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Abstract

This paper studies high-dimensional vector autoregressions (VARs) augmented with common
factors that allow for strong cross section dependence. Models of this type provide a convenient
mechanism for accommodating the interconnectedness and temporal co-variability that are often
present in large dimensional systems. We propose an ¢;-nuclear-norm regularized estimator and
derive non-asymptotic upper bounds for the estimation errors as well as large sample asymptot-
ics for the estimates. A singular value thresholding procedure is used to determine the correct
number of factors with probability approaching one. Both the LASSO estimator and the conser-
vative LASSO estimator are employed to improve estimation precision. The conservative LASSO
estimates of the non-zero coefficients are shown to be asymptotically equivalent to the oracle
least squares estimates. Simulations demonstrate that our estimators perform reasonably well in
finite samples given the complex high dimensional nature of the model with multiple unobserved
components. In an empirical illustration we apply the methodology to explore the dynamic con-
nectedness in the volatilities of financial asset prices and the transmission of ‘investor fear’. The
findings reveal that a large proportion of connectedness is due to common factors. Conditional on
the presence of these common factors, the results still document remarkable connectedness due to
the interactions between the individual variables, thereby supporting a common factor augmented
VAR specification.
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1 Introduction

In a pathbreaking study, Mann and Wald| (1943) introduced vector autoregressions (VARs) and de-
veloped the limit theory for estimation and inference.! The VAR approach was further developed
and promoted for empirical macroeconomic research in an influential paper by [Sims (1980). Since
then, the methodology has become one of the most heavily used tools in the applied finance and
macroeconomics literature. It offers a simple and useful method of capturing rich dynamics and
interconnectedness in multiple time series. Unrestricted VARs can be efficiently estimated by least
squares regressions, which makes them particularly attractive in applied research. But low dimen-
sional VARs often suffer from the notorious omitted variable bias problem, which makes the approach
vulnerable to misleading inferences on both coefficients and impulse responses. In a series of articles
(e.g., Sims| (1992), Sims| (1993), and Leeper et al.| (1996)) Sims and his coauthors have explored
whether to include more variables in VAR formulations to improve the forecasting performance.

In the absence of restrictions, the number of VAR coefficients increases quadratically, making the
VAR estimation inevitably a high dimensional problem as the number of variables increases. The
dynamic factor model (DFM), introduced by |Geweke (1977), provides a synthetic tool to summarize
useful information from a large number of time series while avoiding some of the problems of high
dimensionality. Since then, a large literature has emerged on DFMs. Examples of theoretical work
include Forni et al. (2000), Bai and Ng (2002), Bai (2003), and |Hallin and Liska/ (2007). In applied
finance and macroeconomics, various studies document the useful capacity of DFMs in capturing
comovements among macroeconomic or financial time series; see |Fama and French| (1993), |Stock and
Watson(1999, 2002), |Giannone et al.(2004), Ludvigson and Ng| (2007), and |Cheng and Hansen| (2015),
among many others. In an important work, Bernanke et al.| (2005) propose a factor-augmented VAR
(FAVAR) model to assist in making structural inferences while avoiding the problem of information
sparsity that occurs in low dimensional VAR systems. Although the presence of common factors
helps to capture additional variation and co-variation in the data, there is still evidence to suggest
that misspecification continues to play a role in applied work with DFMs, particularly in forecasting.
Stock and Watson (2005), for instance, test the ability of cross variation in forecasting, namely,
whether observations on another variable such as x;; help in predicting x;; given lagged values of x;
and common factors using 132 U.S. macroeconomic time series. Their results suggest that exclusion
of other variables like xj; from the regression equation for x;; involves misspecifications that can

impair forecasting performance. A systematic approach to dealing with potential misspecifications

'The extension to the structural VAR (SVAR) case was developed in the final section of Mann and Wald (1943); but
this seems largely to have been ignored in the vast literature on SVAR. For further discussions, see |[Hurn et al.| (2020).



of this type is to employ modern machine learning methods that rely on regularized estimation. The
present paper seeks to attain this goal in the context of large dimensional FAVAR systems.

Regularized estimation has recently received intense attention in both econometrics and statistics.
In the cross-sectional framework, among the most influential works are |Tibshirani (1996), Zhao and
Yu| (2006), Zou, (2006), |Candes and Tao| (2007) and |Huang et al. (2008). Inspired by the methods
developed in these papers a growing body of literature on high dimensional autoregressive models
has emerged. Haufe et al.| (2010) propose a group-LASSO-based method to discover causal effects in
multivariate time series. Basu and Michailidis| (2015) study deviation bounds for Gaussian processes
and investigate the ¢; regularized estimation of transition matrices in sparse VAR models. [Kock
and Callot| (2015) establish oracle inequalities for high dimensional VAR models. [Han et al| (2015)
propose a generalized Dantzig selector in high dimensional VARs. |Guo et al. (2016) study a class
of VAR models with banded coefficient matrices. These methods have opened up new avenues for
handling high dimensional VAR models in practical work. In particular, regularized estimation
has now been employed in various empirical applications in economic and financial analyses. For
example, Smeekes and Wijler| (2018) study forecasting capabilities of penalized regressions in cases
where the generating process is a factor model; [Medeiros et al. (2019) consider inflation forecasting
with machine learning methods; [Uematsu and Tanaka, (2019) examine high-dimensional forecasting
and variable selections via folded-concave penalized regressions; and |Barigozzi and Brownlees (2019),
Barigozzi and Hallin| (2017), and Demirer et al. (2018) adopt high dimensional VARs to estimate
networks and construct measures of financial sector connectedness.

All the aforementioned studies assume that the model’s idiosyncratic errors exhibit at most weak
cross-sectional dependence (c.f., |(Chudik et all 2011). However, the vast literature on the DFM
indicates that this assumption is fragile in empirical applications. In response to this limitation,
the present paper proposes a new high dimensional VAR model in which some common factors
(CFs) feature in the determination of each time series besides the idiosyncratic errors and lagged
values of the time series themselves. In an earlier work, |Chudik and Pesaran| (2011) consider a
factor-augmented infinite dimensional VAR model. For simplicity, they construct a model in which
the factor-induced strong cross section dependence is explicitly separated from other sources of cross
section dependence. They mention the possibility of using high dimensional VAR models with CF's
but do not explicitly analyze the model. The FAVAR system in the present paper allows for serial
correlation among the CFs, which in turn leads to correlation between the CFs and the lagged time
series. To properly control for the presence of CFs in this FAVAR system it is necessary to estimate
the factors, factor loadings, and transition matrices simultaneously. Practical implementation also
requires the determination of the number of factors and lag length.

To estimate the high dimensional VAR model with CFs, we consider a three-step procedure.



In the first step, we consider an ¢;-nuclear-norm regularized least squares estimation problem that
minimizes the sum of squared residuals with an £;-norm penalty imposed on the transition matrices
and a nuclear norm penalty on the low rank matrix © representing the common component. Imposing
the ¢1-norm penalty helps to estimate sparse transition matrices. The nuclear norm penalty helps to
estimate the low rank matrix arising from the CFs and factor loadings. The ¢;-norm regularization
has become standard in statistics and econometrics since the pioneering work of Tibshirani (1996).
The nuclear norm regularization has recently become popular in the estimation of low rank matrices
in statistics and econometrics; see, |[Negahban and Wainwright| (2011), Rohde and Tsybakov| (2011),
Negahban et al.| (2012), Chernozhukov et al.| (2018), Belloni et al. (2019), Fan et al| (2019),
Feng (2019), Koltchinskii et al.| (2019), Moon and Weidner| (2019), and |[Ma et al.| (2020b), among
others. All these previous works focus on the error bounds (in Frobenius norm) for the nuclear norm
regularized estimates, except (Chernozhukov et al.| (2018), Moon and Weidner| (2019) and Ma et al.
(2020b) who study inference in linear or nonlinear panel data models with a low-rank structure. Like
the latter authors, we simply use the nuclear norm regularization to obtain consistent initial estimates.
Under some regularity conditions, we establish the nonasymptotic bounds for the estimation error of
the transition matrices and the low rank matrix ©. Applying a singular value thresholding (SVT)
procedure on the singular values of the estimate of ©, we obtain an estimate of the number of factors.
We also show that the true number of factors can be estimated correctly with probability approaching
one (w.p.a.1). Then, given the estimated factor number, preliminary estimates of the CFs can be
obtained.

In the second step, we include the estimated CFs as regressors and consider a generalized LASSO
estimator to obtain an updated estimate of the transition matrices. We show that the estimation
errors can be uniformly controlled, which facilitates the construction of weights for subsequent esti-
mation by conservative LASSO in the third step. Under some regularity conditions, we show that
this third step conservative LASSO estimator of the transition matrices achieves sign consistency (see
Zhao and Yu, 2006). Besides, the third step estimator of the transition matrices, factors and factor
loadings are asymptotically equivalent to the corresponding oracle least squares estimators that are
obtained by using detailed information about the form of the true regression model. We also study
the asymptotic properties of these oracle least squares estimators and find that they perform as well
as if the true common factors were known.

We illustrate the usefulness of our methodology through a real-data example. We revisit the finan-
cial connectedness measures proposed by |Diebold and Yilmaz| (2014) and document strong evidence
of the existence of CF's in the volatilities of 23 sector exchange traded funds (ETFs). The findings
show that CFs account for a large proportion of the variation in these volatilities; and, conditional

on the CFs, a high level of connectedness remains present among the idiosyncratic components. This



empirical application demonstrates the particular usefulness of our high dimensional VAR model with
CFs in its ability to allow for time series with strong cross section dependence while distinguishing
variations that originates from different sources.

The remainder of the paper is organized as follows. In Section [2| we introduce our model and
conduct a stationarity analysis. Section [3| introduces the estimation methods and examines their
theoretical properties. In Section[d] we conduct Monte Carlo experiments to evaluate the finite sample
performance of our estimators. We apply the model and methods to study financial connectedness
in Section [5} Section [f] concludes. Proofs of the main results in the paper are given in the Appendix.

Further technical details are provided in the online Supplementary Material.

1.1 Notation

€ RM*N and v = (vq,...,on) € RN be a

matrix and a vector, respectively. We denote vy as the subvector of v whose entries are indexed by a

To proceed, we introduce some notation. Let A = (a;;)

set I C [N]={1,...,N}. We denote Ay ; as the submatrix of A whose rows and columns are indexed
by I and J, respectively. Let A, j = A[nj,; be the submatrix of A whose columns are indexed by J,
A1« = Apu be the submatrix of A whose rows are indexed by /. For notational simplicity, we also
write the individual columns and rows of A respectively as A, ; = A, ;) for j € [N] and A; . = Agy .
for i € [M].

For a random variable or vector =, we denote its expectation and {,-norm as E(x) and |||z|||, =

[E(]x\z)]l/p. We define the £y, ¢4 (¢ > 1), and ¢s norms of a vector v to be

N N 1/q
olo =" 10 £ 0), oy = (Z W) and [oloe = s i,
i=1 i=1
where 1(+) is the indicator function. In the special case ¢ = 2, | - |2 is the Euclidean norm of v. We
write |v| = |v|2 for notational simplicity.

For 1 < ¢ < 00, we define the £, lyax, Frobenius (F), and nuclear (,) norms of the matrix A to

be:

1/2 min(N,M

)
[4llg = max [[Avllg, [|Allmax = maxags], ||A]le = > laijl” and [|Alle = ) 9y(A),
vlla= " i k=1
where 9, () is the kth largest singular value of A for k = 1, ..., min(N, M). We also denote the largest
and smallest singular value of A as ¥, (A) and ¥,,;,(A). In the special case ¢ = 2, the 5 matrix

norm is given by [|Al|2 = [|A]|op = ¥1(A).

For a full rank 7' x R matrix F' with T' > R, we denote the corresponding orthogonal projection



matrices as P = F(F'F)~'F' and My = Iy — P, where I denotes the T x T identity matrix. Let
vec(+) denote the (columnwise) vectorization operator, and ® be the (right hand) Kronecker operator.

Let vV and A denote max and min operators, viz., a V b = max (a,b) and a A b = min (a,b).

2 Model

For a N-dimensional vector-valued time series {Y;} = {(v1¢,...,yn¢)'}, the high-dimensional vector

autoregression model of order p with CFs is given by:

p
Vi=> AW, j+A°f) tw, t=1,..T, (2.1)
j=1

where A9, ..., Ag are N x N transition matrices, A = (A}, ..., \%)" is an N x R? factor loading matrix,
ftO is an R°-dimensional vector of common factors, and u; = (w1, ...,uNt)' is an N-dimensional
vector of unobserved idiosyncratic errors. Throughout this paper we use the superscript 0 to denote
true values. The coefficients of interest are A?’s, A% and FO = (f0,..., f%)’. In practice, we need to
determine the number of factors and the VAR order p. We propose a method to consistently determine
p in Section 3} The number of factors can be determined in the first step of our estimation procedure
introduced in Section Bl We consider the framework that both the number of cross-sectional units
N and the time periods T go to infinity. The estimation is a natural high-dimensional problem with
the number of parameters, N2p + RON + ROT, growing linearly with 7" and quadratically with N.

It is convenient to reformulate model (2.1) as a multivariate regression problem in the form

!/

/ / ! 0r 0r 0r /
Yy Yo - Yl—p Ay 1 Al Uy
| = : - : : + | : + 1 | (2.2)
/ ! ! 0r 0r 0r /
Yr Yo, - YTfp Ap T AN Up
—— T NP R
Y X BO FO A0/ U

where Y eRT*N X cRT*Np B0 ¢ RNPXN “and U eRT*N. A key observation here is that 0° =
FOAY is a low rank matrix. However, due to the correlation between XB° and OV, the direct use of
principal component analysis (PCA) on Y cannot deliver a consistent estimate of the common factors.
Note that under some regularity conditions, both ||XBY||,, and ||6°]|,p are Op(v/NT) and JLSII P
= Op(\/N + /T ). We cannot separate the low rank matrix 0Y from Y without information about
BO. Besides, when the common factors are themselves serially correlated, pure VAR(p) estimation

generally suffers from the endogeneity bias issues.



2.1 Stationarity analysis

Let X} = X; .. The N-dimensional VAR(p) process {Y;} can be rewritten in a companion form as

an Np-dimensional VAR(1) process with CFs, viz.,

A9 A9 ... AV Al
Y, bz R N I A fP ug

Iy 0 .- 0 0
Yi Yi o 0 0

= 0o Iy --- 0 0 ) + . + ) . (2.3)
thfp+1 Y;ffp 0 0
S — i 0 o .- In 0 i ——
Xt X Fi Uy
[0}

If one treats F; + U; as an impulse at period ¢, the process {X;+1} in (2.3) can be regarded as a
high-dimensional VAR(1) process. We can write the reverse characteristic polynomial (Liikepohl,
2005) of Y; as

P
A(z)=In — ZAJO-ZP.
j=1

In the low-dimensional framework, the process is stationary if A(z) has no roots in and on the
complex unit circle, or equivalently the largest modulus of the eigenvalues of ® is less than 1. To
achieve identification, we need to study the Gram or signal matrix Sy = X'X /T and £x = (X X}).
Basu and Michailidis (2015; hereafter study the deviation bounds for the Gram matrix, using a
Gaussianity assumption and boundedness of the spectral density function. Following their lead, we
impose some conditions that will ensure Sx to be well behaved.

To proceed, we write X1 as a moving average process of infinite order (MA (o00)):

Xiy1 = Z O (Frj+Usj) = Xt(-{-)l + Xt(i)lﬂ (2.4)
=0

where Xt(f_)l = Z;io I F;_; and Xt(i)l = Z;’;O ®IU;_j. Then we can study the stationarity of Y; by

studying Xt(ﬁ and Xt(i)l, respectively. First, we consider Xt(i)l, which is the component due to the

common factors. Note that the covariance matrix of F; is a high-dimensional matrix with rank R°

and explosive nonzero eigenvalues. Even if the largest modulus of the eigenvalues of ® is smaller

()

than 1, the variances of entries of X, are not assured to be uniformly bounded. Specifically, we

consider yl(tf ), which is the ith entry of Xt(f_)l Let e;pr be the jth unit M-dimensional vector. Noting



that yl(tf) =(e1p,® 62}N)/Xt(-{)17 we can write yz(tf) as an MA(oo) process

(o]
ylt Z€1p®ez]\f (elp®A0ft ]—Za ft —j
7=0

7=0

where f{ are allowed to be serially correlated. To ensure y(f ) = Op(1), we need to require the
coefficients ozg,) (7) to be well-behaved. Note that we generally do not have ||®||,, < 1, as explained
in the supplement of (2015). In Assumption A.1 below, we impose sufficient conditions that
ensure yl(tf ) are well-behaved. The online supplementary material provides a discussion of these
conditions.

For the process {Xt(i)l}, stationarity is assured if we assume the covariance matrix of u; is well-
behaved and w; is serially uncorrelated as in (2015) and Kock and Callot (2015; hereafter [KC)).

Similarly to yl(tf ), we define yl(tu ) such that

vir = o+ o, (2.5)

where

o0
) =3l (uej and ol (7) = (e1p ® ein)' (e ® In):
=0

Again, imposing zero serial correlation and weak cross-sectional correlation across u;:’s is not enough

(w) _

to ensure y,;,° = Op(1) uniformly.
Let ¢ and ¢ denote generic constants that may vary across occurrences. Throughout the paper, we

will treat A® as nonrandom. To ensure the stationarity of {Y;}, we impose the following assumption.

Assumption A.1. (i) u; = C(“)egu), where egu) = (eglft), ...,e,(;f,)t)’, egz) s are .1.d. random variables

across (i,t) with mean zero and variance 1, and C™ is an N x m matriz such that CWC®W =3,
and ¢ < ¢min(2u) < wmax(zu) < ¢

(ii) {fto} follows a strictly stationary linear process:

_'“f ZC Et J’

() — () (f)

where € = (€77, ERO,t), are i.i.d. with mean 0 and covariance matriz Igo across t, supm>1(m +
ey HC'(f)HmaX < ¢ < oo for some constant o > 1;

(iii) maxy<,<po |||e£];)|||q < € and maxi<j<m |||€§?|||q < ¢ for some q > 4;

(iv) {egu)} is independent of {e,gf)};

(v) the largest modulus of the eigenvalues of ® is bounded by some constant p € (0,1);

(

Vi) [[(®7) ing vl lop < @07 and [al) ()] < &



(vii) max,|—1 Ymax(A*(2)A(2)) < ¢, where |z| denotes the modulus of z in the complex plane,

and A*(z) denotes the conjugate transpose of A(z).

Assumption A.1(i) is frequently made in high dimensional time series analysis; see, e.g., Bai
(1996), Chen and Qin (2010) and Ma et al.| (2020a). It requires that u; be independent over ¢
and weakly dependent across i. At the cost of more complicated notations, one can allow ¥, (2,,)
to converge to zero and ¥, ,.(3,) to diverge to infinity, both at a slow rate. Assumption A.1(ii)
assumes the common factors to be stationary and allows for weak serial correlation. The factors can
have nonzero mean so that y/,s can also have nonzero mean. Assumption A.1(iii) requires that both
Z(j;) and 61(7?
distribution assumption of (2015) and (2015). Assumption A.1(iv) requires independence

between {eiu)} and {egf )}, which facilitates separate study of yftf ) and yl(f ). Assumption Al(v)isa

€ have finite gth order moments, which is a weak assumption compared to the Gaussian

standard assumption to ensure stationarity. Assumption A.1(vi) is a high level condition to ensure
that E(y2) is uniformly bounded. Assumption A.1(vii) helps to bound the minimum eigenvalue of

Y x. By the inequalities

P
gﬁngmax(A*(Z)A(Z)) < (gl‘ggc\lA(z)HopV <1+ (1A op,
o o k=1

we can see that requiring all the A‘j)»’s to have finite operator norms is a sufficient condition.
The online Supplementary Material provides further discussion on Assumption A.1(vi)-(vii). The

following proposition ensures the stationarity of the process {y;;} and establishes a lower bound for

wmin(EX)'

Proposition 2.1 Suppose that Assumption A.1 holds. (i) Then'Y; is a stationary process, sup; E(y%) <

00, and
wmin(zu)
zﬁmin by 2 * ’
( X) max\z|:1 wmax(‘A (Z)‘A(Z))
(ii) Let Sxp = E(Xef{'), and © = Sx~ExpEp' Sy p. We again have i, (3) > maX|z|:1lfﬁrr:z£(Ejz(z)A(z))'

3 Estimation method and theoretical results

This section develops an estimation procedure for the model and establishes its properties, both
asymptotic and non-asymptotic. The procedure assumes at this point that the VAR order p is known
and that R? is unknown. In practice, we can determine p via the data-driven method introduced in

Section 3.5. The number of factors can be determined consistently in the first estimation step.



3.1 First-step estimator

In the first step, we propose an fi-nuclear norm regularized estimator to estimate the coeflicient
matrix BY and the low rank matrix ©° simultaneously. We impose a sparsity condition on B® and
use {1-norm regularization to achieve the selection of regressors. Like Moon and Weidner (2019;
hereafter and |Chernozhukov et al.| (2018) we adopt nuclear norm regularized estimation to
obtain initial consistent estimation of the low rank matrix ©°. The first step estimator is given by

the following procedure.
First-step estimator: Let v; = v1(N,T) = ;T /?1log N and v5 = v5(N,T) = co(N~V/2 4 T7-1/2)

for some constants c¢1 and co.

1. Estimate the coefficient matriz B® and the low rank matriz ©° by running the following ¢1-

nuclear norm regularized regression:

L

= argmin(B 0)L(B,0), where

)

L(B,O) = —||]Y —XB- @|]F+ ]vec()

S lel.. (3.1)

F

2. Estimate the number of factors R by the singular value thresholding (SVT) as:

NAT

R= Z H;(8) > (1, VNT[6]lop) /1.

3. Obtain a preliminary estimate of F°. Let the singular value decomposition (SVD) of O be
© = UDV"', where D =diag(11(©), ..., xar(0)). Set F = /TU, 2]

Remark 3.1. The objective function £(B, ©) is the sum of squared residuals with both the nuclear
norm regularization on © and ¢;-regularization on B. To obtain the numerical solution, we can apply
an EM type algorithm. In the E-step, we fix B and update the estimate of ©. The solution can be
obtained following the result of Lemma 1 of (2019).2 In the M-step, we fix © and update B.

The optimization problem can be decomposed to N LASSO-type linear regression problems.

3.1.1 Non-asymptotic results for the first-step estimator

In this subsection we establish the non-asymptotic properties of the first step estimator. In particular,
for B and ©, we establish a non-asymptotic inequality for their estimation errors. For R, we show
that R = R® w.p.a.1.

’Let the SVD of A be A = USV’', where S = diag(si,....,84), with ¢ = rank(A). Then
argming (3||A — ©|[F +7/|©]|«) is given by U - diag((s1 — )+, ..., (5¢ — ¥)+) - V', where (s)+ = max(0, s).

10



To proceed, we introduce some notation and assumptions. We first introduce a key invertibility
condition for the linear operator (AM, A?)) :— XA® 1 A®) when (AW, A®) is restricted to lie in
a ‘cone’. A similar condition is imposed in (2019) and Chernozhukov et al. (2018). Following
their lead, we refer to the condition as ‘restricted strong convexity’. To define the ‘cone’, let J; C [Np]
be an index set such that j € J; if and only if B?i # 0. Let J¢ = [Np]\J;. Let the SVD of ©° be
O = UYDOVY, For a T x N matrix A®, define the operators

P(A®) = UL 10) U2 o) APV oy Vo and M(AP) = AB) — P(AD)),

Hence, the operator P(-) projects a matrix onto a ‘low-rank’ space which contains ©°. For some

¢ > 0, the ‘cone’ Cyr(c) € RVNPXN 5 RTXN 5 4 set of (A, A®)) satisfying the restriction:

NI AL 5[ MAO), 0 S IAGL | 2 [PAR)],
N VNT N VNT

We impose the following condition.
Assumption A.2 (Restricted strong convexity) If (AN, AR)) € Cyr(c) for some ¢ > 0, then there

exist constants k. and k.. such that

2

st a2 7. o

A(z)” _
F
Let k; = |Ji|, K; = sup, k; and K, = Zf\; 1 ki/N. The next assumption involves a regularity

condition on the errors and a sparsity condition on the transition matrix.

Assumption A.3 (i) [|U[|,, /VNT < v,/2, where v, is the tuning parameter for the nuclear norm
reqularization;.

(il) Ko = o(T (N~Y2 4+ T71/2) /(log N)?).

Assumption A.3(i) requires the idiosyncratic error matrix to have an operator norm of order
Op(V/'N ++/T). This condition has become standard in the literature; see, e.g., Lu and Su| (2016),
Moon and Weidner| (2017), [Su and Wang (2017), (Chernozhukov et al| (2018), and [MW] (2019). [Moon
and Weidner| (2017) provide examples of conditions that ensure the above assumption. In particular,
it holds if egf)’s are i.i.d. sub-Gaussian (see, e.g., Vershynin, 2018).

Assumption A.3(ii) impose some sparsity conditions on the transition matrix. We allow K, (and
thus K ;) to diverge to infinity at a rate slower than T (N_1/2 + T_1/2) /(log N)? for some of the
results below. Such a sparsity condition can be relaxed to the approximate sparsity condition as in

Belloni et al.| (2012) but that extension is not pursued here.

11



Theorem 3.1 Suppose that Assumptions A.1-A.3(i) hold. Then we have

N2 HB - BOHF < eviVE.V ;) and (NT)™'/? Hé - @OHF < eiVELV ),

with probability at least 1 — & (N2T'~9/4(log N)~9/2 4 N2=clo8 N for some finite positive constants c,

¢, and .

Theorem establishes the non-asymptotic inequalities for the estimation errors of B and © in
terms of Frobenius norm. The inequalities are valid when both N2T1~%/4(log N)~%/2 and N2—¢logN
are small. In general, the first term dominates the second one for finite ¢ and divergent (N,T"). If
the error terms are sub-exponential, we can allow ¢ to diverge to infinity in which case the second
term could dominate the first one. To prove the above theorem, we need to establish a bound
for T71||U’X]|max. Specifically, we need to find a sharp probability bound for a partial sum like
71 Zthl Yit—kWjt. We resort to a Nagaev-type inequality, as introduced by [Wul (2005) and |Wu and
Wu| (2016), allowing for both dependence among summands and non-Gaussianity. The summand
Yit—kUjt has a nonlinear Wold presentation y; ;—xujt = giji(...,€—1,€), where ¢ = (egu)/,egf)/)’ is
i.i.d. random variables under Assumption A.1. Then one can verify that the dependence-adjusted
norm (see Wu and Wu, 2016) of y; ;—u;: is well bounded so that one can obtain a sharp probability
bound using the Nagaev-type inequality for nonlinear processes.

Despite the fact that Theorem is a non-asymptotic result, it is interesting to examine its
asymptotic implications under Assumption A.3(ii). Note that Assumption A.3(ii) implies that
Y1vVEq = o( N~V/* 4 T=1/4). Consequently, Theorem implies that both N~1/2||B — BY||p and
(NT)~1/2||© — @°||r are op(N Y44+ T~1/4). This rate can be improved to Op(N /24 T-1/210g N)

if we restrict our attention to the case where K, = O (1).
Next, we impose an assumption on the common factor and the factor loadings.

Assumption A.4 (i) There exists an N such that for all N > N, ||[AYAO/N — Zp||max < eEN~1/2
for an R x R® matriz X5 and ||A°||max < &
(ii) Let Sp = E(fP ). There are constants s; > -+ > spo > 0 so that s; equals the jth largest

eigenvalue of 211[7/221\2;/2 .

Assumption A.4 requires that the factors and the factor loadings are strong/pervasive with well-
behaved sample second moments. Assumption A.4(ii) requires distinct eigenvalues of 22/22 AE}?/2 in
order to identify the corresponding eigenvectors.

The next theorem establishes the consistency of R and the mean-square convergence rate of F.
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Theorem 3.2 Suppose Assumptions A.1-A.J hold. There exist positive constants c, ¢ and ¢, and
a random matric H depending on (F°,A%) such that (i) R = R® and (i) |F — FOH||p/VT <
&(v1vVKa V 7y), both with probability larger than 1 — & (N?T'~%/4(log N)~9/2 4 N2-clog Ny,

Theorem |3.2(i) establishes the consistency of R and the mean-square convergence rate of F.
Intuitively, since © is a consistent estimator of @0 = FOAY with well-controlled estimation errors,
we expect the first RO singular values of © to be Op(V/NT) and the other singular values to be
Op[V/NT(y; V 75)]. Then the hard SVT procedure can distinguish the v/ NT-order singular values
from those of smaller order. Alternatively, given the consistency of B established in Theorem
we can regard the ‘residual’ Y — X B as an approximation of FOAY 4+ U. Tt is easy to see that one
can also apply the methods of Bai and Ngj (2002), |Onatski (2010) and |Ahn and Horenstein| (2013) to
determine the number of factors. Theorem (ii) establishes the convergence rate of F. The R x R

transformation matrix H is similar to the matrix H in Bai (2003).

3.2 Second-step estimator

In this subsection, we introduce the second-step estimator. The second-step estimator is a general-
ization of the LASSO estimator, which includes the estimated factor matrix F' as regressors. Our
goal is to obtain an estimator of B® whose elements uniformly converge to the true values. Then the
second-step estimator can be utilized to construct adaptive- or conservative-LASSO weights in the

third step.
Second-step estimator: Let v5 = c3(7;V Ko V 7y9) for some constant c3. For each i € [N], solve
the minimization problem:

1

vy g [ = Xv = FA + 3ol (3:2)

(B! )\;)' = argmin

*,09
where the LASSO penalty is only imposed on the coefficients of X. Then the second-step estimators
of BY and A° are given by B = (B*,l, ...,B*’N) and A = (A1, ..., A\n)’, respectively.

Remark 3.2. Note that the ¢;-norm penalty is only imposed on the coefficients of X. In the proof
of Theorem E below, we show that B*Z solves the LASSO problem with dependent variable MY ;
and regressors M ;X.

Below, we establish the non-asymptotic properties of B.

3.2.1 Non-asymptotic results for the second step estimator

Recall that ¥ = Yy — Sy X3! 5 . Let ¥ = X'M ;X /T. By Proposition [2.1] 4, (%) is bounded

below from 0. Nevertheless, there is no guarantee that the sample matrix ¥ be positive definite.
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In fact, if Np > T, ¥ is always singular, which leads to miny, g % = 0. In this case, we follow
Bickel et al.| (2009) and (2015) to establish the restricted eigenvalue condition. Specifically, we
replace the above minimum by a minimum over a smaller set. Let J C [Np| be an index set and
J¢ = [Np]\J. We say the restricted eigenvalue condition is satisfied for some K € [Np] if
: . V'S
min  min

U<k l£0  |ugl?
[vgel1<3|vs|1

= ks (K) >0, (3.3)

where |J| denotes the cardinality of J. In (3.3]), the minimum is restricted to those vectors that
|vje|1 < 3Jvs|1, where J has cardinality no bigger than K. In this restricted space, we can show that
(3.3) is satisfied with a high probability for K = K.

The following theorem establishes the £;,,x-norm bound for the estimation error of B.

Theorem 3.3 Suppose that Assumptions A.1-A.4 hold. Suppose that is satisfied. Then

48
[¢min (ZX )] 2 KJ’Y3

||B - BOHmax < 121%55\[ |B*,2 - Bg,ih <

with probability larger than 1 —&(N2T'~9/4(log N)~9/2 4 N2~¢le N} for some finite positive constants

c and ¢.

3.3 Third-step estimator

In the first and second steps, we impose penalties on all elements in the coefficient matrix B, which
introduces asymptotic biases into the estimators of the transition matrices. [Zou| (2006) proposes an
adaptive LASSO technique in a linear regression framework, which penalizes the true zero parameters
more than the non-zero ones. Then he shows that the adaptive LASSO estimator is asymptotically
equivalent to the oracle least-squares estimator, which is obtained with the information of relevant
regressors. Kock and Callot| (2015) also explore the adaptive LASSO method in the high-dimensional
VAR framework.

In practice, the regressors with zero estimates in the preliminary stage, which are usually plain
LASSO estimates, are excluded in the adaptive LASSO. Hence, any incorrect regressor exclusion by
the preliminary stage estimates directly leads to wrong regressor selection of adaptive LASSO. To
solve this problem, the conservative LASSO, which gives regressors that are excluded by the initial
estimator a second chance, is introduced (e.g.,|Caner and Kock, 2018). In this subsection, we extend

the conservative LASSO estimator to the framework of high dimensional VAR with CFs.

Third-step estimator (Conservative LASSO): Implement the following procedure:

14



1. (Set weights) Let v4 = v4(N,T). Let W be a Np x N matriz with entries

L if ‘Bki’ <y,

] (3.4)
0 if |By| > ayy,

Wy =

where k € [Npl, i € [N], and o > 0. Set (O = F.

2. (Update 3(5)) For integer £ > 1, update the estimate of B and A:

N
(0 () : 1 NP .
(B( ! >‘i )/ = argmln(v/7A’)/eRNP+Rﬁ HY*J - Xv - P UAHF + 74 Zwki |Uk:| )

*,0 )
k=1
where vy, is the kth entry of v, i € [N]. Let BY) = (Bg, ,Bf])v)

3. (Update ) Obtain the SVD of Y —XBW as Y — XBO = 0O DOV Obtain an updated
estimate of FO g5 F(O) = \/Tﬁy[)é]. Set { =0+ 1.

4. Iterate steps 2-3 until numerical convergence. Denote the final estimators as B’, F and A.

Remark 3.3. Note that the weights do not change with iterations in the above procedure. It is

worth mentioning that the weights wy; can take various forms. For example, |Caner and Kock (2018)
’Yprec

also consider wy; = Bl
3 prec

, where Vprec = ¥7V4-

3.3.1 Asymptotic properties of the third-step estimator

In this subsection, we will establish two results: (i) the conservative LASSO estimator B® has the
variable-selection consistency; (ii) Bis asymptotically equivalent to the oracle least squares estimator.

First, we introduce some notation. Following Zhao and Yu (2006) and Huang et al| (2008), we
say that B =, BY or B® is sign-consistent for B?, if and only if sgn(Bgi) ) :sgn(Bfﬂ-) for all
i € [N], where

1 ifBy; >0
sgn(By ;) = [sgn(B1,i), ...,sgn(BNp,i)]', and sgn(By;) = 0 ifBg=0 .
-1 if B; <0

Assumption A.5 (i) As (N,T) — oo, the magnitude of nonzero coefficients are of larger asymptotic
order than ~y,: 74 = o(min;e[y minge s, | By,|);

(ii) (K3/*T-121og N + KY2N=1/2) = o(v,) and K K,[T " (log N)2 + N~ = o(T~1/2);

(iii) N2T1=9/*(log N)~%/? — 0 and T/N? — 0 as (N, T) — oo.
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Assumption A.5(i) assumes the nonzero entries of B% cannot be too small, which is a standard
assumption in the adaptive LASSO literature. The lower bound min;e [ minge j; | B),| has to be larger
than 7, in order to separate the nonzero entries from zeros. By Assumption A.5(i) and Theorem (3.3
we can show that maxye,j; wi; = 0 and minge je wg; = 1 w.p.a.1. In this case, we only put penalty on
the true zero entries. Assumption A.5(ii) imposes some conditions on K; and K,. This assumption
ensures that ||[X(BY — BO)||p has a desired convergence rate. Assumption A.5(iii) imposes some
conditions on the relative rates at which N and 7" pass to infinity and they depend on the number
(¢) of moments for the innovation processes in the error term and factors. In the special case where
N and T pass to infinity at the same rate, this condition requires ¢ > 12. This requirement greatly
relaxes the sub-Gaussian assumption imposed on the error terms in the early literature.

The following theorem establishes the variable selection consistency of B® and the preliminary

convergence rates of B®) and F©®.

Theorem 3.4 Suppose that Assumptions A.1-A.5 hold. Then
(i) P(BY) =, B%) — 1, as (N,T) — oo;
(i) || X(BY = BY)||p/v/NT = Op(y1vEKa +72);
(iii) ||F©) — FOH||p/VT = Op(71vVKa +72)-

Theorem (1) shows that B(® has the oracle property in that it selects the correct variables
w.p.a.l. Due to the presence of common factors and the possibly divergent number (k;) of nonzero
coefficients in Bgi, we can only obtain a preliminary rate Op(v;v/ K, + 75) in Theorem (ii)—(iii).
Apparently, this rate depends on the average number (K,) of nonzero coefficients in BSJ-’S.

To improve the rate of convergence, we study the final estimators B , F and A. Now, F corresponds
to the first R eigenvectors of (Y — XB)(Y — XB)', rescaled by v/T, and one can expand F' — FOH
following the lead of Bai and Ng| (2002) and Bai| (2009). By looking at the product of F' — FOH with
other terms, we can derive a sharper bound for some intermediate estimates. Finally we can improve
the probability order of each element in By, ; — B%,i to O(T~1/?).

The following theorem reports the asymptotic distribution of B Jiie

Theorem 3.5 Suppose that Assumptions A.1-A.5 hold. Let S; denote an L X k; selection matrix
such that || S| is finite and L is a fived integer. Conditional on the event {B =, B°}, for each
i € [N], we have VTS;(By,; — Bf}i,i) <, N(0,025;(3y,,,) " S}) where 07 = E (u2,).

P =

Note that we specify a selection matrix S; in Theorem that is not needed if k; is fixed.
Intuitively, we allow k; to diverge to infinity as (IV,7) — oo and we cannot derive the asymptotic

normality of B J;i directly when k; — oo. Instead, we follow standard practice on estimation and
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inference with a divergent number of parameters (see, e.g., [Fan and Peng, 2004, Lam and Fanl, 2008,
and (Qian and Su 2016) and prove the asymptotic normality for an arbitrary but finite number of
linear combinations of the elements of B J;,i- In the special case where k; is fixed, we can take S; = I il

and obtain the usual joint asymptotic normal distribution for all elements of B J; i

3.4 Tuning parameter selection

In practice, we need to select the tuning parameters v,, for £ = 1,...,4. For 75, which is the tuning
parameter for the nuclear norm penalty, we adopt a simple plug-in approach similar to that introduced

in |Chernozhukov et al.| (2018). An ideal tuning parameter for v, is one such that
[Ullop/VNT < (1= ¢)7,

for some ¢ > 0 with high probability. Suppose U is a random matrix with i.i.d. sub-Gaussian entries
that have mean zero and variance o2, its operator norm is bounded by Co, (VN + /T) for some
C > 0 with high probability (see Vershynin, 2018). One can first use vy, = %y(\/ﬁ + V/T) for some
C > 1 and 6, is the sample standard deviation of Y. After obtaining an estimate 7, of o, we can
calculate a suitable 45 via simulation. Specifically, we can simulate the random matrices U with i.i.d.
N(0,67). Then we let 5 = Q(|[Ul],,,

For 71,3, and 74, we propose to use the five-fold cross validation (CV) process. Let v = (71,73,

0.95), where Q(z, ) denote the o' quantile of z.

v4)'. For the first-step estimation, the procedure goes as follows:

1. Partition the data into 5 separate sets along the time dimension: T4y, ..., T5 C [T];

2. For k = 1,...,5, fit the model to the training set by excluding the kth fold data. Denote the
estimators by B(*) and A where AO%) is a N x R matrix containing the first R right

singular vectors of O. Calculate the sum of squared prediction errors

CU(’% k:) = tr[(YTk,* - XTk,*B(%k))M[\(%k) (YTk,* - XTk,*B(%k))/];

3. Compute the CV error for a fixed tuning parameter by CV () = S>0_, cv(v, k).

4. Select v* = argmin,, C'V (7).

Remark 3.4. Once the sample T}, is excluded, we cannot obtain an estimate of Fr, .. Hence
we cannot obtain the residuals by deducting the estimate of Frr, ,A’. For this reason, we multiply
Yo, — XT,w*B(%k) by Mz .x) to project out Fr, A’ in the above procedure.

For the second and third step estimators, the CV procedure can be constructed similarly.
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3.5 Lag length selection

In the above estimation procedure, we have so far assumed that the lag length p is known. In
practice, the lag length p is usually unknown and requires estimation. In this subsection, we propose
a procedure to determine the lag length p. Suppose we estimate the model with ppax > p°, where
we use the superscript ‘0’ to denote the true parameter. The model with py., lags continues to be
a correctly specified model except that Ag = 0 for k£ > p°. Due to the LASSO regularization, the
elements of the estimator Ap for p > p° should converge to zero. For this reason, we propose to

determine the lag length by the following procedure:

1. Given pmax, obtain the estimates A, for k € [ Pmax);
2. Calculate aj, = HAkH% V ¢ for some constant ¢ and k € [pyax];

3. The criterion function we consider is given by the ratio

Do ag
k= TR 1
Pmax y P=1L1,...c;Pmax — 1.

GR(p) =
k=p+1 Wk

The term G R refers to the growth ratio of ZZI:;‘ ag.

4. Obtain the estimator of p° as p = argmax <, GR (k).

Remark 3.5. We make some remarks in order. First, one can also simply run an ¢i-nuclear
penalized regression with ppax, which is the first step of the estimation procedure given in Section
3.1. We only require that ||A; — A% |r converge to zero at a certain rate. Second, in practice one
may obtain a very small or even zero value for HAkH% when k > p¥. In this case, if we directly use
ap = HA;{H%, the growth ratio may possibly choose a larger p than p°. To solve this problem, we
bound aj below by some constant ¢ > 0. Third, the GR(p) criterion function is constructed to allow
some Ag with k& < p° to be a matrix of zeros. If we believe all Ag’s are nonzero matrices for k € [po] ,
one can also consider the criterion function F'R(p) = a,/ap+1, where the term F'R refers to Frobenius

norm ratio.

4 Monte Carlo Simulations

This section reports the results of set of Monte Carlo experiments designed to evaluate the finite

sample performance of the proposed estimation procedure.
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4.1 Data generating processes

We consider three cases with p = 1. For each data generating process (DGP), we generate the data

from the following high dimensional VAR(1) process with CF's:

Y = AV, + A°f + (4.1)
where AY varies across different DGPs, A? = (A0, ..., A&)". The factor loadings A, for r = 1,..., RO,
are independently and identically distributed (i.i.d.) standard normal random variables. The factors

f2, forr =1,...,R° follow an autoregressive process:

f)g‘ =Py fto—l,r + 61(57}’0)’

(u)

where p; = 0.6 and EE{) are ii.d. N (0,1). The idiosyncratic error terms are generated as u; = s-€;,’,

where s controls the signal-to-noise ratio, and egf) are i.i.d. N(0,1).

DGP 1 (Tridiagonal transition matrix): (A4%);; = 0.3-1(Ji — j| < 1).

DGP 2 (Block-diagonal transition matrix): We generate a block-diagonal matrix Ay =bdiag(S1, ..., Sk),
where the Si’s are 5 x 5 random matrices. The diagonal entries of Sy, are fixed with (Sj);; = 0.3. In
each column of S, we randomly choose 2 out of 4 off-diagonal entries and set them to be —0.3.

DGP 3 (Random transition matrix): We fix the diagonal entries of A? to be 0.3 (i.e. (A9);; = 0.3).

In each row of AY, we randomly choose 3 out of N — 1 entries and set them to be —0.3.

FIGURE [ around here

Figure [I] illustrates the structure of the random transition matrices used in our simulation. For
each DGP, we consider N = 30,60, and T" = 100, 200, 400, leading to six combinations of cross-

sectional and time series dimensions. The number of replications is set to 500.

4.2 Implementation and estimation results

For each DGP, we consider the feasible estimator proposed in this paper and the oracle least squares
estimator. The oracle estimators are obtained by using the information of the number of factors and
the true regressors.

Table (1] reports the model selection accuracy. For each combination of N and T in each DGP,
the fourth and fifth columns report the under- and over-estimation rate of R, respectively. The TPR
(true positive rate) columns report the average shares of relevant variables included. The FPR (false
positive rate) columns report the average shares of irrelevant variables included. We summarize

some important findings from Table |1, First, the proposed hard singular value thresholding (SVT)
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procedure can correctly determine the number of factors for each case. Second, with N fixed, the
TPR increases with T in all cases as expected. All three-step estimators can include almost all the
true regressors when 7' = 400. Third, among the three estimators, the third-step conservative LASSO
estimator includes the least irrelevant regressors in almost all settings. In addition, only conservative
LASSO estimators tend to exclude more irrelevant regressors as T' increases, while the FPRs of the

first and second step estimators increase as T grows.

TABLE [l around here

Table [2| reports the estimation error of both the feasible estimators and the oracle least squares
estimator. We report the root mean squared errors (RMSEs) for all entries and nonzero entries,
respectively. We summarize some important findings from Table 2] First, as expected, the oracle
least squares estimator uniformly outperforms the feasible estimators. This is mainly due to the fact
that the FPRs of feasible estimators were never zero. Second, the RMSE of the oracle estimator for
nonzero entries decreases with 7' at they/T-rate and alters with N slightly. This is consistent with
our theoretical prediction that the oracle least squares estimator converges to the true values at the
V/T-rate. Third, the conservative LASSO outperforms the other two feasible estimators in terms of
RMSEs in all cases.

TABLE [ around here

For all DGPs, we also consider estimation of a misspecified VAR(1) model, Y; = A?Y}q + uy,
where the common factors are ignored. We first estimate the model with LASSO as in (2015).
Then we construct the weights as in and use conservative LASSO to estimate the misspecified
model. Table [3] reports the performance of these two estimators. We summarize some findings from
Table |3l First, the FPRs for both estimators are quite high. This indicates that the misspecification
may lead to non-sparse estimates of the transition matrices when the presence of strong cross-sectional
dependence is not properly accounted for. Second, the estimators for the misspecified model also
have higher RMSEs. Third, in many cases, the conservative LASSO estimator performs even worse
than the LASSO estimator in terms of RMSEs. So it is important to take into account the factor
structure in the estimation of a VAR with CFs.

TABLE Bl around here
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5 Empirical application

5.1 Evaluating a network of financial assets volatilities

In recent years, financial asset connectedness has been an active topic in financial econometrics.
Examples of contributions to this literature include Barigozzi and Brownlees (2019; hereafter ,
Barigozzi and Hallin| (2017), [Billio et al| (2012), Diebold and Yilmaz (2014; hereafter [DY]), Diebold
and Yilmaz| (2015), and [Hautsch et al. (2014). Some of these authors directly model the large panel
of time series as a VAR process without the potential presence of common factors. A LASSO-type
method is employed to estimate the transition matrices. However, Barigozzi and Hallin| (2017) and
(2019) document evidence for the existence of a factor structure in volatility. Barigozzi and Hallin
(2017) consider controlling for the presence of common factors by means of a dynamic factor model.
(2019) use the regression residuals of individual volatilities on observed factors (e.g., market
volatility or sector-specific volatility) to represent the idiosyncratic components of the volatilities.
Neither of these papers provides theoretical justifications.

In this empirical application, we extend the measure of connectedness of [DY] and study the
connectedness of financial assets. Specifically, we study the connectedness in a panel of volatility
measures. As remarked by the volatilities of financial assets can be interpreted as a form of
‘investor fear’. Then volatility connectedness represents ‘fear connectedness’ across assets. In this
scenario, it is natural to take into account common factors, which reflect confidence in the market.
Spillover effects across assets is another reason for connectedness. We use the econometric method-
ology derived in the present work to analyze a panel of return volatilities of 23 sector ETF funds.
The findings show that common factors account for 56.1% of the overall variability. Conditioning on
these factors, the interdependence across individuals still captures a relatively high proportion of the
variation.

Table (] around here

5.1.1 Data description and empirical framework

We collect the weekly ‘open price’, ‘close price’, ‘high price’ and ‘low price’ of a series of sector ETF
funds from Yahoo finance. The fund names and tickers are listed in Table |4l They fall into several
categories. The ‘Energy’, ‘Financial’ and ‘Consumer cyclical” are three large categories, each of which
contains three to four funds. Each of the other categories contain at most two funds. The sample
spans July 2007 to August 2019, which corresponds to 688 weeks. As volatility is unobserved, we use
the observed price data to estimate it. Specifically, we follow Garman and Klass (1980) and Alizadeh
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et al.| (2002) to measure the asset volatility as follows:

6% = 0.511(Hy — Li)? — 0.019[(Cit — Oi¢) (Hyt 4 Liy — 204t) — 2(Hyt — Ogt)(Liz — Oyt)]
—0.383(Cyt — Oy)?,

where Oy, Cyit, Hit, and Ly are natural logarithms of weekly ‘open price’, ‘close price’, ‘high price’
and ‘low price’, respectively. We present the descriptive statistics of volatilities in Table The
kurtosis of each time series is quite large. We follow (2014) to normalize the data by taking

natural logarithms and then centering each time series. That is, our y; is given by log(5%) — log( 2).
Table [Bl around here

Given the panel of volatilities, we fit the data to our VAR model with CFs in (2.1). By the
decomposition (2.5)), y; = yl(tf ) + yl(t ), where y(f ) is due to the common factors and yz(f ) is due to the
idiosyncratic errors. Then v; —Var(ylt )/var(y;;) measures the proportion of variance in y;; that is
due to common factors and v = Zl 1Var(yl(tf )) / Zizlvar(yit) measures the corresponding object in
all time series.

(u)

For the idiosyncratic component y,,”, we can calculate the measure of connectedness proposed

by [DY]| (2014). As discussed in Section 2, we have yz(f) = > Oozf}f])( ‘)C(“)egqi)j, where agff) (4) =

(e1p®e;n) P (e1,®Ix) and egu) ~ (0, I,;,). For simplicity, suppose that m = N. Then one can treat
(u)

€;;  as the idiosyncratic shock to individual 7. The variance of the H-step ahead prediction error due

to {E%)-i-h}thl is sg = hH 01([ (“)(h)C( )1;)2. If we can identify both ® and C™), we can easily
estimate the variance decomposition matrix D¥ with (i, j)th entry stI- / Z]kvzl sl However, C(%)
is not identified without further assumption. Although we cannot identify C*), the matrix ¥, =
CW M) ig identified. (2014) propose to calculate the H-step generalized variance decomposition

matrix DH = [dH

ij ]N><Na where

i % S0 (@) (1) e )

Eh 0 azN( )ZUO‘EN)(h),

, and e; y is jth column of Iy.

Unlike D, the row sums of D are not necessarily unity We normalize DH to D with (,7)th

entrydli)_dH/Z 1 d so that Zjvldg—landzu 1 Zj

in the y;,”’s can be measured as = Zz# ij A /N. In addition, we let d Z#l dw Following

(2014), we call Jff_ the ‘FROM’ index, as it measures the proportion of generalized variance

= N. Hence, the overall connectedness

decomposition that is due to other individuals. Similarly, we let ij =), £ dlj and call this the
‘TO’ index.
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5.1.2 Estimation results

We use the procedure proposed in Section [3.4] to determine the lag length with ppax = 8. The result
gives p = 4. When we run the regression with p = 4, the number of factors is determined to be one

(R=1).
Figure [2| around here

Figure [2| reports the heat map which represents the estimates of the Ay’s. The element value is
represented by scaled color. In total, 330 out of 2116 entries are nonzero. There are three interesting
findings. First, most of the nonzero entries are estimated to be positive. The positive coefficients
represent the propagation of investor fear across assets. Second, the diagonal elements of Ap’s are
mostly nonzero. The magnitude of the diagonal elements is larger than that of the off diagonal
elements on average. Third, the number of nonzero coefficients in Ay, decreases as k increases and
the average magnitude of the entries also decreases. More recent investor fear causes greater present
investor fear.

Table [6] around here

Next, we calculate the statistics introduced in the last subsection. The upper panel of Table [6]

provides the estimates of v;, df_, and cifi i Almost all the v;’s are above 50%), and the overall variation
due to the common factors is 7 = 56.1%. The market level investor fear is playing a dominant roll

in investor trading behavior. After conditioning on the factors, we consider the idiosyncratic part by

looking at df_, dgj and the H-step generalized variance decomposition matrix DY . The ‘FROM’
index ranges between 27.7% and 71.7%. Interestingly, the ‘energy’ and ‘finance’ funds have higher
‘FROM’ index compared to other funds. A similar observation applies for the ‘T'O’ index. Specifically,
the ‘TO’ index of XLE and IYE are close to 100% and both are ‘energy’ funds. The energy industry
therefore transmits considerable investor fear to the entire market. This finding is intuitive as the
oil price has been extremely volatile in recent years and the energy price affects all industries. The
fund GDX (VanEck Vectors Gold Miners ETF) has the least connectedness. It receives only 27.7%
connectedness from other assets and transmits only 19.1% connectedness to others. The overall
connectedness measure is 49.8%. Conditioning on the factors, there is still substantive transmission
of investor fear across individuals. Figure [3| reports the heat map of the H-step generalized variance
decomposition matrix D at H = 12. We observe that the interconnections within the same category

is high, whereas connectedness across categories is relatively low.
Figure [3] around here

The lower panel of Table [f] provides the measure of connectedness with the pure VAR model es-
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timation as in Demirer et al| (2018). Without controlling for the common factors, the ‘FROM’
and ‘TO’ index of each fund becomes much larger. However, we observe little heterogeneity across
categories. In this case, all the connectedness due to common factors is interpreted as the individual
level connectedness, which potentially leads to wrong inference.

In sum, our framework extends the traditional VAR analysis of financial asset connectedness
to control for the presence of common factors in the determination of volatility. We have found
that common factors account for more than a half of the variation in the data. In addition to the
connectedness that is due to common factors there is still a remarkable degree of connectedness that

arises from spillover channels that operate among the assets themselves.

6 Conclusion

In this paper we propose a methodology to study regularized estimation of high dimensional VARs
with unobserved common factors. The presence of common factors introduces strong cross sectional
dependence into the process. Incorporating such dependence is particularly important in high di-
mensional disaggregated data where connectedness between the variables may arise through different
channels. This dependence and connectedness seem to be especially relevant in studying the trans-
mission of investor fear across financial assets in our study of asset price volatility.

In practical work our procedure can be implemented in three steps as follows. First, given the
order p of the VAR process, which can be estimated via a growth ratio criterion, we can obtain
preliminary estimates of the transition matrices and common component via ¢1-nuclear norm regu-
larizations, with which one can estimate the number of factors consistently and obtain a preliminary
consistent estimate of the common factors. Second, the model is estimated using a generalized
LASSO procedure by including the preliminary estimate of the common factors as regressors. Third,
conservative LASSO is then used to obtain the final estimates, which are shown to be asymptotically
equivalent to the oracle least squares estimates

The methods and results in this paper open up multiple avenues for further research. First,
following Barigozzi and Brownlees (2019) it may be useful in practice to impose some sparsity as-
sumptions on the large dimensional error variance matrix and develop estimation methods to achieve
this. Second, frequency domain methods can be used to estimate the common factor components.
Third, the model studied here does not allow for structural change in the transition matrices or the
factor loadings (c.f., Su and Wang, 2017). It will also be interesting and challenging to study high
dimensional VAR models with common factors that may involve time-varying transition matrices
and factor loadings, which can help to capture empirically evolution in institutional and regulatory

frameworks.
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APPENDIX

A  Proofs of the main results

Proof of Proposition (i) By Assumption A.1(iv), (t “)s and y(f )’s are mutually independent.

ot
It suffices to study them separately. By Assumption A.1(i), we can write yz(f ) as a linear process:

o0 o0
oy =3 al Gruy =3 al(Ho@e ZC (i)
j=0 Jj=0
where C(i’u) = (u)( 4)C™. Under Assumption A.1(vi), one can bound |(e1 ,®e; v)'®7| by Vmax (97w, (v])
< ¢p’. Tt follows that ’%N( )| < é’. Then the MA(oo) representation of yl(tu ) is valid with
E(y$) = 0 and Var(y”) = % ol (j)Euali (j) < co.
Under Assumption A.1(vi), we can also show that E(|yz(tf)|) < X0 |ole )| ’,u,f‘ < 00. The

MA (o00) representation of yl(tf ) is

yz(tf) - yzt + Z azN ft J th + Z C o)) ez(ff)]’
7=0
where ") = 527 ol (k)Y Under Assumption A.1(vi), |7 < 5270 ot ()] - [1C), o

In addition, by Assumptlon A1),

c© J .
ZZPkI j— k||max Zp ZH k||max < Zpk(k+1)—a
7=0 k=0 —0

for some constant ¢ < co. Hence C( w0 i absolutely summable, Var(ylt ) = ZJ 0 C’(Z’f )C( < < 00,

(f)

and the MA (oco) representation of y,; " is valid.

Similar to the decomposition (|2 , we can write X; = Xt(u) + Xt(f). For ¥ x, due to the indepen-
dence between Xt(") and Xt(f), we can also write it as Xy = ng + Eg?), where Zg?) = E(Xt(u)Xt(“)’)
and Z(f) = E(X(f)X(f),) By the fact that Egp is positive semi-definite, we have ©;,(Xx) >

T/Jmm( ) It suffices to show 1/1( ) is bounded below. By Proposition 2.3 of BM (2015), we have

. u) wmin(zu)
Ymin(PX) 2 o A

(w)

Given Assumption A.1(vii), we have that v; (¥ ’) is bounded below by some constant.

(i) By the independence between Xt(u) and Xt(f ), one can also show that v;,(X) > wmin(Eg?)).l
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A.1 Theoretical analysis of the first-step estimators

To prove Theorem [3.I} we need two lemmas whose proofs are in the online supplement.

Lemma A.1 For the T x N matrices ©° and A, we have
(i) H@O+M ), = [1€°l, + M),
(ii) || A7 = M7 + IP(A)I[7:
(iii) rank(P(A)) < 2R?;
(iv) [|AIF = 3245 (A)? and [|A]Z < | A|Frank(A);
For any conformable matrices My and Ma, the following statement holds:
(v) [tr(MiM2)| < [[M]|,4, [vec(M2)|1 and [tr(MyMa)| < ||Mil],, [[Ma]l, -

mazxr

Lemma A.2 Suppose that Assumption A.1 holds. There exist absolute constants c, ¢, ¢ € (0,00)
such that
(i) 1U'X||,,0n /T < v1/2 with probability greater than 1 — e(N?>T'~9/4(log N)~4/2 4 N2-¢clog Ny,
(i) |U'ProX|| /T < c-7y, with probability greater than 1 —&(NT1~9/*(log N)~9/2 4 N1-clog Ny,

maxr

Proof of Theorem Let A = B — B% and A® = 6 — 0. Define the event

ey = (UX||. /T <71/2|Ull,, /VNT < 75/2}.

max

By Lemma (1) and Assumption A.3(i), 5](\}% holds with probability at least 1—&[N2T"~9/2(log N)~%/2
+N2-¢clogN] By the definition of (B, ©), we have that

0 > E(B 0) — £(B%,8%

_ - 71 NI 0 T2 A1 190
= s = XB = @Ift ~ [UJ) + FH(vee( By ~ Ivee(B)) + 116l - [|€°]])

di + do + ds. (Al)

To establish the asymptotic properties of B and O, we study the three terms d;, do and ds in order.
First, we consider d;. By the identity Y = XB" 4+ 0% + U, we have

HY _XB - éHi —uj = HXA(U + A@)Hi ~ 26 [U/(XAD 1 A®)).

For tr[U"(XA®M + A®)], conditional on EJ(\})T, we apply the triangle inequality and Lemma (V)

to obtain

1 X X 1 < 1 <
|t [U/(XAW + A®)]| —HU’XH [vec(AW)[1 + = U, 1A@]I,

IN

max

IN

o vee(A )\1+ @l...

A
2N ﬁH
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It follows that

> 1 4 AQ 71 A1)
B > g XA A — Tjvec(A0)) - 2| A®).
N
> (1) s
> lIXAD 4 AG) - P (12555 +1A5,1)
A(2)
~5 7 (PGP + [MAD)L). (A2)

Next, we consider dz. By the identities that |B*z\1 = |BJM-]1 + |BJ,?,1‘\1 and \Bfiih = ]Bf}i’ih, we

have

N N
71 0 !
2 = 3 B+ By = 1B) > 5 30830 = A5, (4.3)
=1 i=1

where we use the fact that |By, ;|; + |Ag)z|1 > \B9i7i|1 by the triangle inequality and that ‘Bjicﬂjh =
‘Aslc)i‘l as Boc,i =0.
Now, we consider d3. By the triangle inequality and Lemma i), we have

161, = [|A® + 07, =1|6° +P(A®) + M(AR)|,
> [|0° + M(AD)][, —||P(AD)],
= |0 + [ MA®)|, — [|P(AD)]l,.
It follows that
Y2 A (2) . A (2)
ds > ——(||M(A " P(A %) A4
3,\/N—T(Il (A« = [IPA¥)]].) (A.4)

Combining the results in (A.1)-(A.4]), we have

(1
S lXAD L AOR ¢ L ZHAJ o+ 52 IMAR)],
371 N~ AW 3y
< 21 AL 2 ‘ ‘
< 2N;|IAJ2-JII1+2F||P< 2), (A5)

The above inequality indicates that (AM), A)) e Cy7(3). By Assumption A.2, we obtain that

1 1 N
SIADIE + JIAG|R < 5y [[XAD + AG|, (4.6)
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where 73 = (k3 A Hé)_l . By the inequality 1) we have

Tr

A A@)
< 3%\/E||\/N||F+3@%H 1i3

< 3ﬁ(71mv(@72))\/|\ﬁ ”F+7||A(2HF7 (A7)

N
1 X A 3y A0 3y
FIXAY + AP < SIS TIAG L + | PAP).

where the second inequality holds by Lemma|A.1{(ii)-(iv) and the fact that >~ | ]A%)lh <VNEK, (2N,
\Agli?i|2)1/2 < A(I)HF, where recall that K, = N~' SN &, and k; = |J;| denotes the cardi-
nality of the set J;. Combining (A.6)-(A.7) yields

1, « 1« .
CIADIE + L IADIE < 3vER {0y Fe) v (VIR R IAOIR + AR,

which implies that HA Nl < @(y1VKa V 7,) and —||A(2)HF < ¢(71VEKa V vy) with ¢ =
3v/2R3(1V V2RO) < oco. This completes the proof. B

To prove Theorem we need the following lemma whose proof is in the online supplement.

Lemma A.3 Suppose that Assumptions A.1 and A.3 holds. Let Sp = FYF°/T. Then for any x > 0,
P(T1/2||SF — ZFHmax > l’) S le—q/2T1—q/4 + 02 exXp (—03$2)

for some absolute constants Cyp, £ = 1,2, 3.

Proof of Theorem (3.2l We operate conditional on the event that
EXr = {|UX|| o /T <71/2. Ul /VNT < 75/2 and ||Sp — Spllop < cy/log NT1/2},
where c¢ is a large positive constant. One can verify that for some positive constants ¢ and c,
P(EQ)) > 1— & (N*T-9/4(1ogN)~9/2 4 N?-cloeN)

by Lemmas With Theorem we have with probability at least 1—& (N2 ~%/4(log N)~9/2+
NZ—Q log N) )

(NT) 2|16 = €°]op < (NT)"V?|6 — €°[[r < &(11V Ko V 7).
Next, we show that 51(\?% implies the desired results.

Step 1: Bound the eigenvalues.
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Let Sy = AYAY/N and Sp = FYFO/T. Let 8; > --- > 3po be the R? nonzero eigenvalues
of 3:0°0Y = LFYS\FO. Note that ,...,8z0 are the same as the eigenvalues of 5}1?/25’,&5;/2.

Conditional on the event 51(\?% and by Assumption A.4(i)-(ii), we have

13 — 54| < E(N/IOgNT*l/2 + N*1/2) for some ¢ < 0o and j € [RO].

This also implies that ||©°||o, = v/(s1 +0p(1))NT. For j > R?, simply define §; = s; = 0.
Let §1 > -+ > Syar be the eigenvalues of ﬁéé’ Again by the Weyl’s theorem, we have for
j=1,2,..

8j— sl < 185 =551 + 135 — 55
1 aYa 00 A
< ﬁ”@@/—@ @/||op+‘5j_5j|
2 0 e 0 1 o 012 A
< o l0%llop 16 — ©°lop + 132116 — O°Z, + 135 — 551,

implying |3; — s;| < &(y1vV/Ka V 72) for j = 1,2, ... Then for j € [RY], w.p.a.1,

Y

|3j-1 — 55 |8j—1 — 851 — 185 — 5j1 = (sj—1 — 5;)/2 and

18j = 8jp1l > 185 — 8j41] — 185 — 851 > (55 — 8541)/2, (A.8)

with §R0+1 = 8R0+1 =0.

Step 2: Prove the consistency of R.
Note that 1,(0) = /NT5,. By the result in Step 1, we have that 1,(0) > \/[spo — op(1)]NT
for all » < R°, and

wR0+1(é) < 7/JRO+1(@O) + Hé —eY

IA

op |6 -0| < VNTe(nV/Ey v an) = VNTo(35?)
where we use the condition that v,V K, = o('yé/ 2) under Assumption A.3(ii). These results, in
conjunction with the fact that (yoV/NT||0|l0p)Y? = VNT, /75 with 7y = co(N~V/2 4 T7-1/2)3
implies that
min ,(0) > (75 NT||8)lop)"/? and ¢po1(0) < (12VNT||O]]op) "2

with probability at least 1 — & (N2T%/4(log N)~9/2 + N2-¢clog N for sufficiently large (N,T). Then
we have R = RY with probability at least 1 — &(N2T~9/4(log N)~9/2 4+ N2-¢log N for sufficiently
large (N, T).

#Write a < b to denote that both a/b and b/a are stochastically bounded.
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Step 3: Characterize the eigenvectors.

Next, we show that there is an R? x R? matrix H, so that the columns of ﬁFOﬁ are the first RV
eigenvectors of ©°0Y. Let v be the R? x R? matrix whose columns are the eigenvectors of Sll;/ g ASIl;/ 2,
Then D = U/S}F/QSAS}I;'/2U is a diagonal matrix of the eigenvalues of S’llp/Q,SYAS’l}/2 that are distinct by

Assumption A.4(ii). Let H = S;l/Qv. Then

1 . 1 i )
O O FH = [FS\FYFOH = FOS\Spil = FO5, 51y
= F5}/%9,128, 8120 = FOSY 20 S5 2 S S
= FYAD.

In addition, we have (FOH) FOH /T = v'S}:l/?%S}:lpv = v'v = Io. So the columns of %Foﬁ

are the eigenvectors of ©°0Y, with corresponding eigenvalues in D.

Step 4: Prove the convergence.

We bound HF — F°H HF conditional on the event R = RY. By the Davis-Kahan sin(©) theorem
(see, e.g., Yu et al., 2014) and (A.g),

_ _ 1 éé/_@O@O/
Lp-rag < x99 =9
VT min,;< gomin{|8; 1 — §;/, |8; — 841/}
1 -
< oxpll00" = 0"y <11V EKa V7).
Next we have
FF' 1 - 1 FOHHA'FY
P;—P = —P <2%||—=F - —F'H P
e e IR e I C e |

< vV ELV ),

where the second equality is by the fact HH' = S}:l/ 200! S;l/ 2 = Sgl. This proves the second result

in the theorem. W

A.2 Theoretical analysis of the second-step estimators

To prove Theorem (3.3, we need to add a lemma.

Lemma A.4 Suppose that Assumptions A.1-A.3 hold. Let ¥ = T~ 1X'X—T2X'FF'X. Then there
exist some constants ¢, ¢ and € such that with probability larger than 1 — & (N2T'~9/4(log N)~9/2 +
N2=¢clog Ny e have

(i) 11H|lmar < ||Hlloo < € and ||[H||r < &

(i1) maxi <j<pn |Xs j|/VT < € and maxy<j<n [Us | /VT < &

(i) ||FOU||mar/T < T~Y210g[N/(8¢%)] and |T'X'FO — Sxp|| < eT~'/?logN;
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(iv) Hi - EHmam < V3;
(v) Suppose 16K jv5 < in(2)/2. Then X satisfies the restricted eigenvalue condition for Ky in

and kg (Kg) > Ypin(E) /2.

Proof of Theorem Fix ¢ as in Lemma [A74] In this proof, we choose a large enough constant
c3 such that v3 = c3(71VKqa V 75) with c3 > 2V (16¢2) V (16¢%). Let 5](\?% be the joint event of

(1) T UKy S 75/% (2 max, Xl VT < &

(3) max, ey [UIVT <& (@) [|F — FOR|le/VT < 75/(166%);
(5) HFO’UHmaX/T < 75/ (162); (6) || Hlloe v | H I < &

(7) R =

and (8) X satisfies the restricted eigenvalue condition for K in (3.3) with ks (Kg) 2 Ypin(2)/2.
Under Assumptions A.1-A.3, by Lemmas and ES)T holds with probability larger than 1—
&(N2T1=9/*(log N)~9/24 N?~¢log N} Conditional on the event 51(5’%, we also have that

) T™HIF'Ull e < T7HI(F = FOH)U| o + T H'FU|

IN

T7Y|F — FOH||p - maxi<j n||Us |
73/(86)7

+ 12 || T [F U]

max

IN

and

—1/21307 2O - < 0. —1/2 0 _ -1y
(10) max T-2DYFOM| < max N T72(F0 — FE M|

IN

TP — PR | A7 < v/ (82).

Conditional on the event Ej(\?)T, we establish the bound of |A, ;|1 = |B.; — BS,Z-h for i € [N].
Step 1. Concentrate out .
The objective function 1 is a least squares objective function with respect to A. Given B*,i,

we have that

Ni=(F'F)'F'(Y.; = XB.;) =T 'F'(Y.; — XB,,),

where the second equality holds by the identity F’F/T = Ip. After concentrating out A;, the

optimization problem becomes
. ) 1 )
By = argmin,cpnr 5o | [Mp(Yai — X0)|[F +73vls, (A.9)

where Mz = It — FF/T.
Step 2. Compare the objective functions at B*Z and Bg’i.
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By the identity Y, ; = XBS’i + FO)? + U, ; and the definition of B, ;, we have
1 ) )

> orllMa(Yei = XBupllf = [[Ma(FON + UL )l[F] + v3( Besl — [BLih)
1 . 1 . .

= SrlMEXALE = Fl(FON + Us i) MpX AL ]+ 73(Beily = [BLil),

where A = B — B and A*Z denotes the ith column of A. Then by Lemma v), we have

1 . 1 .
FNEN + U MpX] | [Auih > Zer[(FON] + U MpXA, ]
1 . .
> ﬁllMpXA*,illfv +73(|Built — |BYil1)
1 . . .
> ﬁHMpXA*,iH% +73lA el — 3| Ayl
where the last inequality follows because
Bl — ‘Bg,ih = AL+ Bg,i‘l - |Bg,i|1 = |Aof,i|1 + 1A+ Bg,ih - |B8,i’1
> IAJ;,i 1= Al

Step 3. Bound T 'max;[||(FOA! + U ;)’MzX||max], conditional on the event 51(\?%

1/2‘

By the triangle and Cauchy Schwartz inequalities and the fact that 7-/2||F llop = 1, we have

THI(FONY + U i) MpX]|

max

< TN FMpX oy + T UL M Xy

< —1/2)x . [.—1/2] 00 O “107 X A T=201TT BB

< max T ITT PN FY M|+ max T UL X 4T UL FF X

< max T_1|U;Z~X*j]+{T_1\U’ F\+T_1/2]/\?’F0’MF\} max T Y2|X, .
1<j<Np e o 1<j<Np ’

Combining events (1), (9) and (10), the right hand side of the above inequality is bounded by ~3/2
i (3)
conditional on the event &y .
Step 4. Obtain the final bound for |B,; — Bgi\l.
Combining the results in Steps 2-3 and using the identity |A, ;|1 = [Ay i1 + |AJf’i|1, we have

that conditional on the event 51(\?%,

373l Ay,

1 . .
12> fHMﬁXA*,z‘H% +73lA el

It follows that |A e[ < 3|A, ;|1 and conditional on £5).
N , ~ 6v/ki A S
ALSA < 3yl Agih < 3v3Vkil Al € — \/m

77Z1min(2) 78
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where the last inequality holds by event (8) in 6’](\:2, It follows that \/A;’Z-EAM-, < ¢6@)73 and

\AJ il < \g) A, ZZA* i < ﬁ%. Consequently, we have established that
. . . . 48
Acili = Ayl + [Ageilt < 4Ay L € =g kivs-
| Z| | Z| | h l’ | ’L| (¢min(2))2 1 /3

Then the conclusion in Theorem follows. W

A.3 Theoretical analysis of the third-step estimators

To prove Theorems [3.4] and we need the following lemma.

Lemma A.5 Suppose that Assumptions A.1-A.5 hold. Then
(i) Fori=1,...,N, ¥un(Xs,7,) > c w.p.a.1 for some finite constant c;

(i1) HSJ;’JZ.HWM < ¢ w.p.a.1 for some finite constant ¢.

Proof of Theorem For any n-dimensional vector v = (v1, ..., v,)’, denote

abs(v) = (v, ..., [vn])

We say that v < 0 if and only if v; < ¥} for all ¢ € [n]. Let WO =diag(wy;, ..., WNp.i), Wi = W}f)Ji
The following proof is done by induction. Based on the error bounds for F'©’s; we show that
results (i)-(iii) hold for the (¢ + 1)th-step estimators. Then the results follows as we already have
1E© — FOHle /NT = Op(y1vVKa + 72)-
For notational simplicity, let £ denote T_1X’MF(Z)X for £ =0,1,2,...

(i) For all (k,)’s such that BY, = 0, sup(g..50 o 1Bl < |13 — Bllumax < Op(K13) = 0r(12).
It follows that W©9 = | 7e| with probability approaching one (w.p.a.l). For all (k,i)’s such that
B, #0.

Byi| > BY|—||B—-B° = BY| — > 1
mr%%nio\ kil > min min| wil = [lmae = min min | nil = op(v4) > ayy wop.a.

by Assumption A.5(i). It follows that W (%) = 0 w.p.a.1. For each i € [N], the estimator Eiéz can
be written as

Biﬂ) = argmin, cgpne £ (v, F(e_l)),

where L0 (v, F) = 55 (Y. — X0)Mp— 1)(Y*, Xv) + 74 Zk 1 Wk; |vg| . Following the proof of

)

Proposition 1 of |Zhao and Yu| (2006), sgn( ) =sgn(BY ;) is implied by event &1 N &; 2, where
Eia = {abs[T71255L) X, Mg (Ui + FOX)] < TY2abs(BY, ;) — T2y abs[S5 ), W sgn (55, )]}
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and

Si 2 = {abS[T_l/z(—iJiCJii;jJi . X;,Ji + X;Jf)Mﬁ*Ui—l) (U*,z + FO)\?)]
< TY2yw 0. L ge| — T1/274abs[iJf,Jii;;JiW(17i)sgn(B9i,i)]}'

We prove (i) by showing that & ; and &; 2 hold w.p.a.l.
First, we consider &; 1. It suffices to show that each entry of T*1/2abs[f]jilJiX;JZ_MF(@_U (Usi +
FOA)] is op(v/T min; minge , |BY.]). Applying the triangle inequality, one has

T~ 2abs[S 1, X, Mgy (Ui + FOAD))

IN

T 2abs(S50 ) X, ;Mg Usy) + T %abs(55 1) XL Mg FOAY)

IN

T~ 2abs(X) 1) X, MpoU, ;) + T~ 2abs[S) ") X, 1 (Ppo — Prgn) ) Usl
+T 1 2abs[S ) X Moy (FED — FOR)HA)). (A.10)

Note that max; Hi;:JiHOp < ¢ w.p.a.l by Lemma i). This, in conjunction with Lemma (i)—

(ii), implies that the first term on the right hand side of (RHS) of is uniformly Op(log N).

With ||[F¢D — FOH||p /vVT = Op(v,vVKa+75) = Op((log NYT~12/K,+ N~1/2) * we have ||[Ppo —

P se—1y|lop = Op((log N)T~12\/K,+N~1/2). Note that Lemma(ii) ensures maxi <j<pn || Xu;||/VT
and maxi<j<y||Us||//VT are both bounded by an absolute constant. It follows that each entry

of the second term on the RHS of lb is Op(log N - VK, + \/m ). Similarly, each entry of
the third term on the RHS is Op(log N - VK, + +/T/N). These results, along with the fact that

log N - T7Y2/K, = o(min; minge s, |BY|) and N~Y2 = o(min; minge, |BY]) in Assumption A.5

imply that P(&;1) — 1.

Next, we consider &; 2. Similar to the analysis for &; 1, we can use Lemma (ii) to show that
each entry of T_l/z(—iJichi;jJi X, +X;7J5)Mﬁ(g,1) (Usi +FON)) is Op(log N - VK, ++/T/N) =
o(v/Tr3). By the fact that v3 = o(74), we have P(E;2) — 1, as (N, T) — oc.

(ii) Conditional on the event {B®) =, B}, we can follow the proof of Lemma 1 in Zhao and Yu
(2006) to establish the first order condition that

1
T L g M ey (FON) + M1y Uss),

“This claim holds for £ = 1 by Theorem Given this claim, we can show that [|[F®) — FOH||p /T =
Op((logN)T~?\/K, + N™2) for each £ using the results below.

S A (L
Ejiﬂ]i(Bf]i) - Bgi,i) =

3
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for ¢ € [N]. Then

- 1
‘352)1_391 = 155 X I M) (FOX + Usy)
-1 1 ! 040 -1 1 / 1
< ¢ T e Mpe-n FoA | + ¢ T e dMpe-1yUsi| = ¢ (A1 + Ag),
where we use the fact that max; N_, , < c” W.p.a. v Lemma |A.5(i). Note that uniform in
h he fact th 7Y 1 by L A.5(i). Note th f
Y1 Op
i€[N],
2 L s A1) F—1 _ 0y,0|
Ay = 7‘X*,JiMﬁ<H>(F H™ = FO)\
1 7~ p— Ni
= et (/\OI(F(K DH™ = FOMpee 1 Xa, s, X5 Mpe oy (FVH 1—F0)/\?>
1 a1y~ 2 2
< ma,x< e X X5 M 1)) T FhE 1—FOH 129
1 a1y~ 2 2
= ¢max( F(Z 1)X*J> )H 1—F‘OH ||)\?H
- 2

< @ “DE! OH — 0p((log NT~'K, + N~V
and

2 L ? 1 ? 1 (e1)1 Fle-1y ?

Ay = T *,JiM}:—u(ul)U*,i <2 T *JU*,Z‘ 2 TX* U,

It is standard to show that ’%X;JZ,U < kl/20p(T_1/2 log N) uniform in 7. In addition,

2
— 1 -1 -1 L 2@ A (0—1
tr <T2 Jalt )’X* 1X* 7 al )72 al ),II*,iIIL,i 1)

1 - Ay 1
wmax <IP(Z I)IX*,Jz‘X;,JiF(Z 1)> ﬁ

1 / 1 (0—1)1 2
< Ymax <TX*7J1‘X*,J¢> T2 )F( )U*,i

= Op(y;VKq +72)%) uniformly in i,

* JZ T )

' 1

~ 2
F(Z— I)IU*’i

where the last equality follows from the fact 1, (%X*JZX; J¢> < ¢w.p.a.l and max; % ‘F(E_l)’U*,i‘ =
Op(v1V Ky +75) by similar arguments as used to obtain event (9) in the proof of Theorem Then
uniformly in i € [N], we have A3, < k;Op(T~/?log N) 4+ Op((v;vV K4 + 72)?) and

< Op((log N)*T™' Ko+ N71) + kiOp(T™ <1ogN ) +O0p((1V/Ka+72)?
= kOp(T ' (log N)*) + Op((71vV Ka + 72)?

~(p 2
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It follows that

~ 2
. N 1X(BY - BY) N
||X(B(£) — BO)H% 1 ’ *, *,1 1 1~ ) (¢ )
_ 75 S E — B B X* B B
N
1 1 )
= | X | DB -

= 0p(1) [Kaop@* (log ) 2) + 0p(1nVEq +72))] = Op((nVEa +72)%)

Then the result in (ii) follows.
iii) Note that Y — XB® — =U-— 30 _ . By the result in (ii) and Assumption
iii) Note that Y — XB) — FOAY = U — X(B® — BY). By th 1 dA

A.3(i), the operator norm of

1 . 1 1 .
—— |U-=x(BY - RB° < ——|U|,, + — [|X(B® - B°
7 v -x N m“ ( Mo
< (7v2) + Op(1V Ko +72) = Op(11V Ko + 72)-

One can apply analyses similar to proof of Theorem to obtain the desired result. B
Proof of Theorem Let 3 = X'MX/T. From the proof of Theorem M we have that

N A 1 1 ;
Xg,0, (B — BSI,J-) =7 ;,JiMpFO)\? + TX;’JiMﬁ'U*,i - ’Y4W(1’l)sgn(Bf}m). (A.11)

Noting that the columns of F'/v/T are the first R eigenvectors of (Y — XB)(Y — XB), we have

PV = —— (Y-XB) <Y XB) - 1%( ~X..,By, ) (Y - X, B, )lF
NT NT P v ’ e

where V7 is a diagonal matrix that consists of the R largest eigenvalues of the matrix 7' x T" matrix

(NT)" (Y — XB)(Y — XB), arranged in descending order along its diagonal line.

By Theoremand Assumption A.5(i), maxjej, wr; = 0 w.p.a.1, which implies that 74W(1’i)sgn(39i’i)
= op(T_l/ 2). Then we can follow the analysis of oracle least squares estimator to establish the as-
ymptotic distribution of B Jii- Specifically, by arguments as used in the proof of Proposition in
the online supplement, we have

. 1 41 _
Si(Buii = Bi) = Si(5 Xy MpoXe ) 7' X Mpo Ui + 0p(T 2.

By arguments as used in the proof of Lemma|A.2| we can readily show that H %X; 5 Mpo Xy g, — X,

— Op (K;T~1/210g N) X, PpoUsi — —=(FOSE! [Bpx] ), ) Usil = Op(K}/* T~/ 10g N),

and|\r
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where [Epx]; , = +E [FUX, ;] is a R® x k; matrix. It follows that

) 1 _ _
VTSi(By,i— By, = ﬁsi(EJi,Ji) NXes, — FPS5 [Srx]y, ) Usi +op(1)

T
= 7712 Z zyuit + op(1),
=1

where 2, = S;(3,.,)"'2% and 2% denotes the tth column of the k; x T matrix (X, j,—FO% 5! Xrx]y, )"
Under Assumption A.1, {z}u;,t > 1} is a martingale difference sequence (m.d.s.) and we can readily
verifying the conditions of the martingale central limit theorem by straightforward moment calcula-

tions and obtain v7'S;(By, ; — B‘(}M-) LA N(0,025;(%y,,5,)"*S}), where 07 = E (uZ,) . W

P =
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Figure 1: Structure of the transition matrices in the simulations

Table 1: Model Selection Accuracy

Number of factors Step 1 Step 2 Step 3

DGP N T UER OER TPR FPR TPR FPR TPR FPR
1 30 100  0.0% 0.0% 97.4% 19.3% 98.8% 18.5% 93.7% 8.0%
30 200 0.0% 0.0% 99.6% 19.1% 99.9% 18.1% 99.4% 5.8%

30 400 0.0% 0.0% 99.9% 21.8%  100.0%  19.5% 99.9% 4.9%

60 100  0.0% 0.0% 96.8% 12.7% 98.2% 12.2% 90.5% 5.1%

60 200 0.0% 0.0% 99.9% 12.2%  100.0%  11.7% 99.1% 2.6%

60 400  0.0% 0.0% 100.0%  11.9%  100.0%  11.1% 99.9% 1.7%

2 30 100  0.0% 0.0% 86.2% 21.8% 83.9% 18.9% 94.0% 15.7%
30 200 0.0% 0.0% 95.3% 28.0% 93.7% 24.8% 99.4% 12.8%

30 400 0.0% 0.0% 99.2% 37.0% 98.7% 33.3% 99.9% 8.2%

60 100  0.0% 0.0% 76.7% 10.3% 76.5% 9.4% 90.6% 10.7%

60 200  0.0% 0.0% 88.9% 12.5% 89.7% 12.0% 99.2% 8.9%

60 400 0.0% 0.0% 96.4% 17.7% 95.8% 16.7%  100.0% 5.5%

3 30 100  0.0% 0.0% 93.2% 24.9% 92.3% 22.0% 96.5% 17.4%
30 200  0.0% 0.0% 98.1% 31.4% 97.6% 27.6% 99.6% 11.7%

30 400 0.0% 0.0% 99.5% 38.4% 99.3% 34.4% 99.7% 7.3%

60 100  0.0% 0.0% 88.1% 12.8% 88.4% 11.8% 95.9% 11.8%

60 200 0.0% 0.0% 96.1% 15.6% 95.5% 13.9% 99.8% 9.4%

60 400  0.0% 0.0% 98.9% 19.5% 98.6% 17.9%  100.0% 4.5%

Note: We report the under/over-estimation rate (UER and OER) of the number of factors in the UER and OER
columns, respectively. The TPR (true positive rate) columns report the average shares of relevant variables included.
The FPR (false positive rate) columns report the average shares of irrelevant variables included.
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Table 2: Root mean squared errors of the feasible and oracle transition matrix estimators

All entries Nonzero entries
DGP N T Oracle Step 1 Step 2 Step 3 Oracle Step 1 Step 2 Step 3

1 30 100  0.019 0.063 0.059 0.050 0.062 0.145 0.132 0.117
30 200 0.014 0.055 0.051 0.033 0.044 0.118 0.106 0.066
30 400  0.010 0.052 0.049 0.029 0.033 0.100 0.092 0.047
60 100  0.013 0.044 0.041 0.038 0.061 0.150 0.138 0.131
60 200 0.010 0.035 0.032 0.021 0.043 0.108 0.098 0.066
60 400  0.007 0.033 0.031 0.016 0.032 0.089 0.080 0.041

2 30 100  0.018 0.065 0.065 0.057 0.056 0.177 0.184 0.154
30 200 0.012 0.055 0.055 0.038 0.039 0.142 0.150 0.103
30 400  0.009 0.047 0.047 0.027 0.028 0.110 0.119 0.070
60 100  0.012 0.050 0.049 0.044 0.054 0.204 0.205 0.179
60 200  0.008 0.042 0.041 0.028 0.038 0.170 0.168 0.114
60 400  0.006 0.035 0.035 0.019 0.027 0.138 0.143 0.081

3 30 100  0.019 0.065 0.064 0.055 0.051 0.150 0.155 0.127
30 200 0.013 0.053 0.053 0.035 0.035 0.117 0.123 0.082
30 400  0.009 0.047 0.047 0.027 0.025 0.095 0.100 0.058
60 100  0.013 0.050 0.049 0.042 0.049 0.173 0.173 0.146
60 200  0.009 0.039 0.040 0.024 0.034 0.135 0.140 0.085
60 400  0.006 0.033 0.033 0.015 0.024 0.109 0.113 0.056

Note: We report the root mean squared errors (RMSEs) of the feasible and oracle transition matrix estimators.
Columns 4-7 report the RMSEs of all entries, and Columns 8-11 report the RMSEs of non-zero entries.

Table 3: Results of misspecified estiamtes

LASSO Conservative LASSO
DGP N T TPR FPR RMSE, RMSE, TPR FPR RMSE, RMSE,

1 30 100 78.7% 34.9% 0.115 0.208 78.4% 45.2% 0.178 0.227
30 200 88.9% 37.7% 0.094 0.178 88.1% 43.3% 0.129 0.173
30 400 95.3% 45.0% 0.083 0.150 94.5% 43.0% 0.103 0.134
60 100 71.0% 22.6% 0.086 0.216 72.8% 39.5% 0.161 0.240
60 200 86.7% 25.7% 0.070 0.179 87.0% 38.9% 0.114 0.175
60 400 94.9% 30.2% 0.058 0.148 95.3% 37.9% 0.083 0.128

2 30 100 86.2% 59.6% 0.150 0.202 81.9% 54.8% 0.211 0.233
30 200 95.0% 61.5% 0.107 0.152 91.7% 51.4% 0.139 0.159
30 400 98.9% 66.3% 0.080 0.113 97.7% 50.5% 0.098 0.110
60 100 77.0% 46.6% 0.135 0.218 74.1% 48.9% 0.222 0.263
60 200 91.6% 51.9% 0.100 0.165 86.8% 44.6% 0.143 0.175
60 400 98.3% 56.1% 0.072 0.120 96.7% 44.4% 0.097 0.116

3 30 100 89.2% 59.2% 0.139 0.186 85.7% 55.9% 0.196 0.215
30 200 96.2% 61.4% 0.102 0.141 94.0% 54.3% 0.133 0.148
30 400 99.1% 67.1% 0.079 0.107 98.3% 53.2% 0.096 0.106
60 100 82.0% 46.1% 0.126 0.203 79.8% 50.6% 0.208 0.247
60 200 94.0% 51.7% 0.093 0.151 90.5% 46.6% 0.135 0.164
60 400 98.8% 55.5% 0.068 0.110 97.6% 45.0% 0.091 0.109

Note: We report the true positive rate (TPR), false positive rate (FPR), root mean squared errors of all entries
(RMSE,) and nonzero entries (RMSEy) of misspecified estimates. We consider the LASSO estimator as in Kock and
Callot (2015) and a conservative LASSO estimator. The LASSO estimator was used to construct weights for the
conservative LASSO.
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Table 4: Funds information

category  ticker fund name category  ticker fund name
Energy XLE Energy Select Sector SPDR Natu XLB Materials Select Sector SPDR
Fund Fund
Spdr S&P Oil & Gas Explo & SPDR S&P Metals & Mining
XOP Prod Etf XME ETF
. Technology Select Sector
IYE iShares U.S. Energy ETF Tech XLK SPDR Fund
VanEck Vectors Oil Services VanEck Vectors
OIH ETF SMH Semiconductor ETF
. . Financial Select Sector SPDR Health Care Select Sector
Financial XLF Fund Heal XLV SPDR Fund
KBE SPDR S&P Bank ETF IBB ﬁ;?es Nasdaq Biotechnology
SPDR S&P Regional Banking Consumer Staples Select
KRE  prr Def XLP " Sector SPDR Fund
Cons. Disc. Select Sector . Utilities Select Sector SPDR
Cye XLY " SPDR Fund vt XLU - ping
XHB  Spdr S&P Homebuilders Etf Indu XLI gzil:;trlal Select Sector SPDR
iShares U.S. Home , VanEck Vectors Gold Miners
ITB Construction ETF EPM GDX ETF
XRT  Spdr S&P Retail Etf
Rea IYR iShares U.S. Real Estate ETF
VNQ Vanguard Real Estate Index

Fund ETF

Note: Cyc, Rea, Natu, Tech, Heal, Def, Util, Indu and EMP stand for consumer cyclical, real estate,
natural resource, technology, health care, consumer defensive, utilities, industrials and equity precious
metals, respectively.

Table 5: Descriptive statistics

TICKER XLE XOP IYE OIH XLF KBE KRE XLY
mean 0.00136  0.00246 0.00141 0.00220 0.00157 0.00194 0.00184  0.00082
median 0.00063  0.00130 0.00059 0.00128  0.00041  0.00059 0.00066  0.00029
max 0.06034 0.06290 0.11527 0.05856  0.05743  0.04793 0.09748  0.03063
min 0.00004 0.00005 0.00004 0.00008 0.00001 0.00002 0.00002 0.00001
std 0.00369  0.00472 0.00549 0.00418 0.00463  0.00484 0.00539  0.00214
skewness 10.954 7.604 15.469 8.159 7.645 5.823 11.530 8.869
kurtosis 151.595 77.386 291.137  88.226 77.152 44.720 175.439  102.667
TICKER XHB ITB XRT IYR VNQ XLB XME XLK
mean 0.00218  0.00251 0.00115 0.00137 0.00146 0.00098 0.00264 0.00071
median 0.00079  0.00102  0.00056  0.00039  0.00041 0.00047 0.00133  0.00031
max 0.05071  0.04660 0.03094 0.04847 0.04831 0.02948 0.05631  0.03112
min 0.00007  0.00001  0.00001  0.00003 0.00004 0.00004 0.00014 0.00002
std 0.00431  0.00473 0.00231 0.00377  0.00403 0.00205 0.00510  0.00187
skewness 5.305 4.936 7.783 6.789 6.958 8.059 6.912 9.814
kurtosis 41.414 33.799 83.839 61.695 64.487 90.224 62.231 128.784
TICKER SMH XLV IBB XLP XLU XLI GDX
mean 0.00111  0.00054 0.00105 0.00036  0.00062  0.00075 0.00263
median 0.00069  0.00025 0.00058 0.00016  0.00030  0.00036  0.00154
max 0.02010  0.02865 0.03488  0.02197  0.03903  0.02108  0.07009
min 0.00004  0.00002  0.00003  0.00001 0.00003 0.00001 0.00010
std 0.00153  0.00162  0.00207 0.00111 0.00193 0.00156  0.00439
skewness 5.713 11.898 9.968 13.670 14.053 7.405 8.300
kurtosis 52.259 176.016  135.878  237.109  250.309 76.935 102.080

43



o 5 = 3 3
[ T U |
L 00 E Lo 1
Il I I Io1o
Il Iooo g T Il
I s I Il
I e (U S Sy EEY H R
|I_II_l|hnllllllm I I I N N O
e _ 3 & I |
|I._.I_IIII.|_IIII o all.ll_lllfn_.l_I.III
T B & 1 Il
- b — = 4 o — = — ek = o — — — —
| o 1ol £ I I
-—-t-F—tt4g—-- i Sl il o B Bl
|1 Lol 5 I Il
L1 I 11 = mml [
¥~ T oD Q =~ oo Q
T Y e ]
Il I 11 pm § I el
I Il s} [ I
I T ST S 3 I T TR T |
I N A I I I I N I I R
Fo ! R R =
- T I T P O
_ _.J__ & B
b o — - — — o o — — — —
L1 £ Il
—mar—F—tt4—-——- ||Tﬂf|+44|||F
I Lo 5 I -
L1 I 1w u L1 L1
T ~ - oW 3] ¥~ ~ oo ]

Cyc ReaMat

Cthers

Fin

Ener

Others

Fin  Cyc ReaMat

Ener

Figure 2: Heat map of the transition matrices Ax’s

44



Others

Mat

Fin Cyc Rea

Ener

Figure 3: Heat map of D!2

45



Table 6: Connectedness measures across funds

Connectedness measures by estimates of VAR with CFs model
TICKER  XLE XOP IYE OIH XLF KBE KRE XLY

Vi 64.9% 59.1% 65.4% 58.0% 65.2% 56.8% 56.6% 72.0%
FROM 71.4% 65.4% 71.7% 64.3% 61.7% 61.3% 62.3% 51.8%
TO; 106.8%  86.0%  103.9% 71.5% 57.8% 72.6% 51.4% 37.3%
TICKER  XHB ITB XRT IYR VNQ XLB XME XLK
Vi 53.6% 49.5% 60.1% 50.7% 49.7% 67.2% 56.9% 70.5%
FROM; 60.5% 58.3% 36.5% 57.9% 58.6% 37.5% 44.1% 39.0%
TO; 56.3% 41.7% 19.0% 79.7% 74.4% 26.3% 37.2% 37.3%

TICKER  SMH XLV IBB XLP XLU XLI GDX  average

Vi 54.8% 64.3% 50.7% 61.3% 50.6% 67.7% 31.0% v =56.1%
FROM; 31.9% 38.3% 28.8% 30.7% 29.7% 40.9% 27.7%  d'? =49.8%
TO; 23.3% 34.1% 33.0% 21.2% 19.6% 20.7% 19.1%

Connectedness measures by estimates of pure VAR model
TICKER XLE XOP IYE OIH XLF KBE KRE XLY
FROM, 89.3% 87.1% 89.4% 87.0% 89.6% 86.8% 87.6% 90.9%
TO; 105.0% 79.5% 103.0%  77.7% 112.9%  97.0% 89.1% 110.5%
TICKER XHB ITB XRT IYR VNQ XLB XME XLK
FROM; 87.3% 86.3% 88.8% 85.7% 86.2% 90.1% 88.8% 89.8%
TO; 95.8% 80.8% 79.1% 94.0% 89.6% 105.6%  80.1% 103.8%
TICKER SMH XLV IBB XLP XLU XLI GDX average
FROM; 87.6% 88.1% 83.8% 88.4% 85.7% 89.8% 76.5% d'? =87.40%
TO; 74.8% 81.2% 60.8% 80.0% 60.0% 104.3%  45.8%
Note: Cyc, Rea, Natu, Tech, Heal, Def, Util, Indu and EMP stand for consumer cyclical, real estate,

natural resource, technology, health care, consumer defensive, utilities, industrials and equity precious
metals, respectively.
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This supplement has three parts. Section |B| contains the asymptotic analysis of the oracle least
squares estimator and the proofs of some technical lemmas. Section [C|provides some technical results

that are used in the proofs. Section [D| provides some discussion of Assumption A.1(vi).

B Supplementary Proof

B.1 Asymptotic analysis of the oracle least squares estimator

In this subsection, we study the asymptotic properties of the oracle least squares estimator that

is obtained with information of J; for i € [N] = {1,..., N}. Specifically, the oracle least squares



estimator can be written as:

(B,F) = argmin tr[(Y —XB)'Mp(Y — XB)]
(B,F)eB* xL
N
= argmin [(Y*ﬂ — X*,JiBJi,i)/ MF (Y*J' - X*’JZ-BJ,L-,i)] y

(B,F)eB*xL ;—;
where B* = {B € RNPXN|BJiC’Z' =0forie [N]} and L ={F € RT*E"|F'F/T = Io}. For cach i, we
define a selector matrix L; such that XL;= X, j, and LB, ; = By, ;. Recall that k; = |J;| denotes
the cardinality of J;.

We do not have a closed-form solution to the above minimization problem. Similar to equations
(11)-(12) of Bai (2009), we have the relationship:

By = (XL MpXa) X MpYo, (B.1)

S 1 . N

FVyt = w7 (Y~ XB) (Y -XB)' F (B.2)
1 N

= AT (Y*, - X*,JZBJ“) (Y*, - X*7JiBJi,A)1F7
NT — 7 (2 7 (2

where Vyr is a diagonal matrix that consists of the R? largest eigenvalues of the matrix (NT)~!
X SN (Yei = Xu5,By.0)(Yai — X, 5By, ;) arranged in descending order along its diagonal line.
We can follow the lead of |Bai (2009) to expand equations (B.1))-(B.2]).

Proposition B.1 Suppose Assumptions A.1 and A.3-A.5 hold. Let S; denote an L x |.J;| selection
matriz such that ||S;|| p is finite and L is a fized integer. Then

Si (BJivi - Bgl,z) = Si(X:‘,JiMFOX*Ji)_IX;JZ»MFOU*,@' 4 OP(T_1/2),

Proof of Proposition Insert the identity Y = XB? + FOAY + U into equation (B.2)), we have

. AO/AO FOIF .
FVyr — F° =L+ ..+ 1) F B.3
NT v 7 =it ) E, (B.3)
where
I = UA°FY/(NT), I, = FOAYU'/(NT), I; =UU/(NT),
I, =X(B - B%(B - BYX'/(NT), Is=-X(B—-B")A'FY/(NT), Is=—-F°AY(B - B°'X'/(NT),
I; = -X(B - BOU'/(NT), Iy = ~U(B — BYYX'/(NT).

We can easily show that (NT)7L||I;||[r = op(1) for £ = 1,...,8. Premultiplying both sides of equation



(B.3) by F'/T, we can obtain that

F/FO AO/AO FO'F
T N T

= Op(l).
F

HVNT _

Given that %/F is asymptotically nonsingular, we have that Vjyr is invertible asymptotically. Specif-
ically, one can show that rth diagonal element of Vy7 converges to the rth singular value of ¥ pX4.
Hence we can write (F — FOH)/VT = I} + ... + I}, where H = (AYAY/N)(FYF/T)Vy; and
I; = IKFV]\?%/\/T for ¢ =1,...,8. One can also show that H — H — 0. Noting that

N !
) 1 » X* JZ'X*aJi s
IX(B— BYNVNTIE = 3 (Bys— B 2 (B, B
i=1
1 & 1
< EN Zl |B,i — Bgi,z'|2 = ENHB - BY||¢,
1=
we have
IX(B — B°)/VNT|[r = Op(dnT) (B.4)

where dyr = N71/?||B — B|r.

Let Q1 :bdiag{T_lek,JlMFoX*Jl, . T_]'X:(,JNMFOX*’JN} be a block diagonal matrix with the
ith diagonal block given by T_1X;,JiMFoX*7Ji. Let a?j = )\?'(AO’AO/N)_U\?. Let Q; be a (Zf\il k;) x
(3N | k) block partitioned matrix with the (i,7)th block given by (NT)_la?in;,JiMFoX*,Jj for

i,j € [N]. That is,

(NT)_lag)lXi,JlMFOX*,h e (NT)_la?NX;,JlMFOX*:JN

< (NT)ila%)lX;,JgMFOX*Jl e (NT)ilagNX;,JQMFOX*vJN

Q2 = : . : (B.5)
(NT)_lag)VlX;,JNMFOX*,h T (NT)_lag)VNX;,JNMFOX*,JN

Let U E[T71<X;7J1MF0U*71)I, ...,T71<X;7JNMF0U*7N)/]/, which is a SN | k; x 1 vector.
To continue the proof, we need the following four lemmas whose proofs are given at the end of

next subsection.

Lemma B.2 Suppose that Assumptions A.1 and A.3-A.5 hold. Let Sy = N AVT. Then
(i) |1} ||, = Op(5 ) for £ =1,2,3, and
(ii) |17 || = Op(dnt) for £ =4,5,...,8,
(iii) T-Y2||F — FOH|| = Op (6 + dnr)-

Lemma B.3 Suppose that Assumptions A.1 and A.3-A.5 hold. Then
(i) T-'FO(F — FH) = Op(dnt + d57);
(i) HH' — (FYF°/T)~' = Op(dnt + 0 55);



(iii) T~YU' (F — FOH) = Op(6 3% + O ymdnr);

(iv) T7'X, (F — FOH) = Op(dnr + 6 7).
Lemma B.4 Suppose that Assumptions A.1 and A.8-A.5 hold. Let S; be an arbitrary L X k; non-
random matriz such that ||S;|| < C < oo and L is a fized integer. Then

(i) [P — Prol[p = Op(dnt + 037);

(1)) TS X, ; (P — Ppo)Us; = = Op(0 7 + O nrdNT);

(iii) T~18; X, ; Mpo(F—FOH)H™'\) = —ﬁSZX*VJiMFoX(B—BO)AO(%AO’AO)_1A9+OP(5N2T+
S dNT)-
Lemma B.5 Suppose that Assumptions A.1 and A.3-A.5 hold. Then

(i) Q1" Q2Q7 0, = Op (K, K [T (log N)* + N~1));

(i) N'2TQ Q2Q7U| = Op(K KT (log N)? + N71)) = op(T~2) for any conformable
square matriz I' with |[T'[],, = Op (1);

(iii) wmaX(Q;1/2Q2Q;1/2) < 1 with probability approaching one (w.p.a.1).

Note that we allow k; to be divergent. For a k;-vector A;, we introduce the weighted norm ||-[| g,
such that [|4;||g, = [S;Ai|, where the number of rows S; is given by L, a fixed integer, and ||.S;[|p
is bounded above by a constant. We denote A; = op~ (cy7) if HA%H& = op (en7) for any S; with

bounded Frobenius norm. Define Op+ analogously.

By the identity Y. ; = X, 5, By ; + FOA} + U, ; and (B.1), we obtain that
T'X,  MpXo g, (B — BY, ;) = T'X ; Mp(FOA) + Ul ).
For T7'X/, ; MU, ;, we have

T'X, ;MpU,; = T7'X,  MpoU,; — T7'X] ; (Pp — Pro)Us
= T7'X, ;MpoUs,; + Op- (637 + Sypdnr),

where the second equality holds by Lemma ii). For T _1X;7 s MpF 0)\?, we have

TIXL G MEFON) = —T7'X] pMp(F - FPH)H '\
= —T7'X, ;Mpo(F — F°H)H 1>\0 T7'X, ; (Ppo —Pp)(F — FPH)H '\

= —X ;MpX(B - B)A(—

NT AO’AO) "\ + Op« (6 3% + S ydnT),

N

where the last equality follows from Lemmas [B.4{i) and (iii) and [B.2{iii). It follows that for each
i € [N], we have

0 1

. . 1 .
T7'X, ; MpoX, s, (By,i—BY,. ;) = 7 X!, MpoX(B— BO)AO(NAO’AO)‘I)\? +R;,

(B.6)

;,JiMFOU*,i"‘ NT



where R; = Op- (6]_\,21, + (5]_\/"111dNT) and its exact form is given by

R, = —-T7'X, ;(Pp—Ppo)Us; = T7'X, ; (Ppo — Pp)(F — FOH)H '\

1 0F7 10_7 V_0070/0—1Q
T7X, Mo (F = FOH)H ') — XL MpoX(B — BY)AY(AYA%) 7).

Let B = (B’Jl’l, ey BIJN,N), and B° = (39,1,17 ey B9N7N). Then 1@) can be written as follows:

(Q1—@2)(B-8") =U+R, (B.7)
where R = (R}, ..., Ry) and U = (U1, ..., Ul) with U; = T71X/, 7 MpoU, ;. Note that the minimum
eigenvalue of Q1 is bounded below by some constant w.p.a.1l; see Lemma ( ). Following the proof
of Lemmas [B.4|(ii)-(iii) and using Lemma [B.2{iii), we can also show that

IR|_ = Op+((63% + O ydnr) log N) and \r IR| = Op-(KL2(03% + 6 ydnr)). (B.8)
Rewriting , one can obtain
B-B°=Q'T+07"'Q2(B - 8% + Q@ 'R. (B.9)

Iterating ¢ > 2 times, we obtain

Y]

_ 130
= QU'U+Q7'R+Q Q207 'Q2(8 - 8°) + Q7' 20 (U + R)
= QUYU+Q RAQ; P (Q) Q201 7107 2 Q2(8 - B°) + Q1 P10y Q20 V10, V(U + Ry
= QT U+QTRAQ QT Q0 PQT QB - B) +Qf”2§2:[6?1‘”2@2@;”2] QA0+ R)
=
= QUMU+QT R+ Qy V70, QaQ VA QP Qa(B - BY)
+Q;* i[@l” Q007 QPO + 0 i[@l” 2020, 107 R
Q' +l;'{11 +Ra + R3 + Ry, o (B.10)

where we suppress the dependence of Rg, Rs and Ry on £. Define a k; x Zj\; 1 k; selection matrix S;



such that By, ; — ng’ =S;(8 — B°). Then
Bji—BY, = SiQ;'U+ Sic?;lfwsl-@;” 2100 220, QT QB - )
4
—i—S Q—l/z Z[Ql_l/zQQQl_l/z]lQl_l/zﬁ + Sin—l/Z Z[Q;1/2Q2Q1—1/2]1Q1—1/2R

=1 =1
SiQ1'U + Ri; + Ry + Rai + Ry (B.11)

Note that R; = (R), ..., R/\) and S;R; = Ry; for | = 1,2,3,4. Let Xij = T*IXiyJiMFoXLJj for
i,j €[N].
We first study Ry;. Noting that |a'b| < |a, |b|,, for any two conformable vectors a and b, we have

L L
sl = lisdS0rRI < 3o lish. Q1 R

=1
L
< ZHSi]l,*XﬁlmRz <k Z! X
=1
= Op(K))|R|Z = op<KJ[<6N2T +0xpdnr) log NT?), (B.12)
and
. 9 N .9 N . N L
N7HR T = N‘lz [Rul” = N7 Y [SiQr R < max [|S:Q7 Y N R
i=1 i=1
= KJOP -1 |R‘ = KjOp~ (Ka(éj\[?T + 5]7VITdNT)2) =op (T_l + d%VT) .(B.l?))
Next, we study Ro;. By Lemma [B.5(iii) H 1/2Q Q_1/2 HQ 1/2Q Q_1/2 — 0 at the
op

exponential rate as £ — oco. This ensures that

max [SiRai| = |SiSiQ1 Q1 Q201 Q2 Qa8 - B)|
< [ssar”| aread -8 | e = ortr i), (.11)
2 al 2
N7 Rs|” = N'Y Ryl =o0p(T7h), (B.15)
for sufficiently large £.
To study Rs;, let Top = Q7 2 010720207 /*)'Q1/?. Then

-1
Ry =507 '? Z[QII/QQ2QII/2]ZQ}/2QIIQ2QI16 = SiTe@; 'Q2Q; ' U.

=0



By Lemma (iii), IToellyp, < HQ;UQHOP HQl 1/2Q2Q 1/2 1/2 = Op (1) for each /.
Then by Lemma [B.5(i)-(ii),
SiRs;| = Op(K KLY [T (log N)? + (NT) ")) = op(K,; Y>T7Y/?) and  (B.16)
N
Nﬁl‘f{g}z = Nﬁlz‘RgiP:OP (Tﬁl). (B17)

To study Ry;, let T'y = Zle[Qvl_lngQvl_l/Q]l. Then Ry; = SiQfl/QFgQI1/2R. Note that SiSin_l/z

ngQl_l/ ? has low dimension of rows such that

- - 2 < « -
QT = e (8800, PR T sic)

IN

~_ 1112 . . .
ITel2, 1@, ISil12, 1S:l12 = Op (1) uniformly in i € [N],

where we use the fact that ||T'[|,, < S HQ_l/QQ Q_l/QH = Op (1) by Lemma [B.5(iii), | Q7 1H =
[min(@1)] ™ = 0p (1), HSiHop = 1, and max;e(n [|Sillp = O( ) by assumption. Write I'; = {T'¢;; }

as a block partitioned matrix with I'y;; being a k; x k; matrix. Then

~—1/2 ~—1/2 —1/2 —1/2 —1/2 —1/2
SiQ1 / F€Q1 / = Xii / (Ff,ian/ aré,i2X22/ 7"'7Ff,iNXN]\§ )

Our assumptions ensure that I'y is absolutely column summable, which implies that the absolute

sum of each row of §; Ql I/QFgQ_l/ can be bounded by a constant multiplied by max;c|y) HX;IH

op
Consequently,
L
|SiRy* = Z’[Si]z,*SiQfl/zflelﬂﬁ) Z‘ Sili-8iQ7 7T le‘ R[,.
=1
< Op(max|x; o) BRI = Op((03% + Oyipdnr) log N) (B.18)
and
N R = 1Z\R4Z — NY |80 T R
—1/2 1/2 1 5 12
< r%\ e H N Z!RZ}

= KJOP -1 ‘R‘ K]OP*( ((5 2T + 5NTdNT) ) = op (Til + d?VT) (Blg)



In sum, we have shown that

1Z\R} (T~ + d%7) and Ri| = op(T™Y2) + Op(K Y253 L dnr log N). (B.20)

In addition,

2

N
L A2 1 -
N 1‘Q1 1U‘ - 72})(”1[]7‘ X*JMFOU*z

i=1 =1

m?XqulHopNZ‘ X, MU

2 = Op (K ,T71) (B.21)

IN

Combining the results in (B.10]), (B.13]), (B.15)), (B.17)), (B.19), and (B.21]), we have

~ 2

Nfl ,3 —,BO|

= Op (KaT™) + op (d7) = Op (KuT™) +op (N1 [B=8°") .

It follows that dyr = N~Y/2||B — BO||p = N~1/2|( | = Op((K./T)YV?).
In addition, by (B.11) and the results in (B.12)), (B.14]), (B.16]), and (B.18]), we have

Si(Byi—BY,) = SSiQ7Y0 + Op(Ky 63 dnrlog N) + op(T~1/?)

1
=X/ MpoU,; + op(T?),

1
X;,JiMFOX*,Ji)—lT

= S

where the second equality holds by the fact that KI/ Syrdntlog N = K1/25NTOP((KQ/T)1/2) log N
= op(T~1/?) as K1/2K1/2(1 g N)dyh = o(1). This completes the proof of the proposition. W

B.2 Proof of the technical lemmas

Proof of Lemma The proof follows from that of Lemma C.2 in Chernozhukov et al. (2018)}
|

Proof of Lemma (i) By direct calculation, we have that

T
1
—[[lu'x = max max max *E i t—1Ujt | -
T H Hmax 1<I<p1<i<N 1<j<N | T —1 v !

By Lemma C.1 in the next section, we have that for some constants C1, Cs and ¢y

T
P (
t=1

E Yit—1Ujt

2
> TW) < 2q/2C1 T /2 1 Chexp (_03(T71) )

2 ) = (T,) i
T1-9/4 C3(c1logN)?
— 94/ _ _ 3\ E1Pet)
C1 (crlogN)i/2 + Caexp < 1

= CIT"""*(logN)~¥? 4 Cy NN,



where the first equality holds by inserting v; = 1T 1/21og N and the second equality holds by

redefining the absolute constants ¢, C| and C4. Then by the union bound, we have

T

> visoruge| > T
Yit—1Ujt| > 9

t=1

< pCIN*T' =94 (logN)~9/? 4 pCyN2~dosN

IN

1 ! 71
P (T O]y > 2) pp mexP (

(]

Letting C' = p(C} V C%), we have proved the desired result in (i).
(ii) Noting that Ppo = FO(FYFO)~1FY we have

1 1 _
T HU/]P)FOXHmaX - THU/FO(FO/FO) lFOIXHmaX
FO oy ! FUX, ; FUU,,
= T 1SN || T 1Sen || T
op

As in the proof of (i), we can show that

T

Z Fritir
t=1

1<r<RO 1<i<N

P( max max

> T’yl> < CYNT'=4/*(1ogN)~9/? 4 Cy N1 ~clogN

By Lemma [A.3{ below and choosing é = 1 [y, (ZF ~! we can readily show that
2 min

P (H (FFO/7)""

g E) < CINT'=9/%(logN)~/2 4 Cy N1 =8N,
op

Similarly, maxi<i<np HF o Xy /TH is bounded by some constant ¢ with probability larger than 1—
[CINT9/*(log N)~9/? 4 CyN'~<l°8 N] Consequently, we have proved (ii). W

Proof of Lemma By Lemma C.1 in the next Section, we have

p<_

T
Z ft?rft?l - E(fgrft?l)
t=1

> $T1/2> < Oy~ 2ri-a/t 4 Cgexp(—Cng)

for some absolute constants C1,C5, and C5. Applying the union bound yields the desired result. B

Proof of Lemma |[A.4, (i) By the similar arguments as used in the proof of Theorem [3.2] we can

establish the result.
(ii) By the proof of Proposition 2.1, E(y2) is bounded uniformly in (i,#). By direct calculations,



we have that

T
1
(maxy <j<pn | Xu | /VT)? = maXlSz‘éNmaXSlSpr?/zH
t=1
< maX1<z<NmaX1<l<pT Zlyzt 1~ yz,t—l)] +¢,
for some constant ¢ > 0. By Lemma C.1 in the next section, we have
p ST E(y? or| < 20— L Ca(eT)”
;[yi,tz— (i) > ¢ S 1( oT)i/? + Caexp T

= O[TV 92 4 Chexp (—C3T).

Applying the union bound delivers the first result. The second result can be shown analogously.

(iii) The proof is similar to that of (ii) and omitted.

(iv) To proceed, we operate conditional on ||T 7 X/ FO—% x p||max < eI~ Y2, ||F — FOH||p /VT <
e(v1vVEa V 72), maxi<j<pn|Xaj|/VT < ¢ and T7H|FYX]||, < & One can easily show that these
joint events hold with probability at least 1 — & (N2T"'~9/4(log N)~9/? 4+ N@-clog N)V(-1)) " By the

triangle inequality, we have

12 = Zmax < [T X'X — Zx||max + [|T X FFX -2 xS 2 Sy gl lmax-

For the first term on the right hand side (RHS) of the last equation, we can apply similar arguments
as used in the proof of part (ii) to establish that ||T'X'X — Bx||max < ¢ with probability larger

than 1 — eN?(T9/2+exp(—T)). For the second term, we have

T 2X FFX-Sx Yt Sy pllmax < 2T 72X (F — FOH) F'X||imax
H|T2X(F — FOH)(F — FOH)'X||max

HIT2X' FOHH FYX - x X7 Y | lmas-

Noting that HFHF JVT = R, we have ||T=2X/(F — FOH)F'X||max < RO(maxi<j<py| X |/ vVT)?
J|F = FOH||p /VT < &/log N(v;v/Ka V v5) with probability at least 1 — & (N2T1~9/4(log N)~%/2 +
N@=clog N)V(=1)y " From the proof of Theorem (FOH)YFOH /T = Ipo. This implies that HH' =

10



(FYF°/T)~!. Then

T 2X'FOHA' FYX~ Y x p 2 2 Sy | lmax
= [T 2X'FOUFYF/T) ' FYX ~Sx p 2 2 S x e | fmax
(T X FO=Sxp) (FOF/T) ' T X | lmax + |[Zxp[(FYFO/T) ™ = ST FY X max

IN

+HEXFE;‘1(T_1F0/X_E§<F)‘ |max-

For [[(T'X/FO~Sx p)(FYFC/T) "' T~ ' F¥X||1max, we have with probability at least 1 — & (N27"~/4
x (log N)~9/2 4+ N(2—clog N)V(-1)),

||(T_1X,F0—EXF)(FOIFO/T)_lT_1F0,X||max S ||T_1X/FO_EXF||maX . ||(FOIFO/T)—1T—1F0/XH1

A

[T X' FO—S x o max < €T7Y2.

The other two terms can be bounded similarly.

(v) This result can be proved by arguments as used in the proof of Lemma (i). With the
bound || — %||max < 73, the proof is similar to Lemma 10.1 in van de Geer and Biihlmann (2009).
Let v € RY? such that |vse|y < 3|vy|1, and |J| < K. One has

WS — 'S = W'(E =) < |l [(E - 2)v]eo

IN

12 = Slmax v} < v3lvli

< 167slvgli < 16K 57ys - [vg)3.

After some rearrangement, we have

'S 'S 'S
L > T 16Ky > — 16K
vl vl |v[3

> wmin(z) - 16KJ’73 > wmln(z)/Q

It follows that the restricted eigenvalue condition is satisfied with rs (K 5) < 9, (2)/2. B

Proof of Lemma Let & = T~ 1X'MpoX. Then we denote the two types of submatrices of N
as XA:JZ.’JZ. = Tﬁlek’]iMFOX*yJi and XA:JiCJi = T71X;’J¢MF0X*7Ji for i € [N] Then we have that

ax |[%,., — S, = ax T HX. ; (Ppo — Pa)X, .
g[l\}ﬁ” Jidi = 205, op e 1X, 5 (Pro — Pp)Xe g lop

Ky - T HX (Pro — Pz)X||max

< Ky l[Bro = Ppllop - max T7HXu " = op(1).

IN

Similarly, we have that max;c |y Hi)(]l_c,‘]i - iJiC’JiHmaX = op(1). To prove the lemma, it suffices to

11



establish that (a) min;e(n i (Ss.5,) > ¢ and (b) max;e[y) MaXje e |]T*1X;’jMFoX*7JiHmaX <ec
for some constants ¢ and ¢ w.p.a.l.

(a) Recall the decomposition in Section 2.2, and let X = X + X() where the tth rows of X(®)
and X are Xt(u)/ and Xt(f y respectively. To establish min;ey wmin(i) JiJi) > ¢, we decompose
XA:Ji’Ji to

EJ Ji = EE] )J + Z(f) + TﬁlXi?}:MFOX*{}i + TﬁlX*f}'MFOX U} = S + 521 + 531 + 54“

17 12

where (7, = T1X")/ My X") and £, = 71 XM XY) .

First, we consider S7;. One can decompose ES-)J- as
1Y

1

o(u) u)l ¢ (u) u)! u)
ZJZ',JZ' - TX*,JiX*,Ji - TX*,JZ']PFOX*,JZ"
It follows that
o (u) (u) 1 x (W) 5 () (u) x (W) (u)
ZIél[an] wmln(ZJ JZ) > ZIél[an} ¢m1n(2J JZ) ?61[%\? Hi *,JiX*,Ji - 2J,‘,JHOP m[é}\)ﬁ ”7 * JiPFOX*,JiHOP'

Unlformly across ¢, one has ¥, ;, (X S ) > wmm(E( )) where ¥, (2 e )) is bounded below by Propo-

sition [2.1] By inequality

(@) _ 5w K@ 5@ 5@
*X - o < K el - E max
gg@i“ w0 X0, = 2y allop < J{?S\ﬁ” i ok J; poal
1 ” _
< Ky HTX(“)’X(“) — 2 |max = Op(K, T2 1og N) = op(1).

Therefore, we have established that max;c[n ||TXi"}1X£u}L ES?) 7, llop = op(1). Similarly, we can
show that max;en ||TX£M}£PF0X* 7,|lop = op(1). By similar arguments, we can show that Ss; + Sy;

are uniformly op(1). Hence

min wmln(sz‘Ji) > mlIl u}mm(sll + 521) + OP( ) > mln wmin(sli) + OP(l)v
i€[N] i€[N] i€[N]

where the second inequality is due to the fact that So; is positive semi-definite for all <.

(b) The proof is analogous to that of (a) and thus omitted. H

Proof of Lemma The proof is analogous to that of Proposition A.1 in Bai (2009). The major

difference lies in the fact that the parameter of interest B° is a large dimensional sparse matrix of

12



dimensions Np x N. Take I} and ||I}||; as an example. For I}, we have

Il = NTl fI\UAOFO/FVﬁ%HF
For IZ, we have,
1Bl = <l X(B = BN FVgh

where the last equality follows from 1) and we recall that dyp = N~1/2 HB - BOH p- Similarly, we

can analyze the other terms to obtain the desired results. l

Proof of Lemma (i) Recall the decomposition F' — FOH = /T (I + ... + I}) in the proof of
Proposition One can write FY(F — FOH)/T = FY(Jf 4 ... + J3)/VT. For FOJ; /T, we have

1 , 1 ||FYUA° FYE .
7HF0 I*HF HFO UAOFOIFV H H V—l :OP((NT)fl/Z)’
v NT2 NTlle = VNT | VNT T N

as we can readily show that (NT)fl/2 HFOIUAOHF = Op (1) under Assumptions A.1 and A.4. For
FYI3/\/T, we have

1 , ) 1 FU'FO AO’U’
PV HFO FONOY F H
\/TH 2HF NT2 U VNT \/ﬁ
AYU'F
= Op((NT)™/? ‘ .
p((NT)™/%) INT e
Note that
AO/U/F AO/U/FOH AO/U/
‘ < ' (F FOH)
VNT ||p VNT \/ F
AU FO y A° U 1
< 2= & +\/NTH —— —( " — FH)

= Op(1+ (NT)'253 (65 + dnr)),

where we use the fact that (NT)fl/2 10llop = Sy by Assumption A.3 and T-1/2 HF - FOﬁHF =
Op(dy + dyr) by Lemma [B.2l Then %HFO'I;HF = Op((NT)™Y2 + 6% (65 + dnr)). For

13



FOI$/\/T, we have

1
= VT ||VNT . H VNT
T720p(55y) = Op(NT)"V/2 +T71).

1 ) F .
—=IF" I3 || —=Vy1
ﬁ ﬁ NT .

|FrouEvg| <

NT2 o

For other terms, we can easily show that they are of the order Op(dy7). Then the conclusion in (i)
follows.
(ii) Noting that F'F/T = Ipo and using F' = (F' — FOH) 4+ FOH, we have
<, - 1, . e 1 NI - 1. -
Ipo = TF (F — F°H) + 7 (F = FOHYF + 7 (F = FOHY(F — F°H) + TH’FO’FOH.

It follows that ~H'FYFOH = Ipo + Op((NT)™Y/2 + T7! + dy7) by Lemmas [B.2(iii) and (1)
Then

1 . .

TFO’FO = (H)Y *H '+ Op((NT) Y2 +T7 + dyr)

and the desired result follows.
(iii) As in part (i), we decompose Ufm-(Fv1 ~ F°H)/T = U, (IF + . + I})/VT. For U’M»If/\/f,

we have

1 1 ||U.L.UAY FOR |
- UI I* — U/ UAOFOIF *,2 —1
\/TH *,0 IHF NT2 H V THF \/W \/ﬁ v T NT F
= Op((NT)"V2 4171
For U/, ;Jo/v/T, we have
1 0o . U, ,F° AO’U'F
ﬁHU;,iJ?”F = NT2 UL A ,U/FVNTHF - T\F " NT
1
= 0P+ (NT)' 205 (O +dwr)) = op<N*1/2T*1 + T dyr).

For the other terms, one can use similar analyses to show that they are O p(6]_v2T + 51_\%#1 NT)-
(iv) The proof is similar to that of (iii) and thus omitted. B

Proof of Lemma (i) One can decompose Pj — Pro as follows:

1 . . § 1 o = § 1. .
Pp—Pp = (F- FOH)(F — F°H) + TFOH(F — FYH) + F(F = FYH)H'FY
FO . 1 FY
+ HHI . *FOIFO —1
Y NG

= p1+ D2+ D3+ D4

14



Then the result follows from Lemmas [B.2) E iii) and [B.3] -

(ii) By the decomposition in (i), we have

1 /

T i (Ppp —Ppo)Usi = ZT X I Ui = Zﬁli-

It is easy to apply Lemma [B.3[ii)-(iv) to obtain

Iulls, < % 15X (F = FPH)| % [(F = FPH)'U. iy = Op (dr + 057)

Ip2lls, < % 18X 5, FOH || 1 H(F — FOH)Y' U, || = Op(057 + S yrdnr),

Islls, < IS (F — FOH HF LaFru.,), = T’l/zOp(dNT 638,

lpulls, < 8%, F° — (PR /T) Y 7 [PVl =T 20p(dr + 535

Then || £X. (P — Ppo)U. . = Op(0xy +d/pdur).
(iii) Plugging equation 1' into T‘lX;7JiMFo (F — FOH)H~')\), one can obtain that

1 o 1
T7'X, ;Mpo(F — FPH)H'\] = T’lX;’JiMFo(If—|—...—|—Ié")F(—FO’F)’l(NAO’AO)’l)\?

) i T
= I+ ...+ Ig;, say.

For I;, we have

I = 7 MpoUA® L ADA0)-1)0
H 1 s HNT o ( ) i s
1
< — || X, UA° —AYA9) TN
- HS *,Jj HF (N ) ) .
1 1
* FO (7F0/F0)71 7FOIUAO ( AOIAO) 1)\0
H o il T FIVNT pll N F
— OP ( 1/2

By the identity MpoF® = 0, we have Ini = Ig; = 0. It is easy to show that Hj:3z = Op((SNT +

(5]_\,%dNT) for [ = 3,4,7,8. For I5;, one have that
= | - 5 0y A0 L r0ry0y—140

and HINE)Z = Op(dNT). This im-

SiAX!, ; MpoX (B -8 |[Aeacdava0)-a|

<| |
S; F vl
plies that I5; is a dominant term in the expansion. Combining the above results yields the desired

conclusion. W

Proof of Lemma (i) Let x;; = T'X] ;MpoX] ;. Then Q1 =bdiag(x1, - Xyy) and
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Q2 = {N 4@%)@]’} are NK, x NK, matrices, where bdiag(-) signifies a block diagonal matrix and
recall that K, = N~} Zfil ki. Let s1 = [k1] = {1,2,...,k1}, and sj11 = {Zgzl ki +1,.. Z]H i}
for j = 2,..., N. Note that

QT Q20710 = max [\, [Qals, - (Q1) T

JE[N] )

and

Xff[Q Js], Q)T
- X-“ NT Zaﬂxﬂxulx* Ji MFOU* i
1 —
= X NTZZ“?%XM“ Xt 1iUit = X NTZZa?lXMXu T *J,-FO(TFO’FO) " i
i=1t=1 i=1 t=1

Let e;; denote the [th column of Ij,,. Consider the first term on the RHS of the last displayed equation.
Note that

N T
Xj‘] NT Z Z ]ZX]ZX’L’L Xt ,J; Wit

T N T
1, L 1 -
= Xjj NZG {ngXu _E(in)[E(Xn')] l}fzxtﬂ]iuit_‘_x]] TZZ Xﬂ E(x)] 1Xt,J¢“it
t=1 i=1 t=1

T
1 1
-1 -1
= Xj; n7 N Z%z X]z - ij')]Xu' T ZXt,JiUit
t=1

11 _
+ij1N Z ag)'LE(X]])[E(Xu)] 1[E(X7,7, Xu Xn T Z X, 7; Uit
i=1

N T

L1 )
]Jl NT Z Z a’sz X]z Xzz)] 1Xt,Jiuit
i=1 t=1

Arj + Agj + Asy,

where the second equality follows because

XjiXa — EOGHEaD)]™ = Iy — EOG)Ixa' + EOgo{xg' — [ECa) ™'}
[ij‘ - E(in)]Xi_il + E(ij)[E(Xii)]_l[E(Xii) - Xii]Xi_il'

Similarly to Lemma [A2] we can show that

ot IXi = B i) |y = O (T2 10g N),
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where elements of E(Y;;) are uniformly bounded and E(x;;) has minimum eigenvalue bounded away

from zero. Noting that |a'Bb| < |a|, |b|; || B||,,ax Whenever vectors a and b and matrix B are con-

formable, we have

N
1
H}?}X\%JAU( = max ¢G5 N;a?ib(ji — B(Golxa TZX” Yit
1 N
< H}?}XHXﬁ—E(in)\\max\a?i\ N 2 e ‘ Xii TZXt Jluzt

- oP(T—W1ogN)O(K}/Q)OP(K}/QK;/QT—W):OP(KJK;/QT L(log N)?),

-1 -1 -1
63,1ij ‘1 < \/l?j‘e;’lxjj ‘2 < \/k?»jwmin(ij)] and

1
XZ_ZlT ZXtJuZt < \/7 Xzz T ZXtJuzt = \/%OP(Cril/2 IOgN)

By the same token, max; ’e}lAQj‘ = OP(KJK;/2T*1(log N)?). In addition, we can show that

1
l -1 0 -1
max ‘ej,lA&Yl = max 6 lX]j NT ZZ X]z Xu)} Xt,JiuZt
al al
=1 t=1
< ro -1 1 -1x )
S max |(€;,X;; max X]z Xu‘)} t,J; Wit
75l max

=1 t=1 1

= Op(K ;K}? (NT)_l/QlogN).

= Op(K;KZ* [T~ (log N)2+(NT)~"/?log N]) =

It follows that H NT ZZ 1 Zt 1 ZJX” XﬂXt Jithit |
J
Op(K jKa"* [T~ (log N)? + N~)).
Similarly, we can show that

N T

11
0 0 07 ;70\ —1
3 i X

= Op(K;KM* T (log N)? + N71).

max

Then |Q;' Q207 0| = Op(K Ka'* [T~ (log N)2 + N—1)).

(ii) The proofs follows from that of (i) closely. Noting that

\/1N }FQ;1Q2QI1U‘ < ||F||Op \/1N }QleZQflfﬂ ’

it suffices to show that —= |Q71Q2Q7'U| = Op(K K, [T log N)24+N~1]) = op T-1/2). The result
N2 1
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follows from (i) under Assumption A.5(ii). To see this, notice that

Qr' Q07O

1 Lo (@ 1 Atrr? o Lo (A 12
| = & L[S0 0T < 53k 070010l

= K,Op(K3K, T '(logN)?>+ N71?) = op(T7)),

where S; is defined in the proof of Proposition A more complicated argument can relax the

restriction on K; and K, slightly, but we do not pursue it for brevity.

. . . 0.
(iii) Note that @ 1/2Q2Q1 1/2 has the (4,7)th block given by %Wij, where

71/2X:<7J2-MF0MFOX*,JJ- 1, —1/2
VT yr \pestieXes )

Obviously, we have that 1, (W;;) < 1. In addition, it is easy to see that the inequality does not

1
W’L] = <TX;7JiMFOX*7Jj>

bind for all pairs of (i,j)’s w.p.a.l. For any V € RELiki and |[V| = 1, we can decompose it to
V = (V/,.., V&), where V; € RFi. Let W e RV*N with Wij = V/W;;V;. Then we have

N N 0
<—1/2 5 A5—1/2 @5 = =
VOG0T PV = 3N VWY, = tr (PoW) < | Paollop IVl
i=1 j=1

N N
= (W)=Y V/WuVi <> [V =|V]*=1.
i=1 =1

The equality holds in all places only if the columns of W are linear combinations of A°. We can
show that the inequality does not bind w.p.a.1. That is, wmax(Ql_l/QQg vl_l/Q) < 1 w.a.p.1. This

completes the proof. B

C Some Technical Lemmas

In this section we introduce the Nagaev inequality established by Wu and Wu (2016)| and then prove

some additional technical lemmas used in the proofs in Section

C.1 Nagaev inequality for time series

In Theorem below, we aim to bound the partial sum of the form S, = """, a;e;, where a; € R
are nonrandom, the scalar process {e;} has the form e; = g(...,;_1,¢;), where ¢; is independently
and identically distributed (i.i.d.) random variables, and g¢(-) is a measurable function. Letting
Fi = (...,€i—1,€i), we write e; = g(F;). Then a coupled process e can be defined as e} = g(F}),
where F = (...,e_1,€4,€1,-..,€i—1,€i) and ¢f is an independent copy of €. Recall that ||| - |||, =

(E| - |99 < co. Assuming that |||e;]||, < oo for some ¢ > 1, we define the functional dependence
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measure:

diq(e.) = lllei = €lllg = [llg(Fi) = g(F)a,

where e} = g(F;). The measure §; 4(e.) reflects the effect of shock g on e;. Accordingly, we assume

the cumulative effect of g9 on {e; };>m to be summable:

)= Zéi,q(e) < o0
As in Wu and Wu (2016)| we define the dependence-adjusted norm (DAN):

lellga = supmso(m + 1) A q(e.).

With these definitions, we can present the following Nagaev inequality for time series as a simplified

version of Theorem 2 of |Wu and Wu (2016)!

Theorem C.1 Leta = (ai,...,a,) and |a|l, = (35, |a:|9)Y9. Suppose that 31", a? = n, E (e;) = 0,

i=1"1

and ||e.||g.a < 0o for some ¢ > 2 and a > 1. Then for all z > 0,

q q C 2
P(|Sp] > x) < Clifa\qu.Hq,a + Crexp (_3% > ,

a1 nlle]3 4

where Cy,Co, C3 are constants that only depend of q and «.

C.2 Some additional lemmas

Following the decomposition |D in Section [2| we have y;; = yz(tf ) + y(u) where

it
ygf) = Za J)ue— ]—i () C(“) ZC’W)

j=0
o0
yz(tf) = E(yi) —i—Za D i = E(yit) +ZCZ’f €, ],WhereC Za f).
7=0

Let fgt be the rth entry of f2. Lemma C.1 below establishes the DAN’s for time series f}?’,, yw, yl(u)

i
and ;..
Lemma C.1. Suppose that Assumption A.1 holds and ¢ > 1. There is a constant ¢ < oo such that
the following statements hold:
) 12 lloo < 2lles”llg for v =1,.... RO;

(i) maxi<iznl [y llga < eR)1edllq;

(iii) max1<i<n |1 lga < v/ allop

(iv) maxi<i<n|[Yi,|lga < &
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Proof of Lemma C.1. () Let p = q/(q — 1) where ¢ > 1. By the Holder inequality, we have
31a(£2) < 20[Craly - 116 llg < 2(RYV2[CH ) loo - 1€ - Tt follows that

Amg(f) < 2llleff IHqZICU Jr.elp < @llle§” g (m + 1)~

t=m

where the last inequality holds by Assumption A.1(ii). The desired result follows immediately.

(ii) Noting that y(f ) is a linear process, we can directly calculate that

5ea () < 21CED D < 2651, - (11e§7]]]q and Ao (u) < 2/[|e mqZ\c

It suffices to bound > ;2 ||C ||p Noting that C( W) = Z] e’ alf )( )C’,gf)], we have

Siei ), < @YY 00| < (R l/pZDa ICD e
t=m

t=m t=m j=0
co t o0 o)
< ey Y olelle=edr > Il
t—mj—() j=0  t=(m—j)VvO

-z ZpﬂZHc P Sl

i=0  t=(m—j)

< ¢ ZIIC(f)II ROZP] ,

where the second inequality is by Assumption A.1(vi), and the last inequality is by Assumption

A.1(ii). To show sup,,>q(m + 1)*Ap, 4(y (f)) < ¢ for some ¢ < 0o, we need to show sup,,>;(m +

1)« Z;n 01 p/(m — j)~@ < & for some & < co. The last result follows because
m—1 m—1 '
(m+1)*Y" pPm—35)" = (m+1)° Z+ > ) m—j)°
j=0 j=|vm]+1
+1)°
< gt e 1 - )

(1= p)(m — [v/m])*
1

as m — oo,

I—p

where [/m| is the largest integer that is not greater than /m. It follows that
16 a0 = spmzom + 1) A g () < 66",

m,

for some & < oo.
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(iii) Note that y(f) is a linear function of (... eg )1, egu)) with eg " € R™. Given Ha(u)( || < ep? by

Assumption A.1(vii), we can see that \a(u)( W] < ep?\/11(Zu). Let [a (u) ¢)C™]; denote the jth
(u) (u ))

component of a;y/ (7)C™. Then we can calculate d; 4(y;.

fa) < 2|l e
ro 1/2
< 20| [ Dl ) c)2 el
=1
_J q
1/2
= 2| 1D (el ) c@);)2(el)?
=1 a/2
. 1/2
< 23 (! 102 ED g2
7=1

= 2| elal (™| < 20" e/ () €D g,

)

where the second inequality holds by Burkholder inequality (see, e.g., Hall, 1980, p. 23). Then we

have
Ama@™) < 267/ T E €1 L
m,q(yi,. ) < 26V YPmax( U>m€1,0’|’q1_pa
and it follows that
150 < & Vimax Gl el < oo.
(iv) The result follows (ii) and (iii). W
The following lemma bounds the DAN of summation of product of two linear processes:

Lemma C.2. Consider two time series e; = ¢(...,e4-1,¢¢) and z; = h(...,e4-1,&¢)). Suppose that
llz.]|,ax < o0 and |le.||ga. < 00 with ¢ > 2,0 > 4 and ag, . > 0. Consider the time series
xz.e. = {xye;} . Then

H.T.G.Hﬂa < QHCU-HL,aXHe'H%Oée

fora =ax Nae and 7 = qu/(q + ).
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Proof of Lemma C.2. We have that

o0 o0
Amr(me) = Y Gir(we) =Y |[ze — zjef]lls
t=m t=m

0o
> (llzeler = el + (e — 27)ef )

t=m

00

> (llzelllullle: = €flllq + [z — 25111 llef]1]q)
t=m

max |[[z]||. Am,q(e.) +max|[[e[lgAm,.(z.).

IN

IN

IN

It follows that

|z-ellr,0 < max|[lz[[.[[e.[lg.a. +max|lled]lql[-|lax < 2[|z[[axlellg.a

where we used the fact that max |||z¢|||, < ||z.||ax- W

Lemma C.3. Suppose that Assumption A.1 holds. For 214, 22+ = 1, f,gt, Yit—11 s yﬁ)_h, yz.(?_lg and

wi, with ¢ =1,..., N, l1,1l2,l3 = 1, ..., p, we have
Cg:U

T 2
P > §01W+C23XP(— T >,

where C1, Cy, and C3 are constants that do not depend on (N, T) and (21,4, 22,¢).

T
Z 214204 — E(z1422.1)
=1

Proof of Lemma C.3. We apply the Nagaev inequality in Theorem to prove the claim. By
Lemma C.1, we have |y;.|[,, < ¢ and [lu; ||, < ¢ for some constant ¢ < co. By Lemma C.2, we
o S 2¢2. By Theorem we have

can obtain that ||z1 22+ — E(Z1,t22,t)Hq/2 o <221

d

g 221l

T |a|q/2|\zl tzot — F(z1422 t)”q/2

ol121,t22, 22, 2,
Zzl,t22,t—E(Zl,tz2,t) Zm) < oY 742 =
t=1

03.%'2
+Csexp | — )
Tllz22.e — B(210220)l13 .0

where a = 7 such that |a](q]g =T'. The desired result is proved. B

Lemma C.4. Suppose that Assumption A.1 holds and N2T'~9/4(log N)~9/2 4 N2~¢log N _, (). Then

(i) There is an absolute constant ¢’ such that P [minlSiSN(wmin(ﬁg’)h)) > g’} — 1;

(11) HmaxlSiSN(T’lXifL)/MFoXiu} — 0.
1T 12 Op
Proof of Lemma C.4. (i) Note that
W _ lxgeig@ _ Lgp 5@
Jidi T Py T e i FO U



The first term converges in probability to Z(jj) 5 = E[(Xt(u)) J; (Xt(u))f,i], where wmin(E%) Jj) >

wmin(Eg?)). The second term converges in probability to zero as Xt(u) is zero mean and indepen-
dent of F°. By using the results of Lemmas A.2-A.4, we can establish the uniform result in (i).

(ii) The proof is analogous to that of (i) and thus omitted. W

D Discussion on Assumption A.1(vi)

In this section, we first give a discussion on the operator norm of ®. Then we give a sufficient condition
for Assumption A.1(vi).

It is well known that requiring the eigenvalues of ® to be in the unit circle can ensure the
stationarity of the process Y;. However, this condition does not ensure ||®||,, < 1. For instance,

consider p = 1 and the following N x N transition matrix

01 -~ 1

for which all eigenvalues are zero but ||®||,, = N — 1. Basu and Michailidis (2005)| also show that
[|®]]op > 1 as long as p > 1.

However, as we require that the spectral radius of ® is bounded by p < 1, we know that H<I>j Hop —
0 as j — oo. To see this, one can resort to the Jordan canonical form (e.g., page 656 of Liikepohl/2005).
As (‘I’j>[N]7[N] is a principal submatrix of ®, imposing the high level condition @/Jmax[(@j)[N],[N]] <ép’
with a large enough ¢ is reasonable. In the special case that p = 1 and A{ is a block diagonal matrix

with bounded block size, we can easily show that the Assumption A.1(vi) is satisfied.

References

Bai, J., 2009. Panel data models with interactive fixed effects. Econometrica, 77, 1229-1279.

Basu, S. and Michailidis, G., 2015. Regularized estimation in sparse high-dimensional time series

models. Annals of Statistics 43, 1535-1567.

Chernozhukov, V., Hansen, C., Liao, Y. and Zhu, Y., 2018. Inference For Heterogeneous Effects
Using Low-Rank Estimations. arXiv preprint arXiv:1812.08089.

Hall, P. and Heyde, C.C., 2014. Martingale limit theory and its application. Academic press.

Liikepohl, H., 2005. New introduction to multiple time series analysis. Springer Science & Business
Media, New York.

23



van de Geer, S.A. and Biihlmann, P., 2009. On the conditions used to prove oracle results for the

Lasso. Electronic Journal of Statistics, 3, 1360-1392.

Wu, W.B. and Wu, Y.N., 2016. Performance bounds for parameter estimates of high-dimensional

linear models with correlated errors. Electronic Journal of Statistics 10, 352-379.

24



	20200707_High Dimensional VAR with common factors_pcb.pdf
	Introduction
	Notation

	Model
	Stationarity analysis

	Estimation method and theoretical results
	First-step estimator
	Non-asymptotic results for the first-step estimator

	Second-step estimator
	Non-asymptotic results for the second step estimator

	Third-step estimator
	Asymptotic properties of the third-step estimator

	Tuning parameter selection
	Lag length selection

	Monte Carlo Simulations
	Data generating processes
	Implementation and estimation results

	Empirical application
	Evaluating a network of financial assets volatilities
	Data description and empirical framework
	Estimation results


	Conclusion
	Proofs of the main results
	Theoretical analysis of the first-step estimators
	Theoretical analysis of the second-step estimators
	Theoretical analysis of the third-step estimators

	Supplementary Proof
	Asymptotic analysis of the oracle least squares estimator
	 Proof of the technical lemmas

	Some Technical Lemmas
	Nagaev inequality for time series
	Some additional lemmas
	Discussion on Assumption A.1(vi)







