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Abstract

The GH-2000 biomarker method, based on the measurements of insulin-like growth

factor-I (IGF-I) and the amino-terminal pro-peptide of type III collagen (P-III-NP), has

been developed as a powerful technique for the detection of growth hormone (GH) mis-

use by athletes. IGF-I and P-III-NP are combined in gender specific formulas to create

the GH-2000 score, which is used to determine whether GH has been administered. To

comply with World Anti-Doping Agency regulations, each analyte must be measured

by two methods. IGF-I and P-III-NP can be measured by a number of approved meth-

ods, each leading to its own GH-2000 score. Single decision limits for each GH-2000

score have been originally developed by Bassett and co-workers (Erotokritou-Mulligan

et al. 2012) and further developed in Holt et al. (2015) and Böhning et al. (2019).

These have been incorporated into the guidelines of the World Anti-Doping Agency.

Erotokritou-Mulligan et al. (2012) and Holt et al. (2015) constructed a joint decision

limit based on the sample correlation between the two GH-2000 scores generated from

an available sample in order to increase the sensitivity of the biomarker method. This

paper takes this idea further into a fully developed statistical approach. It constructs

combined decision limits when two GH-2000 scores from different assay combinations

are used to decide whether an athlete has been misusing GH. The combined decision

limits are directly related to tolerance regions and constructed using a Bayesian ap-

proach. It is also shown to have highly satisfactory frequentist properties. The new

approach meets the required false-positive rate with a pre-specified level of certainty.

Keywords: Bayesian tolerance regions; Growth hormone misuse detection; GH-2000 scores;

Decision Limits; Tolerance limits; Tolerance regions.
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1 Introduction

As a powerful anabolic agent of considerable therapeutic value, growth hormone (GH) is

misused in sport to enhance performance (cf. Holt, 2009). In order to preserve the fairness of

competition, its use is prohibited by the World Anti-Doping Agency (WADA) (cf. WADA,

2014, 2016). Two methods for the detection of GH misuse are currently available and ap-

proved by WADA: the isoform test developed by Bidlingmaier et al. (2000) (see also WADA,

2014, 2016) and the GH-2000 biomarker test developed by the GH-2000 and GH-2004 projects

(cf. Holt et al., 2015). The latter method depends on the measurements of two GH sensitive

biomarkers, the insulin-like growth factor-I (IGF-I) and the amino-terminal pro-peptide of

type III collagen (P-III-NP), both of which rise in response to exogenous GH administration

(cf. Longobardi et al., 2000, and Dall et al., 2000). The measured concentrations of the two

biomarkers are combined in sex-specific and age-adjusted discriminant functions (cf. Powrie

et al., 2007, Erotokritou-Mulligan et al., 2012, Holt et al., 2015, and Böhning et al., 2016) to

allow the calculation of a score, the GH-2000 score. It is possible that the score may take a

negative value.

The measurements of IGF-I and P-III-NP are carried out by choosing two specific assays.

As the measured results differ slightly from one assay to another, each assay pair generates

an assay-specific GH-2000 score, which differs from other GH-2000 scores generated by dif-

ferent assays. These are the basis of the data generating process. Currently, there are three

IGF-I assays and two P-III-NP assays approved by WADA. The IGF-I assays are: a mass

spectrometry (MS) based approach, Immunotech A15729 IGF-I IRMA (Immunotech SAS,

Marseille, France), and Immunodiagnostic Systems iSYS IGF-I (Immunodiagnostics Systems

Limited, Boldon, UK). The P-III-NP assays are: UniQTM P-III-NP RIA (Orion Diagnostica,

Espoo, Finland), and Siemens ADVIA Centaur P-III-NP (Siemens Healthcare Laboratory
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Diagnostics, Camberley, UK). For more details and background on these assays, see Holt et

al. (2015). As any GH-2000 score requires a pair of IGF-I assay and P-III-NP assay, there are

six possible GH-2000 scores. Depending on the available technology, laboratories choose the

appropriate GH-2000 scores for evaluating their samples, and a decision limit based on one

single GH-2000 score has been developed in Holt et al. (2015) and Böhning et al. (2019) by

assuming that a GH-2000 score from an athlete without GH misuse has a normal distribution.

As stated in Holt et al. (2015), a result will be declared as an adverse analytical finding (i.e.

indicative of doping) only if the confirmation procedure results in GH-2000 scores greater than

the decision limits for two pairs of analytes. These decision limits are constructed on the

basis of the univariate normal distributions of the associated GH-2000 scores. Erotokritou-

Mulligan et al. (2012), with further details in Holt et al. (2015), construct combined

decision limits on the basis of a bivariate normal distribution. The idea is motivated by the

intuition that a reduced correlation between the two GH-2000 scores could lead to reduced

decision limits, and thus increase the sensitivity of GH misuse detection. We describe details

on this method in Subsection 3.3.

The purpose of this paper is to provide a valid construction method of combined decision

limits when two GH-2000 scores, based on two different pairs of IGF-I and P-III-NP assays,

are used jointly in assessing the compliance of a sample. It is shown here how the combined

decision limits are directly related to a particular tolerance region, and can be constructed so

that the false positive rate (FPR) is controlled at a pre-specified level 1− β, say 1 in 10,000,

with a pre-specified confidence or belief 1− α, e.g. 95%, about the possible value of (µ,Σ),

assuming the two GH-2000 scores have a bivariate normal distribution N2(µ,Σ). This is in

contrast to the previously mentioned method discussed in Erotokritou-Mulligan et al. (2012)

where such a property is assumed to hold bona fide.

4



A Bayesian approach is adopted in this paper since a frequentist solution is much harder to

construct and not available thus far (see Subsection 3.2 for more details). The frequentist

property of the Bayesian combined decision limits is also assessed by simulation, which shows

that the Bayesian combined decision limits can also be interpreted as frequentist combined

decision limits.

The paper is organized as follows. Section 2 collects some known distributional results that

will be used in Section 3. Section 3 considers the construction of decision limits. A very

brief review of the construction of a single decision limit for one GH-2000 score is given in

Subsection 3.1. Subsection 3.2 constructs Bayesian combined decision limits for two GH-

2000 scores. The method is then illustrated with a real data set in Subsection 3.3. A

simulation study is presented in Subsection 3.4 to assess the frequentist property of the

Bayesian combined decision limits given in Subsection 3.3. Finally the paper closes with a

brief discussion in Section 4.

2 Preliminary distributional results

In this section, we collect some known distributional results which are used in Section 3 for

the construction of decision limits. More details about these results can be found in Guttman

(1970), Box and Tiao (1992) and Anderson (2003).

Following Holt et al. (2015) and Böhning et al. (2019), we assume that the GH-2000 scores

x = (x1, . . . , xk)
′ from an athlete without GH misuse have a k-variate normal distribution

Nk(µ,Σ), with both µ and Σ unknown. For the problem considered in this paper, we are

only interested in the case of k = 2 since only two GH-2000 scores are involved. We assume
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further that we have observed a random sample from the population Nk(µ,Σ):

x1 =


x11

...

x1k

 , . . . ,xn =


xn1

...

xnk

 i.i.d.∼ Nk(µ,Σ)

Denote X = (x1, · · · ,xn), x̄ =
∑n

i=1 xi/n, and V =
∑n

i=1(xi − x̄)(xi − x̄)′/(n− 1).

In this paper, the non-informative reference prior distribution of (µ,Σ−1), given by

p(µ,Σ−1) ∝ p(µ)P (Σ−1) ∝ |Σ−1|−
(k+1)

2 , (1)

is used since the sample X is all we have. An additional incentive for using the non-

informative reference prior is that the Bayesian decision limit for the special case of k = 1 is

also the frequentist decision limit; see Section 3.1 below.

The posterior distribution of (µ,Σ−1) based on the observed data X is then given by

p(µ,Σ−1|X) ∝ |Σ−1|
(n−k−1)

2 exp

{
−1

2
trΣ−1 [(n− 1)V + n(µ− x̄)(µ− x̄)′]

}
,

where trA denotes the trace of matrix A. Integrating out µ gives the posterior distribution

of Σ−1

Σ−1|X ∼ Wk([(n− 1)V ]−1, n− k) (2)

in the notation of Box and Tiao (1992), and the posterior conditional (on Σ−1) distribution

of µ is

p(µ|Σ−1,X) =
p(µ,Σ−1|X)

p(Σ−1|X)
∼ Nk(x̄,Σ/n) . (3)
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3 Decision limits

In this section, we consider the construction of decision limits. In Subsection 3.1, we provide

a very brief review of the construction of decision limit for one single GH-2000 score, that

is, for the case of k = 1, which helps the understanding of Subsection 3.2. Subsection 3.2

studies the construction of combined decision limits based on two GH-2000 scores, that is

for the case of k = 2. Subsection 3.3 illustrate the computation of the decision limits by

using the dataset on GH-2000 scores given in Holt et al. (2015). Subsection 3.4 presents the

results of simulation studies.

3.1 Decision limit for one GH2000 score

Let a = a(X) denote the decision limit for one GH-2000 score. Hence a future sample

observation y is declared to be positive if and only if y is larger than a(X). In order to

control the FPR at the pre-specifed level 1− β, it is desirable to have

Py|µ,σ2{y > a(X)} ≤ 1− β

which is equivalent to

Py|µ,σ2{y ≤ a(X)} ≥ β (4)

under the assumption that y is from the population distribution N(µ, σ2). Here the probabil-

ities are calculated with respect to the distribution of y conditional on (µ, σ2). Note that the

probability in (4) depends on the value of (µ, σ2), for which we have only the posterior distri-

bution p(µ, σ2|X) after observing the data X. Hence this probability cannot be guaranteed

to be at least β for every possible value of (µ, σ2) ∼ p(µ, σ2|X) and, instead, we guarantee
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with a pre-specified 1−α (close to one) belief (or confidence) with respect to possible values

of (µ, σ2) that the probability in (4) is at least β, that is,

Pµ,σ2|X
{
Py|µ,σ2{y ≤ a(X)} ≥ β

}
= 1− α. (5)

One recognizes this is the defining equation of that (−∞, a(X)] is a Bayesian 1−α confidence

and β content upper tolerance interval for the population N(µ, σ2). Bayesian tolerance

intervals were first introduced in Aitchison (1964), and Guttman (1970, 2006) are excellent

references on the topic.

Following Guttman (1970, pp.140-141), the a(X) that solves equation (5) under the non-

informative prior for (µ,Σ) given in (1) with k = 1 is given by

a(X) = x̄ +
1√
n

√
V tn−1,

√
nzβ ,1−α , (6)

where zβ denotes the β quantile of the standard normal distribution N(0, 1), and tn−1,
√
nzβ ,1−α

denotes the 1− α quantile of the non-central t distribution with df n− 1 and non-centrality

parameter
√
nzβ. This Bayesian 1 − α confidence and β content upper tolerance interval

(−∞, a(X)] is also the frequentist 1 − α confidence and β content upper tolerance interval

(cf. Guttman, 1970, pp.141). This is the additional incentive for using the non-informative

reference prior in this paper.

3.2 Combined decision limits

In this subsection we have k = 2. Hence a future sample observation y = (y1, y2)′ is declared

to be positive if and only if both y1 > a1(X) and y2 > a2(X) as stated in Holt et al. (2015),
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that is,

y ∈ S(X) with S(X) = {y : y1 > a1(X) and y2 > a2(X)} . (7)

In order to control the FPR at the pre-specified level 1− β, it is desirable that

Py|µ,Σ−1{y ∈ S(X)} ≤ 1− β

which is equivalent to

Py|µ,Σ−1{y ∈ S̄(X)} ≥ β (8)

under the assumption that y is from the population distribution N2(µ,Σ), where the proba-

bilities are calculated with respect to the distribution of y conditional on (µ,Σ−1), and S̄(X)

denotes the complement of S(X). As in the case of k = 1 in Subsection 3.1, the probability

in (8) depends on the value of (µ,Σ−1), for which we have only the posterior distribution

p(µ,Σ−1|X) after observing the data X. Hence this probability cannot be guaranteed to be

at least β for every possible value of (µ,Σ−1) from the posterior distribution p(µ,Σ−1|X),

and we guarantee with a pre-specified 1− α belief (or confidence) about the possible values

of (µ,Σ−1) that the probability in (8) is at least β, that is,

Pµ,Σ−1|X
{
Py|µ,Σ−1{y ∈ S̄(X)} ≥ β

}
= 1− α. (9)

One recognizes immediately that S̄(X) is a Bayesian 1 − α confidence and β content toler-

ance region for the population N2(µ,Σ). But this particular tolerance region has not been

considered before to the best of our knowledge.

Under frequentist framework, tolerance intervals/regions were introduced first by Wilks

(1941). Guttman (1970, 2006), Hahn and Meeker (1991), Krishnamoorthy and Mathew

(2009) and Meeker et al. (2017) are excellent references on tolerance intervals/regions.
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The R package tolerance (Young, 2010) allows the computation of many tolerance inter-

vals/regions. Until very recently, the only available frequentist β content and 1−α confidence

tolerance region specifically for multivariate normal distribution Nk(µ,Σ) is of the ellipsoidal

form

R(X) = {y : (y − x̄)′V −1(y − x̄) ≤ c}

where c is the critical constant that needs to be determined so that

Px̄,V

{
Py|x̄,V {y ∈ R(X)} ≥ β

}
= 1− α , (10)

where the probability Py|x̄,V {·} is calculated with respect to the random variable y conditional

on (x̄, V ), and Px̄,V {·} is calculated with respect to (x̄, V ). The central ellipsoidal tolerance

region of Dong and Mathew (2015), also of the form R(X) above but with a larger c, is

conservative, i.e. the probability on the left side of the equation in (10) is strictly larger than

1− α.

One key factor in the choice of the R(X) above is that the probability Px̄,V {·} in (10) does not

depend on the unknown parameters (µ,Σ). But even in this case the computation of c is very

challenging and only approximation methods are available; see, for example, Krishnamoorthy

and Mathew (1999), Krishnamoorthy and Mondal (2006), and Mbodj and Mathew (2015).

If R(X) is replaced by S̄(X) then the corresponding probability expression depends on the

unknown Σ in a complicated manner and so the computation of tolerance regions of forms

different from R(X) is much harder.

But most recently, rectangular (including one-sided or mixed-sided) tolerance regions of β

content and 1 − α confidence, specifically for multivariate normal distribution, have been

constructed in Lucagbo (2021, Section 4.7) by using parametric bootstrap. These tolerance

regions are of different forms from the tolerance region S̄(X) in (9) considered in this paper.
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For nonparametric rectangular (including one-sided or mixed-sided) tolerance regions, the

reader is referred to Young and Mathew (2020) and Lucagbo (2021, Sections 5.6 and 5.7) for

the latest development.

In the Bayesian framework, there is no published work on 1 − α confidence and β content

tolerance region of the form R(X) for Nk(µ,Σ) even with k = 2. The reader is referred

to Chen (2021, Chapter 3) for the latest development on the construction of nonparametric

Bayesian tolerance regions.

To determine (a1(X), a2(X)) of S(X) in (7) from the only constraint in (9), we set

a1(X) = a1(λ,X) = x̄1 + λ
√
V11, a2(X) = a2(λ,X) = x̄2 + λ

√
V22 (11)

where x̄i is the i-th element of x̄, Vii is the i-th diagonal element of V , i = 1, 2, and λ is the

critical constant that needs to be determined from (9). These two expressions of ai(X) are

sensible if one compares them with the decision limit a(X) in (6) for the case of one GH-2000

score. Hence S(X) = S(λ,X), and λ is solved from

Pµ,Σ−1|X
{
Py|µ,Σ−1{y ∈ S(X)} ≤ 1− β

}
= 1− α (12)

which is equivalent to (9).

Algorithm 3.2 for computing λ by simulation for given X

• Step 1: simulate one (µ,Σ−1) from the posterior distribution p(µ,Σ−1|X).

• Step 2: given the simulated (µ,Σ−1) in Step 1, solve λ from Py|µ,Σ−1{y ∈ S(X)} =

1− β.

• Step 3: repeat Steps 1 and 2 for a large number of L times, L = 100, 000 say, to get
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the corresponding λ1, · · · , λL; order these values as λ[1] ≤ · · · ≤ λ[L] and use λ[〈(1−α)L〉]

as the λ we want. Here 〈(1− α)L〉 denotes the integer part of (1− α)L.

We use a simulation method, given by Algorithm 3.2, to compute the λ from (12). It is

well known that the (1 − α) sample quantile λ[〈(1−α)L〉] in Algorithm 3.2 converges almost

surely to the (1 − α) population quantile λ that solves (9) as L → ∞. Hence λ[〈(1−α)L〉]

can be regarded as accurate so long as the number of simulations L is large enough. The

computation results given in (the penultimate paragraph of) Section 3.3 below show that

L = 100, 000 is sufficiently large for the problem considered in this paper.

Now Step 1 can be implemented by using the distributional results in (2) and (3) in the

following way. We first simulate one Σ−1 from W2([(n− 1)V ]−1, n− 2) and then one µ from

N2(x̄,Σ/n) to generate one (µ,Σ−1). To simulate one Σ−1 from W2([(n−1)V ]−1, n−2), we use

the Bartlett decomposition (cf. Smith and Hocking, 1972, and the references therein) in the

following way. Step (a): generate independent random variables u11 ∼ χ2
n−1, u22 ∼ χ2

n−2 and

u12 ∼ N(0, 1) to form matrix U =

( √
u11, u12

0,
√
u22

)
. Step (b): set Σ−1 = [(n−1)V ]−1/2U ′U [(n−

1)V ]−1/2 which has the required Wishart distribution. This simulation method for Σ−1 works

for a general k ≥ 2. Alternatively one can directly use, for example, the R package rWishart.

For Step 2, we have from (7) and (11) that

Py|µ,Σ−1{y ∈ S(X)}

= Py|µ,Σ−1

{
y1 ≥ x̄1 + λ

√
V11, y2 ≥ x̄2 + λ

√
V22

}
= Py|µ,Σ−1

{
Z1 ≤ −

x̄1 − µ1 + λ
√
V11√

σ11

, Z2 ≤ −
x̄2 − µ2 + λ

√
V22√

σ22

}
(13)

where Z1 = −(y1 − µ1)/
√
σ11 and Z2 = −(y2 − µ2)/

√
σ22 have distribution N2(0,

(
1, ρ

ρ, 1

)
),

with Σ = (σij) and ρ = σ12/
√
σ11σ22. The probability in (13) can be computed directly by
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using the function pmvnorm of the R package mvtnorm; See Genz and Bretz (2009) and Genz

et al. (2020) for more details. Furthermore, note this probability is monotone decreasing

in λ. Hence the unique solution λ of Py|µ,Σ−1{y ∈ S(X)} = 1 − β can be easily computed

by using a numerical searching algorithm, for example, the bisection method is used in our

coding. From our experience, the computation of one λ in Step 2 takes only a small fraction

of a second on an ordinary PC; see more details in the next subsection.

If one uses, in Step 2, an inner loop of simulation to compute an approximation to λ, similar to

an idea used in, for example, Krishnamoorthy and Mathew (1999) to construct the frequentist

ellipsoidal tolerance region R(X), then the computation is much more time-consuming and

the resultant λ is much less accurate. Hence this is not recommended for computing λ.

3.3 Applications to the dataset on GH-2000 scores

In this subsection, we compute the decision limits given in the last two subsections using

the available sample observations on GH-2000 from Holt et al. (2015). For the purpose

of illustration, we focus on the following two GH-2000 scores: (1) Siemens IDS generated

by using the P-III-NP assay Siemens ADVIA Centaur and IGF-I assay Immunodiagnostic

Systems iSYS IGF-I, and (2) Orion LC-MS/MS generated by P-III-NP assay UniQTM P-

III-NP RIA and IGF-I assay Liquid chromatography-tandem mass spectrometry. These two

GH-2000 scores are available for a sample of n = 917 female athletes, and plotted by the

917 dots in Figure 1. There were 932 female athletes in the sample originally. But some had

Siemens IDS readings missing, and some had Orion LC-MS/MS readings missing. Hence

only the n = 917 female athletes having both readings available are used in the analysis

below.

13



We set FPR 1− β = 1/10000 and confidence level 1− α = 95% which are currently adopted

by WADA. If one wants to use the GH-2000 score Siemens IDS (y1) only to decide whether

a future female athlete with reading y = (y1, y2)′ is positive on GH misuse, then the single

decision limit is computed from the formula in (6) and given by a(X) = 9.3445. It is depicted

by the vertical dotted line in Figure 1. Hence, a future female athlete is judged to be positive

if and only if y1 > 9.3445. If one wants to use the GH-2000 score Orion LC-MS/MS (y2)

only to decide whether a future female athlete is positive, then the single decision limit is

computed again from the formula in (6) and given by a(X) = 8.5703. It is depicted by the

horizontal dotted line in Figure 1. Hence, a future female athlete is judged to be positive if

and only if y2 > 8.5703.

2 4 6 8 10

−
2

0
2

4
6

8
10

Siemans_IDS

O
rio

n_
LC

−
M

S
M

S

S

Figure 1: Plots of the single and combined decision limits based on the observed data. Single
decision limits are given by the dotted lines. Combined decision limits are given by the upper-
right quadrant S bounded by two solid lines
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On the other hand if one wants to use both the GH-2000 scores Siemens IDS and Orion

LC-MS/MS to decide whether a future female athlete with reading y = (y1, y2)′ is positive,

then the combined decision limits in (11) are used and computed by using Algorithm 3.2. By

using L = 100, 000 simulations, λ is calculated to be 3.5578 which gives a1(X) = 8.9881 and

a2(X) = 8.1952. These two decision limits are depicted by the two solid lines respectively in

Figure 1, and the set S(X) is given by the upper-right quadrant formed by these two solid

lines and indicated by the letter S in the figure. Hence, a future female athlete is judged to

be positive if and only if both y1 > 8.9881 and y2 > 8.1952.

The decision limits constructed according to the property in (9) or (12) have the following

interpretation. With 1 − α belief or confidence about the possible value of (µ,Σ) that, the

FPR is no more than 1 in 10,000 that a future athlete, whose GH-2000 reading y follows the

distribution N2(µ,Σ), is wrongly judged to be positive.

The computation of λ based on L = 100, 000 simulations takes about 210 seconds on an

ordinary Window’s PC (Intel(R) Core(TM) i5-6600 CPU 3.30GHz, RAM 8.0 GB). We

have tried five different random seeds for the random number generator which give the

corresponding λ-values: 3.5572, 3.5574, 3.5567, 3.5594 3.5579. This indicates that λ value

computed using L = 100, 000 is likely to be accurate to the second decimal place at least.

Indeed, one computation we have done using L = 1, 000, 000 simulations produces λ = 3.5572

and takes about 2210 seconds (37 minutes). Hence the computation method proposed is fast

and accurate enough for practical purpose with L = 100, 000.

It is valuable to compare the proposed combined decision limits with the combined decision

limits of Erotokritou-Mulligan et al. (2012) and Holt et al. (2015) which is mentioned in

Section 1. They are given by ã1(X) = x̄1 + λ̃
√
V11 and ã2(X) = x̄2 + λ̃

√
V22, and so of similar

form as the new combined decision limits given in (11). However, the critical constant is given
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by λ̃ = k̃+z1−α

√
(1 + k̃2/2)/n with k̃ being solved from P

{
W1 > k̃, W2 > k̃

}
= 1−β, where

(W1,W2)′ has distribution N2

((
0

0

)
,

(
1, ρ̃

ρ̃, 1

))
with ρ̃ being the usual sample correlation

coefficient between the two GH-2000 scores x1 and x2 based on the sample X. For the case

considered in this subsection, it is computed that ρ̃ = V12/
√
V11V22 = 0.852, k̃ = 3.4049,

λ̃ = 3.5465, ã1(X) = 8.9755 and ã2(X) = 8.1820.

While ã1(X) = 8.9755 and ã2(X) = 8.1820 are quite close to a1(X) = 8.9881 and a2(X) =

8.1952 respectively for the specific sample observed, the construction of ã1(X) and ã2(X)

does not guarantee that {y : y1 ≤ ã1(X) or y2 ≤ ã2(X)} forms a 1 − α confidence and

β content tolerance region for the population N2(µ,Σ). Indeed a simulation study in the

next subsection shows that the true probability of {y : y1 ≤ ã1(X) or y2 ≤ ã2(X)} covering

β content of the population N2(µ,Σ) could deviate from the nominal level 1 − α in both

directions.

3.4 Simulation studies

In this subsection, a simulation study is carried out to assess whether the Bayesian 1 − α

confidence and β content tolerance region S̄(X) in Section 3.3 is also a frequentist 1 − α

confidence and β content tolerance region for N2(µ,Σ). Specifically we assess whether

Px̄,V

{
Py|x̄,V {y ∈ S̄(X)} ≥ β

}
≥ 1− α (14)

holds for all possible values of µ and Σ; here the probability Py|x̄,V {·} is calculated with

respect to y ∼ N2(µ,Σ) conditional on the sample mean and covariance matrix (x̄, V ), and

Px̄,V {·} is calculated with respect to (x̄, V ) which depends on the random sample X from

N2(µ,Σ).
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It can be shown that Px̄,V

{
Py|x̄,V {y ∈ S̄(X)} ≥ β

}
does not depend on µ. Hence it is only

necessary to assess whether (14) holds for all possible values of Σ =

(
σ11, ρ

√
σ11σ22

ρ
√
σ11σ22, σ22

)
with µ = 0. From the observed sample on GH-2000 scores in Section 3.3, the 99% confi-

dence intervals for ρ, σ11 and σ22 are given respectively by (0.827, 0.874), (1.097, 1.396) and

(1.215, 1.546). So the following three values (0.83, 0.85, 0.87) are used for ρ, (1.10, 1.25, 1.40)

for σ11, and (1.22, 1.38, 1.55) for σ22 in the simulation study, with a total of 27 combinations

of Σ. The range of these 27 combinations cover the likely true value of Σ. Furthermore, FPR

1 − β = 1/10, 000, confidence level 1 − α = 95% and sample size n = 917 are used as in

Section 3.3.

Algorithm 3.4 for computing the (outer) probability in (14) by simulation

• Step 1: simulate one sample X = (x1, · · · ,xn) from N2(0,Σ).

• Step 2: use the sample X to compute the region S̄(X) by using Algorithm 3.2; the

number of simulations used to compute λ is L = 100, 000.

• Step 3: compute Py|X,V {y ∈ S̄(X)} = 1 − Py|X,V {y ∈ S(X)} by using an expression

similar to (13) with µ = 0 for Py|X,V {y ∈ S(X)}, and the R function pmvnorm.

• Step 4: repeat Steps 1-3 for a large number, say M = 1, 000, times; the proportion of

times that Py|X,V {y ∈ S̄(X)} ≥ β is used as the required probability.

The (outer) probability Px̄,V {·} in (14) is approximated by a proportion using Algorithm 3.4.

It takes about 60 hours to compute each probability in Table 1 on the same computer as

mentioned in Section 3.3, with most computation time spent on computing the λ-values in

the M = 1, 000 repetitions.

Table 1 presents the simulation results on the probability in (14). It is clear from Table 1

that the probabilities are very close to 1 − α = 0.95 for all the 27 configurations of ρ, σ11
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and σ22. Since the range of these 27 configurations most likely covers the true value of Σ, it

follows therefore that it is most likely the inequality in (14) holds for the unknown true value

of Σ. Hence the Bayesian combined decision limits can also be interpreted as the frequentist

combined decision limits of approximate 1− α confidence.

Table 1: the probability in (14) for given Σ

σ11 = 1.10 σ11 = 1.25 σ11 = 1.40

ρ = 0.83 σ22 = 1.22 0.951 0.951 0.951

σ22 = 1.38 0.951 0.951 0.951

σ22 = 1.55 0.951 0.951 0.951

ρ = 0.85 σ22 = 1.22 0.951 0.951 0.951

σ22 = 1.38 0.951 0.951 0.951

σ22 = 1.55 0.951 0.951 0.951

ρ = 0.87 σ22 = 1.22 0.953 0.953 0.953

σ22 = 1.38 0.953 0.953 0.953

σ22 = 1.55 0.953 0.953 0.953

The results in Table 1 seem to indicate that the probability in (14) depends on Σ, i.e. σ11, σ22

and ρ, only through ρ. But this is difficult to prove analytically since the critical constant λ

of S(X) depends on Σ in a complicated manner in Step 1 of Algorithm 3.2. We have done

further simulation study on the probability in (14) with σ11 = σ22 = 1 and various values of

ρ in the wider range [−0.9, 0.9]. The results are given by Prob (new) in Table 2.

The results on Prob (new) in Table 2 indicate that, if the probability in (14) does depend on

Σ only through ρ, then this probability seems to be quite close to 1 − α = 0.95 across the

wide range [−0.9, 0.9] of ρ-values.

Finally, we have carried out a simulation study to assess the probability corresponding to

the probability in (14) but for the combined decision limits ã1(X) and ã2(X) of Erotokritou-

Mulligan et al. (2012) and Holt et al. (2015). It is clear that this probability depends on
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Σ only through ρ, and the simulation results on this probability are given by Prob (old)

in Table 2. As pointed out in the last subsection, its construction does not guarantee that

{y : y1 ≤ ã1(X) or y2 ≤ ã2(X)} is a 1 − α confidence and β content tolerance region for

the population N2(µ,Σ). From the results in Table 2, it can be seen that the probability of

{y : y1 ≤ ã1(X) or y2 ≤ ã2(X)} covering β = 0.9999 content of the populationN2(µ,Σ) tends

to be a bit smaller than the nominal level 1−α = 0.95 when the true value of ρ is around 0.7.

Strong deviations from the nominal level occur for ρ smaller than -0.5. In practice, negative

correlations between two GH-2000 scores are unlikely to occur. But in other applications

where the two scores have a large negative correlation, the method of Erotokritou-Mulligan

et al. (2012) and Holt et al. (2015) will produce ã1(X) and ã2(X) that are larger than

necessary. In contrast, with the new combined decision limits, the probabilities Prob(new)

are consistently close to the nominal level across the range of ρ values.

Table 2: the probability in (14) for given Σ with σ11 = σ22 = 1

ρ = -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

Prob(new) = 0.949 0.950 0.950 0.950 0.949 0.950 0.950 0.951 0.950 0.950

Prob(old) = 0.998 0.995 0.986 0.975 0.963 0.956 0.953 0.952 0.949 0.948

ρ = 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Prob(new) = 0.955 0.950 0.950 0.953 0.958 0.961 0.954 0.950 0.951

Prob(old) = 0.945 0.940 0.939 0.941 0.948 0.950 0.950 0.943 0.946

4 Discussion

Decision limits based on the GH-2000 scores produced by the various pairs of analytical

assays employed have been published. These scores are used individually but scores for two

pairs of assays must be exceeded before an athlete has to answer a case for the misuse of GH.

In other words, WADA mandated the measurement of each analyte by two methods which
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meant that each sample had two GH-2000 scores. Hence it is natural to use the correlation

structure involved in the two scores to develop naturally decreased decision limits which

would increase the sensitivity of the biomarker method. The biomarker test then would be

more sensitive the lower the correlation between the two GH-2000 scores under consideration

would be.

While combined decision limits have their benefits there are some drawbacks. First, depend-

ing on which of the other pair of assays was used, the decision limit for one assay pair could

change and that could lead to confusion. Ideally, for a given GH-2000 score one would like

to have a unique decision limit and not one that depends on which other GH-2000 score is

used in the pair. Secondly, it became possible to measure IGF-I by mass spectrometry as

the preferred choice to measure IGF-I. WADA does not mandate measurement by a second

assay when an analyte is measured by mass spectrometry because of the greater reliability

and traceability of the method compared with immunoassays. Hence, using the same assay

for IGF-I in two GH-2000 scores leads to an increase in the correlation and the potential for

an increased sensitivity of the biomarker test diminishes. On the other hand, it might be

that in the near future two mass spectometric methods for IGF-I (intact and digest) will be

available with a potential of a decrease in the correlation of two GH-2000 scores involved in

the pair.

Having said that, it is valuable nevertheless to have a statistical theory for constructing

combined decision limits. These combined decision limits should have the same pre-specified

1 − α confidence and 1 − β FPR as the single decision limit. A Bayesian approach is used

in this paper to construct the combined decision limits. Our simulation study in Section 3.4

shows that the Bayesian combined decision limits also have satisfactory frequentist property

and so can be regarded as frequentist combined decision limits too. The R code available

from the authors allow the method ready to be used.
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Combined decision limits of other forms are worth investigation too in future. For exam-

ple, it seems also sensible to use combined decision limits of the form T (X) = {y : y1 >

a1(X) or y2 > a2(X)} with a1(X) and a2(X) of the forms in (11). That is, a future athlete is

judged to be positive if either of the two readings is too high. The corresponding T̄ (X) be-

comes a one-sided rectangular tolerance region for a bivariate normal distribution considered

recently in Lucagbo (2021, Section 4.7). It would be interesting to compare the tolerance

region T̄ (X) constructed using Bayesian method as in this paper with the tolerance region

T̄ (X) constructed using parametric bootstrap of Lucagbo (2021).

The computation method of Subsection 3.2 can potentially be explored in the construction

of a frequentist tolerance region of ellipsoidal form R(X) in (10) for k = 2 at least, which is

probably the most useful case in applications of tolerance regions. Furthermore, construction

of Bayesian tolerance region of ellipsoidal form R(X) can also be investigated, even though

it is not of direct interest to GH misuse detection.

While the GH misuse detection motivates this work, one can envisage other potential appli-

cations of the methodology developed in this paper. For example, suitable decision limits

can be constructed to trigger alert on whether a child of a given age is over/under weight or

over/under height.

For nonparametric tolerance regions, the reader is referred to Young and Mathew (2020),

Lucagbo (2021, Chapter 5) and Chen (2021, Chapter 3) for the latest development.

Acknowledgments We thank the referees for constructive comments.

21



5 References

Aitchison, J. (1964). Bayesian tolerance regions. J. Roy. Statist. Soc. Ser. B, 26, 161-175.

Anderson, T.W. (2003). An Introduction to Multivariate Statistical Analysis, 3rd ed.. Wiley:

New York.

Bidlingmaier, M., Wu, Z., Strasburger, C.J. (2000). Test method: GH. Baillieres Best Pract

Res Clin Endocrinol Metab., 14(1), 99-109.
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Böhning, D., Liu, W., Holt, R.I., Böhning, W., Guha, N., Sönksen, P.H., Cowan, D.A.

and Liang, T. (2019). Exact statistical calculation of the uncertainty term in the decision

limits based on the GH2000 score for growth hormone misuse detection (doping). Statistical

Methods in Medical Research, Vol. 28(3), 928936. (doi: 10.1177/0962280217739452).

Box, G.E.P. and Tiao, G.C. (1992). Bayesian Inference in Statistical Analysis. Wiley: New

York.

Chen, X. (2021). Prediction Sets via Parametric and Nonparametric Bayes: With Applica-

tions in Pharmaceutical Industry. Unpublished PhD dissertation, Leiden University.

Dall, R., Longobardi, S., Ehrnborg, C., Keay, N., Rosen, T., Jorgensen, J.O., et al. (2000).

The effect of four weeks of supraphysiological growth hormone administration on the insulin-

like growth factor axis in women and men. GH-2000 Study Group. J. Clin Endocrinol

Metab., 85(11):4193-200.

22



Dong, X. and Mathew, T. (2015). Central tolerance regions and reference regions for multi-

variate normal population. Journal of Multivariate Analysis, 134, 50-60.

Erotokritou-Mulligan, I., Guha, N., Stow, M., Bassett, E.E., Bartlett, C., Cowan, D.A.,

Sönksen P.A., Holt, R.I.G. (2012). The development of decision limits for the implementation

of the GH-2000 detection methodology using current commercial insulin-like growth factor-

I and amino-terminal pro-peptide of type III collagen assays . Growth Hormone & IGF

Research, 22(2): 53-58. (doi:10.1016/j.ghir.2011.12.005)

Genz, A. and Bretz, F. (2009). Computation of Multivariate Normal and t Probabilities.

Springer Lecture Notes in Statistics.

Genz, A., Bretz, F., Miwa, T., Mi, X., Leisch, F., Scheipl, F. and Hothorn, T. (2020).

mvtnorm: Multivariate Normal and t Distributions. R package version 1.1-1, https://CRAN.R-

project.org/package=mvtnorm.

Guttman, I. (1970). Statistical Tolerance Regions: Classical and Bayesian. Griffin: London.

Guttman, I. (2006). Tolerance Regions, in Encyclopedia of Statistical Sciences, 2nd edition,

edited by Kotz S et al., 8644-8659, Wiley: New York.

Hahn, G. and Meeker, W.Q. (1991). Statistical Intervals: A Guide t o Practitioners. New

York: Wiley.

Holt, R.I. (2009). Is human growth hormone an ergogenic aid? Drug Testing and Analysis,

1: 412-418. (doi: 10.1002/dta.58)
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