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1 Introduction

Any system that finds itself in a state of local thermodynamic equilibrium, is thought to

evolve to its global equilibrium state, described by universal long-wavelength, long time-

scale hydrodynamics, respecting positivity of entropy production. The universal theory

governing this dynamics, corresponds to the relaxation of all conserved quantities of a

given system, and can be adapted to particular physical situations of interest by specifying

an equation of state, as well as the functional form and value in equilibrium of a specified

set of transport coefficients [1].

Hydrodynamics is an extremely successful practical example of the philosophy of ef-

fective field theory. Its equations are formulated by arranging terms in ascending order

of derivatives, truncating at a specified order in this expansion.1 The possible terms that

may appear in this expansion are restricted by the symmetries as well as the usual rules

of effective field theories, in such a way as to reduce an a-priori redundant set of transport

1For a clear review of this procedure in a relativistic system, see [2].
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coefficients to a smaller, purely physical subset. The fewer symmetries one requires, the

more general the resulting framework, and the larger the number of allowed transport coef-

ficients. From this one may recover previously known, more symmetric versions by taking

appropriate limits.

The main impetus to develop the general theory, apart from being structurally inter-

esting, is of course that situations arise in which the least symmetric theory is the only one

applicable. For example, in order to clarify the distinction between ordinary quasi-normal

modes and the spatial collective modes of [3, 4] one should look to non-boost invariant sys-

tems. A non-relativistic hydrodynamic theory without Galilean invariance is furthermore

needed to describe the electron fluid of graphene at finite carrier density [5, 6]. Another

area where such examples are relevant is biophysics. Consider, for example, the case of a

system of a large number of self-propelled organisms such as birds, moving through a fixed

medium, such as the air. A coarse grained description of such a collection of self-propelled

“particles” in terms of fluid dynamics will be translation invariant, but not invariant under

any form of boosts. For a perspective of applying non boost-invariant hydrodynamics to

flocking behavior of birds, the reader may want to consult [7]. Applications to the the-

ory of active matter are discussed in [8–10]. It should be noted that our results are not

directly applicable to the settings discussed in references [7–10] as these involve translation-

breaking terms visible at the level of the equations of motions already at ideal order, as

well as non-conservation terms on the right hand side. Such effects could be systematically

studied by further breaking the symmetries of our setup to allow for broken translations,

and by turning on appropriate sources.

In the spirit of proceeding from the most general to the more specific, in this paper

we formulate the complete first-order theory of hydrodynamics invariant under time trans-

lations Rt, the Euclidean group of spatial symmetries ISO(d) and containing a conserved

charge or particle number leading to the total symmetry group Rt×ISO(d)×U(1). Such

a theory does not possess any form of boost symmetry, be it of non-relativistic Galilean

or relativistic Lorentz form. We also explain how to recover previously known examples

of Galilean-invariant, Lifshitz-invariant and relativistically invariant hydrodynamics as a

limiting procedure. In all these the number of transport coefficients is reduced, sometimes

drastically.

We approach this theory from the non-relativistic, non-boost invariant side, but it is

also interesting and informative to ask the opposite question: if we were to start with a

relativistically invariant theory, what different patterns of symmetry breaking and what

kind of non-relativistic and non-boost invariant structures can possibly arise? This was

answered for equilibrium configurations in [11], where the resulting states can be classified

according to eight different symmetry-breaking patterns, according to how the remaining

generators of Poincaré are twisted with internal symmetries. In their language we are

developing the hydrodynamics of a “type-I framid”, which breaks full Poincaré invariance

down to only translations and rotations without any internal symmetry twist, in other

words to Rt×ISO(d) × Ginternal. We will exclusively focus on the case where the internal

symmetry is U(1). As was already noted in [11] this pattern of symmetry breaking is

closely related to Einstein-Aether theory [12] and can be seen as the breaking of Poincaré

invariance induced by a time-like expectation value of a vector operator.

– 2 –
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Kinematic structures 
(covariant tensors)

Special cases: 
1. Lorentz 
2. Lifshitz 
3. Galilei / Bargmann

Dynamics 
(current conservation)

Redundancies:

Constitutive Relations

1. Field redefinition 
2. Equations of Motion

Symmetries determine

Rt ⇥ ISO(d)⇥U(1)
<latexit sha1_base64="PJhvtAMb2MtnNpvjPn4Bhsvvges=">AAACIXicbVDLSgMxFM3UV62vqks3wSK0mzIjgl0W3ejK+ugD2jJkMmkbmnmQ3BHLML/ixl9x40KR7sSfMdPOQlsvhBzOuZd7z3FCwRWY5peRW1ldW9/Ibxa2tnd294r7By0VRJKyJg1EIDsOUUxwnzWBg2CdUDLiOYK1nfFlqrcfmVQ88B9gErK+R4Y+H3BKQFN2sdbzCIwcJ75LbMA94B5T+mNPIL34+v4mKbuVRbqZlK2KXSyZVXNWeBlYGSihrBp2cdpzAxp5zAcqiFJdywyhHxMJnAqWFHqRYiGhYzJkXQ19olf245nDBJ9oxsWDQOrnA56xvydi4ik18RzdmfpRi1pK/qd1IxjU+jH3wwiYT+eLBpHAEOA0LuxyySiIiQaESq5vxXREJKGgQy3oEKxFy8ugdVq1zKp1e1aqX2Rx5NEROkZlZKFzVEdXqIGaiKJn9Ire0YfxYrwZn8Z03pozsplD9KeM7x92g6Ol</latexit><latexit sha1_base64="PJhvtAMb2MtnNpvjPn4Bhsvvges=">AAACIXicbVDLSgMxFM3UV62vqks3wSK0mzIjgl0W3ejK+ugD2jJkMmkbmnmQ3BHLML/ixl9x40KR7sSfMdPOQlsvhBzOuZd7z3FCwRWY5peRW1ldW9/Ibxa2tnd294r7By0VRJKyJg1EIDsOUUxwnzWBg2CdUDLiOYK1nfFlqrcfmVQ88B9gErK+R4Y+H3BKQFN2sdbzCIwcJ75LbMA94B5T+mNPIL34+v4mKbuVRbqZlK2KXSyZVXNWeBlYGSihrBp2cdpzAxp5zAcqiFJdywyhHxMJnAqWFHqRYiGhYzJkXQ19olf245nDBJ9oxsWDQOrnA56xvydi4ik18RzdmfpRi1pK/qd1IxjU+jH3wwiYT+eLBpHAEOA0LuxyySiIiQaESq5vxXREJKGgQy3oEKxFy8ugdVq1zKp1e1aqX2Rx5NEROkZlZKFzVEdXqIGaiKJn9Ire0YfxYrwZn8Z03pozsplD9KeM7x92g6Ol</latexit><latexit sha1_base64="PJhvtAMb2MtnNpvjPn4Bhsvvges=">AAACIXicbVDLSgMxFM3UV62vqks3wSK0mzIjgl0W3ejK+ugD2jJkMmkbmnmQ3BHLML/ixl9x40KR7sSfMdPOQlsvhBzOuZd7z3FCwRWY5peRW1ldW9/Ibxa2tnd294r7By0VRJKyJg1EIDsOUUxwnzWBg2CdUDLiOYK1nfFlqrcfmVQ88B9gErK+R4Y+H3BKQFN2sdbzCIwcJ75LbMA94B5T+mNPIL34+v4mKbuVRbqZlK2KXSyZVXNWeBlYGSihrBp2cdpzAxp5zAcqiFJdywyhHxMJnAqWFHqRYiGhYzJkXQ19olf245nDBJ9oxsWDQOrnA56xvydi4ik18RzdmfpRi1pK/qd1IxjU+jH3wwiYT+eLBpHAEOA0LuxyySiIiQaESq5vxXREJKGgQy3oEKxFy8ugdVq1zKp1e1aqX2Rx5NEROkZlZKFzVEdXqIGaiKJn9Ire0YfxYrwZn8Z03pozsplD9KeM7x92g6Ol</latexit><latexit sha1_base64="PJhvtAMb2MtnNpvjPn4Bhsvvges=">AAACIXicbVDLSgMxFM3UV62vqks3wSK0mzIjgl0W3ejK+ugD2jJkMmkbmnmQ3BHLML/ixl9x40KR7sSfMdPOQlsvhBzOuZd7z3FCwRWY5peRW1ldW9/Ibxa2tnd294r7By0VRJKyJg1EIDsOUUxwnzWBg2CdUDLiOYK1nfFlqrcfmVQ88B9gErK+R4Y+H3BKQFN2sdbzCIwcJ75LbMA94B5T+mNPIL34+v4mKbuVRbqZlK2KXSyZVXNWeBlYGSihrBp2cdpzAxp5zAcqiFJdywyhHxMJnAqWFHqRYiGhYzJkXQ19olf245nDBJ9oxsWDQOrnA56xvydi4ik18RzdmfpRi1pK/qd1IxjU+jH3wwiYT+eLBpHAEOA0LuxyySiIiQaESq5vxXREJKGgQy3oEKxFy8ugdVq1zKp1e1aqX2Rx5NEROkZlZKFzVEdXqIGaiKJn9Ire0YfxYrwZn8Z03pozsplD9KeM7x92g6Ol</latexit>

spacetime

)
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Figure 1. Here we give the roadmap of our construction. In the spirit of effective field theory,

we first identify the most general symmetry group applicable for our purposes. For the purpose of

this paper we focus on Rt × ISO(d) × U(1). Next we write down all possible kinematic structures

compatible with that symmetry, which are then constrained by the fixing redefinition ambiguities

present in the construction. Finally the remaining physical quantities are then subject to a dynam-

ical principle, which in the case of hydrodynamics follows simply from conservation of the stress

tensor and current. From the most general and therefore least constrained structure we also recover

more highly symmetric previously known examples as limiting cases as shown in the leftmost box.

The authors of [13–15] analyse linearised hydrodynamic fluctuations at first order in

the derivative expansion for fluid flows at rest with respect to the preferred reference

frame. As our analysis in the following shows, the more general case of arbitrary velocity

with respect to the preferred reference frame, forces one to introduce a larger number of

additional transport coefficient and thus exhibits new physics associated with these.

2 Non-boost-invariant hydrodynamics

Figure 1 gives a conceptual overview of the procedure we follow in order to construct the

general non boost-invariant hydrodynamic theory at first dissipative order. The challenge

in this construction lies in the large number of allowed tensor structures (45 in the general

setting) and transport coefficients (29 in the general setting2) and so it is essential to ensure

one includes all terms and to be calculationally as efficient as possible. Hydrodynamics,

being defined as a gradient expansion, contains the usual field redefinition ambiguities

inherent in effective field theory constructions. At first order — the highest order to

we explore in this work — one may adjust the coefficients of a certain subset of tensor

structures, by a) using the zeroth-order equations of motion and b) by redefining the zeroth-

order hydrodynamic variables (temperature, velocity and chemical potential) by first-order

shifts. This means that not all coefficients appearing at first order are physical transport

coefficients and our goal becomes to isolate only those that are. Once all equations of

2This count includes both dissipative and non-dissipative transport coefficients at first order. Eliminating

the latter class reduces the count further to 20.
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motion have been imposed, the remaining ambiguities are those associated to shifts of the

hydrodynamic variables. In a boost-invariant setting these ambiguities are typically fixed

by a choice of hydrodynamic frame, such as Landau frame. Here, in the non boost-invariant

setting, we demonstrate similarly that all remaining ambiguities are fixed by an appropriate

frame choice. It is encouraging that the resulting theory, in all limiting cases, reduces to

the previously known constructions with the right number of transport coefficients and

tensor structures.

2.1 The ideal fluid

We being our construction of the general first-order hydrodynamics theory with symmetry

Rt×ISO(d)×U(1) by writing the constitutive relations up to first order in derivatives. This

task is facilitated by the work of [13, 14], who wrote down, in the first instance, the

constitutive relations for an ideal fluid in this symmetry class. These authors write the

constitutive relations in the laboratory frame where the fluid has velocity vi:

T (0)0
0 = −E , T (0)0

j = ρvj , T (0)i
0 = −(E + P )vi, T (0)i

j = Pδij + ρvivj . (2.1)

J (0)0 = n, J (0)i = nvi (2.2)

In these expressions E and P are the energy density and pressure, n is the particle density

or charge density (depending on the chosen interpretation of the U(1) symmetry), while ρ

is the “kinetic mass density” [13]. This additional thermodynamic function is generically

different from the mass density due to the absence of a boost symmetry and must therefore

be included independently in all boost-non-invariant cases. In total we thus have the

thermodynamic functions E , P, n and ρ, which are arbitrary functions of the thermodynamic

variables, namely the temperature T (t, xi), the square of the velocity field v2(t, xi) and the

chemical potential µ(t, xi). A related quantity that we will sometimes find convenient

is the internal energy Ẽ := E − ρv2. The principal interest of this paper is to extend

this to the dissipative level, more precisely to first order in the hydrodynamic expansion,

keeping arbitrary the velocity with respect to the preferred reference frame, vi. A linear

analysis in vi around vi = 0 is performed in [14], giving the hydrodynamic modes in the

preferred frame.

2.2 Dissipative corrections

The goal of this section is to write down the general constitutive relations for stress tensor

and current at first order in derivatives with respect to the hydrodynamical variables.

Keeping with common notation in the literature we write

Tµν = T (0)µ
ν + Πµ

ν , (2.3)

Jµ = J (0)µ + Πµ , (2.4)

where Πµ
ν and Πµ contain terms of first-order or higher in derivatives of the hydrody-

namic variables. These contain the dissipative terms (in addition to several non-dissipative

transport coefficients which we will discuss in detail).

– 4 –
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As has been outlined above, there is a large degree of redundancy to be fixed, which

stems from the way hydrodynamics is arranged as an expansion in derivatives. The ambi-

guity is usually fixed by making use of a particular ‘frame’ (e.g. Landau frame). We will

ultimately make such a choice as well, but not before systematically exploring precisely

what ambiguity is present in the general non boost-invariant hydrodynamic theory, and

that our choice of frame consistently fixes the ambiguity. A loose, but helpful, analogy

here is the construction of a putative new gauge theory, where one would be interested to

demonstrate that a particular gauge condition actually fixes the full redundancy.

Let us therefore now discuss in more detail what sort of redundancies arise in the

construction.

2.2.1 Field redefinitions

The first class of redundancy we need to take into account comes from the fact that shifts

of the form

T (t, xi) −→ T (t, xi) + δT (t, xi),

vi(t, xi) −→ vi(t, xi) + δvi(t, xi), (2.5)

µ(t, xi) −→ µ(t, xi) + δµ(t, xi),

where the δT (t, xi) etc. are of first order in derivatives, do not affect the ideal part of the

theory, but do introduce shifts at first order. Physically this means that we may consider a

family of redefinitions of the hydrodynamic variables T (t, xi), vi(t, xi), µ(t, xi) by gradient

terms which all agree in equilibrium, when those gradient terms vanish. Such a redefinition,

by the chain rule, also causes shifts of the thermodynamic functions E , P, ρ, n.

The second kind of ambiguity arises since, when working to first order in the gradient

expansion, one may always use the zeroth-order equations of motion in order to simplify

the expressions appearing at first order.

2.2.2 Tensor structures and equations of motion ambiguity

Concretely this is done by using the equations to express certain tensor structures in terms

of the remaining ones. The most efficient way to implement this, is by first enumerating

all possible tensor structures allowed by the symmetries at first order and then eliminat-

ing a convenient set using the zeroth order equations of motion. This then results in a

smaller effective set of tensor structures, which are then still subject to the field redefini-

tion ambiguity mentioned above. However, it is considerably simpler to apply the latter

to the reduced effective set of tensor structures, which is the procedure we will follow.

Indicated in table 1 are all the allowed tensor structures at first order, classified by their

content under the ISO(d) symmetry. In this work we focus solely on parity-preserving

transport. Note it is natural to consider further decomposing the vectors listed in table 1

into scalars (by contracting with vi) and pieces transverse to the velocity (by using a projec-

tor P ij = δij − vivj/v2). However, we opt not to take this step since such a decomposition

fails to be well-defined for vi = 0. This is to be contrasted with the relativistic case where

one may always decompose with respect to uµ.
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scalars
[
vk∂kT

]
, vk∂kv

2, vk∂k
µ
T , [∂tT ], ∂tv

2,
[
∂t
µ
T

]
, ∂kv

k

vectors [∂iT ], ∂iv
2, ∂i

µ
T , ∂tv

i, vk∂kv
i, vi· (scalars)

tensors σij , v(i· (vectors)j), δij · (scalars)

Table 1. An overview of all the different one-derivative terms of the thermodynamic variables

we can write down, with respect to the symmetries of the system. The parentheses around the

indices denote a symmetric tensor, since T i
j = T j

i. The terms in square brackets are the terms we

eliminate using the equations of motion at zeroth order. Here σij = ∂iv
j + ∂jv

i − δij 2
d∂kv

k is the

shear tensor and d is the number of spatial dimensions. Note that we do not decompose the vectors

into components transverse to the velocity, since we are also interested in situations where vi = 0.

Note that the same tensor structure can appear multiple times in different currents.

For example, the scalars are counted seven times, because they contribute five times to

the stress tensor, and two times to the U(1) current. To be more precise, they appear

once in J0 and once in J i, where they are multiplied by vi to form a vector. Similarly

they contribute to different index structures in the stress tensor multiplied by appropriate

combinations of the vi and δij .

Having thus defined the full set of tensor structures, we use the equations of motion

at the ideal fluid level,

∂µT
(0)µ

0 = 0, (2.6)

∂µT
(0)µ

j = 0, (2.7)

∂µJ
(0)µ = 0, (2.8)

to eliminate as many first-order structures as possible. We have of course a large amount

of freedom to choose which ones to eliminate. We go with the customary selection of

eliminating ∂iT, ∂tT and ∂t
µ
T . This gives us the desired reduced set of physical tensor

structures, in which to expand our field-redefinitions.

We now have all the ingredients necessary to write down and constrain the first-order

stress tensor and current.

2.2.3 First-order constitutive relations and choice of frame

Expanded in our reduced basis of tensor structures (see table 1), the field redefinitions now

take the form

δT −→ a1v
k∂kv

2 + a2v
k∂k

µ

T
+ a3∂tv

2 + a4∂kv
k (2.9)

δµ −→ a5v
k∂kv

2 + a6v
k∂k

µ

T
+ a7∂tv

2 + a8∂kv
k (2.10)

δvi −→ a9∂iv
2 + a10∂i

µ

T
+ a11∂tv

i + a12v
k∂kv

i+

+ vi
(
a13v

k∂kv
2 + a14v

k∂k
µ

T
+ a15∂tv

2 + a16∂kv
k
)

(2.11)

with free coefficients {ai}16
i=1. These redefinition ambiguities see themselves confronted with

the most general first order stress tensor, again expanded in the reduced basis of tensor
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structures

Π0
0 = c1v

k∂kv
2 + c2v

k∂k
µ

T
+ c3∂tv

2 + c4∂kv
k (2.12)

Π0
j = c5∂jv

2 + c6∂j
µ

T
+ c7∂tv

j + c8v
k∂kv

j+

+ vj
(
c9v

k∂kv
2 + c10v

k∂k
µ

T
+ c11∂tv

2 + c12∂kv
k
)

(2.13)

Πi
0 = c13∂iv

2 + c14∂i
µ

T
+ c15∂tv

i + c16v
k∂kv

i+

+ vi
(
c17v

k∂kv
2 + c18v

k∂k
µ

T
+ c19∂tv

2 + c20∂kv
k
)

(2.14)

Πi
j = c21σij + c22

(
vi∂jv

2 + vj∂iv
2
)

+ c23

(
vi∂j

µ

T
+ vj∂i

µ

T

)

+ c24

(
vi∂tv

j + vj∂tv
i
)

+ c25

(
vivk∂kv

j + vjvk∂kv
i
)

+ vivj
(
c26v

k∂kv
2 + c27v

k∂k
µ

T
+ c28∂tv

2 + c29∂kv
k
)

+ δij

(
c30v

k∂kv
2 + c31v

k∂k
µ

T
+ c32∂tv

2 + c33∂kv
k
)

(2.15)

containing the set {ci}33
i=1 of unconstrained coefficients. To this we add the current

Π0 = c34v
k∂kv

2 + c35v
k∂k

µ

T
+ c36∂tv

2 + c37∂kv
k (2.16)

Πi = c38∂iv
2 + c39∂i

µ

T
+ c40∂tv

i + c41v
k∂kv

i+

+ vi
(
c42v

k∂kv
2 + c43v

k∂k
µ

T
+ c44∂tv

2 + c45∂kv
k
)

(2.17)

which carries the set {ci}45
i=34 of unconstrained coefficients, which, using the ambiguities

above get whittled down to 29 remaining physical transport coefficients. Imposing that

non-dissipative contributions vanish may further reduce this number and we return to this

point in our analysis of the entropy current. This is still a somewhat large number, but

in the following we will develop more intuition for their physical meaning by considering

limiting cases with more symmetries.

Implementing the zeroth-order shifts results in

Tµν = T (0)µ
ν + δ

(
T (0)µ

ν

)
+ Πµ

ν ({ci})
︸ ︷︷ ︸

=Πµν({c̃i})

(2.18)

Jµ = J (0)µ + δ
(
J (0)µ

)
+ Πµ ({ci})

︸ ︷︷ ︸
=Πµ({c̃i})

, (2.19)

in other words we may think of the field redefinitions as acting on the first-order stress

tensor and current by moving in the space of coefficients

ci → c̃i = ci +Mija
j , (2.20)

where the coefficients Mij form the elements of a 45× 16 matrix.
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The structure we just exposed means that the ambiguities of the first-order stress

tensor and current can be understood as a linear, α-dependent trajectory in the space of

coefficients {ci}. Any two stress tensors lying on the same trajectory through this space

are physically equivalent (and similarly for the current), and so our next goal is to put

conditions on the first-order stress tensor and current that fix the ambiguity. In other

words, we would like to select one representative for each orbit through the space of {ci}.
We will now demonstrate that the natural generalization of what is usually called the

Landau frame supplies a sufficient number of conditions on the first-order quantities to

fully fix their form. The Landau frame conditions appropriate to our symmetry class were

given in [14] and read

Tµνu
ν = −Ẽuµ =⇒

{
µ = 0 : T 0

0 + T 0
jv
j = −Ẽ

µ = i : T i 0 + T i jv
j = −Ẽvi

(2.21)

The eigenvector uµ is parametrized as uµ = u0(1, vi), where u0 is a function of thermody-

namic variables and is not fixed. The frame condition for the U(1) current can be taken

as [13]

ūµJ
µ = − 1

u0
n. (2.22)

In fact u0 is not the only freedom that enters in the choice of frame. Due to the lack of

a metric structure to lower the index on uµ, the corresponding object with index down,

ūµ, is again for us to choose. We shall employ the same choice as [13], namely we take ūµ,

such that

uµūµ = −c2 , with ūµ =
1

u0
(−c2 −Bv2, Bvi) (2.23)

parametrized in terms of vi and the free function B, which may in general depend on

the thermodynamic variables. The parameters B, c2 and u0 are all free choices giving

different hydrodynamic frames, that is for each choice of B, c2, u0 there is a corresponding

Landau frame. However, we retain them explicitly in our construction, as this facilitates

our later analysis of limiting cases. In certain more highly symmetric situations these

parameters are naturally chosen by the requirement that the frame condition is constructed

in accordance with the symmetries at hand. For example for a Lorentz invariant fluid

(u0)2 = B = 1
1−v2/c2 , while a Galilean invariant fluid has B = 0 and u0 = 1.

Fixing the frame will reduce the number of coefficients we have in the constitutive

relations. Initially, we had 45 different coefficients {ci} in (2.12)–(2.17). The Landau

frame conditions, (2.21) and (2.22), give us 16 constraints, resulting in 29 physical transport

coefficients. In practice, we solve the Landau conditions by requiring all the coefficients

that multiply different tensor structures in different components of Πµ
ν and Jµ to vanish.

These coefficients are functions of ci and ai, and we solve the resulting 16 equations for

a1, . . . , a16. Having done that, the new coefficients are functions of only ci and we can

explicitly see that there are only 29 different coefficients. These we have relabelled as

detailed below, and each are functions of T, v2, µ. This brings us to our main result for the
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constitutive relations at first order.

Stress tensor

Π0
0 = γ2v

k∂kv
2 +

(
γ1v

2 + π̄
2

)
∂tv

2 + γ3v
2∂kv

k + (γ4v
2 − T (ᾱ+ γ̄))vk∂k

µ
T

Π0
j = γ5∂jv

2 + γ6v
k∂kv

j + T (ᾱ+ γ̄)∂j
µ
T − π̄∂tvj

−vj
(

1
2v2

(2γ2 + 2γ5 + γ6)vk∂kv
2 − γ4v

k∂k
µ
T − γ1∂tv

2 − γ3∂kv
k
)

Πi
0 =

(
γ8v

2 + η̄
2

)
∂iv

2 +
(
γ13v

2 + η̄
)
vk∂kv

i + γ7v
2∂tv

i + γ14v
2∂i

µ
T

+vi
(
γ9v

k∂kv
2 + γ10∂tv

2 +
(
γ11v

2 + ζ̄ − 2η̄
d

)
∂kv

k + γ12v
k∂k

µ
T

)

Πi
j = δij

(
γ15v

k∂kv
2 + γ17v

k∂k
µ
T + γ16∂tv

2 − ζ̄∂kvk
)
− η̄σij

−γ8

(
vi∂jv

2 + vj∂iv
2
)
− γ14

(
vi∂j

µ
T + vj∂i

µ
T

)

−γ7

(
vi∂tv

j + vj∂tv
i
)
− γ13

(
vivk∂kv

j + vjvk∂kv
i
)

+vivj

v2

(
(1

2γ13 − γ15 + γ8 − γ9)vk∂kv
2 − (γ12 − γ14 + γ17)vk∂k

µ
T

−(γ10 + γ16 − 1
2γ7)∂tv

2 − γ11v
2∂kv

k
)

U(1) current

Π0 = B
c2+Bv2

(
γ19v

k∂kv
2 + 1

2(ᾱ+ 2v2γ18 − γ̄)∂tv
2 + γ20v

2∂kv
k + (γ21v

2 − T σ̄)vk∂k
µ
T

)

Πi = γ22∂iv
2 + γ23v

k∂kv
i − T σ̄∂i µT + (ᾱ− γ̄)∂tv

i

+vi
(

1
2v2

(2γ19 − 2γ22 − γ23)vk∂kv
2 + γ21v

k∂k
µ
T + γ18∂tv

2 + γ20∂kv
k
)

Transport coefficients

η̄, ζ̄, σ̄, ᾱ, γ̄, π̄, γ1, . . . , γ23 (each a function of T, v2, µ)

(2.24)

Note that 29 transport coefficients is the count before the constraints of positivity of entropy

current have been applied. The transport coefficients η̄, ζ̄, σ̄, ᾱ, γ̄, π̄ become those utilised

in [14] in a linear perturbation analysis around a uniform zero-velocity background, i.e.

η0, ζ0, σ0, α0, γ0, π0, respectively, but otherwise differ as here they are functions of v2 too.

We will see that imposing boost symmetry, be it Lorentz, or Galilean, significantly re-

duces the number of transport coefficients. Imposing Lifshitz symmetry will constrain the

functional form of the transport coefficients as well as reduce their number (though not as

significantly as boost symmetry).

2.3 Entropy current

One of the physical requirements of any theory of hydrodynamics is its adherence to the

second law, namely the positivity of entropy production. At equilibrium one can readily

identify a unique entropy current, however at first order in the hydrodynamic expansion

there can be several ambiguities. Nevertheless, as is well-known, the process of defining
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the most general entropy current and demanding that its divergence is non-negative can

still lead to definitive constraints on transport coefficients. We shall elucidate this in

what follows.

The procedure outlined above is straightforward; we wish to construct the most general

expression for the entropy current Sµ consistent with the symmetries at hand, up to first

derivative order, and then ensure that ∂µS
µ ≥ 0. The entropy current at ideal order is then

given by Sµ = svµ + O(∂) where vµ ≡ (1, vi)µ. One can verify that with this definition,

∂µS
µ = 0 +O(∂)2, ensuring there is no entropy production at this hydrodynamic order.

In order to construct the most general first order contribution to Sµ consistent with

symmetries, it is convenient to split Sµ into two contributions, a canonical part, and a

non-canonical part,

Sµ = Sµcan + Sµnon. (2.25)

We shall begin with the canonical part. Consider the expression for the entropy density,

Ts = ε− ρv2 + P − µn (2.26)

=⇒ Tsvµ = −T (0)µ
νv
ν + Pvµ − µJ (0)µ. (2.27)

Inspired by (2.27) we now define Sµcan which, by construction, differs from svµ by terms

that are at least first order in derivatives,

TSµcan ≡ −Tµνvν + Pvµ − µJµ, (2.28)

whose divergence is easily evaluated,

∂µS
µ
can = −Πµ

ν∂µ
vν

T
−Πµ∂µ

µ

T
(2.29)

and crucially depends only on products of first derivatives; there are no explicit second

derivative terms. What remains in order to construct Sµ proper is the non-canonical part,

which is simply the most general set of terms consistent with the symmetries at hand.

In other words, the construction of Sµnon parallels our enumeration of the possible terms

allowed in the constitutive relations:

S0
non = c̃1v

k∂kv
2 + c̃2v

k∂k
µ

T
+ c̃3∂tv

2 + c̃4∂kv
k, (2.30)

Sinon = c̃5∂iv
2 + c̃6∂i

µ

T
+ c̃7∂tv

i + c̃8v
k∂kv

i +

+vi
(
c̃9v

k∂kv
2 + c̃10v

k∂k
µ

T
+ c̃11∂tv

2 + c̃12∂kv
k
)
. (2.31)

There are two types of contribution to ∂µS
µ: there are products of first derivatives (as is

the case for ∂µS
µ
can), and there are second derivative terms. Our first task is to use the

equations of motion to maximally reduce the number of terms that can appear, and we do

so here by eliminating all terms that contain one or more time derivatives. We then require

that the coefficients of the remaining second derivative terms vanish, since they do not have

a definite sign. This results in equality-type constraints (as opposed to inequality-type)

that fix 8 out of the 12 coefficients in the definition of Sµnon,

c̃5 = 0 c̃6 = 0 c̃10 = c̃2 c̃3 = m1c̃2

c̃4 + c̃7 = m2c̃2 c̃8 + c̃12 = m3c̃2 c̃9 = m4c̃2 c̃1 + c̃11 = (m1 +m2)c̃2
(2.32)

– 10 –



J
H
E
P
0
7
(
2
0
2
0
)
1
6
5

where m1,2,3,4 are constants of proportionality determined completely by the equation of

state.3 After imposing these conditions ∂µS
µ is then quadratic in derivatives, taking the

general form,

∂µS
µ =



∂iT

∂iµ

∂ivj




T

Tik Aik Bikl
Aki Mik Cikl
Bkij Ckij Vijkl






∂kT

∂kµ

∂kvl


 (2.33)

where the components of the matrix are given by all possible index contractions,

Tik = b0δik + b1vivk (2.34)

Aik = b2δik + b3vivk (2.35)

Mik = b4δik + b5vivk (2.36)

Bikl = b6viδkl + b7vivkvl + b8δikvl + b9δilvk (2.37)

Cikl = b10viδkl + b11vivkvl + b12δikvl + b13δilvk (2.38)

Vijkl = b14δikδjl + b15δilδjk + b16δijδkl + b17vivjvkvl

b18(vivjδkl + vkvlδij) + b19(vivlδjk + vjvkδil) +

b20vivkδjl + b21vjvlδik. (2.39)

We have computed each of these bI coefficients explicitly, and in general they depend on

the transport coefficients, the remaining redundancies in the definition of Sµnon (i.e. the c̃)

plus equation of state data.4 For example, some of the more compact expressions we have

encountered are,

b14 =
η̄

T
(2.40)

b15 = c̃8 +
η̄

T
(2.41)

b20 =
π̄ + γ6 − γ7 + γ13

T
(2.42)

b21

4
− b19

2
+
b20

4
= −1

2

∂c̃3

∂v2
. (2.43)

So far, we have ensured that second derivative terms vanish, and computed the resulting

quadratic form explicitly (2.33). We note that there are 22 coefficients appearing in the

quadratic form but there are a total of 29 transport coefficients, and so we expect there to

be non-dissipative combinations of transport coefficients which we will enumerate in the

next section 2.3.1.

We also expect an additional class of equality-type constraints on transport coefficients.

These usually arise in considerations of couplings to background fields, and by imposing

time-reversal covariance in the form of Onsager reciprocal relations. In some cases these

may be related to the non-dissipative contributions we discuss below.

Finally, the physical requirement of the second law ∂µS
µ≥0 requires that the quadratic

form (2.33) be non-negative for all fluid configurations. These result in inequality-type

3These coefficients are provided in a companion notebook to the paper.
4These coefficients are provided in a companion notebook to the paper.
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constraints. As many of the coefficients appearing in (2.33) are of considerable length, we

will not present an exhaustive analysis of these inequalities. However in section 2.3.2 we

present a complete analysis of the inequalities that can be extracted by studying shear-type

perturbations of uniform flow.

2.3.1 Non-dissipative transport coefficients

There are linearly independent combinations of transport coefficients that do not enter

∂µS
µ. Such terms are therefore responsible for effects which are nonuniform and non-

dissipative, and thus potentially interesting physical effects in their own right. Moreover

a theory constructed from such terms alone contains an additional conserved current, Sµ,

and may therefore not be subject to the usual difficulties in constructing Lagrangian de-

scriptions of hydrodynamics (see, for example, [16]). On the other hand, there may be

physical requirements which dictate that such terms vanish. For example, constraints on

such terms arise in the study of hydrostatic partition functions [17, 18]. To explore these

terms in detail, in this section we enumerate the constraints that must be placed on the

general theory to remove all non-dissipative contributions.

We begin by decomposing the currents appearing in ∂µS
µ
can, (2.29), into dissipative

and non-dissipative pieces,

Πµ
ν = (ΠD)µν + (ΠND)µν , (2.44)

Πµ = (ΠD)µ + (ΠND)µ, (2.45)

where the non-dissipative pieces (ND) do not enter ∂µS
µ by definition, and the dissipative

pieces (D) are here assumed to take the form,

∂µS
µ = −(ΠD)µν∂µ

vν

T
− (ΠD)µ∂µ

µ

T
. (2.46)

There are two classes of such non-dissipative transport coefficients.

The first class are those which arise directly in ∂µS
µ
non, as these manifestly do not

enter (2.46). These, as we have already seen, are constructed from the remaining co-

efficients in the constitutive relation for Sµnon after second-derivative constraints are im-

posed, namely (2.32), and are given by c̃1, c̃2, c̃4, c̃8. There can be additional equality-type

constraints that result from considering new second-derivative terms that arise when back-

ground fields are turned on, as was demonstrated in the Lorentz invariant case [19]. Having

recognised these terms as non-dissipative, for this section we now set c̃1 = c̃2 = c̃4 = c̃8 = 0

and the remaining entropy current is purely of canonical form.

We now turn to the second class of non-dissipative transport coefficients. Having

imposed the vanishing of the first class of coefficients, there are 29 transport coefficients

remaining (those appearing in the constitutive relations for Πµ
ν and Πµ) but only 22 inde-

pendent terms in the quadratic form (the bi) (2.33). Thus there are additional independent

linear combinations of transport coefficients that are non-dissipative. We can now count

how many such non-dissipative transport coefficients there are. Denoting a general trans-

port coefficient as tI , we can define a linear mapM from the space of transport coefficients
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to the space of quadratic-form coefficients,

bi =MiJ tJ , (2.47)

whereM is a 22×29 rectangular matrix. We are interested in how many linearly indepen-

dent vectors there are in the vector space of transport coefficients that do not contribute

to bi. By direct computation we find that the rank of M is 20 and the dimension of its

null space is 9. Thus we conclude that there is a vector space of dimension 20 spanned

by dissipative transport coefficients (the image of M), and a vector space of dimension

9 spanned by non-dissipative transport coefficients (the null space of M). The linearly

independent non-dissipative coefficients are as follows;

γ23 +
γ22

2
+ Tγ14 − Tγ12, (2.48)

γ18 + 2Tγ4 + 2v2γ̄, (2.49)

γ16 − γ2 + 2γ3, (2.50)

γ15 + 2γ11 − γ9, (2.51)

γ10 − γ2, (2.52)

γ7 + γ6 +
γ5

2
− γ2

2
, (2.53)

γ20 −
c2T

c2 +Bv2
(γ17 − γ12) + 2Q2v

2(γ11 + γ3) +Q1v
2ζ̄, (2.54)

γ19 +
c2T

c2 +Bv2
2γ12 + 2Q1γ11 + 2Q2v

2(γ9 + γ2), (2.55)

BT

c2 +Bv2
γ4 −Q1γ3 −Q2(γ2v

2 + γ1) + γ̄, (2.56)

where we have defined the following thermodynamic quantities,

Q1 ≡
B

c2 +Bv2

Pµ(TPTT + µPTµ)− PT (TPTµ + µPµµ)

T (P 2
Tµ − PTTPµµ)

, (2.57)

Q2 ≡
B

c2 +Bv2

Pv2µ(TPTT + µPTµ)− PTv2(TPTµ + µPµµ)

T (P 2
Tµ − PTTPµµ)

, (2.58)

where Pµ ≡ ∂µP, Pv2µ ≡ ∂v2∂µP and similarly for other derivatives. The orthogonal

complement of this space of transport coefficients is purely dissipative, and an analysis of

a theory where these are set to zero would be interesting to study further. One simple

example is to set γ10 = −γ2 and then set all other transport coefficients to zero. This

theory has Πµ = 0 while,

Π0
0 = γ2v

k∂kv
2, Πi

0 = −γ2v
i∂tv

2, Π0
j = −γ2

vjvk∂kv
2

v2
, Πi

j = γ2
vivj∂tv

2

v2
(2.59)

and is non-dissipative as is easily verified by evaluating the quadratic form.

As a cautionary remark, the above procedure has to be repeated in cases where ad-

ditional linear constraints are imposed, such as those arising due to enhanced symmetry.

The calculation of the null space should be performed only after additional constraints
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have been imposed. The reason is that non-dissipative terms in the general theory may

not respect those symmetries and consequently contribute to dissipative transport in the

more symmetrical theory. On the other hand, once the dissipative terms have been com-

puted as the orthogonal complement of (2.48)–(2.56), then one may assess whether or not

dissipative terms in a more symmetrical theory are zero, simply evaluating them on the

particular transport coefficients of the theory in question. This is the same as computing

the quadratic form coefficients.

Before concluding, we can check our non-dissipative constraints for perturbations

around vi = 0 flows. In this case, the dimension of the null space is much higher, since

there are many fewer terms that can appear in the quadratic form. In particular, the null

space is enlarged to include all γI as independent basis vectors. Hence setting all these

to zero, leaves a single constraint in (2.48)–(2.56), namely γ̄(T, v2 = 0, µ) = γ0(T, µ) = 0.

This constraint was also found in [14] but based on imposing Onsager reciprocity. The con-

nection between Onsager reciprocity and non-dissipative coefficients is manifest when the

antisymmetric components of the conductivity matrix are linearly independent of all other

contributions. However the interaction between strictly dissipative coefficients, strictly

non-dissipative coefficients and those coefficients which are required to vanish due to On-

sager reciprocity is not clear in this most general case. In order to understand the role of

Onsager and the requirements of microscopic time reversal invariance we would need to

conduct an analysis of modes and associated Green’s functions along the lines of [2], which

we postpone to future work.

In summary, if we require that all non-dissipative contributions vanish (these are given

in (2.48)–(2.56)), the number of transport coefficients appearing in the stress tensor and

U(1) current is reduced from 29 to 20.

2.3.2 Example: shear modes and shear viscosity

Consider the fluid configuration corresponding to a shear-type velocity perturbation around

uniform flow,

T (t, ~x) = T̄ , µ(t, ~x) = µ̄, vi = v̄i + δvi(t, k · ~x) (2.60)

where ki is a spatial wavevector and k · δv = v̄ · δv = 0. For this perturbation the only

contributions to the quadratic form (2.33) at second order in the perturbation are,

∂µS
µ = b14(T, v2, µ)∂iv

j∂iv
j + b20(T, v2, µ)vjvk∂jv

i∂kv
i (2.61)

= (b14(T̄ , v̄2, µ̄)k2 + b20(T̄ , v̄2, µ̄)(k · v̄)2)(∂2δv
i)2 (2.62)

=
(
b14(T̄ , v̄2, µ̄) + v̄2b20(T̄ , v̄2, µ̄)(cos θ)2

)
k2(∂2δv

i)2. (2.63)

where θ is the angle between k and v̄ and ∂2 denotes derivative with respect to the second

argument of the function δvi. Hence for perturbations satisfying θ = π/2, positivity of

entropy production requires

b14(T, v2, µ) ≥ 0. (2.64)

Positive b14 allows b20 to take on negative values, with ∂µS
µ minimised at θ = 0, hence we

also require

b14(T, v2, µ) + v2b20(T, v2, µ) ≥ 0. (2.65)
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In terms of transport coefficients listed above, (2.40) and (2.42), these constraints become

η̄ ≥ 0,

η̄ + v2(π̄ + γ6 − γ7 + γ13) ≥ 0.
(2.66)

We will show that these constraints coincide with those arising out of the requirement of

dynamical stability. Finally, we shall see later in section 3.1 that for theories with Lorentz

boost invariance the two constraints (2.66) coincide, becoming η ≥ 0 where η is the usual

shear viscosity transport coefficient of relativistic hydrodynamics. Additionally it coincides

with the conclusion of η0 ≥ 0 reached in [14] where η0 = limv2→0 η̄.

2.4 Hydrodynamic shear mode

In this section we consider hydrodynamic modes, that is, perturbations of a background

uniform flow that satisfy the hydrodynamic conservation equations. They describe how

small departures from uniformity relax over time (quasinormal modes), or how they decay

spatially in the context of non-equilibrium steady states (spatial collective modes). We

consider a background temperature T̄ chemical potential µ̄ and velocity v̄i, and consider

the equations of motion resulting from the general first order constitutive relation (2.24).

Specifically we focus on the shear-type perturbation (2.60) in Fourier space, δvi(t, k · ~x) =

e−iωt+ik·~xδvi. Such perturbations are also hydrodynamic modes provided a dispersion

relation ω(ki) is satisfied. To linear order in amplitude, and to first hydrodynamic order,

the constitutive relations are perturbed as follows,

δT 0
j = e−iωt+ik·~x (ρ+ ik · v̄γ6 + iωπ̄) δvj , (2.67)

δT ij = e−iωt+ik·~x
(
(ρ− ik · v̄γ13 + iωγ7)(v̄iδvj + v̄jδvi)− iη̄(kiδvj + kjδvi)

)
(2.68)

and the equations of motion thus give rise to the following dispersion relation, as a Taylor

series in gradients,

iρ(k · v̄ − ω) + (π̄ω2 + (γ6 − γ7)k · v̄ω + η̄k2 + (k · v̄)2γ13) +O(ω, k)3 = 0. (2.69)

There are two roots of this polynomial, ω(k), however one root ω = iρ/π̄ + O(k) is not

consistent with the hydrodynamic gradient expansion and we discard it. The other root is,

ω(ki) = k · v̄ − i η̄k
2 + (π̄ + γ6 − γ7 + γ13)(k · v̄)2

ρ
+O(k)3. (2.70)

We observe that this hydrodynamic mode is stable, with a frequency in the lower-half

complex plane, provided the conditions derived from positivity of entropy production are

met, (2.66). Therefore the conditions of dynamical stability and positivity of entropy pro-

duction coincide here. We also note that all combinations of transport coefficients entering

here are in the orthogonal complement of the purely non-dissipative sector (2.48)–(2.56)

and so in a theory with only non-dissipative terms these O(k)2 pieces vanish.

So far we considered the requirements according to ω ∈ C with k ∈ Rd. Of recent

physical interest are modes with complex momenta; spatial collective modes which can
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obtained from this dispersion relation by fixing ω = 0 (or more generally, ω ∈ R) and

continuing to complex momenta k ∈ Cd, yielding a dispersion relation of the form ki(v̄j)

describing how decay lengths in stationary systems depend on background velocity [3, 4].

From (2.70) we can see that the mode is purely diffusive if we move to a coordinate

system that comoves with the fluid at velocity v̄, but as the explicit v̄2 dependence makes

clear, the different v̄ frames are physically inequivalent as expected due to the lack of boost

invariance. We can see a particular combination of the 29 transport coefficients enter this

dispersion relation; it would be interesting to analyse the physical consequences of the

other new transport coefficients through studying hydrodynamic modes in other sectors:

sound and charge diffusion.

3 Special cases

3.1 Lorentz boosts

Theories admitting Lorentz invariance are a special case of our general Rt×ISO(d)×U(1)

construction, enlarging the number of symmetries. Imposing such additional symmetry re-

quirements on our constitutive relations (2.24) severely constrains the allowed form of the

29 transport coefficients. In this section we will calculate these 29 coefficients for a Lorentz

invariant theory, and show how they are completely determined by only 4 free functions

of two variables. This is further reduced to 3 after imposing positivity entropy produc-

tion. These are of course the well-known transport coefficients of first order relativistic

hydrodynamics.

A Lorentz boost by a velocity cβi, with respect to the speed of light c, is achieved by

the following coordinate transformation,

t→ t+
βix

i

c
, xi → xi + βict, (3.1)

working to linear order in βi, the velocity transforms as

vi → vi + cβi − β · v
c
vi. (3.2)

In addition, as we shall see, we also require that the following quantities are invariant in

order that we have a non-trivial equation of state,

T̃ ≡ γT, µ̃ ≡ γµ (3.3)

where we have introduced the Lorentz factor γ ≡
(
1− v2/c2

)−1/2
, and which completes

the transformation rules for all hydrodynamic variables,

T → T − β · v
c
T, µ→ µ− β · v

c
µ. (3.4)

We require that the stress tensor and U(1) current transform as Lorentz tensors under

the above linearised transformations, for any boost parameter βi. This gives rise to a set

of equations that must be satisfied, leading to constraints on both the thermodynamic
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variables and the transport coefficients. In more detail, recall that all thermodynamic

variables and transport coefficients are functions of T, v2, µ, and so performing the above

boost (3.1) — which affects the hydrodynamic variables through (3.2) and (3.4) — leads

to a Taylor expansion of the transport coefficients to order βi. Thus, demanding the

correct transformation rule under any linear boost parameter βi results in a set of partial

differential equations for the transport coefficients in terms of T, v2, µ, the solutions to

which we will set out in the two subsections that now follow.

3.1.1 Ideal hydrodynamic order

At ideal hydrodynamic order, by demanding that the component T (0)0
j transform correctly,

we find the following constraint (as a coefficient of the parameter of the boost βj),

ρc2 = P + E . (3.5)

This is so far independent of any transformation rules for T, µ, which cannot contribute

to the term proportional to βj . Upon utilising thermodynamic identities this gives the

following PDE for the equation of state,
(
µ∂µ − 2(c2 − v2)∂v2 + T∂T

)
P (T, v2, µ) = 0 (3.6)

with a general solution

P = P̃ (γT, γµ) = P̃
(
T̃ , µ̃

)
. (3.7)

where T̃ , µ̃ are defined in (3.3). All remaining PDEs resulting from demanding Lorentz in-

variance at ideal order are now solved by (3.7), provided we also ensure that T, µ transform

leaving T̃ , µ̃ invariant, i.e. under the rule (3.4). If we do not, then additional constraints

arise on P̃ and prevent us from having a general function of two independent variables.

Furthermore demanding that the frame conditions (2.21) and (2.22) take Lorentz covariant

form determines

B = γ2, u0 = γ (3.8)

where we have also fixed an arbitrary constant of proportionality in u0. Eq. (3.8) furnishes

us with a covariant vector uµ which we can now use to construct covariant forms of the

constitutive relations in the usual way. With (3.7) imposed, we arrive at the following

familiar constitutive relations at ideal order,

T (0)µ
ν = Ẽ u

µuν
c2

+ P̃∆µ
ν (3.9)

J (0)µ = ñuµ (3.10)

where we have introduced the projector,

∆µ
ν = δµν +

1

c2
uµuν (3.11)

and the thermodynamic relations,

s̃ = ∂T̃ P̃ , (3.12)

ñ = ∂µ̃P̃ , (3.13)

Ẽ = −P̃ + s̃T̃ + ñµ̃. (3.14)
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3.1.2 First order

At first order, after solving the multitudinous PDEs, we arrive at the following expressions

for the first 6 transport coefficients

η̄(T, v2, µ) = γ η(T̃ , µ̃) (3.15)

ζ̄(T, v2, µ) = γ ζ(T̃ , µ̃) (3.16)

π̄(T, v2, µ) =
γ3v2

c4
η(T̃ , µ̃) (3.17)

ᾱ(T, v2, µ) = − γ2

2c2
T̃ χ(T̃ , µ̃) (3.18)

γ̄(T, v2, µ) =
γ2

2c2
T̃ χ(T̃ , µ̃) (3.19)

σ̄(T, v2, µ) = γσ(T̃ , µ̃) + γ
T̃ P̃µ̃

T̃ P̃T̃ + µ̃P̃µ̃
χ(T̃ , µ̃) (3.20)

where P̃µ̃ ≡ ∂µ̃P̃ and similarly for other derivatives. In solving the equations we have

introduced the integration constants η, ζ, χ, σ above, which are each arbitrary functions of

T̃ , µ̃. We shall see that these integration constants serve as the only remaining transport

coefficients for a Lorentz invariant theory. The remaining 29–6 transport coefficients are

given as follows, where we have omitted functional dependence detailed above for brevity.

γ1 = γ5

2c4
ζ + γ5(c2(d−2)+dv2)

2dc6
η γ2 = γ5v2

2c4
ζ + γ5(c2d−v2)

dc4
η γ3 = γ3

c2
ζ − 2γ3

dc2
η

γ4 =0 γ5 =− γ3

2c2
η γ6 =− γ3

c2
η

γ7 = γ3

c2
η γ8 = γ3

2c2
η γ9 = γ5

2c2
ζ + (d−1)γ5

dc2
η

γ10 = γ5

2c2
ζ + γ5(c2(d−2)+dv2)

2dc4
η γ11 = γ3

c2
ζ − 2γ3

dc2
η γ12 =0

γ13 = γ3

c2
η γ14 =0 γ15 =− γ3

2c2
ζ + γ3

dc2
η

γ16 =− γ3

2c2
ζ + γ3

dc2
η γ17 =0 γ18 =− T̃ γ4

2c4
χ+ γ4

2c4
Q̃
(
σ+

T̃ P̃µ̃

T̃ P̃
T̃
+µ̃P̃µ̃

χ
)

γ19 =− T̃ γ4

2c2
χ+ γ4v2

2c4
Q̃
(
σ+

T̃ P̃µ̃

T̃ P̃
T̃
+µ̃P̃µ̃

χ
)
γ20 = γ2

c2
Q̃
(
σ+

T̃ P̃µ̃

T̃ P̃
T̃
+µ̃P̃µ̃

χ
)
γ21 =0

γ22 =0 γ23 =− γ2

c2
T̃ χ

(3.21)

where we have defined the following combination of thermodynamic quantities

Q̃ ≡
−P̃µ̃(T̃ P̃T̃ T̃ + µ̃P̃T̃ µ̃) + P̃T̃ (T̃ P̃T̃ µ̃ + µ̃P̃µ̃µ̃)

T̃ (P̃ 2
T̃ µ̃
− P̃µ̃µ̃P̃T̃ T̃ )

. (3.22)

Indeed, once the above relations are imposed, the first order constitutive relations reduce

to the familiar form of relativistic hydrodynamics, viz.,

Πµ
ν = −η∆µα∆ β

ν σαβ − ζ∆µ
ν∂ · u, with σµν ≡ ∂µuν + ∂νuµ −

2

d
ηµν∂ · u, (3.23)

Πµ = −σT̃∆µν∂ν

(
µ̃

T̃

)
+ χ∆µν∂ν T̃ . (3.24)

Imposing Lorentz invariance has thus reduced the number of first order transport coef-

ficients from 29 to 4: the shear viscosity η, bulk viscosity ζ, conductivity σ and χ. To

reiterate, each of these are arbitrary functions of T̃ , µ̃ in the usual way.
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3.1.3 Entropy current

With Lorentz invariance imposed, the divergence of the canonical part of the entropy

current is given by

∂µS
µ
can = −Πµ

ν∂µ
vν

T
−Πµ∂µ

µ

T
, (3.25)

= −Πµ
ν∂µ

uν

T̃
−Πµ∂µ

µ̃

T̃
. (3.26)

Imposing that Sµ transform as a Lorentz vector, together with the constraints that ∂µS
µ

contains no explicit second derivative terms constrains the coefficients in the non-canonical

entropy current (2.30), (2.31) to take the form

c̃1 = 0, c̃2 = 0, c̃3 = 0, c̃4 = α/T 2, c̃5 = 0, c̃6 = 0,

c̃7 = −α/T 2, c̃8 = −α/T 2, c̃9 = 0, c̃10 = 0, c̃11 = 0, c̃12 = α/T 2
(3.27)

where α is an unconstrained function of T̃ , µ̃. The non-canonical entropy current then

takes the form

Sµnon = α(T̃ , µ̃) (uµ∂ · u− uσ∂σuµ) , (3.28)

and thus an ambiguity has appeared. However, as was shown in [19], placing the theory on

a curved background provides additional constraints. In particular new terms ∝ αRµνuµuν
appear in ∂µS

µ, and since depending on the chosen background curvature this term can

take any sign, it forces α = 0. Adopting this result the entropy current is given entirely by

the canonical piece.

Without loss of generality we now extract positivity constraints by checking the

quadratic form for fluctuations around vi = 0. We find,

T̃ ∂µS
µ =

1

2
ησijσ

ij + ζ(∂iv
i)2 + σ

(
∂iµ̃−

(
µ̃

T̃
+

χ

2σ

)
∂iT̃

)2

− χ2

4σ
(∂iT̃ )2, (3.29)

and hence imposing ∂µS
µ ≥ 0 enforces

η ≥ 0, ζ ≥ 0, σ ≥ 0, χ = 0. (3.30)

3.2 Galilean boosts

Another special case of interest are theories with non-relativistic boost symmetry, extending

the symmetry algebra of the system H,Pi, Jij ,M for time translations, spatial translations,

spatial rotations, and U(1) respectively, to include a boost generator Ki. A particularly

simple example can be reached by starting with a relativistic theory and sending c →
∞, corresponding to a group contraction from ISO(1, d)×U(1). The resulting theory is

invariant under so-called massless Galilean boosts, for which, most notably,

[Ki, Pj ] = 0. (3.31)

This algebra will be the present focus of this section, which can be reached by contracting

the results we have obtained in section 3.1. It is important to note that since we also
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have particle number / charge conservation, this algebra can be centrally extended to the

Bargmann algebra [20] (see also [21]), namely,

[Ki, Pj ] = iMδij , (3.32)

whereM , as the U(1) generator, is the centre. This is part of a rich vein of research into non-

relativistic boost-invariant hydrodynamics and couplings to gravity via the Newton-Cartan

formalism. We will not consider the centrally extended case in this paper, but simply refer

the interested reader to important papers in this hydrodynamic context [13, 14, 22–24].

The limit c → ∞ for the relativistic boost (3.1), (3.2), (3.4) results in the Galilean

boost with parameter ui = cβi,

t→ t, xi → xi + uit, vi → vi + ui, T → T, µ→ µ. (3.33)

In particular the Lorentz factor γ → 1 as c→∞, and T̃ = T, µ̃ = µ, with the equation of

state P = P̃ (T, µ). From this we conclude,

ρ = 0, Ẽ = E , ñ = n, (3.34)

and an ideal stress tensor (see also [13])

T (0)0
0 = −E , T (0)i

0 = −(E + P )vi, T (0)0
j = 0, T (0)i

j = Pδij (3.35)

J (0)0 = n, J (0)i = nvi (3.36)

where n, E , P are each functions of T, µ only.

At first hydrodynamic order, recall that in the relativistic case we have 3 transport

coefficients remaining after analysis of the entropy current: η, ζ, σ, each a function of T̃ , µ̃.

In the c → ∞ limit, each of these are functions of T, µ. We can choose how each of

these transport coefficients scale with c so that they provide finite contributions to the

constitutive relations as c→∞. This is achieved without any additional rescaling,

η = O(c)0, ζ = O(c)0, σ = O(c)0 as c→∞ (3.37)

then the 29 transport coefficients of the general theory take on the following values,

η̄ = η, ζ̄ = ζ, σ̄ = σ, others = 0, (3.38)

and the first order constitutive relations (2.24) become

Π0
0 = 0, (3.39)

Π0
j = 0, (3.40)

Πi
0 =

η

2
∂iv

2 + ηvk∂kv
i +

(
ζ − 2η

d

)
vi∂kv

k, (3.41)

Πi
j = −ζδij∂kvk − ησij , (3.42)

Π0 = 0, (3.43)

Πi = −σT∂i
µ

T
, (3.44)

where η, ζ, σ are arbitrary non-negative functions of T, µ.
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3.3 Lifshitz scale invariance

In this section we compute the form of the 29 transport coefficients for the Rt×ISO(d)×U(1)

theory in the case where we further restrict to invariance under the inhomogeneous scale

transformation

t→ λzt, xi → λxi, (3.45)

for some arbitrary dynamical critical exponent z. At first sight, such invariance is merely

imposed by restricting all terms in the constitutive relations to have the correct scaling

weights. However, the hydrodynamic theory is treated here as an effective description of an

underlying microscopic theory with a Ward identity for scale transformations. This Ward

identity imposes further constraints which causes transport coefficients, or linear combi-

nations thereof, to vanish. In the case of scale transformations this point was made clear

in [25], where it was shown that conformal invariance leads to vanishing of bulk viscosity.

We direct the interested reader to other results on Lifshitz invariant hydrodynamics [26–35].

Let us begin with a discussion of the scaling weights. It is convenient to denote a

quantity that scales as λ−w to have scaling weight w. In other words, the scaling weights

of t and xi as presented above, are wt = −z and wxi = −1 respectively, whilst the scaling

weights of the hydrodynamic variables (T, vi, µ) are,

wT = z, wvi = z − 1, wµ = z. (3.46)

In particular, for a transport coefficient γI(T, v
2, µ) with scaling weight wI , it must be an

arbitrary function of the scaling invariant combinations v2/T
2(z−1)
z and µ/T , together with

an overall factor of T to make up its weight, i.e.

γI(T, v
2, µ) = T

wI
z γ̂I

(
v2

T
2(z−1)
z

,
µ

T

)
. (3.47)

This is a severe restriction on the functional form of the 29 transport coefficients, albeit

not a reduction in their number. The scaling weights for the transport coefficients are as

follows,

wη̄ = d wζ̄ = d wᾱ = d− z wγ̄ = d− z wσ̄ = d− 2

wγ1 = d+ 4− 4z wγ12 = d wγ14 = d wγ17 = d wγ18 = d+ 2− 3z

wγ19 = d− z wγ20 = d− z wγ21 = d− z wγ22 = d− z wγ23 = d− z
(3.48)

while the weights for the remaining coefficients (π̄, γ2, γ3, γ4, γ5, γ6, γ7, γ8, γ9, γ10, γ11, γ13,

γ15, γ16) are each d+ 2− 2z.

We now turn to the Ward identity, for which we impose the following relation

zT 0
0 + T ii = 0. (3.49)

At ideal hydrodynamic order (3.49) corresponds to an appropriate restriction of the equa-

tion of state. Namely,

dP − zE + v2ρ = 0 (3.50)
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which implies the following PDE for the equation of state, through standard thermody-

namic relations,

(
zT∂T + 2(z − 1)v2∂v2 + zµ∂µ − (d+ z)

)
P (T, v2, µ) = 0. (3.51)

The PDE (3.51) has the general solution

P = T
d+z
z P̂

(
v2

T
2(z−1)
z

,
µ

T

)
, (3.52)

which is of course the expected functional form for the equation of state of a Lifshitz

invariant system given the scaling weight of P , i.e. it is of the form (3.47) with wP = d+ z.

If we furthermore impose (3.49) at first hydrodynamic order, there are four constraints,

as the coefficients of the four possible scalar terms
{
vk∂kv

2, vk∂k
µ
T , ∂iv

i, ∂tv
2
}

. These

constraints can be expressed as follows,

ζ̄ =
(zγ3 − γ11)v2

d
, (3.53)

γ15 =
−2zγ2 + 2γ8 + 2γ9 + γ13

2(d− 1)
, (3.54)

γ16 =
zπ̄ + 2zγ1v

2 − γ7 − 2γ10

2(d− 1)
, (3.55)

γ17 =
Tz(ᾱ+ γ̄)− zγ4v

2 + γ12 + γ14

d− 1
. (3.56)

To summarise this section, imposing Lifshitz scaling weights and the Ward iden-

tity (3.49) reduces the number of transport coefficients from 29 to 25, and moreover places

stringent constraints on the functional form of all of them (3.47).

4 Discussion

In this paper we have constructed the first-order hydrodynamic theory describing a fluid

in the presence of a preferred reference frame, which possesses no boost invariance, neither

Galilean nor Lorentzian. In this frame the theory is rotationally invariant and ISO(d)

acts naturally. If we nevertheless boost to a reference frame with boost parameter βi, the

resulting theory will contain explicit dependence on βi and will no longer be rotationally

invariant. Of course ISO(d) is still preserved, however it acts in a less natural way. The

symmetry is realised by boosting back into the preferred frame, where rotation invariance

is manifest, and then boosting back to the finite βi frame.

A consequence of this relaxed symmetry group is the appearance of many new transport

coefficients. In principle each of these transport coefficients is associated to a distinct

physical effect which can be accessed by considering general fluid flows with respect to the

preferred reference frame. Some of these are accessible in hydrodynamic modes. Indeed, in

section 2.4 we computed the shear diffusion mode, which grants independent access to the

combinations of transport coefficients η̄ and π̄+ γ6− γ7 + γ13 through varying the angle of

the mode with respect to the background fluid flow. In addition there may be coefficients
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that are only accessible through nonlinear considerations. We leave a more comprehensive

study of the physical effects to a future publication.

We also considered the constraints resulting from imposing the positivity of entropy

production for all possible fluid configurations. We constructed the general entropy current

to first order in derivatives, and found all constraints that reduce its divergence to a

quadratic form.5 By restricting this quadratic form to shearing perturbations around a

general uniform flow we extracted two very simple positivity constraints, (2.66), which

coincide with the linear stability requirements for the shear diffusion hydrodynamic mode.

Constraints may also more easily be extracted in special cases, such as those enjoying

Lorentz boost invariance.

We also enumerated all independent linear combinations of transport coefficients that

are non-dissipative, i.e. that do not contribute to ∂µS
µ. We counted 9 such combinations,

listed in (2.48)–(2.56). Understanding the relation between dissipative coefficients, non-

dissipative coefficients, requirements of Onsager reciprocity and the constraints arising from

hydrostatic partition functions [17, 18], is an interesting problem that deserves further

study.

Finally, we note that our constitutive relations contain only parity-invariant terms.

Clearly it would be interesting to extend our analysis to include parity non-invariant effects.
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