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Abstract

This paper studies high-dimensional vector autoregressions (VARs) augmented with common

factors that allow for strong cross section dependence. Models of this type provide a convenient

mechanism for accommodating the interconnectedness and temporal co-variability that are often

present in large dimensional systems. We propose an `1-nuclear-norm regularized estimator and

derive non-asymptotic upper bounds for the estimation errors as well as large sample asymptot-

ics for the estimates. A singular value thresholding procedure is used to determine the correct

number of factors with probability approaching one. Both the LASSO estimator and the conser-

vative LASSO estimator are employed to improve estimation precision. The conservative LASSO

estimates of the non-zero coeffi cients are shown to be asymptotically equivalent to the oracle

least squares estimates. Simulations demonstrate that our estimators perform reasonably well in

finite samples given the complex high dimensional nature of the model with multiple unobserved

components. In an empirical illustration we apply the methodology to explore the dynamic con-

nectedness in the volatilities of financial asset prices and the transmission of ‘investor fear’. The

findings reveal that a large proportion of connectedness is due to common factors. Conditional on

the presence of these common factors, the results still document remarkable connectedness due to

the interactions between the individual variables, thereby supporting a common factor augmented

VAR specification.
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1 Introduction

In a pathbreaking study, Mann and Wald (1943) introduced vector autoregressions (VARs) and de-

veloped the limit theory for estimation and inference.1 The VAR approach was further developed

and promoted for empirical macroeconomic research in an influential paper by Sims (1980). Since

then, the methodology has become one of the most heavily used tools in the applied finance and

macroeconomics literature. It offers a simple and useful method of capturing rich dynamics and

interconnectedness in multiple time series. Unrestricted VARs can be effi ciently estimated by least

squares regressions, which makes them particularly attractive in applied research. But low dimen-

sional VARs often suffer from the notorious omitted variable bias problem, which makes the approach

vulnerable to misleading inferences on both coeffi cients and impulse responses. In a series of articles

(e.g., Sims (1992), Sims (1993), and Leeper et al. (1996)) Sims and his coauthors have explored

whether to include more variables in VAR formulations to improve the forecasting performance.

In the absence of restrictions, the number of VAR coeffi cients increases quadratically, making the

VAR estimation inevitably a high dimensional problem as the number of variables increases. The

dynamic factor model (DFM), introduced by Geweke (1977), provides a synthetic tool to summarize

useful information from a large number of time series while avoiding some of the problems of high

dimensionality. Since then, a large literature has emerged on DFMs. Examples of theoretical work

include Forni et al. (2000), Bai and Ng (2002), Bai (2003), and Hallin and Liška (2007). In applied

finance and macroeconomics, various studies document the useful capacity of DFMs in capturing

comovements among macroeconomic or financial time series; see Fama and French (1993), Stock and

Watson(1999, 2002), Giannone et al.(2004), Ludvigson and Ng (2007), and Cheng and Hansen (2015),

among many others. In an important work, Bernanke et al. (2005) propose a factor-augmented VAR

(FAVAR) model to assist in making structural inferences while avoiding the problem of information

sparsity that occurs in low dimensional VAR systems. Although the presence of common factors

helps to capture additional variation and co-variation in the data, there is still evidence to suggest

that misspecification continues to play a role in applied work with DFMs, particularly in forecasting.

Stock and Watson (2005), for instance, test the ability of cross variation in forecasting, namely,

whether observations on another variable such as xjt help in predicting xit given lagged values of xit

and common factors using 132 U.S. macroeconomic time series. Their results suggest that exclusion

of other variables like xjt from the regression equation for xit involves misspecifications that can

impair forecasting performance. A systematic approach to dealing with potential misspecifications

1The extension to the structural VAR (SVAR) case was developed in the final section of Mann and Wald (1943); but
this seems largely to have been ignored in the vast literature on SVAR. For further discussions, see Hurn et al. (2020).
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of this type is to employ modern machine learning methods that rely on regularized estimation. The

present paper seeks to attain this goal in the context of large dimensional FAVAR systems.

Regularized estimation has recently received intense attention in both econometrics and statistics.

In the cross-sectional framework, among the most influential works are Tibshirani (1996), Zhao and

Yu (2006), Zou (2006), Candes and Tao (2007) and Huang et al. (2008). Inspired by the methods

developed in these papers a growing body of literature on high dimensional autoregressive models

has emerged. Haufe et al. (2010) propose a group-LASSO-based method to discover causal effects in

multivariate time series. Basu and Michailidis (2015) study deviation bounds for Gaussian processes

and investigate the `1 regularized estimation of transition matrices in sparse VAR models. Kock

and Callot (2015) establish oracle inequalities for high dimensional VAR models. Han et al. (2015)

propose a generalized Dantzig selector in high dimensional VARs. Guo et al. (2016) study a class

of VAR models with banded coeffi cient matrices. These methods have opened up new avenues for

handling high dimensional VAR models in practical work. In particular, regularized estimation

has now been employed in various empirical applications in economic and financial analyses. For

example, Smeekes and Wijler (2018) study forecasting capabilities of penalized regressions in cases

where the generating process is a factor model; Medeiros et al. (2019) consider inflation forecasting

with machine learning methods; Uematsu and Tanaka (2019) examine high-dimensional forecasting

and variable selections via folded-concave penalized regressions; and Barigozzi and Brownlees (2019),

Barigozzi and Hallin (2017), and Demirer et al. (2018) adopt high dimensional VARs to estimate

networks and construct measures of financial sector connectedness.

All the aforementioned studies assume that the model’s idiosyncratic errors exhibit at most weak

cross-sectional dependence (c.f., Chudik et al., 2011). However, the vast literature on the DFM

indicates that this assumption is fragile in empirical applications. In response to this limitation,

the present paper proposes a new high dimensional VAR model in which some common factors

(CFs) feature in the determination of each time series besides the idiosyncratic errors and lagged

values of the time series themselves. In an earlier work, Chudik and Pesaran (2011) consider a

factor-augmented infinite dimensional VAR model. For simplicity, they construct a model in which

the factor-induced strong cross section dependence is explicitly separated from other sources of cross

section dependence. They mention the possibility of using high dimensional VAR models with CFs

but do not explicitly analyze the model. The FAVAR system in the present paper allows for serial

correlation among the CFs, which in turn leads to correlation between the CFs and the lagged time

series. To properly control for the presence of CFs in this FAVAR system it is necessary to estimate

the factors, factor loadings, and transition matrices simultaneously. Practical implementation also

requires the determination of the number of factors and lag length.

To estimate the high dimensional VAR model with CFs, we consider a three-step procedure.
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In the first step, we consider an `1-nuclear-norm regularized least squares estimation problem that

minimizes the sum of squared residuals with an `1-norm penalty imposed on the transition matrices

and a nuclear norm penalty on the low rank matrix Θ representing the common component. Imposing

the `1-norm penalty helps to estimate sparse transition matrices. The nuclear norm penalty helps to

estimate the low rank matrix arising from the CFs and factor loadings. The `1-norm regularization

has become standard in statistics and econometrics since the pioneering work of Tibshirani (1996).

The nuclear norm regularization has recently become popular in the estimation of low rank matrices

in statistics and econometrics; see, Negahban and Wainwright (2011), Rohde and Tsybakov (2011),

Negahban et al. (2012), Chernozhukov et al. (2018), Belloni et al. (2019), Fan et al. (2019),

Feng (2019), Koltchinskii et al. (2019), Moon and Weidner (2019), and Ma et al. (2020b), among

others. All these previous works focus on the error bounds (in Frobenius norm) for the nuclear norm

regularized estimates, except Chernozhukov et al. (2018), Moon and Weidner (2019) and Ma et al.

(2020b) who study inference in linear or nonlinear panel data models with a low-rank structure. Like

the latter authors, we simply use the nuclear norm regularization to obtain consistent initial estimates.

Under some regularity conditions, we establish the nonasymptotic bounds for the estimation error of

the transition matrices and the low rank matrix Θ. Applying a singular value thresholding (SVT)

procedure on the singular values of the estimate of Θ, we obtain an estimate of the number of factors.

We also show that the true number of factors can be estimated correctly with probability approaching

one (w.p.a.1). Then, given the estimated factor number, preliminary estimates of the CFs can be

obtained.

In the second step, we include the estimated CFs as regressors and consider a generalized LASSO

estimator to obtain an updated estimate of the transition matrices. We show that the estimation

errors can be uniformly controlled, which facilitates the construction of weights for subsequent esti-

mation by conservative LASSO in the third step. Under some regularity conditions, we show that

this third step conservative LASSO estimator of the transition matrices achieves sign consistency (see

Zhao and Yu, 2006). Besides, the third step estimator of the transition matrices, factors and factor

loadings are asymptotically equivalent to the corresponding oracle least squares estimators that are

obtained by using detailed information about the form of the true regression model. We also study

the asymptotic properties of these oracle least squares estimators and find that they perform as well

as if the true common factors were known.

We illustrate the usefulness of our methodology through a real-data example. We revisit the finan-

cial connectedness measures proposed by Diebold and Yilmaz (2014) and document strong evidence

of the existence of CFs in the volatilities of 23 sector exchange traded funds (ETFs). The findings

show that CFs account for a large proportion of the variation in these volatilities; and, conditional

on the CFs, a high level of connectedness remains present among the idiosyncratic components. This
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empirical application demonstrates the particular usefulness of our high dimensional VAR model with

CFs in its ability to allow for time series with strong cross section dependence while distinguishing

variations that originates from different sources.

The remainder of the paper is organized as follows. In Section 2, we introduce our model and

conduct a stationarity analysis. Section 3 introduces the estimation methods and examines their

theoretical properties. In Section 4, we conduct Monte Carlo experiments to evaluate the finite sample

performance of our estimators. We apply the model and methods to study financial connectedness

in Section 5. Section 6 concludes. Proofs of the main results in the paper are given in the Appendix.

Further technical details are provided in the online Supplementary Material.

1.1 Notation

To proceed, we introduce some notation. Let A = (aij) ∈ RM×N and v = (v1, ..., vN )′ ∈ RN be a

matrix and a vector, respectively. We denote vI as the subvector of v whose entries are indexed by a

set I ⊂ [N ] ≡ {1, ..., N}. We denote AI,J as the submatrix of A whose rows and columns are indexed
by I and J, respectively. Let A∗,J ≡ A[N ],J be the submatrix of A whose columns are indexed by J ,

AI,∗ ≡ AI,[M ] be the submatrix of A whose rows are indexed by I. For notational simplicity, we also

write the individual columns and rows of A respectively as A∗,j = A∗,{j} for j ∈ [N ] and Ai,∗ = A{i},∗

for i ∈ [M ].

For a random variable or vector x, we denote its expectation and `p-norm as E(x) and |||x|||p ≡
[E(|x|pp)]1/p. We define the `0, `q (q ≥ 1), and `∞ norms of a vector v to be

|v|0 ≡
N∑
i=1

1(vi 6= 0), |v|q ≡
(

N∑
i=1

|vi|q
)1/q

, and |v|∞ ≡ max
1≤i≤N

|vi|,

where 1(·) is the indicator function. In the special case q = 2, | · |2 is the Euclidean norm of v. We

write |v| ≡ |v|2 for notational simplicity.
For 1 ≤ q <∞, we define the `q, `max, Frobenius (F), and nuclear (∗) norms of the matrix A to

be:

||A||q ≡ max
||v||q=1

||Av||q, ||A||max ≡ max
i,j
|aij |, ||A||F ≡

∑
i,j

|aij |2
1/2

and ||A||∗ =

min(N,M)∑
k=1

ψk(A),

where ψk(·) is the kth largest singular value of A for k = 1, ..., min(N,M). We also denote the largest

and smallest singular value of A as ψmax(A) and ψmin(A). In the special case q = 2, the `2 matrix

norm is given by ||A||2 = ||A||op ≡ ψ1(A).

For a full rank T ×R matrix F with T > R, we denote the corresponding orthogonal projection
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matrices as PF = F (F ′F )−1F ′ and MF = IT − PF , where IT denotes the T × T identity matrix. Let
vec(·) denote the (columnwise) vectorization operator, and ⊗ be the (right hand) Kronecker operator.
Let ∨ and ∧ denote max and min operators, viz., a ∨ b = max (a, b) and a ∧ b = min (a, b) .

2 Model

For a N -dimensional vector-valued time series {Yt} = {(y1t, ..., yNt)
′}, the high-dimensional vector

autoregression model of order p with CFs is given by:

Yt =

p∑
j=1

A0
jYt−j + Λ0f0

t + ut, t = 1, ..., T, (2.1)

where A0
1, ..., A

0
p are N×N transition matrices, Λ0 = (λ0

1, ..., λ
0
N )′ is an N×R0 factor loading matrix,

f0
t is an R0-dimensional vector of common factors, and ut ≡ (u1t, ..., uNt)

′ is an N -dimensional

vector of unobserved idiosyncratic errors. Throughout this paper we use the superscript 0 to denote

true values. The coeffi cients of interest are A0
j’s, Λ0, and F 0 ≡ (f0

1 , ..., f
0
T )′. In practice, we need to

determine the number of factors and the VAR order p. We propose a method to consistently determine

p in Section 3. The number of factors can be determined in the first step of our estimation procedure

introduced in Section 3. We consider the framework that both the number of cross-sectional units

N and the time periods T go to infinity. The estimation is a natural high-dimensional problem with

the number of parameters, N2p+R0N +R0T, growing linearly with T and quadratically with N .

It is convenient to reformulate model (2.1) as a multivariate regression problem in the form


Y ′1
...

Y ′T


︸ ︷︷ ︸

Y

=


Y ′0 · · · Y ′1−p
...

. . .
...

Y ′T−1 · · · Y ′T−p


︸ ︷︷ ︸

X


A0′

1
...

A0′
p


︸ ︷︷ ︸

B0

+


f0′

1
...

f0′
T


︸ ︷︷ ︸

F 0


λ0′

1
...

λ0′
N


′

︸ ︷︷ ︸
Λ0′

+


u′1
...

u′T


︸ ︷︷ ︸

U

, (2.2)

where Y ∈RT×N , X ∈RT×Np, B0 ∈ RNp×N , and U ∈RT×N . A key observation here is that Θ0 ≡
F 0Λ0′ is a low rank matrix. However, due to the correlation between XB0 and Θ0, the direct use of

principal component analysis (PCA) onY cannot deliver a consistent estimate of the common factors.

Note that under some regularity conditions, both ||XB0||op and ||Θ0||op are OP (
√
NT ) and ||U||op

= OP (
√
N +

√
T ). We cannot separate the low rank matrix Θ0 from Y without information about

B0. Besides, when the common factors are themselves serially correlated, pure VAR(p) estimation

generally suffers from the endogeneity bias issues.
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2.1 Stationarity analysis

Let X ′t ≡ Xt,∗. The N -dimensional VAR(p) process {Yt} can be rewritten in a companion form as

an Np-dimensional VAR(1) process with CFs, viz.,


Yt

Yt−1

...

Yt−p+1


︸ ︷︷ ︸

Xt+1

=



A0
1 A0

2 · · · A0
p−1 A0

p

IN 0 · · · 0 0

0 IN · · · 0 0
...

...
. . .

...
...

0 0 · · · IN 0


︸ ︷︷ ︸

Φ


Yt−1

Yt−2

...

Yt−p


︸ ︷︷ ︸

Xt

+


Λ0f0

t

0
...

0


︸ ︷︷ ︸

Ft

+


ut

0
...

0


︸ ︷︷ ︸
Ut

. (2.3)

If one treats Ft + Ut as an impulse at period t, the process {Xt+1} in (2.3) can be regarded as a
high-dimensional VAR(1) process. We can write the reverse characteristic polynomial (Lükepohl,

2005) of Yt as

A(z) ≡ IN −
p∑
j=1

A0
jz
p.

In the low-dimensional framework, the process is stationary if A(z) has no roots in and on the

complex unit circle, or equivalently the largest modulus of the eigenvalues of Φ is less than 1. To

achieve identification, we need to study the Gram or signal matrix SX ≡ X′X/T and ΣX = E(XtX
′
t).

Basu and Michailidis (2015; hereafter BM) study the deviation bounds for the Gram matrix, using a

Gaussianity assumption and boundedness of the spectral density function. Following their lead, we

impose some conditions that will ensure SX to be well behaved.

To proceed, we write Xt+1 as a moving average process of infinite order (MA(∞)):

Xt+1 =

∞∑
j=0

Φj(Ft−j + Ut−j) ≡ X(f)
t+1 +X

(u)
t+1, (2.4)

where X(f)
t+1 ≡

∑∞
j=0 ΦjFt−j and X(u)

t+1 ≡
∑∞

j=0 ΦjUt−j . Then we can study the stationarity of Yt by
studying X(f)

t+1 and X
(u)
t+1, respectively. First, we consider X

(f)
t+1, which is the component due to the

common factors. Note that the covariance matrix of Ft is a high-dimensional matrix with rank R0

and explosive nonzero eigenvalues. Even if the largest modulus of the eigenvalues of Φ is smaller

than 1, the variances of entries of X(f)
t+1 are not assured to be uniformly bounded. Specifically, we

consider y(f)
it , which is the ith entry of X

(f)
t+1. Let ej,M be the jth unit M -dimensional vector. Noting
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that y(f)
it = (e1,p ⊗ ei,N )′X

(f)
t+1, we can write y

(f)
it as an MA(∞) process

y
(f)
it =

∞∑
j=0

(e1,p ⊗ ei,N )′Φj(e1,p ⊗ Λ0)f0
t−j ≡

∞∑
j=0

α
(f)
iN (j)f0

t−j ,

where f0
t are allowed to be serially correlated. To ensure y

(f)
it = OP (1), we need to require the

coeffi cients α(f)
iN (j) to be well-behaved. Note that we generally do not have ||Φ||op ≤ 1, as explained

in the supplement of BM (2015). In Assumption A.1 below, we impose suffi cient conditions that

ensure y(f)
it are well-behaved. The online supplementary material provides a discussion of these

conditions.

For the process {X(u)
t+1}, stationarity is assured if we assume the covariance matrix of ut is well-

behaved and ut is serially uncorrelated as in BM (2015) and Kock and Callot (2015; hereafter KC).

Similarly to y(f)
it , we define y

(u)
it such that

yit ≡ y(f)
it + y

(u)
it , (2.5)

where

y
(u)
it =

∞∑
j=0

α
(u)
iN (j)ut−j and α

(u)
iN (j) ≡ (e1,p ⊗ ei,N )′Φj(e1,p ⊗ IN ).

Again, imposing zero serial correlation and weak cross-sectional correlation across uit’s is not enough

to ensure y(u)
it = OP (1) uniformly.

Let c and c̄ denote generic constants that may vary across occurrences. Throughout the paper, we

will treat Λ0 as nonrandom. To ensure the stationarity of {Yt}, we impose the following assumption.

Assumption A.1. (i) ut = C(u)ε
(u)
t , where ε(u)

t = (ε
(u)
1,t , ..., ε

(u)
m,t)

′, ε
(u)
i,t ’s are i.i.d. random variables

across (i, t) with mean zero and variance 1, and C(u) is an N ×m matrix such that C(u)C(u)′ = Σu

and c ≤ ψmin(Σu) ≤ ψmax(Σu) ≤ c̄;
(ii)

{
f0
t

}
follows a strictly stationary linear process:

f0
t − µf =

∞∑
j=0

C
(f)
j ε

(f)
t−j ,

where ε(f)
t ≡ (ε

(f)
1,t , ..., ε

(f)
R0,t

)′ are i.i.d. with mean 0 and covariance matrix IR0 across t, supm≥1(m+

1)α
∑∞

j=m ||C
(f)
j ||max ≤ c̄ <∞ for some constant α > 1;

(iii) max1≤r≤R0 |||ε(f)
r,t |||q < c̄ and max1≤i≤m |||ε(u)

i,t |||q < c̄ for some q > 4;

(iv) {ε(u)
t } is independent of {ε

(f)
t };

(v) the largest modulus of the eigenvalues of Φ is bounded by some constant ρ ∈ (0, 1);

(vi) ||(Φj)[N ],[N ]||op ≤ c̄ρj and |α
(f)
iN (j)| < c̄ρj ;
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(vii) max|z|=1 ψmax(A∗(z)A(z)) ≤ c̄, where |z| denotes the modulus of z in the complex plane,
and A∗(z) denotes the conjugate transpose of A(z).

Assumption A.1(i) is frequently made in high dimensional time series analysis; see, e.g., Bai

(1996), Chen and Qin (2010) and Ma et al. (2020a). It requires that ut be independent over t

and weakly dependent across i. At the cost of more complicated notations, one can allow ψmin(Σu)

to converge to zero and ψmax(Σu) to diverge to infinity, both at a slow rate. Assumption A.1(ii)

assumes the common factors to be stationary and allows for weak serial correlation. The factors can

have nonzero mean so that y′its can also have nonzero mean. Assumption A.1(iii) requires that both

ε
(u)
i,t and ε

(f)
i,t have finite qth order moments, which is a weak assumption compared to the Gaussian

distribution assumption of BM (2015) and KC (2015). Assumption A.1(iv) requires independence

between {ε(u)
t } and {ε

(f)
t }, which facilitates separate study of y

(f)
it and y(u)

it . Assumption A.1(v) is a

standard assumption to ensure stationarity. Assumption A.1(vi) is a high level condition to ensure

that E(y2
it) is uniformly bounded. Assumption A.1(vii) helps to bound the minimum eigenvalue of

ΣX . By the inequalities

max
|z|=1

Λmax(A∗(z)A(z)) ≤ (max
|z|=1

||A(z)||op)2 ≤ 1 +

p∑
k=1

||A0
j ||op,

we can see that requiring all the A0
j’s to have finite operator norms is a suffi cient condition.

The online Supplementary Material provides further discussion on Assumption A.1(vi)-(vii). The

following proposition ensures the stationarity of the process {yit} and establishes a lower bound for
ψmin(ΣX).

Proposition 2.1 Suppose that Assumption A.1 holds. (i) Then Yt is a stationary process, supiE(y2
it) <

∞, and
ψmin(ΣX) ≥ ψmin(Σu)

max|z|=1 ψmax(A∗(z)A(z))
.

(ii) Let ΣXF ≡ E(Xtf
0′
t ), and Σ ≡ ΣX−ΣXFΣ−1

F Σ′XF .We again have ψmin(Σ) ≥ ψmin(Σu)
max|z|=1 ψmax(A∗(z)A(z)) .

3 Estimation method and theoretical results

This section develops an estimation procedure for the model and establishes its properties, both

asymptotic and non-asymptotic. The procedure assumes at this point that the VAR order p is known

and that R0 is unknown. In practice, we can determine p via the data-driven method introduced in

Section 3.5. The number of factors can be determined consistently in the first estimation step.
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3.1 First-step estimator

In the first step, we propose an `1-nuclear norm regularized estimator to estimate the coeffi cient

matrix B0 and the low rank matrix Θ0 simultaneously. We impose a sparsity condition on B0 and

use `1-norm regularization to achieve the selection of regressors. Like Moon and Weidner (2019;

hereafter MW) and Chernozhukov et al. (2018) we adopt nuclear norm regularized estimation to

obtain initial consistent estimation of the low rank matrix Θ0. The first step estimator is given by

the following procedure.

First-step estimator: Let γ1 = γ1(N,T ) = c1T
−1/2 logN and γ2 = γ2(N,T ) = c2(N−1/2 +T−1/2)

for some constants c1 and c2.

1. Estimate the coeffi cient matrix B0 and the low rank matrix Θ0 by running the following `1-

nuclear norm regularized regression:

(B̃, Θ̃) = argmin (B,Θ)L(B,Θ), where

L(B,Θ) ≡ 1

2NT
||Y −XB −Θ||2F +

γ1

N
|vec(B)|1 +

γ2√
NT
||Θ||∗. (3.1)

2. Estimate the number of factors R0 by the singular value thresholding (SVT) as:

R̂ =
N∧T∑
i=1

1{ψi(Θ̃) ≥ (γ2

√
NT ||Θ̃||op)1/2}.

3. Obtain a preliminary estimate of F 0. Let the singular value decomposition (SVD) of Θ̃ be

Θ̃ = ŨD̃Ṽ ′, where D̃ =diag(ψ1(Θ̃), ..., ψN∧T (Θ̃)). Set F̃ =
√
TŨ∗,[R̂].

Remark 3.1. The objective function L(B,Θ) is the sum of squared residuals with both the nuclear

norm regularization on Θ and `1-regularization on B. To obtain the numerical solution, we can apply

an EM type algorithm. In the E-step, we fix B and update the estimate of Θ. The solution can be

obtained following the result of Lemma 1 of MW (2019).2 In the M-step, we fix Θ and update B.

The optimization problem can be decomposed to N LASSO-type linear regression problems.

3.1.1 Non-asymptotic results for the first-step estimator

In this subsection we establish the non-asymptotic properties of the first step estimator. In particular,

for B̃ and Θ̃, we establish a non-asymptotic inequality for their estimation errors. For R̂, we show

that R̂ = R0 w.p.a.1.
2Let the SVD of A be A = USV ′, where S = diag(s1, ..., sq), with q = rank(A). Then

argminΘ

(
1
2
||A−Θ||2F + γ||Θ||∗

)
is given by U · diag((s1 − γ)+, ..., (sq − γ)+) · V ′, where (s)+ = max(0, s).
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To proceed, we introduce some notation and assumptions. We first introduce a key invertibility

condition for the linear operator (∆(1),∆(2)) :→ X∆(1) + ∆(2) when (∆(1),∆(2)) is restricted to lie in

a ‘cone’. A similar condition is imposed in MW (2019) and Chernozhukov et al. (2018). Following

their lead, we refer to the condition as ‘restricted strong convexity’. To define the ‘cone’, let Ji ⊂ [Np]

be an index set such that j ∈ Ji if and only if B0
ji 6= 0. Let Jci = [Np]\Ji. Let the SVD of Θ0 be

Θ0 = U0D0V 0′. For a T ×N matrix ∆(2), define the operators

P(∆(2)) ≡ U0
∗,[R0]U

0
∗,[R0]

′∆(2)V 0
∗,[R0]V

0′
∗,[R0] andM(∆(2)) ≡ ∆(2) − P(∆(2)).

Hence, the operator P(·) projects a matrix onto a ‘low-rank’ space which contains Θ0. For some

c > 0, the ‘cone’CNT (c) ⊂ RNp×N × RT×N is a set of (∆(1),∆(2)) satisfying the restriction:

γ1

∑N
i=1 |∆

(1)
Jci ,i
|1

N
+
γ2

∥∥M(∆(2))
∥∥
∗√

NT
≤ c

γ1

∑N
i=1 |∆

(1)
Ji,i
|1

N
+ c

γ2

∥∥P(∆(2))
∥∥
∗√

NT
.

We impose the following condition.

Assumption A.2 (Restricted strong convexity) If (∆(1),∆(2)) ∈ CNT (c) for some c > 0, then there

exist constants κc and κ′c such that∥∥∥X∆(1) + ∆(2)
∥∥∥2

F
≥ T · κ′c

∥∥∥∆(1)
∥∥∥2

F
+ κc

∥∥∥∆(2)
∥∥∥2

F
.

Let ki = |Ji|, KJ ≡ sup
i
ki and Ka ≡

∑N
i=1 ki/N. The next assumption involves a regularity

condition on the errors and a sparsity condition on the transition matrix.

Assumption A.3 (i) ‖U‖op /
√
NT ≤ γ2/2, where γ2 is the tuning parameter for the nuclear norm

regularization;.

(ii) Ka = o(T
(
N−1/2 + T−1/2

)
/(logN)2).

Assumption A.3(i) requires the idiosyncratic error matrix to have an operator norm of order

OP (
√
N +

√
T ). This condition has become standard in the literature; see, e.g., Lu and Su (2016),

Moon and Weidner (2017), Su and Wang (2017), Chernozhukov et al. (2018), and MW (2019). Moon

and Weidner (2017) provide examples of conditions that ensure the above assumption. In particular,

it holds if ε(u)
it ’s are i.i.d. sub-Gaussian (see, e.g., Vershynin, 2018).

Assumption A.3(ii) impose some sparsity conditions on the transition matrix. We allow Ka (and

thus KJ) to diverge to infinity at a rate slower than T
(
N−1/2 + T−1/2

)
/(logN)2 for some of the

results below. Such a sparsity condition can be relaxed to the approximate sparsity condition as in

Belloni et al. (2012) but that extension is not pursued here.
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Theorem 3.1 Suppose that Assumptions A.1-A.3(i) hold. Then we have

N−1/2
∥∥∥B̃ −B0

∥∥∥
F
≤ c̄(γ1

√
Ka ∨ γ2) and (NT )−1/2

∥∥∥Θ̃−Θ0
∥∥∥
F
≤ c̄(γ1

√
Ka ∨ γ2),

with probability at least 1− c̄′(N2T 1−q/4(logN)−q/2 +N2−c logN ) for some finite positive constants c,

c̄, and c̄′.

Theorem 3.1 establishes the non-asymptotic inequalities for the estimation errors of B̃ and Θ̃ in

terms of Frobenius norm. The inequalities are valid when both N2T 1−q/4(logN)−q/2 and N2−c logN

are small. In general, the first term dominates the second one for finite q and divergent (N,T ). If

the error terms are sub-exponential, we can allow q to diverge to infinity in which case the second

term could dominate the first one. To prove the above theorem, we need to establish a bound

for T−1||U′X||max. Specifically, we need to find a sharp probability bound for a partial sum like

T−1
∑T

t=1 yi,t−kujt. We resort to a Nagaev-type inequality, as introduced by Wu (2005) and Wu and

Wu (2016), allowing for both dependence among summands and non-Gaussianity. The summand

yi,t−kujt has a nonlinear Wold presentation yi,t−kujt = gijk(. . . , εt−1, εt), where εt ≡ (ε
(u)′
t , ε

(f)′
t )′ is

i.i.d. random variables under Assumption A.1. Then one can verify that the dependence-adjusted

norm (see Wu and Wu, 2016) of yi,t−kujt is well bounded so that one can obtain a sharp probability

bound using the Nagaev-type inequality for nonlinear processes.

Despite the fact that Theorem 3.1 is a non-asymptotic result, it is interesting to examine its

asymptotic implications under Assumption A.3(ii). Note that Assumption A.3(ii) implies that

γ1

√
Ka = o(N−1/4 + T−1/4). Consequently, Theorem 3.1 implies that both N−1/2||B̃ − B0||F and

(NT )−1/2||Θ̃−Θ0||F are oP (N−1/4 +T−1/4). This rate can be improved to OP (N−1/2 +T−1/2 logN)

if we restrict our attention to the case where Ka = O (1) .

Next, we impose an assumption on the common factor and the factor loadings.

Assumption A.4 (i) There exists an N̄ such that for all N > N̄ , ||Λ0′Λ0/N − ΣΛ||max ≤ c̄N−1/2

for an R0 ×R0 matrix ΣΛ and ||Λ0||max ≤ c̄;
(ii) Let ΣF = E(f0

t f
0′
t ). There are constants s1 > · · · > sR0 > 0 so that sj equals the jth largest

eigenvalue of Σ
1/2
F ΣΛΣ

1/2
F .

Assumption A.4 requires that the factors and the factor loadings are strong/pervasive with well-

behaved sample second moments. Assumption A.4(ii) requires distinct eigenvalues of Σ
1/2
F ΣΛΣ

1/2
F in

order to identify the corresponding eigenvectors.

The next theorem establishes the consistency of R̂ and the mean-square convergence rate of F̃ .
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Theorem 3.2 Suppose Assumptions A.1-A.4 hold. There exist positive constants c, c̄ and c̄′, and

a random matrix H̃ depending on (F 0,Λ0) such that (i) R̂ = R0 and (ii) ||F̃ − F 0H̃||F/
√
T ≤

c̄(γ1

√
Ka ∨ γ2), both with probability larger than 1− c̄′(N2T 1−q/4(logN)−q/2 +N2−c logN ).

Theorem 3.2(i) establishes the consistency of R̂ and the mean-square convergence rate of F̃ .

Intuitively, since Θ̃ is a consistent estimator of Θ0 ≡ F 0Λ0′ with well-controlled estimation errors,

we expect the first R0 singular values of Θ̃ to be OP (
√
NT ) and the other singular values to be

OP [
√
NT (γ1 ∨ γ2)]. Then the hard SVT procedure can distinguish the

√
NT -order singular values

from those of smaller order. Alternatively, given the consistency of B̃ established in Theorem 3.1,

we can regard the ‘residual’Y −XB̃ as an approximation of F 0Λ0′ + U. It is easy to see that one

can also apply the methods of Bai and Ng (2002), Onatski (2010) and Ahn and Horenstein (2013) to

determine the number of factors. Theorem 3.2(ii) establishes the convergence rate of F̃ . The R×R
transformation matrix H̃ is similar to the matrix H in Bai (2003).

3.2 Second-step estimator

In this subsection, we introduce the second-step estimator. The second-step estimator is a general-

ization of the LASSO estimator, which includes the estimated factor matrix F̃ as regressors. Our

goal is to obtain an estimator of B0 whose elements uniformly converge to the true values. Then the

second-step estimator can be utilized to construct adaptive- or conservative-LASSO weights in the

third step.

Second-step estimator: Let γ3 = c3(γ1

√
Ka ∨ γ2) for some constant c3. For each i ∈ [N ], solve

the minimization problem:

(Ḃ′∗,i, λ̇
′
i)
′ = argmin

(v′,λ′)′∈RNp+R0

1

2T
||Y∗,i −Xv − F̃ λ||2F + γ3|v|1, (3.2)

where the LASSO penalty is only imposed on the coeffi cients of X. Then the second-step estimators

of B0 and Λ0 are given by Ḃ = (Ḃ∗,1, ..., Ḃ∗,N ) and Λ̇ = (λ̇1, ..., λ̇N )′, respectively.

Remark 3.2. Note that the `1-norm penalty is only imposed on the coeffi cients of X. In the proof

of Theorem 3.3 below, we show that Ḃ∗,i solves the LASSO problem with dependent variableMF̃Y∗,i

and regressors MF̃X.

Below, we establish the non-asymptotic properties of Ḃ.

3.2.1 Non-asymptotic results for the second step estimator

Recall that Σ ≡ ΣX − ΣXFΣ−1
F Σ′XF . Let Σ̃ = X′MF̃X/T. By Proposition 2.1, ψmin(Σ) is bounded

below from 0. Nevertheless, there is no guarantee that the sample matrix Σ̃ be positive definite.
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In fact, if Np > T, Σ̃ is always singular, which leads to min|v|6=0
v′Σ̃v
|v|2 = 0. In this case, we follow

Bickel et al. (2009) and KC (2015) to establish the restricted eigenvalue condition. Specifically, we

replace the above minimum by a minimum over a smaller set. Let J ⊂ [Np] be an index set and

Jc = [Np]\J . We say the restricted eigenvalue condition is satisfied for some K ∈ [Np] if

min
|J |≤K

min
|v|6=0

|vJc |1≤3|vJ |1

v′Σ̃v

|vJ |2
≡ κΣ̃(K) > 0, (3.3)

where |J | denotes the cardinality of J . In (3.3), the minimum is restricted to those vectors that

|vJc |1 ≤ 3|vJ |1, where J has cardinality no bigger than K. In this restricted space, we can show that
(3.3) is satisfied with a high probability for K = KJ .

The following theorem establishes the `max-norm bound for the estimation error of Ḃ.

Theorem 3.3 Suppose that Assumptions A.1-A.4 hold. Suppose that (3.3) is satisfied. Then

||Ḃ −B0||max ≤ max
1≤i≤N

|Ḃ∗,i −B0
∗,i|1 ≤

48

[ψmin(ΣX)]2
KJγ3

with probability larger than 1− c̄(N2T 1−q/4(logN)−q/2 +N2−c logN ) for some finite positive constants

c and c̄.

3.3 Third-step estimator

In the first and second steps, we impose penalties on all elements in the coeffi cient matrix B, which

introduces asymptotic biases into the estimators of the transition matrices. Zou (2006) proposes an

adaptive LASSO technique in a linear regression framework, which penalizes the true zero parameters

more than the non-zero ones. Then he shows that the adaptive LASSO estimator is asymptotically

equivalent to the oracle least-squares estimator, which is obtained with the information of relevant

regressors. Kock and Callot (2015) also explore the adaptive LASSO method in the high-dimensional

VAR framework.

In practice, the regressors with zero estimates in the preliminary stage, which are usually plain

LASSO estimates, are excluded in the adaptive LASSO. Hence, any incorrect regressor exclusion by

the preliminary stage estimates directly leads to wrong regressor selection of adaptive LASSO. To

solve this problem, the conservative LASSO, which gives regressors that are excluded by the initial

estimator a second chance, is introduced (e.g., Caner and Kock, 2018). In this subsection, we extend

the conservative LASSO estimator to the framework of high dimensional VAR with CFs.

Third-step estimator (Conservative LASSO): Implement the following procedure:
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1. (Set weights) Let γ4 = γ4(N,T ). Let W be a Np×N matrix with entries

wki =

 1 if |Ḃki| < αγ4,

0 if |Ḃki| ≥ αγ4,
(3.4)

where k ∈ [Np], i ∈ [N ], and α > 0. Set F̂ (0) = F̃ .

2. (Update B̂(`)) For integer ` ≥ 1, update the estimate of B and Λ:

(B̂
(`)′
∗,i , λ̂

(`)′
i )′ = argmin

(v′,λ′)′∈RNP+R̂

1

2T

∥∥∥Y∗,i −Xv − F̂ (`−1)λ
∥∥∥2

F
+ γ4

pN∑
k=1

wki |vk| ,

where vk is the kth entry of v, i ∈ [N ]. Let B̂(`) ≡ (B̂
(`)
∗,1, ..., B̂

(`)
∗,N ).

3. (Update F̂ (`)) Obtain the SVD of Y−XB̂(`) as Y −XB̂(`) = Û (`)D̂(`)V̂ (`)′. Obtain an updated

estimate of F 0 as F̂ (`) =
√
TÛ

(`)

∗,[R̂]
. Set ` = `+ 1.

4. Iterate steps 2-3 until numerical convergence. Denote the final estimators as B̂, F̂ and Λ̂.

Remark 3.3. Note that the weights do not change with iterations in the above procedure. It is

worth mentioning that the weights wki can take various forms. For example, Caner and Kock (2018)

also consider wki ≡
γprec

|Ḃki|∨γprec
, where γprec = αγ4.

3.3.1 Asymptotic properties of the third-step estimator

In this subsection, we will establish two results: (i) the conservative LASSO estimator B̂(`) has the

variable-selection consistency; (ii) B̂ is asymptotically equivalent to the oracle least squares estimator.

First, we introduce some notation. Following Zhao and Yu (2006) and Huang et al. (2008), we

say that B̂(`) =s B
0, or B̂(`) is sign-consistent for B0, if and only if sgn(B̂

(`)
∗,i ) =sgn(B0

∗,i) for all

i ∈ [N ], where

sgn(B∗,i) ≡ [sgn(B1,i), ..., sgn(BNp,i)]
′, and sgn(Bki) ≡


1 if Bki > 0

0 if Bki = 0

−1 if Bki < 0

.

Assumption A.5 (i) As (N,T )→∞, the magnitude of nonzero coeffi cients are of larger asymptotic
order than γ4: γ4 = o(mini∈[N ] mink∈Ji |B0

ki|);
(ii) (K

3/2
J T−1/2 logN +K

1/2
J N−1/2) = o(γ4) and KJKa[T

−1(logN)2 +N−1] = o(T−1/2);

(iii) N2T 1−q/4(logN)−q/2 → 0 and T/N2 → 0 as (N,T )→∞.
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Assumption A.5(i) assumes the nonzero entries of B0 cannot be too small, which is a standard

assumption in the adaptive LASSO literature. The lower boundmini∈[N ] mink∈Ji |B0
ki| has to be larger

than γ4 in order to separate the nonzero entries from zeros. By Assumption A.5(i) and Theorem 3.3,

we can show that maxk∈Ji wki = 0 and mink∈Jci wki = 1 w.p.a.1. In this case, we only put penalty on

the true zero entries. Assumption A.5(ii) imposes some conditions on KJ and Ka. This assumption

ensures that ||X(B̂(`) − B0)||F has a desired convergence rate. Assumption A.5(iii) imposes some
conditions on the relative rates at which N and T pass to infinity and they depend on the number

(q) of moments for the innovation processes in the error term and factors. In the special case where

N and T pass to infinity at the same rate, this condition requires q ≥ 12. This requirement greatly

relaxes the sub-Gaussian assumption imposed on the error terms in the early literature.

The following theorem establishes the variable selection consistency of B̂(`) and the preliminary

convergence rates of B̂(`) and F̂ (`).

Theorem 3.4 Suppose that Assumptions A.1-A.5 hold. Then

(i) P (B̂(`) =s B
0)→ 1, as (N,T )→∞;

(ii) ||X(B̂(`) −B0)||F/
√
NT = OP (γ1

√
Ka + γ2);

(iii) ||F̂ (`) − F 0H̃||F/
√
T = OP (γ1

√
Ka + γ2).

Theorem 3.4(i) shows that B̂(`) has the oracle property in that it selects the correct variables

w.p.a.1. Due to the presence of common factors and the possibly divergent number (ki) of nonzero

coeffi cients in B0
∗,i, we can only obtain a preliminary rate OP (γ1

√
Ka + γ2) in Theorem 3.4(ii)-(iii).

Apparently, this rate depends on the average number (Ka) of nonzero coeffi cients in B0
∗,i’s.

To improve the rate of convergence, we study the final estimators B̂, F̂ and Λ̂. Now, F̂ corresponds

to the first R̂ eigenvectors of (Y −XB̂)(Y −XB̂)′, rescaled by
√
T , and one can expand F̂ − F 0H̃

following the lead of Bai and Ng (2002) and Bai (2009). By looking at the product of F̂ −F 0H̃ with

other terms, we can derive a sharper bound for some intermediate estimates. Finally we can improve

the probability order of each element in B̂Ji,i −B0
Ji,i

to O(T−1/2).

The following theorem reports the asymptotic distribution of B̂Ji,i.

Theorem 3.5 Suppose that Assumptions A.1-A.5 hold. Let Si denote an L × ki selection matrix
such that ‖Si‖F is finite and L is a fixed integer. Conditional on the event {B̂ =s B

0}, for each
i ∈ [N ], we have

√
TSi(B̂Ji,i −B0

Ji,i
)
d→ N(0, σ2

iSi(ΣJi,Ji)
−1S′i) where σ2

i = E
(
u2
it

)
.

Note that we specify a selection matrix Si in Theorem 3.5 that is not needed if ki is fixed.

Intuitively, we allow ki to diverge to infinity as (N,T ) → ∞ and we cannot derive the asymptotic

normality of B̂Ji,i directly when ki → ∞. Instead, we follow standard practice on estimation and
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inference with a divergent number of parameters (see, e.g., Fan and Peng, 2004, Lam and Fan, 2008,

and Qian and Su, 2016) and prove the asymptotic normality for an arbitrary but finite number of

linear combinations of the elements of B̂Ji,i. In the special case where ki is fixed, we can take Si = I|Ji|

and obtain the usual joint asymptotic normal distribution for all elements of B̂Ji,i.

3.4 Tuning parameter selection

In practice, we need to select the tuning parameters γ`, for ` = 1, ..., 4. For γ2, which is the tuning

parameter for the nuclear norm penalty, we adopt a simple plug-in approach similar to that introduced

in Chernozhukov et al. (2018). An ideal tuning parameter for γ2 is one such that

||U||op/
√
NT ≤ (1− c)γ2

for some c > 0 with high probability. Suppose U is a random matrix with i.i.d. sub-Gaussian entries

that have mean zero and variance σ2
u, its operator norm is bounded by Cσu(

√
N +

√
T ) for some

C > 0 with high probability (see Vershynin, 2018). One can first use γ2 =
σ̂y
C (
√
N +

√
T ) for some

C > 1 and σ̂y is the sample standard deviation of Y . After obtaining an estimate σ̂u of σu, we can

calculate a suitable γ2 via simulation. Specifically, we can simulate the random matrices U with i.i.d.

N(0, σ̂2
u). Then we let γ2 = Q(||U||op, 0.95), where Q(x, α) denote the αth quantile of x.

For γ1, γ3, and γ4, we propose to use the five-fold cross validation (CV) process. Let γ = (γ1, γ3,

γ4)′. For the first-step estimation, the procedure goes as follows:

1. Partition the data into 5 separate sets along the time dimension: T1, ...,T5 ⊂ [T ];

2. For k = 1, ..., 5, fit the model to the training set by excluding the kth fold data. Denote the

estimators by B̃(γ,k) and Λ̃(γ,k), where Λ̃(γ,k) is a N × R matrix containing the first R right

singular vectors of Θ̃. Calculate the sum of squared prediction errors

cv(γ, k) = tr[(YTk,∗ −XTk,∗B̃
(γ,k))MΛ̃(γ,k)(YTk,∗ −XTk,∗B̃

(γ,k))′];

3. Compute the CV error for a fixed tuning parameter by CV (γ) =
∑5

k=1 cv(γ, k).

4. Select γ∗ = argminγ CV (γ).

Remark 3.4. Once the sample Tk is excluded, we cannot obtain an estimate of FTk,∗. Hence

we cannot obtain the residuals by deducting the estimate of FTk,∗Λ
′. For this reason, we multiply

YTk,∗ −XTk,∗B̃
(γ,k) by MΛ̃(γ,k) to project out FTk,∗Λ

′ in the above procedure.

For the second and third step estimators, the CV procedure can be constructed similarly.
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3.5 Lag length selection

In the above estimation procedure, we have so far assumed that the lag length p is known. In

practice, the lag length p is usually unknown and requires estimation. In this subsection, we propose

a procedure to determine the lag length p. Suppose we estimate the model with pmax ≥ p0, where

we use the superscript ‘0’to denote the true parameter. The model with pmax lags continues to be

a correctly specified model except that A0
k = 0 for k > p0. Due to the LASSO regularization, the

elements of the estimator Âp for p > p0 should converge to zero. For this reason, we propose to

determine the lag length by the following procedure:

1. Given pmax, obtain the estimates Âk for k ∈ [ pmax];

2. Calculate ak = ||Âk||2F ∨ c for some constant c and k ∈ [pmax];

3. The criterion function we consider is given by the ratio

GR(p) =

∑pmax
k=p ak∑pmax
k=p+1 ak

, p = 1, ..., pmax − 1.

The term GR refers to the growth ratio of
∑pmax

k=p ak.

4. Obtain the estimator of p0 as p̂ = argmax1≤k<pmax GR (k).

Remark 3.5. We make some remarks in order. First, one can also simply run an `1-nuclear

penalized regression with pmax, which is the first step of the estimation procedure given in Section

3.1. We only require that ||Âk − A0
k||F converge to zero at a certain rate. Second, in practice one

may obtain a very small or even zero value for ||Âk||2F when k > p0. In this case, if we directly use

ak = ||Âk||2F, the growth ratio may possibly choose a larger p than p0. To solve this problem, we

bound ak below by some constant c > 0. Third, the GR(p) criterion function is constructed to allow

some A0
k with k < p0 to be a matrix of zeros. If we believe all A0

k’s are nonzero matrices for k ∈
[
p0
]
,

one can also consider the criterion function FR(p) = ap/ap+1, where the term FR refers to Frobenius

norm ratio.

4 Monte Carlo Simulations

This section reports the results of set of Monte Carlo experiments designed to evaluate the finite

sample performance of the proposed estimation procedure.
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4.1 Data generating processes

We consider three cases with p = 1. For each data generating process (DGP), we generate the data

from the following high dimensional VAR(1) process with CFs:

Yt = A0
1Yt−1 + Λ0f0

t + ut, (4.1)

where A0
1 varies across different DGPs, Λ0 = (λ0

1, ..., λ
0
N )′. The factor loadings λ0

ri, for r = 1, ..., R0,

are independently and identically distributed (i.i.d.) standard normal random variables. The factors

f0
tr, for r = 1, ..., R0, follow an autoregressive process:

f0
tr = ρf · f0

t−1,r + ε
(f)
tr ,

where ρf = 0.6 and ε(f)
tr are i.i.d. N (0, 1). The idiosyncratic error terms are generated as uit = s ·ε(u)

it ,

where s controls the signal-to-noise ratio, and ε(u)
it are i.i.d. N(0, 1).

DGP 1 (Tridiagonal transition matrix): (A0
1)ij = 0.3 · 1(|i− j| ≤ 1).

DGP 2 (Block-diagonal transition matrix): We generate a block-diagonal matrixA0
1 =bdiag(S1, ..., SK),

where the Sk’s are 5× 5 random matrices. The diagonal entries of Sk are fixed with (Sk)i,i = 0.3. In

each column of Sk, we randomly choose 2 out of 4 off-diagonal entries and set them to be −0.3.

DGP 3 (Random transition matrix): We fix the diagonal entries of A0
1 to be 0.3 (i.e. (A0

1)ii = 0.3).

In each row of A0
1, we randomly choose 3 out of N − 1 entries and set them to be −0.3.

FIGURE 1 around here

Figure 1 illustrates the structure of the random transition matrices used in our simulation. For

each DGP, we consider N = 30, 60, and T = 100, 200, 400, leading to six combinations of cross-

sectional and time series dimensions. The number of replications is set to 500.

4.2 Implementation and estimation results

For each DGP, we consider the feasible estimator proposed in this paper and the oracle least squares

estimator. The oracle estimators are obtained by using the information of the number of factors and

the true regressors.

Table 1 reports the model selection accuracy. For each combination of N and T in each DGP,

the fourth and fifth columns report the under- and over-estimation rate of R̂, respectively. The TPR

(true positive rate) columns report the average shares of relevant variables included. The FPR (false

positive rate) columns report the average shares of irrelevant variables included. We summarize

some important findings from Table 1. First, the proposed hard singular value thresholding (SVT)
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procedure can correctly determine the number of factors for each case. Second, with N fixed, the

TPR increases with T in all cases as expected. All three-step estimators can include almost all the

true regressors when T = 400. Third, among the three estimators, the third-step conservative LASSO

estimator includes the least irrelevant regressors in almost all settings. In addition, only conservative

LASSO estimators tend to exclude more irrelevant regressors as T increases, while the FPRs of the

first and second step estimators increase as T grows.

TABLE 1 around here

Table 2 reports the estimation error of both the feasible estimators and the oracle least squares

estimator. We report the root mean squared errors (RMSEs) for all entries and nonzero entries,

respectively. We summarize some important findings from Table 2. First, as expected, the oracle

least squares estimator uniformly outperforms the feasible estimators. This is mainly due to the fact

that the FPRs of feasible estimators were never zero. Second, the RMSE of the oracle estimator for

nonzero entries decreases with T at the
√
T -rate and alters with N slightly. This is consistent with

our theoretical prediction that the oracle least squares estimator converges to the true values at the
√
T -rate. Third, the conservative LASSO outperforms the other two feasible estimators in terms of

RMSEs in all cases.

TABLE 2 around here

For all DGPs, we also consider estimation of a misspecified VAR(1) model, Yt = A0
1Yt−1 + ut,

where the common factors are ignored. We first estimate the model with LASSO as in KC (2015).

Then we construct the weights as in (3.4) and use conservative LASSO to estimate the misspecified

model. Table 3 reports the performance of these two estimators. We summarize some findings from

Table 3. First, the FPRs for both estimators are quite high. This indicates that the misspecification

may lead to non-sparse estimates of the transition matrices when the presence of strong cross-sectional

dependence is not properly accounted for. Second, the estimators for the misspecified model also

have higher RMSEs. Third, in many cases, the conservative LASSO estimator performs even worse

than the LASSO estimator in terms of RMSEs. So it is important to take into account the factor

structure in the estimation of a VAR with CFs.

TABLE 3 around here
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5 Empirical application

5.1 Evaluating a network of financial assets volatilities

In recent years, financial asset connectedness has been an active topic in financial econometrics.

Examples of contributions to this literature include Barigozzi and Brownlees (2019; hereafter BB),

Barigozzi and Hallin (2017), Billio et al. (2012), Diebold and Yilmaz (2014; hereafter DY), Diebold

and Yilmaz (2015), and Hautsch et al. (2014). Some of these authors directly model the large panel

of time series as a VAR process without the potential presence of common factors. A LASSO-type

method is employed to estimate the transition matrices. However, Barigozzi and Hallin (2017) and

BB (2019) document evidence for the existence of a factor structure in volatility. Barigozzi and Hallin

(2017) consider controlling for the presence of common factors by means of a dynamic factor model.

BB (2019) use the regression residuals of individual volatilities on observed factors (e.g., market

volatility or sector-specific volatility) to represent the idiosyncratic components of the volatilities.

Neither of these papers provides theoretical justifications.

In this empirical application, we extend the measure of connectedness of DY and study the

connectedness of financial assets. Specifically, we study the connectedness in a panel of volatility

measures. As remarked by DY, the volatilities of financial assets can be interpreted as a form of

‘investor fear’. Then volatility connectedness represents ‘fear connectedness’across assets. In this

scenario, it is natural to take into account common factors, which reflect confidence in the market.

Spillover effects across assets is another reason for connectedness. We use the econometric method-

ology derived in the present work to analyze a panel of return volatilities of 23 sector ETF funds.

The findings show that common factors account for 56.1% of the overall variability. Conditioning on

these factors, the interdependence across individuals still captures a relatively high proportion of the

variation.

Table 4 around here

5.1.1 Data description and empirical framework

We collect the weekly ‘open price’, ‘close price’, ‘high price’and ‘low price’of a series of sector ETF

funds from Yahoo finance. The fund names and tickers are listed in Table 4. They fall into several

categories. The ‘Energy’, ‘Financial’and ‘Consumer cyclical’are three large categories, each of which

contains three to four funds. Each of the other categories contain at most two funds. The sample

spans July 2007 to August 2019, which corresponds to 688 weeks. As volatility is unobserved, we use

the observed price data to estimate it. Specifically, we follow Garman and Klass (1980) and Alizadeh
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et al. (2002) to measure the asset volatility as follows:

σ̃2
it = 0.511(Hit − Lit)2 − 0.019[(Cit −Oit)(Hit + Lit − 2Oit)− 2(Hit −Oit)(Lit −Oit)]

−0.383(Cit −Oit)2,

where Oit, Cit, Hit, and Lit are natural logarithms of weekly ‘open price’, ‘close price’, ‘high price’

and ‘low price’, respectively. We present the descriptive statistics of volatilities in Table 5. The

kurtosis of each time series is quite large. We follow DY (2014) to normalize the data by taking

natural logarithms and then centering each time series. That is, our yit is given by log(σ̃2
it)− log(σ̃2

i·).

Table 5 around here

Given the panel of volatilities, we fit the data to our VAR model with CFs in (2.1). By the

decomposition (2.5), yit = y
(f)
it + y

(u)
it , where y

(f)
it is due to the common factors and y(u)

it is due to the

idiosyncratic errors. Then νi ≡var(y(f)
it )/var(yit) measures the proportion of variance in yit that is

due to common factors and ν̄ ≡
∑N

i=1var(y
(f)
it )/

∑N
i=1var(yit) measures the corresponding object in

all time series.

For the idiosyncratic component y(u)
it , we can calculate the measure of connectedness proposed

by DY (2014). As discussed in Section 2, we have y(u)
it =

∑∞
j=0 α

(u)
iN (j)C(u)ε

(u)
t−j , where α

(u)
iN (j) =

(e1,p⊗ei,N )′Φj(e1,p⊗IN ) and ε(u)
t ∼ (0, Im). For simplicity, suppose that m = N . Then one can treat

ε
(u)
it as the idiosyncratic shock to individual i. The variance of the H-step ahead prediction error due

to {ε(u)
j,t+h}Hh=1 is s

H
ij =

∑H−1
h=0 ([α

(u)
iN (h)C(u)]j)

2. If we can identify both Φ and C(u), we can easily

estimate the variance decomposition matrix ĎH with (i, j)th entry sHij /
∑N

k=1 s
H
ik. However, C

(u)

is not identified without further assumption. Although we cannot identify C(u), the matrix Σu =

C(u)C(u)′ is identified. DY (2014) propose to calculate the H-step generalized variance decomposition

matrix DH = [dHij ]N×N , where

dHij =
σ−1
jj

∑H−1
h=0 (α

(u)
iN (h)Σuej,N )2∑H−1

h=0 α
(u)
iN (h)Σuα

(u)
iN (h)′

, and ej,N is jth column of IN .

Unlike ĎH , the row sums of DH are not necessarily unity. We normalize DH to D̃H with (i, j)th

entry d̃Hij = dHij /
∑N

k=1 d
H
ik so that

∑N
j=1 d̃

H
ij = 1 and

∑N
i,j=1 d̃

H
ij = N . Hence, the overall connectedness

in the y(u)
it ’s can be measured as d̃

H =
∑

i 6=j d̃
H
ij /N . In addition, we let d̃

H
i← ≡

∑
j 6=i d̃

H
ij . Following

DY (2014), we call d̃Hi← the ‘FROM’ index, as it measures the proportion of generalized variance

decomposition that is due to other individuals. Similarly, we let d̃H←j ≡
∑

i 6=j d̃
H
ij and call this the

‘TO’index.
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5.1.2 Estimation results

We use the procedure proposed in Section 3.4 to determine the lag length with pmax = 8. The result

gives p̂ = 4. When we run the regression with p = 4, the number of factors is determined to be one

(R̂ = 1).

Figure 2 around here

Figure 2 reports the heat map which represents the estimates of the Âk’s. The element value is

represented by scaled color. In total, 330 out of 2116 entries are nonzero. There are three interesting

findings. First, most of the nonzero entries are estimated to be positive. The positive coeffi cients

represent the propagation of investor fear across assets. Second, the diagonal elements of Âk’s are

mostly nonzero. The magnitude of the diagonal elements is larger than that of the off diagonal

elements on average. Third, the number of nonzero coeffi cients in Âk decreases as k increases and

the average magnitude of the entries also decreases. More recent investor fear causes greater present

investor fear.

Table 6 around here

Next, we calculate the statistics introduced in the last subsection. The upper panel of Table 6

provides the estimates of νi, d̃Hi←, and d̃
H
←j . Almost all the νi’s are above 50%, and the overall variation

due to the common factors is ν̄ = 56.1%. The market level investor fear is playing a dominant roll

in investor trading behavior. After conditioning on the factors, we consider the idiosyncratic part by

looking at d̃Hi←, d̃
H
←j and the H-step generalized variance decomposition matrix D̃

H . The ‘FROM’

index ranges between 27.7% and 71.7%. Interestingly, the ‘energy’and ‘finance’funds have higher

‘FROM’index compared to other funds. A similar observation applies for the ‘TO’index. Specifically,

the ‘TO’index of XLE and IYE are close to 100% and both are ‘energy’funds. The energy industry

therefore transmits considerable investor fear to the entire market. This finding is intuitive as the

oil price has been extremely volatile in recent years and the energy price affects all industries. The

fund GDX (VanEck Vectors Gold Miners ETF) has the least connectedness. It receives only 27.7%

connectedness from other assets and transmits only 19.1% connectedness to others. The overall

connectedness measure is 49.8%. Conditioning on the factors, there is still substantive transmission

of investor fear across individuals. Figure 3 reports the heat map of the H-step generalized variance

decomposition matrix D̃H at H = 12.We observe that the interconnections within the same category

is high, whereas connectedness across categories is relatively low.

Figure 3 around here

The lower panel of Table 6 provides the measure of connectedness with the pure VAR model es-
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timation as in Demirer et al. (2018). Without controlling for the common factors, the ‘FROM’

and ‘TO’index of each fund becomes much larger. However, we observe little heterogeneity across

categories. In this case, all the connectedness due to common factors is interpreted as the individual

level connectedness, which potentially leads to wrong inference.

In sum, our framework extends the traditional VAR analysis of financial asset connectedness

to control for the presence of common factors in the determination of volatility. We have found

that common factors account for more than a half of the variation in the data. In addition to the

connectedness that is due to common factors there is still a remarkable degree of connectedness that

arises from spillover channels that operate among the assets themselves.

6 Conclusion

In this paper we propose a methodology to study regularized estimation of high dimensional VARs

with unobserved common factors. The presence of common factors introduces strong cross sectional

dependence into the process. Incorporating such dependence is particularly important in high di-

mensional disaggregated data where connectedness between the variables may arise through different

channels. This dependence and connectedness seem to be especially relevant in studying the trans-

mission of investor fear across financial assets in our study of asset price volatility.

In practical work our procedure can be implemented in three steps as follows. First, given the

order p of the VAR process, which can be estimated via a growth ratio criterion, we can obtain

preliminary estimates of the transition matrices and common component via `1-nuclear norm regu-

larizations, with which one can estimate the number of factors consistently and obtain a preliminary

consistent estimate of the common factors. Second, the model is estimated using a generalized

LASSO procedure by including the preliminary estimate of the common factors as regressors. Third,

conservative LASSO is then used to obtain the final estimates, which are shown to be asymptotically

equivalent to the oracle least squares estimates

The methods and results in this paper open up multiple avenues for further research. First,

following Barigozzi and Brownlees (2019) it may be useful in practice to impose some sparsity as-

sumptions on the large dimensional error variance matrix and develop estimation methods to achieve

this. Second, frequency domain methods can be used to estimate the common factor components.

Third, the model studied here does not allow for structural change in the transition matrices or the

factor loadings (c.f., Su and Wang, 2017). It will also be interesting and challenging to study high

dimensional VAR models with common factors that may involve time-varying transition matrices

and factor loadings, which can help to capture empirically evolution in institutional and regulatory

frameworks.
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APPENDIX

A Proofs of the main results

Proof of Proposition 2.1: (i) By Assumption A.1(iv), y(u)
it ’s and y

(f)
it ’s are mutually independent.

It suffi ces to study them separately. By Assumption A.1(i), we can write y(u)
it as a linear process:

y
(u)
it =

∞∑
j=0

α
(u)
iN (j)ut−j =

∞∑
j=0

α
(u)
iN (j)C(u)ε

(u)
t−j ≡

∞∑
j=0

C
(i,u)
j ε

(u)
t−j ,

where C(i,u)
j ≡ α(u)

iN (j)C(u). Under Assumption A.1(vi), one can bound |(e1,p⊗ei,N )′Φj | by ψmax([Φj ][N ],[N ])

≤ c̄ρj . It follows that |α(u)
iN (j)| ≤ c̄ρj . Then the MA(∞) representation of y(u)

it is valid with

E(y
(u)
it ) = 0 and Var(y(u)

it ) =
∑∞

j=0 α
(u)
iN (j)Σuα

(u)
iN (j)′ <∞.

Under Assumption A.1(vi), we can also show that E(|y(f)
it |) ≤

∑∞
j=0 |α

(f)
iN (j)|

∣∣µf ∣∣ < ∞. The
MA(∞) representation of y(f)

it is

y
(f)
it = E(y

(f)
it ) +

∞∑
j=0

α
(f)
iN (j)(f0

t−j − µf ) = E(yit) +
∞∑
j=0

C
(i,f)
j ε

(f)
t−j ,

where C(i,f)
j ≡

∑j
k=0 α

(f)
iN (k)C

(f)
j−k. Under Assumption A.1(vi), |C

(i,f)
j | ≤

∑j
k=0 |α

(f)
iN (k)| · ||C(f)

j−k||op.
In addition, by Assumption A.1(ii),

∞∑
j=0

j∑
k=0

ρk||C(f)
j−k||max =

∞∑
k=0

ρk
∞∑
j=k

||C(f)
j−k||max ≤ c̄

∞∑
k=0

ρk(k + 1)−α,

for some constant c̄ <∞. Hence C(i,f)
j is absolutely summable, Var(y(f)

it ) =
∑∞

j=0C
(i,f)
j C

(i,f)′
j <∞,

and the MA(∞) representation of y(f)
it is valid.

Similar to the decomposition (2.5), we can write Xt = X
(u)
t +X

(f)
t . For ΣX , due to the indepen-

dence between X(u)
t and X(f)

t , we can also write it as ΣX = Σ
(f)
X + Σ

(u)
X , where Σ

(u)
X ≡ E(X

(u)
t X

(u)′
t )

and Σ
(f)
X ≡ E(X

(f)
t X

(f)′
t ). By the fact that Σ

(f)
X is positive semi-definite, we have ψmin(ΣX) ≥

ψmin(Σ
(u)
X ). It suffi ces to show ψ(Σ

(u)
X ) is bounded below. By Proposition 2.3 of BM (2015), we have

ψmin(Σ
(u)
X ) ≥ ψmin(Σu)

max|z|=1 ψmax(A∗(z)A(z))
.

Given Assumption A.1(vii), we have that ψmin(Σ
(u)
X ) is bounded below by some constant.

(ii) By the independence between X(u)
t and X(f)

t , one can also show that ψmin(Σ) ≥ ψmin(Σ
(u)
X ).�
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A.1 Theoretical analysis of the first-step estimators

To prove Theorem 3.1, we need two lemmas whose proofs are in the online supplement.

Lemma A.1 For the T ×N matrices Θ0 and ∆, we have

(i)
∥∥Θ0 +M(∆)

∥∥
∗ =

∥∥Θ0
∥∥
∗ + ‖M(∆)‖∗;

(ii) ‖∆‖2F = ‖M(∆)‖2F + ‖P(∆)‖2F;
(iii) rank(P(∆)) ≤ 2R0;

(iv) ‖∆‖2F =
∑

j ψj(∆)2 and ‖∆‖2∗ ≤ ‖∆‖
2
Frank(∆);

For any conformable matrices M1 and M2, the following statement holds:

(v) |tr(M1M2)| ≤ ‖M1‖max |vec(M2)|1 and |tr(M1M2)| ≤ ‖M1‖op ‖M2‖∗ .

Lemma A.2 Suppose that Assumption A.1 holds. There exist absolute constants c, c, c̄ ∈ (0,∞)

such that

(i) ‖U′X‖max /T ≤ γ1/2 with probability greater than 1− c̄(N2T 1−q/4(logN)−q/2 +N2−c logN );

(ii) ‖U′PF 0X‖max /T ≤ c ·γ1 with probability greater than 1− c̄(NT 1−q/4(logN)−q/2 +N1−c logN ).

Proof of Theorem 3.1. Let ∆̃(1) = B̃ −B0 and ∆̃(2) = Θ̃−Θ0. Define the event

E(1)
NT = {

∥∥U′X∥∥max /T ≤ γ1/2, ‖U‖op /
√
NT ≤ γ2/2}.

By Lemma A.2(i) and Assumption A.3(i), E(1)
NT holds with probability at least 1−c̄[N2T 1−q/2(logN)−q/2

+N2−c logN ]. By the definition of (B̃, Θ̃), we have that

0 ≥ L(B̃, Θ̃)− L(B0,Θ0)

=
1

2NT
(||Y −XB̃ − Θ̃||2F − ||U||

2
F) +

γ1

N
(|vec(B̃)|1 − |vec(B0)|1) +

γ2√
NT

(||Θ̃||∗ − ||Θ0||∗)

≡ d1 + d2 + d3. (A.1)

To establish the asymptotic properties of B̃ and Θ̃, we study the three terms d1, d2 and d3 in order.

First, we consider d1. By the identity Y = XB0 + Θ0 + U, we have∥∥∥Y −XB̃ − Θ̃
∥∥∥2

F
− ‖U‖2F =

∥∥∥X∆̃(1) + ∆̃(2)
∥∥∥2

F
− 2tr[U′(X∆̃(1) + ∆̃(2))].

For tr[U′(X∆̃(1) + ∆̃(2))], conditional on E(1)
NT , we apply the triangle inequality and Lemma A.1(v)

to obtain

1

NT
|tr[U′(X∆̃(1) + ∆̃(2))]| ≤ 1

NT
||U′X||max|vec(∆̃

(1))|1 +
1

NT
‖U‖op ||∆̃

(2)||∗

≤ γ1

2N
|vec(∆̃(1))|1 +

γ2

2
√
NT
||∆̃(2)||∗.
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It follows that

d1 ≥ 1

2NT
||X∆̃(1) + ∆̃(2)||2F −

γ1

2N
|vec(∆̃(1))|1 −

γ2

2
√
NT
||∆̃(2)||∗

≥ 1

2NT
||X∆̃(1) + ∆̃(2)||2F −

γ1

2N

N∑
i=1

(
|∆̃(1)

Ji,i
|1 + |∆̃(1)

Jci ,i
|1
)

− γ2

2
√
NT

(
||P(∆̃(2))||∗ + ||M(∆̃(2))||∗

)
. (A.2)

Next, we consider d2. By the identities that |B̃∗,i|1 = |B̃Ji,i|1 + |B̃Jci ,i|1 and |B
0
∗,i|1 = |B0

Ji,i
|1, we

have

d2 =
γ1

N

N∑
i=1

(|B̃Ji,i|1 + |B̃Jci ,i|1 − |B
0
Ji,i|1) ≥ γ1

N

N∑
i=1

(|∆̃(1)
Jci ,i
|1 − |∆̃(1)

Ji,i
|1), (A.3)

where we use the fact that |B̃Ji,i|1 + |∆̃(1)
Ji,i
|1 ≥ |B0

Ji,i
|1 by the triangle inequality and that |B̃Jci ,i|1 =

|∆̃(1)
Jci ,i
|1 as B0

Jci ,i
= 0.

Now, we consider d3. By the triangle inequality and Lemma A.1(i), we have

||Θ̃||∗ = ||∆̃(2) + Θ0||∗ = ||Θ0 + P(∆̃(2)) +M(∆̃(2))||∗

≥ ||Θ0 +M(∆̃(2))||∗ − ||P(∆̃(2))||∗

= ||Θ0||∗ + ||M(∆̃(2))||∗ − ||P(∆̃(2))||∗.

It follows that

d3 ≥
γ2√
NT

(||M(∆̃(2))||∗ − ||P(∆̃(2))||∗). (A.4)

Combining the results in (A.1)-(A.4), we have

1

2NT
||X∆̃(1) + ∆̃(2)||2F +

γ1

2N

N∑
i=1

||∆̃(1)
Jci ,i
||1 +

γ2

2
√
NT
||M(∆̃(2))||∗

≤ 3γ1

2N

N∑
i=1

||∆̃(1)
Ji,i
||1 +

3γ2

2
√
NT
||P(∆̃(2))||∗. (A.5)

The above inequality indicates that (∆̃(1), ∆̃(2)) ∈ CNT (3). By Assumption A.2, we obtain that

1

N
||∆̃(1)||2F +

1

NT
||∆̃(2)||2F ≤ κ̄3

1

NT
||X∆̃(1) + ∆̃(2)||2F, (A.6)
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where κ̄3 = (κ3 ∧ κ′3)−1 . By the inequality (A.5), we have

1

NT
||X∆̃(1) + ∆̃(2)||2F ≤ 3γ1

N

N∑
i=1

|∆̃(1)
Ji,i
|1 +

3γ2√
NT
||P(∆̃(2))||∗

≤ 3γ1

√
Ka
||∆̃(1)||F√

N
+ 3
√

2R0γ2

||∆̃(2)||F√
NT

≤ 3
√

2(γ1

√
Ka ∨ (

√
2R0γ2))

√
1

N
||∆̃(1)||2F +

1

NT
||∆̃(2)||2F, (A.7)

where the second inequality holds by Lemma A.1(ii)-(iv) and the fact that
∑N

i=1 |∆̃
(1)
Ji,i
|1 ≤

√
NKa(

∑N
i=1

|∆̃(1)
Ji,i
|2)1/2 ≤

√
NKa

∥∥∥∆̃(1)
∥∥∥
F
, where recall that Ka = N−1

∑N
i=1 ki and ki ≡ |Ji| denotes the cardi-

nality of the set Ji. Combining (A.6)-(A.7) yields

1

N
||∆̃(1)||2F +

1

NT
||∆̃(2)||2F ≤ 3

√
2κ̄3[(γ1

√
Ka) ∨ (

√
2R0γ2)]

√
1

N
||∆̃(1)||2F +

1

NT
||∆̃(2)||2F,

which implies that 1√
N
||∆̃(1)||F ≤ c̄(γ1

√
Ka ∨ γ2) and 1√

NT
||∆̃(2)||F ≤ c̄(γ1

√
Ka ∨ γ2) with c̄ =

3
√

2κ̄3(1 ∨
√

2R0) <∞. This completes the proof. �

To prove Theorem 3.2, we need the following lemma whose proof is in the online supplement.

Lemma A.3 Suppose that Assumptions A.1 and A.3 holds. Let SF ≡ F 0′F 0/T. Then for any x > 0,

P (T 1/2||SF − ΣF ||max > x) ≤ C1x
−q/2T 1−q/4 + C2 exp

(
−C3x

2
)

for some absolute constants C`, ` = 1, 2, 3.

Proof of Theorem 3.2. We operate conditional on the event that

E(2)
NT = {

∥∥U′X∥∥max /T ≤ γ1/2, ‖U‖op /
√
NT ≤ γ2/2 and ||SF − ΣF ||op ≤ c

√
logNT−1/2},

where c is a large positive constant. One can verify that for some positive constants c̄′ and c,

P (E(2)
NT ) ≥ 1− c̄′(N2T 1−q/4(logN)−q/2 +N2−clogN )

by Lemmas A.2-A.3. With Theorem 3.1, we have with probability at least 1−c̄′(N2T 1−q/4(logN)−q/2+

N2−c logN ),

(NT )−1/2||Θ̃−Θ0||op ≤ (NT )−1/2||Θ̃−Θ0||F ≤ c̄(γ1

√
Ka ∨ γ2).

Next, we show that E(2)
NT implies the desired results.

Step 1: Bound the eigenvalues.
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Let SΛ = Λ0′Λ0/N and SF = F 0′F 0/T. Let ŝ1 ≥ · · · ≥ ŝR0 be the R0 nonzero eigenvalues

of 1
NT Θ0Θ0′ = 1

T F
0′SΛF

0. Note that ŝ1, ..., ŝR0 are the same as the eigenvalues of S1/2
F SΛS

1/2
F .

Conditional on the event E(2)
NT and by Assumption A.4(i)-(ii), we have

|ŝj − sj | ≤ c̄(
√

logNT−1/2 +N−1/2) for some c̄ <∞ and j ∈ [R0].

This also implies that ||Θ0||op =
√

(s1 + oP (1))NT. For j > R0, simply define ŝj = sj = 0.

Let s̃1 ≥ · · · ≥ s̃N∧T be the eigenvalues of 1
NT Θ̃Θ̃′. Again by the Weyl’s theorem, we have for

j = 1, 2, ...

|s̃j − sj | ≤ |s̃j − ŝj |+ |ŝj − sj |

≤ 1

NT
||Θ̃Θ̃′ −Θ0Θ0′||op + |ŝj − sj |

≤ 2

NT
||Θ0||op||Θ̃−Θ0||op +

1

NT
||Θ̃−Θ0||2op + |ŝj − sj |,

implying |s̃j − sj | ≤ c̄(γ1

√
Ka ∨ γ2) for j = 1, 2, ... Then for j ∈ [R0], w.p.a.1,

|ŝj−1 − s̃j | ≥ |ŝj−1 − ŝj | − |ŝj − s̃j | ≥ (sj−1 − sj)/2 and

|s̃j − ŝj+1| ≥ |ŝj − ŝj+1| − |s̃j − ŝj | ≥ (sj − sj+1)/2, (A.8)

with ŝR0+1 = sR0+1 = 0.

Step 2: Prove the consistency of R̂.

Note that ψr(Θ̃) =
√
NTs̃r. By the result in Step 1, we have that ψr(Θ̃) ≥

√
[sR0 − oP (1)]NT

for all r ≤ R0, and

ψR0+1(Θ̃) ≤ ψR0+1(Θ0) +
∥∥∥Θ̃−Θ0

∥∥∥
op
≤
∥∥∥Θ̃−Θ0

∥∥∥
F
≤
√
NT c̄(γ1

√
Ka ∨ γ2) =

√
NTo(γ

1/2
2 )

where we use the condition that γ1

√
Ka = o(γ

1/2
2 ) under Assumption A.3(ii). These results, in

conjunction with the fact that (γ2

√
NT ||Θ̃||op)1/2 �

√
NT
√
γ2 with γ2 = c2(N−1/2 + T−1/2),3

implies that

min
r≤R0

ψr(Θ̃) ≥ (γ2

√
NT ||Θ̃||op)1/2 and ψR0+1(Θ̃) < (γ2

√
NT ||Θ̃||op)1/2

with probability at least 1− c̄′(N2T 1−q/4(logN)−q/2 +N2−c logN ) for suffi ciently large (N,T ) . Then

we have R̂ = R0 with probability at least 1 − c̄′(N2T 1−q/4(logN)−q/2 + N2−c logN ) for suffi ciently

large (N,T ) .

3Write a � b to denote that both a/b and b/a are stochastically bounded.
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Step 3: Characterize the eigenvectors.

Next, we show that there is an R0×R0 matrix H̃, so that the columns of 1√
T
F 0H̃ are the first R0

eigenvectors of Θ0Θ0′. Let v be the R0×R0 matrix whose columns are the eigenvectors of S1/2
F SΛS

1/2
F .

Then D = v′S
1/2
F SΛS

1/2
F v is a diagonal matrix of the eigenvalues of S1/2

F SΛS
1/2
F that are distinct by

Assumption A.4(ii). Let H̃ = S
−1/2
F v. Then

1

NT
Θ0Θ0′F 0H̃ =

1

T
F 0SΛF

0′F 0H̃ = F 0SΛSF H̃ = F 0SΛS
1/2
F v

= F 0S
1/2
F S

−1/2
F SΛS

1/2
F v = F 0S

1/2
F vv′S

−1/2
F SΛS

1/2
F v

= F 0H̃D.

In addition, we have (F 0H̃)′F 0H̃/T = v′S
−1/2
F

F 0′F 0

T S
−1/2
F v = v′v = IR0 . So the columns of 1√

T
F 0H̃

are the eigenvectors of Θ0Θ0′, with corresponding eigenvalues in D.

Step 4: Prove the convergence.

We bound
∥∥∥F̃ − F 0H̃

∥∥∥
F
conditional on the event R̂ = R0. By the Davis-Kahan sin(Θ) theorem

(see, e.g., Yu et al., 2014) and (A.8),

1√
T
||F̃ − F 0H̃||F ≤

1
NT ||Θ̃Θ̃′ −Θ0Θ0′||op

minj≤R0min{|ŝj−1 − s̃j |, |s̃j − ŝj+1|}

≤ c̄
1

NT
||Θ̃Θ̃′ −Θ0Θ0′||op ≤ c̄(γ1

√
Ka ∨ γ2).

Next we have

∥∥PF̃ − PF 0

∥∥
F =

∥∥∥∥∥ F̃ F̃ ′T
− PF 0

∥∥∥∥∥
F

≤ 2c̄

∥∥∥∥ 1√
T
F̃ − 1√

T
F 0H̃

∥∥∥∥
F

+

∥∥∥∥∥F 0H̃H̃ ′F 0′

T
− PF 0

∥∥∥∥∥
F

≤ c̄(γ1

√
Ka ∨ γ2),

where the second equality is by the fact H̃H̃ ′ = S
−1/2
F vv′S

−1/2
F = S−1

F . This proves the second result

in the theorem. �

A.2 Theoretical analysis of the second-step estimators

To prove Theorem 3.3, we need to add a lemma.

Lemma A.4 Suppose that Assumptions A.1-A.3 hold. Let Σ̃ ≡ T−1X′X−T−2X′F̃ F̃ ′X. Then there

exist some constants c, c̄ and c̄′ such that with probability larger than 1− c̄′(N2T 1−q/4(logN)−q/2 +

N2−c logN ) we have

(i) ||H̃||max ≤ ||H̃||∞ ≤ c̄ and ||H̃−1||F ≤ c̄;
(ii) max1≤j≤pN |X∗,j |/

√
T < c̄ and max1≤j≤N |U∗,j |/

√
T < c̄;

(iii) ||F 0′U||max/T ≤ T−1/2 log[N/(8c̄2)] and
∥∥T−1X′F 0 − ΣXF

∥∥
max ≤ c̄T

−1/2 logN ;
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(iv) ||Σ̃− Σ||max ≤ γ3;

(v) Suppose 16KJγ3 ≤ ψmin(Σ)/2. Then Σ̃ satisfies the restricted eigenvalue condition for KJ in

(3.3) and κΣ̃(KJ) ≥ ψmin(Σ)/2.

Proof of Theorem 3.3. Fix c̄ as in Lemma A.4. In this proof, we choose a large enough constant

c3 such that γ3 = c3(γ1

√
Ka ∨ γ2) with c3 ≥ 2 ∨ (16c̄2) ∨ (16c̄4). Let E(3)

NT be the joint event of

(1) T−1 ‖U′X‖max ≤ γ3/4; (2) max1≤j≤pN |X∗,j |/
√
T ≤ c̄;

(3) max1≤j≤N |U∗,j |/
√
T ≤ c̄; (4) ||F̃ − F 0H̃||F/

√
T ≤ γ3/(16c̄3);

(5) ||F 0′U||max/T ≤ γ3/(16c̄2); (6) ||H̃||∞ ∨ ||H̃−1||F ≤ c̄;
(7) R̂ = R0;

and (8) Σ̃ satisfies the restricted eigenvalue condition for KJ in (3.3) with κΣ̃(KJ) ≥ ψmin(Σ)/2.

Under Assumptions A.1-A.3, by Lemmas A.2 and A.4, E(3)
NT holds with probability larger than 1−

c̄′(N2T 1−q/4(logN)−q/2+ N2−c logN ). Conditional on the event E(3)
NT , we also have that

(9) T−1||F̃ ′U||max ≤ T−1||(F̃ − F 0H̃)′U||max + T−1||H̃ ′F 0′U||max
≤ T−1||F̃ − F 0H̃||F ·max1≤j,N ||U∗,j ||+ ||H̃ ′||∞T

−1||F 0′U||max
≤ γ3/(8c̄),

and

(10) max
1≤i≤N

T−1/2|λ0′
i F

0′MF̃ | ≤ max
1≤i≤N

|λ0
i | · T−1/2||(F 0 − F̃ H̃−1)′MF̃ ||F

≤ c̄T−1/2||F̃ − F 0H̃||F
∥∥∥H̃−1

∥∥∥
F
≤ γ3/(8c̄).

Conditional on the event E(3)
NT , we establish the bound of |∆̇∗,i|1 ≡ |Ḃ∗,i −B0

∗,i|1 for i ∈ [N ].

Step 1. Concentrate out λ.

The objective function (3.2) is a least squares objective function with respect to λ. Given Ḃ∗,i,

we have that

λ̇i = (F̃ ′F̃ )−1F̃ ′(Y∗,i −XḂ∗,i) = T−1F̃ ′(Y∗,i −XḂ∗,i),

where the second equality holds by the identity F̃ ′F̃ /T = IT . After concentrating out λi, the

optimization problem becomes

Ḃ∗,i = argminv∈RNp
1

2T
||MF̃ (Y∗,i −Xv)||2F + γ3|v|1, (A.9)

where MF̃ = IT − F̃ F̃ /T .
Step 2. Compare the objective functions at Ḃ∗,i and B0

∗,i.

31



By the identity Y∗,i = XB0
∗,i + F 0λ0

i + U∗,i and the definition of Ḃ∗,i, we have

0 ≥ 1

2T
[||MF̃ (Y∗,i −XḂ∗,i)||2F − ||MF̃ (F 0λ0

i + U∗,i)||2F] + γ3(|Ḃ∗,i|1 − |B0
∗,i|1)

=
1

2T
||MF̃X∆̇∗,i||2F −

1

T
tr[(F 0λ0

i + U∗,i)
′MF̃X∆̇∗,i] + γ3(|Ḃ∗,i|1 − |B0

∗,i|1),

where ∆̇ ≡ Ḃ −B0 and ∆̇∗,i denotes the ith column of ∆̇. Then by Lemma A.1(v), we have

1

T
||(F 0λ0

i + U∗,i)
′MF̃X||max|∆̇∗,i|1 ≥ 1

T
tr[(F 0λ0

i + U∗,i)
′MF̃X∆̇∗,i]

≥ 1

2T
||MF̃X∆̇∗,i||2F + γ3(|Ḃ∗,i|1 − |B0

∗,i|1)

≥ 1

2T
||MF̃X∆̇∗,i||2F + γ3|∆̇Jci ,i

|1 − γ3|∆̇Ji,i|1.

where the last inequality follows because

|Ḃ∗,i|1 − |B0
∗,i|1 = |∆̇∗,i +B0

∗,i|1 − |B0
∗,i|1 = |∆̇0

Jci ,i
|1 + |∆̇Ji,i +B0

∗,i|1 − |B0
∗,i|1

≥ |∆̇Jci ,i
|1 − |∆̇Ji,i|1.

Step 3. Bound T−1maxi[||(F 0λ0
i + U∗,i)′MF̃X||max], conditional on the event E

(3)
NT .

By the triangle and Cauchy Schwartz inequalities and the fact that T−1/2||F̃ ||op = 1, we have

T−1||(F 0λ0
i + U∗,i)

′MF̃X||max
≤ T−1||λ0′

i F
0′MF̃X||max + T−1||U′∗,iMF̃X||max

≤ max
1≤j≤Np

T−1/2|X∗,j |·T−1/2|λ0′
i F

0′MF̃ |+ max
1≤j≤Np

T−1|U′∗,iX∗,j |+T−2||U′∗,iF̃ F̃ ′X||max

≤ max
1≤j≤Np

T−1|U′∗,iX∗,j |+
{
T−1|U′∗,iF̃ |+ T−1/2|λ0′

i F
0′MF̃ |

}
max

1≤j≤Np
T−1/2|X∗,j |.

Combining events (1), (9) and (10), the right hand side of the above inequality is bounded by γ3/2

conditional on the event E(3)
NT .

Step 4. Obtain the final bound for |Ḃ∗,i −B0
∗,i|1.

Combining the results in Steps 2-3 and using the identity |∆̇∗,i|1 = |∆̇Ji,i|1 + |∆̇Jci ,i
|1, we have

that conditional on the event E(3)
NT ,

3γ3|∆̇Ji,i|1 ≥
1

T
||MF̃X∆̇∗,i||2F + γ3|∆̇Jci ,i

|1

It follows that |∆̇Jci ,i
|1 ≤ 3|∆̇Ji,i|1 and conditional on E

(3)
NT ,

∆̇′∗,iΣ̃∆̇∗,i ≤ 3γ3|∆̇Ji,i|1 ≤ 3γ3

√
ki|∆̇Ji,i| ≤

6
√
ki

ψmin(Σ)
γ3

√
∆̇′∗,iΣ̃∆̇∗,i,

32



where the last inequality holds by event (8) in E(3)
NT . It follows that

√
∆̇′∗,iΣ̃∆̇∗,i, ≤ 6

√
ki

ψmin(Σ)γ3 and

|∆̇Ji,i|1 ≤
2
√
ki

ψmin(Σ)

√
∆̇∗,iΣ̃∆̇∗,i, ≤ 12ki

(ψmin(Σ))2γ3. Consequently, we have established that

|∆̇∗,i|1 = |∆̇Ji,i|1 + |∆̇Jci ,i
|1 ≤ 4|∆̇Ji,i|1 ≤

48

(ψmin(Σ))2
kiγ3.

Then the conclusion in Theorem 3.3 follows. �

A.3 Theoretical analysis of the third-step estimators

To prove Theorems 3.4 and 3.5, we need the following lemma.

Lemma A.5 Suppose that Assumptions A.1-A.5 hold. Then
(i) For i = 1, ..., N, ψmin(Σ̃Ji,Ji) ≥ c w.p.a.1 for some finite constant c;
(ii) ||Σ̃Jci ,Ji

||max ≤ c̄ w.p.a.1 for some finite constant c̄.

Proof of Theorem 3.4: For any n-dimensional vector v = (v1, ..., vn)′, denote

abs(v) = (|v1|, ..., |vn|)′.

We say that v < ṽ if and only if vi < ṽ′i for all i ∈ [n]. Let W (i) =diag(w1i, ..., wNp,i), W (1,i) = W
(i)
Ji,Ji

and W (0,i) = W
(i)
Jci ,J

c
i
.

The following proof is done by induction. Based on the error bounds for F̂ (`)’s, we show that

results (i)-(iii) hold for the (` + 1)th-step estimators. Then the results follows as we already have

||F̂ (0) − F 0H̃||F/
√
T = OP (γ1

√
Ka + γ2).

For notational simplicity, let Σ̃(`) denote T−1X′MF̂ (`)X for ` = 0, 1, 2, . . .

(i) For all (k, i)’s such that B0
ki = 0, sup(k,i):B0

ki=0 |Ḃki| ≤ ||Ḃ − B0||max ≤ OP (KJγ3) = oP (γ4).

It follows that W (0,i) = I|Jci | with probability approaching one (w.p.a.1). For all (k, i)’s such that

B0
ki 6= 0,

min
k,i:B0

ki 6=0
|Ḃki| > min

i∈[N ]
min
k∈Ji
|B0

ki| − ||Ḃ −B0||max = min
i∈[N ]

min
k∈Ji
|B0

ki| − oP (γ4) ≥ αγ4 w.p.a.1

by Assumption A.5(i). It follows that W (1,i) = 0 w.p.a.1. For each i ∈ [N ], the estimator B̂(`)
∗,i can

be written as

B̂
(`)
∗,i = argminv∈RNPL(i)(v, F̂ (`−1)),

where L(i)(v, F ) ≡ 1
2T (Y∗,i − Xv)′MF̂ (`−1)(Y∗,i − Xv) + γ4

∑pN
k=1wki |vk| . Following the proof of

Proposition 1 of Zhao and Yu (2006), sgn(B̂
(l)
∗,i) =sgn(B0

∗,i) is implied by event Ei,1 ∩ Ei,2, where

Ei,1 ≡
{
abs[T−1/2Σ̃−1

Ji,Ji
X′∗,JiMF̂ (`−1)(U∗,i + F 0λ0

i )] < T 1/2abs(B0
Ji,i)− T

1/2γ4abs[Σ̃
−1
Ji,Ji

W (1,i)sgn(B0
Ji,i)]

}
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and

Ei,2 ≡ {abs[T−1/2(−Σ̃Jci ,Ji
Σ̃−1
Ji,Ji
·X′∗,Ji + X′∗,Jci )MF̂ (`−1)(U∗,i + F 0λ0

i )]

< T 1/2γ4W
(0,i) · ι|Jci | − T

1/2γ4abs[Σ̃Jci ,Ji
Σ̃−1
Ji,Ji

W (1,i)sgn(B0
Ji,i)]}.

We prove (i) by showing that Ei,1 and Ei,2 hold w.p.a.1.
First, we consider Ei,1. It suffi ces to show that each entry of T−1/2abs[Σ̃−1

Ji,Ji
X′∗,JiMF̂ (`−1)(U∗,i +

F 0λ0
i )] is oP (

√
T mini mink∈Ji |B0

ki|). Applying the triangle inequality, one has

T−1/2abs[Σ̃−1
Ji,Ji

X′∗,JiMF̂ (`−1)(U∗,i + F 0λ0
i )]

≤ T−1/2abs(Σ̃−1
Ji,Ji

X′∗,JiMF̂ (`−1)U∗,i) + T−1/2abs(Σ̃−1
Ji,Ji

X′∗,JiMF̂ (`−1)F
0λ0

i )

≤ T−1/2abs(Σ̃−1
Ji,Ji

X′∗,JiMF 0U∗,i) + T−1/2abs[Σ̃−1
Ji,Ji

X′∗,Ji(PF 0 − PF̂ (`−1))U∗,i]

+T−1/2abs[Σ̃−1
Ji,Ji

X′∗,JiMF̂ (`−1)(F̂
(`−1) − F 0H̃)H̃−1λ0

i ]. (A.10)

Note that maxi ||Σ̃−1
Ji,Ji
||op ≤ c̄ w.p.a.1 by Lemma A.5(i). This, in conjunction with Lemma A.2(i)-

(ii), implies that the first term on the right hand side of (RHS) of (A.10) is uniformly OP (logN).

With ||F̂ (`−1)−F 0H̃||F/
√
T = OP (γ1

√
Ka+γ2) = OP ((logN)T−1/2

√
Ka+N−1/2),4 we have ||PF 0−

PF̂ (`−1) ||op = OP ((logN)T−1/2
√
Ka+N

−1/2).Note that Lemma A.4(ii) ensures max1≤j≤pN ||X∗,j ||/
√
T

and max1≤j≤N ||U∗,j ||/
√
T are both bounded by an absolute constant. It follows that each entry

of the second term on the RHS of (A.10) is OP (logN ·
√
Ka +

√
T/N). Similarly, each entry of

the third term on the RHS is OP (logN ·
√
Ka +

√
T/N). These results, along with the fact that

logN · T−1/2
√
Ka = o(mini mink∈Ji |B0

ki|) and N−1/2 = o(mini mink∈Ji |B0
ki|) in Assumption A.5

imply that P (Ei,1)→ 1.

Next, we consider Ei,2. Similar to the analysis for Ei,1, we can use Lemma A.5(ii) to show that
each entry of T−1/2(−Σ̃Jci ,Ji

Σ̃−1
Ji,Ji
·X′∗,Ji +X′∗,Jci

)MF̂ (`−1)(U∗,i+F 0λ0
i ) is OP (logN ·

√
Ka+

√
T/N) =

o(
√
Tγ3). By the fact that γ3 = o(γ4), we have P (Ei,2)→ 1, as (N,T )→∞.
(ii) Conditional on the event {B̂(`) =s B

0}, we can follow the proof of Lemma 1 in Zhao and Yu
(2006) to establish the first order condition that

Σ̃Ji,Ji(B̂
(`)
Ji,i
−B0

Ji,i) =
1

T
X′∗,JiMF̂ (`−1)(F

0λ0
i +MF̂ (`−1)U∗,i),

4This claim holds for ` = 1 by Theorem 3.2. Given this claim, we can show that ||F̂ (`) − F 0H̃||F/
√
T =

OP ((logN)T−1/2
√
Ka +N−1/2) for each ` using the results below.
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for i ∈ [N ]. Then∣∣∣B̂(`)
Ji,i
−B0

Ji,i

∣∣∣ =

∣∣∣∣Σ̃−1
Ji,Ji

1

T
X′∗,JiMF̂ (`−1)(F

0λ0
i + U∗,i)

∣∣∣∣
≤ c−1

∣∣∣∣ 1

T
X′∗,JiMF̂ (`−1)F

0λ0
i

∣∣∣∣+ c−1

∣∣∣∣ 1

T
X′∗,JiMF̂ (`−1)U∗,i

∣∣∣∣ ≡ c−1(A1i +A2i),

where we use the fact that maxi

∥∥∥Σ̃−1
Ji,Ji

∥∥∥
op
≤ c−1 w.p.a.1 by Lemma A.5(i). Note that uniform in

i ∈ [N ] ,

A2
1i =

1

T 2

∣∣∣X′∗,JiMF̂ (`−1)(F̂
(`−1)H̃−1 − F 0)λ0

i

∣∣∣2
=

1

T 2
tr
(
λ0′
i (F̂ (`−1)H̃−1 − F 0)′MF̂ (`−1)X∗,JiX

′
∗,JiMF̂ (`−1)(F̂

(`−1)H̃−1 − F 0)λ0
i

)
≤ ψmax

(
1

T
MF̂ (`−1)X∗,JiX

′
∗,JiMF̂ (`−1)

)
1

T

∥∥∥F̂ (`−1)H̃−1 − F 0
∥∥∥2 ∥∥λ0

i

∥∥2

= ψmax

(
1

T
X′∗,JiMF̂ (`−1)X∗,Ji

)
1

T

∥∥∥F̂ (`−1)H̃−1 − F 0
∥∥∥2 ∥∥λ0

i

∥∥2

≤ c̄
1

T

∥∥∥F̂ (`−1)H̃−1 − F 0
∥∥∥2

= OP ((logN)2T−1Ka +N−1)

and

A2
2i =

∣∣∣∣ 1

T
X′∗,JiMF̂ (`−1)U∗,i

∣∣∣∣2 ≤ 2

∣∣∣∣ 1

T
X′∗,JiU∗,i

∣∣∣∣2 + 2

∣∣∣∣ 1
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(`−1) 1

T
F̂ (`−1)′U∗,i

∣∣∣∣2 .
It is standard to show that

∣∣∣ 1
T X′∗,JiU∗,i

∣∣∣ ≤ k1/2
i OP (T−1/2 logN) uniform in i. In addition,

∣∣∣∣ 1
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X′∗,JiF̂

(`−1) 1

T
F̂ (`−1)′U∗,i

∣∣∣∣2 = tr
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1
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∗,JiF̂

(`−1) 1

T 2
F̂ (`−1)′U∗,iU

′
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1

T 2
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1

T 2
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′
∗,Ji

)
1

T 2

∣∣∣F̂ (`−1)′U∗,i

∣∣∣2
= OP (γ1

√
Ka + γ2)2) uniformly in i,

where the last equality follows from the fact ψmax

(
1
T X∗,JiX

′
∗,Ji

)
≤ c̄ w.p.a.1 andmaxi

1
T

∣∣∣F̂ (`−1)′U∗,i

∣∣∣ =

OP (γ1

√
Ka+γ2) by similar arguments as used to obtain event (9) in the proof of Theorem 3.3. Then

uniformly in i ∈ [N ] , we have A2
2i ≤ kiOP (T−1/2 logN) +OP ((γ1

√
Ka + γ2)2) and∣∣∣B̂(`)

Ji,i
−B0

Ji,i

∣∣∣2 ≤ OP ((logN)2T−1Ka +N−1) + kiOP (T−1(logN)2) +OP ((γ1

√
Ka + γ2)2)

= kiOP (T−1(logN)2) +OP ((γ1

√
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It follows that
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NT

=
1

N

N∑
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∗,i −B0
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op

1

N

N∑
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−B0
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= OP (1)

[
KaOP (T−1(logN)2) +OP (γ1

√
Ka + γ2)2)

]
= OP ((γ1

√
Ka + γ2)2).

Then the result in (ii) follows.

(iii) Note that Y −XB̂(`) − F 0Λ0′ = U − X(B̂(`) − B0). By the result in (ii) and Assumption

A.3(i), the operator norm of

1√
NT

∥∥∥U−X(B̂(`) −B0)
∥∥∥
op
≤ 1√

NT
‖U‖op +

1√
NT

∥∥∥X(B̂(`) −B0)
∥∥∥
op

≤ OP (γ2) +OP (γ1

√
Ka + γ2) = OP (γ1

√
Ka + γ2).

One can apply analyses similar to proof of Theorem 3.2 to obtain the desired result. �

Proof of Theorem 3.5: Let Σ̂ = X′MF̂X/T . From the proof of Theorem 3.4, we have that

Σ̂Ji,Ji(B̂Ji,i −B0
Ji,i) =

1

T
X′∗,JiMF̂F

0λ0
i +

1

T
X′∗,JiMF̂U∗,i − γ4W

(1,i)sgn(B0
Ji,i). (A.11)

Noting that the columns of F̂ /
√
T are the first R̂ eigenvectors of 1

NT (Y −XB̂)(Y −XB̂)′, we have

F̂ VNT =
1

NT

(
Y −XB̂

)(
Y −XB̂

)′
F̂ =

1

NT

N∑
i=1

(
Y∗,i −X∗,JiB̂Ji,i

)(
Y∗,i −X∗,JiB̂Ji,i

)′
F̂ ,

where VNT is a diagonal matrix that consists of the R̂ largest eigenvalues of the matrix T ×T matrix
(NT )−1(Y −XB̂)(Y −XB̂)′, arranged in descending order along its diagonal line.

By Theorem 3.3 and Assumption A.5(i),maxk∈Ji wki = 0 w.p.a.1, which implies that γ4W
(1,i)sgn(B0

Ji,i
)

= op(T
−1/2). Then we can follow the analysis of oracle least squares estimator to establish the as-

ymptotic distribution of B̂Ji,i. Specifically, by arguments as used in the proof of Proposition B.1 in

the online supplement, we have

Si(B̂Ji,i −B0
Ji,i) = Si(

1

T
X′∗,JiMF 0X∗,Ji)

−1 1

T
X′∗,JiMF 0U∗,i + oP (T−1/2).

By arguments as used in the proof of Lemma A.2, we can readily show that
∥∥∥ 1
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= OP
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where [ΣFX ]Ji,∗ = 1
TE

[
F 0′X∗,Ji

]
is a R0 × ki matrix. It follows that

√
TSi(B̂Ji,i −B0

Ji,i) =
1√
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Si(ΣJi,Ji)

−1(X∗,Ji − F 0Σ−1
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where z∗it = Si(ΣJi,Ji)
−1z0

it and z
0
it denotes the tth column of the ki×T matrix (X∗,Ji−F 0Σ−1

F [ΣFX ]Ji,∗)
′.

Under Assumption A.1, {z∗ituit, t ≥ 1} is a martingale difference sequence (m.d.s.) and we can readily
verifying the conditions of the martingale central limit theorem by straightforward moment calcula-

tions and obtain
√
TSi(B̌Ji,i −B0

Ji,i
)
d→ N(0, σ2

iSi(ΣJi,Ji)
−1S′i), where σ

2
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. �
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Figure 1: Structure of the transition matrices in the simulations

Table 1: Model Selection Accuracy

Number of factors Step 1 Step 2 Step 3
DGP N T UER OER TPR FPR TPR FPR TPR FPR
1 30 100 0.0% 0.0% 97.4% 19.3% 98.8% 18.5% 93.7% 8.0%

30 200 0.0% 0.0% 99.6% 19.1% 99.9% 18.1% 99.4% 5.8%
30 400 0.0% 0.0% 99.9% 21.8% 100.0% 19.5% 99.9% 4.9%
60 100 0.0% 0.0% 96.8% 12.7% 98.2% 12.2% 90.5% 5.1%
60 200 0.0% 0.0% 99.9% 12.2% 100.0% 11.7% 99.1% 2.6%
60 400 0.0% 0.0% 100.0% 11.9% 100.0% 11.1% 99.9% 1.7%

2 30 100 0.0% 0.0% 86.2% 21.8% 83.9% 18.9% 94.0% 15.7%
30 200 0.0% 0.0% 95.3% 28.0% 93.7% 24.8% 99.4% 12.8%
30 400 0.0% 0.0% 99.2% 37.0% 98.7% 33.3% 99.9% 8.2%
60 100 0.0% 0.0% 76.7% 10.3% 76.5% 9.4% 90.6% 10.7%
60 200 0.0% 0.0% 88.9% 12.5% 89.7% 12.0% 99.2% 8.9%
60 400 0.0% 0.0% 96.4% 17.7% 95.8% 16.7% 100.0% 5.5%

3 30 100 0.0% 0.0% 93.2% 24.9% 92.3% 22.0% 96.5% 17.4%
30 200 0.0% 0.0% 98.1% 31.4% 97.6% 27.6% 99.6% 11.7%
30 400 0.0% 0.0% 99.5% 38.4% 99.3% 34.4% 99.7% 7.3%
60 100 0.0% 0.0% 88.1% 12.8% 88.4% 11.8% 95.9% 11.8%
60 200 0.0% 0.0% 96.1% 15.6% 95.5% 13.9% 99.8% 9.4%
60 400 0.0% 0.0% 98.9% 19.5% 98.6% 17.9% 100.0% 4.5%

Note: We report the under/over-estimation rate (UER and OER) of the number of factors in the UER and OER
columns, respectively. The TPR (true positive rate) columns report the average shares of relevant variables included.
The FPR (false positive rate) columns report the average shares of irrelevant variables included.
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Table 2: Root mean squared errors of the feasible and oracle transition matrix estimators

All entries Nonzero entries
DGP N T Oracle Step 1 Step 2 Step 3 Oracle Step 1 Step 2 Step 3
1 30 100 0.019 0.063 0.059 0.050 0.062 0.145 0.132 0.117

30 200 0.014 0.055 0.051 0.033 0.044 0.118 0.106 0.066
30 400 0.010 0.052 0.049 0.029 0.033 0.100 0.092 0.047
60 100 0.013 0.044 0.041 0.038 0.061 0.150 0.138 0.131
60 200 0.010 0.035 0.032 0.021 0.043 0.108 0.098 0.066
60 400 0.007 0.033 0.031 0.016 0.032 0.089 0.080 0.041

2 30 100 0.018 0.065 0.065 0.057 0.056 0.177 0.184 0.154
30 200 0.012 0.055 0.055 0.038 0.039 0.142 0.150 0.103
30 400 0.009 0.047 0.047 0.027 0.028 0.110 0.119 0.070
60 100 0.012 0.050 0.049 0.044 0.054 0.204 0.205 0.179
60 200 0.008 0.042 0.041 0.028 0.038 0.170 0.168 0.114
60 400 0.006 0.035 0.035 0.019 0.027 0.138 0.143 0.081

3 30 100 0.019 0.065 0.064 0.055 0.051 0.150 0.155 0.127
30 200 0.013 0.053 0.053 0.035 0.035 0.117 0.123 0.082
30 400 0.009 0.047 0.047 0.027 0.025 0.095 0.100 0.058
60 100 0.013 0.050 0.049 0.042 0.049 0.173 0.173 0.146
60 200 0.009 0.039 0.040 0.024 0.034 0.135 0.140 0.085
60 400 0.006 0.033 0.033 0.015 0.024 0.109 0.113 0.056

Note: We report the root mean squared errors (RMSEs) of the feasible and oracle transition matrix estimators.
Columns 4-7 report the RMSEs of all entries, and Columns 8-11 report the RMSEs of non-zero entries.

Table 3: Results of misspecified estiamtes

LASSO Conservative LASSO
DGP N T TPR FPR RMSEa RMSEb TPR FPR RMSEa RMSEb
1 30 100 78.7% 34.9% 0.115 0.208 78.4% 45.2% 0.178 0.227

30 200 88.9% 37.7% 0.094 0.178 88.1% 43.3% 0.129 0.173
30 400 95.3% 45.0% 0.083 0.150 94.5% 43.0% 0.103 0.134
60 100 71.0% 22.6% 0.086 0.216 72.8% 39.5% 0.161 0.240
60 200 86.7% 25.7% 0.070 0.179 87.0% 38.9% 0.114 0.175
60 400 94.9% 30.2% 0.058 0.148 95.3% 37.9% 0.083 0.128

2 30 100 86.2% 59.6% 0.150 0.202 81.9% 54.8% 0.211 0.233
30 200 95.0% 61.5% 0.107 0.152 91.7% 51.4% 0.139 0.159
30 400 98.9% 66.3% 0.080 0.113 97.7% 50.5% 0.098 0.110
60 100 77.0% 46.6% 0.135 0.218 74.1% 48.9% 0.222 0.263
60 200 91.6% 51.9% 0.100 0.165 86.8% 44.6% 0.143 0.175
60 400 98.3% 56.1% 0.072 0.120 96.7% 44.4% 0.097 0.116

3 30 100 89.2% 59.2% 0.139 0.186 85.7% 55.9% 0.196 0.215
30 200 96.2% 61.4% 0.102 0.141 94.0% 54.3% 0.133 0.148
30 400 99.1% 67.1% 0.079 0.107 98.3% 53.2% 0.096 0.106
60 100 82.0% 46.1% 0.126 0.203 79.8% 50.6% 0.208 0.247
60 200 94.0% 51.7% 0.093 0.151 90.5% 46.6% 0.135 0.164
60 400 98.8% 55.5% 0.068 0.110 97.6% 45.0% 0.091 0.109

Note: We report the true positive rate (TPR), false positive rate (FPR), root mean squared errors of all entries
(RMSEa) and nonzero entries (RMSEb) of misspecified estimates. We consider the LASSO estimator as in Kock and
Callot (2015) and a conservative LASSO estimator. The LASSO estimator was used to construct weights for the
conservative LASSO.
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Table 4: Funds information

category ticker fund name category ticker fund name

Energy XLE
Energy Select Sector SPDR
Fund

Natu XLB
Materials Select Sector SPDR
Fund

XOP
Spdr S&P Oil & Gas Explo &
Prod Etf

XME
SPDR S&P Metals & Mining
ETF

IYE iShares U.S. Energy ETF Tech XLK
Technology Select Sector
SPDR Fund

OIH
VanEck Vectors Oil Services
ETF

SMH
VanEck Vectors
Semiconductor ETF

Financial XLF
Financial Select Sector SPDR
Fund

Heal XLV
Health Care Select Sector
SPDR Fund

KBE SPDR S&P Bank ETF IBB
iShares Nasdaq Biotechnology
ETF

KRE
SPDR S&P Regional Banking
ETF

Def XLP
Consumer Staples Select
Sector SPDR Fund

Cyc XLY
Cons. Disc. Select Sector
SPDR Fund

Util XLU
Utilities Select Sector SPDR
Fund

XHB Spdr S&P Homebuilders Etf Indu XLI
Industrial Select Sector SPDR
Fund

ITB
iShares U.S. Home
Construction ETF

EPM GDX
VanEck Vectors Gold Miners
ETF

XRT Spdr S&P Retail Etf
Rea IYR iShares U.S. Real Estate ETF

VNQ
Vanguard Real Estate Index
Fund ETF

Note: Cyc, Rea, Natu, Tech, Heal, Def, Util, Indu and EMP stand for consumer cyclical, real estate,
natural resource, technology, health care, consumer defensive, utilities, industrials and equity precious
metals, respectively.

Table 5: Descriptive statistics

TICKER XLE XOP IYE OIH XLF KBE KRE XLY
mean 0.00136 0.00246 0.00141 0.00220 0.00157 0.00194 0.00184 0.00082
median 0.00063 0.00130 0.00059 0.00128 0.00041 0.00059 0.00066 0.00029
max 0.06034 0.06290 0.11527 0.05856 0.05743 0.04793 0.09748 0.03063
min 0.00004 0.00005 0.00004 0.00008 0.00001 0.00002 0.00002 0.00001
std 0.00369 0.00472 0.00549 0.00418 0.00463 0.00484 0.00539 0.00214

skewness 10.954 7.604 15.469 8.159 7.645 5.823 11.530 8.869
kurtosis 151.595 77.386 291.137 88.226 77.152 44.720 175.439 102.667
TICKER XHB ITB XRT IYR VNQ XLB XME XLK
mean 0.00218 0.00251 0.00115 0.00137 0.00146 0.00098 0.00264 0.00071
median 0.00079 0.00102 0.00056 0.00039 0.00041 0.00047 0.00133 0.00031
max 0.05071 0.04660 0.03094 0.04847 0.04831 0.02948 0.05631 0.03112
min 0.00007 0.00001 0.00001 0.00003 0.00004 0.00004 0.00014 0.00002
std 0.00431 0.00473 0.00231 0.00377 0.00403 0.00205 0.00510 0.00187

skewness 5.305 4.936 7.783 6.789 6.958 8.059 6.912 9.814
kurtosis 41.414 33.799 83.839 61.695 64.487 90.224 62.231 128.784
TICKER SMH XLV IBB XLP XLU XLI GDX
mean 0.00111 0.00054 0.00105 0.00036 0.00062 0.00075 0.00263
median 0.00069 0.00025 0.00058 0.00016 0.00030 0.00036 0.00154
max 0.02010 0.02865 0.03488 0.02197 0.03903 0.02108 0.07009
min 0.00004 0.00002 0.00003 0.00001 0.00003 0.00001 0.00010
std 0.00153 0.00162 0.00207 0.00111 0.00193 0.00156 0.00439

skewness 5.713 11.898 9.968 13.670 14.053 7.405 8.300
kurtosis 52.259 176.016 135.878 237.109 250.309 76.935 102.080
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Figure 2: Heat map of the transition matrices Ak’s
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Figure 3: Heat map of D̃12
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Table 6: Connectedness measures across funds

Connectedness measures by estimates of VAR with CFs model
TICKER XLE XOP IYE OIH XLF KBE KRE XLY
νi 64.9% 59.1% 65.4% 58.0% 65.2% 56.8% 56.6% 72.0%
FROM 71.4% 65.4% 71.7% 64.3% 61.7% 61.3% 62.3% 51.8%
TOi 106.8% 86.0% 103.9% 71.5% 57.8% 72.6% 51.4% 37.3%
TICKER XHB ITB XRT IYR VNQ XLB XME XLK
νi 53.6% 49.5% 60.1% 50.7% 49.7% 67.2% 56.9% 70.5%
FROMi 60.5% 58.3% 36.5% 57.9% 58.6% 37.5% 44.1% 39.0%
TOi 56.3% 41.7% 19.0% 79.7% 74.4% 26.3% 37.2% 37.3%
TICKER SMH XLV IBB XLP XLU XLI GDX average
νi 54.8% 64.3% 50.7% 61.3% 50.6% 67.7% 31.0% ν̄ =56.1%
FROMi 31.9% 38.3% 28.8% 30.7% 29.7% 40.9% 27.7% d̄12 =49.8%
TOi 23.3% 34.1% 33.0% 21.2% 19.6% 20.7% 19.1%

Connectedness measures by estimates of pure VAR model
TICKER XLE XOP IYE OIH XLF KBE KRE XLY
FROMi 89.3% 87.1% 89.4% 87.0% 89.6% 86.8% 87.6% 90.9%
TOi 105.0% 79.5% 103.0% 77.7% 112.9% 97.0% 89.1% 110.5%
TICKER XHB ITB XRT IYR VNQ XLB XME XLK
FROMi 87.3% 86.3% 88.8% 85.7% 86.2% 90.1% 88.8% 89.8%
TOi 95.8% 80.8% 79.1% 94.0% 89.6% 105.6% 80.1% 103.8%
TICKER SMH XLV IBB XLP XLU XLI GDX average
FROMi 87.6% 88.1% 83.8% 88.4% 85.7% 89.8% 76.5% d̄12 =87.40%
TOi 74.8% 81.2% 60.8% 80.0% 60.0% 104.3% 45.8%

Note: Cyc, Rea, Natu, Tech, Heal, Def, Util, Indu and EMP stand for consumer cyclical, real estate,
natural resource, technology, health care, consumer defensive, utilities, industrials and equity precious
metals, respectively.
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This supplement has three parts. Section B contains the asymptotic analysis of the oracle least

squares estimator and the proofs of some technical lemmas. Section C provides some technical results

that are used in the proofs. Section D provides some discussion of Assumption A.1(vi).

B Supplementary Proof

B.1 Asymptotic analysis of the oracle least squares estimator

In this subsection, we study the asymptotic properties of the oracle least squares estimator that

is obtained with information of Ji for i ∈ [N ] ≡ {1, ..., N}. Specifically, the oracle least squares
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estimator can be written as:

(B̌, F̌ ) ≡ argmin
(B,F )∈B∗×L

tr
[
(Y −XB)′MF (Y −XB)

]
= argmin

(B,F )∈B∗×L

N∑
i=1

[
(Y∗,i −X∗,JiBJi,i)

′MF (Y∗,i −X∗,JiBJi,i)
]
,

where B∗ ≡ {B ∈ RNp×N |BJci ,i = 0 for i ∈ [N ]} and L ≡ {F ∈ RT×R0 |F ′F/T = IR0}. For each i, we
define a selector matrix Li such that XLi= X∗,Ji and L

′
iB∗,i = BJi,i. Recall that ki = |Ji| denotes

the cardinality of Ji.

We do not have a closed-form solution to the above minimization problem. Similar to equations

(11)-(12) of Bai (2009), we have the relationship:

B̌Ji,i = (X′∗,JiMF̌X∗,Ji)
−1X′∗,JiMF̌Y∗,i, (B.1)

F̌ V̌NT =
1

NT

(
Y −XB̌

) (
Y −XB̌

)′
F̌ (B.2)

=
1

NT

N∑
i=1

(
Y∗,i −X∗,JiB̌Ji,i

) (
Y∗,i −X∗,JiB̌Ji,i

)′
F̌ ,

where V̌NT is a diagonal matrix that consists of the R0 largest eigenvalues of the matrix (NT )−1

×
∑N

i=1(Y∗,i −X∗,JiB̌Ji,i)(Y∗,i −X∗,JiB̌Ji,i)
′, arranged in descending order along its diagonal line.

We can follow the lead of Bai (2009) to expand equations (B.1)-(B.2).

Proposition B.1 Suppose Assumptions A.1 and A.3-A.5 hold. Let Si denote an L × |Ji| selection
matrix such that ‖Si‖F is finite and L is a fixed integer. Then

Si
(
B̌Ji,i −B0

Ji,i

)
= Si(X

′
∗,JiMF 0X∗,Ji)

−1X′∗,JiMF 0U∗,i + oP (T−1/2).

Proof of Proposition B.1: Insert the identity Y = XB0 +F 0Λ0′+U into equation (B.2), we have

F̌ V̌NT − F 0 Λ0′Λ0

N

F 0′F̌

T
= (I1 + ...+ I8) F̌ , (B.3)

where

I1 ≡ UΛ0F 0′/(NT ), I2 ≡ F 0Λ0′U′/(NT ), I3 ≡ UU′/(NT ),

I4 ≡ X(B̌ −B0)(B̌ −B0)′X′/(NT ), I5 ≡ −X(B̌ −B0)Λ0F 0′/(NT ), I6 ≡ −F 0Λ0′(B̌ −B0)′X′/(NT ),

I7 ≡ −X(B̌ −B0)U′/(NT ), I8 ≡ −U(B̌ −B0)′X′/(NT ).

We can easily show that (NT )−1||I`||F = oP (1) for ` = 1, ..., 8. Premultiplying both sides of equation

2



(B.3) by F̌ ′/T , we can obtain that∥∥∥∥V̌NT − F̌ ′F 0

T

Λ0′Λ0

N

F 0′F̌

T

∥∥∥∥
F

= oP (1).

Given that F
0′F̌
T is asymptotically nonsingular, we have that VNT is invertible asymptotically. Specif-

ically, one can show that rth diagonal element of V̌NT converges to the rth singular value of ΣFΣΛ.

Hence we can write (F̌ − F 0Ȟ)/
√
T = I∗1 + ... + I∗8 , where Ȟ ≡ (Λ0′Λ0/N)(F 0′F̌ /T )V̌ −1

NT and

I∗` ≡ I`F̌ V̌
−1
NT /
√
T for ` = 1, ..., 8. One can also show that Ȟ − H̃ → 0. Noting that

||X(B̌ −B0)/
√
NT ||2F =

1

N

N∑
i=1

(B̌Ji,i −B0
Ji,i)

′X
′
∗,JiX∗,Ji
T

(B̌Ji,i −B0
Ji,i)

≤ c̄
1

N

N∑
i=1

|B̌Ji,i −B0
Ji,i|

2 = c̄
1

N
||B̌ −B0||2F,

we have

||X(B̌ −B0)/
√
NT ||F = OP (dNT ) (B.4)

where dNT ≡ N−1/2||B̌ −B0||F.
Let Q̌1 =bdiag{T−1X′∗,J1

MF 0X∗,J1 , ..., T
−1X′∗,JNMF 0X∗,JN } be a block diagonal matrix with the

ith diagonal block given by T−1X′∗,JiMF 0X∗,Ji . Let a
0
ij ≡ λ0′

i (Λ0′Λ0/N)−1λ0
j . Let Q̌2 be a (

∑N
i=1 ki)×

(
∑N

i=1 ki) block partitioned matrix with the (i, j)th block given by (NT )−1a0
1ijX

′
∗,JiMF 0X∗,Jj for

i, j ∈ [N ] . That is,

Q̌2 =


(NT )−1a0

11X
′
∗,J1
MF 0X∗,J1 · · · (NT )−1a0

1NX′∗,J1
MF 0X∗,JN

(NT )−1a0
21X

′
∗,J2
MF 0X∗,J1 · · · (NT )−1a0

2NX′∗,J2
MF 0X∗,JN

...
. . .

...
(NT )−1a0

N1X
′
∗,JNMF 0X∗,J1 · · · (NT )−1a0

NNX′∗,JNMF 0X∗,JN

 . (B.5)

Let Ǔ ≡[T−1(X′∗,J1
MF 0U∗,1)′, ..., T−1(X′∗,JNMF 0U∗,N )′]′, which is a

∑N
i=1 ki × 1 vector.

To continue the proof, we need the following four lemmas whose proofs are given at the end of

next subsection.

Lemma B.2 Suppose that Assumptions A.1 and A.3-A.5 hold. Let δNT =
√
N ∧

√
T . Then

(i) ‖I∗` ‖F = OP (δ−1
NT ) for ` = 1, 2, 3, and

(ii) ‖I∗` ‖F = OP (dNT ) for ` = 4, 5, ..., 8,

(iii) T−1/2
∥∥F̌ − F 0Ȟ

∥∥ = OP (δ−1
NT + dNT ).

Lemma B.3 Suppose that Assumptions A.1 and A.3-A.5 hold. Then
(i) T−1F 0′(F̌ − F 0Ȟ) = OP (dNT + δ−2

NT );

(ii) ȞȞ ′ − (F 0′F 0/T )−1 = OP (dNT + δ−2
NT );
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(iii) T−1U′∗,i(F̌ − F 0Ȟ) = OP (δ−2
NT + δ−1

NTdNT );

(iv) T−1X′∗,i(F̌ − F 0Ȟ) = OP (dNT + δ−2
NT ).

Lemma B.4 Suppose that Assumptions A.1 and A.3-A.5 hold. Let Si be an arbitrary L × ki non-
random matrix such that ‖Si‖F ≤ C <∞ and L is a fixed integer. Then

(i) ||PF̌ − PF 0 ||F = OP (dNT + δ−2
NT );

(ii) T−1SiX
′
∗,Ji(PF̌ − PF 0)U∗,i = OP (δ−2

NT + δ−1
NTdNT );

(iii) T−1SiX
′
∗,JiMF 0(F̌−F 0Ȟ)Ȟ−1λ0

i = − 1
NT SiX

′
∗,JiMF 0X(B̌−B0)Λ0( 1

NΛ0′Λ0)−1λ0
i+OP (δ−2

NT+

δ−1
NTdNT ).

Lemma B.5 Suppose that Assumptions A.1 and A.3-A.5 hold. Then
(i)
∣∣Q̌−1

1 Q̌2Q̌
−1
1 Ǔ

∣∣
∞ = OP (KJK

1/2
a [T−1(logN)2 +N−1]);

(ii) N1/2|ΓQ̌−1
1 Q̌2Q̌

−1
1 Ǔ| = OP (KJKa[T

−1(logN)2 + N−1]) = oP (T−1/2) for any conformable

square matrix Γ with ‖Γ‖op = OP (1) ;

(iii) ψmax(Q̌
−1/2
1 Q̌2Q̌

−1/2
1 ) < 1 with probability approaching one (w.p.a.1).

Note that we allow ki to be divergent. For a ki-vector Ai, we introduce the weighted norm ‖·‖Si
such that ‖Ai‖Si = |SiAi| , where the number of rows Si is given by L, a fixed integer, and ‖Si‖F
is bounded above by a constant. We denote Ai = oP ∗ (cNT ) if ‖Ai‖Si = oP (cNT ) for any Si with

bounded Frobenius norm. Define OP ∗ analogously.

By the identity Y∗,i = X∗,JiB
0
Ji,i

+ F 0λ0
i + U∗,i and (B.1), we obtain that

T−1X′∗,JiMF̌X∗,Ji(B̌Ji,i −B0
Ji,i) = T−1X′∗,JiMF̌ (F 0λ0

i + U∗,i).

For T−1X′∗,JiMF̌U∗,i, we have

T−1X′∗,JiMF̌U∗,i = T−1X′∗,JiMF 0U∗,i − T−1X′∗,Ji(PF̌ − PF 0)U∗,i

= T−1X′∗,JiMF 0U∗,i +OP ∗(δ
−2
NT + δ−1

NTdNT ),

where the second equality holds by Lemma B.4(ii). For T−1X′∗,JiMF̌F
0λ0

i , we have

T−1X′∗,JiMF̌F
0λ0

i = −T−1X′∗,JiMF̌ (F̌ − F 0Ȟ)Ȟ−1λ0
i

= −T−1X′∗,JiMF 0(F̌ − F 0Ȟ)Ȟ−1λ0
i − T−1X′∗,Ji(PF 0 − PF̌ )(F̌ − F 0Ȟ)Ȟ−1λ0

i

=
1

NT
X′∗,JiMF 0X(B̌ −B0)Λ0(

1

N
Λ0′Λ0)−1λ0

i +OP ∗(δ
−2
NT + δ−1

NTdNT ),

where the last equality follows from Lemmas B.4(i) and (iii) and B.2(iii). It follows that for each

i ∈ [N ], we have

T−1X′∗,JiMF 0X∗,Ji(B̌Ji,i−B0
Ji,i) =

1

T
X′∗,JiMF 0U∗,i+

1

NT
X′∗,JiMF 0X(B̌−B0)Λ0(

1

N
Λ0′Λ0)−1λ0

i +Ři,

(B.6)
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where Ři = OP ∗(δ
−2
NT + δ−1

NTdNT ) and its exact form is given by

Ři = −T−1X′∗,Ji(PF̌ − PF 0)U∗,i − T−1X′∗,Ji(PF 0 − PF̌ )(F̌ − F 0Ȟ)Ȟ−1λ0
i

−T−1X′∗,JiMF 0(F̌ − F 0Ȟ)Ȟ−1λ0
i −

1

NT
X′∗,JiMF 0X(B̌ −B0)Λ0(

1

N
Λ0′Λ0)−1λ0

i .

Let β̌ = (B̌′J1,1
, ..., B̌′JN ,N )′ and β0 = (B0′

J1,1
, ..., B0

JN ,N
). Then (B.6) can be written as follows:

(Q̌1 − Q̌2)(β̌ − β0) = Ǔ + Ř, (B.7)

where Ř = (Ř′1, ..., Ř
′
N ) and Ǔ = (Ǔ ′1, ..., Ǔ

′
N ) with Ǔi = T−1X′∗,JiMF 0U∗,i. Note that the minimum

eigenvalue of Q̌1 is bounded below by some constant w.p.a.1; see Lemma A.5(i). Following the proof

of Lemmas B.4(ii)-(iii) and using Lemma B.2(iii), we can also show that

∣∣Ř∣∣∞ = OP ∗((δ
−2
NT + δ−1

NTdNT ) logN) and
1√
N

∣∣Ř∣∣ = OP ∗(K
1/2
a (δ−2

NT + δ−1
NTdNT )). (B.8)

Rewriting (B.7), one can obtain

β̌ − β0 = Q̌−1
1 Ǔ+Q̌−1

1 Q̌2(β̌ − β0) + Q̌−1
1 Ř. (B.9)

Iterating (B.9) ` ≥ 2 times, we obtain

β̌ − β0

= Q̌−1
1 Ǔ+Q̌−1

1 Ř+Q̌−1
1 Q̌2Q̌

−1
1 Q̌2(β̌ − β0) + Q̌−1

1 Q̌2Q̌
−1
1 (Ǔ + Ř)

= Q̌−1
1 Ǔ+Q̌−1

1 Ř+Q̌
−1/2
1 [Q̌

−1/2
1 Q̌2Q̌

−1/2
1 ]Q̌

−1/2
1 Q̌2(β̌ − β0) + Q̌

−1/2
1 [Q̌

−1/2
1 Q̌2Q̌

−1/2
1 ]Q̌

−1/2
1 (Ǔ + Ř)

= Q̌−1
1 Ǔ+Q̌−1

1 Ř+Q̌
−1/2
1 [Q̌

−1/2
1 Q̌2Q̌

−1/2
1 ]2Q̌

−1/2
1 Q̌2(β̌ − β0) + Q̌

−1/2
1

2∑
l=1

[Q̌
−1/2
1 Q̌2Q̌

−1/2
1 ]lQ̌

−1/2
1 (Ǔ + Ř)

= ...

= Q̌−1
1 Ǔ+Q̌−1

1 Ř + Q̌
−1/2
1 [Q̌

−1/2
1 Q̌2Q̌

−1/2
1 ]`Q̌

−1/2
1 Q̌2(β̌ − β0)

+Q̌
−1/2
1

∑̀
l=1

[Q̌
−1/2
1 Q̌2Q̌

−1/2
1 ]lQ̌

−1/2
1 Ǔ + Q̌

−1/2
1

∑̀
l=1

[Q̌
−1/2
1 Q̌2Q̌

−1/2
1 ]lQ̌

−1/2
1 Ř

≡ Q̌−1
1 Ǔ + Ř1 + Ř2 + Ř3 + Ř4, (B.10)

where we suppress the dependence of Ř2, Ř3 and Ř4 on `. Define a ki×
∑N

j=1 kj selection matrix Si
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such that B̌Ji,i −B0
Ji,i

= Si(β̌ − β0). Then

B̌Ji,i −B0
Ji,i = SiQ̌−1

1 Ǔ + SiQ̌−1
1 Ř+SiQ̌

−1/2
1 [Q̌

−1/2
1 Q̌2Q̌

−1/2
1 ]`Q̌

−1/2
1 Q̌2(β̌ − β0)

+SiQ̌
−1/2
1

∑̀
l=1

[Q̌
−1/2
1 Q̌2Q̌

−1/2
1 ]lQ̌

−1/2
1 Ǔ + SiQ̌

−1/2
1

∑̀
l=1

[Q̌
−1/2
1 Q̌2Q̌

−1/2
1 ]lQ̌

−1/2
1 Ř

≡ SiQ̌−1
1 Ǔ + Ř1i + Ř2i + Ř3i + Ř4i. (B.11)

Note that Řl = (Ř′l1, ..., Ř
′
lN )′ and SiŘl = Řli for l = 1, 2, 3, 4. Let χij ≡ T−1X ′∗,JiMF 0X ′∗,Jj for

i, j ∈ [N ] .

We first study Ř1i. Noting that |a′b| ≤ |a|1 |b|∞ for any two conformable vectors a and b, we have

∣∣SiŘ1i

∣∣2 =

L∑
l=1

∣∣[Si]l,∗SiQ̌−1
1 Ř

∣∣2 ≤ L∑
l=1

∣∣[Si]l,∗SiQ̌−1
1

∣∣2
1

∣∣Ř∣∣2∞
≤

L∑
l=1

∣∣[Si]l,∗χ−1
ii

∣∣2
1

∣∣Ř∣∣2∞ ≤ ki L∑
l=1

∣∣[Si]l,∗χ−1
ii

∣∣2
2

∣∣Ř∣∣2∞
= OP (KJ)

∣∣Ř∣∣2∞ = OP (KJ [(δ−2
NT + δ−1

NTdNT ) logN ]2), (B.12)

and

N−1
∣∣Ř1

∣∣2 = N−1
N∑
i=1

∣∣Ř1i

∣∣2 = N−1
N∑
i=1

∣∣SiQ̌−1
1 Ři

∣∣2 ≤ max
i∈[N ]

∥∥SiQ̌−1
1

∥∥2

F N
−1

N∑
i=1

∣∣Ři∣∣2
= KJOP (N−1

∣∣Ř∣∣2) = KJOP ∗(Ka(δ
−2
NT + δ−1

NTdNT )2) = oP
(
T−1 + d2

NT

)
.(B.13)

Next, we study Ř2i. By Lemma B.5(iii),
∥∥∥[Q̌

−1/2
1 Q̌2Q̌

−1/2
1 ]`

∥∥∥
op

=
∥∥∥Q̌−1/2

1 Q̌2Q̌
−1/2
1

∥∥∥`
op
→ 0 at the

exponential rate as `→∞. This ensures that

max
i

∣∣SiŘ2i

∣∣ =
∣∣∣SiSiQ̌−1/2

1 [Q̌
−1/2
1 Q̌2Q̌

−1/2
1 ]`Q̌

−1/2
1 Q̌2(β̌ − β0)

∣∣∣
≤

∥∥∥SiSiQ̌−1/2
1

∥∥∥
op

∥∥∥Q̌−1/2
1 Q̌2(β̌ − β0)

∥∥∥∥∥∥Q̌−1/2
1 Q̌2Q̌

−1/2
1

∥∥∥`
op

= oP (T−1/2), (B.14)

N−1
∣∣Ř2

∣∣2 = N−1
N∑
i=1

∣∣Ř2i

∣∣2 = oP (T−1), (B.15)

for suffi ciently large `.

To study Ř3i, let Γ0` = Q̌
−1/2
1

∑`−1
l=0 [Q̌

−1/2
1 Q̌2Q̌

−1/2
1 ]lQ̌

1/2
1 . Then

Ř3i = SiQ̌
−1/2
1

`−1∑
l=0

[Q̌
−1/2
1 Q̌2Q̌

−1/2
1 ]lQ̌

1/2
1 Q̌−1

1 Q̌2Q̌
−1
1 Ǔ = SiΓ0`Q̌

−1
1 Q̌2Q̌

−1
1 Ǔ.
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By Lemma B.5(iii), ‖Γ0`‖op ≤
∥∥∥Q̌−1/2

1

∥∥∥
op

∑`−1
l=0

∥∥∥Q̌−1/2
1 Q̌2Q̌

−1/2
1

∥∥∥l
op

∥∥∥Q̌1/2
1

∥∥∥
op

= OP (1) for each `.

Then by Lemma B.5(i)-(ii),

∣∣SiŘ3i

∣∣ = OP (KJK
1/2
a [T−1(logN)2 + (NT )−1/2]) = oP (K−1/2

a T−1/2) and (B.16)

N−1
∣∣Ř3

∣∣2 = N−1
N∑
i=1

∣∣Ř3i

∣∣2 = oP
(
T−1

)
. (B.17)

To studyR4i, let Γ` =
∑`

l=1[Q̌
−1/2
1 Q̌2Q̌

−1/2
1 ]l. ThenR4i = SiQ̌

−1/2
1 Γ`Q̌

−1/2
1 Ř.Note that SiSiQ̌

−1/2
1

×Γ`Q̌
−1/2
1 has low dimension of rows such that∥∥∥SiSiQ̌−1/2

1 Γ1`Q̌
−1/2
1

∥∥∥2

F
= tr

(
SiSiQ̌

−1/2
1 Γ`Q̌

−1
1 Γ`Q̌

−1/2
1 S′iC ′i

)
≤ ‖Γ`‖2op

∥∥Q̌−1
1

∥∥2

op ‖Si‖
2
op ‖Si‖

2
F = OP (1) uniformly in i ∈ [N ] ,

where we use the fact that ‖Γ`‖op ≤
∑`

l=1

∥∥∥Q̌−1/2
1 Q̌2Q̌

−1/2
1

∥∥∥l
op

= OP (1) by Lemma B.5(iii),
∥∥Q̌−1

1

∥∥
op =

[ψmin(Q̌1)]−1 = OP (1) , ‖Si‖op = 1, and maxi∈[N ] ‖Si‖F = O (1) by assumption. Write Γ` = {Γ`,ij}
as a block partitioned matrix with Γ`,ij being a ki × kj matrix. Then

SiQ̌
−1/2
1 Γ`Q̌

−1/2
1 = χ

−1/2
ii (Γ`,i1χ

−1/2
11 ,Γ`,i2χ

−1/2
22 , ...,Γ`,iNχ

−1/2
NN ).

Our assumptions ensure that Γ` is absolutely column summable, which implies that the absolute

sum of each row of SiQ̌
−1/2
1 Γ`Q̌

−1/2
1 can be bounded by a constant multiplied by maxi∈[N ]

∥∥χ−1
ii

∥∥
op

Consequently,

|SiR4i|2 =

L∑
l=1

∣∣∣[Si]l,∗SiQ̌−1/2
1 Γ`Q̌

−1/2
1 Ř

∣∣∣2 ≤ L∑
l=1

∣∣∣[Si]l,∗SiQ̌−1/2
1 Γ`Q̌

−1/2
1

∣∣∣2
1

∣∣Ř∣∣2max
≤ OP (max

i∈[N ]

∥∥χ−1
ii

∥∥
op)
∣∣Ř∣∣2max = OP ((δ−2

NT + δ−1
NTdNT ) logN) (B.18)

and

N−1
∣∣Ř4

∣∣2 = N−1
N∑
i=1

∣∣Ř4i

∣∣2 = N−1
N∑
i=1

∣∣∣SiQ̌−1/2
1 Γ`Q̌

−1/2
1 Ři

∣∣∣2
≤ max

i∈[N ]

∥∥∥SiQ̌−1/2
1 Γ`Q̌

−1/2
1

∥∥∥2

F
N−1

N∑
i=1

∣∣Ři∣∣2
= KJOP (N−1

∣∣Ř∣∣2) = KJOP ∗(Ka(δ
−2
NT + δ−1

NTdNT )2) = oP
(
T−1 + d2

NT

)
.(B.19)
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In sum, we have shown that

N−1
4∑
l=1

∣∣Řl

∣∣2 = oP
(
T−1 + d2

NT

)
and

∣∣∣∣∣Si
4∑
l=1

Řli

∣∣∣∣∣ = oP (T−1/2) +OP (K
1/2
J δ−1

NTdNT logN). (B.20)

In addition,

N−1|Q̌−1
1 Ǔ|2 =

1

N

N∑
i=1

∣∣χ−1
ii Ǔi

∣∣2 =
1

N

N∑
i=1

∣∣∣∣χ−1
ii

1

T
X′∗,JiMF 0U∗,i

∣∣∣∣2

≤ max
i

∥∥χ−1
ii

∥∥2

op

1

N

N∑
i=1

∣∣∣∣ 1

T
X′∗,JiMF 0U∗,i

∣∣∣∣2 = OP
(
KaT

−1
)

(B.21)

Combining the results in (B.10), (B.13), (B.15), (B.17), (B.19), and (B.21), we have

N−1
∣∣β̌ − β0

∣∣2 = OP
(
KaT

−1
)

+ oP
(
d2
NT

)
= OP

(
KaT

−1
)

+ oP

(
N−1

∣∣β̌ − β0
∣∣2) .

It follows that dNT ≡ N−1/2||B̌ −B0||F = N−1/2
∣∣β̌ − β0

∣∣ = OP ((Ka/T )1/2).

In addition, by (B.11) and the results in (B.12), (B.14), (B.16), and (B.18), we have

Si(B̌Ji,i −B0
Ji,i) = SiSiQ̌−1

1 Ǔ +OP (K
1/2
J δ−1

NTdNT logN) + oP (T−1/2)

= Si(
1

T
X′∗,JiMF 0X∗,Ji)

−1 1

T
X′∗,JiMF 0U∗,i + oP (T−1/2),

where the second equality holds by the fact that K1/2
J δ−1

NTdNT logN = K
1/2
J δ−1

NTOP ((Ka/T )1/2) logN

= oP (T−1/2) as K1/2
J K

1/2
a (logN)δ−1

NT = o(1). This completes the proof of the proposition. �

B.2 Proof of the technical lemmas

Proof of Lemma A.1. The proof follows from that of Lemma C.2 in Chernozhukov et al. (2018).

�

Proof of Lemma A.2. (i) By direct calculation, we have that

1

T

∥∥U′X∥∥max = max
1≤l≤p

max
1≤i≤N

max
1≤j≤N

∣∣∣∣∣ 1

T

T∑
t=1

yi,t−lujt

∣∣∣∣∣ .
By Lemma C.1 in the next section, we have that for some constants C1, C2 and c1

P

(∣∣∣∣∣
T∑
t=1

yi,t−lujt

∣∣∣∣∣ > Tγ1

2

)
≤ 2q/2C1

T

(Tγ1)q/2
+ C2exp

(
−C3(Tγ1)2

4T

)
= 2q/2C1

T 1−q/4

(c1logN)q/2
+ C2exp

(
−C3(c1logN)2

4

)
= C ′1T

1−q/4(logN)−q/2 + C ′2N
−clogN ,
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where the first equality holds by inserting γ1 = c1T
−1/2 logN and the second equality holds by

redefining the absolute constants c, C ′1 and C
′
2. Then by the union bound, we have

P

(
1

T

∥∥U′X∥∥max > γ1

2

)
≤ p

∑
i,j

max
1≤l≤p

P

(∣∣∣∣∣
T∑
t=1

yi,t−lujt

∣∣∣∣∣ > Tγ1

2

)
≤ pC ′1N

2T 1−q/4(logN)−q/2 + pC ′2N
2−clogN .

Letting C = p(C ′1 ∨ C ′2), we have proved the desired result in (i).

(ii) Noting that PF 0 = F 0(F 0′F 0)−1F 0′, we have

1

T

∥∥U′PF 0X
∥∥
max =

1

T
||U′F 0(F 0′F 0)−1F 0′X||max

≤
∥∥∥∥∥
(
F 0′F 0

T

)−1
∥∥∥∥∥
op

max
1≤i≤Np

∥∥∥∥F 0′X∗,i
T

∥∥∥∥ · max
1≤i≤N

∥∥∥∥F 0′U∗,i
T

∥∥∥∥ .
As in the proof of (i), we can show that

P

(
max

1≤r≤R0
max

1≤i≤N

∣∣∣∣∣
T∑
t=1

f0
r,tuit

∣∣∣∣∣ > Tγ1

)
≤ C1NT

1−q/4(logN)−q/2 + C2N
1−clogN .

By Lemma A.3 below and choosing c̄ = 1
2 [ψmin (ΣF )]−1, we can readily show that

P

(∥∥∥(F 0′F 0/T
)−1
∥∥∥
op
> c̄

)
≤ C1NT

1−q/4(logN)−q/2 + C2N
1−clogN .

Similarly, max1≤i≤Np
∥∥F 0′X∗,i/T

∥∥ is bounded by some constant c̄ with probability larger than 1−
[C1NT

1−q/4(logN)−q/2 + C2N
1−c logN ]. Consequently, we have proved (ii). �

Proof of Lemma A.3. By Lemma C.1 in the next Section, we have

P

(∣∣∣∣∣
T∑
t=1

f0
t,rf

0
t,l
− E(f0

t,rf
0
t,l

)

∣∣∣∣∣ ≥ xT 1/2

)
≤ C1x

−q/2T 1−q/4 + C2exp(−C3x
2)

for some absolute constants C1, C2, and C3. Applying the union bound yields the desired result. �

Proof of Lemma A.4. (i) By the similar arguments as used in the proof of Theorem 3.2, we can

establish the result.

(ii) By the proof of Proposition 2.1, E(y2
it) is bounded uniformly in (i, t). By direct calculations,
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we have that

(max1≤j≤pN |X∗,j |/
√
T )2 = max1≤i≤Nmax1≤l≤p

1

T

T∑
t=1

y2
i,t−l

≤ max1≤i≤Nmax1≤l≤p
1

T

∣∣∣∣∣
T∑
t=1

[y2
i,t−l − E(y2

i,t−l)]

∣∣∣∣∣+ c̄,

for some constant c̄ > 0. By Lemma C.1 in the next section, we have

P

(∣∣∣∣∣
T∑
t=1

[y2
i,t−l − E(y2

i,t−l)]

∣∣∣∣∣ > c̄T

)
≤ 2q/2C1

T

(c̄T )q/2
+ C2exp

(
−C3(c̄T )2

4T

)
= C ′1T

1−q/2 + C ′2exp (−C3T ) .

Applying the union bound delivers the first result. The second result can be shown analogously.

(iii) The proof is similar to that of (ii) and omitted.

(iv) To proceed, we operate conditional on ||T−1X′F 0−ΣXF ||max ≤ c̄T−1/2, ||F̃ −F 0H̃||F/
√
T ≤

c̄(γ1

√
Ka ∨ γ2), max1≤j≤pN |X∗,j |/

√
T ≤ c̄, and T−1||F 0′X||1 ≤ c̄. One can easily show that these

joint events hold with probability at least 1 − c̄′(N2T 1−q/4(logN)−q/2 + N (2−c logN)∨(−1)). By the

triangle inequality, we have

||Σ̃− Σ||max ≤ ||T−1X′X− ΣX ||max + ||T−2X′F̃ F̃ ′X−ΣXFΣ−1
F Σ′XF ||max.

For the first term on the right hand side (RHS) of the last equation, we can apply similar arguments

as used in the proof of part (ii) to establish that ||T−1X′X − ΣX ||max ≤ c̄ with probability larger

than 1− c̄N2(T 1−q/2+exp(−T )). For the second term, we have

||T−2X′F̃ F̃ ′X−ΣXFΣ−1
F Σ′XF ||max ≤ 2||T−2X′(F̃ − F 0H̃)F̃ ′X||max

+||T−2X′(F̃ − F 0H̃)(F̃ − F 0H̃)′X||max

+||T−2X′F 0H̃H̃ ′F 0′X−ΣXFΣ−1
F Σ′XF ||max.

Noting that
∥∥∥F̃∥∥∥

F
/
√
T = R0, we have ||T−2X′(F̃ − F 0H̃)F̃ ′X||max ≤ R0(max1≤j≤pN |X∗,j |/

√
T )2

·||F̃ − F 0H̃||F/
√
T ≤ c̄

√
logN(γ1

√
Ka ∨ γ2) with probability at least 1 − c̄′(N2T 1−q/4(logN)−q/2 +

N (2−c logN)∨(−1)). From the proof of Theorem 3.2, (F 0H̃)′F 0H̃/T = IR0 . This implies that H̃H̃ ′ =
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(F 0′F 0/T )−1. Then

||T−2X′F 0H̃H̃ ′F 0′X−ΣXFΣ−1
F Σ′XF ||max

= ||T−2X′F 0(F 0′F 0/T )−1F 0′X−ΣXFΣ−1
F ΣXF ||max

≤ ||(T−1X′F 0−ΣXF )(F 0′F 0/T )−1T−1F 0′X||max + ||ΣXF [(F 0′F 0/T )−1 − Σ−1
F ]T−1F 0′X||max

+||ΣXFΣ−1
F (T−1F 0′X−Σ′XF )||max.

For ||(T−1X′F 0−ΣXF )(F 0′F 0/T )−1T−1F 0′X||max, we have with probability at least 1− c̄′(N2T 1−q/4

×(logN)−q/2 +N (2−c logN)∨(−1)),

||(T−1X′F 0−ΣXF )(F 0′F 0/T )−1T−1F 0′X||max ≤ ||T−1X′F 0−ΣXF ||max · ||(F 0′F 0/T )−1T−1F 0′X||1

≤ c̄||T−1X′F 0−ΣXF ||max ≤ c̄T−1/2.

The other two terms can be bounded similarly.

(v) This result can be proved by arguments as used in the proof of Lemma A.2 (i). With the

bound ||Σ̃− Σ||max ≤ γ3, the proof is similar to Lemma 10.1 in van de Geer and Bühlmann (2009).

Let v ∈ RNp such that |vJc |1 ≤ 3|vJ |1, and |J | ≤ KJ . One has

|v′Σ̃v − v′Σv| = |v′(Σ̃− Σ)v| ≤ |v|1 · |(Σ̃− Σ)v|∞

≤ ||Σ̃− Σ||max|v|21 ≤ γ3|v|21
≤ 16γ3|vJ |21 ≤ 16KJγ3 · |vJ |22.

After some rearrangement, we have

v′Σ̃v

|vJ |22
≥ v′Σv

|vJ |22
− 16KJγ3 ≥

v′Σv

|v|22
− 16KJγ3

≥ ψmin(Σ)− 16KJγ3 ≥ ψmin(Σ)/2.

It follows that the restricted eigenvalue condition is satisfied with κΣ̃(KJ) ≤ ψmin(Σ)/2. �

Proof of Lemma A.5. Let Σ̂ ≡ T−1X′MF 0X. Then we denote the two types of submatrices of Σ̂

as Σ̂Ji,Ji ≡ T−1X′∗,JiMF 0X∗,Ji and Σ̂Jci ,Ji
= T−1X′∗,Jci

MF 0X∗,Ji for i ∈ [N ]. Then we have that

max
i∈[N ]

||Σ̂Ji,Ji − Σ̃Ji,Ji ||op = max
i∈[N ]

T−1||X′∗,Ji(PF 0 − PF̃ )X∗,Ji ||op

≤ KJ · T−1||X′(PF 0 − PF̃ )X||max

≤ KJ · ||PF 0 − PF̃ ||op · max
1≤j≤Np

T−1|X∗,j |2 = oP (1).

Similarly, we have that maxi∈[N ] ||Σ̂Jci ,Ji
− Σ̃Jci ,Ji

||max = oP (1). To prove the lemma, it suffi ces to
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establish that (a) mini∈[N ] ψmin(Σ̂Ji,Ji) > c and (b) maxi∈[N ] maxj∈Jci ||T
−1X′∗,jMF 0X∗,Ji ||max < c̄

for some constants c and c̄ w.p.a.1.

(a) Recall the decomposition in Section 2.2, and let X = X(u) + X(f), where the tth rows of X(u)

and X(f) are X(u)′
t and X(f)′

t respectively. To establish mini∈[N ] ψmin(Σ̂Ji,Ji) > c, we decompose

Σ̂Ji,Ji to

Σ̂Ji,Ji = Σ̂
(u)
Ji,Ji

+ Σ̂
(f)
Ji,Ji

+ T−1X
(u)′
∗,JiMF 0X

(f)
∗,Ji + T−1X

(f)′
∗,JiMF 0X

(u)
∗,Ji ≡ S1i + S2i + S3i + S4i,

where Σ̂
(u)
Ji,Ji
≡ T−1X

(u)′
∗,JiMF 0X

(u)
∗,Ji and Σ̂

(f)
Ji,Ji
≡ T−1X

(f)′
∗,JiMF 0X

(f)
∗,Ji .

First, we consider S1i. One can decompose Σ̂
(u)
Ji,Ji

as

Σ̂
(u)
Ji,Ji

=
1

T
X

(u)′
∗,JiX

(u)
∗,Ji −

1

T
X

(u)′
∗,JiPF 0X

(u)
∗,Ji .

It follows that

min
i∈[N ]

ψmin(Σ̂
(u)
Ji,Ji

) ≥ min
i∈[N ]

ψmin(Σ
(u)
Ji,Ji

)−max
i∈[N ]

|| 1
T

X
(u)′
∗,JiX

(u)
∗,Ji − Σ

(u)
Ji,Ji
||op −max

i∈[N ]
|| 1
T

X
(u)′
∗,JiPF 0X

(u)
∗,Ji ||op.

Uniformly across i, one has ψmin(Σ
(u)
Ji,Ji

) ≥ ψmin(Σ
(u)
X ), where ψmin(Σ

(u)
X ) is bounded below by Propo-

sition 2.1. By inequality

max
i∈[N ]

|| 1
T

X
(u)′
∗,JiX

(u)
∗,Ji − Σ

(u)
Ji,Ji
||op ≤ KJ max

i∈[N ]
|| 1
T

X
(u)′
∗,JiX

(u)
∗,Ji − Σ

(u)
Ji,Ji
||max

≤ KJ · ||
1

T
X(u)′X(u) − Σ

(u)
X ||max = OP (KJT

−1/2 logN) = oP (1).

Therefore, we have established that maxi∈[N ] || 1T X
(u)′
∗,JiX

(u)
∗,Ji − Σ

(u)
Ji,Ji
||op = oP (1). Similarly, we can

show that maxi∈[N ] || 1T X
(u)′
∗,JiPF 0X

(u)
∗,Ji ||op = oP (1). By similar arguments, we can show that S3i + S4i

are uniformly oP (1). Hence

min
i∈[N ]

ψmin(Σ̂Ji,Ji) ≥ min
i∈[N ]

ψmin(S1i + S2i) + oP (1) ≥ min
i∈[N ]

ψmin(S1i) + oP (1),

where the second inequality is due to the fact that S2i is positive semi-definite for all i.

(b) The proof is analogous to that of (a) and thus omitted. �

Proof of Lemma B.2. The proof is analogous to that of Proposition A.1 in Bai (2009). The major

difference lies in the fact that the parameter of interest B0 is a large dimensional sparse matrix of
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dimensions Np×N. Take I∗1 and ‖I∗4‖F as an example. For I∗1 , we have

‖I∗1‖F =
1

NT
√
T
||UΛ0F 0′F̌ V −1

NT ||F

≤
∥∥∥∥ U√

NT

∥∥∥∥
op

∥∥∥∥ Λ0

√
N

∥∥∥∥
F

∥∥∥∥F 0′F̌

T
V −1
NT

∥∥∥∥
F

= Op(N
−1/2 + T−1/2).

For I∗5 , we have,

‖I∗5‖F =
1

NT
√
T
||X(B̌ −B0)Λ0F 0′F̌ V −1

NT ||F

≤
∥∥∥∥X(B̌ −B0)√

NT

∥∥∥∥
F

∥∥∥∥ Λ0

√
N

∥∥∥∥
F

∥∥∥∥F 0′F̌

T
V −1
NT

∥∥∥∥
F

= OP (dNT )

where the last equality follows from (B.4) and we recall that dNT = N−1/2
∥∥B̌ −B0

∥∥
F. Similarly, we

can analyze the other terms to obtain the desired results. �

Proof of Lemma B.3. (i) Recall the decomposition F̌ − F 0Ȟ =
√
T (I∗1 + ...+ I∗8 ) in the proof of

Proposition B.1. One can write F 0′(F̌ − F 0Ȟ)/T = F 0′(J∗1 + ...+ J∗8 )/
√
T . For F 0′J1/

√
T , we have

1√
T
||F 0′I∗1 ||F =

1

NT 2

∥∥∥F 0′UΛ0F 0′F̌ V̌ −1
NT

∥∥∥
F
≤ 1√

NT

∥∥∥∥∥F 0′UΛ0

√
NT

∥∥∥∥∥
F

∥∥∥∥F 0′F̌

T
V̌ −1
NT

∥∥∥∥
F

= OP ((NT )−1/2),

as we can readily show that (NT )−1/2
∥∥∥F 0′UΛ0

∥∥∥
F

= OP (1) under Assumptions A.1 and A.4. For

F 0′I∗2/
√
T , we have

1√
T
||F 0′I∗2 ||F =

1

NT 2

∥∥∥F 0′F 0Λ0′U′F̌ V̌ −1
NT

∥∥∥
F
≤ 1√

NT

∥∥∥∥∥F 0′F 0

T

∥∥∥∥∥
F

∥∥∥∥Λ0′U′F̌√
NT

∥∥∥∥
F

∥∥V̌ −1
NT

∥∥
F

= OP ((NT )−1/2)

∥∥∥∥Λ0′U′F̌√
NT

∥∥∥∥
F
.

Note that∥∥∥∥Λ0′U′F̌√
NT

∥∥∥∥
F
≤

∥∥∥∥Λ0′U′F 0Ȟ√
NT

+
Λ0′U′√
NT

(F̌ − F 0Ȟ)

∥∥∥∥
F

≤
∥∥∥∥Λ0′U′F 0

√
NT

∥∥∥∥
F

∥∥Ȟ∥∥F +
√
NT

∥∥∥∥ Λ0

√
N

∥∥∥∥
F

∥∥∥∥ U√
NT

∥∥∥∥
op

∥∥∥∥ 1√
T

(F̌ − F 0Ȟ)

∥∥∥∥
F

= OP (1 + (NT )1/2δ−1
NT

(
δ−1
NT + dNT

)
),

where we use the fact that (NT )−1/2 ‖U‖op = δ−1
NT by Assumption A.3 and T

−1/2
∥∥F̌ − F 0Ȟ

∥∥
F =

OP (δ−1
NT + dNT ) by Lemma B.2. Then 1√

T
||F 0′I∗2 ||F = OP ((NT )−1/2 + δ−1

NT

(
δ−1
NT + dNT

)
). For

13



F 0′I∗3/
√
T , we have

1√
T
||F 0′I∗3 ||F =

1

NT 2

∥∥∥F 0′UU′F̌ V −1
NT

∥∥∥
F
≤ 1√

T

∥∥∥∥∥F 0′U√
NT

∥∥∥∥∥
F

∥∥∥∥ U√
NT

∥∥∥∥
op

∥∥∥∥ F̌√
T
V̌ −1
NT

∥∥∥∥
F

= T−1/2OP (δ−1
NT ) = OP ((NT )−1/2 + T−1).

For other terms, we can easily show that they are of the order OP (dNT ). Then the conclusion in (i)

follows.

(ii) Noting that F̌ ′F̌ /T = IR0 and using F̌ = (F̌ − F 0Ȟ) + F 0Ȟ, we have

IR0 =
1

T
F̌ ′(F̌ − F 0Ȟ) +

1

T
(F̌ − F 0Ȟ)′F̌ +

1

T
(F̌ − F 0Ȟ)′(F̌ − F 0Ȟ) +

1

T
Ȟ ′F 0′F 0Ȟ.

It follows that 1
T Ȟ

′F 0′F 0Ȟ = IR0 + OP ((NT )−1/2 + T−1 + dNT ) by Lemmas B.2(iii) and B.3(i).

Then
1

T
F 0′F 0 = (Ȟ ′)−1Ȟ−1 +OP ((NT )−1/2 + T−1 + dNT )

and the desired result follows.

(iii) As in part (i), we decompose U′∗,i(F̌ − F 0Ȟ)/T = U′∗,i(I
∗
1 + ... + I∗8 )/

√
T . For U′∗,iI

∗
1/
√
T ,

we have

1√
T
||U′∗,iI∗1 ||F =

1

NT 2

∥∥U′∗,iUΛ0F 0′F̌ V̌ −1
NT

∥∥
F
≤ 1√

NT

∥∥∥∥∥U′∗,iUΛ0

√
NT

∥∥∥∥∥
F

∥∥∥∥F 0′F̌

T
V̌ −1
NT

∥∥∥∥
F

= OP ((NT )−1/2 + T−1).

For U′∗,iJ2/
√
T , we have

1√
T
||U′∗,iJ2||F =

1

NT 2

∥∥U′∗,iF 0Λ0′U′F̌ V̌ −1
NT

∥∥
F
≤ 1

T
√
N

∥∥∥∥∥U′∗,iF
0

√
T

∥∥∥∥∥
F

∥∥∥∥Λ0′U′F̌√
NT

∥∥∥∥
F

∥∥V̌ −1
NT

∥∥
F

=
1

T
√
N
OP (1 + (NT )1/2δ−1

NT

(
δ−1
NT + dNT

)
) = OP (N−1/2T−1 + T−1dNT ).

For the other terms, one can use similar analyses to show that they are OP (δ−2
NT + δ−1

NTdNT ).

(iv) The proof is similar to that of (iii) and thus omitted. �

Proof of Lemma B.4. (i) One can decompose PF̌ − PF 0 as follows:

PF̌ − PF 0 =
1

T
(F̌ − F 0Ȟ)(F̌ − F 0Ȟ)′ +

1

T
F 0Ȟ(F̌ − F 0Ȟ)′ +

1

T
(F̌ − F 0Ȟ)Ȟ ′F 0′

+
F 0

√
T

[ȞȞ ′ − (
1

T
F 0′F 0)−1]

F 0′
√
T

≡ p1 + p2 + p3 + p4.

14



Then the result follows from Lemmas B.2(iii) and B.3(i)-(ii).

(ii) By the decomposition in (i), we have

1

T
X′∗,Ji(PF̌ − PF 0)U∗,i =

4∑
l=1

T−1X′∗,JiplU∗,i ≡
4∑
l=1

p̃li.

It is easy to apply Lemma B.3(ii)-(iv) to obtain

‖p̃1i‖Si ≤
1

T

∥∥SiX′∗,Ji(F̌ − F 0Ȟ)
∥∥
F

1

T

∥∥(F̌ − F 0Ȟ)′U∗,i
∥∥
F = OP

(
d2
NT + δ−2

NT

)
,

‖p̃2i‖Si ≤
1

T

∥∥SiX′∗,JiF 0Ȟ
∥∥
F

1

T

∥∥(F̌ − F 0Ȟ)′U∗,i
∥∥
F = OP (δ−2

NT + δ−1
NTdNT ),

‖p̃3i‖Si ≤
1

T

∥∥SiX′∗,Ji(F̌ − F 0Ȟ)
∥∥
F

1

T

∥∥Ȟ ′F 0′U∗,i
∥∥
F = T−1/2OP (dNT + δ−2

NT ),

‖p̃4i‖Si ≤
1

T

∥∥SiX′∗,JiF 0
∥∥
F

∥∥[ȞȞ ′ − (F 0′F 0/T )−1]
∥∥
F

1

T

∥∥F 0′U∗,i
∥∥
F = T−1/2OP (dNT + δ−2

NT ).

Then
∥∥∥ 1
T X′∗,Ji(PF̌ − PF 0)U∗,i

∥∥∥
Si

= OP (δ−2
NT + δ−1

NTdNT ).

(iii) Plugging equation (B.3) into T−1X′∗,JiMF 0(F̌ − F 0Ȟ)Ȟ−1λ0
i , one can obtain that

T−1X′∗,JiMF 0(F̌ − F 0Ȟ)Ȟ−1λ0
i = T−1X′∗,JiMF 0(I∗1 + ...+ I∗8 )F̌ (

1

T
F 0′F̌ )−1(

1

N
Λ0′Λ0)−1λ0

i

≡ Ĩ1i + ...+ Ĩ8i, say.

For Ĩ1i, we have∥∥∥Ĩ1i

∥∥∥
Si

=

∥∥∥∥ 1

NT
X′∗,JiMF 0UΛ0(

1

N
Λ0′Λ0)−1λ0

i

∥∥∥∥
Si

≤ 1

NT

∥∥SiX′∗,JiUΛ0
∥∥
F

∥∥∥∥(
1

N
Λ0′Λ0)−1λ0

i

∥∥∥∥
F

+
1√
NT

∥∥∥∥ 1

T
SiX

′
∗,JiF

0

∥∥∥∥
F

∥∥∥∥(
1

T
F 0′F 0)−1

∥∥∥∥
F

∥∥∥∥ 1√
NT

F 0′UΛ0

∥∥∥∥
F

∥∥∥∥(
1

N
Λ0′Λ0)−1λ0

i

∥∥∥∥
F

= OP ((NT )−1/2).

By the identity MF 0F 0 = 0, we have Ĩ2i = Ĩ6i = 0. It is easy to show that
∥∥∥Ĩ3i

∥∥∥
Si

= OP (δ−2
NT +

δ−1
NTdNT ) for l = 3, 4, 7, 8. For Ĩ5i, one have that

Ĩ5i = − 1

NT
X′∗,JiMF 0X(B̌ −B0)Λ0(

1

N
Λ0′Λ0)−1λ0

i .

and
∥∥∥Ĩ5i

∥∥∥
Si
≤
∥∥∥Si 1

T X′∗,JiMF 0X
∥∥∥
F

∥∥∥ 1√
N

(B̌ −B0)
∥∥∥
F

∥∥∥ 1√
N

Λ0( 1
NΛ0′Λ0)−1λ0

i

∥∥∥
F

= OP (dNT ). This im-

plies that Ĩ5i is a dominant term in the expansion. Combining the above results yields the desired

conclusion. �

Proof of Lemma B.5. (i) Let χij ≡ T−1X ′∗,JiMF 0X ′∗,Jj . Then Q̌1 =bdiag(χ11, ..., χNN ) and
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Q̌2 = {N−1a0
ijχij} are NKa × NKa matrices, where bdiag(·) signifies a block diagonal matrix and

recall that Ka = N−1
∑N

i=1 ki. Let s1 = [k1] ≡ {1, 2, ..., k1}, and sj+1 = {
∑j

i=1 ki + 1, ...,
∑j+1

i=1 ki}
for j = 2, ..., N. Note that

∣∣Q̌−1
1 Q̌2Q̌

−1
1 Ǔ

∣∣
∞ = max

j∈[N ]

∣∣∣χ−1
jj [Q̌2]sj ,∗(Q̌1)−1Ǔ

∣∣∣
∞

and

χ−1
jj [Q̌2]sj ,∗(Q̌1)−1Ǔ

= χ−1
jj

1

NT

N∑
i=1

a0
jiχjiχ

−1
ii X′∗,JiMF 0U∗,i

= χ−1
jj

1

NT

N∑
i=1

T∑
t=1

a0
jiχjiχ

−1
ii Xt,Jiuit − χ−1

jj

1

NT

N∑
i=1

T∑
t=1

a0
jiχjiχ

−1
ii

1

T
X′∗,JiF

0(
1

T
F 0′F 0)−1f0

t uit.

Let ei,l denote the lth column of Iki . Consider the first term on the RHS of the last displayed equation.

Note that

χ−1
jj

1

NT

N∑
i=1

T∑
t=1

a0
jiχjiχ

−1
ii Xt,Jiuit

= χ−1
jj

1

N

N∑
i=1

a0
ji{χjiχ−1

ii − E(χji)[E(χii)]
−1} 1

T

T∑
t=1

Xt,Jiuit + χ−1
jj

1

NT

N∑
i=1

T∑
t=1

a0
jiE(χji)[E(χii)]

−1Xt,Jiuit

= χ−1
jj

1

N

N∑
i=1

a0
ji[χji − E(χji)]χ

−1
ii

1

T

T∑
t=1

Xt,Jiuit

+χ−1
jj

1

N

N∑
i=1

a0
jiE(χjj)[E(χii)]

−1[E(χii)− χii]χ−1
ii

1

T

T∑
t=1

Xt,Jiuit

+χ−1
jj

1

NT

N∑
i=1

T∑
t=1

a0
jiE(χji)[E(χii)]

−1Xt,Jiuit

≡ A1j +A2j +A3j ,

where the second equality follows because

χjiχ
−1
ii − E(χji)[E(χii)]

−1 = [χji − E(χji)]χ
−1
ii + E(χji){χ−1

ii − [E(χii)]
−1}

= [χji − E(χji)]χ
−1
ii + E(χjj)[E(χii)]

−1[E(χii)− χii]χ−1
ii .

Similarly to Lemma A.2, we can show that

sup
i,j

∥∥χij − E(χij)
∥∥

max
= OP (T−1/2 logN),
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where elements of E(χij) are uniformly bounded and E(χii) has minimum eigenvalue bounded away

from zero. Noting that |a′Bb| ≤ |a|1 |b|1 ‖B‖max whenever vectors a and b and matrix B are con-

formable, we have

max
j,l

∣∣e′j,lA1j

∣∣ = max
j

∣∣∣∣∣e′j,lχ−1
jj

1

N

N∑
i=1

a0
ji[χji − E(χji)]χ

−1
ii

1

T

T∑
t=1

Xt,Jiuit

∣∣∣∣∣
≤ max

j,i

∥∥χji − E(χji)
∥∥

max

∣∣a0
ji

∣∣ 1

N

N∑
i=1

∣∣∣e′j,lχ−1
jj

∣∣∣
1

∣∣∣∣∣χ−1
ii

1

T

T∑
t=1

Xt,Jiuit

∣∣∣∣∣
1

= OP (T−1/2 logN)O(K
1/2
J )OP (K

1/2
J K1/2

a T−1/2) = OP (KJK
1/2
a T−1(logN)2),

where we use the fact that
∣∣∣e′j,lχ−1

jj

∣∣∣
1
≤
√
kj

∣∣∣e′j,lχ−1
jj

∣∣∣
2
≤
√
kj [ψmin(χjj)]

−1 and

∣∣∣∣∣χ−1
ii

1

T

T∑
t=1

Xt,Jiuit

∣∣∣∣∣
1

≤
√
kj

∣∣∣∣∣χ−1
ii

1

T

T∑
t=1

Xt,Jiuit

∣∣∣∣∣
2

=
√
kjkiOP (T−1/2 logN).

By the same token, maxj

∣∣∣e′j,lA2j

∣∣∣ = OP (KJK
1/2
a T−1(logN)2). In addition, we can show that

max
j,l

∣∣e′j,lA3j

∣∣ = max
j,l

∣∣∣∣∣e′j,lχ−1
jj

1

NT

N∑
i=1

T∑
t=1

a0
jiE(χji)[E(χii)]

−1Xt,Jiuit

∣∣∣∣∣
≤ max

j,l

∥∥∥e′j,lχ−1
jj

∥∥∥
max

max
j

∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

a0
jiE(χji)[E(χii)]

−1Xt,Jiuit

∣∣∣∣∣
1

= OP (KJK
1/2
a (NT )−1/2 logN).

It follows that
∥∥∥ 1
NT

∑N
i=1

∑T
t=1 a

0
ijχ
−1
jj χjiXt,Jiuit

∥∥∥
Sj

= OP (KJK
1/2
a [T−1(logN)2+(NT )−1/2 logN ]) =

OP (KJK
1/2
a [T−1(logN)2 +N−1]).

Similarly, we can show that

max
j

∣∣∣∣∣χ−1
jj

1

NT

N∑
i=1

T∑
t=1

a0
jiχjiχ

−1
ii

1

T
X′∗,JiF

0(
1

T
F 0′F 0)−1f0

t uit

∣∣∣∣∣
∞

= OP (KJK
1/2
a [T−1(logN)2 +N−1]).

Then
∣∣Q̌−1

1 Q̌2Q̌
−1
1 Ǔ

∣∣
∞ = OP (KJK

1/2
a [T−1(logN)2 +N−1]).

(ii) The proofs follows from that of (i) closely. Noting that

1√
N

∣∣ΓQ̌−1
1 Q̌2Q̌

−1
1 Ǔ

∣∣ ≤ ‖Γ‖op 1√
N

∣∣Q̌−1
1 Q̌2Q̌

−1
1 Ǔ

∣∣ ,
it suffi ces to show that 1√

N

∣∣Q̌−1
1 Q̌2Q̌

−1
1 Ǔ

∣∣ = OP (KJKa[T
−1(logN)2+N−1]) = oP (T−1/2). The result
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follows from (i) under Assumption A.5(ii). To see this, notice that

1

N

∣∣Q̌−1
1 Q̌2Q̌

−1
1 Ǔ

∣∣2 =
1

N

N∑
i=1

∣∣SiQ̌−1
1 Q̌2Q̌

−1
1 Ǔ

∣∣2 ≤ 1

N

N∑
i=1

ki
∣∣Q̌−1

1 Q̌2Q̌
−1
1 Ǔ

∣∣2
∞

= KaOP (K2
JKa[T

−1(logN)2 +N−1]2) = oP (T−1),

where Si is defined in the proof of Proposition B.1. A more complicated argument can relax the

restriction on KJ and Ka slightly, but we do not pursue it for brevity.

(iii) Note that Q̌−1/2
1 Q̌2Q̌

−1/2
1 has the (i, j)th block given by

a0
ij

N Wij , where

Wij ≡
(

1

T
X′∗,JiMF 0X∗,Jj

)−1/2 X′∗,JiMF 0

√
T

MF 0X∗,Jj√
T

(
1

T
X′∗,JjMF 0X∗,Jj

)−1/2

.

Obviously, we have that ψmax(Wij) ≤ 1. In addition, it is easy to see that the inequality does not

bind for all pairs of (i, j)’s w.p.a.1. For any V ∈ RΣNi=1ki and |V | = 1, we can decompose it to

V = (V ′1 , ..., V
′
N )′, where Vi ∈ Rki . Let W̃ ∈ RN×N , with W̃ij = V ′iWijVj . Then we have

V ′Q̌
−1/2
1 Q̌2Q̌

−1/2
1 V =

N∑
i=1

N∑
j=1

a0
ij

N
V ′iWijVj = tr

(
PΛ0W̃

)
≤ ||PΛ0 ||op||W̃ ||∗

= tr(W̃ ) =
N∑
i=1

V ′iWiiVi ≤
N∑
i=1

|Vi|2 = |V |2 = 1.

The equality holds in all places only if the columns of W̃ are linear combinations of Λ0. We can

show that the inequality does not bind w.p.a.1. That is, ψmax(Q̌
−1/2
1 Q̌2Q̌

−1/2
1 ) < 1 w.a.p.1. This

completes the proof. �

C Some Technical Lemmas

In this section we introduce the Nagaev inequality established by Wu and Wu (2016) and then prove

some additional technical lemmas used in the proofs in Section B.

C.1 Nagaev inequality for time series

In Theorem C.1 below, we aim to bound the partial sum of the form Sn =
∑n

i=1 aiei, where ai ∈ R
are nonrandom, the scalar process {ei} has the form ei = g(..., εi−1, εi), where εi is independently

and identically distributed (i.i.d.) random variables, and g(·) is a measurable function. Letting
Fi ≡ (..., εi−1, εi), we write ei = g(Fi). Then a coupled process e∗i can be defined as e∗i = g(F∗i ),

where F∗i = (..., ε−1, ε
∗
0, ε1, ..., εi−1, εi) and ε∗0 is an independent copy of ε0. Recall that ||| · |||q ≡

(E| · |qq)1/q < ∞. Assuming that |||ei|||q < ∞ for some q ≥ 1, we define the functional dependence
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measure:

δi,q(e·) ≡ |||ei − e∗i |||q = |||g(Fi)− g(F∗i )|||q,

where e∗i = g(F∗i ). The measure δi,q(e·) reflects the effect of shock ε0 on ei. Accordingly, we assume

the cumulative effect of ε0 on {ei}i≥m to be summable:

∆m,q(e·) ≡
∞∑
i=m

δi,q(e·) <∞.

As in Wu and Wu (2016) we define the dependence-adjusted norm (DAN):

||e·||q,α = supm≥0(m+ 1)α∆m,q(e·).

With these definitions, we can present the following Nagaev inequality for time series as a simplified

version of Theorem 2 of Wu and Wu (2016).

Theorem C.1 Let a = (a1, ..., an)′ and |a|q = (
∑n

i=1 |ai|q)1/q. Suppose that
∑n

i=1 a
2
i = n, E (ei) = 0,

and ||e·||q,α <∞ for some q > 2 and α > 1. Then for all x > 0,

P (|Sn| > x) ≤ C1
|a|qq||e·||qq,α

xq
+ C2exp

(
− C3x

2

n||e·||22,α

)
,

where C1, C2, C3 are constants that only depend of q and α.

C.2 Some additional lemmas

Following the decomposition (2.5) in Section 2, we have yit = y
(f)
it + y

(u)
it , where

y
(u)
it =

∞∑
j=0

α
(u)
iN (j)ut−j =

∞∑
j=0

α
(u)
iN (j)C(u)ε

(u)
t−j ≡

∞∑
j=0

C
(i,u)
j ε

(u)
t−j ,

y
(f)
it = E(yit) +

∞∑
j=0

α
(f)
iN (j)f0

t−j ≡ E(yit) +
∞∑
j=0

C
(i,f)
j ε

(f)
t−j , where C

(i,f)
j ≡

j∑
k=0

α
(f)
iN (j − k)C

(f)
k .

Let f0
r,t be the rth entry of f

0
t . Lemma C.1 below establishes the DAN’s for time series f

0
r,·, y

(f)
i,· , y

(u)
i·

and yi·.

Lemma C.1. Suppose that Assumption A.1 holds and q > 1. There is a constant c̄ <∞ such that

the following statements hold:

(i) ||f0
r,·||q,α < c̄|||ε(f)

0 |||q for r = 1, ..., R0;

(ii) max1≤i≤N ||y(f)
i,· ||q,α ≤ c̄R0|||ε(f)

0 |||q;
(iii) max1≤i≤N ||y(u)

i,· ||q,α ≤ c̄
√
||Σu||op|||ε(u)

1,0 |||q;
(iv) max1≤i≤N ||yi,·||q,α < c̄.
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Proof of Lemma C.1. (i) Let p = q/(q − 1) where q > 1. By the Hölder inequality, we have

δt,q(f
0
r·) ≤ 2|[C(f)

t ]r,∗|p · |||ε(f)
0 |||q ≤ 2(R0)1/p|[C(f)

t ]r,∗|∞ · |||ε(f)
0 |||q. It follows that

∆m,q(f·) ≤ 2|||ε(f)
0 |||q

∞∑
t=m

|[C(f)
t ]r,∗|p ≤ c̄|||ε(f)

0 |||q(m+ 1)−α,

where the last inequality holds by Assumption A.1(ii). The desired result follows immediately.

(ii) Noting that y(f)
it is a linear process, we can directly calculate that

δt,q(y
(f)
i· ) ≤ 2|||C(i,f)

t ε
(f)
0 |||q ≤ 2|C(i,f)

t |p · |||ε(f)
0 |||q and ∆m,q(y

(f)
i· ) ≤ 2|||ε(f)

0 |||q
∞∑
t=m

|C(i,f)
t |p.

It suffi ces to bound
∑∞

t=m ||C
(i,f)
t ||p. Noting that C(i,f)

k =
∑k

j=0 α
(f)
iN (j)C

(f)
k−j , we have

∞∑
t=m

|C(i,f)
t |p ≤ (R0)1/p

∞∑
t=m

|C(i,f)
t |∞ ≤ (R0)1/p

∞∑
t=m

t∑
j=0

|α(f)
iN (j)| · ||C(f)

t−j ||F

≤ c̄
∞∑
t=m

t∑
j=0

ρj ||C(f)
t−j ||F = c̄

∞∑
j=0

ρj
∞∑

t=(m−j)∨0

||C(f)
t ||F

= c̄

 ∞∑
j=m

ρj
∞∑
t=0

||C(f)
t ||F +

m−1∑
j=0

ρj
∞∑

t=(m−j)
||C(f)

t ||F


≤ c̄

 ∞∑
t=0

||C(f)
t ||F

ρm

1− ρ +R0
m−1∑
j=0

ρj(m− j)−α
 ,

where the second inequality is by Assumption A.1(vi), and the last inequality is by Assumption

A.1(ii). To show supm≥1(m + 1)α∆m,q(y
(f)
i· ) ≤ c̄ for some c̄ < ∞, we need to show supm≥1(m +

1)α
∑m−1

j=0 ρj(m− j)−α ≤ c̄′ for some c̄′ <∞. The last result follows because

(m+ 1)α
m−1∑
j=0

ρj(m− j)−α = (m+ 1)α(

b√mc∑
j=0

+

m−1∑
j=b√mc+1

)ρj(m− j)−α

≤ (m+ 1)α

(1− ρ)(m− b
√
mc)α + (m+ 1)αρb

√
mc+1/(1− ρ)

→ 1

1− ρ as m→∞,

where b
√
mc is the largest integer that is not greater than

√
m. It follows that

||y(f)
i,· ||q,α = supm≥0(m+ 1)α∆m,q(y

(f)
i,· ) < c̄′|||ε(f)

0 |||q,

for some c̄′ <∞.
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(iii) Note that y(u)
it is a linear function of (..., ε

(u)
t−1, ε

(u)
t ) with ε(u)

t ∈ Rm. Given ||α
(u)
iN (j)|| < c̄ρj by

Assumption A.1(vii), we can see that |α(u)
iN (j)C(u)| ≤ c̄ρj

√
ψ1(Σu). Let [α

(u)
iN (t)C(u)]j denote the jth

component of α(u)
iN (j)C(u). Then we can calculate δt,q(y

(u)
i· ):

δt,q(y
(u)
i· ) ≤ 2

∥∥∥∣∣∣α(u)
iN (t)C(u)ε

(u)
0

∣∣∣∥∥∥
q

≤ 2

∥∥∥∥∥∥∥
∣∣∣∣∣∣∣
 m∑
j=1

([α
(u)
iN (t)C(u)]j)

2(ε
(u)
j,0 )2

1/2
∣∣∣∣∣∣∣
∥∥∥∥∥∥∥
q

= 2


∥∥∥∥∥∥
∣∣∣∣∣∣
m∑
j=1

([α
(u)
iN (t)C(u)]j)

2(ε
(u)
j,0 )2

∣∣∣∣∣∣
∥∥∥∥∥∥
q/2


1/2

≤ 2

 m∑
j=1

([α
(u)
iN (t)C(u)]j)

2|||(ε(u)
j,0 )2|||q/2

1/2

= 2|||ε(u)
1,0 |||q|α

(u)
iN (t)C(u)| ≤ 2ρtc̄

√
ψmax(Σu)|||ε(u)

1,0 |||q,

where the second inequality holds by Burkholder inequality (see, e.g., Hall, 1980, p. 23). Then we

have

∆m,q(y
(u)
i,· ) ≤ 2c̄

√
ψmax(Σu)|||ε(u)

1,0 |||q
ρm

1− ρ,

and it follows that

||y(u)
i,· ||q,α ≤ c̄

′√ψmax(Σu)|||ε(u)
1,0 |||q <∞.

(iv) The result follows (ii) and (iii). �

The following lemma bounds the DAN of summation of product of two linear processes:

Lemma C.2. Consider two time series et = g(..., εt−1, εt) and xt = h(..., εt−1, εt)). Suppose that

||x·||ι,αX < ∞ and ||e·||q,αe < ∞ with q > 2, ι > 4 and αx, αe > 0. Consider the time series

x·e· = {xtet} . Then
||x·e·||τ ,α ≤ 2||x·||ι,αX ||e·||q,αe

for α = αX ∧ αe and τ = qι/(q + ι).
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Proof of Lemma C.2. We have that

∆m,τ (x·e·) =
∞∑
t=m

δt,τ (x·e·) =
∞∑
t=m

|||xtet − x∗t e∗t |||τ

≤
∞∑
t=m

(|||xt(et − e∗t )|||τ + |||(xt − x∗t )e∗t |||τ )

≤
∞∑
t=m

(|||xt|||ι|||et − e∗t |||q + |||xt − x∗t |||ι|||e∗t |||q)

≤ max
t
|||xt|||ι∆m,q(e·) + max

t
|||et|||q∆m,ι(x·).

It follows that

||x·e·||τ ,α ≤ max
t
|||xt|||ι||e·||q,αe + max

t
|||et|||q||x·||ι,αX ≤ 2||x·||ι,αX ||e·||q,αe ,

where we used the fact that maxt ‖|xt|‖ι ≤ ||x·||ι,αX . �

Lemma C.3. Suppose that Assumption A.1 holds. For z1,t, z2,t = 1, f0
r,t, yi,t−l1 , y

(u)
i,t−l2 , y

(u)
i,t−l3 and

uit, with i = 1, ..., N , l1, l2, l3 = 1, ..., p, we have

P

(∣∣∣∣∣
T∑
t=1

z1,tz2,t − E(z1,tz2,t)

∣∣∣∣∣ ≥ x
)
≤ C1

T

xq/2
+ C2exp

(
−C3x

2

T

)
,

where C1, C2, and C3 are constants that do not depend on (N,T ) and (z1,t, z2,t).

Proof of Lemma C.3. We apply the Nagaev inequality in Theorem C.1 to prove the claim. By

Lemma C.1, we have ‖yi,·‖q,α < c̄ and ‖ui,·‖q,α < c̄ for some constant c̄ < ∞. By Lemma C.2, we
can obtain that ‖z1,tz2,t − E(z1,tz2,t)‖q/2,α ≤ 2 ‖z1,·‖q,α ‖z2,·‖q,α ≤ 2c̄2. By Theorem C.1, we have

P

(∣∣∣∣∣
T∑
t=1

z1,tz2,t − E(z1,tz2,t)

∣∣∣∣∣ ≥ x
)
≤ C1

|a|q/2q/2||z1,tz2,t − E(z1,tz2,t)||q/2q/2,α

xq/2

+C2exp

(
− C3x

2

T ||z1,tz2,t − E(z1,tz2,t)||2q/2,α

)
,

where a = ιT such that |a|q/2q/2 = T . The desired result is proved. �

Lemma C.4. Suppose that Assumption A.1 holds and N2T 1−q/4(logN)−q/2 +N2−c logN → 0. Then

(i) There is an absolute constant c′ such that P
[
min1≤i≤N (ψmin(Σ̂

(u)
Ji,Ji

)) > c′
]
→ 1;

(ii)
∥∥∥max1≤i≤N (T−1X

(f)′
∗,JiMF 0X

(u)
∗,Ji

∥∥∥
op
→ 0.

Proof of Lemma C.4. (i) Note that

Σ̂
(u)
Ji,Ji

=
1

T
X

(u)′
∗,JiX

(u)
∗,Ji −

1

T
X

(u)′
∗,JiPF 0X

(u)
∗,Ji .
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The first term converges in probability to Σ
(u)
Jj ,Jj

≡ E[(X
(u)
t )Ji(X

(u)
t )′Ji ], where ψmin(Σ

(u)
Jj ,Jj

) ≥
ψmin(Σ

(u)
X ). The second term converges in probability to zero as X(u)

t is zero mean and indepen-

dent of F 0. By using the results of Lemmas A.2-A.4, we can establish the uniform result in (i).

(ii) The proof is analogous to that of (i) and thus omitted. �

D Discussion on Assumption A.1(vi)

In this section, we first give a discussion on the operator norm of Φ. Then we give a suffi cient condition

for Assumption A.1(vi).

It is well known that requiring the eigenvalues of Φ to be in the unit circle can ensure the

stationarity of the process Yt. However, this condition does not ensure ||Φ||op ≤ 1. For instance,

consider p = 1 and the following N ×N transition matrix

Φ = A0
1 =


0 1 · · · 1
0 0 · · · 0
...
...
. . .

...
0 0 · · · 0

 ,

for which all eigenvalues are zero but ||Φ||op = N − 1. Basu and Michailidis (2005) also show that

||Φ||op ≥ 1 as long as p > 1.

However, as we require that the spectral radius of Φ is bounded by ρ < 1, we know that
∥∥Φj

∥∥
op →

0 as j →∞. To see this, one can resort to the Jordan canonical form (e.g., page 656 of Lükepohl 2005).
As (Φj)[N ],[N ] is a principal submatrix of Φ, imposing the high level condition ψmax[(Φ

j)[N ],[N ]] ≤ c̄ρj

with a large enough c̄ is reasonable. In the special case that p = 1 and A0
1 is a block diagonal matrix

with bounded block size, we can easily show that the Assumption A.1(vi) is satisfied.
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