Müller-Bravo, Tomás E., Gutiérrez, Claudia P., Sullivan, Mark, Jerkstrand, Anders, Anderson, Joseph P., González-Gaitán, Santiago, Sollerman, Jesper, Arcavi, Iair, Burke, Jamison, Galbany, Lluís, Gal-Yam, Avishay, Gromadzki, Mariusz, Hiramatsu, Daichi, Hosseinzadeh, Griffin, Howell, D. Andrew, Inserra, Cosimo, Kankare, Erki, Kozyreva, Alexandra, McCully, Curtis, Nicholl, Matt, Smartt, Stephen, Valenti, Stefano and Young, Dave R. (2020) The low-luminosity Type II SN 2016aqf: a well-monitored spectral evolution of the Ni/Fe abundance ratio. Monthly Notices of the Royal Astronomical Society, 497 (1), 361-377. (doi:10.1093/mnras/staa1932).
Abstract
Low-luminosity Type II supernovae (LL SNe II) make up the low explosion energy end of core-collapse SNe, but their study and physical understanding remain limited. We present SN 2016aqf, an LL SN II with extensive spectral and photometric coverage. We measure a V-band peak magnitude of -14.58 mag, a plateau duration of ∼100 d, and an inferred 56Ni mass of 0.008 ± 0.002 M⊙. The peak bolometric luminosity, Lbol ≍ 1041.4 erg s-1, and its spectral evolution are typical of other SNe in the class. Using our late-time spectra, we measure the [O I] λλ6300, 6364 lines, which we compare against SN II spectral synthesis models to constrain the progenitor zero-age main-sequence mass. We find this to be 12 ± 3 M⊙. Our extensive late-time spectral coverage of the [Fe II] λ7155 and [Ni II] λ7378 lines permits a measurement of the Ni/Fe abundance ratio, a parameter sensitive to the inner progenitor structure and explosion mechanism dynamics. We measure a constant abundance ratio evolution of $0.081^{+0.009}_{-0.010}$ and argue that the best epochs to measure the ratio are at ∼200-300 d after explosion. We place this measurement in the context of a large sample of SNe II and compare against various physical, light-curve, and spectral parameters, in search of trends that might allow indirect ways of constraining this ratio. We do not find correlations predicted by theoretical models; however, this may be the result of the exact choice of parameters and explosion mechanism in the models, the simplicity of them, and/or primordial contamination in the measured abundance ratio.
More information
Identifiers
Catalogue record
Export record
Altmetrics
Contributors
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.