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When mid-infrared light interacts with nanoscale polar dielectric structures optical phonon prop-
agation cannot be ignored, leading to a rich nonlocal phenomenology which we have only recently
started to uncover. In properly crafted nanodevices this includes the creation of polaritonic exci-
tations with hybrid longitudinal-transverse nature, which are predicted to allow energy funnelling
from longitudinal electrical currents to far-field transverse radiation. In this work we study the
physics of these longitudinal-transverse polaritons in a dielectric nanolayer in which the nonlocal-
ity strongly couples epsilon-near-zero modes to longitudinal phonons. After having calculated the
system’s spectrum solving Maxwell’s equations, we develop an analytical polaritonic theory able to
transparently quantify the nonlocality-mediated coupling as a function of the system parameters.
Such a theory provides a powerful tool for the study of longitudinal-transverse polariton interactions
and we use it to determine the conditions required for the hybrid modes to appear.

Photonic energy can be confined to deep sub-
diffraction lengthscales by hybridisation of light with op-
tically active transitions [1], thus storing part of the elec-
tromagnetic energy in the charges’ kinetic energy [2].
In the mid-infrared region this can be achieved by cou-
pling light with the transverse optical phonons of a polar
nanostructure, yielding hybrid light-matter excitations
termed surface phonon polaritons (SPhPs) [3–5]. These
modes are highly tuneable [6–10] and have broad ap-
plications in nonlinear optics [11–13], near-field imaging
[14, 15], design of mid-infrared emitters [16] and fabrica-
tion of nanophotonic circuitry [17–19].
Due to their narrow linewidths and large field confine-
ment SPhPs can be strongly coupled to a variety of
other resonances present in nanostructured devices. Po-
laritonic excitations resulting from such strong coupling
are hybrid quasiparticles whose unique properties can be
understood as admixtures of those of their bare com-
ponents. Resonances which have been experimentally
demonstrated to be strongly coupled with SPhPs include
localised phonon polaritons [20], epsilon-near-zero (ENZ)
modes [21], weak phonon excitations [22], and more re-
cently vibrational transitions in organic molecules [23].
Of particular relevance for the present work, in Ref. [22]
SPhPs localised in silicon carbide (SiC) nanopillars were
demonstrated to be strongly coupled to longitudinal op-
tical (LO) phonons whose dispersion is folded along the
c-axis of the 4H-SiC polytype. The resulting excitations
were named longitudinal-transverse polaritons (LTP) be-
cause they have the unusual feature of possessing both
a longitudinal nature from their LO component, and a
transverse one from their electromagnetic SPhP compo-
nent. These recently-observed LTP quasiparticles are an
exciting system for applications in mid-infrared optoelec-
tronics, with a transverse photonic component able to
radiate to the far-field and a longitudinal matter compo-
nent able to interact with electrical currents. They could
enable a novel generation of efficient and low-cost mid-
infrared optoelectronic devices, not requiring the usual
quantum cascade structures to convert electrical currents
into mid-infrared radiation [24]. Note that longitudinal-
transverse strong coupling has recently also been ob-
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FIG. 1: The waveguide under study in this work. Illustrated
are the out of plane electric field Ez for the ENZ mode (red)
and localised phonons (green). The coupling frequency Θn

couples the ENZ to the nth longitudinal phonon mode.

served in fluids [25].
As we showed in a series of recent papers [26–28] the

coupling between longitudinal and transverse degrees of
freedom can be more generally understood as a feature
of nanoscopic polar devices where optical phonon prop-
agation cannot be neglected. The usual local dielectric
approximation then fails and the resulting nonlocal phe-
nomenology driving the longitudinal-transverse coupling
has important consequences on the performances of po-
lar nanodevices, analogous to nonlocal effects in localised
plasmons [29, 30] and plasmon polaritons [31].
Polaritonic systems are usually studied using second
quantized approaches [32–34], which were very success-
ful, e.g., in the study of polariton-polariton [11, 35] and
electron-polariton [36, 37] interactions. These are impor-
tant for LTP systems, the former would allow for the de-
scription of exotic phonon polariton condensates, while
the latter would be especially important for the devel-
opment of phonon-polariton optoelectronics, allowing for
modelling of both the excitation of LTPs from electri-
cal currents and their outcoupling to the far-field. Ex-
tensions of the Hopfield polaritonic formalism to general
nanophotonic devices, and even more to LTP, becomes
nevertheless problematic when the coupled resonances
are morphology-dependent. The bare uncoupled modes
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can then be difficult to identify or altogether ill-defined.
In these cases only an holistic solution of the Maxwell
equations coupled to spatially varying dielectrics could
seem to provide a predictive description of the hybrid
resonances, thus foregoing the explanatory and opera-
tional power of polaritonic formalism.
In this work we achieve two objectives which we con-
sider timely and relevant to advance our understand-
ing and modelling capabilities of solid-state mid-infrared
nanophotonic devices. (I) Using the approach we de-
veloped in Ref. [26], that is solving the full system of
Maxwell equations in the nonlocal dielectric and taking
mechanical boundary conditions into account, we study
the nonlocal physics of a thin nanolayer, in which LTP are
formed by the strong coupling of the layer’s epsilon-near-
zero resonance to the layer’s discrete LO phonons. (II)
We develop an analytical second-quantized polaritonic
formalism, allowing us to describe the system in terms of
coupled harmonic oscillators. The solution of the nonlo-
cal problem then requires only the bare frequencies of the
modes in the range of interest and their couplings. This is
a powerful theoretical tool for mid-infrared nanophoton-
ics, partially alleviating the complexity of the nonlocal
electromagnetic theory [28]. It allows us for example to
identify the the geometric and material parameters re-
quired to achieve strong coupling between longitudinal
and transverse modes. Moreover, the polaritonic solu-
tion describes the system in terms of hybrid quasiparti-
cles whose interactions can be studied with tested tools
both below and above the lasing threshold [35]. It is
thus a key tool for future studies of the LTP-mediated
coupling between electrical currents and far-field mid-
infrared electromagnetic radiation.

We consider the trilayer waveguide shown in Fig. 1.
This consists of a polar film of thickness d and rela-
tive permittivity ε2 sandwiched between identical semi-
infinite regions with identical relative permittivity ε1.
The waveguide dispersion in the local response approxi-
mation can be derived considering TM polarised electro-
magnetic fields and applying electromagnetic boundary
conditions on the components of the magnetic and elec-
tric fields parallel to the surface H‖ and E‖ [38], leading
to eigenequation

F = 2− tanh (α2d)

[
ε2α1

ε1α2
+
ε1α2

ε2α1

]
= 0, (1)

where α2
i = k2‖−εiω2/c2 is the out-of-plane wavevector in

the ith layer. We consider region 1 as a positive lossless
dielectric, while region 2 is a dissipative polar dielectric
characterised by a Lorentzian dielectric function

ε2 (ω) = ε∞

[
ω2
L − ω (ω + iγ)

ω2
T − ω (ω + iγ)

]
, (2)

where ωL (ωT) is the longitudinal (transverse) bulk opti-
cal phonon frequency, ε∞ is the high-frequency dielectric
constant, and γ is the phonon loss rate, which for the
sake of simplicity we consider frequency and polarization

FIG. 2: Modal dispersion for a 50nm (a) and 5nm (b) 3C-SiC
waveguide between high index (n = 2.6) cladding layers. The
white region illustrates the spectral extent of the Reststrahlen
between ωT and ωL, where SPhPs are supported. The leaky
region within the light-line is shaded in green. The analytical
ENZ dispersion from Eq. 4 is shown by the dashed red line,
and the bilayer SPhP dispersion by the solid purple curve.

independent.
A thick polar film acts as a semi-infinite medium, sup-
porting isolated SPhP modes on each interface. These
modes exist within the Reststrahlen region ωT < ω < ωL

where ε2(ω) < 0, illustrated by the non-shaded spec-
tral region in Fig.2a, b. Their dispersion is shown by
the purple-solid curve. When film thickness d is less
than the skin depth the SPhPs on each film interface hy-
bridise into symmetric and antisymmetric modes. This
is shown in Fig. 2a,b, where we plot dispersion |F−1| for
50nm and 5nm 3C-SiC films respectively, using parame-
ters ωT = 797.0cm−1, ωL = 977.3cm−1, ε∞ = 6.49 and
γ = 2cm−1 [39, 40]. The new modes, illustrated by peaks
in the colormap, split around the bare SPhP frequency
and as the film thins are pushed closer to asymptotic
(d→ 0) frequencies at ωL and ωT.

In the limit α2d� 1, focusing on the symmetric blue-
shifted mode, we can re-write Eq. 1 as

ε2
ε1

+
k‖d

2
= 0, (3)
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FIG. 3: Local (a) and nonlocal (b) dispersion relations for a 10nm SiC film. Localised phonon frequencies ωn,k‖ from Eq. 6
are illustrated with green dashed lines, with darker colors corresponding to higher order modes. The red dashed line indicates
the ENZ from Eq. 4. Solid yellow lines indicate calculated polariton frequencies. Lower panels (c, d) show the same for a 5nm
SiC film. The colorscale is uniform across all panels.

where we took the small argument limit tanh (α2d) ≈
α2d, assumed large in-plane wavevector α1 ≈ k‖, and
noted that close to ωL we have ε2 (ω) ≈ 0 and thus

ε2 (ω) k20 � k2‖, and ε2 (ω)
2 � ε21. In this regime the ex-

citation is typically termed an epsilon-near-zero (ENZ)
mode [41]. These are of great interest as the vanishing
dielectric function ε2 → 0 leads to a very strong enhance-
ment in the out-of-plane field in the thin film with ap-
plications in low loss waveguiding [21] and vibrational
spectroscopy [42]. Solving for ω we can find the ENZ
mode frequency as a function of in-plane wavevector k‖

ω̃ENZ,k‖ =

√
ω2
L + k‖qω

2
T

1 + k‖q
− (γ/2)2 − iγ

2
, (4)

where q = dε1/2ε∞ and we use the tilde to indicate a
complex frequency. This result is valid for a finite range
of in-plane wavevectors because, as discussed above,
when k‖ becomes large the small argument approxi-
mation breaks down. The calculated ENZ dispersion

ωENZ,k‖ is shown by red-dashed lines in Fig. 2a, b, where
it is clear that the approximations from Eq. 4 are less
accurate for thicker films and larger in-plane wavevectors.

Nonlocal effects in polar dielectics have been studied
both theoretically [26, 28, 43] and experimentally [44]
in layered nanostructures called hybrid crystals. Impor-
tantly in a nonlocal model phonons do not exist solely at
fixed frequencies, instead they are dispersive. Solving the
ionic equation of motion (Eq. A1 of Ref. [26]) for longi-
tudinally polarised modes leads to complex out-of-plane
wavevectors

ξ =

√
ω2
L − ω (ω + iγ)

β2
L

− k2‖, (5)

where ωL is the bulk LO phonon frequency, ω is the
driving frequency, βL is the LO phonon propagation ve-
locity and k‖ is the in-plane wavevector. In Ref. [26]
we demonstrated that thin polar films of width d clad
by phonon inactive layers act as Fabry-Pérot resonators
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for LO phonons, supporting discrete modes whose real
(γ → 0) resonant frequencies can be written

ωn,k‖ =

√
ω2
L − β2

L

(
ξ2n + k2‖

)
, (6)

where ξn = (n+1)π/d is the discrete out-of-plane phonon
wavevector [28], this notation has been chosen for clarity,
in order that algebraic and geometric parity of the modes
is the same. Note that, contrary to photonic Fabry-Pérot
resonators, higher order phonon modes are red-shifted
due to the negative dispersion of optical phonons at small
wavevectors. We plot the spectrum ωn,k‖ for 3C-SiC films

in Fig. 3, using horizontal dashed lines for 10nm (top pan-
els) and 5nm (bottom panels) film thicknesses. Here we
use 3C-SiC phonon velocity βL = 15.39× 105cm s−1, de-
rived from the bulk phonon dispersion [45]. Note that
within the interval of in-plane wavevectors considered
βLk‖ � ωL − ωT the phonons do not appreciably dis-
perse, for this reason we approximate longitudinal mode
frequencies by their zone-centre values ωn ≈ ωn,0. In
the same Figures the local ENZ dispersion from Eq. 4 is
shown by a red-dashed line. In thinner films out-of-plane
momentum ξn grows and phonon branches red shift away
from ωL.
We are interested in the nonlocal response of the ENZ
excitation. We also consider longitudinal phonons in the
central layer, with electric field given by

E±L =
eik‖x√

2

 1
0

−iξ/k‖

 eξz ±

 1
0

iξ/k‖

 e−ξ(z+d)

 ,
(7)

where the ± labels the parity of the phonon field. We
refer to parity with respect to the out-of-plane electric
field. The ENZ mode has constant electric field across
the film so it’s parity is even.
We demonstrated in Ref. [26] that the full nonlocal dis-
persion can be found applying the Maxwell boundary
conditions on the in-plane field components H‖,E‖ and a
single nonlocal additional boundary condition on the out-
of-plane one ε∞E⊥. These conditions lead to a nonlocal
dispersion relation G = 0, where

G = tanh

(
α2d

2

)
+
α1ε2
α2ε1

+ tanh

(
ξd

2

)(
ε2
ε∞
− 1

)
k2‖

ξα2
. (8)

Note that here only phonons of odd-parity (− branch of
Eq. 7) are hybridised to the odd-parity ENZ field. We
plot the inverse of the dispersion |G−1| as a colormap in
Fig. 3. Left panels (a,c) correspond to the local (βL = 0)
case, while right ones (b,d) show the nonlocal one. Top
(a,b) and bottom (c,d) panels correspond to 10nm and
5nm SiC films respectively. Compared to the local
case we see nonlocality leads to the appearance of anti-
crossings between the ENZ mode and even-numbered

FIG. 4: Full dispersion relations from Eq. 8 for film thick-
ness 20nm, right panel shows the predicted normalised Rabi
frequencies ΩR/ωn. Labelled arrows refer to regions of the
plot discussed in the text.

localised phonon branches, with increasing coupling
for higher n phonons. These even numbered branches
correspond to solutions where the out-of-plane electric
field vanishes at the film edge.

Having theoretically described the spectrum of the
system, and shown the appearance of multiple strong-
coupling features, we want now to derive from Eq. 8 a
more transparent description of the nonlocality-mediated
coupling. The key step to pass from a holistic description
to a modal one is to expand the hyperbolic function on
the right of Eq. 8 as the Mittag-Leffler series

tanh (ξd/2)

ξ
=
d

2

∑
n

8

(2n− 1)
2
π2 + ξ2d2

,

=
d

2

∑
n∈even

8β2
L/d

2

ω (ω + iγ)− ω2
n

, (9)

where we utilised Eq. 5 to eliminate ξ and recognised in
the denominator the discrete phonon frequencies Eq. 6.
This is a sum over discrete phonon modes with frequency
given by the even solutions to Eq. 6. Utilising Eq. 9 and
the ENZ approximations discussed earlier we can trans-
form the transcendental Eq. 8 into a factorised dispersion
relation

1 =
ω2
L − ω2

ENZ,k‖

ω2
ENZ,k‖

− ω (ω + iγ)

∑
n∈even

8β2
L/d

2

ω2
n − ω (ω + iγ)

= 0,

(10)
where ωENZ,k‖ is the ENZ mode frequency from Eq. 4 in
the limit γ → 0. The polaritonic frequencies obtained
from this equation are plotted as solid yellow lines
in Fig. 3b, e, for γ → 0, demonstrating an excellent
agreement between the polaritonic model and the full
dispersion map.
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In order to develop a modal, quantum description of
the hybrid longitudinal-transverse polaritons which can
be used to both directly link the system spectrum to the
geometric and material device parameters, and to pro-
vide a way to calculate the rates of polariton generation
and scattering, we start by introducing second-quantized

operators for the bare modes. We thus define â†k‖ as

the creation operator for an ENZ mode with in-plane

wavevector k‖ and b̂†n,k‖ for the nth discrete longitudinal

phonon mode of the layer. The coupling between reso-
nances can be described by a generic, phenomenological
Hamiltonian modeling resonant energy exchange between
the transverse ENZ and the longitudinal phonons

Hk‖ = ~ωENZ,k‖ â
†
k‖
âk‖ +

∑
n∈even

[
~ωnb̂†n,k‖ b̂n,k‖

+
~Θn,k‖

2

(
â†−k‖ + âk‖

)(
b̂†n,k‖ + b̂n,−k‖

)]
, (11)

where Θn,k‖ is the nth phonon coupling frequency at
common in-plane wavevector k‖. The eigenvalue equa-
tion for this Hamiltonian can be written considering po-
lariton operators of the form

d̂k‖ = αk‖ âk‖ + ζk‖ â
†
−k‖ +

∑
n∈even

βn,k‖ b̂n,k‖ + θn,k‖ b̂
†
n,−k‖ ,

(12)

where Greek symbols are Hopfield coefficients [32]. In

order for d̂k‖ to diagonalise the Hamiltonian Hk‖ it must
satisfy the eigenequation[

d̂k‖ ,Hk‖

]
= ~ωd̂k‖ (13)

where ω is the frequency of the coupled mode. By ex-
panding the commutator in Eq. 13, collecting terms pro-
portional to each operator in Eq. 11 on each side and
eliminating we recover the secular equation

1 =
ωENZ,k‖

ω2
ENZ,k‖

− ω2

∑
n∈even

|Θn,k‖ |2ωn
ω2
n − ω2

, (14)

whose roots provide the polariton eigenfrequencies of the
system. Note that although we have ignored losses in the
quantum model, leading to a disparity between Eq. 14
and Eq. 4, they could be included by coupling Eq. 11
to a thermal bath [20]. By comparison with Eq. 10 we
can then directly derive one of the key results of this
work, that is the analytical expression of the longitudinal-
transverse coupling

|Θn,k‖ |2 =
ω2
L − ω2

ENZ,k‖

ωENZ,k‖ωn

8β2
L

d2
. (15)

We can already see that the coupling increases linearly
with βL/d, quantifying our physical intuition that the
nonlocality-mediated coupling increases when phonon

propagation cannot be neglected (large βL) and for
smaller structures (small d).

To illustrate the physical content of Eq. 10 we spe-
cialise onto the case where only the nth phonon branch
is near-resonant with the ENZ mode and the others can
be safely neglected, yielding polariton frequencies

ω2
±,k‖ =

ω2
ENZ,k‖

+ ω2
n

2
(16)

±

√(
ω2
ENZ,k‖

− ω2
n

)2
+ 4|Θn,k‖ |2ωENZ,k‖ωn

2
.

The vacuum Rabi frequency, defined as half the resonant
polariton splitting at the anticrossing ωENZ,k‖ = ωn, can
thus be written as

ΩR =
ω+,k‖ − ω−,k‖

2
. (17)

This quantity determines the coupling regime of the sys-
tem. When ΩR, is smaller than the linewidths the system
is in weak coupling, while when it is sizeably larger we
can resolve the polaritonic splitting and the system is in
the strong coupling regime. In the small coupling regime
we can write the Rabi frequency, normalised by the an-
ticrossing frequency

ΩR
ωn

=

√
2

ξnd (ω2
L/∆ω

2
n − 1)

, (18)

where the longitudinal mode frequency shift ∆ωn = β2
Lξ

2
n

describes the departure in the nth phonon frequency
from its zone-centre frequency. The result demonstrates
two routes to increasing the Rabi frequency through
tuning the phonon component, either through consider-
ing higher order (larger n) modes or exploiting materials
with larger phonon velocity βL to increase ∆ωn.
The d−1 remaining in Eq. 18 formula arises from the
ENZ and can be related to the out-of-plane electric
field in the central layer as |Ez,k‖ | ∝ d−1 following

Campione [41]. This implies that for a general structure
the coupling strength can be enhanced by increasing the
photonic field strength at the nonlocal interface. This
could allow for larger photon-phonon coupling rates
in nanophotonic structures where the photon field is
confined in multiple dimensions through Purcell factor
optimisation [20, 46].

To explore the transition between the weak and the
strong coupling regime, with the opening of the polari-
tonic gap, we consider a wider structure, in order to have
access to more phonon modes in the Reststrahlen region.
In Fig. 4 we thus plot the dispersion of a 20nm 3C-
SiC film, with three qualitatively different regions high-
lighted. In region 1 the ENZ approximation leading to
Eq. 3 is not valid and the coupled mode dispersion fol-
lows the bare ENZ dispersion, being initially parallel to
the light-line. In region 2 larger n causes an increase in
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ENZ linewidth where the ENZ dispersion crosses the lo-
calised phonon one. In this region localised phonons act
as loss channels, extracting energy from the ENZ mode,
but as ΩR is smaller than the linewidth, the energy is
lost before it can cycle back. In region 3 the polariton
frequencies are sufficiently far from ωL, strong coupling
is established, and anti-crossings emerge in the spectra.
The evolution of the normalised coupling ΩR/ωn is shown
in panel b, highlighting the expected increase for higher
order modes.

Having explored the weak-strong transition by varying
the vacuum Rabi frequency while keeping the linewidths
fixed, now we study the opposite case: increasing the
losses while keeping fixed geometry and other material
parameters determining the coupling strength. This is
important not only in view of applications of our theory
to other materials, but even for the case of 3C-SiC, which
we chose for its preponderance as testbed for phonon-
polariton physics [3, 4, 46–48]. We have in-fact used the
3C-SiC bulk value for γ = 2cm−1 [39], but high-quality
nanoscale 3C-SiC films are typically grown on silicon,
and ultrathin films can be expected to have high defect
densities, increasing material loss. We have moreover ne-
glected that LO phonons are reported to have marginally
larger losses than transverse ones [40].

To illustrate the effect of material loss on the nonlocal
physics we study the 5nm structure investigated earlier
with increased damping rates. Results are shown in
Fig. 5 for damping rates of γ = 4, 6, 8, 10cm−1. Note
that for this structure the vacuum Rabi frequency with
the n = 2 LO phonon branch is estimated through
Eq. 18 as ΩR = 3.7cm−1. In panel a. where γ ≈ ΩR the
system response is very similar to that in Fig. 3d where
γ = 2cm−1. The system remains in strong coupling.
When γ is increased to 6cm−1 in panel b. the anti-
crossing is reduced but still visible. In panels c. and d.
where γ is increased to 8cm−1 and 10cm−1 respectively,
the anticrossing vanishes and the system passes into the
weak coupling regime. This is a combination of two
physical effects, firstly the damping rate has increased
with respect to the Rabi frequency and secondly the
nonlocal figure of merit, which is the skin depth of the
LO phonon L = Im {ξ}−1[26] has decreased sufficiently
such that the thin film no longer possesses a discrete
phonon spectrum. When γ = 4cm−1 we find L = 1.3d,
while when γ = 10cm−1 we recover L = 0.53d. At higher
damping rates LO phonons can no longer transport
energy between the two interfaces of the central film,
instead they just act as an additional loss channel for
the ENZ mode.
These effects can be mitigated utilising methods such
as vapor-liquid-solid growth, which allow for the fab-
rication of high-quality sub-nanometer SiC films [49].
Additionally alternative materials, particularly those
which can be grown in high-quality thin films by atomic
layer deposition on lattice matched substrates such
as AlN or GaN can be utilised. Nonlocality in these

anisotropic systems is expected to be physically similar
to that presented in this work [28]. A second mitigation
tactic is obvious through Eq. 18, by decreasing the film
thickness the coupling frequency is enhanced. This
is a particularly promising route to explore nonlocal
effects in systems grown by atomic layer deposition
where high-quality films can be grown down to the true
nanometer scale. For the parameters used in this work
(βL = 15.39 × 105cm s−1, γ = 2cm−1) this yields an
onset at d ≈ 4nm for the n = 2 phonon.

We have demonstrated that the full nonlocal Maxwell
equations lead naturally to strong coupling between ENZ
modes and localised phonon modes in a nonlocal di-
electric nanolalyer. We developed an analytical second-
quantized analytical approach quantitatively describing
the system. Our theory provides a polaritonic description
of the nanolayer physics which allows to naturally inte-
grate polariton scattering and generation in a fully quan-
tum picture. To this aim we exploit the Mittal-Leffler ex-
pansion as a link between the polynomial dispersion rela-
tions yielded by a coupled mode theory and those found
using the full nonlocal Maxwell’s equations, allowing us
to condense the complexity of the nonlocality-mediated
coupling in a single coupling frequency dependent on ge-
ometric and material parameters. We could thus directly
calculate the minimal layer thickness, for a fixed mate-
rial, leading to the appearance of strong coupling and
LTP modes. Although the nonlocal effects studied in
this paper occur far outside the light-line, they could
be observed in a simple experiment by incorporating a
metallic grating into the waveguide structure to fold the
modes toward zone-centre [3, 20]. Our technique, de-
rived in a specific system, could be expanded to more
general settings, providing a powerful modal picture to
study nonlocal optical nanodevices.
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FIG. 5: Nonlocal dispersion relations for a 5nm 3C-SiC layer, analogous to Fig. 3d, for various values of the loss parameter
γ. Panels show a. γ = 4cm−1, b. γ = 6cm−1, c. γ = 8cm−1, d. γ = 10cm−1. The red dashed line indicates the ENZ from
Eq. 4. Increasing the losses the anticrossing is reduced and then disappears, as the system passes from the strong to the weak
coupling regime.
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