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Abstract

We study an f(R) approximation to asymptotic safety, using a family of non-adaptive cutoffs,
kept general to test for universality. Matching solutions on the four-dimensional sphere and
hyperboloid, we prove properties of any such global fixed point solution and its eigenoperators.
For this family of cutoffs, the scaling dimension at large n of the n'" eigenoperator, is A,
bnlnn. The coefficient b is non-universal, a consequence of the single-metric approximation.
The large R limit is universal on the hyperboloid, but not on the sphere where cutoff dependence
results from certain zero modes. For right-sign conformal mode cutoff, the fixed points form at
most a discrete set. The eigenoperator spectrum is quantised. They are square integrable under
the Sturm-Liouville weight. For wrong sign cutoff, the fixed points form a continuum, and so do
the eigenoperators unless we impose square-integrability. If we do this, we get a discrete tower of
operators, infinitely many of which are relevant. These are f(R) analogues of novel operators in

the conformal sector which were used recently to furnish an alternative quantisation of gravity.



Contents

1 Introduction 2
2 The f(R) equations 5
2.1 Sphere . . . . . L 8
2.2 Flat space . . . . . . e e 10
2.3 Hyperboloid . . . . . . . . e 12
3 Asymptotic behaviour of solutions at large R 13
3.1 Large R dependence of fixed points and how to count them . . . ... ... ... .. 13
3.2 Large R dependence of eigenoperators . . . . . . . . . ... L. 17
3.3 Square integrability under the Sturm-Liouville weight . . . . . . . .. ... ... .. 19
4 Liouville normal form 20
5 Wrong sign cutoff in the conformal sector 23
6 Summary and Conclusions 26



1 Introduction

The problem of perturbative non-renormalizability of gravity has spawned many new approaches to
quantising gravitational interactions, of which the hypothesis of asymptotic safety is one of the most
conservative. It is based on the familiar framework of quantum field theory and does not require
introduction of new fields or structures, see e.g. [1,2]. The idea, first introduced by Weinberg [3],
relies on the existence of an interacting fixed point that controls the behaviour of gravity at high
energies, resulting in a non-perturbatively renormalizable theory.

The main tool used to explore this possibility is a functional renormalization group equation,
pioneered by Wilson [4], who called it the Exact RG (Renormalization Group). The version most
often used is for the effective average action I'y, which is the Legendre effective action modified
with an IR cut-off Ry, or equivalently the Legendre transform of the Wilsonian effective action [5].
It satisfies [5,6]:

Oy = %STr TP+ Ry) L ORy| (1.1)
where ¢t = In(k/u) is the so-called RG time, p being the usual arbitrary physical energy scale, STr is
the space-time trace taking into account statistics of anticommuting fields, and F,(f) is the Hessian:
the second functional derivative of 'y with respect to the fields.

Solutions of this equation determine the flow of the infinite number of effective couplings that
parametrise the most general effective action. (The space spanned by all these couplings is known
as theory space.) Exact solutions would require solving an infinite number of coupled differential
equations and therefore seem out of reach in any realistic setting, particularly so for quantum
gravity. Nevertheless, since the pioneering work on the simplest (the Einstein-Hilbert) truncation
[7], a lot of evidence has been gathered in support of asymptotic safety by model approximations
that in particular suitably truncate the theory space to a finite number of couplings, as summarised
in e.g. the review ref. [8]. An important step beyond this is to include an infinite number of
couplings. To date this has been realised through versions of f(R) approximations where the

effective Lagrangian is approximated to be a function of the scalar curvature R [9-24]:

L= [t Vi h(E) (1:2)

(plus ghost and auxiliary field terms), and also through some closely related approximations [25-30].
In fact, the high order finite dimensional truncations [30-33] were developed by taking examples of
these f(R) equations and then further approximating to polynomial truncations. The full f(R) ap-

proximations are complicated partial differential equations so if no further approximation is applied,



one is left to explore them numerically,! supported by analysis in certain regions. One analytical
approach is however particularly powerful, namely to solve the RG equations asymptotically at
large curvature R [34,35]. Actually this technique is sufficient on its own to allow one to draw
definitive conclusions about both the nature of the fixed points and their eigenoperator spectra in a
given f(R) approximation [34,35]. It was adapted from studies of scalar field theories in derivative
expansion approximation, where it had already proved to be powerful [36—41], and in ref. [42] it
was also applied to the so-called conformal sector of quantum gravity.

Another analytic approach that allows one to draw significant general conclusions is provided by
Sturm-Liouville (SL) theory (see e.g. [43]). This was first demonstrated in scalar field theory [44],
while the tight theoretical structure that SL theory provides, lies behind the novel quantisation
of gravity developed in refs. [45-50]. In ref. [15], SL analysis was used to prove properties of the
eigenoperator spectrum in f(R) approximations with non-adaptive cutoff,? namely that around any
fixed point there are a finite number of relevant eigenoperators while the irrelevant eigenoperators
form a tower whose scaling dimensions tend to infinity.

In this paper we combine both of these powerful analytical approaches to test the assumptions
that are required for SL theory to apply f(R) approximations, and to learn significantly more about
the properties of asymptotically safe fixed points within these approximations. In particular we
are able to test the extent to which results that should be universal are actually independent of
the choice of cutoff, pointing to particular steps that need improving, and we are able to derive
analytically the scaling dimensions of the eigenoperators at large dimension.

The structure of the paper is as follows. In the next section, following [15], we set out the form of
the flow equation, fixed point equation and eigenoperator equation. We discuss some of the choices
to be made in particular for the endomorphism parameters ay, the choice of sign for the cutoff in
the conformal factor sector, and the choice of background manifold. In sec. 2.1 we develop the
equations in the case that the latter is a four-sphere, and explain further our choice of exponential
cutoff for the common profile 7(z). As R — 0, the equations go over to a flat space limit. This is
derived and discussed in sec. 2.2, and in particular its implications for SL theory where the R = 0
boundary presents an obstruction. We see that the only sensible option is to continue into the
four-dimensional hyperboloid through a kind of smooth topology change, as discussed further also
in the Conclusions, sec. 6.

To apply SL theory we need that the eigenoperators are square integrable under the SL weight.

!Some quadratic fixed point solutions can be found for special choices of parameters in the cutoff in [19].
2Contrast adaptive cutoffs which closely mimic the Hessian and thus also depend on fx(R), ¢f. sec. 2 and [15].



The question is whether this makes sense in quantum gravity. This leads us naturally into sec.
3 where we derive the asymptotic behaviour of solutions at large R. Separately this allows us to
characterise the nature of the fixed points and eigenoperators. First, in sec. 2.3, we explain the
setup for the equations on the hyperboloid. In particular we furnish the full constraints on ag. In
sec. 3.1 we derive the large R asymptotic behaviour of a fixed point solution f(R), first on the
sphere and then on the hyperboloid. We see that the sphere solution differs from that assumed
in [15] and is in fact dominated by cutoff effects as R — oco. Computed exactly, it ought to be
universal, as it is in fact for the hyperboloid. We show that the culprit is the course-graining of
certain zero modes (modes with vanishing modified Laplacian) on the sphere.

On both sphere and hyperboloid we see that the asymptotic solution contains only one parame-
ter. Perturbations about this would provide the other parameter but such perturbations are invalid
because they grow too fast. Here we find a beautiful connection to SL theory: asymptotically they
coincide with the inverse of the SL weight, which we derive in this regime on both manifolds.
The fact that the asymptotic solutions for f(R) contain only one parameter, allows us to draw an
important conclusion: there are at most a discrete set of fixed point solutions.

Sec. 3.2 presents analogous findings for the eigenoperators. The valid solutions are those that
grow asymptotically as a power of R, the invalid solutions grow asymptotically like the inverse
of the SL weight. Validity is decided by requiring their RG evolution to be multiplicative in the
large R limit. Left only with the power-law solutions, the equations are overconstrained leading to
quantised values, A, for their scaling dimensions. It is now immediate to see (in sec. 3.3) that the
valid eigenoperators coincide with those that are square-integrable under the SL weight, justifying
the use of SL analysis.

Thus we have its standard result, stated in sec. 4, which in this context is that the scaling
dimensions are real, that there are only a finite number of (marginally) relevant eigenoperators
(such that A, < 4) and infinitely many irrelevant operators whose scaling dimensions A, — oc.
By mapping to so-called Liouville normal form, the asymptotic analysis provides us with the large
distance behaviour of the corresponding potential. From there by a standard application of WKB
analysis, we get the analytical form for the scaling dimension A, as a function of n, in the limit
n — oo. This result should be universal. In fact it is independent of all but one of the parameters.
We see that the remaining dependence is an artefact of the single-metric approximation.

In sec. 5 we show that the situation changes dramatically if we choose the sign of the cutoff to
be negative for the conformal factor sector. The SL weight now grows asymptotically, fixed points

form a continuum, and the eigenoperator spectrum also becomes continuous. We relate this to



earlier findings in f(R) approximations with adaptive cutoff and in conformally reduced gravity.
We show that we can impose square-integrability under the SL weight, in which case the valid
operators are the ones that decay asymptotically like the inverse SL weight. We compute their
asymptotic scaling dimensions, and we see that these operators are f(R)-analogues of the <3<Z)(g0)
eigenoperators pursued in [45-50] as an alternative quantisation of quantum gravity.

Finally, in sec. 6 we bring these strands together, describe a search for numerical solutions,

compare to f(R) approximations with adaptive cutoff, and draw our conclusions.

2 The f(R) equations

As explained in ref. [15], a crucial choice is to take the cutoff profile to be f(R) independent.
Although it does not allow the simplifications gained by combining the optimised cutoff function [51]
with adaptive cutoff profiles (and thus used almost exclusively in all other studies), it has two
advantages. Firstly, the flow equation is then second order in R-derivatives, rather than third
order, which is crucial for the proofs. Secondly, also crucial for the proofs (and one would assume
also allowing more accurate modelling of the physics - see the further discussion in the conclusions,
sec. 6) it ensures that the resulting ODEs for the fixed point solution and eigenoperators are free
of fixed singularities. We use the same flow equation formulated in ref. [15], and the same notation
except that here we will work exclusively with quantities already scaled by the appropriate power
of k to make them dimensionless, thus avoiding the need to signify them with tildes.

The flow equation takes the form of a non-linear partial differential equation for fi(R) [15]:
O fr(R) + 2E(R) = % (7'2 T+ T+ 75‘]“) : (2.1)
where E(R) happens to be the equation of motion that would be deduced from the action (1.2):
E =2f(R) - Rf{(R). (2.2)

Here, V is the volume of space-time (scaled by k*). The space-time traces are given by:

dpT
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As explained in secs. 2.1 — 2.3, they can be written as sums or integrals over the eigenvalues of the
Laplacian operators. The latter are modified to combinations appearing naturally in the space-time

traces on a four-sphere [12]:

Ay=-V2—B°R, where fg5=4%, pi=1  p5=- (2.7)

Wl
W=
=

where a term proportional to R has been added, for scalar, vector, and tensor modes respectively.
The cutoff function r(z) must be non-negative monotonic decreasing, and vanishing in the limit
z — +oo. For simplicity the same function is chosen for all field components so that, when scaled

by the appropriate power of k, the cutoff profile takes the form
R = csr(As + asR), (2.8)

where cy4 is a free parameter. Note that an additional correction is incorporated, this time with
coefficient as. These ay are chosen to ensure that all modes are integrated out as £k — 0, i.e.
such that all modes have positive Ag + agR. Their value must be determined from knowledge of
the spectrum on the appropriate background manifold(s), so we return to this issue later. When
written in terms of dimensionless quantities, as is done here, the total differential of the cutoff with

respect to t, takes the form

%Rz(z) = cpmyr(2) — 2¢c4 21 (2), (2.9)

where my is the mass-dimension of Ri (the same dimension as the Hessian it is regularising).

In these equations, ¢ labels the field component. These are metric fluctuation modes, namely the
transverse traceless mode (¢ = T') and the gauge-invariant trace mode a.k.a. the conformal factor
field [52] (¢ = h), and transverse vector and scalar modes from Jacobians of the field decomposition
(¢p = V,851,852). The ghost and longitudinal modes do not appear since they cancel each other in
Benedetti’s scheme [12].

Actually, choosing 7(z) to be the same for all these modes is more than just a question of
simplicity. The modes are all either part of the metric itself or directly related to it via the change
of variables or via BRST transformations. Although BRST invariance of the quantum field is badly
broken in the single metric approximation, it is reasonable to assume that the approximation would

be poorer if we chose to regulate the parts in substantially different ways.



The ¢4 determine the sign of the cutoff terms in the functional integral. If we require convergence
of the integral we need ¢4 > 0. We insist on this for ¢ = T,V, 51, S52. The situation is less clear
however for the conformal factor. At the classical level f(R) ~ —R is just the Einstein-Hilbert
action, and in this case the conformal factor has a wrong-sign kinetic term (Hessian). One can
see this from the denominator of the ’TOB trace, (2.4), where the Hessian would reduce to ~ —A
in this case. Therefore the trace is non-singular and the Functional RG is well-defined, only for
¢, < 0[7,42,45,53]. At the quantum level and depending on the value of R, the Hessian can be
of either sign [54]. Classically the Hessian can also be of either sign if for example one includes a
positive R? term. (This is the so-called Starobinsky term, a physically acceptable modification of
Einstein’s gravity. It corresponds to incorporating a “scalaron” [55] at the classical level.)

In the adaptive cutoff scheme the sign adapts so as to always be consistent with the Hessian. In
the non-adaptive scheme that we need to use here, we have to make a choice, which will mean that
the Functional RG is only applicable in the regime where this choice is consistent. As we will see
this choice profoundly influences RG properties. Where we need to decide we will choose ¢ > 0,
as in ref. [15,54], which means however that this version of the flow equation does not describe the
regime corresponding to perturbative quantisation of the Einstein-Hilbert action. Then at the end
of the paper, in sec. 5, we show what happens if we take ¢; < 0 instead.

One small advantage of using a non-adaptive cutoff profile is that, since it does not itself depend
on fr(R), the only occurrence of the RG time derivative acting on f(R) is the one on the LHS of
the flow equation (2.1). The fixed point equation for fi(R) = f(R) is then just given by dropping

this term from the LHS, yielding a non-linear second order ordinary differential equation for f(R):
2E(R) = % (7o + 7" + T/ + T57) (2.10)

Linearising around such a fixed point solution, and separating variables,
fe(R) = f(R) + ev(R) e %, (2.11)
(where € is a small parameter) gives a linear second order ordinary differential eigenvalue equation:
—az(R)v"(R) + a1(R)v'(R) + ag(R) v(R) = Av(R) , (2.12)

where the eigenvalue A = 4 — @ is the scaling dimension of the eigenoperator v(R) and
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az(R) (2.13)
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Notice that the trace in ag(R) is positive thanks to the properties of r(z). This is the reason
for the sign in (2.12), since ay then has the same sign as ¢j and in particular is positive for our
choice ¢;, > 0. The RG eigenvalue 6 is the scaling dimension of the corresponding coupling. It has
positive/zero/negative real part if the eigenoperator v(R) is relevant/marginal/irrelevant.

One of our main goals is to explore the applicability of SL theory to the eigenoperator equation
(2.12) and when applicable, use it to prove properties of the eigenoperator spectrum [15,44]. The
derivation of the traces assumes that the background metric corresponds to a Euclidean-signature
space of maximal symmetry. Globally, discrete choices are still possible, for example the real
projective space RP* (R > 0), torii (R = 0), and analogous manifolds when R < 0. However,
we will see that if SL theory is to be applicable, then the only sensible choice is to incorporate a
kind of smooth topology change between R > 0, R = 0 and R < 0 spaces. This is not possible
unless we take maximal symmetry to apply also globally, as is standard practice in asymptotic
safety approximations. Then R > 0 corresponds to the four-sphere, R = 0 to R*, and R < 0 to the

four-dimensional hyperboloid.

Spin s | Eigenvalue A\, s | Multiplicity D, ,
0 n(n41r23)—4R (n+2)(nz1)(2n+3)
1 n(n—&l—;&)—4 R n(n+3)2(2n+3)
9 % r 5(n+4)(ng1)(2n+3)

Table 1: Multiplicities and eigenvalues for the four-sphere space-time traces. The sums for 75 and

7,79 begin at ng = 2, for 7% at ng = 1, and for 76’_1 at ng =0 [12].

2.1 Sphere

We start on the four-sphere, which was the space-time explicitly treated in [15]. It has space-time

volume V' = 38472/ R?, and there the space-time traces are sums over the discrete set of eigenvalues



of the corresponding Laplacian:

oo
TrW(A) = Y DnsW(hns). (2.16)

n=ng
The multiplicities D,, s, eigenvalues A, 5, and lowest index ng, are given in table 1 (and its caption).

As is clear from the cutoff profile formula, (2.8), the as parameters allow us to shift the action of
the cutoff up or down relative to the tower of eigenvalues, so as to ensure all the modes are passed
as k is lowered to k — 0T. Clearly this requires that the lowest mode \, o T asR is positive. As
noted in ref. [15], it is safe to choose apy = 0 and a; = 0, but to implement this condition in the
physical scalar (a.k.a. conformal factor) sector we need to choose® ag > 1/3.

At this point we recognise the need to specialise to smooth (infinitely differentiable) cutoff
functions r(z). Given that the eigenvalues are discrete set, proportional to R, cutoff functions
that are not smooth, for example the optimised one r(z) = (1 — 2)0(1 — 2) [51], will lead to
points of limited differentiability which moreover accumulate as R — 0. It may still be possible to
find a suitable weak solutions to the fixed point and eigenoperator equations in this circumstance
but, given that with a non-adaptive cutoff profile there is no advantage to using the optimised
cutoff, there is no point in pursuing this possibility further. In fact one should bear in mind that
cutoffs involving the Heaviside € function have a number of related unpleasant effects* that strictly
speaking should rule them out as sensible choices, even if these problems are not obvious at current
levels of approximation. On the other hand, any smooth profile r(z) will do if it decays sufficiently
fast at large z. In our case we only need to guarantee the convergence of the space-time traces

above. Later we will specialise to the popular choice [6]

z

r(z) = a>0,b>1. (2.17)

exp(azb) — 1’
For any non-vanishing R > 0 the sums are then rapidly convergent. However even if we restrict
ourselves to four-spheres, we still need to understand the limiting case R — 0", which takes us to

the boundary of this set. There, the sums go over to an integral and the equations go over to ones

in flat space.

3In this sense the modes are not treated equally. There appears to be no solution that does treat them ‘equally’

at this level of detail, given constraints that we will also have to satisfy on the hyperboloid, cf. eqn. (2.28).
“4In real space the Kadanoff blocking functions are not truly quasi-local (they have power-law tails) and IR regulated

vertices have no Taylor expansion in momentum (derivative expansion) beyond some low order.



2.2 Flat space

This limit can be achieved by setting p = n\/m, and then taking R — 0 whilst keeping p fixed.
From table 1, it is clear that all the Laplacians A, ; — p?, i.e. go over to their flat space limit
where we recognise that p is the flat space momentum. The multiplicities become p?(12/R)%/? up
to a numerical factor, while the cutoff profiles Ri — C¢ r(p?). Putting all this together gives for

the flow equation (2.1),

2r(p?) — p*r' (p)

01 fr(0) + 4, (0) = L /Oodpp3{16ch 9fr
k

- 872 Jy (0) p* + 31(0) p + 24 (0) + 16¢;7(p?)
r(p*) — p*r' (p?) o T(?) =P (PP
T O~ 1 (0) +2er D) Y P e (?)
r(p®) — p*r' (p?) 2r(p®) — p*r' (p?)
e ) i e Y ) } - em

For this to be well defined, fi(0), f.(0), and f;/(0), need to be such that neither denominator
vanishes (at some p?) in its first two terms. This already provides strong constraints if the solution
is to exist for all k, which however are soluble locally. The strongest constraints arise if the cutoff
function r(z) diverges as z — 0, for example in the cases b > 1 in (2.17). In the tensor mode
trace, cp r(p®) — +00 as p — 0 and thus the denominator is positive. On the other hand if f,(0) is
non-vanishing, as p — oo the sign of the denominator is given by — f;.(0). Thus we see that to avoid
a singularity we must always have f(0) < 0 (strictly less than zero is the physically motivated
choice since this corresponds to positive Newton’s constant at zero momentum). Similarly we see
that fx(0) is bounded above. From the h trace we see that since we chose ¢; > 0, we must have
/(0) > 0, while f,(0) must also be bounded below by some negative value. If 7(0) is finite,
for example the case b = 1 in (2.17), then other possibilities arise since f,(0) can be positive if
fx(0) > 27 7(0), while the h trace would then only require that f;(0) > 0. These considerations
inform numerical searches, which we describe in sec. 6.
For the fixed point solution fi(R) = f(R), eqn. (2.18) determines f”(0) given boundary
conditions f(0) and f’(0) such that all three lie within the bounds above. It then provides us

with a Taylor expansion approximant to a putative fixed point solution:
1
f(R) = f(0)+ f(O)R+ 5f”(o)R2 +o(R?). (2.19)

(In fact taking the expansion further is not straightforward since it then depends on the error

in approximating the sums by integrals but these are not captured correctly by Euler-Maclaurin

10



corrections.) With these choices, the eigenoperator equation coefficients have finite limits:

0(0) = 15 /°°d 7 2r(p®) — p*r'(p?) (2.20)

7 Jo P 957(0) ph + 317(0) 2 + 27(0) + 1605 ()}
w(0) = [ agppsler r(p?) — p*r'(*)
0= [ o {W 70 92— F(0) + 2err(p))°
by, 2r(p*) — p*r'(p°) (2.21)
T2 {97(0) pt + 3f/(0) p? + 2£(0) + 16c;7(p?)}° | '

w(0) = [Capppl BT ) =67
0= /0 wr {479 {=1(0)p* = £(0) +2er7(p)}’

e 2r(p*) — p*r' (%) (2.22)
72 {9£7(0) pt + 37(0) p? + 2£(0) 4+ 16¢7r(p2)}* | '

the eigenoperator equation itself then just being given by setting R = 0 in (2.12). Furthermore

a2(0) is non-vanishing since the integrand is positive definite.

The above implies that the SL weight function is finite and non-vanishing at R = 0:

_ 1 . R /al(R/)
w(R) = (B exp /OdR (R (2.23)

(setting the lower limit in the integral to zero without loss of generality, and taking the modulus in
the prefactor so that w is positive whatever sign of ¢; we choose.) Multiplying the eigenoperator

equation (2.12) by the weight function (a.k.a. the SL measure) we can cast it in SL form:
— (az(R)w(R)V'(R)) +w(R)ao(R)v(R) = Aw(R)v(R). (2.24)

However SL properties only follow if the differential operator on the LHS is self-adjoint. Taking
v = vj(R), multiplying by v;(R), and integrating over R, this means in particular that boundary
terms must vanish when integrating by parts. We see that we thus require the eigenfunctions to
be square integrable under the weight function, and if we work only with fixed topology (here

four-spheres), then for any two eigenfunctions v;(R) and v;(R), we get from the R = 0 boundary:

w(0) (vi(0)v}(0) — v;(0)v;(0)) =0, (2.25)

the so-called bilinear concomitant. Therefore we would have to choose all eigenoperators to satisfy a
boundary condition, the most general form interpolating Dirichlet and Neumann: aw;(0)+ 5v;(0) =
0 Vi (for some fixed «, 3). Such conditions lack any physical or other mathematical motivation,
in particular in the full theory they cannot be respected beyond linearised order. Our remaining

option is to eliminate the R = 0 boundary, requiring the solution to extend to all real values of R.
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In fact we will get extra motivation for such choices when we analyse the number of fixed point
solutions (or rather the dimension of the space of such solutions) in sec. 3. For this latter reason,
the f(R) equations of ref. [12] were extended in ref. [34] to all real R, by analytic continuation. Here
we do not have the option of analytic continuation if we insist on using the same cutoff function
r(z) for all modes. The reason is that A, s, being proportional to R, would change sign. Apart
from the cutoff, this makes the denominator in 7;/%¢, and in the S; term in 77/, change sign, cf.
(2.5) and (2.6) respectively. By choosing sufficiently large n in the modes in table 1, we see that the
denominators will then vanish already at small negative R making these traces ill-defined, unless
we take r(z) itself to be odd in z (using e.g. (2.17) with b = 2). However if we do take r(z) odd,
then instead the Sy term in ’76‘7 ¢ will diverge already at small negative R by similar arguments.
(The other two traces also have their problems but since they involve f(R), the demonstration is

more involved.)

2.3 Hyperboloid

This leaves us with the remaining alternative, which is to match into the equations on a manifold
with R < 0. As explained earlier, we take for this the four-dimensional hyperboloid. Here —V? is
positive definite. The volume V is infinite, but the flow equation (2.1) still makes sense since the

space-time traces on the RHS trivially contain the same factor [56]:

1 2s+1( R
-7 J="""(-=
FWIA) = 30 < 12

7 >2 /0 “in ()\2 + [s+ %]2) Atanh(m\) W (A ) ; (2.26)

the spectrum is now continuous, indexed by A:

9 R R
As ( +s+4)( 12) BIR B By R, (2.27)
where thus
25 25 9
bo=p Bi=r B=g (2.28)

Recalling the reason for the extra endomorphism in the cutoff profiles (2.8), we see that we can
continue to set ag = 0 and a3 = 0 as we wanted for the four-sphere, but the lower bound oy > 1/3
is now joined by an upper bound gy < 25/48 [15] so that all modes Ay g+ agR > 0.

The equations at the R — 0~ boundary of this set of hyperboloids, are found by setting
p = /\\/T/H and holding p fixed, so that once again the Laplacian goes over to its flat space
expression Ay 4 — p?. It is straightforward to verify that the flow equation (2.1) and eigenoperator

equation coefficients (2.13)—(2.15) then go over to the flat space expressions (2.18) and (2.20)—(2.22)
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respectively. Thus we see that the flow, fixed point, and eigenoperator, equations can be smoothly
defined over the combined set of all four-spheres, all four-hyperboloids, and R*. The R > 0 and
R < 0 parts of the solutions can be made to match as Taylor expansions around R = 0 up to the
second derivative, but not beyond that. In fact the hyperboloid has a straightforward smooth limit®
whereas f”’(0) on the sphere side depends also on corrections involved in converting the sums over
eigenvalues into integrals. In this way we have incorporated a smooth topology change mechanism
through these three spaces.

To apply SL theory, we are left only to establish acceptable behaviour at large R. In particular,
as we have already seen, we need the eigenoperators v(R) to be square integrable under the SL
weight w(R). Whilst this condition is natural for SL theory, and was assumed in ref. [15] for that

reason, the question is whether this makes sense in quantum gravity.

3 Asymptotic behaviour of solutions at large R

We therefore turn now to the asymptotic behaviour of solutions at large R. This large field analysis
also allows us to characterise a number of aspects of the solution space for both fixed points and
their eigenoperator spectrum [34-39,42,57] and in particular allows us to answer the question above.

We will see from sec. 5 that the answer depends very much on the choice of sign for cj,.

3.1 Large R dependence of fixed points and how to count them

We start with the asymptotic behaviour of the fixed point solution f(R). We need to know this in
order to establish the large R behaviour of the coefficients a;(R) in the eigenoperator equation (2.12)
which in turn will allow us to analyse the asymptotic behaviour of the eigenoperators. However as
we will see, it is important also for determining features of the fixed point solution space.
Beginning with the sphere, and given a rapidly decaying cutoff profile r(z), at first sight one
can neglect the traces on the RHS of the fixed point equation (2.10) at large R. One would then
conclude that f(R) = AR? plus rapidly decaying corrections [15], for some undetermined coefficient
A, this being the solution of just the LHS, F(R) = 0. However this is not correct because terms

in the traces whose denominator would vanish without a cutoff, yield a contribution on the RHS

®Solutions can be straightforwardly developed to all-orders in the Taylor expansion around R = 0, with coefficients

given by finite integral expressions over p similar to those in (2.18), (2.20)—(2.22).
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proportional to
1 d_g

%%Rk (3.1)
where we used (2.9). There are three such terms, the n = 0 and n = 1 components from 765 and the
n =1 S5 component of 76‘] %¢. The last two have z = apR and actually cancel each other, but that
still leaves the first contribution (with z = [ag — 3] R). Recalling the factor 1/V = R?/3847?% on the
RHS of the fixed point equation (2.10), we see from (3.1) that this contribution is not subleading to
f(R) = AR?, invalidating this ansatz. Actually this analysis shows that f(R) grows faster than R2.
With this assumption the n = 0, 1, 76’3 terms now rapidly vanish, so that the only contribution that
survives on the RHS at large R, is the n = 1 Sy component of 76‘] a¢, Keeping just this term it turns
out one can solve the fixed point equation in closed form, thus obtaining the correct asymptotic

behaviour for general cutoff function r(z):

_ o In 1 +AR* + o(R?) as R — +o0 (3.2)
- 76872 T r(agR) ’ '

f(R)

where we used (3.1) and noted that terms that grow slower than R? will be generated by iterating
this asymptotic solution to higher orders. The Inr term actually dominates, i.e. the large R
behaviour is dominated by cutoff-dependent effects. For example using the cutoff (2.17), wviz.
r(z) = z/(exp(az®) — 1) such that a > 0, b > 1, we find:

F(R) = %‘ﬁR”b + #RQ InR+ AR? + M <a0 - 1) ema(00=3)"R" . (3.3)
where the ellipses stand for faster decaying terms. Here we adjusted A to absorb a contribution to
R?, and then substituted the solution back into the fixed point equation to isolate the next leading
correction. (This exponentially decaying correction comes from the n = 0 term in the 7[)71 trace. All
other corrections decay faster provided that ag < % + 1. This is satisfied thanks to the restrictions
imposed below (2.28).)

Recalling that R is the dimensionless version, i.e. the physical curvature divided by k2, we see
that the large R limit may be viewed as holding the physical curvature fixed and integrating out all
modes by sending £ — 0. Therefore it ought to provide us with (an approximation to) the physical
Legendre effective action, i.e. the universal physical equation of state as a function of R [35]. The
cutoff dependence however obstructs any attempt to extract physics from this limit. This problem
is not seen in the Local Potential Approximation in scalar field theory, where an approximation
to the equation of state can be successfully computed in this way [44], and as we will see it is not

a problem on the hyperboloid. Since the issue arises from the fact that the n = 1 S modes in

14



the scalar Jacobian have vanishing eigenvalue, it suggests that further research should be done to
understand if/how these modes can be better treated on a sphere.

Although the fixed point equation (2.10) is a second order ODE free of fixed singularities, the
asymptotic solution we have found contains only the one free parameter: A. It is important to ask
where the other parameter has gone. To find out, we linearise the fixed point equation around the
asymptotic solution. This just gives the eigenoperator equation (2.12) for a marginal deformation,
df(R) = €v(R) i.e. such that § = 0 or equivalently A\ = 4. As a linear second order ODE, it
must have two linearly independent solutions. These can be found in the large R limit. Inspecting
(2.13) - (2.15), we note that a1(R) = 2R to leading order, while both as(R) and ag(R) vanish

asymptotically. We can therefore neglect ag and write
46f(R) — a1(R) 0f'(R) = —az(R) of "(R) . (3.4)

We know one solution to this already: §f(R) = JAR? + ---, where the RHS is only involved in
supplying one of the subleading corrections. The other solution must thus be such that at leading
order, f”(R) cannot be neglected. This tells us higher derivatives dominate over lower derivatives
so we know that for the other solution Jf(R) can instead be neglected (to leading order). The
equation is then exactly soluble since it can be rewritten as

al(R)
GQ(R)

a1 (R”)

d
— Indf'(R) = as(R")’

dR

R R
— f(R) = B/dR' exp/ dR" (3.5)

where B is the putative missing parameter. For the explicit form we need as. It gets its leading
contribution from the same source as the leading correction (3.3) to the terms displayed in (3.2).
For the same cutoff choice (3.3), we find asymptotically

2457672c; 1\ 1\
R) = h = Rl—b *a(aofg) R e 3.6
a2(F) 25ab(1 + b)2a2® <a0 3> ¢ * (3:6)

Recalling that a; = 2R to leading order, we can evaluate the integrals by successive integration by
parts, as an asymptotic series and where each term is given in closed form. Since we will use this
strategy many times let us sketch it on the indefinite integral:

/dRG(R) (R — ?,((Z)) el'(R) /dR <g,(£))> el(R) (3.7)

If F(R) grows at least as fast as R for large R, where F' is either sign, and G(R) grows or decays
slower than an exponential of R, then the integral on the right is subleading compared to the
integral on the left. Iterating this identity then evaluates the integral in the large R limit as e"(f)

times an asymptotic series, the first term on the RHS being the leading term.
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Using (3.6) this allows us to evaluate the inner integral in (3.5). Its exponential is then the
integrand for the outer integral, such that the asymptotic series now provides subleading multi-
plicative corrections. Up to such corrections, the integrand is actually 1/w(R’), as can be seen from
eqn. (2.23). Applying the same integration by parts strategy to the outer integral does not change
the leading exponential behaviour, and thus we see that up to subleading multiplicative corrections
df(R) ~ B/w(R) where we find the SL weight in the same approximation to be:

25(1 + )22 1\ L1y
R) ~ _ /0 _ = R a(ao—3) R . 3.8
w(R) eXp{ 1228872, \“° 7 3 e (3:8)

Notice that the sign of ¢; is crucial. Assuming c¢; > 0, the linearised perturbation Jf (R) ~
B/w(R) is a rapidly growing exponential of an exponential. Taking the R — +oo limit, it is
not a small perturbation to our previous result (3.3), no matter how small we choose B, thus
invalidating the procedure used to derive it.° Evidently it cannot itself satisfy the fixed point
equation asymptotically (it would have to solve just the LHS to do that). Therefore there is
asymptotically only a one-parameter set of solutions namely (3.3).

The dimension of the fixed point solution space is determined by the asymptotic behaviour
[35], thus unless further conditions are imposed we have (some discrete number of) lines of fixed
points. Since it is not sustainable to try and impose a condition at R = 0, c¢f. the discussion on
eigenoperators below (2.25), we need to continue through smooth topology change (as defined at
the end of sec. 2) into the hyperboloid side, if we are to reduce the dimension of the fixed point
solution space from the current phenomenologically disappointing answer.

Turning to the hyperboloid, the situation is much more straightforward. The assumption that
for rapidly decaying cutoff profile r(z) one can neglect the traces (2.3) — (2.6) at large (negative)
R, is now correct for the ansatz f(R) = AR?, thanks to the Laplacian eigenvalues (2.27) being
bounded below sufficiently by the positive endomorphisms to avoid vanishing denominators, cf.
(2.28). Since the ansatz solves the LHS of the fixed point equation, it forms the start of the large R
asymptotic series solution. The traces provide corrections that decay thanks to the cutoff profiles’
dependence on Ay s + asR > (B2 — a;)|R|. From the a and § parameter values, cf. (2.28) and
below it, we see that

0< B —ap<9/48=p —ay < B — oy (3.9)

and thus the leading corrections come from the scalar traces TOH and TOJ %¢. From the power of Ag

5Tt can be understood as the linearised precursor to the solution ending in a (movable) singularity [34-39,42,57].
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in (2.6) it is the Sy part that is leading. After some tedious manipulation we find:”

pm) = ar B (B ag) TP {10 (1R f el B o)

as R — —oo, all scalar traces (thus also A) contributing to the O <\R|_%> term, and the ellipses
standing for terms with faster decaying exponentials. Again we ask where the other parameter
has gone. The analysis proceeds in a similar fashion to that on the sphere. We have again the

asymptotic perturbed fixed point equatio