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Abstract

This paper studies high-dimensional vector autoregressions (VARs) augmented with common

factors that allow for strong cross-sectional dependence. Models of this type provide a convenient

mechanism for accommodating the interconnectedness and temporal co-variability that are often

present in large dimensional systems. We propose an ℓ1-nuclear-norm regularized estimator and

derive the non-asymptotic upper bounds for the estimation errors as well as large sample asymp-

totics for the estimates. A singular value thresholding procedure is used to determine the correct

number of factors with probability approaching one. Both the LASSO estimator and the conser-

vative LASSO estimator are employed to improve estimation precision. The conservative LASSO

estimates of the non-zero coefficients are shown to be asymptotically equivalent to the oracle least

squares estimates. Simulations demonstrate that our estimators perform reasonably well in finite

samples given the complex high-dimensional nature of the model. In an empirical illustration

we apply the methodology to explore dynamic connectedness in the volatilities of financial asset

prices and the transmission of ‘investor fear’. The findings reveal that a large proportion of con-

nectedness is due to the common factors. Conditional on the presence of these common factors,

the results still document remarkable connectedness due to the interactions between the individual

variables, thereby supporting a common factor augmented VAR specification.
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1 Introduction

In a pathbreaking study, Mann and Wald (1943) introduced vector autoregressions (VARs) and de-

veloped the limit theory for estimation and inference.1 The VAR approach was further developed

and promoted for empirical macroeconomic research in an influential paper by Sims (1980). Since

then, the methodology has become one of the most heavily used tools in applied finance and macroe-

conomics. It offers a simple and useful method to capture rich dynamics and interconnectedness

in multiple time series. Unrestricted VARs can be efficiently estimated by least squares regression,

which makes them particularly attractive in applied research. But low dimensional VARs often suffer

from the notorious omitted variable bias problem, which makes the approach vulnerable to mislead-

ing inferences on both coefficients and impulse responses. In a series of articles (e.g., Sims (1992),

Sims (1993), and Leeper et al. (1996)) Sims and his coauthors have explored options to include more

variables in VARs to improve forecasting performance.

Over the last decade, high-dimensional VARs have been frequently employed to conduct large

dimensional time series investigations in economics, finance, and other social sciences. Inspired by the

influential works of Tibshirani (1996), Zhao and Yu (2006), Zou (2006), Candes and Tao (2007) and

Huang et al. (2008), researchers in this area have frequently utilized Lasso-type regularized estimation

to address the difficulties of over-parameterization in large dimensions. For example, Haufe et al.

(2010) propose the use of high-dimensional VARs to estimate causal interactions in multivariate time

series via group-Lasso; Guibet et al. (2019) propose to improve the forecast of mortality rates by

using the elastic-net to estimate a high-dimensional VAR; Barigozzi and Brownlees (2019), Barigozzi

and Hallin (2017), and Demirer et al. (2018) apply Lasso, adaptive Lasso or elastic-net methods to

high-dimensional VARs or generalized dynamic factor models to estimate networks and construct

measures of financial sector connectedness. All these papers focus on empirical applications rather

than theory development. In theoretical work, Basu and Michailidis (2015) study deviation bounds

for Gaussian processes and investigate the ℓ1-regularized estimation of transition matrices in sparse

VAR models; Kock and Callot (2015) establish oracle inequalities for high-dimensional VAR models;

Han et al. (2015) propose a generalized Dantzig selector in high-dimensional VARs; Guo et al. (2016)

study a class of VAR models with banded coefficient matrices. These studies have opened up new

avenues for handling high-dimensional VAR models in practical work.

All the aforementioned studies assume that the VAR errors exhibit at most weak cross-sectional

dependence (c.f., Chudik et al., 2011). However, as the number of cross section units becomes large

relative to the number of time periods, the cross-sectional dependence in the error terms is often

1The extension to the structural VAR (SVAR) case was developed in the final section of Mann and Wald (1943);
but this contribution seems to have passed unnoticed in the vast literature on SVAR modeling. For further discussion,
see Hurn et al. (2020).
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strong.2 It is well known that ignoring strong cross-sectional dependence in the error terms typically

leads to inaccurate estimation and misleading inferences. In response to this limitation, the present

paper proposes a new high-dimensional VAR model in which some common factors (CFs) feature in

the determination of each time series besides the idiosyncratic errors and lagged values of the time

series themselves. This high-dimensional VAR model with CFs allows for serial correlation among

the CFs, which in turn leads to correlations between the CFs and the lagged time series. To properly

control for the presence of CFs in this model it is necessary to estimate the factor component and

the transition matrices simultaneously. Practical implementation also requires the determination of

the number of factors and lag length.

A mentioned above, we choose to model strong cross-sectional dependence through a latent factor

structure. In principle our analysis is closely related to certain dynamic factor models, especially the

generalized dynamic factor model (GDFM) of Forni et al. (2000) that generalizes the dynamic factor

model proposed by Geweke (1977). The proposed model has a GDFM representation with certain

restrictions on the coefficients.3 In recent decades, the approximate static and dynamic factor models

have been extensively studied. Examples of theoretical work include Forni et al. (2000), Bai and Ng

(2002), Bai (2003), and Hallin and Lǐska (2007), among others. Applied finance and macroeconomic

examples include Fama and French (1993), Stock and Watson (1999, 2002), Giannone et al. (2004),

Bernanke et al. (2005), Ludvigson and Ng (2007), and Cheng and Hansen (2015). The success of

factor models in these empirical analyses arguably establishes that strong cross-sectional dependence

is pervasive in real financial and macroeconomic data. In these applications, dynamic factor model

methods are utilized to summarize information from a large panel data. Specifically, the estimated

dynamic factors serve as predictors or regressors to study univariate or fixed-dimensional time series.

In contrast, our model is a generalization of the pure VAR model that seeks to study the complicated

time series dynamics and cross-section interactions in high-dimensional time series. The latent factor

structure is employed to control for strong cross-sectional dependence and the factors themselves are

regarded as systematic shocks. Chudik and Pesaran (2011a) also consider a factor-augmented infinite

dimensional VAR model. For simplicity, they construct a model in which the factor-induced strong

cross-sectional dependence is explicitly separated from other sources of cross-sectional dependence.

They mention the possibility of using high-dimensional VARs with CFs but do not explicitly analyze

the model. In an earlier work, Stock and Watson(2005) proposed a factor-structural VAR (FSVAR)

model that appears similar to ours except that it is a fixed dimensional system and requires factors

to be serially uncorrelated over time. In the panel data literature, Bai (2009) proposes to use a

latent factor structure to capture unobserved heterogeneity and strong cross sectional dependence.

2For example, one can follow Forni et al. (2000) and look at the largest eigenvalues of the spectral density matrices
of the N -dimensional error term, or study the eigenvalues of their covariance matrix. In many empirical datasets, it
is commonly found that that these diverge to infinity at rate N, which is highly suggestive of strong cross-sectional
dependence as defined in Chudik et al. (2011).

3Since our model is proposed to capture the dynamic mechanism of high-dimensional time series through VAR
modelling, it assists in both network and spillover effect analyses. In contrast, the GDFM is proposed to distill
information from high-dimensional time series with the estimated factors often assisting in studying dynamics in
univariate time series or low dimensional time series.
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Lu and Su (2016) and Moon and Weidner (2017) consider dynamic panel regressions with interactive

fixed effects (IFEs). Our high-dimensional VAR model with IFEs includes both homogenous and

heterogenous pure dynamic panels with IFEs as special cases.

To estimate a high-dimensional VAR model with CFs, we propose a three-step procedure. In

the first step, we consider an ℓ1-nuclear-norm regularized least squares estimation problem that

minimizes the sum of squared residuals with an ℓ1-norm penalty imposed on the transition matrices

and a nuclear norm penalty on the low rank matrix Θ representing the common component. Imposing

the ℓ1-norm penalty helps to estimate the sparse transition matrices, and the nuclear-norm penalty

helps to estimate the low rank matrix arising from the CFs and factor loadings. The nuclear-norm

regularization has recently become popular in the estimation of low rank matrices in statistics and

econometrics; see, Negahban and Wainwright (2011), Rohde and Tsybakov (2011), Negahban et al.

(2009, 2012), Bai and Ng (2019), Belloni et al. (2019), Fan et al. (2019), Feng (2019), Koltchinskii

et al. (2019), Moon and Weidner (2019), Chernozhukov et al. (2021), and Ma et al. (2021), among

others. All these previous works focus on the error bounds (in Frobenius norm) for the nuclear-norm

regularized estimates, except Moon and Weidner (2019), Chernozhukov et al. (2021) and Ma et

al. (2021) who study inference problems in linear or nonlinear panel data models with a low-rank

structure. Like the latter authors, we simply use the nuclear-norm regularization to obtain consistent

initial estimates. Under some regularity conditions, we establish the non-asymptotic bounds for the

estimation error of the transition matrices and the low rank matrix Θ. Applying a singular value

thresholding (SVT) procedure on the singular values of the estimate of Θ, we obtain a consistent

estimate of the number of factors. Then, given the estimated factor number, preliminary estimates

of the CFs can be obtained.

In the second step, we include the estimated CFs as regressors and consider a generalized Lasso

estimator to obtain an updated estimate of the transition matrices. We show that the estimation

errors can be uniformly controlled, which facilitates the construction of weights for subsequent esti-

mation by conservative Lasso in the third step. Under some regularity conditions, we show that this

third step conservative Lasso estimator of the transition matrices achieves sign consistency (see, e.g.,

Zhao and Yu, 2006). Besides, the third step estimator of the transition matrices, factors and factor

loadings are asymptotically equivalent to the corresponding oracle least squares estimators that are

obtained by using detailed information about the form of the true regression model. We also study

the asymptotic distributions of the oracle efficient estimators of the transition matrices.

The usefulness of our methodology is demonstrated in a real-data example. The illustration

revisits the financial connectedness measures proposed by Diebold and Yılmaz (2014) and the results

document strong evidence for the existence of CFs in the volatilities of 23 sector exchange traded

funds (ETFs). The findings show that CFs account for a large proportion of the variation in these

volatilities; and, conditional on the CFs, a high level of connectedness remains present among the

idiosyncratic components. This empirical application demonstrates the particularly useful features of

the high-dimensional VAR model with CFs that enable this model to capture the dynamic evolution
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of time series with strong cross-sectional dependence while distinguishing variations that originate

from different sources.

The present paper contributes to the fields of both high-dimensional time series analysis and reg-

ularized estimation. First, a new high-dimensional VAR model with CFs is proposed for which there

are four main advantages: (i) it provides a convenient tool to study rich dynamics in high-dimensional

time series while controlling for the presence of strong cross-sectional dependence; (ii) taking into

account the influence of unobserved common factors helps to alleviate potential endogeneity issues

due to serial correlation in the unobserved common factors; (iii) the common factor structure can

be consistently estimated and used to identify systematic shocks, which are of interest in empirical

work; and (iv) the model framework follows the lead of Demirer et al. (2018) in studying spillover

effects via constructing a measure of connectedness in a VAR-based network. Second, our analysis

of regularized estimation is new in three directions: (i) we relax the Gaussianity assumptions that

are commonly assumed in the existing literature (see, e.g., Basu and Michailidis, 2015, and Kock

and Callot, 2015); (ii) we establish sharp probability bounds for processes with serial dependence,

utilizing techniques developed by Wu (2005) and Wu and Wu (2016); and (iii) our methodology

utilizes a combination of different types of regularization in the estimation procedure and establishes

non-asymptotic error bounds.

The remainder of the paper is organized as follows. Section 2 introduces the model and provides

conditions for stationarity in the analysis of the high-dimensional system. Section 3 develops the

three-step estimation procedure and examines its theoretical properties. In Section 4, we conduct

Monte Carlo experiments to evaluate the finite sample performance of our estimators. The model

and methods are applied to study financial connectedness in Section 5. Section 6 concludes. Proofs

of the main results in the paper are given in the Appendix. Further technical details are provided in

the online Supplementary Material.

Notation

To proceed, we introduce some notation. Let A = (aij) ∈ RM×N and v = (v1, ..., vN )
′ ∈ RN be a

matrix and vector. Denote vI as the subvector of v whose entries are indexed by a set I ⊂ [N ] ≡
{1, ..., N} and denote AI,J as the submatrix of A whose rows and columns are indexed by I and J,

respectively. Let A∗,J ≡ A[M ],J be the submatrix of A whose columns are indexed by J , AI,∗ ≡ AI,[N ]

be the submatrix of A whose rows are indexed by I. For notational simplicity, we also write the

individual columns and rows of A respectively as A∗,j ≡ A∗,{j} for j ∈ [N ] and Ai,∗ ≡ A{i},∗ for

i ∈ [M ].

Define the ℓ0, ℓq (q ≥ 1), and ℓ∞ norms of a vector v ∈ RN as follows

|v|0 ≡
N∑
i=1

1(vi ̸= 0), |v|q ≡
( N∑
i=1

|vi|q
)1/q

, and |v|∞ ≡ max
1≤i≤N

|vi|,
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where 1(·) is the indicator function. In the special case q = 2, | · |2 denotes the Euclidean norm of v

and can be rewritten as |v| for notational simplicity.

For 1 ≤ q < ∞, define the ℓq, ℓmax, Frobenius (F), and nuclear (∗) norms of the matrix A as

follows

||A||q ≡ max
|v|q=1

||Av||q, ||A||max ≡ max
i,j

|aij |, ||A||F ≡
(∑

i,j

|aij |2
)1/2

and ||A||∗ ≡
min(N,M)∑

k=1

ψk(A),

where ψk(A) denotes the kth largest singular value of A for k = 1, ..., min(N,M). Denote the largest

and smallest singular values of A as ψmax(A) and ψmin(A). In the special case q = 2, the ℓ2 matrix

norm is also denoted as the operator norm: ||A||op ≡ ||A||2 = ψmax(A). For a random variable or

vector x, we denote its expectation and ℓp-norm as E(x) and |||x|||p ≡ [E(|x|pp)]1/p.
For a T ×R full rank matrix F with T > R, we denote the corresponding orthogonal projection

matrices as PF = F (F ′F )−1F ′ and MF = IT − PF , where IT denotes the T × T identity matrix. Let

vec(·) denote the (columnwise) vectorization operator, and ⊗ be the (right hand) Kronecker operator.

Let ∨ and ∧ denote the max and min operators, viz., a ∨ b = max (a, b) and a ∧ b = min (a, b) .

2 Model

For an N -dimensional vector-valued time series {Yt} = {(y1t, ..., yNt)′}, the high-dimensional VAR

model of order p with CFs is given by

Yt =

p∑
j=1

A0
jYt−j + Λ0f0t + ut, t = 1, ..., T, (2.1)

where A0
1, ..., A

0
p are N×N transition matrices, Λ0 = (λ01, ..., λ

0
N )
′ is an N×R0 factor loading matrix,

f0t is an R0-dimensional vector of common factors, and ut ≡ (u1t, ..., uNt)
′ is an N -dimensional vector

of unobserved idiosyncratic errors. Throughout this paper we use the superscript 0 to denote true

values. The coefficients of interest are the A0
j ’s, Λ

0, and F 0 ≡ (f01 , ..., f
0
T )
′. In practice, we need

to determine the number of factors and the VAR order p. We propose a method to consistently

determine p in Section 3.5 below. The number of factors can be determined in the first step of our

estimation procedure introduced in Section 3.1. The analytic framework allows for both the number

of cross-sectional units N and the number of time periods T to pass to infinity. The lag length is

also allowed to (slowly) grow to infinity with (N,T ). Estimation is then a natural high-dimensional

problem with the number of parameters, N2p+R0N+R0T, growing linearly with T and quadratically

with N .
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It is convenient to reformulate model (2.1) in multivariate regression form as


Y ′1
...

Y ′T


︸ ︷︷ ︸

Y

=


Y ′0 · · · Y ′1−p
...

. . .
...

Y ′T−1 · · · Y ′T−p


︸ ︷︷ ︸

X


A0′

1
...

A0′
p


︸ ︷︷ ︸

B0

+


f0′1
...

f0′T


︸ ︷︷ ︸

F 0


λ0′1
...

λ0′N


′

︸ ︷︷ ︸
Λ0′

+


u′1
...

u′T


︸ ︷︷ ︸

U

, (2.2)

where Y ∈RT×N , X ∈RT×Np, B0 ∈ RNp×N , and U ∈RT×N . Let Θ0 ≡ F 0Λ0′ denote the common

component. A key observation here is that Θ0 is a low rank matrix. However, due to the presence of

XB0, the direct use of principal component analysis (PCA) on Y cannot deliver a consistent estimate

of the common factors. Note that under some regularity conditions,
∥∥Θ0

∥∥
op

= OP (
√
NT ) and ||U||op

= OP (
√
N +

√
T ).4 For the pure factor model as in Bai (2003), the separation of Θ0 from U hinges

on this order difference. The exact probability order of
∥∥XB0

∥∥
op

depends on the underlying data

generating process but is in general not of smaller order than OP (
√
NT ),5 which makes it difficult to

separate the low rank matrix Θ0 from Y without information about B0. Besides, when the common

factors are themselves serially correlated, pure VAR(p) estimation generally suffers from endogeneity

bias issues.

2.1 Stationarity analysis

Let Xt ≡ X′t,∗. The N -dimensional VAR(p) process {Yt} can be rewritten in a companion form as

an Np-dimensional VAR(1) process with CFs, viz.,


Yt

Yt−1
...

Yt−p+1


︸ ︷︷ ︸

Xt+1

=



A0
1 A0

2 · · · A0
p−1 A0

p

IN 0 · · · 0 0

0 IN · · · 0 0
...

...
. . .

...
...

0 0 · · · IN 0


︸ ︷︷ ︸

Φ


Yt−1

Yt−2
...

Yt−p


︸ ︷︷ ︸

Xt

+


Λ0f0t

0
...

0


︸ ︷︷ ︸

Ft

+


ut

0
...

0


︸ ︷︷ ︸
Ut

. (2.3)

4The nonzero singular values of Θ0 are the eigenvalues of (F 0′F 0Λ0′Λ0)1/2. Assuming F 0′F 0/T
p→ ΣF and

Λ0′Λ0/N
p→ ΣΛ with ΣF and ΣΛ both nonsingular ensures the first part of the stated claim. Theorem 4.4.5 of Vershynin

(2018) shows that the operator norm of a T ×N random matrix with independent, mean zero, and sub-gaussian entries
is OP (

√
N +

√
T ).

5Let ιN and ιT be N - and T - vectors of ones. Suppose that λmin(B
0B0′) ≥ c > 0 and p = 1. Then

||XB0||op =
[
λmax

(
XB0B0′X′)]1/2 ≥ c

[
λmax

(
XX′)]1/2 = c ∥X∥op .

By definition of the operator norm, ||X||op ≥ (NT )−1/2ι′TXιN = (NT )−1/2 ∑
i,t yi,t−1 ≍

√
NT provided

1
NT

∑
i,t yi,t−1

p→ cy ̸= 0 which may occur, say, when the common component λ0′
i f

0
t does not have mean zero. Here

aNT ≍ bNT denotes that aNT and bNT are of the same probability order. Then ||XB0||op is at least of probability
order

√
NT .
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If one treats Ft + Ut as an impulse at period t, the process {Xt+1} in (2.3) can be regarded as a

high-dimensional VAR(1) process. We can write the reverse characteristic polynomial (see, e.g., p.16

of Lütkepohl, 2005) of Yt as

A(z) ≡ IN −
p∑
j=1

A0
jz
p.

In the low-dimensional framework, the process is stationary if A(z) has no roots in and on the

complex unit circle, or equivalently the largest modulus of the eigenvalues of Φ is less than 1. To

achieve identification, we need to study the Gram or signal matrix SX ≡ X′X/T and its population

version ΣX ≡ E(XtX
′
t). Basu and Michailidis (2015; hereafter BM) study the deviation bounds for

the Gram matrix, using a Gaussianity assumption and boundedness of the spectral density function.

Following this approach we impose some conditions that ensure SX is well behaved.

To proceed, write Xt+1 as a moving average process of infinite order (MA(∞)) as

Xt+1 =
∞∑
j=0

Φj(Ft−j + Ut−j) ≡ X
(f)
t+1 +X

(u)
t+1, (2.4)

where X
(f)
t+1 ≡

∑∞
j=0Φ

jFt−j and X(u)
t+1 ≡

∑∞
j=0Φ

jUt−j . Then, the stationarity of Yt can be studied by

considering X
(f)
t+1 and X

(u)
t+1. First, consider X

(f)
t+1, the component due to the common factors. Note

that the covariance matrix of Ft is a high-dimensional matrix with rank R0 and explosive nonzero

eigenvalues. Even if the largest modulus of the eigenvalues of Φ is smaller than 1, the variances of

the entries of X
(f)
t+1 are not assured to be uniformly bounded. Specifically, we consider y

(f)
it , which is

the ith entry of X
(f)
t+1. Let ej,M be the jth column of IM . Noting that y

(f)
it = (e1,p ⊗ ei,N )

′X
(f)
t+1, we

can write y
(f)
it as the MA(∞) process

y
(f)
it =

∞∑
j=0

(e1,p ⊗ ei,N )
′Φj(e1,p ⊗ Λ0)f0t−j ≡

∞∑
j=0

α
(f)
iN (j)f0t−j ,

in which the f0t are allowed to be serially correlated. To ensure y
(f)
it = OP (1), the coefficients

α
(f)
iN (j) need to be well-behaved. Note that we generally do not have ||Φ||op ≤ 1, as explained in the

supplement of BM (2015). In Assumption A.1 below, we impose sufficient conditions that ensure the

y
(f)
it are well-behaved. The online supplementary material provides a discussion of these conditions.

For the process {X(u)
t+1}, stationarity is assured if we assume the covariance matrix of ut is well-

behaved and ut is serially uncorrelated as in BM (2015) and Kock and Callot (2015; hereafter KC).

Similarly to y
(f)
it , we define y

(u)
it such that

yit ≡ y
(f)
it + y

(u)
it , (2.5)

8



with explicit form

y
(u)
it =

∞∑
j=0

α
(u)
iN (j)ut−j and α

(u)
iN (j) ≡ (e1,p ⊗ ei,N )

′Φj(e1,p ⊗ IN ).

Again, imposing zero serial correlation and weak cross-sectional correlation across the uit is insuffi-

cient to ensure that y
(u)
it = OP (1) uniformly.

Let c and c̄ denote generic positive constants that may vary across their occurrences. Throughout

the paper, we will treat Λ0 as nonrandom. To ensure the stationarity of {Yt}, we impose the following

assumption.

Assumption A.1. (i) ut = C(u)ϵ
(u)
t , where ϵ

(u)
t = (ϵ

(u)
1,t , ..., ϵ

(u)
m,t)

′, the ϵ
(u)
i,t are i.i.d. random variables

across (i, t) with mean zero and variance 1, and C(u) is an N ×m matrix such that C(u)C(u)′ = Σu

and c ≤ ψmin(Σu) ≤ ψmax(Σu) ≤ c̄;

(ii)
{
f0t
}
follows a strictly stationary linear process given by

f0t − µf =
∞∑
j=0

C
(f)
j ϵ

(f)
t−j ,

where ϵ
(f)
t ≡ (ϵ

(f)
1,t , ..., ϵ

(f)
R0,t

)′ are i.i.d. with mean 0 and covariance matrix IR0 across t, supm≥1(m+

1)α
∑∞

j=m ||C(f)
j ||max ≤ c̄ <∞ for some constant α > 1;

(iii) max1≤r≤R0 |||ϵ(f)r,t |||q < c̄ and max1≤i≤m |||ϵ(u)i,t |||q < c̄ for some q > 4;

(iv) {ϵ(u)t } is independent of {ϵ(f)t };
(v) the largest modulus of the eigenvalues of Φ is bounded uniformly in (N, p) by some constant

ρ ∈ (0, 1);

(vi) supN,p ||(Φj)[N ],[N ]||op ≤ c̄ρj and supN,p |α
(f)
iN (j)| < c̄ρj ;

(vii) supN,pmax|z|=1 ψmax(A∗(z)A(z)) ≤ c̄, where |z| denotes the modulus of z in the complex

plane, and A∗(z) denotes the conjugate transpose of A(z).

Assumption A.1(i) is frequently made in high-dimensional time series analysis; see, e.g., Bai and

Saranadasa (1996), Chen and Qin (2010) and Ma et al. (2020). At the cost of more complicated

notations, one can allow ψmin(Σu) to converge to zero and ψmax(Σu) to diverge to infinity, both

at a slow rate. Assumption A.1(ii) assumes the common factors to be stationary and allows for

weak serial correlation. The factors can have nonzero mean so that the yit can also have nonzero

mean. Assumption A.1(iii) requires that both ϵ
(u)
i,t and ϵ

(f)
i,t have finite qth order moments, which is a

weak assumption compared to the Gaussian distribution assumption of BM (2015) and KC (2015).

Assumption A.1(iv) requires independence between {ϵ(u)t } and {ϵ(f)t }, which facilitates separate study

of y
(f)
it and y

(u)
it . 6 Assumption A.1(v) is a standard assumption to ensure stationarity. Assumption

A.1(vi) is a high level condition to ensure that E(y2it) is uniformly bounded. Assumption A.1(vii)

6As discussed in Section E of the online supplement, the process Xt has a generailzed dynamic factor representation.
The orthogonality between {ϵ(u)t } and {ϵ(f)t } serves as a part of the identification conditions.
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helps to bound the minimum eigenvalue of ΣX . From the inequalities

max
|z|=1

ψmax(A∗(z)A(z)) ≤ (max
|z|=1

||A(z)||op)2 ≤ 1 +

p∑
k=1

||A0
j ||op,

it is evident that requiring all the A0
j ’s to have finite operator norms is a sufficient condition for (vii).

The online Supplementary Material provides further discussion on Assumption A.1(vi)-(vii). The

following proposition ensures the stationarity of the process Yt and establishes a lower bound for

ψmin(ΣX).

Proposition 2.1 Suppose that Assumption A.1 holds. (i) Then Yt is a stationary process, supiE(y2it)

<∞, and

ψmin(ΣX) ≥
ψmin(Σu)

max|z|=1 ψmax(A∗(z)A(z))
.

(ii) Let ΣXF ≡ E(Xtf
0′
t ), and Σ ≡ ΣX−ΣXFΣ

−1
F Σ′XF .We also have ψmin(Σ) ≥

ψmin(Σu)
max|z|=1 ψmax(A∗(z)A(z)) .

Proposition 2.1(ii) is a direct consequence of the Proposition 2.3 and equation (2.6) of BM (2015).

With the presence of common factors, we only have the well-behaved lower bounds for the eigenvalues

of ΣX and Σ : they are bounded away from 0 under Assumption A.1(i) and (vii), but the largest

eigenvalues of ΣX and Σ still diverge to infinity at rate N .

3 Estimation method and theory

This section develops a three-step estimation procedure for the model and establishes its non-

asymptotic and asymptotic properties. For the moment, we assume that the VAR order p is known

but the true number of factors R0 is unknown. In practice, we can determine p via a data-driven

method as introduced in Section 3.5.

The three-step estimation procedure can be summarized as follows:

Step 1: Initial estimates of the low rank matrix Θ0, the transition matrix B0 and the

factor matrix F 0. This step estimates the low rank matrix Θ0 together with the transition matrix

B0 via an ℓ1-nuclear-norm regularization procedure. The ℓ1-penalty is imposed on the transition

matrix B to encourage sparsity and the nuclear-norm penalty is imposed on the common component

matrix Θ for its low rank structure. Since the nuclear norm of a matrix is given by the summation

of its singular values, the nuclear-norm can be regarded intuitively as a matrix version of the usual

ℓ1-norm imposed on the singular values and thereby assists in achieving a low rank estimate. The

approach has two advantages: one is that it does not require the specification of the number of

factors a priori, and the other is that the minimization problem is a convex problem due to the fact

both the ℓ1-norm and nuclear-norm are convex in their respective matrices. We will show that the

resulting estimators B̃ and Θ̃ are consistent for B0 and Θ0, respectively, up to certain scale in terms

of the Frobenius norm. Given the preliminary estimate Θ̃, it is possible to estimate R0 consistently

10



via a hard singular value thresholding (SVT) procedure and to obtain a consistent estimator F̃ of

F 0 in terms of the Frobenius norm up to a certain rotation matrix via singular value decomposition

(SVD). Nevertheless, in this step we are unable to establish pointwise consistency for the elements

of B̃, Θ̃ and F̃ .

Step 2: Initial estimates of the elements of the factor loadings and transition matrix.

This step applies plain Lasso to estimate the elements of the factor loadings and transition matrix.

Specifically, we run the ℓ1-regularized time series regression of Y∗,i on (X,F̃ ) to obtain an updated

estimate Ḃ∗,i of the ith column (B0
∗,i) of the transition matrix B0 along with estimates of the factor

loadings λ0i for i = 1, ..., N. Here, the plain ℓ1-penalty is imposed on the transition matrix only, and

we cannot apply the adaptive Lasso here because we do not have the element-wise rates yet. We

will establish the uniform consistency for the elements of Ḃ, which is required for the construction

of the weights to be used for the conservative Lasso in the third step. As is well known, despite the

fact the Lasso used in this step encourages sparsity in the estimate, it does not deliver selection/sign

consistency (see Zhao and Yu, 2006) or oracle-efficient estimation.

Step: 3: Final estimates of the transition matrix, factors and factor loadings. With

the uniform elementwise rates for the loadings and transition matrix estimates, we apply iterative

conservative Lasso to obtain updated estimates of the transition matrix, factors and factor loadings.

Like adaptive Lasso, conservative Lasso can yield sign consistency and oracle efficient estimates.

3.1 First-step estimator

In the first step, we propose an ℓ1-nuclear-norm regularized estimator to estimate the coefficient

matrix B0 and the low rank matrix Θ0 simultaneously. We impose a sparsity condition on B0 and

use ℓ1-norm regularization to achieve the selection of regressors. We adopt nuclear norm regularized

estimation to obtain the initial consistent estimate of the low rank matrix Θ0. The first step estimator

is given by the following procedure.

First-step estimator: Let γ1 = γ1(N,T ) = c1T
−1/2 logN and γ2 = γ2(N,T ) = c2(N

−1/2+T−1/2)

for some positive constants c1 and c2.

1. Estimate the coefficient matrix B0 and the low rank matrix Θ0 by running the following ℓ1-

nuclear-norm regularized regression:

(B̃, Θ̃) = argmin (B,Θ)L(B,Θ), where

L(B,Θ) ≡ 1

2NT
||Y −XB −Θ||2F +

γ1
N

|vec(B)|1 +
γ2√
NT

||Θ||∗. (3.1)

2. Estimate the number of factors R0 by singular value thresholding (SVT) as follows:

R̂ =
N∧T∑
i=1

1{ψi(Θ̃) ≥ (γ2
√
NT ||Θ̃||op)1/2},
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where ψi(Θ̃) are the singular values of Θ̃.

3. Obtain a preliminary estimate of F 0. Let the singular value decomposition (SVD) of Θ̃ be

Θ̃ = ŨD̃Ṽ ′, where D̃ =diag(ψ1(Θ̃), ..., ψN∧T (Θ̃)). Set F̃ =
√
TŨ∗,[R̂].

Remark 3.1. The objective function L(B,Θ) is the sum of squared residuals with both the nuclear-

norm regularization on Θ and ℓ1-norm regularization on B. To obtain the numerical solution, we can

apply an EM type algorithm. In the E-step, we fix B and update the estimate of Θ. The solution

can be obtained following the result of Lemma 1 of MW (2019).7 In the M-step, we fix Θ and update

B. The optimization problem can be decomposed to N Lasso-type linear regression problems.

3.1.1 Non-asymptotic results for the first-step estimator

In this subsection we establish the non-asymptotic properties of the first step estimator. In particular,

for B̃ and Θ̃, we establish a non-asymptotic inequality for their estimation errors. For R̂, we show

that R̂ = R0 with a high probability.

To proceed, we introduce a key invertibility condition for the linear operator (∆(1),∆(2)) 7→
X∆(1) + ∆(2) when (∆(1),∆(2)) is restricted to lie in a ‘cone’. We follow the lead of Negahban et

al. (2012) and refer to the condition as ‘restricted strong convexity ’.8 Our condition imposed here

takes a form related to that of MW (2019) and Chernozhukov et al. (2021). To define the ‘cone’, let

Ji ⊂ [Np] be an index set such that j ∈ Ji if and only if B0
ji ̸= 0. Let Jci = [Np]\Ji. Let the SVD of

Θ0 be Θ0 = U0D0V 0′, where U0 ∈ RT×R0
and V 0 ∈ RN×R0

. For a T × N matrix ∆(2), define the

operators

P(∆(2)) ≡ U0
∗,[R0]U

0
∗,[R0]

′∆(2)V 0
∗,[R0]V

0′
∗,[R0] and M(∆(2)) ≡ ∆(2) − P(∆(2)).

Hence, the operator P(·) projects a matrix onto a ‘low-rank’ space which contains Θ0. For some

c > 0, the ‘cone’ CNT (c) ⊂ RNp×N × RT×N is a set of (∆(1),∆(2)) satisfying the restriction:

γ1
∑N

i=1 |∆
(1)
Jc
i ,i
|1

N
+
γ2
∥∥M(∆(2))

∥∥
∗√

NT
≤ c

γ1
∑N

i=1 |∆
(1)
Ji,i

|1
N

+ c
γ2
∥∥P(∆(2))

∥∥
∗√

NT
.

We impose the following condition.

Assumption A.2 (Restricted strong convexity) Let

Φγ1,γ2(∆
(1),∆(2)) ≡ γ1

N

N∑
i=1

|∆(1)
Ji,i

|1 +
γ2√
NT

||P(∆(2))||∗

7Let the SVD of A be A = USV ′, where S =diag(s1, ..., sq), with q =rank(A). Then argminΘ

(
1
2
||A−Θ||2F + γ||Θ||∗

)
is given by U ·diag((s1 − γ)+, ..., (sq − γ)+) · V ′, where (s)+ = max(0, s).

8As remarked by Negahban et al. (2012), the loss function is often not strongly convex for high-dimensional
regressions. This failure leads to a difficulty in showing the desired convergence rate for the estimators. In this context,
a suitable choice of the regularization parameter helps ensure that the estimate lies in a restricted set in the parameter
space. Consequently, it suffices to assume that the function is strongly convex over this restricted set.
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be a tolerance function. If (∆(1),∆(2)) ∈ CNT (3), then there exist positive constants κ, κ′and κ′′

such that ∥∥∥X∆(1) +∆(2)
∥∥∥2
F
≥ T · κ′

∥∥∥∆(1)
∥∥∥2
F
+ κ

∥∥∥∆(2)
∥∥∥2
F
− κ′′Φγ1,γ2(∆

(1),∆(2))

with probability 1− εNT and εNT → 0 as (N,T ) → ∞.

Assumption A.2 is a high level condition whose verification is challenging without imposing further

conditions on the parameter space. In Section F of the online supplement, we provide some discussion

of Assumption A.2. In particular, we give two conditions that are sufficient for Assumption A.2. The

second condition can be relatively easier to verify and the first condition can be argued on intuitive

grounds. See also the discussion in MW (2019) following their Assumption 1.

Let ki = |Ji|, KJ ≡ sup
i
ki and Ka ≡ 1

N

∑N
i=1 ki. The next assumption involves a regularity

condition on the errors:

Assumption A.3 ∥U∥op /
√
NT ≤ γ2/2, where γ2 is the tuning parameter for the nuclear norm

regularization.

Recall that γ2 = c2(N
−1/2 + T−1/2). Assumption A.3 requires that the error matrix have an

operator norm of order OP (
√
N +

√
T ). This condition is standard in the literature; see, e.g., Lu

and Su (2016), Moon and Weidner (2017), Su and Wang (2017), MW (2019), and Chernozhukov et

al. (2021). Moon and Weidner (2017) provide examples to ensure the above assumption holds. In

particular, it is satisfied when the ϵ
(u)
it are i.i.d. sub-Gaussian (see, e.g., Vershynin, 2018).

Theorem 3.1 Suppose that Assumptions A.1-A.2 and A.3 hold. Then we have

N−1/2
∥∥∥B̃ −B0

∥∥∥
F
≤ c̄(γ1

√
Ka ∨ γ2) and (NT )−1/2

∥∥∥Θ̃−Θ0
∥∥∥
F
≤ c̄(γ1

√
Ka ∨ γ2),

with probability at least 1 − εNT − c̄′(pN2T 1−q/4(logN)−q/2 + pN2−c logN ) for some finite positive

constants c, c̄, and c̄′.

Theorem 3.1 establishes non-asymptotic inequalities for the estimation errors of B̃ and Θ̃ in

terms of the Frobenius norm. Note that B0 and Θ0 are both high-dimensional matrices with N2p

and NT entries, respectively, and the Frobenius norms are normalized correspondingly by
√
N and

√
NT . Without any sparsity or approximate sparsity assumption, ||B0||2F can be as large as O(N2).

Assumption A.4(iii) below specifies an average control on the sparsity of the columns of B0, which

ensures that 1
N ||B0||2F = 1

N

∑N
i=1 |B0

∗,i|2 = O (Ka) provided the elements in B0 are uniformly bounded

from the above. This motivates the use of N−1/2 to normalize ||B̃−B0||F. The first result in Theorem

3.1 ensures that

1

N
||B̃ −B0||2F =

1

N

N∑
i=1

|B̃∗,i −B0
∗,i|2 ≤ c̄2((γ1

√
Ka) ∨ γ2)2) with high probability.
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That is, on average, the Euclidean distance between the columns of B̃ and B0 is bounded by a

small term c̄((γ1
√
Ka) ∨ γ2). Similarly, Θ0 has Frobenius norm of order

√
NT, which motivates the

use of (NT )−1/2 to normalize
∥∥∥Θ̃−Θ0

∥∥∥
F
. The second result in the theorem ensures that the large

dimensional matrix estimate Θ̃ is sufficiently close to the truth Θ0 in terms of Frobenius norm: the

entries of Θ̃ converge to those of Θ0 at rate (γ1
√
Ka) ∨ γ2 on average.

The probability in Theorem 3.1 converges to one when εNT , pN
2T 1−q/4(logN)−q/2 and pN2−c logN

all converge to zero. In general, the second term dominates the third one for finite q and divergent

(N,T ). If the error terms are sub-exponential, we can allow q to diverge to infinity in which case

the third term could dominate the second one. To prove the above theorem, we need to establish

a bound for T−1||U′X||max. Specifically, we need a sharp probability bound for a partial sum like

T−1
∑T

t=1 yi,t−kujt. To achieve such a bound we resort to a Nagaev-type inequality, as introduced

by Wu (2005) and Wu and Wu (2016), allowing for both dependence among summands and non-

Gaussianity. The summand yi,t−kujt has a nonlinear Wold presentation yi,t−kujt = gijk(. . . , ϵt−1, ϵt),

where the ϵt ≡ (ϵ
(u)′
t , ϵ

(f)′
t )′ are i.i.d. random variables under Assumption A.1. Then one can verify

that the dependence-adjusted norm (see Wu and Wu, 2016) of yi,t−kujt is well bounded so that one

can obtain a sharp probability bound using the Nagaev-type inequality for nonlinear processes.9

Next, we impose an assumption on the common factor and the factor loadings and a sparsity

condition on B0:

Assumption A.4 (i) There exists an N̄ such that for all N > N̄ , ||Λ0′Λ0/N − ΣΛ||max ≤ c̄N−1/2

for an R0 ×R0 matrix ΣΛ > 0 and ||Λ0||max ≤ c̄;

(ii) Let ΣF = E(f0t f
0′
t ). There are constants s1 > · · · > sR0 > 0 so that sj equals the jth largest

eigenvalue of Σ
1/2
F ΣΛΣ

1/2
F ;

(iii) Ka = o(T
(
N−1/2 + T−1/2

)
/(logN)2).

Assumption A.4(i)-(ii) requires that the factors and the factor loadings are strong/pervasive

with well-behaved sample second moments. Assumption A.4(ii) requires distinct eigenvalues of

Σ
1/2
F ΣΛΣ

1/2
F in order to identify the corresponding eigenvectors. Assumption A.4(iii) imposes a

sparsity condition on the transition matrix. We allow Ka (and thus KJ) to diverge to infinity at

a rate slower than T
(
N−1/2 + T−1/2

)
/(logN)2 here, which ensures accuracy of Θ̃. Such a strict

sparsity condition can be relaxed to an approximate sparsity condition as in Belloni et al. (2012)

but that extension is not pursued here.

Assumption A.4 (iii) ensures γ1
√
Ka = o(N−1/4 + T−1/4). Consequently, Theorem 3.1 implies

that both N−1/2||B̃ − B0||F and (NT )−1/2||Θ̃ − Θ0||F are oP (N
−1/4 + T−1/4). This rate can be

improved to OP (N
−1/2 + T−1/2 logN) if we restrict our attention to the case where Ka = O (1) .

These error bounds help us to establish the following result which establishes the consistency of R̂

and the mean-square convergence rate of F̃ .

9Both KC (2015) and BM (2015) impose i.i.d. and Gaussianity assumptions on the error terms and derive exponential
probability bounds for the partial sums. In contrast, we only assume the existence of finite qth order moments of uit

and allow for serial correlations in the error term. The term pN2T 1−q/4(logN)−q/2 in the probability bound reflects
the price of relaxing the Gaussianity assumption.
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Theorem 3.2 Suppose Assumptions A.1-A.4 hold. There exist positive constants c, c̄ and c̄′ and

a random matrix H̃ depending on (F 0,Λ0) such that (i) R̂ = R0 and (ii) ||F̃ − F 0H̃||F/
√
T ≤

c̄(γ1
√
Ka ∨ γ2), both with probability larger than 1− εNT − c̄′(pN2T 1−q/4(logN)−q/2 + pN2−c logN ).

Theorem 3.2(i) establishes the consistency of R̂ and the mean-square convergence rate of F̃ in

large samples. Intuitively, since Θ̃ is a consistent estimator of Θ0 ≡ F 0Λ0′ with well-controlled

estimation errors, we expect the first R0 singular values of Θ̃ to be OP (
√
NT ) and the other singular

values to be OP [
√
NT (γ1

√
Ka ∨ γ2)]. Then the hard SVT procedure can distinguish the

√
NT -order

singular values from those of smaller order. Alternatively, given the consistency of B̃ established

in Theorem 3.1, the ‘residual’ Y − XB̃ is an approximation of F 0Λ0′ + U. One can also apply

the methods of Bai and Ng (2002), Onatski (2010) and Ahn and Horenstein (2013) to determine the

number of factors. Theorem 3.2(ii) establishes the convergence rate of F̃ . The R0×R0 transformation

matrix H̃ is similar to the transform matrix H in Bai (2003) but only depends on the true values

whereas H in Bai (2003) also depends on the estimator.

Despite the fact that we can establish weak consistency of B̃, Θ̃ and F̃ in terms of the Frobenius

norm in Theorems 3.1-3.2, we cannot obtain pointwise consistency or asymptotic distributions for

the elements of these estimators. The major role for the first-step procedure is to obtain an initial

estimator that can be used subsequently to enhance estimation properties.

3.2 Second-step estimator

In the second-step of the procedure we run a time series regression of Y∗,i on (X,F̃ ) for each i ∈ [N ]

by imposing an ℓ1-norm penalty on the coefficient of X. The goal is to obtain an estimator of B0

whose elements uniformly converge to the true values.10 Given the uniform convergence property,

the second-step estimator indicates how likely the corresponding true parameter value is to zero or

not. The estimator can then be employed to construct adaptive- or conservative-Lasso weights in a

third step with further enhanced properties.

Second-step estimator: Let γ3 = c3(γ1
√
Ka ∨ γ2) for some constant c3. For each i ∈ [N ], solve

the minimization problem:

(Ḃ′∗,i, λ̇
′
i)
′ = argmin

(v′,λ′)′∈RNp+R0

1

2T
||Y∗,i −Xv − F̃ λ||2F + γ3|v|1, (3.2)

where the Lasso penalty is only imposed on the coefficients of X. The second-step estimators of B0

and Λ0 are given by Ḃ = (Ḃ∗,1, ..., Ḃ∗,N ) and Λ̇ = (λ̇1, ..., λ̇N )
′.

Remark 3.2. Note that the ℓ1-norm penalty is only imposed on the coefficient of X. In the proof

of Theorem 3.3 below, we show that Ḃ∗,i solves the Lasso problem with dependent variable MF̃Y∗,i

and regressors MF̃X.

10By contrast the first-step estimator B̃ converges to B0 in Frobenious norm after normalization; but this convergence
does not ensure either the pointwise convergence or uniform convergence (maxi,j |B̃ij − B̃ij | = oP (1)).
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3.2.1 Non-asymptotic results for the second step estimator

The following theorem establishes non-asymptotic properties for Ḃ by delivering an ℓmax-norm bound

for the estimation error of Ḃ.

Theorem 3.3 Suppose that Assumptions A.1-A.4 hold and 32KJγ3 ≤ ψmin(Σ). Then

||Ḃ −B0||max ≤ max
1≤i≤N

|Ḃ∗,i −B0
∗,i|1 ≤

48

[ψmin(ΣX)]
2
KJγ3

with probability larger than 1 − εNT − c̄[p2N2T 1−q/4(logN)−q/2 + pNe−cT + p2N2−c logN ] for some

finite positive constants c and c̄.

Theorem 3.3 establishes uniform convergence rates for the elements of Ḃ. Compared to Theorems

3.1-3.2, one additional term pNe−cT appears in the probability bound. This term decays in the

exponential rate of T and is in general dominated by p2N2T 1−q/4(logN)−q/2 when T → ∞.

A key step in the proof of Theorem 3.3 is to establish a restricted eigenvalue condition (REC)

as in Bickel et al. (2009) and KC (2015). Due to the presence of common factors in the model,

one needs to establish the REC on Σ̃ = X′MF̃X/T. Recall that ψmin(Σ) is bounded away from 0 by

Proposition 2.1, but the sample analog Σ̃ does not have such a property. In fact, if Np > T, Σ̃ is

always singular, which leads to min|v|̸=0
v′Σ̃v
|v|2 = 0. The minimum has to be replaced by a minimum

over a smaller set in order to obtain a nonzero lower bound. Let J ⊂ [Np] be an index set and

Jc = [Np]\J . We say the REC is satisfied for some K ∈ [Np] if

min
|J |≤K

min
|v|̸=0

|vJc |1≤3|vJ |1

v′Σ̃v

|vJ |2
≡ κΣ̃(K) > 0, (3.3)

where J has cardinality no bigger than K. In (3.3), the minimum is restricted to those vectors for

which |vJc |1 ≤ 3|vJ |1, where J has cardinality no larger than K. In this restricted space, we establish

that (3.3) is satisfied with a high probability for K = KJ in Lemma A.4(v). See also the proof of

Lemma A.4(v) in the Online Supplement.

3.3 Third-step estimator

In the first and second steps, we impose penalties on the elements in the coefficient matrix B. These

penalties introduce asymptotic bias into the estimator of the transition matrix. Zou (2006) proposed

an adaptive Lasso technique in a linear regression framework that penalizes the true zero parameters

more than the non-zero ones. Zou shows that the adaptive Lasso estimator is asymptotically equiv-

alent to the oracle least-squares estimator that is obtained using the true information concerning

the relevant regressors in the regression model. KC (2015) explored the use of the adaptive Lasso

method in a high-dimensional VAR framework.
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In practice, the regressors with zero coefficient estimates in the preliminary stage, which are

usually plain Lasso estimates, are excluded in the adaptive Lasso. Hence, any incorrect regressor

exclusion by the preliminary stage estimates directly leads to invalid regressor selection in adaptive

Lasso. To solve this problem, the conservative Lasso, which gives the regressors that are excluded by

the initial estimator a second chance, is introduced (e.g., Caner and Kock, 2018). In this subsection,

we extend the conservative Lasso estimator to the framework of high-dimensional VAR with CFs.

To ensure stationarity in the high-dimensional VAR, most nonzero entries of the transition matrices

have to be bounded above by one in absolute value. Some of them may even shrink to zero as N

goes to infinity. In finite samples, the first and second step estimates may be wrongly estimated to

be zero, leading to poor finite sample performance. This is the reason that we recommend the use

of conservative Lasso in this step. In the Monte Carlo simulations reported later we find that the

conservative Lasso tends to outperform the adaptive Lasso.

Third-step estimator (Conservative Lasso): Implement the following procedure:

1. (Set weights) Let γ4 = γ4(N,T ). Let W be a Np×N matrix with entries

wki =

{
1 if |Ḃki| < αγ4

0 if |Ḃki| ≥ αγ4
, (3.4)

where k ∈ [Np], i ∈ [N ], and α > 0. Set F̂ (0) = F̃ .

2. (Update B̂(ℓ)) For integer ℓ ≥ 1, update the estimates of B and Λ using

(B̂
(ℓ)′
∗,i , λ̂

(ℓ)′
i )′ = argmin

(v′,λ′)′∈RNP+R̂

1

2T

∥∥∥Y∗,i −Xv − F̂ (ℓ−1)λ
∥∥∥2
F
+ γ4

pN∑
k=1

wki |vk| ,

where vk is the kth entry of v, i ∈ [N ]. Let B̂(ℓ) ≡ (B̂
(ℓ)
∗,1, ..., B̂

(ℓ)
∗,N ).

3. (Update F̂ (ℓ)) Obtain the SVD of Y−XB̂(ℓ) as Y −XB̂(ℓ) = Û (ℓ)D̂(ℓ)V̂ (ℓ)′. Obtain an updated

estimate of F 0 as F̂ (ℓ) =
√
TÛ

(ℓ)

∗,[R̂]
. Set ℓ = ℓ+ 1.

4. Iterate steps 2-3 for a finite times ℓ∗. Denote the final estimators by B̂ = B̂(ℓ∗), F̂ = F̂ (ℓ∗−1)

and Λ̂ = Λ̂(ℓ∗).

Remark 3.3. Note that the weights do not change with iterations in the above procedure. It is

worth mentioning that the weights wki can take other forms. For example, Caner and Kock (2018)

also consider wki ≡
γprec

|Ḃki|∨γprec
, where γprec = αγ4.

Recall that F̂ (0) = F̃ , which is estimated in the first step and has slower convergence rate.

Iterations help to improve the factor estimates. In our simulations, the iterations often numerically

converged in less than ten steps.
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3.3.1 Asymptotic properties of the third-step estimator

We establish two results: (i) the conservative Lasso estimator B̂(ℓ) achieves variable-selection or sign

consistency; and (ii) B̂ is asymptotically equivalent to the oracle least squares estimator. Following

Zhao and Yu (2006) and Huang et al. (2008), we say that B̂(ℓ) =s B
0, or B̂(ℓ) is sign-consistent for

B0, if and only if sgn(B̂
(ℓ)
∗,i ) =sgn(B0

∗,i) for all i ∈ [N ], where sgn(B∗,i) ≡ [sgn(B1,i), ...,sgn(BNp,i)]
′,

and

sgn(Bk,i) ≡


1 if Bk,i > 0

0 if Bk,i = 0

−1 if Bk,i < 0

.

Assumption A.5 (i) As (N,T ) → ∞, the magnitude of nonzero coefficients are of larger asymptotic

order than γ4 where γ4 = o(mini∈[N ]mink∈Ji |B0
ki|) and (K

3/2
J T−1/2 logN +KJN

−1/2) = o(γ4);

(ii) N−1
∑N

i=1 k
2
i = O(1) and KJ logN · (N−1/2 ∨ T−1/2) = o(1);

(iii) N2T 1−q/4(logN)−q/2 → 0 and T/N2 → 0 as (N,T ) → ∞.

Assumption A.5(i) assumes the nonzero entries of B0 are not too small, a standard condition

in the adaptive Lasso literature. The lower bound mini∈[N ]mink∈Ji |B0
ki| has to be larger than γ4

in order to separate the nonzero entries from zeros. By Assumption A.5(i) and Theorem 3.3, we

can show that maxk∈Ji wki = 0 and mink∈Jc
i
wki = 1 with probability approaching one (w.p.a.1).

In this case, we only place a penalty on the true zero entries asymptotically. Assumption A.5(ii)

imposes some conditions on KJ and the ki to ensure that ||X(B̂(ℓ)−B0)||F has a desired convergence

rate. The first restriction is imposed to simplify the asymptotic analysis and it implies Ka = O (1)

so that we can drop Ka in subsequent asymptotic orders. Assumption A.5(ii) can be satisfied if

most columns in B0 have a finite number of nonzero coefficients while some columns in B0 can have

o[(
√
N ∧

√
T )/ logN ] nonzero coefficients. Assumption A.5(iii) imposes conditions on the relative

rates at which N and T pass to infinity and these depend on the number (q) of moments for the

innovation processes in the errors and factors.11 In the special case where N and T pass to infinity

at the same rate, this condition requires q ≥ 12.

The following theorem establishes the variable selection consistency of B̂(ℓ) and the preliminary

convergence rates of B̂(ℓ) and F̂ (ℓ).

Theorem 3.4 Suppose that Assumptions A.1-A.5 hold. Then for a fixed ℓ, we have

(i) P (B̂(ℓ) =s B
0) → 1 as (N,T ) → ∞;

(ii) ||X(B̂(ℓ) −B0)||F/
√
NT = OP (γ1 + γ2);

(iii) ||F̂ (ℓ) − F 0H̃||F/
√
T = OP (γ1 + γ2).

11The first requirement assumes T q/4−1 dominates N2. For a VAR system, T is the number of observations and N is
the dimension of the system. Large T compared to N is desirable for good regression results. The second requirement
implies that N cannot be too small compared to T . Because N affects the estimation accuracy of the factors, only
when the estimation errors for the factors are well controlled can the asymptotic oracle properties in Theorems 3.4-3.5
be established.
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Theorem 3.4(i) shows that B̂(ℓ) has the oracle property in that it selects the correct variables

w.p.a.1. Due to the presence of common factors and the possibly divergent number (ki) of nonzero

coefficients in B0
∗,i, we can only obtain a preliminary rate OP (γ1 + γ2) in Theorem 3.4(ii)-(iii).

To improve the rate of convergence, we study the final estimators B̂, F̂ and Λ̂. Now, F̂ corre-

sponds to the first R̂ eigenvectors of (Y −XB̂)(Y −XB̂)′, rescaled by
√
T , and one can expand the

estimation error F̂ −F 0H̃ as in Bai and Ng (2002) and Bai (2009). Then, by examining the product

of F̂ − F 0H̃ with other terms, a sharper bound for some intermediate estimates can be obtained.

Finally we can improve the probability order of each element in B̂Ji,i −B0
Ji,i

to O(T−1/2).

The following theorem reports the asymptotic distribution of B̂Ji,i.

Theorem 3.5 Suppose that Assumptions A.1-A.5 hold. Let Si denote an L×ki selection matrix such

that SiS
′
i = IL and L is a fixed integer. Suppose that as (N,T ) → ∞ or (N,T, p) → ∞ in the case

p → ∞, the limit of Si(ΣJi,Ji)
−1S′i exists and is given by Ωi. Conditional on the event {B̂ =s B

0},
for each i ∈ [N ], we have

√
TSi(B̂Ji,i −B0

Ji,i
)
d→ N(0, σ2iΩi) where σ

2
i = E

(
u2it
)
.

Note that a selection matrix Si is used in Theorem 3.5 that is not needed if ki is fixed. Intuitively,

since ki is allowed to diverge to infinity as (N,T ) → ∞, asymptotic normality of B̂Ji,i can be obtained

directly when ki → ∞. Instead, we follow standard practice for estimation and inference with a

divergent number of parameters (see, e.g., Fan and Peng, 2004, Lam and Fan, 2008, and Qian and

Su, 2016) and prove asymptotic normality for an arbitrary but finite number of linear combinations

of the elements of B̂Ji,i. In the special case where ki is fixed, we can take Si = I|Ji| and obtain the

usual joint asymptotic normal distribution for all elements of B̂Ji,i.

As mentioned in the Introduction section, our model includes the pure dynamic panels with

IFEs as special cases. For clarity, consider the high dimensional VAR(1) model with IFEs. If one

finds that VAR(1) coefficient matrix is diagonal, then the model can be written as a heterogenous

dynamic panel of the form: yit = ρ0i yi,t−1+λ
0′
i f

0
t +uit. Clearly, the key strict stationarity condition in

Assumption A.1(v) now becomes supN≥1max1≤i≤N
∣∣ρ0i ∣∣ ≤ ρ ∈ (0, 1). Our final estimator of ρ0i enjoys

the same first order asymptotic property as the usual PCA estimator based on such a pure dynamic

panel model specification. Furthermore, if one has prior knowledge that these AR(1) coefficients are

common across all cross sectional units and given by ρ0, one can average our last stage estimates on

ρ0i to obtain a
√
NT -consistent estimate of ρ0, after proper bias correction. But due to the space

limitation, we do not conduct formal asymptotic analyses here.

3.4 Tuning parameter selection

In practice, we need to select the tuning parameters γℓ, for ℓ = 1, ..., 4. For γ2, which is the tuning

parameter for the nuclear norm penalty, we adopt a simple plug-in approach similar to that introduced

in Chernozhukov et al. (2021). An ideal tuning parameter for γ2 is one such that

||U||op/
√
NT ≤ (1− c)γ2
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for some c > 0 with high probability. Suppose U is a random matrix with i.i.d. sub-Gaussian entries

that have mean zero and variance σ2u, its operator norm is bounded by Cσu(
√
N +

√
T ) for some

C > 0 with high probability (see Vershynin, 2018). One can first use γ2 =
σ̂y

C (
√
N +

√
T )/

√
NT for

some C > 1 and σ̂y is the sample standard deviation of Y . After obtaining an estimate σ̂u of σu, we

can calculate a suitable γ2 via simulation. Specifically, we can simulate the random matrices U with

i.i.d. N(0, σ̂2u). Then we let γ2 = Q(||U||op, 0.95)/
√
NT , where Q(x, α) denotes the αth quantile of

x.

For γ1, γ3, and γ4, we propose to use the 5-fold cross validation (CV) process. Let γ = (γ1, γ3,

γ4)
′. For the first-step estimation, the procedure goes as follows:

1. Partition the data into 5 separate sets along the time dimension: T1, ...,T5 ⊂ [T ];

2. For k = 1, ..., 5, fit the model to the training set by excluding the kth fold data. Denote the

estimators by B̃(γ,k) and Λ̃(γ,k), where Λ̃(γ,k) is a N × R matrix containing the first R right

singular vectors of Θ̃. Calculate the sum of squared prediction errors

cv(γ, k) = tr[(YTk,∗ −XTk,∗B̃
(γ,k))MΛ̃(γ,k)(YTk,∗ −XTk,∗B̃

(γ,k))′];

3. Compute the CV error for a fixed tuning parameter by CV (γ) =
∑5

k=1 cv(γ, k).

4. Select γ∗ = argminγ CV (γ).

Remark 3.4. Once the sample Tk is excluded, we cannot obtain an estimate of FTk,∗. Hence

we cannot obtain the residuals by deducting the estimate of FTk,∗Λ
′. For this reason, we multiply

YTk,∗ −XTk,∗B̃
(γ,k) by MΛ̃(γ,k) to project out FTk,∗Λ

′ in the above procedure.T

For the second and third step estimators, the CV procedure can be constructed in a similar way.

3.5 Lag length selection

In the above estimation procedure, we have so far assumed that the lag length p is known. In

practice, the lag length p is usually unknown and requires estimation. To address this uncertainty

we propose a procedure to determine the lag length p. Suppose we estimate the model with a lag

setting pmax ≥ p0, where we use the superscript ‘0’ to denote the true parameter. The model with

pmax lags continues to be a correctly specified model except that A0
k = 0 for k > p0. Due to Lasso

regularization, the elements of the estimator Âp for p > p0 should converge to zero. For this reason,

we propose to determine the lag length by the following procedure:

1. Given pmax, obtain the estimates Âk for k ∈ [pmax];

2. Calculate ak = ||Âk||2F ∨ c for some small positive constant c and k ∈ [pmax];
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3. The criterion function we consider is given by the ratio

GR(p) =

∑pmax

k=p ak∑pmax

k=p+1 ak
, p = 1, ..., pmax − 1.

The term GR refers to the growth ratio of
∑pmax

k=p ak.

4. Obtain the estimator of p0 as p̂ = argmax1≤k<pmax
GR (k).

Remark 3.5. Some remarks on this procedure are in order. First, one can also simply run an

ℓ1-nuclear-norm penalized regression with pmax, which is the first step of the estimation procedure

given in Section 3.1. We only require that ||Âk − A0
k||F converge to zero at a certain rate. Second,

in practice one may obtain a very small or even zero value for ||Âk||2F when k > p0. In this case,

if we directly use ak = ||Âk||2F, the growth ratio may possibly choose a larger p than p0. To solve

this problem, we bound ak below by some constant c > 0. Third, the GR(p) criterion function is

constructed to allow some A0
k with k < p0 to be a matrix of zeros. If we believe all the A0

k are nonzero

matrices for k ∈
[
p0
]
, one can also consider the criterion function FR(p) = ap/ap+1, where the term

FR refers to the Frobenius norm ratio. Fourth, in order to allow p0 to be divergent, one should allow

pmax to go to infinity.

4 Monte Carlo Simulations

This section reports the results of a set of Monte Carlo experiments designed to evaluate the finite

sample performance of the estimation procedures given above.

4.1 Data generating processes

We consider three cases with p = 1. For each data generating process (DGP), we generate data from

the following high-dimensional VAR(1) system with CFs

Yt = A0
1Yt−1 + Λ0f0t + ut, (4.1)

where A0
1 varies across different DGPs, Λ0 = (λ01, ..., λ

0
N )
′. The factor loadings λ0ri, for r = 1, ..., R0,

are independently and identically distributed (i.i.d.) standard normal random variables. The factors

f0tr, for r = 1, ..., R0, follow the autoregressive process

f0tr = ρf · f0t−1,r + ϵ
(f)
tr ,

where ρf = 0.6 and ϵ
(f)
tr are i.i.d. N (0, 1). The idiosyncratic errors are generated as uit = s · ϵ(u)it ,

where s controls the signal-to-noise ratio, and the ϵ
(u)
it are i.i.d. N(0, 1).

DGP 1 (Tridiagonal transition matrix): (A0
1)ij = 0.3 · 1(|i− j| ≤ 1).
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DGP 2 (Block-diagonal transition matrix): We generate a block-diagonal matrixA0
1 = bdiag(S1, ..., SK),

where the Sk’s are 5× 5 random matrices. The diagonal entries of Sk are fixed with (Sk)i,i = 0.3. In

each column of Sk, we randomly choose 2 out of 4 off-diagonal entries and set them to be −0.3.

DGP 3 (Random transition matrix): We fix the diagonal entries of A0
1 to be 0.3 (i.e. (A0

1)ii = 0.3).

In each row of A0
1, we randomly choose 3 out of N − 1 entries and set them to be −0.3.

FIGURE 1 around here

Figure 1 illustrates the structure of the random transition matrices used in our simulation. For

each DGP, we consider N = 30, 60, and T = 100, 200, 400, leading to six combinations of cross-

sectional and time series dimensions. The number of replications is set to be 500.

4.2 Implementation and estimation results

For each DGP, we consider the feasible estimator proposed in this paper and the oracle least squares

estimator. The oracle estimators are obtained by using information regarding the true number of

factors and the true regressors.

Table 1 reports the model selection accuracy. For each combination of N and T in each DGP,

the fourth and fifth columns report the under- and over-estimation rate of R̂, respectively. The TPR

(true positive rate) columns report the average shares of relevant variables included. The FPR (false

positive rate) columns report the average shares of irrelevant variables included. We summarize

some important findings from Table 1. First, the proposed hard singular value thresholding (SVT)

procedure can correctly determine the number of factors for each case. Second, with N fixed, the

TPR increases with T in all cases as expected. All three-step estimators can include almost all

the true regressors when T = 400. Third, among the three estimators, the third-step conservative

Lasso estimator includes the least irrelevant regressors in almost all settings. In addition, only the

conservative Lasso estimators tend to exclude more irrelevant regressors as T increases, while the

FPRs of the first and second step estimators increase as T grows.

TABLE 1 around here

Table 2 reports the estimation errors of both the feasible estimators and the oracle least squares

estimators. We report the root mean squared errors (RMSEs) for all entries and nonzero entries,

respectively. We summarize some important findings from Table 2. First, as expected, the oracle

least squares estimator uniformly outperforms the feasible estimators. This is mainly due to the fact

that the FPRs of the feasible estimators were never zero. Second, the RMSE of the oracle estimator

for nonzero entries decreases with T at the
√
T -rate and alters with N slightly. This is consistent

with our theoretical prediction that the oracle least squares estimator converges to the true values at

the
√
T -rate. Third, the conservative Lasso outperforms the other two feasible estimators in terms

of RMSEs in all cases.
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TABLE 2 around here

For all DGPs, we also consider estimation of a misspecified VAR(1) model, Yt = A0
1Yt−1 + ut,

where the common factors are ignored. We first estimate the model with a Lasso penalty as in

KC (2015). Then we construct the weights as in (3.4) and use conservative Lasso to estimate the

misspecified model. Table 3 reports the performance of these two estimators. We summarize some

findings from Table 3. First, the FPRs for both estimators are quite high. This indicates that

the misspecification may lead to non-sparse estimates of the transition matrices when the presence

of strong cross-sectional dependence is not properly accounted for. Second, the estimators for the

misspecified model also have higher RMSEs. Third, in many cases, the conservative Lasso estimator

performs even worse than the Lasso estimator in terms of RMSEs. These findings show that it is

important to take into account the presence of a factor structure in the estimation of a VAR with

CFs.

TABLE 3 around here

5 Empirical application

5.1 Evaluating a network of financial assets volatilities

In recent years, financial asset connectedness has been an active topic in financial econometrics.

Examples of contributions to this literature include Barigozzi and Brownlees (2019; hereafter BB),

Barigozzi and Hallin (2017), Billio et al. (2012), Diebold and Yilmaz (2014; hereafter DY), Diebold

and Yılmaz (2015), and Hautsch et al. (2014). Some of these authors directly model the large panels

of time series they are studying as a VAR process without the potential presence of common factors.

In this work a Lasso-type method has been employed to estimate the transition matrices. However,

Barigozzi and Hallin (2017) and BB (2019) document evidence for the existence of a factor structure

in volatility. Barigozzi and Hallin (2017) consider controlling for the presence of common factors by

means of a dynamic factor model. BB (2019) use the regression residuals of individual volatilities

on observed factors (e.g., market volatility or sector-specific volatility) to represent the idiosyncratic

components of the volatilities. Neither of these papers provides a theoretical justification for the

procedures employed.

In this empirical application, we extend the measure of connectedness of DY and study the con-

nectedness of financial assets. More specifically, we explore connectedness in a panel of volatility

measures. As remarked in DY, the volatilities of financial assets can be interpreted as a form of

‘investor fear’. Volatility connectedness may then be interpreted as representing ‘fear connectedness’

across assets. In this context it is natural to take into account common factors, which reflect con-

fidence in the market. Spillover effects across assets is another reason for connectedness. We use

23



the econometric methodology derived in the present work to analyze a panel of return volatilities

of 23 sector ETF funds. The findings show that common factors account for 56.1% of the overall

variability. Conditioning on these factors, the interdependence across individuals still captures a

relatively high proportion of the variation.

5.1.1 Data description and empirical framework

We collect the weekly ‘open price’, ‘close price’, ‘high price’ and ‘low price’ of a series of sector

ETF funds from Yahoo finance. The fund names and tickers are listed in Table S1 in the online

supplement. The funds fall into 11 categories. The ‘Energy’, ‘Financial’ and ‘Consumer cyclical’

are three large categories, each of which contains three to four funds. Each of the other categories

contain at most two funds. The sample spans July 2007 to August 2019, which corresponds to 688

weeks. As volatility is unobserved, we use observed price data to estimate it. Specifically, we follow

Garman and Klass (1980) and Alizadeh et al. (2002) to measure asset volatility as follows:

σ̃2it = 0.511(Hit − Lit)
2 − 0.019[(Cit −Oit)(Hit + Lit − 2Oit)− 2(Hit −Oit)(Lit −Oit)]

−0.383(Cit −Oit)
2,

where Oit, Cit, Hit, and Lit are natural logarithms of weekly ‘open price’, ‘close price’, ‘high price’

and ‘low price’, respectively. Some descriptive statistics of the volatilities are presented in Table S2

in the online supplement. As in DY (2014) we normalize the data by taking natural logarithms and

then center each time series. That is, our panel data variable yit is given by log(σ̃2it)− log(σ̃2i·).

Given the panel of volatilities, we fit the data to our VAR model with CFs in (2.1). From the

decomposition (2.5), we have yit = y
(f)
it + y

(u)
it , where y

(f)
it is due to the common factors and y

(u)
it is

due to the idiosyncratic errors. Then νi ≡ var(y
(f)
it )/var(yit) measures the proportion of variance in

yit that is due to common factors and ν̄ ≡
∑N

i=1var(y
(f)
it )/

∑N
i=1var(yit) measures the corresponding

object across the whole panel.

For the idiosyncratic component y
(u)
it we calculate the measure of connectedness proposed by DY

(2014). As discussed in Section 2, we have y
(u)
it =

∑∞
j=0 α

(u)
iN (j)C(u)ϵ

(u)
t−j , where α

(u)
iN (j) = (e1,p ⊗

ei,N )
′Φj(e1,p ⊗ IN ) and ϵ

(u)
t ∼ (0, Im). For simplicity, suppose that m = N . Then one can treat ϵ

(u)
it

as the idiosyncratic shock to individual i. The variance of the H-step ahead prediction error due

to {ϵ(u)j,t+h}
H
h=1 is sHij =

∑H−1
h=0 ([α

(u)
iN (h)C(u)]j)

2. If we can identify both Φ and C(u), we can easily

estimate the variance decomposition matrix ĎH with (i, j)th entry sHij /
∑N

k=1 s
H
ik. However, C(u)

is not identified without further assumption. Although we cannot identify C(u), the matrix Σu =

C(u)C(u)′ is identified. DY (2014) propose to calculate the H-step generalized variance decomposition
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matrix12 DH = [dHij ]N×N , where

dHij =
σ−1jj

∑H−1
h=0 (α

(u)
iN (h)Σuej,N )

2∑H−1
h=0 α

(u)
iN (h)Σuα

(u)
iN (h)′

, and ej,N is the jth column of IN .

Unlike ĎH , the row sums of DH are not necessarily unity. We normalize DH to D̃H with (i, j)th

entry d̃Hij = dHij /
∑N

k=1 d
H
ik so that

∑N
j=1 d̃

H
ij = 1 and

∑N
i,j=1 d̃

H
ij = N . Hence, the overall connectedness

in the y
(u)
it ’s can be measured as d̃H =

∑
i ̸=j d̃

H
ij /N . In addition, we let d̃Hi← ≡

∑
j ̸=i d̃

H
ij . Following

DY (2014), we call d̃Hi← the ‘FROM’ index, as it measures the proportion of generalized variance

decomposition that is due to other individuals. Similarly, we let d̃H←j ≡
∑

i ̸=j d̃
H
ij and call this the

‘TO’ index.

5.1.2 Estimation results

We use the procedure proposed in Section 3.4 to determine the lag length with pmax = 8. The result

gives p̂ = 4. When we run the regression with p = 4, the number of factors is determined to be one

(R̂ = 1).

FIGURE 2 around here

Figure 2 reports the heat map representing the estimates of the Âk’s. The element value is

represented by color intensity on the scale shown in the figure. In total, 330 out of 2116 entries are

nonzero. There are three interesting findings. First, most of the nonzero entries are estimated to

be positive. The positive coefficients represent propagation of investor fear across assets. Second,

the diagonal elements of the Âk are mostly nonzero. The magnitude of the diagonal elements is

larger than that of the off diagonal elements on average. Third, the number of nonzero coefficients

in Âk decreases as k increases and the average magnitude of the entries also decreases. These results

suggest that more recent investor fear is more influential in raising present investor fear.

TABLE 4 around here

Next, we calculate the statistics introduced in the last subsection. The upper panel of Table

4 provides the estimates of νi, d̃
H
i←, and d̃H←j . Almost all the νi’s are above 50%, and the overall

variation due to the common factors is ν̄ = 56.1%. These results imply that market level investor fear

plays a dominant roll in investor trading behavior. After conditioning on the factors, we consider the

idiosyncratic part by looking at d̃Hi←, d̃
H
←j and the H-step generalized variance decomposition matrix

D̃H . The ‘FROM’ index ranges between 27.7% and 71.7%. Interestingly, the ‘energy’ and ‘finance’

funds have higher ‘FROM’ index compared to other funds. A similar observation applies for the ‘TO’

12The generalized variance decomposition (GVD) framework was introduced by Koop et al. (1996) and Pesaran and
Shin(1998). It provides an order-invariant framework to estimate the variance decomposition. For more details see
Section 2.3 of Diebold and Yılmaz(2014).
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index. Specifically, the ‘TO’ index of XLE and IYE are close to 100% and both are ‘energy’ funds.

The energy industry is therefore instrumental in transmitting considerable investor fear to the entire

market. This finding has a strong intuitive basis as oil prices have been extremely volatile in recent

years and energy prices affect all industries. The fund GDX (VanEck Vectors Gold Miners ETF)

has the least connectedness. It receives only 27.7% connectedness from other assets and transmits

only 19.1% connectedness to others. The overall connectedness measure is 49.8%. Conditioning on

the factors, there is still substantive transmission of investor fear across individual assets. Figure 3

reports the heat map of the H-step generalized variance decomposition matrix D̃H at H = 12. We

observe that the interconnections within the same category are high, whereas connectedness across

categories is relatively low.

FIGURE 3 around here

The lower panel of Table 4 provides measures of connectedness based on pure VAR model esti-

mation as in Demirer et al. (2018). Without controlling for common factors, the ‘FROM’ and ‘TO’

index of each fund becomes much larger. Importantly, little heterogeneity is now observed across

categories. These results indicate that all the connectedness due to common factors is now absorbed

and interpreted as individual level connectedness, leading to potentially misleading inferences.

In sum, our framework extends traditional VAR analyses of financial asset connectedness to

control for the presence possible common factors in the determination of volatility. This extension

leads to new interpretations of the data that give a prominent role to the presence of a single common

factor in volatility connectedness. Our results show that this common factor accounts for more than

a half of the variation in the data, thereby contributing substantially to observed connectedness.

But even allowing for the influence of this common factors there is still a remarkable degree of

connectedness arising from spillover channels that operate among the assets themselves.

6 Conclusion

This paper proposes a methodology to study the properties of regularized estimates of high-dimensional

VARs with unobserved common factors. The presence of common factors introduces strong cross

sectional dependence into the process. Incorporating such dependence is particularly important in

high-dimensional disaggregated data where connectedness between the variables may arise through

different channels. Dependence and connectedness are found to be especially relevant in studying

the transmission of investor fear across financial assets in our study of asset price volatility.

In practice, our procedure is implemented as follows. First, given the order p of the VAR process,

which can be estimated via a growth ratio criterion, we obtain preliminary estimates of the transition

matrices and common component via ℓ1-nuclear norm regularizations, with which one can estimate

the number of factors consistently and obtain a preliminary consistent estimate of the common factors.

Second, we estimate the model using a generalized Lasso procedure by including the preliminary
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estimate of the common factors as regressors. In the third stage conservative Lasso is used to obtain

the final estimates, which are shown to be asymptotically equivalent to the oracle least squares

estimates

The methods and results in this paper open up multiple avenues for further research. First,

following Barigozzi and Brownlees (2019) it may be useful in practice to impose some sparsity as-

sumptions on the large dimensional error variance matrix and develop estimation methods to achieve

this. Second, the model studied here does not allow for structural change in the transition matrices

or the factor loadings (c.f., Su and Wang, 2017). It will also be interesting and challenging to study

high-dimensional VAR models with common factors that may involve time-varying transition matri-

ces and factor loadings, which can help capture empirical evolution in institutional and regulatory

frameworks. Third, the framework and methods provide the facility to implement Granger-causality

testing in the presence of common factors. Existing Granger-causality tests mainly focus on low-

dimensional VAR models, most often bivariate or trivariate VAR models. Exceptions include Hecq

et al. (2020) and Fan et al. (2020) who consider Granger causality tests in high-dimensional VARs

based on post-double-selection and debiased estimators, respectively, but do not allow for strong

cross-sectional dependence. These avenues of future work provide many options for further technical

and applied research on high-dimensional VAR systems.

27



APPENDIX

A Proofs of the main results

Proof of Proposition 2.1: (i) By Assumption A.1(iv), the y
(u)
it and y

(f)
it are mutually independent.

It suffices to study them separately. By Assumption A.1(i), we can write y
(u)
it as the linear process

y
(u)
it =

∞∑
j=0

α
(u)
iN (j)ut−j =

∞∑
j=0

α
(u)
iN (j)C(u)ϵ

(u)
t−j ≡

∞∑
j=0

C
(i,u)
j ϵ

(u)
t−j ,

where C
(i,u)
j ≡ α

(u)
iN (j)C(u). Under Assumption A.1(vi), one can bound |(e1,p⊗ei,N )′Φj | by ψmax([Φ

j ][N ],[N ])

≤ c̄ρj . It follows that |α(u)
iN (j)| ≤ c̄ρj . Then the MA(∞) representation of y

(u)
it is valid with

E(y
(u)
it ) = 0 and Var(y

(u)
it ) =

∑∞
j=0 α

(u)
iN (j)Σuα

(u)
iN (j)′ <∞.

Under Assumption A.1(vi), we can also show that E(|y(f)it |) ≤
∑∞

j=0 |α
(f)
iN (j)|

∣∣µf ∣∣ < ∞. The

MA(∞) representation of y
(f)
it is

y
(f)
it = E(y

(f)
it ) +

∞∑
j=0

α
(f)
iN (j)(f0t−j − µf ) = E(yit) +

∞∑
j=0

C
(i,f)
j ϵ

(f)
t−j ,

where C
(i,f)
j ≡

∑j
k=0 α

(f)
iN (k)C

(f)
j−k. Under Assumption A.1(vi), |C(i,f)

j | ≤
∑j

k=0 |α
(f)
iN (k)| · ||C(f)

j−k||op.
In addition, by Assumption A.1(ii),

∞∑
j=0

j∑
k=0

ρk||C(f)
j−k||max =

∞∑
k=0

ρk
∞∑
j=k

||C(f)
j−k||max ≤ c̄

∞∑
k=0

ρk(k + 1)−α,

for some constant c̄ < ∞. Hence C
(i,f)
j is absolutely summable, Var(y

(f)
it ) =

∑∞
j=0C

(i,f)
j C

(i,f)′
j < ∞,

and the MA(∞) representation of y
(f)
it is valid.

Similar to the decomposition (2.5), we can write Xt = X
(u)
t +X

(f)
t . For ΣX , due to the indepen-

dence between X
(u)
t and X

(f)
t , we can also write ΣX = Σ

(f)
X + Σ

(u)
X , where Σ

(u)
X ≡ E(X

(u)
t X

(u)′
t ) and

Σ
(f)
X ≡ E(X

(f)
t X

(f)′
t ). Since Σ

(f)
X is positive semi-definite, we have ψmin(ΣX) ≥ ψmin(Σ

(u)
X ). It suffices

to show ψ(Σ
(u)
X ) is bounded below. By Proposition 2.3 of BM (2015), we have

ψmin(Σ
(u)
X ) ≥ ψmin(Σu)

max|z|=1 ψmax(A∗(z)A(z))
.

Given Assumption A.1(vii), we have that ψmin(Σ
(u)
X ) is bounded below by some constant.

(ii) By virtue of the independence between X
(u)
t and X

(f)
t , it can also be shown that ψmin(Σ) ≥

ψmin(Σ
(u)
X ).■
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A.1 Analysis of the first-step estimators

To prove Theorem 3.1, we need the following two lemmas whose proofs can be found in the online

supplement.

Lemma A.1 For the T ×N matrices Θ0 and ∆, we have

(i)
∥∥Θ0 +M(∆)

∥∥
∗ =

∥∥Θ0
∥∥
∗ + ∥M(∆)∥∗;

(ii) ∥∆∥2F = ∥M(∆)∥2F + ∥P(∆)∥2F;
(iii) rank(P(∆)) ≤ 2R0;

(iv) ∥∆∥2F =
∑

j ψj(∆)2 and ∥∆∥2∗ ≤ ∥∆∥2Frank(∆);

For any conformable matrices M1 and M2, the following statement holds:

(v) |tr(M1M2)| ≤ ∥M1∥max |vec(M2)|1 and |tr(M1M2)| ≤ ∥M1∥op ∥M2∥∗ .

Lemma A.2 Suppose that Assumption A.1 holds. There exist absolute constants c, c, c̄ ∈ (0,∞)

such that

(i) ∥U′X∥max /T ≤ γ1/2 with probability greater than 1− c̄(pN2T 1−q/4(logN)−q/2+ pN2−c logN );

(ii) ∥U′PF 0X∥max /T ≤ c · γ1 with probability greater than 1− c̄[pN(T 1−q/4(logN)−q/2 ∨ e−cT ) +
pN1−c logN ].

Proof of Theorem 3.1. Let ∆̃(1) = B̃ −B0 and ∆̃(2) = Θ̃−Θ0. Define the event

E(1)
NT = {

∥∥U′X∥∥
max

/T ≤ γ1/2, ∥U∥op /
√
NT ≤ γ2/2}.

By Lemma A.2(i) and Assumption A.3(i), E(1)
NT holds with probability at least 1−c̄[pN2T 1−q/2(logN)−q/2

+pN2−c logN ]. By the definition of (B̃, Θ̃), we have

0 ≥ L(B̃, Θ̃)− L(B0,Θ0)

=
1

2NT
(||Y −XB̃ − Θ̃||2F − ||U||2F) +

γ1
N

(|vec(B̃)|1 − |vec(B0)|1) +
γ2√
NT

(||Θ̃||∗ − ||Θ0||∗)

≡ d1 + d2 + d3. (A.1)

To establish the asymptotic properties of B̃ and Θ̃, we study d1, d2 and d3 in turn.

First, consider d1. By the identity Y = XB0 +Θ0 +U, we have∥∥∥Y −XB̃ − Θ̃
∥∥∥2
F
− ∥U∥2F =

∥∥∥X∆̃(1) + ∆̃(2)
∥∥∥2
F
− 2tr[U′(X∆̃(1) + ∆̃(2))].

For tr[U′(X∆̃(1) + ∆̃(2))], conditional on E(1)
NT , we apply the triangle inequality and Lemma A.1(v)

to obtain

1

NT
|tr[U′(X∆̃(1) + ∆̃(2))]| ≤ 1

NT
||U′X||max|vec(∆̃

(1))|1 +
1

NT
∥U∥op ||∆̃

(2)||∗

≤ γ1
2N

|vec(∆̃(1))|1 +
γ2

2
√
NT

||∆̃(2)||∗.
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It follows that

d1 ≥ 1

2NT
||X∆̃(1) + ∆̃(2)||2F − γ1

2N
|vec(∆̃(1))|1 −

γ2

2
√
NT

||∆̃(2)||∗

≥ 1

2NT
||X∆̃(1) + ∆̃(2)||2F − γ1

2N

N∑
i=1

(
|∆̃(1)

Ji,i
|1 + |∆̃(1)

Jc
i ,i
|1
)

− γ2

2
√
NT

(
||P(∆̃(2))||∗ + ||M(∆̃(2))||∗

)
. (A.2)

Next, consider d2. By the identities |B̃∗,i|1 = |B̃Ji,i|1 + |B̃Jc
i ,i
|1 and |B0

∗,i|1 = |B0
Ji,i

|1, we have

d2 =
γ1
N

N∑
i=1

(|B̃Ji,i|1 + |B̃Jc
i ,i
|1 − |B0

Ji,i|1) ≥
γ1
N

N∑
i=1

(|∆̃(1)
Jc
i ,i
|1 − |∆̃(1)

Ji,i
|1), (A.3)

where we use the fact that |B̃Ji,i|1 + |∆̃(1)
Ji,i

|1 ≥ |B0
Ji,i

|1 by the triangle inequality and that |B̃Jc
i ,i
|1 =

|∆̃(1)
Jc
i ,i
|1 as B0

Jc
i ,i

= 0.

Now, consider d3. By the triangle inequality and Lemma A.1(i), we have

||Θ̃||∗ = ||∆̃(2) +Θ0||∗ = ||Θ0 + P(∆̃(2)) +M(∆̃(2))||∗
≥ ||Θ0 +M(∆̃(2))||∗ − ||P(∆̃(2))||∗
= ||Θ0||∗ + ||M(∆̃(2))||∗ − ||P(∆̃(2))||∗.

It follows that

d3 ≥
γ2√
NT

(||M(∆̃(2))||∗ − ||P(∆̃(2))||∗). (A.4)

Combining the results in (A.1)-(A.4), we have

1

2NT
||X∆̃(1) + ∆̃(2)||2F +

γ1
2N

N∑
i=1

||∆̃(1)
Jc
i ,i
||1 +

γ2

2
√
NT

||M(∆̃(2))||∗

≤ 3γ1
2N

N∑
i=1

||∆̃(1)
Ji,i

||1 +
3γ2

2
√
NT

||P(∆̃(2))||∗. (A.5)

The above inequality indicates that (∆̃(1), ∆̃(2)) ∈ CNT (3). By Assumption A.2, with probability

1− εNT we have

1

N
||∆̃(1)||2F +

1

NT
||∆̃(2)||2F − κ2Φγ1,γ2(∆̃

(1), ∆̃(2)) ≤ κ1
1

NT
||X∆̃(1) + ∆̃(2)||2F, (A.6)
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where κ1 = (κ ∧ κ′)−1 and κ2 = κ1κ
′′. By the inequality (A.5), we have

1

NT
||X∆̃(1) + ∆̃(2)||2F ≤ 3Φγ1,γ2(∆̃

(1), ∆̃(2)) =
3γ1
N

N∑
i=1

|∆̃(1)
Ji,i

|1 +
3γ2√
NT

||P(∆̃(2))||∗

≤ 3γ1
√
Ka

||∆̃(1)||F√
N

+ 3
√
2R0γ2

||∆̃(2)||F√
NT

≤ 3
√
2(γ1

√
Ka ∨ (

√
2R0γ2))

√
1

N
||∆̃(1)||2F +

1

NT
||∆̃(2)||2F, (A.7)

where the second inequality holds by Lemma A.1(ii)-(iv) and the fact that
∑N

i=1 |∆̃
(1)
Ji,i

|1 ≤
√
NKa(

∑N
i=1

|∆̃(1)
Ji,i

|2)1/2 ≤
√
NKa||∆̃(1)||F, where recall thatKa = N−1

∑N
i=1 ki and ki ≡ |Ji| denotes the cardinal-

ity of the set Ji. Combining (A.6)-(A.7), we have with probability at least (1− εNT )
(
1− c̄[pN2T 1−q/2(logN)−q/2 + pN2−c logN ]

)
≥ 1− εNT − c̄[pN2T 1−q/2(logN)−q/2 +pN2−c logN ],

1

N
||∆̃(1)||2F +

1

NT
||∆̃(2)||2F ≤ (3κ1 + κ2)

√
2[(γ1

√
Ka) ∨ (

√
2R0γ2)]

√
1

N
||∆̃(1)||2F +

1

NT
||∆̃(2)||2F,

which implies that 1√
N
||∆̃(1)||F ≤ c̄(γ1

√
Ka ∨ γ2) and 1√

NT
||∆̃(2)||F ≤ c̄(γ1

√
Ka ∨ γ2) with c̄ =

(3κ1 + κ2)
√
2(1 ∨

√
2R0) <∞. This completes the proof. ■

To prove Theorem 3.2, we need the following lemma which is proved in the online supplement.

Lemma A.3 Suppose that Assumptions A.1 and A.3 holds. Let SF ≡ F 0′F 0/T. Then for any x > 0,

P (T 1/2||SF − ΣF ||max > x) ≤ C1x
−q/2T 1−q/4 + C2 exp

(
−C3x

2
)

for some absolute constants Cℓ, ℓ = 1, 2, 3.

Proof of Theorem 3.2. We operate conditional on the event that

E(2)
NT = {

∥∥U′X∥∥
max

/T ≤ γ1/2, ∥U∥op /
√
NT ≤ γ2/2 and ||SF − ΣF ||op ≤ c

√
logNT−1/2},

where c is a large positive constant. One can verify that for some positive constants c̄′ and c,

P (E(2)
NT ) ≥ 1− c̄′(pN2T 1−q/4(logN)−q/2 + pN2−clogN )

by Lemmas A.2-A.3. From Theorem 3.1, we have with probability at least 1−εNT−c̄′(pN2T 1−q/4(logN)−q/2+

pN2−c logN ),

(NT )−1/2||Θ̃−Θ0||op ≤ (NT )−1/2||Θ̃−Θ0||F ≤ c̄(γ1
√
Ka ∨ γ2).

Next, we show that E(2)
NT implies the desired results.

Step 1: Bound the eigenvalues.

31



Let SΛ = Λ0′Λ0/N and SF = F 0′F 0/T. Let ŝ1 ≥ · · · ≥ ŝR0 be the R0 nonzero eigenvalues

of 1
NTΘ

0Θ0′ = 1
T F

0′SΛF
0. Note that ŝ1, ..., ŝR0 are the same as the eigenvalues of S

1/2
F SΛS

1/2
F .

Conditional on the event E(2)
NT and by Assumption A.4(i)-(ii), we have

|ŝj − sj | ≤ c̄(
√

logNT−1/2 +N−1/2) for some c̄ <∞ and j ∈ [R0].

This also implies that ||Θ0||op =
√

(s1 + oP (1))NT. For j > R0, simply define ŝj = sj = 0.

Let s̃1 ≥ · · · ≥ s̃N∧T be the eigenvalues of 1
NT Θ̃Θ̃′. Again by the Weyl’s theorem, we have for

j = 1, 2, ...

|s̃j − sj | ≤ |s̃j − ŝj |+ |ŝj − sj |

≤ 1

NT
||Θ̃Θ̃′ −Θ0Θ0′||op + |ŝj − sj |

≤ 2

NT
||Θ0||op||Θ̃−Θ0||op +

1

NT
||Θ̃−Θ0||2op + |ŝj − sj |,

implying |s̃j − sj | ≤ c̄(γ1
√
Ka ∨ γ2) for j = 1, 2, ... Then for j ∈ [R0], w.p.a.1,

|ŝj−1 − s̃j | ≥ |ŝj−1 − ŝj | − |ŝj − s̃j | ≥ (sj−1 − sj)/2 and

|s̃j − ŝj+1| ≥ |ŝj − ŝj+1| − |s̃j − ŝj | ≥ (sj − sj+1)/2, (A.8)

with ŝR0+1 = sR0+1 = 0.

Step 2: Prove the consistency of R̂.

Note that ψr(Θ̃) =
√
NTs̃r. By the result in Step 1, we have that ψr(Θ̃) ≥

√
[sR0 − oP (1)]NT

for all r ≤ R0, and

ψR0+1(Θ̃) ≤ ψR0+1(Θ
0) +

∥∥∥Θ̃−Θ0
∥∥∥
op

≤
∥∥∥Θ̃−Θ0

∥∥∥
F
≤

√
NT c̄(γ1

√
Ka ∨ γ2) =

√
NTo(γ

1/2
2 )

where we use the condition that γ1
√
Ka = o(γ

1/2
2 ) under Assumption A.4(iii). These results, in

conjunction with the fact that (γ2
√
NT ||Θ̃||op)1/2 ≍

√
NT

√
γ2 with γ2 = c2(N

−1/2 + T−1/2),13

imply that

min
r≤R0

ψr(Θ̃) ≥ (γ2
√
NT ||Θ̃||op)1/2 and ψR0+1(Θ̃) < (γ2

√
NT ||Θ̃||op)1/2

with probability at least 1− εNT − c̄′(N2T 1−q/4(logN)−q/2+N2−c logN ) for sufficiently large (N,T ) .

Then we have R̂ = R0 with probability at least 1 − εNT − c̄′(N2T 1−q/4(logN)−q/2 +N2−c logN ) for

sufficiently large (N,T ) .

Step 3: Characterize the eigenvectors.

13Write a ≍ b to denote that both a/b and b/a are stochastically bounded.
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Next, we show that there is an R0 × R0 matrix H̃, such that the columns of 1√
T
F 0H̃ are the

first R0 eigenvectors of Θ0Θ0′. Let v be the R0 × R0 matrix whose columns are the eigenvectors of

S
1/2
F SΛS

1/2
F . Then D = v′S

1/2
F SΛS

1/2
F v is a diagonal matrix of the eigenvalues of S

1/2
F SΛS

1/2
F that are

distinct by Assumption A.4(ii). Let H̃ = S
−1/2
F v. Then

1

NT
Θ0Θ0′F 0H̃ =

1

T
F 0SΛF

0′F 0H̃ = F 0SΛSF H̃ = F 0SΛS
1/2
F v

= F 0S
1/2
F S

−1/2
F SΛS

1/2
F v = F 0S

1/2
F vv′S

−1/2
F SΛS

1/2
F v

= F 0H̃D.

In addition, we have (F 0H̃)′F 0H̃/T = v′S
−1/2
F

F 0′F 0

T S
−1/2
F v = v′v = IR0 . So the columns of 1√

T
F 0H̃

are the eigenvectors of Θ0Θ0′, with corresponding eigenvalues in D.

Step 4: Prove the convergence.

We bound
∥∥∥F̃ − F 0H̃

∥∥∥
F
conditional on the event R̂ = R0. By the Davis-Kahan sin(Θ) theorem

(see, e.g., Yu et al., 2014) and (A.8),

1√
T
||F̃ − F 0H̃||F ≤

1
NT ||Θ̃Θ̃′ −Θ0Θ0′||op

minj≤R0min{|ŝj−1 − s̃j |, |s̃j − ŝj+1|}

≤ c̄
1

NT
||Θ̃Θ̃′ −Θ0Θ0′||op ≤ c̄(γ1

√
Ka ∨ γ2).

Next we have

∥∥PF̃ − PF 0

∥∥
F

=

∥∥∥∥ 1T F̃ F̃ ′ − PF 0

∥∥∥∥
F

≤ 2c̄

∥∥∥∥ 1√
T
F̃ − 1√

T
F 0H̃

∥∥∥∥
F

+

∥∥∥∥∥F 0H̃H̃ ′F 0′

T
− PF 0

∥∥∥∥∥
F

≤ c̄(γ1
√
Ka ∨ γ2),

where the second equality is from the fact that H̃H̃ ′ = S
−1/2
F vv′S

−1/2
F = S−1F . This proves the second

result in the theorem. ■

A.2 Theoretical analysis of the second-step estimators

To prove Theorem 3.3, we need to add a further lemma.

Lemma A.4 Suppose that Assumptions A.1-A.3 hold. Let Σ̃ ≡ T−1X′X−T−2X′F̃ F̃ ′X. Then there

exist some constants c, c̄ and c̄′ such that with probability larger than 1− c̄′[p2N2T 1−q/4(logN)−q/2+

pNe−cT + p2N2−c logN ] we have

(i) ||H̃||max ≤ ||H̃||∞ ≤ c̄ and ||H̃−1||F ≤ c̄;

(ii) max1≤j≤pN |X∗,j |/
√
T < c̄ and max1≤j≤N |U∗,j |/

√
T < c̄;

(iii) ||F 0′U||max/T ≤ logN · T−1/2/(16c̄2) and
∥∥T−1X′F 0 − ΣXF

∥∥
max

≤ c̄T−1/2 logN ;

(iv) ||Σ̃− Σ||max ≤ γ3;
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(v) Suppose 16KJγ3 ≤ ψmin(Σ)/2. Then Σ̃ satisfies the restricted eigenvalue condition for KJ in

(3.3) and κΣ̃(KJ) ≥ ψmin(Σ)/2.

Proof of Theorem 3.3. Fix c̄ as in Lemma A.4. In this proof, we choose a large enough constant

c3 such that γ3 = c3(γ1
√
Ka ∨ γ2) with c3 ≥ 2 ∨ (16c̄2) ∨ (16c̄4). Let E(3)

NT be the joint events of

(1) T−1 ∥U′X∥max ≤ γ3/4; (2) max1≤j≤pN |X∗,j |/
√
T ≤ c̄;

(3) max1≤j≤N |U∗,j |/
√
T ≤ c̄; (4) ||F̃ − F 0H̃||F/

√
T ≤ γ3/(16c̄

3);

(5) ||F 0′U||max/T ≤ γ3/(16c̄
2); (6) ||H̃||∞ ∨ ||H̃−1||F ≤ c̄;

(7) R̂ = R0;

and (8) Σ̃ satisfies the restricted eigenvalue condition for KJ in (3.3) with κΣ̃(KJ) ≥ ψmin(Σ)/2.

Under Assumptions A.1-A.3, by Lemmas A.2 and A.4, E(3)
NT holds with probability larger than 1 −

εNT− c̄′[p2N2T 1−q/4(logN)−q/2 + pNe−cT + p2N2−c logN ]. Conditional on the event E(3)
NT , we also

have the event that

(9) T−1||F̃ ′U||max ≤ T−1||(F̃ − F 0H̃)′U||max + T−1||H̃ ′F 0′U||max

≤ T−1||F̃ − F 0H̃||F ·max1≤j,N ||U∗,j ||+ ||H̃ ′||∞T
−1||F 0′U||max

≤ γ3/(8c̄),

and that

(10) max
1≤i≤N

T−1/2|λ0′i F 0′MF̃ | ≤ max
1≤i≤N

|λ0i | · T−1/2||(F 0 − F̃ H̃−1)′MF̃ ||F

≤ c̄T−1/2||F̃ − F 0H̃||F
∥∥∥H̃−1∥∥∥

F
≤ γ3/(8c̄).

Conditional on the event E(3)
NT , we establish the bound of |∆̇∗,i|1 ≡ |Ḃ∗,i −B0

∗,i|1 for i ∈ [N ].

Step 1. Concentrate out λ.

The objective function (3.2) is a least squares objective function with respect to λ. Given Ḃ∗,i,

we have that

λ̇i = (F̃ ′F̃ )−1F̃ ′(Y∗,i −XḂ∗,i) = T−1F̃ ′(Y∗,i −XḂ∗,i),

where the second equality holds by the identity F̃ ′F̃ /T = IT . After concentrating out λi, the

optimization problem becomes

Ḃ∗,i = argminv∈RNp

1

2T
||MF̃ (Y∗,i −Xv)||2F + γ3|v|1, (A.9)

where MF̃ = IT − F̃ F̃ /T .

Step 2. Compare the objective functions at Ḃ∗,i and B0
∗,i.
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By the identity Y∗,i = XB0
∗,i + F 0λ0i +U∗,i and the definition of Ḃ∗,i, we have

0 ≥ 1

2T
[||MF̃ (Y∗,i −XḂ∗,i)||2F − ||MF̃ (F

0λ0i +U∗,i)||2F] + γ3(|Ḃ∗,i|1 − |B0
∗,i|1)

=
1

2T
||MF̃X∆̇∗,i||2F − 1

T
tr[(F 0λ0i +U∗,i)

′MF̃X∆̇∗,i] + γ3(|Ḃ∗,i|1 − |B0
∗,i|1),

where ∆̇ ≡ Ḃ −B0 and ∆̇∗,i denotes the ith column of ∆̇. Then by Lemma A.1(v), we have

1

T
||(F 0λ0i +U∗,i)

′MF̃X||max|∆̇∗,i|1 ≥ 1

T
tr[(F 0λ0i +U∗,i)

′MF̃X∆̇∗,i]

≥ 1

2T
||MF̃X∆̇∗,i||2F + γ3(|Ḃ∗,i|1 − |B0

∗,i|1)

≥ 1

2T
||MF̃X∆̇∗,i||2F + γ3|∆̇Jc

i ,i
|1 − γ3|∆̇Ji,i|1,

where the last inequality follows because

|Ḃ∗,i|1 − |B0
∗,i|1 = |∆̇∗,i +B0

∗,i|1 − |B0
∗,i|1 = |∆̇0

Jc
i ,i
|1 + |∆̇Ji,i +B0

∗,i|1 − |B0
∗,i|1

≥ |∆̇Jc
i ,i
|1 − |∆̇Ji,i|1.

Step 3. Bound T−1maxi[||(F 0λ0i + U∗,i)
′MF̃X||max], conditional on the event E(3)

NT .

By the triangle and Cauchy Schwartz inequalities and the fact that T−1/2||F̃ ||op = 1, we have

T−1||(F 0λ0i +U∗,i)
′MF̃X||max

≤ T−1||λ0′i F 0′MF̃X||max + T−1||U′∗,iMF̃X||max

≤ max
1≤j≤Np

T−1/2|X∗,j |·T−1/2|λ0′i F 0′MF̃ |+ max
1≤j≤Np

T−1|U′∗,iX∗,j |+T−2||U′∗,iF̃ F̃ ′X||max

≤ max
1≤j≤Np

T−1|U′∗,iX∗,j |+
{
T−1|U′∗,iF̃ |+ T−1/2|λ0′i F 0′MF̃ |

}
max

1≤j≤Np
T−1/2|X∗,j |.

Combining events (1), (9) and (10), the right hand side of the above inequality is bounded by γ3/2

conditional on the event E(3)
NT .

Step 4. Obtain the final bound for |Ḃ∗,i −B0
∗,i|1.

Combining the results in Steps 2-3 and using the identity |∆̇∗,i|1 = |∆̇Ji,i|1 + |∆̇Jc
i ,i
|1, we have

that conditional on the event E(3)
NT ,

3γ3|∆̇Ji,i|1 ≥
1

T
||MF̃X∆̇∗,i||2F + γ3|∆̇Jc

i ,i
|1.

It follows that |∆̇Jc
i ,i
|1 ≤ 3|∆̇Ji,i|1 and conditional on E(3)

NT ,

∆̇′∗,iΣ̃∆̇∗,i ≤ 3γ3|∆̇Ji,i|1 ≤ 3γ3
√
ki|∆̇Ji,i| ≤

6
√
ki

ψmin(Σ)
γ3

√
∆̇′∗,iΣ̃∆̇∗,i,

where the last inequality holds by event (8) in E(3)
NT . It follows that

√
∆̇′∗,iΣ̃∆̇∗,i, ≤

6
√
ki

ψmin(Σ)γ3 and
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|∆̇Ji,i|1 ≤
2
√
ki

ψmin(Σ)

√
∆̇∗,iΣ̃∆̇∗,i, ≤ 12ki

(ψmin(Σ))2
γ3. Consequently, we have established that

|∆̇∗,i|1 = |∆̇Ji,i|1 + |∆̇Jc
i ,i
|1 ≤ 4|∆̇Ji,i|1 ≤

48

(ψmin(Σ))
2
kiγ3.

Then the conclusion in Theorem 3.3 follows. ■

A.3 Theoretical analysis of the third-step estimators

To prove Theorems 3.4 and 3.5, we need the following lemma.

Lemma A.5 Suppose that Assumptions A.1-A.5 hold. Then uniformly over i = 1, ..., N, the follow-

ing results hold w.p.a.1:

(i) ψmin(Σ̃Ji,Ji) ≥ c;

(ii) ||Σ̃Jc
i ,Ji

||max ≤ c̄ and ψmax(Σ̃Jc
i ,Ji

) ≤ c̄ki,

for some finite constant c̄.

Proof of Theorem 3.4: For any n-dimensional vector v = (v1, ..., vn)
′, denote abs(v) = (|v1|, ..., |vn|)′.

We say that v < ṽ if and only if vi < ṽ′i for all i ∈ [n]. Let W (i) =diag(w1i, ..., wNp,i), W
(1,i) =W

(i)
Ji,Ji

and W (0,i) = W
(i)
Jc
i ,J

c
i
. The following proof is by induction. Based on the error bounds for F̂ (ℓ)’s, we

show that results (i)-(iii) hold for the (ℓ + 1)th-step estimators. Then the results follow as we have

already established that ||F̂ (0) − F 0H̃||F/
√
T = OP (γ1

√
Ka + γ2).

For notational simplicity, let Σ̃(ℓ) denote T−1X′MF̂ (ℓ)X for ℓ = 0, 1, 2, . . .

(i) For all (k, i)’s such that B0
ki = 0, sup(k,i):B0

ki=0 |Ḃki| ≤ ||Ḃ − B0||max ≤ OP (KJγ3) = oP (γ4).

It follows that W (0,i) = I|Jc
i | with w.p.a.1. For all (k, i)’s such that B0

ki ̸= 0,

min
k,i:B0

ki ̸=0
|Ḃki| ≥ min

i∈[N ]
min
k∈Ji

|B0
ki| − ||Ḃ −B0||max = min

i∈[N ]
min
k∈Ji

|B0
ki| − oP (γ4) ≥ αγ4 w.p.a.1

by Assumption A.5(i). It follows that W (1,i) = 0 w.p.a.1. For each i ∈ [N ], the estimator B̂
(ℓ)
∗,i can

be written as

B̂
(ℓ)
∗,i = argminv∈RNPL(i)(v, F̂ (ℓ−1)),

where L(i)(v, F ) ≡ 1
2T (Y∗,i − Xv)′MF̂ (ℓ−1)(Y∗,i − Xv) + γ4

∑pN
k=1wki |vk| . Following the proof of

Proposition 1 of Zhao and Yu (2006), sgn(B̂
(l)
∗,i) =sgn(B0

∗,i) is implied by event Ei,1 ∩ Ei,2, where

Ei,1 ≡
{
abs[T−1/2Σ̃−1Ji,JiX

′
∗,JiMF̂ (ℓ−1)(U∗,i + F 0λ0i )] < T 1/2abs(B0

Ji,i)− T 1/2γ4abs[Σ̃
−1
Ji,Ji

W (1,i)sgn(B0
Ji,i)]

}
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and

Ei,2 ≡ {abs[T−1/2(−Σ̃Jc
i ,Ji

Σ̃−1Ji,Ji ·X
′
∗,Ji +X′∗,Jc

i
)MF̂ (ℓ−1)(U∗,i + F 0λ0i )]

≤ T 1/2γ4W
(0,i) · ι|Jc

i | − T 1/2γ4abs[Σ̃Jc
i ,Ji

Σ̃−1Ji,JiW
(1,i)sgn(B0

Ji,i)]}.

We prove (i) by showing that Ei,1 and Ei,2 hold w.p.a.1.

First, we consider Ei,1. It suffices to show that each entry of T−1/2abs[Σ̃−1Ji,JiX
′
∗,JiMF̂ (ℓ−1)(U∗,i +

F 0λ0i )] is oP (
√
T minimink∈Ji |B0

ki|). Applying the triangle inequality, one has

T−1/2abs[Σ̃−1Ji,JiX
′
∗,JiMF̂ (ℓ−1)(U∗,i + F 0λ0i )]

≤ T−1/2abs(Σ̃−1Ji,JiX
′
∗,JiMF̂ (ℓ−1)U∗,i) + T−1/2abs(Σ̃−1Ji,JiX

′
∗,JiMF̂ (ℓ−1)F

0λ0i )

≤ T−1/2abs(Σ̃−1Ji,JiX
′
∗,JiMF 0U∗,i) + T−1/2abs[Σ̃−1Ji,JiX

′
∗,Ji(PF 0 − PF̂ (ℓ−1))U∗,i]

+T−1/2abs[Σ̃−1Ji,JiX
′
∗,JiMF̂ (ℓ−1)(F̂

(ℓ−1) − F 0H̃)H̃−1λ0i ]. (A.10)

Note that maxi ||Σ̃−1Ji,Ji ||op ≤ c̄ w.p.a.1 by Lemma A.5(i). This, in conjunction with Lemma A.2(i)-

(ii), implies that the first term on the right hand side of (RHS) of (A.10) is uniformly OP (logN).

With ||F̂ (ℓ−1)−F 0H̃||F/
√
T = OP (γ1

√
Ka+γ2) = OP ((logN)T−1/2

√
Ka+N

−1/2),14 we have ||PF 0−
PF̂ (ℓ−1) ||op = OP ((logN)T−1/2

√
Ka+N

−1/2).Note that Lemma A.4(ii) ensures max1≤j≤pN ||X∗,j ||/
√
T

and max1≤j≤N ||U∗,j ||/
√
T are both bounded by an absolute constant. It follows that each entry

of the second term on the RHS of (A.10) is OP (logN ·
√
Ka +

√
T/N). Similarly, each entry of

the third term on the RHS is OP (logN ·
√
Ka +

√
T/N). These results, along with the fact that

logN · T−1/2
√
Ka = o(minimink∈Ji |B0

ki|) and N−1/2 = o(minimink∈Ji |B0
ki|) in Assumption A.5

imply that P (Ei,1) → 1.

Next, we consider Ei,2. Similar to the analysis for Ei,1, we can use Lemma A.5(ii) to show that each

entry of T−1/2(−Σ̃Jc
i ,Ji

Σ̃−1Ji,Ji ·X
′
∗,Ji+X′∗,Jc

i
)MF̂ (ℓ−1)(U∗,i+F

0λ0i ) is OP (KJ logN ·
√
Ka+KJ

√
T/N) =

o(
√
Tγ3). By the fact that γ3 = o(γ4), we have P (Ei,2) → 1, as (N,T ) → ∞.

(ii) Conditional on the event {B̂(ℓ) =s B
0}, we can follow the proof of Lemma 1 in Zhao and Yu

(2006) to establish the first order condition that

Σ̃Ji,Ji(B̂
(ℓ)
Ji,i

−B0
Ji,i) =

1

T
X′∗,JiMF̂ (ℓ−1)(F

0λ0i +U∗,i),

for i ∈ [N ]. Then∣∣∣B̂(ℓ)
Ji,i

−B0
Ji,i

∣∣∣ =

∣∣∣∣Σ̃−1Ji,Ji 1TX′∗,JiMF̂ (ℓ−1)(F
0λ0i +U∗,i)

∣∣∣∣
≤ c−1

∣∣∣∣ 1TX′∗,JiMF̂ (ℓ−1)F
0λ0i

∣∣∣∣+ c−1
∣∣∣∣ 1TX′∗,JiMF̂ (ℓ−1)U∗,i

∣∣∣∣ ≡ c−1(A1i +A2i),

14This claim holds for ℓ = 1 by Theorem 3.2. Given this claim, we can show that ||F̂ (ℓ) − F 0H̃||F/
√
T =

OP ((logN)T−1/2
√
Ka +N−1/2) for each ℓ using the results below.

37



where we use the fact that maxi

∥∥∥Σ̃−1Ji,Ji∥∥∥op ≤ c−1 w.p.a.1 by Lemma A.5(i). Note that uniformly in

i ∈ [N ] ,

A2
1i =

1

T 2

∣∣∣X′∗,JiMF̂ (ℓ−1)(F̂
(ℓ−1)H̃−1 − F 0)λ0i

∣∣∣2
=

1

T 2
tr
(
λ0′i (F̂

(ℓ−1)H̃−1 − F 0)′MF̂ (ℓ−1)X∗,JiX
′
∗,JiMF̂ (ℓ−1)(F̂

(ℓ−1)H̃−1 − F 0)λ0i

)
≤ ψmax

(
1

T
MF̂ (ℓ−1)X∗,JiX

′
∗,JiMF̂ (ℓ−1)

)
1

T

∥∥∥F̂ (ℓ−1)H̃−1 − F 0
∥∥∥2 ∥∥λ0i ∥∥2

= ψmax

(
1

T
X′∗,JiMF̂ (ℓ−1)X∗,Ji

)
1

T

∥∥∥F̂ (ℓ−1)H̃−1 − F 0
∥∥∥2 ∥∥λ0i ∥∥2

≤ c̄ki
1

T

∥∥∥F̂ (ℓ−1)H̃−1 − F 0
∥∥∥2 = ki ·OP[(γ1 + γ2)

2],

and

A2
2i =

∣∣∣∣ 1TX′∗,JiMF̂ (ℓ−1)U∗,i

∣∣∣∣2 ≤ 2

∣∣∣∣ 1TX′∗,JiU∗,i

∣∣∣∣2 + 2

∣∣∣∣ 1TX′∗,JiF̂
(ℓ−1) 1

T
F̂ (ℓ−1)′U∗,i

∣∣∣∣2 .
It is standard to show that

∣∣∣ 1TX′∗,JiU∗,i∣∣∣ ≤ k
1/2
i OP (T

−1/2 logN) uniformly in i. In addition,

∣∣∣∣ 1TX′∗,JiF̂
(ℓ−1) 1

T
F̂ (ℓ−1)′U∗,i

∣∣∣∣2 = tr

(
1

T 2
F̂ (ℓ−1)′X∗,JiX

′
∗,JiF̂

(ℓ−1) 1

T 2
F̂ (ℓ−1)′U∗,iU

′
∗,iF̂

(ℓ−1)
)

≤ ψmax

(
1

T 2
F̂ (ℓ−1)′X∗,JiX

′
∗,JiF̂

(ℓ−1)
)

1

T 2

∣∣∣F̂ (ℓ−1)′U∗,i

∣∣∣2
≤ ψmax

(
1

T
X∗,JiX

′
∗,Ji

)
1

T 2

∣∣∣F̂ (ℓ−1)′U∗,i

∣∣∣2
= ki ·OP[(γ1 + γ2)

2] uniformly in i,

where the last equality follows from the fact ψmax(
1
TX∗,JiX

′
∗,Ji) ≤ c̄ w.p.a.1 and maxi

1
T |F̂

(ℓ−1)′U∗,i|
= OP (γ1 + γ2) by similar arguments as used to obtain event (9) in the proof of Theorem 3.3. Then

uniformly in i ∈ [N ] , we have A2
2i ≤ ki ·OP[(γ1 + γ2)

2] and∣∣∣B̂(ℓ)
Ji,i

−B0
Ji,i

∣∣∣2 ≤ ki ·OP[(γ1 + γ2)
2].

It follows that

||X(B̂(ℓ) −B0)||2F
NT

=
1

N

N∑
i=1

∣∣∣X(B̂
(ℓ)
∗,i −B0

∗,i)
∣∣∣2

T
=

1

N

N∑
i=1

1

T
(B̂

(ℓ)
Ji,i

−B0
Ji,i)

′X′∗,JiX∗,Ji(B̂
(ℓ)
Ji,i

−B0
Ji,i)

′

≤ 1

N

N∑
i=1

∣∣∣B̂(ℓ)
Ji,i

−B0
Ji,i

∣∣∣2 ∥∥∥∥ 1TX′∗,JiX∗,Ji

∥∥∥∥
op

=
1

N

N∑
i=1

k2i ·OP[(γ1 + γ2)
2].
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Then the result in (ii) follows under Assumption A.5 (iii).

(iii) Note that Y −XB̂(ℓ) − F 0Λ0′ = U − X(B̂(ℓ) − B0). By the result in (ii) and Assumption

A.3(i),

1√
NT

∥∥∥U−X(B̂(ℓ) −B0)
∥∥∥
op

≤ 1√
NT

∥U∥op +
1√
NT

∥∥∥X(B̂(ℓ) −B0)
∥∥∥
op

≤ OP (γ2) +OP (γ1 + γ2) = OP (γ1 + γ2).

One can apply analyses similar to proof of Theorem 3.2 to obtain the desired result. ■

Proof of Theorem 3.5: Let Σ̂ = X′MF̂X/T . From the proof of Theorem 3.4, we have

Σ̂Ji,Ji(B̂Ji,i −B0
Ji,i) =

1

T
X′∗,JiMF̂F

0λ0i +
1

T
X′∗,JiMF̂U∗,i − γ4W

(1,i)sgn(B0
Ji,i). (A.11)

By Theorem 3.3 and Assumption A.5(i), maxk∈Ji wki = 0 w.p.a.1, which implies that γ4W
(1,i)sgn(B0

Ji,i
)

= op(T
−1/2).

Noting that the columns of F̂ /
√
T are the first R̂ eigenvectors of 1

NT (Y − XB̂(ℓ∗−1))(Y −
XB̂(ℓ∗−1))′, we have

F̂ VNT =
1

NT

(
Y −XB̂(ℓ∗−1)

)(
Y −XB̂(ℓ∗−1)

)′
F̂

=
1

NT

N∑
i=1

(
Y∗,i −X∗,JiB̂

(ℓ∗−1)
Ji,i

)(
Y∗,i −X∗,JiB̂

(ℓ∗−1)
Ji,i

)′
F̂ ,

where VNT is a diagonal matrix that consists of the R̂ largest eigenvalues of the matrix T ×T matrix

(NT )−1(Y −XB̂(ℓ∗−1))(Y −XB̂(ℓ∗−1))′, arranged in descending order along its diagonal line. One

can use a similar expansion as in the Proof of Proposition S1.1, to study MF̂ . The estimation error

of B̂(ℓ) depends on ℓ and the error of B̂(1), but part that is due to B̂(1) will decay fast. After finite

steps, we have that

SiΣ̂Ji,Ji(B̂Ji,i −B0
Ji,i) =

1

T
SiX

′
∗,JiMF 0U∗,i + oP (T

−1/2).

By arguments as used in the proof of Lemma A.2, we can readily show that
∥∥∥ 1
TX
′
∗,JiMF 0X∗,Ji − ΣJi,Ji

∥∥∥
F

= OP
(
KJT

−1/2 logN
)
and | 1√

T
X′∗,JiPF 0U∗,i − 1√

T
(F 0Σ−1F [ΣFX ]Ji,∗)

′U∗,i| = OP (K
1/2
J T−1/2 logN),

where [ΣFX ]Ji,∗ =
1
TE

[
F 0′X∗,Ji

]
is a R0 × ki matrix. It follows that

√
TSi(B̂Ji,i −B0

Ji,i) =
1√
T
Si(ΣJi,Ji)

−1(X∗,Ji − F 0Σ−1F [ΣFX ]Ji,∗)
′U∗,i + oP (1)

≡ T−1/2
T∑
t=1

z∗ituit + oP (1),

where z∗it = Si(ΣJi,Ji)
−1z0it and z

0
it denotes the tth column of the ki×T matrix (X∗,Ji−F 0Σ−1F [ΣFX ]Ji,∗)

′.
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Under Assumption A.1, {z∗ituit, t ≥ 1} is a martingale difference sequence (m.d.s.) and we can readily

verify the conditions of the martingale central limit theorem by straightforward moment calculations

and obtain
√
TSi(B̌Ji,i −B0

Ji,i
)
d→ N(0, σ2iΩi), where σ

2
i = E

(
u2it
)
. ■

B Nagaev inequality for time series

In various places, we need to a sharp probability bound for partial sums like T−1
∑T

t=1 yi,t−kujt, which

is nonlinear in shocks {ujt} and non-Gaussian. Wu (2005) provides a simple functional measure to

quantify the degree of dependence in nonlinear systems. With the dependence measure, Wu and Wu

(2016) establish a Nagaev-type inequality for nonlinear processes, under mild conditions.

In Theorem B.1 below, we aim to bound a partial sum of the form Sn =
∑n

i=1 aiei, where

the ai ∈ R are nonrandom, the scalar process {ei} has the form ei = g(..., εi−1, εi), where the εi

are independently and identically distributed (i.i.d.) random variables, and g(·) is a measurable

function. Letting Fi ≡ (..., εi−1, εi), we write ei = g(Fi). Then a coupled process e∗i can be defined

as e∗i = g(F∗i ), where F∗i = (..., ε−1, ε
∗
0, ε1, ..., εi−1, εi) and ε∗0 is an independent copy of ε0. Recall

that ||| · |||q ≡ (E| · |qq)1/q <∞. Assuming that |||ei|||q <∞ for some q ≥ 1, we define the functional

dependence measure

δi,q(e·) ≡ |||ei − e∗i |||q = |||g(Fi)− g(F∗i )|||q,

where e∗i = g(F∗i ). The measure δi,q(e·) reflects the effect of shock ε0 on ei. Accordingly, we assume

the cumulative effect of ε0 on {ei}i≥m to be summable and given by

∆m,q(e·) ≡
∞∑
i=m

δi,q(e·) <∞.

We can then define the dependence-adjusted norm (DAN):

||e·||q,α ≡ supm≥0(m+ 1)α∆m,q(e·).

With these definitions we present the following Nagaev inequality for time series as a simplified

version of Theorem 2 of Wu and Wu (2016).

Theorem B.1 Let a = (a1, ..., an)
′ and |a|q = (

∑n
i=1 |ai|q)1/q. Suppose that

∑n
i=1 a

2
i = n, E (ei) = 0,

and ||e·||q,α <∞ for some q > 2 and α > 1. Then for all x > 0,

P (|Sn| > x) ≤ C1
|a|qq||e·||qq,α

xq
+ C2exp

(
− C3x

2

n||e·||22,α

)
,

where C1, C2, C3 are constants that only depend of q and α.

The above lemma is used repeatedly in proving some technical lemmas that are needed in the

proof of our main results.
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Table 1: Model Selection Accuracy

Number of factors Step 1 Step 2 Step 3
DGP N T UER OER TPR FPR TPR FPR TPR FPR
1 30 100 0.0% 0.0% 97.4% 19.3% 98.8% 18.5% 93.7% 8.0%

30 200 0.0% 0.0% 99.6% 19.1% 99.9% 18.1% 99.4% 5.8%
30 400 0.0% 0.0% 99.9% 21.8% 100.0% 19.5% 99.9% 4.9%
60 100 0.0% 0.0% 96.8% 12.7% 98.2% 12.2% 90.5% 5.1%
60 200 0.0% 0.0% 99.9% 12.2% 100.0% 11.7% 99.1% 2.6%
60 400 0.0% 0.0% 100.0% 11.9% 100.0% 11.1% 99.9% 1.7%

2 30 100 0.0% 0.0% 86.2% 21.8% 83.9% 18.9% 94.0% 15.7%
30 200 0.0% 0.0% 95.3% 28.0% 93.7% 24.8% 99.4% 12.8%
30 400 0.0% 0.0% 99.2% 37.0% 98.7% 33.3% 99.9% 8.2%
60 100 0.0% 0.0% 76.7% 10.3% 76.5% 9.4% 90.6% 10.7%
60 200 0.0% 0.0% 88.9% 12.5% 89.7% 12.0% 99.2% 8.9%
60 400 0.0% 0.0% 96.4% 17.7% 95.8% 16.7% 100.0% 5.5%

3 30 100 0.0% 0.0% 93.2% 24.9% 92.3% 22.0% 96.5% 17.4%
30 200 0.0% 0.0% 98.1% 31.4% 97.6% 27.6% 99.6% 11.7%
30 400 0.0% 0.0% 99.5% 38.4% 99.3% 34.4% 99.7% 7.3%
60 100 0.0% 0.0% 88.1% 12.8% 88.4% 11.8% 95.9% 11.8%
60 200 0.0% 0.0% 96.1% 15.6% 95.5% 13.9% 99.8% 9.4%
60 400 0.0% 0.0% 98.9% 19.5% 98.6% 17.9% 100.0% 4.5%

Note: We report the under/over-estimation rate (UER and OER) of the number of factors in the UER and OER
columns, respectively. The TPR (true positive rate) columns report the average shares of relevant variables included.
The FPR (false positive rate) columns report the average shares of irrelevant variables included.
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Table 2: Root mean squared errors of the feasible and oracle transition matrix estimators

All entries Nonzero entries
DGP N T Oracle Step 1 Step 2 Step 3 Oracle Step 1 Step 2 Step 3
1 30 100 0.019 0.063 0.059 0.050 0.062 0.145 0.132 0.117

30 200 0.014 0.055 0.051 0.033 0.044 0.118 0.106 0.066
30 400 0.010 0.052 0.049 0.029 0.033 0.100 0.092 0.047
60 100 0.013 0.044 0.041 0.038 0.061 0.150 0.138 0.131
60 200 0.010 0.035 0.032 0.021 0.043 0.108 0.098 0.066
60 400 0.007 0.033 0.031 0.016 0.032 0.089 0.080 0.041

2 30 100 0.018 0.065 0.065 0.057 0.056 0.177 0.184 0.154
30 200 0.012 0.055 0.055 0.038 0.039 0.142 0.150 0.103
30 400 0.009 0.047 0.047 0.027 0.028 0.110 0.119 0.070
60 100 0.012 0.050 0.049 0.044 0.054 0.204 0.205 0.179
60 200 0.008 0.042 0.041 0.028 0.038 0.170 0.168 0.114
60 400 0.006 0.035 0.035 0.019 0.027 0.138 0.143 0.081

3 30 100 0.019 0.065 0.064 0.055 0.051 0.150 0.155 0.127
30 200 0.013 0.053 0.053 0.035 0.035 0.117 0.123 0.082
30 400 0.009 0.047 0.047 0.027 0.025 0.095 0.100 0.058
60 100 0.013 0.050 0.049 0.042 0.049 0.173 0.173 0.146
60 200 0.009 0.039 0.040 0.024 0.034 0.135 0.140 0.085
60 400 0.006 0.033 0.033 0.015 0.024 0.109 0.113 0.056

Note: We report the root mean squared errors (RMSEs) of the feasible and oracle transition matrix estimators.
Columns 4-7 report the RMSEs of all entries, and Columns 8-11 report the RMSEs of non-zero entries.

Table 3: Results of misspecified estiamtes

LASSO Conservative LASSO
DGP N T TPR FPR RMSEa RMSEb TPR FPR RMSEa RMSEb

1 30 100 78.7% 34.9% 0.115 0.208 78.4% 45.2% 0.178 0.227
30 200 88.9% 37.7% 0.094 0.178 88.1% 43.3% 0.129 0.173
30 400 95.3% 45.0% 0.083 0.150 94.5% 43.0% 0.103 0.134
60 100 71.0% 22.6% 0.086 0.216 72.8% 39.5% 0.161 0.240
60 200 86.7% 25.7% 0.070 0.179 87.0% 38.9% 0.114 0.175
60 400 94.9% 30.2% 0.058 0.148 95.3% 37.9% 0.083 0.128

2 30 100 86.2% 59.6% 0.150 0.202 81.9% 54.8% 0.211 0.233
30 200 95.0% 61.5% 0.107 0.152 91.7% 51.4% 0.139 0.159
30 400 98.9% 66.3% 0.080 0.113 97.7% 50.5% 0.098 0.110
60 100 77.0% 46.6% 0.135 0.218 74.1% 48.9% 0.222 0.263
60 200 91.6% 51.9% 0.100 0.165 86.8% 44.6% 0.143 0.175
60 400 98.3% 56.1% 0.072 0.120 96.7% 44.4% 0.097 0.116

3 30 100 89.2% 59.2% 0.139 0.186 85.7% 55.9% 0.196 0.215
30 200 96.2% 61.4% 0.102 0.141 94.0% 54.3% 0.133 0.148
30 400 99.1% 67.1% 0.079 0.107 98.3% 53.2% 0.096 0.106
60 100 82.0% 46.1% 0.126 0.203 79.8% 50.6% 0.208 0.247
60 200 94.0% 51.7% 0.093 0.151 90.5% 46.6% 0.135 0.164
60 400 98.8% 55.5% 0.068 0.110 97.6% 45.0% 0.091 0.109

Note: We report the true positive rate (TPR), false positive rate (FPR), root mean squared errors of all entries
(RMSEa) and nonzero entries (RMSEb) of misspecified estimates. We consider the LASSO estimator as in Kock and
Callot (2015) and a conservative LASSO estimator. The LASSO estimator was used to construct weights for the
conservative LASSO.
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Table 4: Connectedness measures across funds

Connectedness measures by estimates of VAR with CFs model
TICKER XLE XOP IYE OIH XLF KBE KRE XLY
νi 64.9% 59.1% 65.4% 58.0% 65.2% 56.8% 56.6% 72.0%
FROM 71.4% 65.4% 71.7% 64.3% 61.7% 61.3% 62.3% 51.8%
TOi 106.8% 86.0% 103.9% 71.5% 57.8% 72.6% 51.4% 37.3%
TICKER XHB ITB XRT IYR VNQ XLB XME XLK
νi 53.6% 49.5% 60.1% 50.7% 49.7% 67.2% 56.9% 70.5%
FROMi 60.5% 58.3% 36.5% 57.9% 58.6% 37.5% 44.1% 39.0%
TOi 56.3% 41.7% 19.0% 79.7% 74.4% 26.3% 37.2% 37.3%
TICKER SMH XLV IBB XLP XLU XLI GDX average
νi 54.8% 64.3% 50.7% 61.3% 50.6% 67.7% 31.0% ν̄ =56.1%

FROMi 31.9% 38.3% 28.8% 30.7% 29.7% 40.9% 27.7% d̄12 =49.8%

TOi 23.3% 34.1% 33.0% 21.2% 19.6% 20.7% 19.1%

Connectedness measures by estimates of pure VAR model
TICKER XLE XOP IYE OIH XLF KBE KRE XLY
FROMi 89.3% 87.1% 89.4% 87.0% 89.6% 86.8% 87.6% 90.9%
TOi 105.0% 79.5% 103.0% 77.7% 112.9% 97.0% 89.1% 110.5%
TICKER XHB ITB XRT IYR VNQ XLB XME XLK
FROMi 87.3% 86.3% 88.8% 85.7% 86.2% 90.1% 88.8% 89.8%
TOi 95.8% 80.8% 79.1% 94.0% 89.6% 105.6% 80.1% 103.8%
TICKER SMH XLV IBB XLP XLU XLI GDX average
FROMi 87.6% 88.1% 83.8% 88.4% 85.7% 89.8% 76.5% d̄12 =87.40%

TOi 74.8% 81.2% 60.8% 80.0% 60.0% 104.3% 45.8%

Note: Cyc, Rea, Natu, Tech, Heal, Def, Util, Indu and EMP stand for consumer cyclical, real estate,
natural resource, technology, health care, consumer defensive, utilities, industrials and equity precious
metals, respectively.

Figure 1: Structure of the transition matrices in the simulations
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Figure 2: Heat map of the transition matrices Ak’s

Figure 3: Heat map of D̃12

47



Online Supplement for
“High dimensional VAR with common factors”

Ke Miaoa, Peter C. B. Phillipsb and Liangjun Suc
a Institute of World Economy, School of Economics, Fudan University

Shanghai Institute of International Finance and Economics
b Yale University, University of Auckland,

University of Southampton, & Singapore Management University
c School of Economics and Management, Tsinghua University

This supplement contains four sections. Section S1 contains the asymptotic analysis of the oracle
least squares estimator and the proofs of the lemmas. Section S2 gives additional technical results
that are used in the proofs. Section S3 provides some further discussion of Assumptions A.1(vi) and
A.2. Section S4 provides some additional information for the empirical application.

S1 Analysis of oracle least squares estimator and supplementary
proofs

S1.1 Asymptotic analysis of oracle least squares estimator

This subsection studies the asymptotic properties of the oracle least squares estimator that is obtained
with information of Ji for i ∈ [N ] ≡ {1, ..., N}. Specifically, the oracle least squares estimator can be
written as

(B̌, F̌ ) ≡ argmin
(B,F )∈B∗×L

tr
[
(Y −XB)′MF (Y −XB)

]
= argmin

(B,F )∈B∗×L

N∑
i=1

[
(Y∗,i −X∗,JiBJi,i)

′MF (Y∗,i −X∗,JiBJi,i)
]
,

where B∗ ≡ {B ∈ RNp×N |BJc
i ,i

= 0 for i ∈ [N ]} and L ≡ {F ∈ RT×R0 |F ′F/T = IR0}. For each i, we
define a selector matrix Li such that XLi= X∗,Ji and L′iB∗,i = BJi,i. Recall that ki = |Ji| denotes
the cardinality of Ji.

We do not have a closed-form solution to the above minimization problem. Similar to equations
(11)-(12) of Bai (2009), we have the following relationships

B̌Ji,i = (X′∗,JiMF̌X∗,Ji)
−1X′∗,JiMF̌Y∗,i, (S1.1)

F̌ V̌NT =
1

NT

(
Y −XB̌

) (
Y −XB̌

)′
F̌ (S1.2)

=
1

NT

N∑
i=1

(
Y∗,i −X∗,JiB̌Ji,i

) (
Y∗,i −X∗,JiB̌Ji,i

)′
F̌ ,

where V̌NT is a diagonal matrix that consists of the R0 largest eigenvalues of the matrix (NT )−1

×
∑N

i=1(Y∗,i − X∗,JiB̌Ji,i)(Y∗,i − X∗,JiB̌Ji,i)
′, arranged in descending order along its diagonal. We

can follow the lead of Bai (2009) to expand equations (S1.1)-(S1.2).

Proposition S1.1 Suppose Assumptions A.1 and A.3-A.5 hold. Let Si denote an L× |Ji| selection
matrix such that ∥Si∥F is finite and L is a fixed integer. Then

Si
(
B̌Ji,i −B0

Ji,i

)
= Si(X

′
∗,JiMF 0X∗,Ji)

−1X′∗,JiMF 0U∗,i + oP (T
−1/2).

1



Proof of Proposition S1.1: Inserting the identity Y = XB0+F 0Λ0′+U into equation (S1.2), we
have

F̌ V̌NT − F 0Λ
0′Λ0

N

F 0′F̌

T
= (I1 + ...+ I8) F̌ , (S1.3)

where

I1 ≡ UΛ0F 0′/(NT ), I2 ≡ F 0Λ0′U′/(NT ), I3 ≡ UU′/(NT ),

I4 ≡ X(B̌ −B0)(B̌ −B0)′X′/(NT ), I5 ≡ −X(B̌ −B0)Λ0F 0′/(NT ), I6 ≡ −F 0Λ0′(B̌ −B0)′X′/(NT ),

I7 ≡ −X(B̌ −B0)U′/(NT ), I8 ≡ −U(B̌ −B0)′X′/(NT ).

We can easily show that (NT )−1||Iℓ||F = oP (1) for ℓ = 1, ..., 8. Premultiplying both sides of equation
(S1.3) by F̌ ′/T , we obtain ∥∥∥∥V̌NT − F̌ ′F 0

T

Λ0′Λ0

N

F 0′F̌

T

∥∥∥∥
F

= oP (1).

Given that F 0′F̌
T is asymptotically nonsingular, we have that VNT is invertible asymptotically. Specif-

ically, one can show that the rth diagonal element of V̌NT converges to the rth singular value of
ΣFΣΛ. Hence we can write (F̌ −F 0Ȟ)/

√
T = I∗1 + ...+ I∗8 , where Ȟ ≡ (Λ0′Λ0/N)(F 0′F̌ /T )V̌ −1NT and

I∗ℓ ≡ IℓF̌ V̌
−1
NT /

√
T for ℓ = 1, ..., 8. It can also be shown that Ȟ − H̃ → 0. Noting that

||X(B̌ −B0)/
√
NT ||2F =

1

N

N∑
i=1

(B̌Ji,i −B0
Ji,i)

′X
′
∗,JiX∗,Ji
T

(B̌Ji,i −B0
Ji,i)

≤ 1

N

N∑
i=1

c̄ki · |B̌Ji,i −B0
Ji,i|

2 ≤ c̄KJ
1

N
||B̌ −B0||2F,

we have
||X(B̌ −B0)/

√
NT ||F = OP (KJdNT ), (S1.4)

where dNT ≡ N−1/2||B̌ −B0||F. We carry dNT in the following analysis and determine it later.
Let Q̌1 = bdiag{T−1X′∗,J1MF 0X∗,J1 , ..., T

−1X′∗,JNMF 0X∗,JN } be a block diagonal matrix with the

ith diagonal block given by T−1X′∗,JiMF 0X∗,Ji . Let a
0
ij ≡ λ0′i (Λ

0′Λ0/N)−1λ0j . Let Q̌2 be a (
∑N

i=1 ki)×
(
∑N

i=1 ki) block partitioned matrix with the (i, j)th block given by (NT )−1a01ijX
′
∗,JiMF 0X∗,Jj for

i, j ∈ [N ] . That is,

Q̌2 =


(NT )−1a011X

′
∗,J1MF 0X∗,J1 · · · (NT )−1a01NX

′
∗,J1MF 0X∗,JN

(NT )−1a021X
′
∗,J2MF 0X∗,J1 · · · (NT )−1a02NX

′
∗,J2MF 0X∗,JN

...
. . .

...
(NT )−1a0N1X

′
∗,JNMF 0X∗,J1 · · · (NT )−1a0NNX

′
∗,JNMF 0X∗,JN

 . (S1.5)

Let Ǔ ≡[T−1(X′∗,J1MF 0U∗,1)
′, ..., T−1(X′∗,JNMF 0U∗,N )

′]′, which is a
∑N

i=1 ki × 1 vector.
To continue the proof, we need the following four lemmas whose proofs are given at the end of

the next subsection.

Lemma S1.2 Suppose that Assumptions A.1 and A.3-A.5 hold. Let δNT =
√
N ∧

√
T . Then

(i) ∥I∗ℓ ∥F = OP (δ
−1
NT ) for ℓ = 1, 2, 3, and

(ii) ∥I∗ℓ ∥F = OP (KJdNT ) for ℓ = 4, 5, ..., 8,

(iii) T−1/2
∥∥F̌ − F 0Ȟ

∥∥ = OP (δ
−1
NT +KJdNT ).

2



Lemma S1.3 Suppose that Assumptions A.1 and A.3-A.5 hold. Then
(i) T−1F 0′(F̌ − F 0Ȟ) = OP (δ

−1
NTKJdNT + δ−2NT );

(ii) ȞȞ ′ − (F 0′F 0/T )−1 = OP (δ
−1
NTKJdNT + δ−2NT );

(iii) T−1U′∗,i(F̌ − F 0Ȟ) = OP (δ
−2
NT + δ−1NTKJdNT );

(iv) T−1X′∗,i(F̌ − F 0Ȟ) = OP (δ
−1
NTKJdNT + δ−2NT ).

Lemma S1.4 Suppose that Assumptions A.1 and A.3-A.5 hold. Let Si be an arbitrary L× ki non-
random matrix such that ∥Si∥F ≤ C <∞ and L is a fixed integer. Then

(i) ||PF̌ − PF 0 ||F = OP (KJdNT + δ−2NT );
(ii) T−1SiX

′
∗,Ji(PF̌ − PF 0)U∗,i = OP (δ

−2
NT + δ−1NTKJdNT );

(iii) T−1SiX
′
∗,JiMF 0(F̌−F 0Ȟ)Ȟ−1λ0i = − 1

NT SiX
′
∗,JiMF 0X(B̌−B0)Λ0( 1

NΛ0′Λ0)−1λ0i+OP (δ
−2
NT+

δ−1NTKJdNT ).

Lemma S1.5 Suppose that Assumptions A.1 and A.3-A.5 hold. Then
(i)
∣∣Q̌−11 Q̌2Q̌

−1
1 Ǔ

∣∣
∞ = OP (KJ [T

−1(logN)2 + (logN)(NT )−1/2]);

(ii) N1/2|ΓQ̌−11 Q̌2Q̌
−1
1 Ǔ| = OP (KJ [T

−1(logN)2 + (logN)(NT )−1/2]) = oP (T
−1/2) for any con-

formable square matrix Γ with ∥Γ∥op = O (1) ;

(iii) ψmax(Q̌
−1/2
1 Q̌2Q̌

−1/2
1 ) < 1 with probability approaching one (w.p.a.1).

Note that we allow ki to be divergent. For a ki-vector Ai, we introduce the weighted norm ∥·∥Si

such that ∥Ai∥Si
= |SiAi| , where the number of rows Si is given by L, a fixed integer, and ∥Si∥F

is bounded above by a constant. We denote Ai = oP ∗ (cNT ) if ∥Ai∥Si
= oP (cNT ) for any Si with

bounded Frobenius norm. Define OP ∗ analogously.

By virtue of the identity Y∗,i = X∗,JiB
0
Ji,i

+ F 0λ0i +U∗,i and (S1.1), we obtain

T−1X′∗,JiMF̌X∗,Ji(B̌Ji,i −B0
Ji,i) = T−1X′∗,JiMF̌ (F

0λ0i +U∗,i).

For T−1X′∗,JiMF̌U∗,i, we have

T−1X′∗,JiMF̌U∗,i = T−1X′∗,JiMF 0U∗,i − T−1X′∗,Ji(PF̌ − PF 0)U∗,i

= T−1X′∗,JiMF 0U∗,i +OP ∗(δ−2NT + δ−1NTKJdNT ),

where the second equality holds by Lemma S1.4(ii). For T−1X′∗,JiMF̌F
0λ0i , we have

T−1X′∗,JiMF̌F
0λ0i = −T−1X′∗,JiMF̌ (F̌ − F 0Ȟ)Ȟ−1λ0i

= −T−1X′∗,JiMF 0(F̌ − F 0Ȟ)Ȟ−1λ0i − T−1X′∗,Ji(PF 0 − PF̌ )(F̌ − F 0Ȟ)Ȟ−1λ0i

=
1

NT
X′∗,JiMF 0X(B̌ −B0)Λ0(

1

N
Λ0′Λ0)−1λ0i +OP ∗(δ−2NT + δ−1NTKJdNT ),

where the last equality follows from Lemmas S1.4(i) and (iii) and S1.2(iii). It follows that for each
i ∈ [N ], we have

T−1X′∗,JiMF 0X∗,Ji(B̌Ji,i−B0
Ji,i) =

1

T
X′∗,JiMF 0U∗,i+

1

NT
X′∗,JiMF 0X(B̌−B0)Λ0(

1

N
Λ0′Λ0)−1λ0i +Ři,

(S1.6)
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where Ři = OP ∗(δ−2NT + δ−1NTKJdNT ) and its exact form is given by

Ři = −T−1X′∗,Ji(PF̌ − PF 0)U∗,i − T−1X′∗,Ji(PF 0 − PF̌ )(F̌ − F 0Ȟ)Ȟ−1λ0i

−T−1X′∗,JiMF 0(F̌ − F 0Ȟ)Ȟ−1λ0i −
1

NT
X′∗,JiMF 0X(B̌ −B0)Λ0(

1

N
Λ0′Λ0)−1λ0i .

Let β̌ = (B̌′J1,1, ..., B̌
′
JN ,N

)′ and β0 = (B0′
J1,1

, ..., B0
JN ,N

). Then (S1.6) can be written as follows:

(Q̌1 − Q̌2)(β̌ − β0) = Ǔ+ Ř, (S1.7)

where Ř = (Ř′1, ..., Ř
′
N ) and Ǔ = (Ǔ ′1, ..., Ǔ

′
N ) with Ǔi = T−1X′∗,JiMF 0U∗,i. Note that the minimum

eigenvalue of Q̌1 is bounded below by some constant w.p.a.1; see Lemma A.5(i). Following the proof
of Lemmas S1.4(ii)-(iii) and using Lemma S1.2(iii), we can also show that∣∣Ř∣∣∞ = OP ((δ

−2
NT + δ−1NTKJdNT ) logN) and N−1/2

∣∣Ř∣∣ = OP (δ
−2
NT + δ−1NTKJdNT ). (S1.8)

Rewriting (S1.7) gives
β̌ − β0 = Q̌−11 Ǔ+Q̌−11 Q̌2(β̌ − β0) + Q̌−11 Ř, (S1.9)

and by iterating (S1.9) ℓ ≥ 2 times we obtain

β̌ − β0

= Q̌−11 Ǔ+Q̌−11 Ř+Q̌−11 Q̌2Q̌
−1
1 Q̌2(β̌ − β0) + Q̌−11 Q̌2Q̌

−1
1 (Ǔ+ Ř)

= Q̌−11 Ǔ+Q̌−11 Ř+Q̌
−1/2
1 [Q̌

−1/2
1 Q̌2Q̌

−1/2
1 ]Q̌

−1/2
1 Q̌2(β̌ − β0) + Q̌

−1/2
1 [Q̌

−1/2
1 Q̌2Q̌

−1/2
1 ]Q̌

−1/2
1 (Ǔ+ Ř)

= Q̌−11 Ǔ+Q̌−11 Ř+Q̌
−1/2
1 [Q̌

−1/2
1 Q̌2Q̌

−1/2
1 ]2Q̌

−1/2
1 Q̌2(β̌ − β0)

+Q̌
−1/2
1

2∑
l=1

[Q̌
−1/2
1 Q̌2Q̌

−1/2
1 ]lQ̌

−1/2
1 (Ǔ+ Ř)

= ...

= Q̌−11 Ǔ+Q̌−11 Ř+ Q̌
−1/2
1 [Q̌

−1/2
1 Q̌2Q̌

−1/2
1 ]ℓQ̌

−1/2
1 Q̌2(β̌ − β0)

+Q̌
−1/2
1

ℓ∑
l=1

[Q̌
−1/2
1 Q̌2Q̌

−1/2
1 ]lQ̌

−1/2
1 Ǔ+ Q̌

−1/2
1

ℓ∑
l=1

[Q̌
−1/2
1 Q̌2Q̌

−1/2
1 ]lQ̌

−1/2
1 Ř

≡ Q̌−11 Ǔ+ Ř1 + Ř2 + Ř3 + Ř4, (S1.10)

where we suppress the dependence of Ř2, Ř3 and Ř4 on ℓ. Define a ki×
∑N

j=1 kj selection matrix Si
such that B̌Ji,i −B0

Ji,i
= Si(β̌ − β0). Then

B̌Ji,i −B0
Ji,i = SiQ̌−11 Ǔ+ SiQ̌−11 Ř+SiQ̌

−1/2
1 [Q̌

−1/2
1 Q̌2Q̌

−1/2
1 ]ℓQ̌

−1/2
1 Q̌2(β̌ − β0)

+SiQ̌
−1/2
1

ℓ∑
l=1

[Q̌
−1/2
1 Q̌2Q̌

−1/2
1 ]lQ̌

−1/2
1 Ǔ+ SiQ̌

−1/2
1

ℓ∑
l=1

[Q̌
−1/2
1 Q̌2Q̌

−1/2
1 ]lQ̌

−1/2
1 Ř

≡ SiQ̌−11 Ǔ+ Ř1i + Ř2i + Ř3i + Ř4i. (S1.11)

Note that Řl = (Ř′l1, ..., Ř
′
lN )
′ and SiŘl = Řli for l = 1, 2, 3, 4. Let χij ≡ T−1X ′∗,JiMF 0X ′∗,Jj for

i, j ∈ [N ] .
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We first study Ř1i. Noting that |a′b| ≤ |a|1 |b|∞ for any two conformable vectors a and b, we have∣∣SiŘ1i

∣∣2 =
∣∣Siχ−1ii Ři∣∣2 = OP (δ

−4
NT + δ−2NTK

2
Jd

2
NT ), and (S1.12)

N−1
∣∣Ř1

∣∣2 = N−1
N∑
i=1

∣∣Ř1i

∣∣2 = N−1
N∑
i=1

∣∣SiQ̌−11 Ř
∣∣2 ≤ max

i∈[N ]

∥∥SiQ̌−11

∥∥2
op
N−1

N∑
i=1

∣∣Ři∣∣2
= OP (N

−1 ∣∣Ř∣∣2) = OP (δ
−4
NT + δ−2NTK

2
Jd

2
NT ) = oP

(
T−1 + d2NT

)
. (S1.13)

Next, we study Ř2i. By Lemma S1.5(iii),
∥∥∥[Q̌−1/21 Q̌2Q̌

−1/2
1 ]ℓ

∥∥∥
op

=
∥∥∥Q̌−1/21 Q̌2Q̌

−1/2
1

∥∥∥ℓ
op

→ 0 at the

exponential rate as ℓ→ ∞. This ensures that

max
i

∣∣SiŘ2i

∣∣ =
∣∣∣SiSiQ̌−1/21 [Q̌

−1/2
1 Q̌2Q̌

−1/2
1 ]ℓQ̌

−1/2
1 Q̌2(β̌ − β0)

∣∣∣
≤

∥∥∥SiSiQ̌−1/21

∥∥∥
op

∥∥∥Q̌−1/21 Q̌2(β̌ − β0)
∥∥∥∥∥∥Q̌−1/21 Q̌2Q̌

−1/2
1

∥∥∥ℓ
op

= oP (T
−1/2),(S1.14)

N−1
∣∣Ř2

∣∣2 = N−1
N∑
i=1

∣∣Ř2i

∣∣2 = oP (T
−1), (S1.15)

for sufficiently large ℓ.

To study Ř3i, let Γ0ℓ = Q̌
−1/2
1

∑ℓ−1
l=0 [Q̌

−1/2
1 Q̌2Q̌

−1/2
1 ]lQ̌

1/2
1 . Then

Ř3i = SiQ̌
−1/2
1

ℓ−1∑
l=0

[Q̌
−1/2
1 Q̌2Q̌

−1/2
1 ]lQ̌

1/2
1 Q̌−11 Q̌2Q̌

−1
1 Ǔ = SiΓ0ℓQ̌

−1
1 Q̌2Q̌

−1
1 Ǔ.

By Lemma S1.5(iii), ∥Γ0ℓ∥op ≤
∥∥∥Q̌−1/21

∥∥∥
op

∑ℓ−1
l=0

∥∥∥Q̌−1/21 Q̌2Q̌
−1/2
1

∥∥∥l
op

∥∥∥Q̌1/2
1

∥∥∥
op

= OP (1) for each ℓ.

Then by Lemma S1.5(i)-(ii),∣∣SiŘ3i

∣∣ = OP (KJ [T
−1(logN)2 + logN (NT )−1/2]) = oP (T

−1/2) and (S1.16)

N−1
∣∣Ř3

∣∣2 = N−1
N∑
i=1

∣∣Ř3i

∣∣2 = oP
(
T−1

)
. (S1.17)

To studyR4i, let Γℓ =
∑ℓ

l=1[Q̌
−1/2
1 Q̌2Q̌

−1/2
1 ]l. ThenR4i = SiQ̌

−1/2
1 ΓℓQ̌

−1/2
1 Ř.Note that SiSiQ̌

−1/2
1

×ΓℓQ̌
−1/2
1 has a low dimension of rows such that∥∥∥SiSiQ̌−1/21 Γ1ℓQ̌

−1/2
1

∥∥∥2
F

= tr
(
SiSiQ̌

−1/2
1 ΓℓQ̌

−1
1 ΓℓQ̌

−1/2
1 S′iC ′i

)
≤ ∥Γℓ∥2op

∥∥Q̌−11

∥∥2
op

∥Si∥2op ∥Si∥
2
F = OP (1) uniformly in i ∈ [N ] ,

where we use the fact that ∥Γℓ∥op ≤
∑ℓ

l=1

∥∥∥Q̌−1/21 Q̌2Q̌
−1/2
1

∥∥∥l
op

= OP (1) by Lemma S1.5(iii),
∥∥Q̌−11

∥∥
op

=

[ψmin(Q̌1)]
−1 = OP (1) , ∥Si∥op = 1, and maxi∈[N ] ∥Si∥F = O (1) by assumption. Write Γℓ = {Γℓ,ij}

as a block partitioned matrix with Γℓ,ij being a ki × kj matrix. Then

SiQ̌
−1/2
1 ΓℓQ̌

−1/2
1 = χ

−1/2
ii (Γℓ,i1χ

−1/2
11 ,Γℓ,i2χ

−1/2
22 , ...,Γℓ,iNχ

−1/2
NN ).

5



Our assumptions ensure that Γℓ is absolutely column summable, which implies that the absolute

sum of each row of SiQ̌
−1/2
1 ΓℓQ̌

−1/2
1 can be bounded by a constant multiplied by maxi∈[N ]

∥∥χ−1ii ∥∥op
Consequently,

|SiR4i|2 =

L∑
l=1

∣∣∣[Si]l,∗SiQ̌−1/21 ΓℓQ̌
−1/2
1 Ř

∣∣∣2 ≤ L∑
l=1

∣∣∣[Si]l,∗SiQ̌−1/21 ΓℓQ̌
−1/2
1

∣∣∣2
1

∣∣Ř∣∣2
max

≤ OP (max
i∈[N ]

∥∥χ−1ii ∥∥op) ∣∣Ř∣∣2∞ = OP [δ
−4
NT + δ−2NTK

2
Jd

2
NT (logN)2], (S1.18)

and

N−1
∣∣Ř4

∣∣2 = N−1
N∑
i=1

∣∣Ř4i

∣∣2 = N−1
N∑
i=1

∣∣∣SiQ̌−1/21 ΓℓQ̌
−1/2
1 Ři

∣∣∣2
≤ max

i∈[N ]

∥∥∥SiQ̌−1/21 ΓℓQ̌
−1/2
1

∥∥∥2
F
N−1

N∑
i=1

∣∣Ři∣∣2 = OP (N
−1 ∣∣Ř∣∣2)

= OP (δ
−4
NT + δ−2NTK

2
Jd

2
NT ) = oP

(
T−1 + d2NT

)
. (S1.19)

In sum, we have shown that

N−1
4∑
l=1

∣∣Řl

∣∣2 = oP
(
T−1 + d2NT

)
and

∣∣∣∣∣Si
4∑
l=1

Řli

∣∣∣∣∣ = oP (T
−1/2) +OP (K

3/2
J δ−1NTdNT logN). (S1.20)

In addition,

N−1|Q̌−11 Ǔ|2 =
1

N

N∑
i=1

∣∣χ−1ii Ǔi∣∣2 = 1

N

N∑
i=1

∣∣∣∣χ−1ii 1

T
X′∗,JiMF 0U∗,i

∣∣∣∣2

≤ max
i

∥∥χ−1ii ∥∥2op 1

N

N∑
i=1

∣∣∣∣ 1TX′∗,JiMF 0U∗,i

∣∣∣∣2 = OP
(
T−1

)
(S1.21)

Combining the results in (S1.10), (S1.13), (S1.15), (S1.17), (S1.19), and (S1.21), we have

N−1
∣∣β̌ − β0

∣∣2 = OP
(
T−1

)
+ oP

(
d2NT

)
= OP

(
T−1

)
+ oP

(
N−1

∣∣β̌ − β0
∣∣2) .

It follows that dNT ≡ N−1/2||B̌ −B0||F = N−1/2
∣∣β̌ − β0

∣∣ = OP (T
−1/2).

Further, by (S1.11) and the results in (S1.12), (S1.14), (S1.16), and (S1.18), we have

Si(B̌Ji,i −B0
Ji,i) = SiSiQ̌−11 Ǔ+OP (K

3/2
J δ−1NTdNT logN) + oP (T

−1/2)

= Si(
1

T
X′∗,JiMF 0X∗,Ji)

−1 1

T
X′∗,JiMF 0U∗,i + oP (T

−1/2),

where the second equality holds by the fact that KJδ
−1
NT logN = oP (1). This completes the proof of

the proposition. ■
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S2 Proofs of the technical lemmas in Appendix A

In this section, we prove the technical lemmas in Appendix A by calling upon some additional
technical lemmas in Subsection S2.1.
Proof of Lemma A.1. The proof follows from that of Lemma C.2 in Chernozhukov et al. (2021)
(2021). ■

Proof of Lemma A.2. (i) By direct calculation, we have that

1

T

∥∥U′X∥∥
max

= max
1≤l≤p

max
1≤i≤N

max
1≤j≤N

∣∣∣∣∣ 1T
T∑
t=1

yi,t−lujt

∣∣∣∣∣ .
By Lemma S2.1 and Theorem B.1 in the next section, we have that for some constants C1, C2 and
c1

P

(∣∣∣∣∣
T∑
t=1

yi,t−lujt

∣∣∣∣∣ > Tγ1
2

)
≤ 2q/2C1

T

(Tγ1)
q/2

+ C2exp

(
−C3(Tγ1)

2

4T

)
= 2q/2C1

T 1−q/4

(c1logN)q/2
+ C2exp

(
−C3(c1logN)2

4

)
= C ′1T

1−q/4(logN)−q/2 + C ′2N
−clogN ,

where the first equality holds by inserting γ1 = c1T
−1/2 logN and the second equality holds by

redefining the absolute constants c, C ′1 and C ′2. Then, by the union bound we have

P

(
1

T

∥∥U′X∥∥
max

>
γ1
2

)
≤ p

∑
i,j

max
1≤l≤p

P

(∣∣∣∣∣
T∑
t=1

yi,t−lujt

∣∣∣∣∣ > Tγ1
2

)
≤ pC ′1N

2T 1−q/4(logN)−q/2 + pC ′2N
2−clogN .

Letting C = C ′1 ∨ C ′2, we have proved the desired result in (i).
(ii) Noting that PF 0 = F 0(F 0′F 0)−1F 0′, we have

1

T

∥∥U′PF 0X
∥∥
max

=
1

T
||U′F 0(F 0′F 0)−1F 0′X||max

≤

∥∥∥∥∥
(
F 0′F 0

T

)−1∥∥∥∥∥
op

max
1≤i≤Np

∥∥∥∥F 0′X∗,i
T

∥∥∥∥ · max
1≤i≤N

∥∥∥∥F 0′U∗,i
T

∥∥∥∥ .
As in the proof of (i), we can show that

P

(
max

1≤r≤R0
max
1≤i≤N

∣∣∣∣∣
T∑
t=1

f0r,tuit

∣∣∣∣∣ > Tγ1

)
≤ C1NT

1−q/4(logN)−q/2 + C2N
1−clogN .

By Lemma A.3 below and choosing c̄ = 1
2 [ψmin (ΣF )]

−1, we can readily show that

P

(∥∥∥(F 0′F 0/T
)−1∥∥∥

op
> c̄

)
≤ C1T

1−q/2 + C2 exp(−cT ).

Similarly, max1≤i≤Np
∥∥F 0′X∗,i/T

∥∥ is bounded by some constant c̄ with probability larger than 1−
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[C1pNT
1−q/2 + C2pN exp(−cT )]. Consequently, we have proved (ii). ■

Proof of Lemma A.3. By Lemma S2.1 and Theorem B.1 in the next Section, we have

P

(∣∣∣∣∣
T∑
t=1

f0t,rf
0
t,l

− E(f0t,rf
0
t,l
)

∣∣∣∣∣ ≥ xT 1/2

)
≤ C1x

−q/2T 1−q/4 + C2exp(−C3x
2)

for some absolute constants C1, C2, and C3. Applying the union bound yields the desired result. ■

Proof of Lemma A.4. (i) By arguments similar to those used in the proof of Theorem 3.2, we can
establish the result.

(ii) By the proof of Proposition 2.1, E(y2it) is bounded uniformly in (i, t). By direct calculations,
we have that

(max1≤j≤pN |X∗,j |/
√
T )2 = max1≤i≤Nmax1≤l≤p

1

T

T∑
t=1

y2i,t−l

≤ max1≤i≤Nmax1≤l≤p
1

T

∣∣∣∣∣
T∑
t=1

[y2i,t−l − E(y2i,t−l)]

∣∣∣∣∣+ c̄,

for some constant c̄ > 0. By Lemma S2.1 and Theorem B.1 in the next section, we have

P

(∣∣∣∣∣
T∑
t=1

[y2i,t−l − E(y2i,t−l)]

∣∣∣∣∣ > c̄T

)
≤ 2q/2C1

T

(c̄T )q/2
+ C2exp

(
−C3(c̄T )

2

4T

)
= C ′1T

1−q/2 + C ′2exp (−C3T ) .

Applying the union bound delivers the first result. The second result can be shown analogously.
(iii) The proof is similar to that of (ii) and omitted.
(iv) To proceed, we operate conditional on ||T−1X′F 0−ΣXF ||max ≤ c̄T−1/2 logN , ||F̃−F 0H̃||F/

√
T ≤

c̄(γ1
√
Ka ∨ γ2), max1≤j≤pN |X∗,j |/

√
T ≤ c̄, and T−1||F 0′X||1 ≤ c̄. One can easily show that these

joint events hold with probability at least 1− c̄[pN(T 1−q/4(logN)−q/2 ∨ e−cT ) + pN1−c logN ]. By the
triangle inequality, we have

||Σ̃− Σ||max ≤ ||T−1X′X− ΣX ||max + ||T−2X′F̃ F̃ ′X−ΣXFΣ
−1
F Σ′XF ||max.

For the first term on the right hand side (RHS) of the last equation, we can apply similar arguments
as used in the proof of part (ii) to establish that ||T−1X′X−ΣX ||max ≤ γ3/2 with probability larger
than 1− c̄p2[N2T 1−q/4(logN)−q/2 +N2−c logN ]. For the second term, we have

||T−2X′F̃ F̃ ′X−ΣXFΣ
−1
F Σ′XF ||max ≤ 2||T−2X′(F̃ − F 0H̃)F̃ ′X||max

+||T−2X′(F̃ − F 0H̃)(F̃ − F 0H̃)′X||max

+||T−2X′F 0H̃H̃ ′F 0′X−ΣXFΣ
−1
F Σ′XF ||max.

Noting that ||F̃ ||F/
√
T = R0, we have

||T−2X′(F̃ − F 0H̃)F̃ ′X||max ≤ R0( max
1≤j≤pN

|X∗,j |/
√
T )2 · ||F̃ − F 0H̃||F/

√
T

≤ c̄(γ1
√
Ka ∨ γ2)

with probability at least 1− c̄′[pN2T 1−q/4(logN)−q/2 + pN2−c logN ]. From the proof of Theorem 3.2,
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(F 0H̃)′F 0H̃/T = IR0 . This implies that H̃H̃ ′ = (F 0′F 0/T )−1. Then

||T−2X′F 0H̃H̃ ′F 0′X−ΣXFΣ
−1
F Σ′XF ||max

= ||T−2X′F 0(F 0′F 0/T )−1F 0′X−ΣXFΣ
−1
F ΣXF ||max

≤ ||(T−1X′F 0−ΣXF )(F
0′F 0/T )−1T−1F 0′X||max + ||ΣXF [(F 0′F 0/T )−1 − Σ−1F ]T−1F 0′X||max

+||ΣXFΣ−1F (T−1F 0′X−Σ′XF )||max.

For ||(T−1X′F 0−ΣXF )(F
0′F 0/T )−1T−1F 0′X||max, we have

||(T−1X′F 0−ΣXF )(F
0′F 0/T )−1T−1F 0′X||max ≤ ||T−1X′F 0−ΣXF ||max · ||(F 0′F 0/T )−1T−1F 0′X||1

≤ c̄||T−1X′F 0−ΣXF ||max ≤ c̄T−1/2 logN.

The other two terms can be bounded similarly.
(v) This result can be proved by arguments as used in the proof of Lemma A.2 (i). With the

bound ||Σ̃− Σ||max ≤ γ3, the proof is similar to Lemma 10.1 in van de Geer and Bühlmann (2009).
Let v ∈ RNp such that |vJc |1 ≤ 3|vJ |1, and |J | ≤ KJ . One has

|v′Σ̃v − v′Σv| = |v′(Σ̃− Σ)v| ≤ |v|1 · |(Σ̃− Σ)v|∞
≤ ||Σ̃− Σ||max|v|21 ≤ γ3|v|21
≤ 16γ3|vJ |21 ≤ 16KJγ3 · |vJ |22.

After some rearrangement, we have

v′Σ̃v

|vJ |22
≥ v′Σv

|vJ |22
− 16KJγ3 ≥

v′Σv

|v|22
− 16KJγ3

≥ ψmin(Σ)− 16KJγ3 ≥ ψmin(Σ)/2.

It follows that the restricted eigenvalue condition is satisfied with κΣ̃(KJ) ≤ ψmin(Σ)/2. ■

Proof of Lemma A.5. Let Σ̂ ≡ T−1X′MF 0X. Then we denote the two types of submatrices of Σ̂
as Σ̂Ji,Ji ≡ T−1X′∗,JiMF 0X∗,Ji and Σ̂Jc

i ,Ji
= T−1X′∗,Jc

i
MF 0X∗,Ji for i ∈ [N ]. Then we have that

max
i∈[N ]

||Σ̂Ji,Ji − Σ̃Ji,Ji ||op = max
i∈[N ]

T−1||X′∗,Ji(PF 0 − PF̃ )X∗,Ji ||op

≤ KJ · T−1||X′(PF 0 − PF̃ )X||max

≤ KJ · ||PF 0 − PF̃ ||op · max
1≤j≤Np

T−1|X∗,j |2 = oP (1).

Similarly, we have that maxi∈[N ] ||Σ̂Jc
i ,Ji

− Σ̃Jc
i ,Ji

||max = oP (1). To prove the lemma, it suffices to

establish that (a) mini∈[N ] ψmin(Σ̂Ji,Ji) > c and (b) maxi∈[N ]maxj∈Jc
i
||T−1X′∗,jMF 0X∗,Ji ||max < c̄

for some constants c and c̄ w.p.a.1.
(a) Recall the decomposition in Section 2.2, and let X = X(u) +X(f), where the tth rows of X(u)

and X(f) are X
(u)′
t and X

(f)′
t respectively. To establish mini∈[N ] ψmin(Σ̂Ji,Ji) > c, we decompose

Σ̂Ji,Ji to

Σ̂Ji,Ji = Σ̂
(u)
Ji,Ji

+ Σ̂
(f)
Ji,Ji

+ T−1X
(u)′
∗,JiMF 0X

(f)
∗,Ji + T−1X

(f)′
∗,JiMF 0X

(u)
∗,Ji ≡ S1i + S2i + S3i + S4i,

where Σ̂
(u)
Ji,Ji

≡ T−1X
(u)′
∗,JiMF 0X

(u)
∗,Ji and Σ̂

(f)
Ji,Ji

≡ T−1X
(f)′
∗,JiMF 0X

(f)
∗,Ji .
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First, we consider S1i. Decomposing Σ̂
(u)
Ji,Ji

as

Σ̂
(u)
Ji,Ji

=
1

T
X

(u)′
∗,JiX

(u)
∗,Ji −

1

T
X

(u)′
∗,JiPF 0X

(u)
∗,Ji ,

it follows that

min
i∈[N ]

ψmin(Σ̂
(u)
Ji,Ji

) ≥ min
i∈[N ]

ψmin(Σ
(u)
Ji,Ji

)−max
i∈[N ]

|| 1
T
X

(u)′
∗,JiX

(u)
∗,Ji − Σ

(u)
Ji,Ji

||op −max
i∈[N ]

|| 1
T
X

(u)′
∗,JiPF 0X

(u)
∗,Ji ||op.

Uniformly across i, one has ψmin(Σ
(u)
Ji,Ji

) ≥ ψmin(Σ
(u)
X ), where ψmin(Σ

(u)
X ) is bounded below by Propo-

sition 2.1. By inequality

max
i∈[N ]

|| 1
T
X

(u)′
∗,JiX

(u)
∗,Ji − Σ

(u)
Ji,Ji

||op ≤ KJ max
i∈[N ]

|| 1
T
X

(u)′
∗,JiX

(u)
∗,Ji − Σ

(u)
Ji,Ji

||max

≤ KJ · || 1
T
X(u)′X(u) − Σ

(u)
X ||max = OP (KJT

−1/2 logN) = oP (1).

Therefore, we have established that maxi∈[N ] || 1TX
(u)′
∗,JiX

(u)
∗,Ji − Σ

(u)
Ji,Ji

||op = oP (1). Similarly, we can

show that maxi∈[N ] || 1TX
(u)′
∗,JiPF 0X

(u)
∗,Ji ||op = oP (1), and with similar arguments we can show that

S3i + S4i are uniformly oP (1). Hence

min
i∈[N ]

ψmin(Σ̂Ji,Ji) ≥ min
i∈[N ]

ψmin(S1i + S2i) + oP (1) ≥ min
i∈[N ]

ψmin(S1i) + oP (1),

where the second inequality is due to the fact that S2i is positive semi-definite for all i.
(b) The proof is analogous to that of (a) and thus omitted. ■

Proof of Lemma S1.2. The proof is analogous to that of Proposition A.1 in Bai (2009). The major
difference lies in the fact that the parameter of interest B0 is a large dimensional sparse matrix of
dimensions Np×N. Take I∗1 and ∥I∗4∥F as examples. For I∗1 , we have

∥I∗1∥F =
1

NT
√
T
||UΛ0F 0′F̌ V −1NT ||F

≤
∥∥∥∥ U√

NT

∥∥∥∥
op

∥∥∥∥ Λ0

√
N

∥∥∥∥
F

∥∥∥∥F 0′F̌

T
V −1NT

∥∥∥∥
F

= Op(N
−1/2 + T−1/2).

For I∗5 , we have,

∥I∗5∥F =
1

NT
√
T
||X(B̌ −B0)Λ0F 0′F̌ V −1NT ||F

≤
∥∥∥∥X(B̌ −B0)√

NT

∥∥∥∥
F

∥∥∥∥ Λ0

√
N

∥∥∥∥
F

∥∥∥∥F 0′F̌

T
V −1NT

∥∥∥∥
F

= OP (KJdNT ),

where the last equality follows from (S1.4) and we recall that dNT = N−1/2
∥∥B̌ −B0

∥∥
F
. Similarly,

we can analyze the other terms to obtain the desired results. ■

Proof of Lemma S1.3. (i) Recall the decomposition F̌ − F 0Ȟ =
√
T (I∗1 + ...+ I∗8 ) in the proof of
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Proposition S1.1. One can write F 0′(F̌ −F 0Ȟ)/T = F 0′(J∗1 + ...+ J∗8 )/
√
T . For F 0′J1/

√
T , we have

1√
T
||F 0′I∗1 ||F =

1

NT 2

∥∥∥F 0′UΛ0F 0′F̌ V̌ −1NT

∥∥∥
F
≤ 1√

NT

∥∥∥∥∥F 0′UΛ0

√
NT

∥∥∥∥∥
F

∥∥∥∥F 0′F̌

T
V̌ −1NT

∥∥∥∥
F

= OP ((NT )
−1/2),

as we can readily show that (NT )−1/2
∥∥∥F 0′UΛ0

∥∥∥
F
= OP (1) under Assumptions A.1 and A.4. For

F 0′I∗2/
√
T , we have

1√
T
||F 0′I∗2 ||F =

1

NT 2

∥∥∥F 0′F 0Λ0′U′F̌ V̌ −1NT

∥∥∥
F
≤ 1√

NT

∥∥∥∥∥F 0′F 0

T

∥∥∥∥∥
F

∥∥∥∥Λ0′U′F̌√
NT

∥∥∥∥
F

∥∥V̌ −1NT

∥∥
F

= OP ((NT )
−1/2)

∥∥∥∥Λ0′U′F̌√
NT

∥∥∥∥
F

.

Note that∥∥∥∥Λ0′U′F̌√
NT

∥∥∥∥
F

≤
∥∥∥∥Λ0′U′F 0Ȟ√

NT
+

Λ0′U′√
NT

(F̌ − F 0Ȟ)

∥∥∥∥
F

≤
∥∥∥∥Λ0′U′F 0

√
NT

∥∥∥∥
F

∥∥Ȟ∥∥
F
+
√
NT

∥∥∥∥ Λ0

√
N

∥∥∥∥
F

∥∥∥∥ U√
NT

∥∥∥∥
op

∥∥∥∥ 1√
T
(F̌ − F 0Ȟ)

∥∥∥∥
F

= OP (1 + (NT )1/2δ−1NT
(
δ−1NT +KJdNT

)
),

where we use the fact that (NT )−1/2 ∥U∥op = δ−1NT by Assumption A.3 and T−1/2
∥∥F̌ − F 0Ȟ

∥∥
F
=

OP (δ
−1
NT + KJdNT ) by Lemma S1.2. Then 1√

T
||F 0′I∗2 ||F = OP ((NT )

−1/2 + δ−1NT
(
δ−1NT +KJdNT

)
).

For F 0′I∗3/
√
T , we have

1√
T
||F 0′I∗3 ||F =

1

NT 2

∥∥∥F 0′UU′F̌ V −1NT

∥∥∥
F
≤ 1√

T

∥∥∥∥∥F 0′U√
NT

∥∥∥∥∥
F

∥∥∥∥ U√
NT

∥∥∥∥
op

∥∥∥∥ F̌√
T
V̌ −1NT

∥∥∥∥
F

= T−1/2OP (δ
−1
NT ) = OP ((NT )

−1/2 + T−1).

For the other terms, we can easily show that they are of the order OP (KJdNT ). The conclusion in
(i) then follows.

(ii) Noting that F̌ ′F̌ /T = IR0 and using F̌ = (F̌ − F 0Ȟ) + F 0Ȟ, we have

IR0 =
1

T
F̌ ′(F̌ − F 0Ȟ) +

1

T
(F̌ − F 0Ȟ)′F̌ +

1

T
(F̌ − F 0Ȟ)′(F̌ − F 0Ȟ) +

1

T
Ȟ ′F 0′F 0Ȟ.

It follows that 1
T Ȟ

′F 0′F 0Ȟ = IR0 +OP ((NT )
−1/2+T−1+KJdNT ) by Lemmas S1.2(iii) and S1.3(i).

Then
1

T
F 0′F 0 = (Ȟ ′)−1Ȟ−1 +OP ((NT )

−1/2 + T−1 +KJdNT ),

and the desired result follows.
(iii) As in part (i), we decompose U′∗,i(F̌ − F 0Ȟ)/T = U′∗,i(I

∗
1 + ... + I∗8 )/

√
T . For U′∗,iI

∗
1/

√
T ,
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we have

1√
T
||U′∗,iI∗1 ||F =

1

NT 2

∥∥U′∗,iUΛ0F 0′F̌ V̌ −1NT

∥∥
F
≤ 1√

NT

∥∥∥∥∥U′∗,iUΛ0

√
NT

∥∥∥∥∥
F

∥∥∥∥F 0′F̌

T
V̌ −1NT

∥∥∥∥
F

= OP ((NT )
−1/2 + T−1).

For U′∗,iJ2/
√
T , we have

1√
T
||U′∗,iJ2||F =

1

NT 2

∥∥U′∗,iF 0Λ0′U′F̌ V̌ −1NT

∥∥
F
≤ 1

T
√
N

∥∥∥∥∥U′∗,iF 0

√
T

∥∥∥∥∥
F

∥∥∥∥Λ0′U′F̌√
NT

∥∥∥∥
F

∥∥V̌ −1NT

∥∥
F

=
1

T
√
N
OP (1 + (NT )1/2δ−1NT

(
δ−1NT +KJdNT

)
) = OP (N

−1/2T−1 + T−1KJdNT ).

For the other terms, similar analyses show that these terms are OP (δ
−2
NT + δ−1NTKJdNT ).

(iv) The proof is similar to that of (iii) and is omitted. ■

Proof of Lemma S1.4. (i) Decompose PF̌ − PF 0 as follows

PF̌ − PF 0 =
1

T
(F̌ − F 0Ȟ)(F̌ − F 0Ȟ)′ +

1

T
F 0Ȟ(F̌ − F 0Ȟ)′ +

1

T
(F̌ − F 0Ȟ)Ȟ ′F 0′

+
F 0

√
T
[ȞȞ ′ − (

1

T
F 0′F 0)−1]

F 0′
√
T

≡ p1 + p2 + p3 + p4.

Then the result follows from Lemmas S1.2(iii) and S1.3(i)-(ii).
(ii) By the decomposition in (i), we have

1

T
X′∗,Ji(PF̌ − PF 0)U∗,i =

4∑
l=1

T−1X′∗,JiplU∗,i ≡
4∑
l=1

p̃li.

It is easy to apply Lemma S1.3(ii)-(iv) to obtain

∥p̃1i∥Si
≤ 1

T

∥∥SiX′∗,Ji(F̌ − F 0Ȟ)
∥∥
F

1

T

∥∥(F̌ − F 0Ȟ)′U∗,i
∥∥
F
= OP

(
K2
Jd

2
NT + δ−2NT

)
,

∥p̃2i∥Si
≤ 1

T

∥∥SiX′∗,JiF 0Ȟ
∥∥
F

1

T

∥∥(F̌ − F 0Ȟ)′U∗,i
∥∥
F
= OP (δ

−2
NT + δ−1NTKJdNT ),

∥p̃3i∥Si
≤ 1

T

∥∥SiX′∗,Ji(F̌ − F 0Ȟ)
∥∥
F

1

T

∥∥Ȟ ′F 0′U∗,i
∥∥
F
= T−1/2OP (KJdNT + δ−2NT ),

∥p̃4i∥Si
≤ 1

T

∥∥SiX′∗,JiF 0
∥∥
F

∥∥[ȞȞ ′ − (F 0′F 0/T )−1]
∥∥
F

1

T

∥∥F 0′U∗,i
∥∥
F
= T−1/2OP (KJdNT + δ−2NT ).

Then
∥∥∥ 1
TX
′
∗,Ji(PF̌ − PF 0)U∗,i

∥∥∥
Si

= OP (δ
−2
NT + δ−1NTKJdNT ).

(iii) Plugging equation (S1.3) into T−1X′∗,JiMF 0(F̌ − F 0Ȟ)Ȟ−1λ0i , it follows that

T−1X′∗,JiMF 0(F̌ − F 0Ȟ)Ȟ−1λ0i = T−1X′∗,JiMF 0(I∗1 + ...+ I∗8 )F̌ (
1

T
F 0′F̌ )−1(

1

N
Λ0′Λ0)−1λ0i

≡ Ĩ1i + ...+ Ĩ8i, say.
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For Ĩ1i, we have∥∥∥Ĩ1i∥∥∥
Si

=

∥∥∥∥ 1

NT
X′∗,JiMF 0UΛ0(

1

N
Λ0′Λ0)−1λ0i

∥∥∥∥
Si

≤ 1

NT

∥∥SiX′∗,JiUΛ0
∥∥
F

∥∥∥∥( 1N Λ0′Λ0)−1λ0i

∥∥∥∥
F

+
1√
NT

∥∥∥∥ 1T SiX′∗,JiF 0

∥∥∥∥
F

∥∥∥∥( 1T F 0′F 0)−1
∥∥∥∥
F

∥∥∥∥ 1√
NT

F 0′UΛ0

∥∥∥∥
F

∥∥∥∥( 1N Λ0′Λ0)−1λ0i

∥∥∥∥
F

= OP ((NT )
−1/2).

By the identity MF 0F 0 = 0, we have Ĩ2i = Ĩ6i = 0. It is easy to show that
∥∥∥Ĩ3i∥∥∥

Si

= OP (δ
−2
NT +

δ−1NTKJdNT ) for l = 3, 4, 7, 8. For Ĩ5i, one have that

Ĩ5i = − 1

NT
X′∗,JiMF 0X(B̌ −B0)Λ0(

1

N
Λ0′Λ0)−1λ0i .

and
∥∥∥Ĩ5i∥∥∥

Si

≤
∥∥∥Si 1√

T
X′∗,JiMF 0

∥∥∥
F

∥∥∥ 1√
NT

X(B̌ −B0)
∥∥∥
F

∥∥∥ 1√
N
Λ0( 1

NΛ0′Λ0)−1λ0i

∥∥∥
F
= OP (KJdNT ). This

implies that Ĩ5i is a dominant term in the expansion. Combining the above results yields the desired
conclusion. ■

Proof of Lemma S1.5. (i) Let χij ≡ T−1X ′∗,JiMF 0X ′∗,Jj . Then Q̌1 = bdiag(χ11, ..., χNN ) and

Q̌2 = {N−1a0ijχij} are NKa × NKa matrices, where bdiag(·) signifies a block diagonal matrix and

recall that Ka = N−1
∑N

i=1 ki. Let s1 = [k1] ≡ {1, 2, ..., k1}, and sj+1 = {
∑j

i=1 ki + 1, ...,
∑j+1

i=1 ki}
for j = 2, ..., N. Note that∣∣Q̌−11 Q̌2Q̌

−1
1 Ǔ

∣∣
∞ = max

j∈[N ]

∣∣∣χ−1jj [Q̌2]sj ,∗(Q̌1)
−1Ǔ

∣∣∣
∞

and

χ−1jj [Q̌2]sj ,∗(Q̌1)
−1Ǔ

= χ−1jj
1

NT

N∑
i=1

a0jiχjiχ
−1
ii X′∗,JiMF 0U∗,i

= χ−1jj
1

NT

N∑
i=1

T∑
t=1

a0jiχjiχ
−1
ii Xt,Jiuit − χ−1jj

1

NT

N∑
i=1

T∑
t=1

a0jiχjiχ
−1
ii

1

T
X′∗,JiF

0(
1

T
F 0′F 0)−1f0t uit.

Let ei,l denote the lth column of Iki . Consider the first term on the RHS of the last displayed equation.

13



Note that

χ−1jj
1

NT

N∑
i=1

T∑
t=1

a0jiχjiχ
−1
ii Xt,Jiuit

= χ−1jj
1

N

N∑
i=1

a0ji{χjiχ−1ii − E(χji)[E(χii)]
−1} 1

T

T∑
t=1

Xt,Jiuit + χ−1jj
1

NT

N∑
i=1

T∑
t=1

a0jiE(χji)[E(χii)]
−1Xt,Jiuit

= χ−1jj
1

N

N∑
i=1

a0ji[χji − E(χji)]χ
−1
ii

1

T

T∑
t=1

Xt,Jiuit

+χ−1jj
1

N

N∑
i=1

a0jiE(χjj)[E(χii)]
−1[E(χii)− χii]χ

−1
ii

1

T

T∑
t=1

Xt,Jiuit

+χ−1jj
1

NT

N∑
i=1

T∑
t=1

a0jiE(χji)[E(χii)]
−1Xt,Jiuit

≡ A1j +A2j +A3j ,

where the second equality follows because

χjiχ
−1
ii − E(χji)[E(χii)]

−1 = [χji − E(χji)]χ
−1
ii + E(χji){χ−1ii − [E(χii)]

−1}
= [χji − E(χji)]χ

−1
ii + E(χjj)[E(χii)]

−1[E(χii)− χii]χ
−1
ii .

Similar to the proof of Lemma A.2, we can show that

sup
i,j

∥∥χij − E(χij)
∥∥
max

= OP (T
−1/2 logN),

where the elements of E(χij) are uniformly bounded and E(χii) has minimum eigenvalue bounded
away from zero. Noting that |a′Bb| ≤ |a|1 |b|1 ∥B∥max whenever vectors a and b and matrix B are
conformable, we have

max
j,l

∣∣e′j,lA1j

∣∣ = max
j

∣∣∣∣∣e′j,lχ−1jj 1

N

N∑
i=1

a0ji[χji − E(χji)]χ
−1
ii

1

T

T∑
t=1

Xt,Jiuit

∣∣∣∣∣
≤ max

j,i

∥∥χji − E(χji)
∥∥
max

∣∣a0ji∣∣ 1N
N∑
i=1

∣∣∣e′j,lχ−1jj ∣∣∣
1

∣∣∣∣∣χ−1ii 1

T

T∑
t=1

Xt,Jiuit

∣∣∣∣∣
1

= OP (T
−1/2 logN)O(K

1/2
J )OP (K

1/2
J K1/2

a T−1/2) = OP (KJK
1/2
a T−1(logN)2),

where we use the fact that
∣∣∣e′j,lχ−1jj ∣∣∣

1
≤
√
kj

∣∣∣e′j,lχ−1jj ∣∣∣
2
≤
√
kj [ψmin(χjj)]

−1 and

∣∣∣∣∣χ−1ii 1

T

T∑
t=1

Xt,Jiuit

∣∣∣∣∣
1

≤
√
kj

∣∣∣∣∣χ−1ii 1

T

T∑
t=1

Xt,Jiuit

∣∣∣∣∣
2

=
√
kjkiOP (T

−1/2 logN).

14



By the same token, maxj

∣∣∣e′j,lA2j

∣∣∣ = OP (KJK
1/2
a T−1(logN)2). In addition, we can show that

max
j,l

∣∣e′j,lA3j

∣∣ = max
j,l

∣∣∣∣∣e′j,lχ−1jj 1

NT

N∑
i=1

T∑
t=1

a0jiE(χji)[E(χii)]
−1Xt,Jiuit

∣∣∣∣∣
≤ max

j,l

∥∥∥e′j,lχ−1jj ∥∥∥
max

max
j

∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

a0jiE(χji)[E(χii)]
−1Xt,Jiuit

∣∣∣∣∣
1

= OP (KJK
1/2
a (NT )−1/2 logN).

It follows that
∥∥∥ 1
NT

∑N
i=1

∑T
t=1 a

0
ijχ
−1
jj χjiXt,Jiuit

∥∥∥
Sj

= OP (KJK
1/2
a [T−1(logN)2+(NT )−1/2 logN ]) =

OP (KJK
1/2
a [T−1(logN)2 +N−1]).

Similarly, we can show that

max
j

∣∣∣∣∣χ−1jj 1

NT

N∑
i=1

T∑
t=1

a0jiχjiχ
−1
ii

1

T
X′∗,JiF

0(
1

T
F 0′F 0)−1f0t uit

∣∣∣∣∣
∞

= OP (KJK
1/2
a [T−1(logN)2 +N−1]).

Then
∣∣Q̌−11 Q̌2Q̌

−1
1 Ǔ

∣∣
∞ = OP (KJK

1/2
a [T−1(logN)2 +N−1]).

(ii) The proof follows from that of (i) closely. Noting that

1√
N

∣∣ΓQ̌−11 Q̌2Q̌
−1
1 Ǔ

∣∣ ≤ ∥Γ∥op
1√
N

∣∣Q̌−11 Q̌2Q̌
−1
1 Ǔ

∣∣ ,
it suffices to show that 1√

N

∣∣Q̌−11 Q̌2Q̌
−1
1 Ǔ

∣∣ = OP (KJKa[T
−1(logN)2+N−1]) = oP (T

−1/2). The result

follows from (i) under Assumption A.5(ii). To see this, notice that

1

N

∣∣Q̌−11 Q̌2Q̌
−1
1 Ǔ

∣∣2 =
1

N

N∑
i=1

∣∣SiQ̌−11 Q̌2Q̌
−1
1 Ǔ

∣∣2 ≤ 1

N

N∑
i=1

ki
∣∣Q̌−11 Q̌2Q̌

−1
1 Ǔ

∣∣2
∞

= KaOP (K
2
JKa[T

−1(logN)2 +N−1]2) = oP (T
−1),

where Si is defined in the proof of Proposition S1.1. A more complicated argument can relax the
restriction on KJ and Ka slightly, but we do not pursue it for brevity.

(iii) Note that Q̌
−1/2
1 Q̌2Q̌

−1/2
1 has the (i, j)th block given by

a0ij
N Wij , where

Wij ≡
(
1

T
X′∗,JiMF 0X∗,Jj

)−1/2 X′∗,JiMF 0

√
T

MF 0X∗,Jj√
T

(
1

T
X′∗,JjMF 0X∗,Jj

)−1/2
.

Obviously, we have that ψmax(Wij) ≤ 1. In addition, it is easy to see that the inequality does not

bind for all pairs of the (i, j) w.p.a.1. For any V ∈ RΣN
i=1ki and |V | = 1, we can decompose it to

V = (V ′1 , ..., V
′
N )
′, where Vi ∈ Rki . Let W̃ ∈ RN×N , with W̃ij = V ′iWijVj . Then we have

V ′Q̌
−1/2
1 Q̌2Q̌

−1/2
1 V =

N∑
i=1

N∑
j=1

a0ij
N
V ′iWijVj = tr

(
PΛ0W̃

)
≤ ||PΛ0 ||op||W̃ ||∗

= tr(W̃ ) =
N∑
i=1

V ′iWiiVi ≤
N∑
i=1

|Vi|2 = |V |2 = 1.
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The equality holds in all places only if the columns of W̃ are linear combinations of Λ0. We can

show that the inequality does not bind w.p.a.1. That is, ψmax(Q̌
−1/2
1 Q̌2Q̌

−1/2
1 ) < 1 w.a.p.1. This

completes the proof. ■

S2.1 Some additional lemmas

In Appendix B. we have introduced the Nagaev inequality established by Wu and Wu (2016). Based
on the dependence measures there, we prove some additional technical lemmas used in the proofs.

Following the decomposition (2.5) in Section 2, we have yit = y
(f)
it + y

(u)
it , where

y
(u)
it =

∞∑
j=0

α
(u)
iN (j)ut−j =

∞∑
j=0

α
(u)
iN (j)C(u)ϵ

(u)
t−j ≡

∞∑
j=0

C
(i,u)
j ϵ

(u)
t−j , (S2.1)

y
(f)
it =

∞∑
j=0

α
(f)
iN (j)f0t−j ≡ E(yit) +

∞∑
j=0

C
(i,f)
j ϵ

(f)
t−j , where C

(i,f)
j ≡

j∑
k=0

α
(f)
iN (j − k)C

(f)
k µf .(S2.2)

Let f0r,t be the rth entry of f0t . Lemma S2.1 below establishes the DAN results for time series f0r,·,

y
(f)
i,· , y

(u)
i· and yi·.

Lemma S2.1 . Suppose that Assumption A.1 holds and q > 1. There is a constant c̄ <∞ such that
the following statements hold:

(i) ||f0r,·||q,α < c̄|||ϵ(f)0 |||q for r = 1, ..., R0;

(ii) max1≤i≤N ||y(f)i,· ||q,α ≤ c̄R0|||ϵ(f)0 |||q;
(iii) max1≤i≤N ||y(u)i,· ||q,α ≤ c̄

√
||Σu||op|||ϵ(u)1,0 |||q;

(iv) max1≤i≤N ||yi,·||q,α < c̄.

Proof of Lemma S2.1. (i) Let p = q/(q − 1) where q > 1. By the Hölder inequality, we have

δt,q(f
0
r·) ≤ 2|[C(f)

t ]r,∗|p · |||ϵ(f)0 |||q ≤ 2(R0)1/p|[C(f)
t ]r,∗|∞ · |||ϵ(f)0 |||q. It follows that

∆m,q(f·) ≤ 2|||ϵ(f)0 |||q
∞∑
t=n

||C(f)
t ||max ≤ c̄|||ϵ(f)0 |||q(n+ 1)−α,

where the last inequality holds by Assumption A.1(ii). The desired result follows immediately.

(ii) Noting that y
(f)
it is a linear process, direct calculation yields

δt,q(y
(f)
i· ) ≤ 2|||C(i,f)

t ϵ
(f)
0 |||q ≤ 2|C(i,f)

t |p · |||ϵ(f)0 |||q and ∆n,q(y
(f)
i· ) ≤ 2|||ϵ(f)0 |||q

∞∑
t=n

|C(i,f)
t |p.
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It suffices to bound
∑∞

t=n |C
(i,f)
t |p. Noting that C

(i,f)
k =

∑k
j=0 α

(f)
iN (j)C

(f)
k−j , we have

∞∑
t=n

|C(i,f)
t |p ≤ (R0)1/p

∞∑
t=n

|C(i,f)
t |∞ ≤ (R0)1/p

∞∑
t=n

t∑
j=0

|α(f)
iN (j)| · ||C(f)

t−j ||F

≤ c̄

∞∑
t=n

t∑
j=0

ρj ||C(f)
t−j ||F = c̄

∞∑
j=0

ρj
∞∑

t=(n−j)∨0

||C(f)
t ||F

= c̄

 ∞∑
j=n

ρj
∞∑
t=0

||C(f)
t ||F +

n−1∑
j=0

ρj
∞∑

t=(n−j)

||C(f)
t ||F


≤ c̄

 ∞∑
t=0

||C(f)
t ||F

ρn

1− ρ
+R0

n−1∑
j=0

ρj(n− j)−α

 ,
where the second inequality is by Assumption A.1(vi), and the last inequality is by Assumption

A.1(ii). To show supn≥1(n + 1)α∆n,q(y
(f)
i· ) ≤ c̄ for some c̄ < ∞, we need to show supn≥1(n +

1)α
∑n−1

j=0 ρ
j(n− j)−α ≤ c̄′ for some c̄′ <∞. The last result follows because

(n+ 1)α
n−1∑
j=0

ρj(n− j)−α = (n+ 1)α(

⌊√n⌋∑
j=0

+
n−1∑

j=⌊√n⌋+1

)ρj(n− j)−α

≤ (n+ 1)α

(1− ρ)(n− ⌊
√
n⌋)α

+ (n+ 1)αρ⌊
√
n⌋+1/(1− ρ)

→ 1

1− ρ
as n→ ∞,

where ⌊·⌋ is the floor function. It follows that

||y(f)i,· ||q,α = supn≥0(n+ 1)α∆n,q(y
(f)
i,· ) < c̄′|||ϵ(f)0 |||q,

for some c̄′ <∞.
(iii) Note that y

(u)
it is a linear function of (..., ϵ

(u)
t−1, ϵ

(u)
t ) with ϵ

(u)
t ∈ Rm. Given |α(u)

iN (j)| < c̄ρj by

Assumption A.1(vi), it follows that |α(u)
iN (j)C(u)| ≤ c̄ρj

√
ψ1(Σu). Let [α

(u)
iN (t)C(u)]j denote the jth
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component of α
(u)
iN (j)C(u). Then we can calculate bounds for δt,q(y

(u)
i· ) as

δt,q(y
(u)
i· ) ≤ 2|||α(u)

iN (t)C(u)ϵ
(u)
0 |||q

≤ 2

∥∥∥∥∥∥∥
∣∣∣∣∣∣∣
 m∑
j=1

([α
(u)
iN (t)C(u)]j)

2(ϵ
(u)
j,0 )

2

1/2
∣∣∣∣∣∣∣
∥∥∥∥∥∥∥
q

= 2


∥∥∥∥∥∥
∣∣∣∣∣∣
m∑
j=1

([α
(u)
iN (t)C(u)]j)

2(ϵ
(u)
j,0 )

2

∣∣∣∣∣∣
∥∥∥∥∥∥
q/2


1/2

≤ 2

 m∑
j=1

([α
(u)
iN (t)C(u)]j)

2|||(ϵ(u)j,0 )
2|||q/2

1/2

= 2|||ϵ(u)1,0 |||q|α
(u)
iN (t)C(u)| ≤ 2ρtc̄

√
ψ1(Σu)|||ϵ

(u)
1,0 |||q,

where the second inequality holds by Burkholder inequality (see, e.g., Hall, 1980, p. 23). Then we
have

∆n,q(y
(u)
i,· ) ≤ 2c̄

√
ψmax(Σu)|||ϵ

(u)
1,0 |||q

ρn

1− ρ
,

and it follows that
||y(u)i,· ||q,α ≤ c̄′

√
ψmax(Σu)|||ϵ

(u)
1,0 |||q <∞.

(iv) The result follows from (ii) and (iii). ■

The following lemma bounds the DAN for the summation of the sweep product of two linear
processes:

Lemma S2.2 Consider two time series et = g(..., εt−1, εt) and xt = h(..., εt−1, εt)). Suppose that
||x·||ι,αX < ∞ and ||e·||q,αe < ∞ with q > 2, ι > 4 and αx, αe > 0. Consider the time series
x·e· = {xtet} . Then

||x·e·||τ ,α ≤ 2||x·||ι,αX ||e·||q,αe

for α = αX ∧ αe and τ = qι/(q + ι).

Proof of Lemma S2.2. We have that

∆m,τ (x·e·) =
∞∑
t=m

δt,τ (x·e·) =
∞∑
t=m

|||xtet − x∗t e
∗
t |||τ

≤
∞∑
t=m

(|||xt(et − e∗t )|||τ + |||(xt − x∗t )e
∗
t |||τ )

≤
∞∑
t=m

(|||xt|||ι|||et − e∗t |||q + |||xt − x∗t |||ι|||e∗t |||q)

≤ max
t

|||xt|||ι∆m,q(e·) + max
t

|||et|||q∆m,ι(x·).

It follows that

||x·e·||τ ,α ≤ max
t

|||xt|||ι||e·||q,αe +max
t

|||et|||q||x·||ι,αX ≤ 2||x·||ι,αX ||e·||q,αe ,
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where we used the fact that maxt |||xt|||ι ≤ ||x·||ι,αX . ■

Lemma S2.3 Suppose that Assumption A.1 holds. For z1,t, z2,t = 1, f0r,t, yi,t−l1 , y
(u)
i,t−l2 , y

(u)
i,t−l3 and

uit, with i = 1, ..., N , l1, l2, l3 = 1, ..., p, we have

P

(∣∣∣∣∣
T∑
t=1

z1,tz2,t − E(z1,tz2,t)

∣∣∣∣∣ ≥ x

)
≤ C1

T

xq/2
+ C2exp

(
−C3x

2

T

)
,

where C1, C2, and C3 are constants that do not depend on (N,T ) and (z1,t, z2,t).

Proof of Lemma S2.3. We apply the Nagaev inequality in Theorem B.1 to prove the claim. By
Lemma S2.1, we have ∥yi,·∥q,α < c̄ and ∥ui,·∥q,α < c̄ for some constant c̄ < ∞. By Lemma S2.2, we

can obtain that ∥z1,tz2,t − E(z1,tz2,t)∥q/2,α ≤ 2 ∥z1,·∥q,α ∥z2,·∥q,α ≤ 2c̄2. By Theorem B.1, we have

P

(∣∣∣∣∣
T∑
t=1

z1,tz2,t − E(z1,tz2,t)

∣∣∣∣∣ ≥ x

)
≤ C1

|a|q/2q/2||z1,tz2,t − E(z1,tz2,t)||q/2q/2,α

xq/2

+C2exp

(
− C3x

2

T ||z1,tz2,t − E(z1,tz2,t)||2q/2,α

)
,

where a = ιT such that |a|q/2q/2 = T . The desired result is proved. ■

S3 Discussions on Assumptions A.1(vi) and A.2

This section provides some further discussion of the condition (vi) in the stationarity assumption A.1
and the restricted strong convexity (RSC) condition in Assumption A.2

S3.1 Discussion on Assumption A.1

We first consider the operator norm of Φ, state what Assumption A.1(vi) requires, and then give
some examples where Assumption A.1(vi) is satisfied.

It is well known that requiring the eigenvalues of Φ to be inside a unit circle ensures the stationarity
of the process Yt. However, this condition does not ensure ||Φ||op ≤ 1. For instance, consider the
case where p = 1 and Φ = A0

1 is given by the following N ×N transition matrix
0 1 · · · 1
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 .

It is easy to verify that all eigenvalues of Φ are zero but ||Φ||op = N −1. Basu and Michailidis (2015)
demonstrate that ||Φ||op ≥ 1 as long as p > 1.

However, we require the spectral radius of Φ to be bounded by ρ < 1, so that
∥∥Φj∥∥

op
→ 0

as j → ∞, which follows from the Jordan canonical form (see p. 656 of Lütkepohl, 2005). As
(Φj)[N ],[N ] is a principal submatrix of Φ, imposing the high level condition

∥∥(Φj)[N ],[N ]

∥∥
op

≤ c̄ρj with

a large enough c̄ is reasonable. This justifies the first part of Assumption A.1(vi). In the second
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part of Assumption A.1(vi), we impose restrictions on α
(f)
iN (j), which is the loading on f0t−j for the

process {y(f)it }. If this loading does not decay sufficiently fast or it explodes with N , one cannot

have stationarity of {y(f)it }. Note that α
(f)
iN (j) = e′i,N (Φ

j)[N ],[N ]Λ
0. Given

∥∥(Φj)[N ],[N ]

∥∥
op

≤ c̄ρj , we

then have |α(f)
iN (j)| ≤ c̄ρj ||Λ0||F, which is only a rough bound. Despite the fact that we have an

exponential decay rate, α
(f)
iN (j) may depend on N . This part of the assumption requires that the

interaction between Λ0 and rows of (Φj)[N ],[N ] is weak.
A sufficient condition for Assumption A.1(vi) is that ||(Φj)[N ],[N ]||1 ≤ c̄ρj and ||Λ||max ≤ C <∞.

The first condition requires maximum absolute row sum of (Φj)[N ],[N ] to decay exponentially, and the
second part is also assumed in Assumption A.4(i). By the inequality ||(Φj)[N ],[N ]||op ≤ ||(Φj)[N ],[N ]||1
and since |e′i,N (Φj)[N ],[N ]Λ| ≤

√
R||(Φj)[N ],[N ]||1||Λ||max, the sufficiency follows.

For example, consider the simplest case where p = 1 and A1 = ρIN . In this case, we have
(Φj)[N ],[N ] = ρjIN , e

′
i,NΦ

jΛ0 = ρjλ0′i , and Assumption A.1(vi) is satisfied provided |ρ| < 1 and

||Λ||max ≤ C < ∞. When p = 1 and A0
1 is a block diagonal matrix with bounded block sizes, it is

also easy to see that Assumption A.1(vi) is satisfied provided each block has operator norm bounded
away from 1 and ||Λ||max ≤ C <∞.

S3.2 Discussion on the RSC condition in Assumption A.2

The RSC condition imposed in Assumption A.2 is a high-level condition. This notion of “restricted
strong convexity” was first used in Negahban et al. (2009). As Negahban et al. (2012) remark, the loss
function for a high-dimensional minimization problem is often not strongly convex in spite of the fact
that it is (weakly) convex. This shortcoming leads to a difficulty in showing the desired convergence
rate for the estimators. In this scenario, a suitable choice of the regularization parameter helps to
ensure that the parameter estimate belongs to a smaller subset of the parameter space. Consequently,
it suffices to ensure that the objective function is strongly convex over this set. Chernozhukov et al.
(2021) and Moon and Weidner (2019) propose two similar RSC conditions to ours, and establish the
associated sufficient conditions for their RSC conditions. Because the parameter of interest in Moon
and Weidner (2019) is of fixed dimension, it is easier to establish an RSC condition. The parameter
of interest in Chernozhukov et al. (2021) is also of high dimension like ours, but they only consider
nuclear-norm regularization and are able to provide a set of primitive conditions to verify their RSC
condition. Agarwal et al. (2012) consider a regression with both nuclear norm and L1 norm penalties.
Their RSC is imposed on the summation of two error components. In their framework, the low rank
component has very small entries: ||Θ||max ≤ c/

√
d1d2. This setting makes the separation of the two

components much easier. Lin and Michailidis(2020) consider a similar setting where the low rank
component has all entries shrinking to zero sufficiently fast.

We now discuss the RSC given in Assumption A.2 of our paper. This RSC directly asserts that,
under the condition

γ1
2N

N∑
i=1

|∆̃(1)
Jc
i ,i
|1 +

γ2

2
√
NT

||M(∆̃(2))||∗ ≤
3γ1
2N

N∑
i=1

|∆̃(1)
Ji,i

|1 +
3γ2

2
√
NT

||P(∆̃(2))||∗, (S3.1)

the following inequality holds with probability 1− εNT :

1

NT
||X∆̃(1) + ∆̃(2)||2F ≥ κ′

N
||∆̃(1)||2F +

κ

NT
||∆̃(2)||2F − κ′′Φγ1,γ2(∆̃

(1), ∆̃(2)), (S3.2)

where Φγ1,γ2(∆̃
(1), ∆̃(2)) = γ1

N

∑N
i=1 |∆̃

(1)
Ji,i

|1+ γ2√
NT

||P(∆̃(2))||∗ is a tolerance function. The inequality
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in (S3.2) holds provided that following two conditions are satisfied with probability 1− εNT :

(i) ||X∆̃(1)+∆̃(2)||2F ≥ c1(||X∆̃(1)||2F+||∆̃(2)||2F); and (ii)
1

NT
||X∆̃(1)||2F ≥ c2

1

N
||∆̃(1)||2F−c3Φγ1,γ2(∆̃

(1), ∆̃(2)),

(S3.3)
for some constants c1, c2, and c3 with c1 ∈ (0, 1) , c2 > 0 and c3 ≥ 0.

Condition (i) in (S3.3) can be regarded as an asymptotic non-collinearity condition, which ex-
cludes the trivial case where

||X∆̃(1) + ∆̃(2)||2F = oP (1) · (||X∆̃(1)||2F + ||∆̃(2)||2F ), (S3.4)

which holds only if X∆̃(1) is approximately equal to −∆̃(2). Intuitively, ∆̃(2) is the estimation error
of the low-rank common component whose rank is expected to be low in large samples in comparison
with N ∧ T. X∆̃(1) is generally not of low rank as long as ∆̃(1) is not a low rank matrix. Therefore,
we expect the above asymptotic non-collinearity condition to hold in general. Specifically, we assume
that Condition (i) in (S3.3) holds with probability 1− ε1NT where ε1NT → 0 as (N,T ) → ∞.

Condition (ii) in (S3.3) is related to the restricted eigenvalue condition in (3.3) before Theorem
3.3. One can prove that it holds with probability approaching one under some high level conditions.
Specifically, we add the following assumption.

Assumption S.1: ||B0||1 ≡ maxj
∑N

i=1 |B0
ij | ≤ C and ||B̃||1 ≤ C.

Assumption S.1 requires that the maximum absolute column sums of B0 and B̃ be bounded. It
is natural to impose conditions on B0. Here, we also impose a similar condition on B̃ which changes
the minimization problem slightly. Under Assumption A.1 and S.1, we show condition (ii) holds
with probability with probability larger than 1− c̄′[p2N2T 1−q/4(logN)−q/2 + p2N2−c logN ] for some
positive constants c, c̄ and c̄′.

Now, we explain why Condition (ii) in (S3.3) is satisfied under Assumption S.1. Applying Lemma
S2.3 and union bounds to |X′∗,jX∗,j/T −E(X′∗,jX∗,j/T )| for j = 1, ..., Np, we obtain that ||X′X/T −
ΣX ||max ≤ γ1/2 with probability larger than 1 − c̄′[p2N2T 1−q/4(logN)−q/2 + p2N2−c logN ] for some
positive constants c, c̄ and c̄′. Note that

1
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1

N
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where the last inequality holds on the event ||X′X/T −ΣX ||max ≤ γ1/2. Under Assumption S.1, we
can update the last inequality to obtain

1

NT
||X∆̃(1)||2F ≥ ψmin(ΣX)

||∆̃(1)||2F
N

− Cγ1
2N

N∑
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∗,i |1. (S3.6)
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By (S3.1), we have
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||P(∆̃(2))||∗ ≤ 2Φγ1,γ2(∆̃
(1), ∆̃(2)). (S3.7)

Combining (S3.6)-(S3.7), we have that with probability at least 1 − c̄′[p2N2T 1−q/4(logN)−q/2 +
p2N2−c logN ], Condition (ii) in (S3.2) holds.

To sum up, the RSC holds with probability at least 1−εNT with εNT ≤ ε1NT+c̄
′[p2N2T 1−q/4(logN)−q/2+

p2N2−c logN ] as (N,T ) → ∞.

S4 Additional information for the empirical application section

In this section we provide some tables that summarize the funds information and descriptive statistics
for the dataset used in Section 5. Table S1 lists the fund names and tickers. Notice that the funds are
divided into 11 categories, each of which contains 1 to four funds. Table S2 presents the descriptive
statistics for the volatilities defined in Section 5.1.1. As one can see from the table, each time series
under study has excessively large skewness and kurtosis.

Table S1: Funds information

category ticker fund name category ticker fund name

Energy XLE
Energy Select Sector SPDR
Fund

Natu XLB
Materials Select Sector SPDR
Fund

XOP
Spdr S&P Oil & Gas Explo &
Prod Etf

XME
SPDR S&P Metals & Mining
ETF

IYE iShares U.S. Energy ETF Tech XLK
Technology Select Sector
SPDR Fund

OIH
VanEck Vectors Oil Services
ETF

SMH
VanEck Vectors
Semiconductor ETF

Financial XLF
Financial Select Sector SPDR
Fund

Heal XLV
Health Care Select Sector
SPDR Fund

KBE SPDR S&P Bank ETF IBB
iShares Nasdaq Biotechnology
ETF

KRE
SPDR S&P Regional Banking
ETF

Def XLP
Consumer Staples Select
Sector SPDR Fund

Cyc XLY
Cons. Disc. Select Sector
SPDR Fund

Util XLU
Utilities Select Sector SPDR
Fund

XHB Spdr S&P Homebuilders Etf Indu XLI
Industrial Select Sector SPDR
Fund

ITB
iShares U.S. Home
Construction ETF

EPM GDX
VanEck Vectors Gold Miners
ETF

XRT Spdr S&P Retail Etf
Rea IYR iShares U.S. Real Estate ETF

VNQ
Vanguard Real Estate Index
Fund ETF

Note: Cyc, Rea, Natu, Tech, Heal, Def, Util, Indu and EMP stand for consumer cyclical, real estate,
natural resource, technology, health care, consumer defensive, utilities, industrials and equity precious
metals, respectively.
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Table S2: Descriptive statistics of the volatilities

TICKER XLE XOP IYE OIH XLF KBE KRE XLY
mean 0.00136 0.00246 0.00141 0.00220 0.00157 0.00194 0.00184 0.00082
median 0.00063 0.00130 0.00059 0.00128 0.00041 0.00059 0.00066 0.00029
max 0.06034 0.06290 0.11527 0.05856 0.05743 0.04793 0.09748 0.03063
min 0.00004 0.00005 0.00004 0.00008 0.00001 0.00002 0.00002 0.00001
std 0.00369 0.00472 0.00549 0.00418 0.00463 0.00484 0.00539 0.00214

skewness 10.954 7.604 15.469 8.159 7.645 5.823 11.530 8.869
kurtosis 151.595 77.386 291.137 88.226 77.152 44.720 175.439 102.667
TICKER XHB ITB XRT IYR VNQ XLB XME XLK
mean 0.00218 0.00251 0.00115 0.00137 0.00146 0.00098 0.00264 0.00071
median 0.00079 0.00102 0.00056 0.00039 0.00041 0.00047 0.00133 0.00031
max 0.05071 0.04660 0.03094 0.04847 0.04831 0.02948 0.05631 0.03112
min 0.00007 0.00001 0.00001 0.00003 0.00004 0.00004 0.00014 0.00002
std 0.00431 0.00473 0.00231 0.00377 0.00403 0.00205 0.00510 0.00187

skewness 5.305 4.936 7.783 6.789 6.958 8.059 6.912 9.814
kurtosis 41.414 33.799 83.839 61.695 64.487 90.224 62.231 128.784
TICKER SMH XLV IBB XLP XLU XLI GDX
mean 0.00111 0.00054 0.00105 0.00036 0.00062 0.00075 0.00263
median 0.00069 0.00025 0.00058 0.00016 0.00030 0.00036 0.00154
max 0.02010 0.02865 0.03488 0.02197 0.03903 0.02108 0.07009
min 0.00004 0.00002 0.00003 0.00001 0.00003 0.00001 0.00010
std 0.00153 0.00162 0.00207 0.00111 0.00193 0.00156 0.00439

skewness 5.713 11.898 9.968 13.670 14.053 7.405 8.300
kurtosis 52.259 176.016 135.878 237.109 250.309 76.935 102.080
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