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Abstract

We study an f(R) approximation to asymptotic safety, using a family of non-adaptive cutoffs,

kept general to test for universality. Matching solutions on the four-dimensional sphere and

hyperboloid, we prove properties of any such global fixed point solution and its eigenoperators.

For this family of cutoffs, the scaling dimension at large n of the nth eigenoperator, is λn ∝
b n lnn. The coefficient b is non-universal, a consequence of the single-metric approximation.

The large R limit is universal on the hyperboloid, but not on the sphere where cutoff dependence

results from certain zero modes. For right-sign conformal mode cutoff, the fixed points form at

most a discrete set. The eigenoperator spectrum is quantised. They are square integrable under

the Sturm-Liouville weight. For wrong sign cutoff, the fixed points form a continuum, and so do

the eigenoperators unless we impose square-integrability. If we do this, we get a discrete tower of

operators, infinitely many of which are relevant. These are f(R) analogues of novel operators in

the conformal sector which were used recently to furnish an alternative quantisation of gravity.
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1 Introduction

The problem of perturbative non-renormalizability of gravity has spawned many new approaches to

quantising gravitational interactions, of which the hypothesis of asymptotic safety is one of the most

conservative. It is based on the familiar framework of quantum field theory and does not require

introduction of new fields or structures, see e.g. [1, 2]. The idea, first introduced by Weinberg [3],

relies on the existence of an interacting fixed point that controls the behaviour of gravity at high

energies, resulting in a non-perturbatively renormalizable theory.

The main tool used to explore this possibility is a functional renormalization group equation,

pioneered by Wilson [4], who called it the Exact RG (Renormalization Group). The version most

often used is for the effective average action Γk, which is the Legendre effective action modified

with an IR cut-off Rk, or equivalently the Legendre transform of the Wilsonian effective action [5].

It satisfies [5, 6]:

∂tΓk =
1

2
STr

[
(Γ

(2)
k +Rk)−1∂tRk

]
, (1.1)

where t = ln(k/µ) is the so-called RG time, µ being the usual arbitrary physical energy scale, STr is

the space-time trace taking into account statistics of anticommuting fields, and Γ
(2)
k is the Hessian:

the second functional derivative of Γk with respect to the fields.

Solutions of this equation determine the flow of the infinite number of effective couplings that

parametrise the most general effective action. (The space spanned by all these couplings is known

as theory space.) Exact solutions would require solving an infinite number of coupled differential

equations and therefore seem out of reach in any realistic setting, particularly so for quantum

gravity. Nevertheless, since the pioneering work on the simplest (the Einstein-Hilbert) truncation

[7], a lot of evidence has been gathered in support of asymptotic safety by model approximations

that in particular suitably truncate the theory space to a finite number of couplings, as summarised

in e.g. the review ref. [8]. An important step beyond this is to include an infinite number of

couplings. To date this has been realised through versions of f(R) approximations where the

effective Lagrangian is approximated to be a function of the scalar curvature R [9–24]:

Γk =

∫
ddx
√
g fk(R) (1.2)

(plus ghost and auxiliary field terms), and also through some closely related approximations [25–30].

In fact, the high order finite dimensional truncations [30–33] were developed by taking examples of

these f(R) equations and then further approximating to polynomial truncations. The full f(R) ap-

proximations are complicated partial differential equations so if no further approximation is applied,
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one is left to explore them numerically,1 supported by analysis in certain regions. One analytical

approach is however particularly powerful, namely to solve the RG equations asymptotically at

large curvature R [34, 35]. Actually this technique is sufficient on its own to allow one to draw

definitive conclusions about both the nature of the fixed points and their eigenoperator spectra in a

given f(R) approximation [34,35]. It was adapted from studies of scalar field theories in derivative

expansion approximation, where it had already proved to be powerful [36–41], and in ref. [42] it

was also applied to the so-called conformal sector of quantum gravity.

Another analytic approach that allows one to draw significant general conclusions is provided by

Sturm-Liouville (SL) theory (see e.g. [43]). This was first demonstrated in scalar field theory [44],

while the tight theoretical structure that SL theory provides, lies behind the novel quantisation

of gravity developed in refs. [45–50]. In ref. [15], SL analysis was used to prove properties of the

eigenoperator spectrum in f(R) approximations with non-adaptive cutoff,2 namely that around any

fixed point there are a finite number of relevant eigenoperators while the irrelevant eigenoperators

form a tower whose scaling dimensions tend to infinity.

In this paper we combine both of these powerful analytical approaches to test the assumptions

that are required for SL theory to apply f(R) approximations, and to learn significantly more about

the properties of asymptotically safe fixed points within these approximations. In particular we

are able to test the extent to which results that should be universal are actually independent of

the choice of cutoff, pointing to particular steps that need improving, and we are able to derive

analytically the scaling dimensions of the eigenoperators at large dimension.

The structure of the paper is as follows. In the next section, following [15], we set out the form of

the flow equation, fixed point equation and eigenoperator equation. We discuss some of the choices

to be made in particular for the endomorphism parameters αs, the choice of sign for the cutoff in

the conformal factor sector, and the choice of background manifold. In sec. 2.1 we develop the

equations in the case that the latter is a four-sphere, and explain further our choice of exponential

cutoff for the common profile r(z). As R → 0, the equations go over to a flat space limit. This is

derived and discussed in sec. 2.2, and in particular its implications for SL theory where the R = 0

boundary presents an obstruction. We see that the only sensible option is to continue into the

four-dimensional hyperboloid through a kind of smooth topology change, as discussed further also

in the Conclusions, sec. 6.

To apply SL theory we need that the eigenoperators are square integrable under the SL weight.

1Some quadratic fixed point solutions can be found for special choices of parameters in the cutoff in [19].
2Contrast adaptive cutoffs which closely mimic the Hessian and thus also depend on fk(R), cf. sec. 2 and [15].
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The question is whether this makes sense in quantum gravity. This leads us naturally into sec.

3 where we derive the asymptotic behaviour of solutions at large R. Separately this allows us to

characterise the nature of the fixed points and eigenoperators. First, in sec. 2.3, we explain the

setup for the equations on the hyperboloid. In particular we furnish the full constraints on α0. In

sec. 3.1 we derive the large R asymptotic behaviour of a fixed point solution f(R), first on the

sphere and then on the hyperboloid. We see that the sphere solution differs from that assumed

in [15] and is in fact dominated by cutoff effects as R → ∞. Computed exactly, it ought to be

universal, as it is in fact for the hyperboloid. We show that the culprit is the course-graining of

certain zero modes (modes with vanishing modified Laplacian) on the sphere.

On both sphere and hyperboloid we see that the asymptotic solution contains only one parame-

ter. Perturbations about this would provide the other parameter but such perturbations are invalid

because they grow too fast. Here we find a beautiful connection to SL theory: asymptotically they

coincide with the inverse of the SL weight, which we derive in this regime on both manifolds.

The fact that the asymptotic solutions for f(R) contain only one parameter, allows us to draw an

important conclusion: there are at most a discrete set of fixed point solutions.

Sec. 3.2 presents analogous findings for the eigenoperators. The valid solutions are those that

grow asymptotically as a power of R, the invalid solutions grow asymptotically like the inverse

of the SL weight. Validity is decided by requiring their RG evolution to be multiplicative in the

large R limit. Left only with the power-law solutions, the equations are overconstrained leading to

quantised values, λn, for their scaling dimensions. It is now immediate to see (in sec. 3.3) that the

valid eigenoperators coincide with those that are square-integrable under the SL weight, justifying

the use of SL analysis.

Thus we have its standard result, stated in sec. 4, which in this context is that the scaling

dimensions are real, that there are only a finite number of (marginally) relevant eigenoperators

(such that λn ≤ 4) and infinitely many irrelevant operators whose scaling dimensions λn → ∞.

By mapping to so-called Liouville normal form, the asymptotic analysis provides us with the large

distance behaviour of the corresponding potential. From there by a standard application of WKB

analysis, we get the analytical form for the scaling dimension λn as a function of n, in the limit

n→∞. This result should be universal. In fact it is independent of all but one of the parameters.

We see that the remaining dependence is an artefact of the single-metric approximation.

In sec. 5 we show that the situation changes dramatically if we choose the sign of the cutoff to

be negative for the conformal factor sector. The SL weight now grows asymptotically, fixed points

form a continuum, and the eigenoperator spectrum also becomes continuous. We relate this to
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earlier findings in f(R) approximations with adaptive cutoff and in conformally reduced gravity.

We show that we can impose square-integrability under the SL weight, in which case the valid

operators are the ones that decay asymptotically like the inverse SL weight. We compute their

asymptotic scaling dimensions, and we see that these operators are f(R)-analogues of the δ
(n)
k (ϕ)

eigenoperators pursued in [45–50] as an alternative quantisation of quantum gravity.

Finally, in sec. 6 we bring these strands together, describe a search for numerical solutions,

compare to f(R) approximations with adaptive cutoff, and draw our conclusions.

2 The f(R) equations

As explained in ref. [15], a crucial choice is to take the cutoff profile to be f(R) independent.

Although it does not allow the simplifications gained by combining the optimised cutoff function [51]

with adaptive cutoff profiles (and thus used almost exclusively in all other studies), it has two

advantages. Firstly, the flow equation is then second order in R-derivatives, rather than third

order, which is crucial for the proofs. Secondly, also crucial for the proofs (and one would assume

also allowing more accurate modelling of the physics - see the further discussion in the conclusions,

sec. 6) it ensures that the resulting ODEs for the fixed point solution and eigenoperators are free

of fixed singularities. We use the same flow equation formulated in ref. [15], and the same notation

except that here we will work exclusively with quantities already scaled by the appropriate power

of k to make them dimensionless, thus avoiding the need to signify them with tildes.

The flow equation takes the form of a non-linear partial differential equation for fk(R) [15]:

∂tfk(R) + 2E(R) =
1

V

(
T2 + T h̄0 + T Jac1 + T Jac0

)
, (2.1)

where E(R) happens to be the equation of motion that would be deduced from the action (1.2):

E = 2fk(R)−Rf ′k(R) . (2.2)

Here, V is the volume of space-time (scaled by k4). The space-time traces are given by:

T2 = Tr

[
d
dtR

T
k (∆2 + α2R)

−f ′k(R)∆2 − E(R)/2 + 2RTk (∆2 + α2R)

]
, (2.3)

T h̄0 = Tr

[
8 d
dtR

h̄
k(∆0 + α0R)

9f ′′k (R)∆2
0 + 3f ′k(R)∆0 + E(R) + 16Rh̄k(∆0 + α0R)

]
, (2.4)

T Jac1 = −1

2
Tr

[
d
dtR

V
k (∆1 + α1R)

∆1 +RVk (∆1 + α1R)

]
(2.5)
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T Jac0 =
1

2
Tr

[
d
dtR

S1
k (∆0 + α0R)

∆0 +R/3 +RS1
k (∆0 + α0R)

]
− Tr

[
2 d
dtR

S2
k (∆0 + α0R)

(3∆0 +R)∆0 + 4RS2
k (∆0 + α0R)

]
. (2.6)

As explained in secs. 2.1 – 2.3, they can be written as sums or integrals over the eigenvalues of the

Laplacian operators. The latter are modified to combinations appearing naturally in the space-time

traces on a four-sphere [12]:

∆s = −∇2 − βSs R , where βS0 = 1
3 , βS1 = 1

4 , βS2 = −1
6 . (2.7)

where a term proportional to R has been added, for scalar, vector, and tensor modes respectively.

The cutoff function r(z) must be non-negative monotonic decreasing, and vanishing in the limit

z → +∞. For simplicity the same function is chosen for all field components so that, when scaled

by the appropriate power of k, the cutoff profile takes the form

Rφk = cφ r(∆s + αsR) , (2.8)

where cφ is a free parameter. Note that an additional correction is incorporated, this time with

coefficient αs. These αs are chosen to ensure that all modes are integrated out as k → 0, i.e.

such that all modes have positive ∆s + αsR. Their value must be determined from knowledge of

the spectrum on the appropriate background manifold(s), so we return to this issue later. When

written in terms of dimensionless quantities, as is done here, the total differential of the cutoff with

respect to t, takes the form

d

dt
Rφk(z) = cφmφ r(z)− 2cφ zr

′(z) , (2.9)

where mφ is the mass-dimension of Rφk (the same dimension as the Hessian it is regularising).

In these equations, φ labels the field component. These are metric fluctuation modes, namely the

transverse traceless mode (φ = T ) and the gauge-invariant trace mode a.k.a. the conformal factor

field [52] (φ = h̄), and transverse vector and scalar modes from Jacobians of the field decomposition

(φ = V, S1, S2). The ghost and longitudinal modes do not appear since they cancel each other in

Benedetti’s scheme [12].

Actually, choosing r(z) to be the same for all these modes is more than just a question of

simplicity. The modes are all either part of the metric itself or directly related to it via the change

of variables or via BRST transformations. Although BRST invariance of the quantum field is badly

broken in the single metric approximation, it is reasonable to assume that the approximation would

be poorer if we chose to regulate the parts in substantially different ways.
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The cφ determine the sign of the cutoff terms in the functional integral. If we require convergence

of the integral we need cφ > 0. We insist on this for φ = T, V, S1, S2. The situation is less clear

however for the conformal factor. At the classical level f(R) ∼ −R is just the Einstein-Hilbert

action, and in this case the conformal factor has a wrong-sign kinetic term (Hessian). One can

see this from the denominator of the T h̄0 trace, (2.4), where the Hessian would reduce to ∼ −∆0

in this case. Therefore the trace is non-singular and the Functional RG is well-defined, only for

ch̄ < 0 [7, 42, 45, 53]. At the quantum level and depending on the value of R, the Hessian can be

of either sign [54]. Classically the Hessian can also be of either sign if for example one includes a

positive R2 term. (This is the so-called Starobinsky term, a physically acceptable modification of

Einstein’s gravity. It corresponds to incorporating a “scalaron” [55] at the classical level.)

In the adaptive cutoff scheme the sign adapts so as to always be consistent with the Hessian. In

the non-adaptive scheme that we need to use here, we have to make a choice, which will mean that

the Functional RG is only applicable in the regime where this choice is consistent. As we will see

this choice profoundly influences RG properties. Where we need to decide we will choose ch̄ > 0,

as in ref. [15,54], which means however that this version of the flow equation does not describe the

regime corresponding to perturbative quantisation of the Einstein-Hilbert action. Then at the end

of the paper, in sec. 5, we show what happens if we take ch̄ < 0 instead.

One small advantage of using a non-adaptive cutoff profile is that, since it does not itself depend

on fk(R), the only occurrence of the RG time derivative acting on f(R) is the one on the LHS of

the flow equation (2.1). The fixed point equation for fk(R) = f(R) is then just given by dropping

this term from the LHS, yielding a non-linear second order ordinary differential equation for f(R):

2E(R) =
1

V

(
T2 + T h̄0 + T Jac1 + T Jac0

)
. (2.10)

Linearising around such a fixed point solution, and separating variables,

fk(R) = f(R) + ε v(R) e−θt , (2.11)

(where ε is a small parameter) gives a linear second order ordinary differential eigenvalue equation:

− a2(R) v′′(R) + a1(R) v′(R) + a0(R) v(R) = λ v(R) , (2.12)

where the eigenvalue λ = 4− θ is the scaling dimension of the eigenoperator v(R) and

a2(R) =
144ch̄
V

Tr

[
∆2

0(2r(∆0 + α0R)− (∆0 + α0R)r′(∆0 + α0R)){
9f ′′(R)∆2

0 + 3f ′(R)∆0 + E(R) + 16ch̄r(∆0 + α0R)
}2

]
(2.13)
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a1(R) = 2R− 16ch̄
V

Tr

[
(3∆0 −R)(2r(∆0 + α0R)− (∆0 + α0R)r′(∆0 + α0R)){
9f ′′(R)∆2

0 + 3f ′(R)∆0 + E(R) + 16ch̄r(∆0 + α0R)
}2

]

+
2cT
V

Tr

[
(R/2−∆2)(2r(∆2 + α2R)− (∆2 + α2R)r′(∆2 + α2R))

{−f ′(R)∆2 − E(R)/2 + 2cT r(∆2 + α2R)}2

]
(2.14)

a0(R) =
32ch̄
V

Tr

[
(2r(∆0 + α0R)− (∆0 + α0R)r′(∆0 + α0R)){

9f ′′(R)∆2
0 + 3f ′(R)∆0 + E(R) + 16ch̄r(∆0 + α0R)

}2

]

+
2cT
V

Tr

[
(2r(∆2 + α2R)− (∆2 + α2R)r′(∆2 + α2R))

{−f ′(R)∆2 − E(R)/2 + 2cT r(∆2 + α2R)}2

]
. (2.15)

Notice that the trace in a2(R) is positive thanks to the properties of r(z). This is the reason

for the sign in (2.12), since a2 then has the same sign as ch̄ and in particular is positive for our

choice ch̄ > 0. The RG eigenvalue θ is the scaling dimension of the corresponding coupling. It has

positive/zero/negative real part if the eigenoperator v(R) is relevant/marginal/irrelevant.

One of our main goals is to explore the applicability of SL theory to the eigenoperator equation

(2.12) and when applicable, use it to prove properties of the eigenoperator spectrum [15, 44]. The

derivation of the traces assumes that the background metric corresponds to a Euclidean-signature

space of maximal symmetry. Globally, discrete choices are still possible, for example the real

projective space RP 4 (R > 0), torii (R = 0), and analogous manifolds when R < 0. However,

we will see that if SL theory is to be applicable, then the only sensible choice is to incorporate a

kind of smooth topology change between R > 0, R = 0 and R < 0 spaces. This is not possible

unless we take maximal symmetry to apply also globally, as is standard practice in asymptotic

safety approximations. Then R > 0 corresponds to the four-sphere, R = 0 to R4, and R < 0 to the

four-dimensional hyperboloid.

Spin s Eigenvalue λn,s Multiplicity Dn,s

0 n(n+3)−4
12 R (n+2)(n+1)(2n+3)

6

1 n(n+3)−4
12 R n(n+3)(2n+3)

2

2 n(n+3)
12 R 5(n+4)(n−1)(2n+3)

6

Table 1: Multiplicities and eigenvalues for the four-sphere space-time traces. The sums for T2 and

T Jac1 begin at nφ = 2, for T Jac0 at nφ = 1, and for T h̄0 at nφ = 0 [12].

2.1 Sphere

We start on the four-sphere, which was the space-time explicitly treated in [15]. It has space-time

volume V = 384π2/R2, and there the space-time traces are sums over the discrete set of eigenvalues
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of the corresponding Laplacian:

TrW (∆s) =
∞∑

n=nφ

Dn,sW (λn,s) . (2.16)

The multiplicities Dn,s, eigenvalues λn,s, and lowest index nφ, are given in table 1 (and its caption).

As is clear from the cutoff profile formula, (2.8), the αs parameters allow us to shift the action of

the cutoff up or down relative to the tower of eigenvalues, so as to ensure all the modes are passed

as k is lowered to k → 0+. Clearly this requires that the lowest mode λnφ,s + αsR is positive. As

noted in ref. [15], it is safe to choose α2 = 0 and α1 = 0, but to implement this condition in the

physical scalar (a.k.a. conformal factor) sector we need to choose3 α0 > 1/3.

At this point we recognise the need to specialise to smooth (infinitely differentiable) cutoff

functions r(z). Given that the eigenvalues are discrete set, proportional to R, cutoff functions

that are not smooth, for example the optimised one r(z) = (1 − z) θ(1 − z) [51], will lead to

points of limited differentiability which moreover accumulate as R→ 0. It may still be possible to

find a suitable weak solutions to the fixed point and eigenoperator equations in this circumstance

but, given that with a non-adaptive cutoff profile there is no advantage to using the optimised

cutoff, there is no point in pursuing this possibility further. In fact one should bear in mind that

cutoffs involving the Heaviside θ function have a number of related unpleasant effects4 that strictly

speaking should rule them out as sensible choices, even if these problems are not obvious at current

levels of approximation. On the other hand, any smooth profile r(z) will do if it decays sufficiently

fast at large z. In our case we only need to guarantee the convergence of the space-time traces

above. Later we will specialise to the popular choice [6]

r(z) =
z

exp(azb)− 1
, a > 0 , b ≥ 1 . (2.17)

For any non-vanishing R > 0 the sums are then rapidly convergent. However even if we restrict

ourselves to four-spheres, we still need to understand the limiting case R→ 0+, which takes us to

the boundary of this set. There, the sums go over to an integral and the equations go over to ones

in flat space.

3In this sense the modes are not treated equally. There appears to be no solution that does treat them ‘equally’

at this level of detail, given constraints that we will also have to satisfy on the hyperboloid, cf. eqn. (2.28).
4In real space the Kadanoff blocking functions are not truly quasi-local (they have power-law tails) and IR regulated

vertices have no Taylor expansion in momentum (derivative expansion) beyond some low order.
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2.2 Flat space

This limit can be achieved by setting p = n
√
R/12, and then taking R→ 0 whilst keeping p fixed.

From table 1, it is clear that all the Laplacians ∆n,s → p2, i.e. go over to their flat space limit

where we recognise that p is the flat space momentum. The multiplicities become p3(12/R)3/2 up

to a numerical factor, while the cutoff profiles Rφk → cφ r(p
2). Putting all this together gives for

the flow equation (2.1),

∂tfk(0) + 4fk(0) =
1

8π2

∫ ∞
0
dp p3

{
16ch̄

2r(p2)− p2r′(p2)

9f ′′k (0) p4 + 3f ′k(0) p2 + 2fk(0) + 16ch̄r(p
2)

+ 10cT
r(p2)− p2r′(p2)

−f ′k(0) p2 − fk(0) + 2cT r(p2)
− 3cV

r(p2)− p2r′(p2)

p2 + cV r(p2)

+ cS1

r(p2)− p2r′(p2)

p2 + cS1r(p
2)
− 4cS2

2r(p2)− p2r′(p2)

3p4 + 4cS2r(p
2)

}
. (2.18)

For this to be well defined, fk(0), f ′k(0), and f ′′k (0), need to be such that neither denominator

vanishes (at some p2) in its first two terms. This already provides strong constraints if the solution

is to exist for all k, which however are soluble locally. The strongest constraints arise if the cutoff

function r(z) diverges as z → 0, for example in the cases b > 1 in (2.17). In the tensor mode

trace, cT r(p
2)→ +∞ as p→ 0 and thus the denominator is positive. On the other hand if f ′k(0) is

non-vanishing, as p→∞ the sign of the denominator is given by −f ′k(0). Thus we see that to avoid

a singularity we must always have f ′k(0) ≤ 0 (strictly less than zero is the physically motivated

choice since this corresponds to positive Newton’s constant at zero momentum). Similarly we see

that fk(0) is bounded above. From the h̄ trace we see that since we chose ch̄ > 0, we must have

f ′′k (0) > 0, while f ′k(0) must also be bounded below by some negative value. If r(0) is finite,

for example the case b = 1 in (2.17), then other possibilities arise since f ′k(0) can be positive if

fk(0) > 2cT r(0), while the h̄ trace would then only require that f ′′k (0) > 0. These considerations

inform numerical searches, which we describe in sec. 6.

For the fixed point solution fk(R) = f(R), eqn. (2.18) determines f ′′(0) given boundary

conditions f(0) and f ′(0) such that all three lie within the bounds above. It then provides us

with a Taylor expansion approximant to a putative fixed point solution:

f(R) = f(0) + f ′(0)R+
1

2
f ′′(0)R2 + o(R2) . (2.19)

(In fact taking the expansion further is not straightforward since it then depends on the error

in approximating the sums by integrals but these are not captured correctly by Euler-Maclaurin
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corrections.) With these choices, the eigenoperator equation coefficients have finite limits:

a2(0) =
18ch̄
π2

∫ ∞
0
dp p7 2r(p2)− p2r′(p2)

{9f ′′(0) p4 + 3f ′(0) p2 + 2f(0) + 16ch̄r(p
2)}2

, (2.20)

a1(0) =

∫ ∞
0
dp p5

{
5cT
4π2

r(p2)− p2r′(p2)

{−f ′(0) p2 − f(0) + 2cT r(p2)}2

− 6ch̄
π2

2r(p2)− p2r′(p2)

{9f ′′(0) p4 + 3f ′(0) p2 + 2f(0) + 16ch̄r(p
2)}2

}
, (2.21)

a0(0) =

∫ ∞
0
dp p3

{
5cT
4π2

r(p2)− p2r′(p2)

{−f ′(0) p2 − f(0) + 2cT r(p2)}2

− 4ch̄
π2

2r(p2)− p2r′(p2)

{9f ′′(0) p4 + 3f ′(0) p2 + 2f(0) + 16ch̄r(p
2)}2

}
, (2.22)

the eigenoperator equation itself then just being given by setting R = 0 in (2.12). Furthermore

a2(0) is non-vanishing since the integrand is positive definite.

The above implies that the SL weight function is finite and non-vanishing at R = 0:

w(R) =
1

|a2(R)|
exp−

∫ R

0
dR′

a1(R′)

a2(R′)
, (2.23)

(setting the lower limit in the integral to zero without loss of generality, and taking the modulus in

the prefactor so that ω is positive whatever sign of ch̄ we choose.) Multiplying the eigenoperator

equation (2.12) by the weight function (a.k.a. the SL measure) we can cast it in SL form:

−
(
a2(R)w(R)v′(R)

)′
+ w(R)a0(R)v(R) = λw(R)v(R) . (2.24)

However SL properties only follow if the differential operator on the LHS is self-adjoint. Taking

v = vj(R), multiplying by vi(R), and integrating over R, this means in particular that boundary

terms must vanish when integrating by parts. We see that we thus require the eigenfunctions to

be square integrable under the weight function, and if we work only with fixed topology (here

four-spheres), then for any two eigenfunctions vi(R) and vj(R), we get from the R = 0 boundary:

w(0)
(
vi(0)v′j(0)− vj(0)v′i(0)

)
= 0 , (2.25)

the so-called bilinear concomitant. Therefore we would have to choose all eigenoperators to satisfy a

boundary condition, the most general form interpolating Dirichlet and Neumann: αvi(0)+βv′i(0) =

0 ∀i (for some fixed α, β). Such conditions lack any physical or other mathematical motivation,

in particular in the full theory they cannot be respected beyond linearised order. Our remaining

option is to eliminate the R = 0 boundary, requiring the solution to extend to all real values of R.
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In fact we will get extra motivation for such choices when we analyse the number of fixed point

solutions (or rather the dimension of the space of such solutions) in sec. 3. For this latter reason,

the f(R) equations of ref. [12] were extended in ref. [34] to all real R, by analytic continuation. Here

we do not have the option of analytic continuation if we insist on using the same cutoff function

r(z) for all modes. The reason is that ∆n,s, being proportional to R, would change sign. Apart

from the cutoff, this makes the denominator in T Jac1 , and in the S1 term in T Jac0 , change sign, cf.

(2.5) and (2.6) respectively. By choosing sufficiently large n in the modes in table 1, we see that the

denominators will then vanish already at small negative R making these traces ill-defined, unless

we take r(z) itself to be odd in z (using e.g. (2.17) with b = 2). However if we do take r(z) odd,

then instead the S2 term in T Jac0 will diverge already at small negative R by similar arguments.

(The other two traces also have their problems but since they involve f(R), the demonstration is

more involved.)

2.3 Hyperboloid

This leaves us with the remaining alternative, which is to match into the equations on a manifold

with R < 0. As explained earlier, we take for this the four-dimensional hyperboloid. Here −∇2 is

positive definite. The volume V is infinite, but the flow equation (2.1) still makes sense since the

space-time traces on the RHS trivially contain the same factor [56]:

1

V
TrW (∆s) =

2s+ 1

8π2

(
−R

12

)2 ∫ ∞
0
dλ
(
λ2 +

[
s+ 1

2

]2)
λ tanh(πλ)W (∆λ,s) ; (2.26)

the spectrum is now continuous, indexed by λ:

∆λ,s =

(
λ2 + s+

9

4

)(
−R

12

)
− βSs R = −R

12
λ2 − βHs R , (2.27)

where thus

βH0 =
25

48
, βH1 =

25

48
, βH2 =

9

48
. (2.28)

Recalling the reason for the extra endomorphism in the cutoff profiles (2.8), we see that we can

continue to set α2 = 0 and α1 = 0 as we wanted for the four-sphere, but the lower bound α0 > 1/3

is now joined by an upper bound α0 < 25/48 [15] so that all modes ∆λ,0 + α0R > 0.

The equations at the R → 0− boundary of this set of hyperboloids, are found by setting

p = λ
√
−R/12 and holding p fixed, so that once again the Laplacian goes over to its flat space

expression ∆λ,s → p2. It is straightforward to verify that the flow equation (2.1) and eigenoperator

equation coefficients (2.13)–(2.15) then go over to the flat space expressions (2.18) and (2.20)–(2.22)
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respectively. Thus we see that the flow, fixed point, and eigenoperator, equations can be smoothly

defined over the combined set of all four-spheres, all four-hyperboloids, and R4. The R > 0 and

R < 0 parts of the solutions can be made to match as Taylor expansions around R = 0 up to the

second derivative, but not beyond that. In fact the hyperboloid has a straightforward smooth limit5

whereas f ′′′(0) on the sphere side depends also on corrections involved in converting the sums over

eigenvalues into integrals. In this way we have incorporated a smooth topology change mechanism

through these three spaces.

To apply SL theory, we are left only to establish acceptable behaviour at large R. In particular,

as we have already seen, we need the eigenoperators v(R) to be square integrable under the SL

weight w(R). Whilst this condition is natural for SL theory, and was assumed in ref. [15] for that

reason, the question is whether this makes sense in quantum gravity.

3 Asymptotic behaviour of solutions at large R

We therefore turn now to the asymptotic behaviour of solutions at large R. This large field analysis

also allows us to characterise a number of aspects of the solution space for both fixed points and

their eigenoperator spectrum [34–39,42,57] and in particular allows us to answer the question above.

We will see from sec. 5 that the answer depends very much on the choice of sign for ch̄.

3.1 Large R dependence of fixed points and how to count them

We start with the asymptotic behaviour of the fixed point solution f(R). We need to know this in

order to establish the large R behaviour of the coefficients ai(R) in the eigenoperator equation (2.12)

which in turn will allow us to analyse the asymptotic behaviour of the eigenoperators. However as

we will see, it is important also for determining features of the fixed point solution space.

Beginning with the sphere, and given a rapidly decaying cutoff profile r(z), at first sight one

can neglect the traces on the RHS of the fixed point equation (2.10) at large R. One would then

conclude that f(R) = AR2 plus rapidly decaying corrections [15], for some undetermined coefficient

A, this being the solution of just the LHS, E(R) = 0. However this is not correct because terms

in the traces whose denominator would vanish without a cutoff, yield a contribution on the RHS

5Solutions can be straightforwardly developed to all-orders in the Taylor expansion around R = 0, with coefficients

given by finite integral expressions over p similar to those in (2.18), (2.20)–(2.22).
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proportional to
1

Rφk(z)

d

dt
Rφk(z) = mφ − 2z

d ln r(z)

dz
, (3.1)

where we used (2.9). There are three such terms, the n = 0 and n = 1 components from T h̄0 and the

n = 1 S2 component of T Jac0 . The last two have z = α0R and actually cancel each other, but that

still leaves the first contribution (with z = [α0− 1
3 ]R). Recalling the factor 1/V = R2/384π2 on the

RHS of the fixed point equation (2.10), we see from (3.1) that this contribution is not subleading to

f(R) = AR2, invalidating this ansatz. Actually this analysis shows that f(R) grows faster than R2.

With this assumption the n = 0, 1, T h̄0 terms now rapidly vanish, so that the only contribution that

survives on the RHS at large R, is the n = 1 S2 component of T Jac0 . Keeping just this term it turns

out one can solve the fixed point equation in closed form, thus obtaining the correct asymptotic

behaviour for general cutoff function r(z):

f(R) =
5R2

768π2
ln

R2

r(α0R)
+AR2 + o(R2) as R→ +∞ , (3.2)

where we used (3.1) and noted that terms that grow slower than R2 will be generated by iterating

this asymptotic solution to higher orders. The ln r term actually dominates, i.e. the large R

behaviour is dominated by cutoff-dependent effects. For example using the cutoff (2.17), viz.

r(z) = z/(exp(azb)− 1) such that a > 0, b ≥ 1, we find:

f(R) =
5aαb0
768π2

R2+b +
5

768π2
R2 lnR+AR2 +

16ch̄
5ab(1 + b)αb0

(
α0 −

1

3

)
e−a(α0− 1

3)
b
Rb + · · · , (3.3)

where the ellipses stand for faster decaying terms. Here we adjusted A to absorb a contribution to

R2, and then substituted the solution back into the fixed point equation to isolate the next leading

correction. (This exponentially decaying correction comes from the n = 0 term in the T h̄0 trace. All

other corrections decay faster provided that α0 <
5
6 +α1. This is satisfied thanks to the restrictions

imposed below (2.28).)

Recalling that R is the dimensionless version, i.e. the physical curvature divided by k2, we see

that the large R limit may be viewed as holding the physical curvature fixed and integrating out all

modes by sending k → 0. Therefore it ought to provide us with (an approximation to) the physical

Legendre effective action, i.e. the universal physical equation of state as a function of R [35]. The

cutoff dependence however obstructs any attempt to extract physics from this limit. This problem

is not seen in the Local Potential Approximation in scalar field theory, where an approximation

to the equation of state can be successfully computed in this way [44], and as we will see it is not

a problem on the hyperboloid. Since the issue arises from the fact that the n = 1 S2 modes in
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the scalar Jacobian have vanishing eigenvalue, it suggests that further research should be done to

understand if/how these modes can be better treated on a sphere.

Although the fixed point equation (2.10) is a second order ODE free of fixed singularities, the

asymptotic solution we have found contains only the one free parameter: A. It is important to ask

where the other parameter has gone. To find out, we linearise the fixed point equation around the

asymptotic solution. This just gives the eigenoperator equation (2.12) for a marginal deformation,

δf(R) = ε v(R) i.e. such that θ = 0 or equivalently λ = 4. As a linear second order ODE, it

must have two linearly independent solutions. These can be found in the large R limit. Inspecting

(2.13) – (2.15), we note that a1(R) = 2R to leading order, while both a2(R) and a0(R) vanish

asymptotically. We can therefore neglect a0 and write

4 δf(R)− a1(R) δf ′(R) = −a2(R) δf ′′(R) . (3.4)

We know one solution to this already: δf(R) = δAR2 + · · · , where the RHS is only involved in

supplying one of the subleading corrections. The other solution must thus be such that at leading

order, δf ′′(R) cannot be neglected. This tells us higher derivatives dominate over lower derivatives

so we know that for the other solution δf(R) can instead be neglected (to leading order). The

equation is then exactly soluble since it can be rewritten as

d

dR
ln δf ′(R) =

a1(R)

a2(R)
=⇒ δf(R) = B

∫ R

dR′ exp

∫ R′

dR′′
a1(R′′)

a2(R′′)
, (3.5)

where B is the putative missing parameter. For the explicit form we need a2. It gets its leading

contribution from the same source as the leading correction (3.3) to the terms displayed in (3.2).

For the same cutoff choice (3.3), we find asymptotically

a2(R) =
24576π2ch̄

25ab(1 + b)2α2b
0

(
α0 −

1

3

)1+b

R1−b e−a(α0− 1
3)
b
Rb + · · · . (3.6)

Recalling that a1 = 2R to leading order, we can evaluate the integrals by successive integration by

parts, as an asymptotic series and where each term is given in closed form. Since we will use this

strategy many times let us sketch it on the indefinite integral:∫
dRG(R) eF (R) =

G(R)

F ′(R)
eF (R) −

∫
dR

(
G(R)

F ′(R)

)′
eF (R) . (3.7)

If F (R) grows at least as fast as R for large R, where F is either sign, and G(R) grows or decays

slower than an exponential of R, then the integral on the right is subleading compared to the

integral on the left. Iterating this identity then evaluates the integral in the large R limit as eF (R)

times an asymptotic series, the first term on the RHS being the leading term.
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Using (3.6) this allows us to evaluate the inner integral in (3.5). Its exponential is then the

integrand for the outer integral, such that the asymptotic series now provides subleading multi-

plicative corrections. Up to such corrections, the integrand is actually 1/ω(R′), as can be seen from

eqn. (2.23). Applying the same integration by parts strategy to the outer integral does not change

the leading exponential behaviour, and thus we see that up to subleading multiplicative corrections

δf(R) ∼ B/ω(R) where we find the SL weight in the same approximation to be:

ω(R) ∼ exp

{
−25(1 + b)2α2b

0

12288π2ch̄

(
α0 −

1

3

)−1−2b

R ea(α0− 1
3)
b
Rb

}
. (3.8)

Notice that the sign of ch̄ is crucial. Assuming ch̄ > 0, the linearised perturbation δf(R) ∼

B/ω(R) is a rapidly growing exponential of an exponential. Taking the R → +∞ limit, it is

not a small perturbation to our previous result (3.3), no matter how small we choose B, thus

invalidating the procedure used to derive it.6 Evidently it cannot itself satisfy the fixed point

equation asymptotically (it would have to solve just the LHS to do that). Therefore there is

asymptotically only a one-parameter set of solutions namely (3.3).

The dimension of the fixed point solution space is determined by the asymptotic behaviour

[35], thus unless further conditions are imposed we have (some discrete number of) lines of fixed

points. Since it is not sustainable to try and impose a condition at R = 0, cf. the discussion on

eigenoperators below (2.25), we need to continue through smooth topology change (as defined at

the end of sec. 2) into the hyperboloid side, if we are to reduce the dimension of the fixed point

solution space from the current phenomenologically disappointing answer.

Turning to the hyperboloid, the situation is much more straightforward. The assumption that

for rapidly decaying cutoff profile r(z) one can neglect the traces (2.3) – (2.6) at large (negative)

R, is now correct for the ansatz f(R) = AR2, thanks to the Laplacian eigenvalues (2.27) being

bounded below sufficiently by the positive endomorphisms to avoid vanishing denominators, cf.

(2.28). Since the ansatz solves the LHS of the fixed point equation, it forms the start of the large R

asymptotic series solution. The traces provide corrections that decay thanks to the cutoff profiles’

dependence on ∆λ,s + αsR > (βHs − αs)|R|. From the α and β parameter values, cf. (2.28) and

below it, we see that

0 < βH0 − α0 < 9/48 = βH2 − α2 < βH1 − α1 (3.9)

and thus the leading corrections come from the scalar traces T h̄0 and T Jac0 . From the power of ∆0

6It can be understood as the linearised precursor to the solution ending in a (movable) singularity [34–39,42,57].
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in (2.6) it is the S1 part that is leading. After some tedious manipulation we find:7

f(R) = AR2 +
cS1

96
√

3πa3b3

(
25

48
− α0

) 5−3b
2

(−R)2− 3b
2

{
1 +O

(
|R|−

1
2

)}
e−a[(α0− 25

48)R]
b

+ · · · , (3.10)

as R → −∞, all scalar traces (thus also A) contributing to the O
(
|R|−

1
2

)
term, and the ellipses

standing for terms with faster decaying exponentials. Again we ask where the other parameter

has gone. The analysis proceeds in a similar fashion to that on the sphere. We have again the

asymptotic perturbed fixed point equation (3.4) except now:

a2(R) =
4ch̄

81A2
√

3πab

(
25

48
− α0

) 5−b
2

(−R)1− b
2 e−a[(α0− 25

48)R]
b

+ · · · (3.11)

(the ellipses being faster decaying terms). A small perturbation to (3.10) gives (3.5), and thus we

have δf(R) ∼ B/ω(R) again, except now the SL weight is

ω(R) ∼ exp

{
−81A2

2ch̄

√
3π

ab

(
25

48
− α0

)− b+5
2

(−R)1− b
2 ea[(α0− 25

48)R]
b

}
(3.12)

(where again we neglect also subleading multiplicative terms). As R → −∞, such a δf(R) is

a rapidly growing exponential of an exponential, and thus asymptotically we have only the one-

parameter set of solutions (3.10).

These results allow us to draw an important conclusion. Each of the hyperboloid and sphere

asymptotic solutions impose one constraint.8 Since we thus have two boundary conditions imposed

on a second order ordinary differential equation we have at most a discrete set of solutions. A priori

this could be no fixed point, or a unique fixed point (the phenomenologically preferred answer), a

larger number of fixed points, or a countable infinity of fixed points. As we will see in sec. 5, the

conclusion is very different if we choose the conformal factor cutoff to be negative, i.e. ch̄ < 0.

3.2 Large R dependence of eigenoperators

Since the eigenoperator equation (2.12) is linear and second order, there are guaranteed to be two

independent solutions for any RG eigenvalue λ. Whether they are acceptable or not, crucially

depends on their large field behaviour [39,41,42,44,58]: in particular whether for small but fixed ε

the exponential dependence in RG time in (2.11) remains valid at large R. In scalar field theories

this criterion explains why the correct eigenoperator solutions are the ones with power-law large

7Recall that α0 < 25/48.
8E.g. Rf ′(R) − 2f(R) = Rf ′asy(R) − 2fasy(R), for some suitably large R, where fasy is (3.3) for R > 0, or (3.10)

for R < 0, and the RHS has no free parameters since the AR2 term is cancelled out in this linear combination.
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field behaviour and thus why the RG eigenvalues are quantised [36–39, 41, 44, 57, 58]. It was also

applied in ref. [42] to determine the eigenoperator spectrum around non-trivial fixed points in a

conformal truncation to quantum gravity, and in ref. [34] to an f(R) approximation with adaptive

cutoff [12].

We have just derived the asymptotic behaviour of f(R) for a fixed point solution to the flow

equation (2.1) with non-adaptive cutoff. Substituting this into the corresponding eigenoperator

equation (2.12) allows us to determine the large R behaviour of solutions v(R). We will use the

above insight to determine which of these solutions are valid.

In fact, since with non-adaptive cutoff, RG time derivatives of fk(R) appear only the once,

as ∂tfk(R) on the LHS of the flow equation (2.1), one can immediately read off from the asymp-

totic form of the perturbed fixed point equation (3.4), the corresponding asymptotic form of the

eigenoperator equation (2.12):

λ v(R)− 2Rv′(R) = −a2(R) v′′(R) , (3.13)

where asymptotically a2 is given by (3.6) or (3.11) as appropriate. One solution solves just the

LHS:

v(R) ∝ |R|
λ
2 + · · · , (3.14)

where the ellipses stand for subleading corrections including those supplied by the RHS, and we

note that the solution is determined only up to a constant of proportionality. The other solution

must be such that at leading order, v′′(R) cannot be neglected. For the same reasons as before,

asymptotically the ODE then collapses to (3.5) (with δf replaced by v) and thus these solutions

satisfy v(R) ∼ 1/ω(R), with ω(R) being given by (3.8) and (3.12) on the sphere and hyperboloid

respectively.

Now we ask whether these solutions are actually valid. The linearised solution (2.11) is meant

to describe the RG flow ‘close’ to the fixed point. For any fixed ε, if |v(R)/f(R)| → ∞ as R→ ±∞

that is not necessarily true since linearisation is no longer valid. In this case we set

fk(R) = f(R) + ε vk(R) , (3.15)

and ask for the correct evolution for vk(R) at large R. We see that for large negative R we can

neglect the RHS of the flow equation (2.1). For large positive R we can neglect the RHS of the flow

equation except for the n = 1 S2 component of T Jac0 , which however just cancels the contributions

from the LHS that grow faster than R2 resulting from f(R), cf. (3.3). Since in fact the O(R2) part
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of f(R) also vanishes from the LHS (on both sphere and hyperboloid), we see that in the large R

regime we have

∂tvk(R)− 2Rv′k(R) + 4 vk(R) = o(R2) . (3.16)

Any part of vk(R) growing at least as fast as R2 is then easily solved for, and gives mean-field

evolution involving some arbitrary function v:

vk(R) = e−4t v(R e 2t) + o(R2) . (3.17)

It will be the same function v that we introduced in the linearised solution (2.11) if we require

as boundary condition, vk(R) = v(R) at k = µ. The question that remains is whether the RG

evolution (3.17) is consistent with what we were assuming by linearising.

For the power-law solution (3.14), linearisation is valid at large |R| if and only if λ ≤ 4. This

follows from the hyperboloid fixed point asymptotics (3.10), the sphere side (3.3) requiring only

the weaker constraint, λ ≤ 4 + 2b. On the other hand if λ > 4, we use the general perturbation

(3.15), finding the solution (3.17). Substituting the explicit form (3.14) of the boundary condition

we get

vk(R) = v(R) e−θt + o(R2) , (3.18)

where θ = 4−λ, i.e. we reproduce the linearised solution (2.11). We conclude that asymptotically,

power-law eigenoperators (3.14) are valid solutions for any λ. Their t evolution is multiplicative

and given by the flow of a conjugate coupling g(t) = ε e−θt, cf. (2.11).

On the other hand, the solutions that behave asymptotically as v(R) ∼ 1/ω(R), are growing

exponentials of exponentials. Linearisation is not valid at large |R|, where the t dependence is given

instead by (3.17). Now we cannot separate out the t dependence. Therefore such perturbations

cannot be regarded as eigenoperators evolving multiplicatively. Excluding them leads to quanti-

sation of the spectrum. The large R dependence (3.14) provides a boundary condition on both

the sphere and the hyperboloid side, and linearity provides a further boundary condition since we

can choose a normalisation e.g. v(0) = 1. These three conditions over-constrain the eigenoperator

equation (2.12) leading to quantisation of λ, i.e. to a discrete eigenoperator spectrum.

Again we will see in sec. 5, that the conclusion is very different if we choose the conformal

factor cutoff to be negative, i.e. ch̄ < 0.

3.3 Square integrability under the Sturm-Liouville weight

Now we can return to the question posed at the end of sec. 2: whether it makes sense for eigenop-

erators v(R) to be square-integrable under the Sturm-Liouville weight w(R), cf. (2.23), which is the
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remaining condition that must be satisfied in order for SL theory to be applicable. We have seen

that on both manifolds, ω(R) is rapidly decaying for large curvature. We saw that the eigenopera-

tor solutions that are actually allowed are the ones that grow as a power, (3.14). Now we see that

they are square integrable under this measure. On the other hand the solutions v(R) ∼ 1/ω(R)

that we already excluded on physical grounds, satisfy ω(R) v2(R) ∼ 1/ω(R) which thus diverges at

large R. These perturbations are therefore not square integrable under the measure. We conclude

that the condition of square-integrability picks out the correct solutions from the eigenoperator

equation and that SL theory is therefore applicable.

Although these formulae have been derived for the specific choice of exponential cutoff (2.17),

it is immediate to see that these qualitative properties hold true for a wide range of cutoffs, in-

dependent of their details. Indeed the fact that a2(R) is decaying for large |R| with sign given

by ch̄, and that a1(R) = 2R plus decaying terms, is enough to ensure that ω(R) for ch̄ > 0 is a

rapidly decaying exponential, as follows from its formula (2.23). This behaviour also ensures that

δf(R), the non-power-law solutions v(R), and 1/ω(R), are all equal up to subleading multiplicative

corrections. In sec. 5, we will see that if we choose ch̄ < 0, these solutions still hold but lead to

profoundly different scenarios.

4 Liouville normal form

We have seen that SL theory is (only) applicable to the quantised spectrum of eigenoperators that

have power-law asymptotic behaviour in R, given by (3.14), and which we determined already from

RG properties were the physical eigenoperators. The consequences of SL theory for this spectrum

can be seen by a standard transformation that takes the linear second order ODE (2.12) to so-called

Liouville normal form. For this case we set the coordinate to be (taking x = 0 at R = 0 without

loss of generality):

x =

∫ R

0

1√
a2(R′)

dR′ . (4.1)

It is well defined since we have seen that a2(R) is strictly positive at all finite R. Furthermore since

a2(R) vanishes at large |R| we see that x→ ±∞ as R→ ±∞. Then defining the ‘wave-function’

ψ(x) = a
1
4
2 (R)w

1
2 (R) v(R) , (4.2)

(2.12) becomes

− d2ψ(x)

dx2
+ U(x)ψ(x) = λψ(x) , (4.3)
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which is nothing but the time-independent Schrödinger equation at energy λ (and mass 1
2). This

is Liouville normal form. After some manipulation, one finds that the potential is given by [15]:

U(x) = a0 +
a2

1

4a2
− a′1

2
+ a′2

( a1

2a2
+

3a′2
16a2

)
− a′′2

4
(4.4)

(the terms on the RHS being functions of R).

In ref. [15], it was noted that this potential has no singularities at finite x whilst from the

asymptotic behaviour of the ai(R), the second term dominates for x→ ±∞ such that U(x)→ +∞,

leading to the conclusion that there is only a quantised bound-state energy spectrum λ = λn (n =

0, 1, 2, · · · ) bounded from below with the only accumulation point at infinity (following standard

analysis of its Green’s function, see e.g. [59]). In other words there are only a finite number of

(marginally) relevant couplings such that θn = 4−λn ≥ 0, and infinitely many irrelevant couplings.

These latter have scaling dimensions θn → −∞ as n→∞.

There is a hidden assumption here, namely that ψ(x) has appropriate behaviour as x → ±∞

for the Schrödinger equation interpretation to make sense. For this, ψ(x) should be either square-

integrable, corresponding to a bound state, or correspond to an unbound state such that ψ(x) =

ψk(x) ∼ eikx as x → ±∞ for some wave-number k. These latter are δ-function normalisable, i.e.

can be chosen to satisfy
∫
x ψk(x)ψk′(x) = δ(k− k′). For this potential these latter solutions do not

exist. As we have seen, there are other solutions however, but the missing solutions (which we have

rejected on RG grounds) behave asymptotically as v(R) ∼ 1/ω(R). From (4.2), they grow rapidly

as x→ ±∞ (in fact exponentially) so are neither square-integrable nor δ-function normalisable.

On both sphere (3.6) and hyperboloid (3.11), we can write

a2(R) =
1

G2(R)
e−2F (R) , (4.5)

where F and G have the behaviour required for the identity (3.7). Thus we get asymptotically

x =
G(R)

F ′(R)
eF (R) + · · · . (4.6)

From (4.4) to leading order, we therefore have

U(x) =
a2

1

4a2
=

R2

a2(R)
=
[
RF ′(R)

]2
x2 . (4.7)

But from (3.6) and (3.11) we see that RF ′(R) = b F (R). Taking logs of (4.6), we thus find

U(x) = (b x ln |x|)2

{
1 +O

(
ln ln |x|
ln |x|

)}
as x→ ±∞ . (4.8)
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It is interesting that the leading large x behaviour of the potential is symmetric about the origin

x = 0, even though U(x) is surely not. In particular the fact that at large R, f(R) is universal on

the hyperboloid but dominated by cutoff effects on the sphere, does not result in different behaviour

in the corresponding large x regime of the potential U(x). It is also interesting that this leading

behaviour is close to being universal, in that the only cutoff dependence is through the parameter

b, the power entering the exponential fall-off form in the cutoff (2.17). Unfortunately this still

amounts to strong dependence. Actually this remaining dependence is an artefact of the single-

metric approximation [7, 60], one consequence of which is to conflate the background curvature

dependence in the cutoff, in particular in F , with that of the quantum field.9

From (4.8) we can find for the quantised spectrum the asymptotic behaviour of their scaling

dimensions at large n:

θn = −b (n lnn)

{
1 +O

(
ln lnn

lnn

)}
as n→∞ . (4.9)

This follows by noting that large values of λn closely obey the WKB formula for the Schrödinger

equation (4.3): ∫ xn

−xn
dx
√
λn − U(x) = (n+ 1

2)π . (4.10)

The boundaries of the integral should be the classical turning points, i.e. the solutions to λn = U(x).

However up to multiplicative corrections of order ln lnxn/ lnxn these can be taken to be ±xn where

at the same level of approximation,

λn = U(±xn) = (b xn lnxn)2 . (4.11)

Substituting this and x = xny into (4.10) gives

I b x2
n lnx2

n = π(2n+ 1) , (4.12)

where the integral

I =

∫ 1

−1
dy

√
1− U(yxn)

(bxn lnxn)2 =

∫ 1

−1
dy
√

1− y2 =
π

2
, (4.13)

again up to corrections of order ln lnxn/ lnxn. Thus in the large n limit, we can solve (4.12) in terms

of the Lambert W function, as lnx2
n = W (4n/b) (using the fact that W satisfies W (z) expW (z) =

9In reality Γk is a functional of both the background metric gBµν and the quantum metric gQµν . It is gQµν differentials

that appear in the fixed point and eigenoperator equations, and thus it is also the behaviour at large gQµν that we are

interested in. In a non-adaptive scheme as employed here, cutoff profiles such as (2.8) should in reality not depend

on gQµν but only on its field differentials, since the cutoffs are meant to regularise Laplacians for these modes.
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z). Substituting this solution into (4.11), using the asymptotic expansion of W (4n/b), and again

neglecting multiplicative corrections of order ln lnxn/ lnxn or smaller, gives (4.9).

Using polynomial truncations taken to very high order, the θn were accurately estimated up to

n = 70 in ref. [32], and found to closely fit θn ≈ 2.91 − 2.042n. However these were computed in

an adaptive cutoff version of the f(R) approximation and using optimised cutoff [51]. Given the

above strong dependence on cutoff profile we cannot make a sensible comparison, although we note

that given the weak dependence of lnn, and ignorance of the neglected corrections, b ≈ 1 would

provide a reasonable match.

5 Wrong sign cutoff in the conformal sector

In this section we show what changes if we choose a negative cutoff for the conformal mode, i.e.

ch̄ < 0.

In sec. 2.2 we analysed the constraints on fk(0), f ′k(0), and f ′′k (0). For completeness we show

how these change with ch̄ < 0. Recall that the strongest constraints arise if the cutoff function r(z)

diverges as z → 0. Then we showed that from the tensor mode trace we must have f ′k(0) ≤ 0. Now

that ch̄ < 0, from the h̄ trace we need f ′′k (0) ≤ 0 to avoid a singularity. The equations are then

consistent provided fk(0) is less than some positive bound. If r(0) is finite then other possibilities

again arise for example f ′′k (0) > 0 is possible provided fk(0) is sufficiently positive.

Much more interesting is the effect of negative cutoff on the space of fixed points and eigenop-

erators. Recall that the asymptotic behaviour of the fixed point solutions f(R) is given in the first

instance by asymptotic series whose leading term is a power of R: (3.3) in the case of the sphere

and (3.10) for the hyperboloid. These contain one parameter A (a different value in general on the

sphere or hyperboloid). However to determine the true number of parameters in the asymptotic so-

lution, we study the linear perturbation δf(R) to these asymptotic series, and find δf(R) ∼ B/ω(R),

where ω is the SL weight and is given by (3.8) or (3.12) on the sphere or hyperboloid respectively.

The derivation is still correct if ch̄ < 0, but the SL weight is now a rapidly growing exponential

of an exponential (on both sides). Thus the perturbation δf(R) ∼ B/ω(R) is a rapidly decaying

exponential of an exponential. Whatever value of B we choose, asymptotically our assumption that

δf(R) is much smaller than the series solutions, becomes ever more justified. Therefore asymptot-

ically there is now a full two-parameter set of solutions, being to leading order precisely (3.3) or

(3.10) as appropriate, plus B/ω(R). Now these solutions impose no boundary conditions since at

some appropriate large R, f(R) and f ′(R) merely fix the values of the two parameters A and B in
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the appropriate asymptotic solution. Therefore if we have solutions they will be continuous ‘planes’

of fixed points: two-dimensional sets parametrised by two real free parameters [35].

It had already been noticed in f(R) truncations with adaptive cutoff, that fluctuations from the

conformal factor govern the structure of the solutions [18, 34]. We now see that the reason is that

it is intimately tied to the way this sector is regularised. For non-adaptive cutoff the choice ch̄ < 0

is the only one available for the Einstein-Hilbert truncation [7] and for perturbative solution of the

flow equation starting from the classical Einstein-Hilbert action (with or without a cosmological

constant), but such a wrong-sign kinetic term plus wrong sign cutoff, leads to a continuum of fixed

point solutions [42]. The cause is the same as was found in these earlier papers, namely the fact

that the fixed point large field asymptotic behaviour has the full set of parameters and thus imposes

no boundary conditions. This effect is also seen [34] in one formulation of f(R) with an adaptive

cutoff [12] and in some of the asymptotic solutions [35] found in another formulation involving more

fixed singularities [18]. It was already suggested in ref. [34] that such a continuum of solutions is a

reflection of the conformal mode instability.

Similar conclusions are drawn for the eigenoperator spectrum around any such fixed point.

The exponential of exponential solutions v(R) ∼ 1/ω(R), to the eigenoperator equation (2.12),

are now exponentially small at large |R| and thus linearisation remains valid. Therefore we now

have a continuous spectrum, with degeneracy two, for every value of λ. Again, this effect has been

seen before, in the same situations where a continuum of fixed points are found: in a conformal

truncation [42], and in f(R) approximation with adaptive cutoff [34].

Note that such a continuous spectrum of eigenoperators is consistent with there being a two-

dimensional continuum of fixed points. Indeed the two eigenoperators with λ = 4 are the exactly

marginal operators v(R) = δf(R) ∼ R2 and v(R) = δf(R) ∼ 1/ω(R) (for given sign of R) that

move the system infinitesimally from one fixed point to another in this two-dimensional continuum.

The general eigenoperator with scaling dimension λ grows as |R|
λ
2 at large |R|, cf. (3.14). They

are thus not square-integrable under the SL weight. Although they have conjugate couplings that

evolve multiplicatively at the linearised level, and are in this sense physical, we can choose to impose

square-integrability as an extra condition. If we do so we exclude the power-law solutions. This

amounts to an extra quantisation condition that is natural within the Wilsonian RG framework [45].

Indeed without it the Wilsonian RG breaks down because there would be no sense in which an

arbitrary linearised perturbation can be broken down uniquely into a convergent series expansion

over operators of definite scaling dimension [42,45,61]. The remaining solutions v(R) ∼ 1/ω(R) are

exponentially decaying for both R → +∞ and R → −∞. Since for these, ω(R) v2(R) ∼ 1/ω(R),
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they are square-integrable under the SL weight, and thus form a quantised spectrum.

Their relation to the continuum of fixed points is novel in that it is no longer possible to move to

any nearby fixed point by ‘switching on’ marginal directions. Indeed we have at most one marginal

operator now. Generically we will have none.

The a2(R) coefficient (2.13) changes sign under ch̄ 7→ −ch̄, but it still decays exponentially at

large |R|, as we see from (3.6) and (3.11) for sphere and hyperboloid respectively. We can still

transform to Liouville normal form, if we first multiply the eigenoperator equation (2.12) by a

minus sign. Then we see that

x =

∫ R

0

1√
|a2(R′)|

dR′ , (5.1)

is the same transformation as before. The wave-function is now

ψ(x) = |a2|
1
4(R)w

1
2 (R) v(R) , (5.2)

whilst the Schrödinger equation now appears as

− d2ψ(x)

dx2
+ U(x)ψ(x) = −λψ(x) , (5.3)

i.e. with λ now being minus the energy. The potential U is given by the same formula up to an

overall sign, i.e.

U(x) = −a0 +
a2

1

4|a2|
+
a′1
2
− a′2

( a1

2a2
+

3a′2
16a2

)
+
a′′2
4
. (5.4)

The power-law eigenoperators v ∼ |R|
λ
2 are now associated with exponentially growing wave-

functions, dominated by the ω dependence in (5.2). From Schrödinger’s point of view, they are not

acceptable solutions. On the other hand, the solutions v ∼ 1/ω(R) correspond to exponentially

decaying ψ(x) and thus bound-state solutions to (5.3).

Since the large R dependence of a1 and |a2| is the same as before, we see that the analysis

(4.5) – (4.7) goes through unchanged and U(x) has the same large x dependence (4.8) as before.

The WKB analysis therefore also goes through unchanged, except that the energies are now −λn.

Therefore we see that we have at most a finite number of (marginally) irrelevant operators and an

infinite tower of relevant operators, the scaling dimension of the conjugate couplings being

θn = b (n lnn)

{
1 +O

(
ln lnn

lnn

)}
as n→∞ . (5.5)

We recognise that these are f(R)-approximation analogues of the δ
(n)
k (ϕ) operators introduced

in [45] and studied extensively in refs. [46–50] as elements of a new quantisation of quantum gravity.
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Indeed the δ
(n)
k (ϕ) operators are eigenoperators appearing in the functional RG when using a wrong-

sign cutoff (ch̄ < 0), where it is needed because the conformal factor field, ϕ, has wrong-sign kinetic

term. The δ
(n)
k (ϕ) span the space of perturbations that are square integrable under an exponentially

growing SL measure, and thus are themselves exponentially decaying at large field. Finally they

also form an infinite tower of relevant operators, the scaling dimensions being θn = 5 + n.

Note however that the δ
(n)
k (ϕ) are eigenoperators about the Gaussian fixed point, where they

are derived exactly, whereas the formula (5.5) applies to the spectrum of square-integrable eigen-

operators about any point in the continuum of fixed points in this f(R)-approximation. Unlike

the ϕ-versions, the eigenoperator equation has coefficients ai(R) with non-trivial field dependence.

This is responsible for the lnn dependence in (5.5) while, as we noted in sec. 4, the b dependence

appearing in (5.5) is a symptom of the single-metric approximation.

6 Summary and Conclusions

We use the f(R) model introduced in ref. [15] where already SL theory was applied to give a proof

that, around any fixed point in such a model, there are a finite number of relevant couplings and

an infinite number of irrelevant couplings gn, these latter having scaling dimensions θn → −∞ as

n → ∞. Note that the scaling dimensions are also proved to be real, in contrast to what is found

typically in finite dimensional truncations. In this paper we scrutinise both the explicit and implicit

assumptions that go into this proof, and we combine SL techniques with asymptotic analysis at

large R [34, 35] to find out significantly more about the nature of these fixed points and their

eigenoperator spectrum.

Both of these methods can be developed while keeping the cutoff general, which must however

be taken to be smooth. In (2.8) we keep general the cφ (the overall size of the cutoff for each field

component). As in ref. [15], we set the endomorphism parameters α2 = α1 = 0, but we keep α0

general apart from the constraint 1/3 < α0 < 25/48 required to ensure that all modes are integrated

out in the limit k → 0. We take the same cutoff profile for all field components, since these are all

closely tied to the metric either through changes of variables or via BRST invariance. For most of

the paper to be concrete we specialise to the exponential-style cutoff profile [6] (2.17), but we keep

its parameters a > 0 and b ≥ 1 general. In particular we are able to determine the asymptotic form

of the SL weight ω(R) for these cases. It is a rapidly decaying exponential of an exponential cf.

(3.12) and (3.8) for the hyperboloid and sphere respectively. We show that it is intimately involved

in other asymptotic properties, chief amongst them being the detailed form (4.9) of the asymptotic
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behaviour of the θn:

θn = −b (n lnn)

{
1 +O

(
ln lnn

lnn

)}
as n→∞ . (6.1)

If computed exactly, these scaling dimensions should be universal. Thus it is gratifying to find that

in this model approximation, they are independent of all parameters except one within our general

family of cutoffs. It is also encouraging to find that the θn have an almost linear dependence on

n, since in this respect it is similar to the numerical evidence for near-Gaussian (but complex)

dimensions found in ref. [32] for n ≤ 70 in an adaptive optimised cutoff version of the f(R) approx-

imation. However the overall dependence on b still amounts to strong residual cutoff dependence,

precluding any more meaningful comparison. We saw in sec. 4 that the blame for this lies squarely

with the single metric approximation. In fact single field approximations are a known source of

artefacts [60].

SL theory requires the RG eigenvalue equation (2.12) to be second order in R derivatives. This

is achieved if and only if we use a non-adaptive cutoff profile. While that leads to the disadvantage

of significantly more complicated flow equations compared to those using an adaptive optimised

cutoff [51], it does allow us also to ensure that the fixed point ODE has no fixed singularities.

This is an advance on f(R) approximations with adaptive cutoff, where such fixed singularities

are endemic. While the fixed singularity at R = 0 appears there for a clear physical reason [12,34],

the same is not true for those at R 6= 0. These latter fixed singularities can be introduced or shifted

to different places, depending on the model [18,20], but it seems to be impossible to eliminate them

entirely [10–24]. However, solutions depend sensitively on them, in particular determining whether

fixed points exist as global solutions and if so whether they form a continuous set [34,35].

On the other hand an adaptive cutoff profile has the advantage in that it adapts to the sign

of the Hessian. In our case we have to fix the sign of the cutoff via cφ. The Hessian is positive

for nearly all field components, requiring cφ > 0, as would anyway be expected for convergence of

the functional integral. However the physical scalar component h̄, a.k.a. the conformal factor, is

an exception. If we are to describe the regime corresponding to perturbative quantisation of the

Einstein-Hilbert term we need to choose ch̄ < 0 [7, 42, 45, 53]. Otherwise we need to rely on fk(R)

containing higher order terms [54] so that f ′′k (R) is positive, cf. (2.4) and the discussion in sec. 2

and at the beginning of sec. 2.2. We choose ch̄ > 0 for the body of the paper, following ref. [15].

It turns out that on the sphere, we can find the leading asymptotic behaviour of the fixed point

solution f(R) in the large R limit for completely general cutoff profile r(z). The result, (3.2), is

different from the assumed form in ref. [15]. In fact it is dominated by cutoff effects. For the
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exponential cutoff it takes the form (3.3). As discussed in sec. 3.1, this limit also ought to be

universal, giving the physical equation of state. Here we saw that the blame lies squarely with

the course-graining of constant scalar modes in the Jacobian of the change of variables to York

decomposition. We saw that this had no effect on the θn formula (6.1) however.

The asymptotic solution contains one parameter, A, whereas for a second-order ODE we would

expect a general solution to have two. By perturbing around this result we saw that to leading

order the other parameter multiplies δf(R) ∼ 1/ω(R). Since this perturbation grows more rapidly

than f(R), it is not valid asymptotically and thus we see that asymptotically there is only a one-

parameter set of fixed point solutions. As discussed in sec. 3.1 if we consider the flow equations

as applying only to the sphere, we would then have line(s) of fixed points. This is one motivation

for widening the domain of applicability of the flow equations. As discussed in sec. 2.2 nor would

we be able to apply SL theory, the obstruction coming from the existence of an R = 0 boundary

(where the equations go over to those of flat space). This provides another motivation. As a final

motivation we appeal to the encouraging evidence found in polynomial approximations to f(R)

equations [9,30–33]. These polynomials probe both signs of R. We saw at the end of sec. 2.2 that

if we wish to keep the same cutoff profile for all modes we cannot analytically continue our equations

into R < 0 however. Instead we match the solution into the equations on the hyperboloid, which

also has the property that the equations go over to the flat space ones at its R = 0 boundary.

On the hyperboloid the leading asymptotic behaviour is cutoff independent as it should be,

being f(R) ∼ AR2 (for a typically different A compared to the sphere side). We also provided the

leading corrections coming from cutoff terms (3.10), as we did also on the sphere (3.3). Again a

perturbation to this solution takes the form δf(R) ∼ 1/ω(R) and is thus ruled out. Therefore the

asymptotic behaviour as R→ ±∞ provides two constraints on a global solution for f(R) leading to

at most a discrete set of fixed points. This is of course what one would hope to see for asymptotic

safety.10

In sec. 3.2 we saw that the situation is just as encouraging for the eigenoperators v(R). Since

in the eigenoperator equation (2.12), a2(R) vanishes asymptotically on both the sphere and the

hyperboloid (for the explicit formulae see (3.6) and (3.11) respectively), the leading asymptotic

behaviour for an eigenoperator is given by v(R) ∝ |R|
λ
2 , which is again universal, as it should be (if

computed exactly). For any RG eigenvalue λ the other solution grows rapidly with |R|, satisfying

asymptotically v(R) ∼ 1/ω(R) (in agreement with δf(R) which corresponds to a putative marginal

10Note that had we introduced fixed singularities into the f(R) equations we would then have found f(R) to be

overconstrained and have no global solutions.
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operator). It is ruled out because it does not evolve multiplicatively under the RG. Since the ODE

is linear second order, requiring v(R) ∝ |R|
λ
2 overconstrains the equations and leads to quantisation

of λ, again as one would hope to see.

Furthermore these ‘power-law’ eigenoperators are square-integrable under the SL weight, thus

providing the missing justification for using SL analysis. From general SL theory, this is already

enough to confirm that the eigenoperators vn(R) form a discrete spectrum and to show that the

RG scaling dimensions λn, possibly finitely degenerate, have a finite minimum (thus there are a

finite number of relevant directions) and form an infinite tower such that (ordering the eigenop-

erators so λn are non-decreasing in n) the λn → ∞ as n → ∞. The vn(R) can be chosen to be

orthonormal under the SL weight ω(R). In fact, the rest of the SL analysis in ref. [44] can then be

straightforwardly taken over to show that arbitrary bare perturbations δfk0(R) (at some UV scale

k = k0) will evolve into the space of interactions that can be expanded over the vn(R) such that

the series converges in the square-integrable sense. The map to Liouville normal form, done in sec.

4 and ref. [15], allows us to take this further by computing the large distance behaviour (4.8) of

its potential, and from there, by a standard application of WKB analysis, to derive the asymptotic

form (6.1) of the θn = 4− λn as quoted above.

All this is predicated on there actually being a global solution to the fixed point equation (2.10)

however. We have searched numerically for such a solution in the case a = b = 1, α0 = 1/2 (recall

from sec. 2.3 that it has to lie between 1/3 and 25/48) and all the cφ = 1. We found global solutions

on the sphere that asymptote to (3.3) for a small region around A = −0.01, starting at R = 10 and

integrating down to the flat space fixed point equation from (2.18), but we have not been able to

find global solutions on the hyperboloid. These are challenging integro-differential (on the sphere-

side sum-differential) equations so it is likely that more numerical work is required. This includes

exploring other choices of parameters. In fact our solutions on the sphere matched the asymptotic

solution (3.3) at R = 10, only by choosing to match f ′(R) and f ′′(R) and then computing f(R)

from the fixed point equation (rather than the more obvious route of setting f(R) and f ′(R) from

the asymptotic formula). This indicates that the asymptotic series has not been taken quite far

enough for these R values. On the hyperboloid, the asymptotic corrections in (3.10) fall only slowly,

so would surely have to go much further to provide a similarly accurate starting point. In fact it

would be beneficial to explore simpler equations, if these can be found. An attractive starting

point would be to use non-adaptive cutoff together with the exponential parametrisation explored

in ref. [19]. Note that if lines of fixed points can be found on both sphere and hyperboloid, there

would still have to be a matching point where these f(R) agree to second order in their Taylor
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expansion (2.19) about R = 0, in order to have found a globally defined fixed point.

Finally in sec. 5 we saw that the situation is dramatically different if we choose instead the

wrong sign cutoff for the conformal mode: ch̄ < 0. Perturbing around the asymptotic fixed point

solution we still find δf(R) ∼ 1/ω(R), but the dependence of the SL measure on ch̄ is such that ω(R)

is now a rapidly growing exponential of an exponential. This means that the perturbation δf(R)

remains valid asymptotically, and thus the asymptotic solutions have two parameters. They no

longer restrict the dimension of the solution space, so fixed points form two-dimensional continuous

sets. The alternative asymptotic behaviour for the eigenoperators is also still v(R) ∼ 1/ω(R) but

these do now evolve multiplicatively under the RG and thus are also valid solutions. Therefore we

have a non-quantised continuous spectrum of RG eigenvalues λ. It is clear that this is mirroring

effects previously found [34, 35] in adaptive cutoff f(R) approximations [12, 18], and found [42]

in a background-independent version of the so-called conformally reduced gravity [53] where only

the conformal factor field is kept. Clearly therefore the culprit for this degeneration is the wrong

sign cutoff (which is necessary however if we work with wrong sign kinetic term). In this case,

by choosing to keep only interactions square integrable under the SL measure, the eigenoperator

spectrum is again quantised, with v(R) ∼ 1/ω(R) for large R. These form a tower of operators,

only finitely many of which are irrelevant, and infinitely many are relevant with dimensions given

by minus the θn in (6.1). These are the f(R)-approximation analogues of the δ
(n)
k (ϕ) operators

pursued in [45–50] as an alternative quantisation of quantum gravity.
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