with 5000 iterations to establish the 95% confidence 

interval for the conditional indirect effect of population density on the relationship 

between robots use and environmental performance via energy consumption. Results 
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were reported in Table 6.5  The conditional indirect effect of robot usage on NOx 

emissions via energy consumption is stronger with higher population density (b =

0.184, p < 0.01, 95% CI = [0.142, 0.228] in Model 1), while it is weaker with lower 

population density ( b = 0.154, p < 0.01, 95% CI = [0.118, 0.192]  in Model 1). 

Similar results were found for emissions of CO2, CH4, and GHG in Models 3-5. Thus, 

Hypothesis 5 was supported. Notably, the conditional indirect effect of robot usage on 

PM2.5 is insignificant with both low and high population density (b = 0.005, p >

0.1, 95% CI = [−0.004, 0.013]; b = 0.004, p > 0.1, 95% CI = [−0.003, 0.011] in 

Model 2). 

Table 6. Conditional indirect effects of population density 

 (1) NOx (2) PM2.5 (3) CO2 (4) CH4 (5) GHG 
−1 SD 0.154*** 0.005 0.167*** 0.164*** 0.165*** 

 (0.019) (0.004) (0.021) (0.020) (0.020) 
LL 95% CI 0.118 -0.004 0.127 0.125 0.126 
UL 95% CI 0.192 0.013 0.207 0.206 0.206 
M 0.169*** 0.004 0.183*** 0.181*** 0.182*** 

 (0.012) (0.004) (0.013) (0.154) (0.013) 
LL 95% CI 0.145 -0.004 0.157 0.154 0.156 
UL 95% CI 0.194 0.011 0.209 0.207 0.207 
+1 SD 0.184*** 0.004 0.200*** 0.197*** 0.198*** 

 (0.022) (0.003) (0.024) (0.024) (0.024) 
LL 95% CI 0.142 -0.003 0.152 0.149 0.151 
UL 95% CI 0.228 0.011 0.246 0.244 0.244 
      
Controls Yes Yes Yes Yes Yes 
Observations 702 381 702 702 702 

Notes: * (**, ***) significance at the 10% (5%, 1%) level, bootstrap standard errors in parentheses. 
Confidence Intervals (CI) is 95% bootstrap confidence interval, bootstrap based on 5000 bootstrap 
samples. LU is lower limit and UL is upper limit. 
 

Figure 3 shows the conditional direct and total effects of the use of robots on air 

environment. Only in one case these two effects are both statistically insignificant, 

which is PM2.5. In the case of NOx, the moderator effect of population density is 

significant in the indirect effect, while plays no significant role in the direct effect. The 

 
5 Due to the space constraint, we only reported the condition indirect effect. The conditional total and direct effects 
are available upon requests. 
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total effect of robots use on air NOx is significantly positive. The total effects of robots 

use on the three climate-change related variables are positive and statistically 

significant, implying a negative environmental externality. Though the direct effect 

implies that robots’ adoption leads to less emissions in CO2, CH4, and GHG in denser 

areas, the indirect effect implies that robot adoption causes more emissions via 

increasing consumption of energy in countries with higher population density. Overall, 

the total effect remains positive because it is dominated by the indirect effect. 
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Notes: The relationship between air environment (y axis) and robots (x axis) based on equations (1) and (2). The 
plots on the left are the direct effect, based on columns (2) to (6) of Table 5. The plots of the total effect on the right 
adds both the direct and indirect effects (see Table 2). The function is evaluated at the 10, 25, 50, 75 and 90 percentiles 
(%ile) of the distributions of both robots and population density (the moderator). The control variables are evaluated 
at their sample mean. 

Figure 3. Moderation impact of population density on the direct and total relations 
between robots and air environment 
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6. Supplementary analyses 

In this section, we conducted supplementary analyses dividing the full sample into 

sub-samples based on EPI, GII and industry. The sub-sample results based on EPI and 

GII were reported in Table 7 and Table 8, respectively, and the sub-sample results based 

on industry were presented in Table 9. 

6.1 Classification of countries into high/low EPI 

   In Table 7, we distinguished high- from low-EPI countries and examined the 

heterogeneous impacts of robot usage on air environmental indicators through the 

analysis of mediation effect, moderation effect, and moderated mediation effect. The 

total effect of robot use on air environment is most of time positive and significant for 

both high- and low-EPI countries, except for the impact on PM2.5 concentration in low-

EPI countries. Comparing the total effect in Panel a and b, we find the total effect is 

greater in low-EPI countries than in high-EPI countries. 

However, the direct and indirect effects of the use of robots on environment indicate 

possibly different transmission mechanisms for high- and low-EPI countries. In terms 

of the direct effect, robot usage significantly increases NOx emission and PM2.5 

concentration for both types of countries (Models 1a, 2a, 1b and 2b), while it reduces 

emission of CO2 and GHG more significantly in high-EPI countries (Models 3a & 5a). 

In terms of the indirect effect, the coefficients for emissions of NOx, CO2, CH4 and 

GHG are positive and significant, while being insignificant for PM2.5 concentration for 

both panels (Models 1, 3, 4 & 5). These finding show that energy consumption partially 
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mediates the association between the use of robots and air environment. 

Looking at the moderating effect (without inclusion of the mediator), we find 

population density does not have significant moderation impact on the relation between 

robot use and NOx and PM2.5 concentration. However, it significantly reduces the 

impact of robot use on climate change in high-EPI countries, and similarly reduces the 

impact on CH4 emission in low-EPI countries. However, the impact on CO2 emission 

is stronger as population density rises in low-EPI countries. 

Through moderated mediation analysis, our results on the conditional indirect effect 

are similar to those in Table 6. The difference is the indirect effect of robot usage on air 

environment via the change of energy consumption is larger and more significant in 

high-EPI countries as population density rises.
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Table 7. Mediation effect of energy consumption and moderation effect of population density: high EPI countries vs. low EPI countries 
 (1a) NOx (2a) PM2.5 (3a) CO2 (4a) CH4 (5a) GHG (1b) NOx (2b) PM2.5 (3b) CO2 (4b) CH4 (5b) GHG 
Mediation effect Panel a: high EPI countries Panel b: low EPI countries 
Total effect 0.184*** 0.022*** 0.191*** 0.184*** 0.191*** 0.234*** -0.055 0.200*** 0.226*** 0.211*** 
 (0.011)  (0.006) (0.013) (0.012) (0.012) (0.021) (0.068) (0.028) (0.027) (0.023) 
Direct effect 0.011* 0.015** -0.011** -0.007 -0.007* 0.074*** 0.212* 0.005 0.013 0.010 
 (0.006) (0.007) (0.005) (0.006) (0.004) (0.026) (0.118) (0.036) (0.031) (0.022) 
Indirect effect 0.173*** 0.007 0.202*** 0.191*** 0.198*** 0.160*** -0.267 0.195*** 0.213*** 0.201*** 
 (0.014) (0.005) (0.016) (0.015) (0.016) (0.062) (0.177) (0.070) (0.054) (0.054) 
[LL 95% CI, UL 95% CI] [0.146, 

0.201] 
[-0.004, 
0.017] 

[0.170, 
0.234] 

[0.161, 
0.221] 

[0.166, 
0.229] 

[0.038, 
0.282] 

[-0.615, 
0.081] 

[0.057, 
0.332] 

[0.107, 
0.319] 

[0.096, 
0.306] 

Moderation effect           
Robot usage 0.013 -0.007 0.037*** 0.042*** 0.040*** 0.005 0.180 -0.130 0.174*** 0.014 
 (0.013) (0.015) (0.010) (0.013) (0.009) (0.057) (0.223) (0.080) (0.061) (0.051) 
PD -0.145*** 0.152*** 0.244*** 0.065** 0.187*** 0.150 0.566 -0.499*** 0.670*** -0.148 
 (0.027) (0.028) (0.019) (0.026) (0.018) (0.137) (0.396) (0.191) (0.145) (0.123) 
Robot x PD 0.003 0.001 -0.016*** -0.012*** -0.014*** 0.014 -0.001 0.032** -0.039*** -0.000 
 (0.003) (0.003) (0.002) (0.003) (0.002) (0.012) (0.039) (0.016) (0.012) (0.011) 
Moderated mediation effect           
−1 SD 0.151*** 0.003 0.169*** 0.164*** 0.167*** 0.120** -0.286 0.177** 0.159*** 0.177*** 
 (0. 020) (0.005) (0.022) (0.021) (0.022) (0.056) (0.261) (0.074) (0.058) (0.062) 
[LL 95% CI, UL 95% CI] [0.113, 

0.191] 
[-0.006, 
0.012] 

[0. 126, 
0.211] 

[0.122, 
0.205] 

[0.125, 
0.209] 

[0.049, 
0.253] 

[-1.354, 
0.222] 

[0.052, 
0.356] 

[0.068, 
0.295] 

[0.071, 
0.315] 

M 0.160*** 0.003 0.179*** 0.173*** 0.177*** 0.123** -0.270 0.181** 0.163** 0.181*** 
 (0.013) (0.004) (0.014) (0.014) (0.014) (0.062) (0.214) (0.075) (0.066) (0.067) 
[LL 95% CI, UL 95% CI] [0.135, 

0.186] 
[-0.005, 
0.010] 

[0.152, 
0.207] 

[0.146, 
0.201] 

[0.150, 
0.204] 

[0.041, 
0.279] 

[-1.298., -
0.026] 

[0.062, 
0.390] 

[0.065, 
0.336] 

[0.074, 
0.346] 

+1 SD 0.169*** 0.002 0.189*** 0.183*** 0.186*** 0.126 -0.254 0.185* 0.167* 0.185* 
 (0.019) (0.004) (0.021) (0.021) (0.021) (0.087) (0.272) (0.104) (0.099) (0.100) 
[LL 95% CI, UL 95% CI] [0.134, 

0.207] 
[-0.005, 
0.010] 

[0.149, 
0.232] 

[0.144, 
0.225] 

[0.147, 
0.228] 

[-0.011, 
0.332] 

[-1.568., 
0.006] 

[0.014, 
0.436] 

[-0.002, 
0.391] 

[0.007, 
0.398] 

Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 650 347 650 650 650 52 34 52 52 52 

Notes: * (**, ***) significance at the 10% (5%, 1%) level, bootstrap standard errors in parentheses. Confidence Intervals (CI) is 95% bootstrap confidence interval, 
bootstrap based on 5000 bootstrap samples. LU is lower limit, UL is upper limit, five indicators of air environment are the dependent variables, energy consumption is 
a mediation variable, and population density is a moderation variable. 
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6.2 Classification of countries into high/low GII 

   Table 8 reports the results for high- and low-GII countries, respectively. The total 

effects of robot usage on air environment are still found to be positive and statistically 

significant across all models for high-GII countries. Similar results were observed for 

low-GII countries, except for the impact on PM2.5 concentration. The use of robots 

produces larger impacts on air environmental indicators in high-GII countries than in 

low-GII countries. 

   In addition, for both the high- and low-GII countries, the positive indirect effect 

dominates the negative direct effect, with both effects more significantly embodied in 

high-GII countries. It indicates that the climate warming is mitigated due to the 

direction contribution of robot usage, however, it is worsened due to the indirect effect 

because of more energy consumption induced by a higher penetration of robots.  

The moderation effects of population density on the relation between robot usage 

and air environment are distinct for high- and low-GII countries. Specifically, for high-

GII countries, the positive impact of robot on CO2, CH4, and GHG emissions, key 

indicators of climate warming, was weakened as population is more densely distributed. 

Interestingly, population density does not have significant moderating effect on robot 

usage and PM2.5 concentration. In contrast, in low-GII countries, robot usage 

significantly reduces emissions of NOx, CH4 and GHG and increases PM2.5 

concentration but such negative impacts are offset as population density rises. 

We further conducted the moderated mediation analysis and presented the 

conditional indirect effects as a focus for discussion. We find a striking distinction of 
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the indirect effect in the high- and low- GII countries. In countries with better 

innovation performance, the indirect effects of robot usage on NOx and climate change 

related indicators are positive when population density is at its mean, and become 

stronger in countries with denser population. In less innovative countries, the indirect 

effects of robot usage on NOx, CO2, and CH4 are insignificant when population density 

is at its mean, and turns negative when population density rises. The heterogeneity in 

the indirect effect suggests that, density could be a solution as a crucial climate 

mitigation measure through energy saving in countries with lower level of innovation, 

but not so in more innovative countries.
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Table 8. Mediation effect of energy consumption and moderation effect of population density: high GII countries vs. low GII countries 
 (1a) NOx (2a) PM2.5 (3a) CO2 (4a) CH4 (5a) GHG (1b) NOx (2b) PM2.5 (3b) CO2 (4b) CH4 (5b) GHG 
Mediation effect Panel a: high GII countries Panel b: low GII countries 
Total effect 0.226*** 0.015** 0.239*** 0.225*** 0.236*** 0.094** -0.060** 0.094** 0.099*** 0.090** 
 (0.016)  (0.007) (0.017) (0.017) (0.016) (0.042) (0.030) (0.041) (0.038) (0.038) 
Direct effect 0.006 0.003 -0.019** -0.018* -0.014** 0.005 -0.052* 0.005 0.026 0.006 
 (0.010) (0.009) (0.008) (0.010) (0.007) (0.016) (0.029) (0.013) (0.022) (0.008) 
Indirect effect 0.220*** 0.012 0.258*** 0.243*** 0.250*** 0.089* -0.008 0.089* 0.073* 0.084* 
 (0.020) (0.008) (0.024) (0.021) (0.023) (0.052) (0.014) (0.050) (0.054) (0.048) 
[LL 95% CI, UL 95% CI] [0.181, 

0.259] 
[-0.003, 
0.027] 

[0.211, 
0.305] 

[0.201, 
0.285] 

[0.205, 
0.295] 

[-0.013, 
0.190] 

[-0.035, 
0.019] 

[-0.009, 
0.187] 

[-0.011, 
0.158] 

[-0.010, 
0.179] 

Moderation effect           
Robot usage 0.035* -0.027 0.052*** 0.078*** 0.061*** -0.380*** 1.118*** -0.147 -0.837*** -0.414*** 
 (0.021) (0.017) (0.015) (0.021) (0.014) (0.106) (0.272) (0.097) (0.151) (0.046) 
PD -0.102** 0.179*** 0.294*** 0.134*** 0.251*** -1.176*** 2.418*** 0.080 -1.894*** -0.663*** 
 (0.041) (0.032) (0.030) (0.041) (0.027) (0.213) (0.585) (0.194) (0.302) (0.092) 
Robot x PD -0.003 0.001 -0.022*** -0.022*** -0.021*** 0.093*** -0.259*** 0.028 0.196*** 0.091*** 
 (0.005) (0.004) (0.003) (0.004) (0.003) (0.023) (0.060) (0.021) (0.033) (0.010) 
Moderated mediation effect           
−1 SD 0.202*** 0.008 0.228*** 0.220*** 0.222*** 0.402*** -0.099 0.290*** 0.390*** 0.332*** 
 (0. 031) (0.006) (0.034) (0.032) (0.033) (0.099) (0.084) (0.071) (0.094) (0.078) 
[LL 95% CI, UL 95% CI] [0.148, 

0.271] 
[-0.003, 

0.20] 
[0.169, 
0.300] 

[0.164, 
0.291] 

[0.165, 
0.292] 

[0.205, 
0.561] 

[-0.565, -
0.003] 

[0.167, 
0.452] 

[0.212, 
0.572] 

[0.186, 
0.484] 

M 0.210*** 0.007 0.237*** 0.228*** 0.231*** 0.079 -0.005 0.057 0.077 0.066 
 (0. 018) (0.005) (0.019) (0.018) (0.019) (0.060) (0.026) (0.045) (0.058) (0.050) 
[LL 95% CI, UL 95% CI] [0.175, 

0.247] 
[-0.003, 
0.016] 

[0.199, 
0.274] 

[0.193, 
0.266] 

[0.195, 
0.267] 

[-0.049, 
0.181] 

[-0.116, 
0.022] 

[-0.033, 
0.141] 

[-0.042, 
0.181] 

[-0.039, 
0.155] 

+1 SD 0. 217*** 0.006 0.246*** 0.237*** 0.240*** -0.243*** 0.088 -0.176*** -0.236*** -0.201 
 (0.025) (0.004) (0.027) (0.027) (0.027) (0.062) (0.078) (0.042) (0.054) (0.045) 
[LL 95% CI, UL 95% CI] [0.173, 

0.271] 
[-0.002, 
0.014] 

[0.195, 
0.306] 

[0.186, 
0.296] 

[0.190, 
0.298] 

[-0.370, -
0.122] 

[-0.032, 
0.299] 

[-0.260, -
0.088] 

[-0.341, -
0.119] 

[-0.287, -
0.099] 

Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 366 261 366 366 366 72 46 72 72 72 

Notes: * (**, ***) significance at the 10% (5%, 1%) level, bootstrap standard errors in parentheses. Confidence Intervals (CI) is 95% bootstrap confidence interval, 
bootstrap based on 5000 bootstrap samples. LU is lower limit, UL is upper limit, five indicators of air environment are the dependent variables, energy consumption is 
a mediation variable, and population density is a moderation variable. 
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6.3 Classification of different industries 

Table 9 presents the impact of robot usage on air environment in manufacturing 

industry (Panel a) and five more segmented sub-industries (Panels b-f), namely, 

automotive, electrical and electronics, metal, motor vehicles engines and bodies, and 

plastic and chemical products. The total, direct and indirect effects are similar to those 

presented in Table 4. The total effects of robot usage on all air environment indicators 

are positive, though being less significant in PM2.5. Compared with other four sub-

industries, only in the industry of plastic and chemical, the adoption of more industrial 

robots leads to heavier air pollution indicated by a higher level of PM2.5 concentration 

(b = 0.012, p < 0.05 in Model 2f). 

Though the direct effect varies across sub-industries, the pattern remains that the 

direct effect was still dominated by the indirect effect. In terms of the direct effect, for 

manufacturing industry as a whole, robot adoption predicts a significant rise in NOx 

emission, while plays no role in affecting other air environment indicators. Similar 

direct effect on NOx emission was identified in the sub-industry producing plastic and 

chemical products (b = 0.013, p < 0.05 in Model 1f). Notably, a higher penetration 

of robots in production activities reduces CO2 emission, directly contributing to 

ameliorate climate warming, in three sub-industries electrical and electronics, metal, 

and plastic and chemical products. PM2.5 concentration was also lower in the motor 

vehicles engines and bodies sub-industry as the robot use rises (b = −0.018, p < 0.01 

in Model 2e). The indirect effects are consistent across all sub-industries and confirms 

the important role for energy consumption that significantly mediate the relation 
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between robot usage and air environment. 

In terms of the moderation effect, we find that the response of climate-change 

indicators to robot usage is more responsive to the variation in population density than 

the air quality indicators, except for the electrical and electronics sub-industry. In the 

sub-industry of electrical and electronics, the relationship between robot usage and air 

pollution is stronger in denser areas. 

Last but not the least, we find that for manufacturing as a whole and its five sub-

industries, the mediation effects of energy consumption are significantly moderated by 

population density. That is to say, robot usage in manufacturing industry worsens air 

quality and exacerbates climate change due to higher demand in energy, and this 

negative environmental externality was significantly enhanced in countries or regions 

with more dense population.
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Table 9. Mediation effect of energy consumption and moderation effect of population density in different industries 
 (1a) NOx (2a) PM2.5 (3a) CO2 (4a) CH4 (5a) GHG (1b) NOx (2b) PM2.5 (3b) CO2 (4b) CH4 (5b) GHG 
Mediation effect Panel a: Manufacturing Panel b: Automotive 
Total effect 0.167*** 0.010* 0.170*** 0.166*** 0.169*** 0.186*** -0.060 0.201*** 0.192*** 0.199*** 
 (0.011)  (0.005) (0.012) (0.012) (0.012) (0.011) (0.005) (0.012) (0.011) (0.011) 
Direct effect 0.014*** 0.000 -0.004 0.000 -0.002 0.003 -0.008 -0.004 -0.006 -0.003 
 (0.005) (0.006) (0.004) (0.005) (0.004) (0.006) (0.007) (0.005) (0.005) (0.004) 
Indirect effect 0.153*** 0.010** 0.174*** 0.166*** 0.171*** 0.183*** 0.014*** 0.205*** 0.198*** 0.202*** 
 (0.012) (0.004) (0.014) (0.013) (0.014) (0.011) (0.005) (0.013) (0.012) (0.012) 
[LL 95% CI, UL 95% CI] [0.130, 

0.177] 
[0.002, 
0.019] 

[0.147, 
0.201] 

[0.140, 
0.193] 

[0.144, 
0.198] 

[0.161, 
0.206] 

[0.005, 
0.023] 

[0.180, 
0.229] 

[0.173, 
0.222] 

[0.177, 
0.226] 

Moderation effect           
Robot usage 0.012 -0.024 0.037*** 0.036** 0.037*** 0.026 -0.043** 0.041*** 0.044*** 0.042*** 
 (0.015) (0.017) (0.012) (0.015) (0.011) (0.016) (0.017) (0.014) (0.016) (0.012) 
PD -0.122*** 0.131*** 0.165*** 0.015 0.119*** -0.094*** 0.128*** 0.154*** 0.020 0.113*** 
 (0.022) (0.026) (0.019) (0.022) (0.016) (0.020) (0.023) (0.017) (0.021) (0.015) 
Robot x PD 0.002 0.003 -0.011*** -0.008** -0.010*** -0.004 0.005 -0.011*** -0.011*** -0.011*** 
 (0.003) (0.003) (0.003) (0.003) (0.002) (0.003) (0.004) (0.003) (0.003) (0.002) 
Moderated mediation effect           
−1 SD 0.152*** 0.004 0.160*** 0.159*** 0.160*** 0.206*** 0.010** 0.216*** 0.216*** 0.215*** 
 (0.021) (0.004) (0.022) (0.021) (0.021) (0.020) (0.005) (0.020) (0.020) (0.020) 
[LL 95% CI, UL 95% CI] [0.112, 

0.193] 
[-0.003, 
0.013] 

[0.118, 
0.203] 

[0.117, 
0.201] 

[0.118, 
0.202] 

[0.169, 
0.245] 

[0.0002, 
0.020] 

[0.175, 
0.252] 

[0.175, 
0.254] 

[0.175, 
0.252] 

M 0.130*** 0.003 0.138*** 0.137*** 0.137*** 0.162*** 0.007** 0.169*** 0.169*** 0.168*** 
 (0.012) (0.003) (0.113) (0.013) (0.13) (0.011) (0.004) (0.012) (0.012) (0.011) 
[LL 95% CI, UL 95% CI] [0.107, 

0.155] 
[-0.003, 
0.009] 

[0.163, 
0.192] 

[0.112, 
0.163] 

[0.113, 
0.162] 

[0.140, 
0.186] 

[0.0003, 
0.014] 

[0.147, 
0.192] 

[0.146, 
0.193] 

[0.146, 
0.191] 

+1 SD 0.109*** 0.002 0.115*** 0.114*** 0.114*** 0.117*** 0.005** 0.123*** 0.123*** 0.122*** 
 (0.021) (0.002) (0.022) (0.022) (0.021) (0.019) (0.002) (0.020) (0.020) (0.019) 
[LL 95% CI, UL 95% CI] [0.071, 

0.151] 
[-0.001, 
0.007] 

[0.075, 
0.158] 

[0.074, 
0.158] 

[0.074, 
0.157] 

[0.081, 
0.156] 

[0.001, 
0.011] 

[0.085, 
0.162] 

[0.085, 
0.163] 

[0.085, 
0.161] 

Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 702 381 702 702 702 702 381 702 702 702 
 (1c) NOx (2c) PM2.5 (3c) CO2 (4c) CH4 (5c) GHG (1d) NOx (2d) PM2.5 (3d) CO2 (4d) CH4 (5d) GHG 
Mediation effect Panel c: Electrical/electronics Panel d: Metal 
Total effect 0.228*** 0.007 0.227*** 0.226*** 0.230*** 0.197*** 0.011 0.199*** 0.197*** 0.200*** 



47 
 

 (0.015) (0.007)  (0.017) (0.016) (0.016) (0.014) (0.06) (0.015) (0.015) (0.015) 
Direct effect 0.010 -0.008 -0.021*** -0.010 -0.013** 0.011* -0.001 -0.011** -0.004 -0.006 
 (0.007) (0.008) (0.006) (0.007) (0.005) (0.006) (0.007) (0.005) (0.006) (0.005) 
Indirect effect 0.218*** 0.015*** 0.248*** 0.236*** 0.243*** 0.186*** 0.012*** 0.210*** 0.201*** 0.206*** 
 (0.018) (0.005) (0.020) (0.019) (0.020) (0.016) (0.004) (0.018) (0.017) (0.017) 
[LL 95% CI, UL 95% CI] [0.183, 

0.252] 
[0.005, 
0.025] 

[0.208, 
0.288] 

[0.198, 
0.274] 

[0.204, 
0.282] 

[0.155, 
0.216] 

[0.003, 
0.020] 

[0.175, 
0.245] 

[0.167, 
0.234] 

[0.172, 
0.240] 

Moderation effect           
Robot usage -0.013 -0.086*** -0.009 -0.002 -0.006 0.014 -0.041** 0.025 0.027 0.026** 
 (0.020) (0.022) (0.017) (0.021) (0.015) (0.018) (0.020) (0.015) (0.018) (0.013) 
PD -0.137*** 0.113*** 0.138*** -0.016 0.089*** -0.116*** 0.122*** 0.150*** 0.003 0.104*** 
 (0.020) (0.022) (0.017) (0.020) (0.014) (0.021) (0.024) (0.018) (0.022) (0.015) 
Robot x PD 0.008* 0.013*** -0.005 -0.001 -0.003 0.001 0.006 -0.010*** -0.007* -0.009*** 
 (0.004) (0.004) (0.004) (0.004) (0.003) (0.004) (0.004) (0.003) (0.004) (0.003) 
Moderated mediation effect           
−1 SD 0.228*** 0.011** 0.243*** 0.240*** 0.240*** 0.197*** 0.006 0.207*** 0.206*** 0.206*** 
 (0.028) (0.005) (0.030) (0.029) (0.029) (0.024) (0.004) (0.025) (0.025) (0.025) 
[LL 95% CI, UL 95% CI] [0.173, 

0.283] 
[0.001, 
0.023] 

[0.182, 
0.301] 

[0.181, 
0.297] 

[0.181, 
0.297] 

[0.149, 
0.245] 

[-0.002, 
0.015] 

[0.156, 
0.257] 

[0.155, 
0.255] 

[0.155, 
0.255] 

M 0.185*** 0.008** 0.197*** 0.195*** 0.195*** 0.153*** 0.004 0.161*** 0.160*** 0.160*** 
 (0.019) (0.004) (0.020) (0.020) (0.019) (0.016) (0.003) (0.016) (0.017) (0.016) 
[LL 95% CI, UL 95% CI] [0.151, 

0.223] 
[0.001, 
0.016] 

[0.161, 
0.237] 

[0.158, 
0.234] 

[0.159, 
0.234] 

[0.122, 
0.184] 

[-0.002, 
0.010] 

[0.129, 
0.193] 

[0.128, 
0.192] 

[0.128, 
0.191] 

+1 SD 0.142*** 0.005** 0.152*** 0.150*** 0.150*** 0.108*** 0.002 0.114*** 0.114*** 0.114*** 
 (0.026) (0.002) (0.027) (0.027) (0.027) (0.026) (0.002) (0.027) (0.027) (0.027) 
[LL 95% CI, UL 95% CI] [0.094, 

0.194] 
[0.002, 
0.012] 

[0.101, 
0.208] 

[0.100, 
0.205] 

[0.100, 
0.205] 

[0.060, 
0.160] 

[-0.0002, 
0.008] 

[0.062, 
0.168] 

[0.062, 
0.168] 

[0.062, 
0.167] 

Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 702 381 702 702 702 702 381 702 702 702 
 (1e) NOx (2e) PM2.5 (3e) CO2 (4e) CH4 (5e) GHG (1f) NOx (2f) PM2.5 (3f) CO2 (4f) CH4 (5f) GHG 
Mediation effect Panel e: Motor vehicles engines and bodies Panel f: Plastic and chemical products 
Total effect 0.189*** -0.001 0.203*** 0.193*** 0.202*** 0.191*** 0.012** 0.193*** 0.193*** 0.194*** 
 (0.011) (0.005) (0.012) (0.012) (0.012) (0.013) (0.006) (0.014) (0.014) (0.014) 
Direct effect 0.001 -0.018*** -0.006 -0.009 -0.004 0.013** 0.002 -0.011** 0.000 -0.006 
 (0.006) (0.007) (0.005) (0.006) (0.004) (0.006) (0.007) (0.005) (0.006) (0.004) 
Indirect effect 0.188*** 0.017*** 0.209*** 0.202*** 0.206*** 0.179*** 0.10** 0.204*** 0.193*** 0.200*** 
 (0.011) (0.004) (0.012) (0.011) (0.011) (0.014) (0.004) (0.016) (0.015) (0.015) 
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[LL 95% CI, UL 95% CI] [0.167, 
0.208] 

[0.009, 
0.026] 

[0.186, 
0.232] 

[0.180, 
0.225] 

[0.183, 
0.228] 

[0.153, 
0.206] 

[0.002, 
0.019] 

[0.173, 
0.234] 

[0.164, 
0.222] 

[0.170, 
0.230] 

Moderation effect           
Robot usage 0.018 -0.051*** 0.048*** 0.064*** 0.050*** 0.014 -0.025 0.042*** 0.043** 0.041*** 
 (0.018) (0.019) (0.015) (0.018) (0.013) (0.018) (0.020) (0.015) (0.018) (0.013) 
PD -0.096*** 0.125*** 0.144*** 0.023 0.105*** -0.124*** 0.143*** 0.169*** 0.009 0.119*** 
 (0.019) (0.021) (0.016) (0.019) (0.014) (0.021) (0.024) (0.018) (0.021) (0.015) 
Robot x PD -0.003 0.006 -0.012*** -0.015*** -0.012*** 0.002 0.002 -0.014*** -0.009** -0.012*** 
 (0.004) (0.004) (0.003) (0.004) (0.003) (0.004) (0.004) (0.003) (0.004) (0.003) 
Moderated mediation effect           
−1 SD 0.233*** 0.013** 0.240*** 0.242*** 0.240*** 0.179*** 0.005 0.191*** 0.188*** 0.189*** 
 (0.020) (0.005) (0.021) (0.021) (0.021) (0.023) (0.004) (0.025) (0.024) (0.025) 
[LL 95% CI, UL 95% CI] [0.194, 

0.273] 
[0.003, 
0.025] 

[0.199, 
0.280] 

[0.200, 
0.281] 

[0.198, 
0.279] 

[0.134, 
0.225] 

[-0.003, 
0.014] 

[0.141, 
0.239] 

[0.139, 
0.236] 

[0.140, 
0.238] 

M 0.172*** 0.009** 0.177*** 0.178*** 0.177*** 0.150*** 0.004 0.160*** 0.157*** 0.159*** 
 (0.011) (0.004) (0.010) (0.011) (0.010) (0.014) (0.003) (0.015) (0.015) (0.015) 
[LL 95% CI, UL 95% CI] [0.152, 

0.194] 
[0.002, 
0.016] 

[0.157, 
0.198] 

[0.158, 
0.200] 

[0.157, 
0.197] 

[0.123, 
0.176] 

[-0.002, 
0.010] 

[0.131, 
0.189] 

[0.129, 
0.187] 

[0.130, 
0.187] 

+1 SD 0.111*** 0.005** 0.114*** 0.115*** 0.114*** 0.121*** 0.002 0.129*** 0.127*** 0.128*** 
 (0.018) (0.002) (0.018) (0.018) (0.018) (0.024) (0.002) (0.025) (0.025) (0.025) 
[LL 95% CI, UL 95% CI] [0.078, 

0.147] 
[0.002, 
0.011] 

[0.080, 
0.149] 

[0.081, 
0.151] 

[0.080, 
0.149] 

[0.077, 
0.170] 

[-0.001, 
0.008] 

[0.082, 
0.181] 

[0.082, 
0.178] 

[0.081, 
0.179] 

Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 702 381 702 702 702 702 381 702 702 702 

Notes: * (**, ***) significance at the 10% (5%, 1%) level, bootstrap standard errors in parentheses. Confidence Intervals (CI) is 95% bootstrap confidence interval, 
bootstrap based on 5000 bootstrap samples. LU is lower limit, UL is upper limit, five indicators of air environment are the dependent variables, energy consumption is 
a mediation variable, and population density is a moderation variable.
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7. Discussion and conclusion 

With an increasing pace and complexity of the ongoing innovation in automation 

technology and artificial intelligence, a deep understanding of their implications on air 

environment is important and imperative to identify measures that can be taken to avoid, 

minimize or offset potential adverse impacts, if any. Against this backdrop, we explored 

whether, to what extent, and how the use of industrial robots influences both air quality 

and climate change. Regulations of the new automation technology would be based on 

our anticipatory foresight study that provokes thinking on where the robotics should be 

applied, are there any fields that should promote the use or restrict the use of such 

innovations, and, why so is.  

We contributed to the technology-environment literature that has thus far provided 

very inconsistent results. Using a cross-country panel dataset during 1993-2019, several 

interesting conclusions were drawn, among which the main take-away is that 

technology is a solution to overcome environmental challenge, however, we cannot 

neglect its adverse impact, or, the unintended side effect. Due to the dominant adverse 

impact, the total effect of the use of robots is against our expectation. This finding 

echoes the perspective in Simon (1973). Our analyses not only decomposed the direct, 

and the indirect effect from the total effect. But also, we highlighted and identified that 

population distribution plays a role in moderating the relation between machines and 

air environment. This is the first study, as far as we know, that systemically provided a 

theoretical framework and statistical modeling to examine the complex nexus among 

industrial robots, energy consumption, population density, and air environment.  
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Our findings yielded three broad implications for policymakers. First, our results 

suggested that, it is through inducing more energy demand, that industrial robots 

produced negative environmental externality, especially in the low-EPI and high-GII 

countries, and the electrical and electronics industry. Considering such implications, 

policymakers might need to consider how to minimize, reduce, and offset the rebound 

effect and the scale effect when energy efficiency has been significantly improved in 

light of robot adoption. For countries with low environmental performance index or 

high innovation capacity, they were faced with more serious challenges to balance the 

industrial policy in robot adoption and environmental protection. When more industrial 

robots penetrated into production process, a caution has to be made against the old 

wisdom “the more the better.” Second, when deciding upon where robotics was applied 

and in which industries we should promote the use or restrict the use of robotics, 

population density is the key element that could be incorporated into such decision-

making. And third, in countries with denser population, more heed should be paid to 

the adverse impact of robot adoption on air environment. 

This study naturally has its limitations that may encourage several directions of 

future research. First, it is interesting to explore what are the alternative mechanisms 

that mediate the relation between robots and air environment, and what are the 

institutional factors that moderate this relation. Second, a more rigorous theory could 

be developed to improve our current understanding of robots-environment nexus. Third, 

since our empirical results suggested heterogeneous findings due to different country 

features. An extension of study to sub-country level could be a future research direction 
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when detailed robot data are more available at regional level. 
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