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Abstract: We investigate termination effects in aluminosilicate (AlSi) and aluminogermanate (AlGe)
imogolite nanotubes (NTs) by means of semi-local and range-corrected hybrid Density Functional
Theory (DFT) simulations. Following screening and identification of the smallest finite model capable
of accommodating full relaxation of the NT terminations around an otherwise geometrically and
electrostatically unperturbed core region, we quantify and discuss the effects of physical truncation
on the structure, relative energy, electrostatics and electronic properties of differently terminated,
finite-size models of the NTs. In addition to composition-dependent changes in the valence (VB) and
conduction band (CB) edges and resultant band gap (BG), the DFT simulations uncover longitudinal
band bending and separation in the finite AlSi and AlGe models. Depending on the given termination
of the NTs, such longitudinal effects manifest in conjunction with the radial band separation typical of
fully periodic AlSi and AlGe NTs. The strong composition dependence of the longitudinal and radial
band bending in AlSi and AlGe NTs suggests different mechanisms for the generation, relaxation and
separation of photo-generated holes in AlSi and AlGe NTs, inviting further research in the untapped
potential of imogolite compositional and structural flexibility for photo-catalytic applications.

Keywords: inorganic nanotubes; imogolite nanotubes; DFT; surface terminations

1. Introduction

Termination-induced structural relaxation and reconstruction can alter, and thus be used to
tailor, the mechanical, electronic and optical properties of nanostructured materials [1–5]. Physical
truncation of a solid-state material leaves the terminal atoms under-coordinated and incompletely
bonded, disrupting the crystalline periodicity by introducing dangling bonds on the medium-exposed
surfaces of the material. These dangling bonds and their additional interactions with the surrounding
medium can strongly alter the properties of finite-sized materials leading to structural reconstruction
as well as the emergence of unexpected optical, charge-carrier and chemical properties [6–10].

In spite of tremendous progress in the quantitative characterization and understanding of
termination effects in 2D (crystalline) materials [1–10], these kinds of studies remain extremely rare
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for 1D nanostructure materials such as nanotubes. This is mostly due to the currently unsolved
challenges in the direct quantitative resolution of the terminations of 1D materials, as well as in the
unambiguous detection, separation and interpretation of termination and “bulk-like” fingerprints in
structural or spectroscopic characterization experiments. The limitations of existing first principles or
force fields simulation methods in accurately simulating realistic models of 1D nanomaterials, ideally
with inclusion of medium effects, has further slowed down progress in this field. To contribute to
progress in this area, here we investigate modern, favorably scaling density functional theory (DFT)
implementations to explore, in silico, termination effects in open-ended aluminosilicate (AlSi) and
aluminogermanate (AlGe) imogolite nanotubes (NTs).

AlSi and AlGe NTs are structurally analogous to the naturally occurring hydrous-aluminosilicate
imogolite [11–13]. Their walls consist of a single layer of octahedrally coordinated aluminum hydroxide
(gibbsite) with pendant tetrahedral silanol (Si-OH) groups facing the tube cavity (Figure 1). The only
difference between AlSi and AlGe NTs is the substitution of silanol groups with germanol (Ge–OH)
groups. The chemical formulas of the AlSi and AlGe NTs are (Al2SiO7H4)N and (Al2GeO7H4)N,
respectively. N defines the number of radially non-equivalent aluminum atoms along the NT
circumference, and is necessarily an even number due to the zig-zag rolling of the nanotubes [14].

Synthetic imogolite NTs can be cheaply synthesized in water solution [11,15–20] with extremely
high structural and compositional flexibility [21–24]. Both sides of the imogolite NTs’ cavities
can be easily functionalized [25–28]. The synthetic flexibility of imogolite NTs leads to widely
tunable properties, with exciting reports as regards the performance of imogolite NT for chemical
separation [17,20–24,26,29], co-photo-catalyst [30], hybrid nanocomposites [31] and colloidal,
liquid-crystal applications [32–35]. In addition to these examples, the potential range of applicability
for AlSi AlGe NTs has been recently expanded via synthesis of Fe-doped imogolite NTs, capable of
absorbing visible (and UV) light. These advances have already opened up experimental research in the
potential of imogolite NTs for UV–visible light photo-catalytic applications [36–41]. For the interested
reader, Ref. [42,43] provide recent reviews of imogolite NTs.

In spite of the substantial and rapidly increasing rate of progress in the synthesis, characterization
and application of imogolite NTs, the available atomistic insights into their open-ended terminations is
limited to (not strictly atomically resolved) transmission electron microscopy images [11,19,44]. As a
result, no truly atomic understanding is currently available regarding the role of NT terminations in
the emerging electronic, optical and chemical properties of these systems. In analogy to the truncation
effects in metal-oxides [11–13], terminal relaxation in imogolite NTs may also induce properties
markedly different from the innermost, bulk-like regions of the systems.

To start exploring this subject, here we quantify the effects that physical truncation and the ensuing
structural rearrangements bring about in finite models of AlSi and AlGe NTs, using computational
methods and set-ups previously benchmarked and applied to imogolite NTs [45–50]. To the best
of our knowledge, this manuscript reports the first ever DFT characterization of the structure and
electronic properties for different models of the AlSi and AlGe NT terminations. The present results
should accordingly be a useful and timely contribution to research in the field of imogolite NTs,
especially in terms of the quantification of the extent to which the electronic properties of the peripheral
and innermost regions of imogolite nanotubes can differ, potentially leading to profoundly diverse
photo-chemical reactivity. Quantification of the structure and steric hindrance of the terminations
of imogolite nanotubes should also be a valuable addition to ongoing research into the potential
of this class of materials for nanofluidic and chemical separation applications [17,20–24,26,27,29],
as well as a necessary reference for future research in termination effects for double-walled imogolite
nanotubes [51–55]. Last but not least, the present results should also provide a valuable, currently
missing, first principles benchmark reference for ongoing work in the development of accurate
tight-binding DFT methods [56–58] or force fields parameterizations [59–62] towards the simulation of
more extended NT models and time-scales than are practically viable at the DFT level.
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2. Models and Methods

2.1. Finite Models of the NTs Terminations

A suitable model of the NT terminations needs to be necessarily finite, in contrast to the 1D
periodic models that have been routinely used in the literature for Imo-NTs so far [45,47–50,63]).
It should also be sufficiently extended to accommodate full relaxation of the NT terminations around
an otherwise unperturbed, bulk-like core region. Even though, depending on the composition and
synthetic protocol used, real imogolite NTs can be from 20 nm [15] to 1 µm long [54], the relaxation
of the tube terminations should affect only the most peripheral regions a few nm apart from the
physical truncation of the NT, as happens for 2D oxide substrates [11–13]. On this basis, instead of
simulating > 20 nm long NTs, we target the simulation-assisted identification of the smallest model
that can accommodate the full, unconstrained relaxation of the terminations around a “bulk-like” core
region unaffected by the structural and electronic rearrangements that the physical truncation of the
NT induces.

To this end, we created differently sized finite models starting from the periodic structures of
the AlGe (36 Al atoms in the NT, zigzag circumference) and AlSi (24 Al atoms) NTs optimized with
the use of periodic boundary conditions. To define and label the longitudinal size of these models,
we count the number of complete Al-hexagons present along the NT axis. Our models are accordingly
labeled hex-3, hex-5 and hex-7 (Figure 1). The overall stoichiometry and number of atoms of these
(electro-neutral) models is reported in Table 1. To eliminate electrostatic dipoles parallel to the NT axis,
which may bias the geometry optimization and electronic structure characterization, all the finite NT
models were set up with a symmetry plane passing through the central Si0 ring (Figure 1).

Table 1. Full stoichiometry for the hex-3, 5 and 7 models of the OH- and H2O-terminatied AlSi and
AlGe NTs. The total number of atoms of the model is shown in brackets.

Model OH Termination H2O Termination

AlSi hex-3 Al96Si60O396H264 (816) Al96Si36O348H264 (744)

AlSi hex-5 Al144Si84O564H360 (1152) Al144Si60O516H360 (1080)

AlSi hex-7 Al192Si108O732H456 (1488) Al192Si84O684H456 (1416)

AlGe hex-3 Al144Ge90O594H396 (1224) Al144Ge54O522H396 (1116)

AlGe hex-5 Al216Ge126O846H540 (1728) Al216Ge90O774H540 (1620)

AlGe hex-7 Al288Ge162O1098H684 (2232) Al288Ge126O1026H684 (2124)

The composition of the imogolite (zig-zag) structural unit, (Al2Si(Ge)O7H4)N, leads to two
alternative neutral terminations for the AlSi/Ge NTs. One, labeled as the H2O termination, sees the
aluminum hydroxide network of the NT truncated at the level of the Al-O bonds. The terminal
(under-coordinated) Al atoms are then saturated with H2O molecules (instead of hydroxyl groups,
–OH), which preserves the overall electro-neutrality of the system. The other, labeled as the OH
termination, sees the NT truncated at the level of the Si(Ge)-O bonds, with one extra hydroxyl (OH)
group saturating the terminal (Si)Ge atoms and maintaining the system electro-neutral. It is doubtless
that the real terminations of the NTs may be substantially more complex than the highly idealized
scenarios considered here, with defects and/or counter-ions contributing to the overall electro-neutrality
of the finite NTs [19]. Nonetheless, in the absence of any experimental or first principles characterization
of the NT terminations, the present models, although undoubtedly highly idealized, are expected to
provide original and valuable insights, stimulating further computational and experimental research
in the field.
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Figure 1. (a) Optimized geometry of the finite AlSi/AlGe NT models. The hex-3, 5 and 7 labeling 
reflects the number of complete Al hexagons along the (zigzag) NT axis. Al hexagons have been 
highlighted in black. (b) Front and side view of half of the optimized AlSi and AlGe finite models. 
The position of the tube-rings (R = 0–12) is marked by the black horizontal lines. R = 0 corresponds to 
the innermost Si(Ge) ring. The small squared panels contain a close up of the optimized atomic 
structure for the OH (left) and H2O (right) terminations of the AlSi and AlGe NT models. The 
optimized diameter of the finite NT models is reported in Å. (c) Side view of the full hex-7 models for 
the AlSi (left), and AlGe (right) NTs. The top and bottom rows reports the OH- and H2O-terminated 
models, respectively. The optimized length of the NT models is also marked in Å. The color labeling 
for the atoms is as follows: H (gray), O (red), C (brown), Al (green), Si (yellow), Ge (cyan). 
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Due to the computational challenging dimension of the systems studied, with a number of atoms 
ranging from 744 to 2232 (Table 1), their structure was relaxed by means of the linear-scaling DFT 
program ONETEP [64–67], using the same computational set-ups benchmarked and applied in earlier 
studies of imogolite NTs [47–51]. We used the PBE exchange-correlation (XC) functional [68], 
Kleinman–Bylander norm-conserving pseudopotentials [69], and a 1000 eV kinetic energy cutoff. The 
valence states of the O (Al, Si, Ge) atoms were described by means of four (nine) non-orthogonal 
Wannier functions (NGWFs) localized within an 8 Bohr radius from the atomic sites. The valence 

Figure 1. (a) Optimized geometry of the finite AlSi/AlGe NT models. The hex-3, 5 and 7 labeling reflects
the number of complete Al hexagons along the (zigzag) NT axis. Al hexagons have been highlighted in
black. (b) Front and side view of half of the optimized AlSi and AlGe finite models. The position of the
tube-rings (R = 0–12) is marked by the black horizontal lines. R = 0 corresponds to the innermost Si(Ge)
ring. The small squared panels contain a close up of the optimized atomic structure for the OH (left)
and H2O (right) terminations of the AlSi and AlGe NT models. The optimized diameter of the finite NT
models is reported in Å. (c) Side view of the full hex-7 models for the AlSi (left), and AlGe (right) NTs.
The top and bottom rows reports the OH- and H2O-terminated models, respectively. The optimized
length of the NT models is also marked in Å. The color labeling for the atoms is as follows: H (gray),
O (red), C (brown), Al (green), Si (yellow), Ge (cyan).

2.2. Computational Methods

2.2.1. Geometry Optimization

Due to the computational challenging dimension of the systems studied, with a number of
atoms ranging from 744 to 2232 (Table 1), their structure was relaxed by means of the linear-scaling
DFT program ONETEP [64–67], using the same computational set-ups benchmarked and applied in
earlier studies of imogolite NTs [47–51]. We used the PBE exchange-correlation (XC) functional [68],
Kleinman–Bylander norm-conserving pseudopotentials [69], and a 1000 eV kinetic energy cutoff.
The valence states of the O (Al, Si, Ge) atoms were described by means of four (nine) non-orthogonal
Wannier functions (NGWFs) localized within an 8 Bohr radius from the atomic sites. The valence states
of the H atoms were modeled using one NGWF only, also of 8 Bohr localization radius. For all the
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simulations, the density kernel (Kαβ) was optimized without any truncation. In all cases we used
periodic boundary conditions ensuring a vacuum-buffer of at least 15 Å in each direction. The rationale
beyond the selection of the different NTs dimensions is presented and discussed in Section 3.1. Geometry
optimizations were carried out at the quasi-Newton level, via the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) approach [70]. In these simulations, the positions of all of the atoms were optimized without
constraint, within a 0.05 eV/Å threshold for convergence on the atomic forces. Due to the absence
of any dangling bonds in the systems (Section 2.1), spin-singlet solutions were found to have lower
energy than alternative spin-polarized ones.

2.2.2. Hybrid, Range-Corrected DFT Simulations

The PBE-optimized structures were used for single-point DFT and non-local hybrid DFT
simulations, carried out by means of the CP2K package [71]. We used Goedecker–Teter–Hutter
(GTH) norm-conserving pseudopotentials [72], and the molecularly optimized (MOLOPT) DZVP-SR
basis set [73]. We also used the auxiliary density matrix method (ADMM) and the cpFIT3 basis
set to compute the exchange integrals. Hybrid DFT simulations were run using the PBE0-TC-LRC
XC-functional [74] with an exact-exchange contribution of 25% and a real-space cut-off of 8 Å,
complemented by a long-range (PBE exchange hole derived) correction [75].

3. Results and Discussion

3.1. Structural Relaxation of the Finite Alsi and AlGe NT models

To quantify the geometrical relaxation of the finite AlSi and AlGe NT models we resorted to two
structural descriptors, namely the ring-resolved average displacement (〈∆r〉), and the layer-resolved
average ring-diameter (〈D〉). 〈∆r〉 is defined as:

〈∆r(R)〉 = N−1
∑N

i

∣∣∣ri(R) − rb
i (R)

∣∣∣ (1)

ri defines the position of the ith atom of the Rth ring (Figure 1b) in the finite NT model. Conversely,
rb

i indicates the position of the same atom in the periodically repeated NT structure. N refers to
the number of atoms in a given ring. A given ring contains all the longitudinally equivalent Si (Al)
atoms and bridging hydroxyls (OH), in addition to the closest OH groups pointing to the NT ends.
Only longitudinally equivalent Si atoms and bridging OH groups were included in the evaluation of
〈∆r (R = 0)〉 for the central ring (see also Figure 1b). Terminal H2O molecules in the H2O-terminated
NTs were discarded for the evaluation of the average ring-displacement 〈∆r〉. The calculated 〈∆r〉
values define the level of relaxation of the ring by comparison to its analog in the optimized geometry
for the fully periodic model. In the following, we rely on the value of 〈∆r〉 to separate between core
and terminal regions of the finite NT model.

While 〈∆r〉 allows analysis of the longitudinal distortion in the NT finite models, the average
radial-resolved ring-diameter, 〈D(j,R)〉, quantifies the cross-section relaxation. 〈D(j,R)〉 is computed as:

〈
D(j, R)

〉
= M−1

∑M

i
di(j, R) (2)

di(j,R) refers to the diameter of the ith pair of atoms in the jth NT layer (j: H1, O2, . . . H7,
see Figure 2) in the Rth ring. As per Equation (2), 〈D(j,R)〉 is defined from the average of the calculated
di(j,R) over the M = N/2 layer-equivalent atom-pairs of species j in a given ring R.
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As seen in Figure 3a,b, with an average ring displacement (〈∆r〉) for the innermost rings larger 
than 0.1 Å, the size of the AlSi and AlGe hex-3 models is evidently insufficient to prevent the 
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hex-7 results in comparison with the adopted 10−3 Å displacement threshold (horizontal black line). 
Panels (c,d) show the layer-resolved (O2,4,6, Si3 (Ge3), and Al5, see Figure 2) average ring-diameter 
(〈D(j,R)〉, Å) for the differently sized (hex-3, hex-5, and hex-7), OH- and H2O-terminated models of 
the AlSi and AlGe NTs, respectively. Results for the periodically optimized NTs are shown as black 
points. 

Figure 2. The atomic structure of the AlSi NT (N = 24) with the labeling used for the atomic radial layers.

Figure 3 reports the values of 〈∆r(R)〉 and 〈D(j,R)〉 calculated for the hex-3, hex-5 and hex-7 models
of the AlSi and AlGe NTs. We recall that the radial layers of the NTs are labeled from the inside to the
outside: H1, O2, Si3 (Ge3), O4, Al5, O6, H7 (Figure 2).
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Figure 3. (a) Calculated 〈∆r〉 values (Å) for the OH- and H2O-terminated AlSi and AlGe models as a
function of the longitudinal (hex-3, hex-5, hex-7) extension. Panel (b) reports a close up of hex-5 and
hex-7 results in comparison with the adopted 10−3 Å displacement threshold (horizontal black line).
Panels (c,d) show the layer-resolved (O2,4,6, Si3 (Ge3), and Al5, see Figure 2) average ring-diameter
(〈D(j,R)〉, Å) for the differently sized (hex-3, hex-5, and hex-7), OH- and H2O-terminated models of the
AlSi and AlGe NTs, respectively. Results for the periodically optimized NTs are shown as black points.

As seen in Figure 3a,b, with an average ring displacement (〈∆r〉) for the innermost rings larger
than 0.1 Å, the size of the AlSi and AlGe hex-3 models is evidently insufficient to prevent the relaxation
of the tube-extremities from affecting the core region, regardless of the H2O or OH termination.

At odds with the AlSi results (〈∆r〉 ≤ 10−3 Å for the R = 0 ring), the computed 〈∆r〉 values for the
core-rings of the AlGe hex-5 models are larger than 0.05 Å. Thus, the latter systems too turns out to be
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insufficiently extended to prevent the relaxation at the NT ends from altering the structure of the NT
core region. For this condition to be fulfilled, the simulations indicate that use of the hex-7 models is
necessary, as demonstrated by the 〈∆r〉 ≤ 10−3 Å values for their innermost core rings.

The results for the layer-resolved average ring-diameter (〈D〉) for the periodic and finite systems
in Figure 3c,d reveals strong inward relaxation (up to ~3 Å) for the smallest hex-3 models, regardless
of the (AlSi or AlGe) composition and the OH or H2O termination. The structural relaxation of the
terminations becomes progressively smaller (down to ~0.25 Å) as the longitudinal size of the model is
increased from hex-3 to hex-5, and to hex-7. Notably, whereas the inward relaxation of the innermost
O2, Si3 (Ge3), and O4 atoms is systematically found for all the NT compositions and terminations
studied, the radial relaxation of the O6 atoms is not. As shown in Figure 3c,d, depending on the
AlSi or AlGe composition (thence diameter of the NT, Figure 1) and on the OH or H2O termination,
the terminal O6 atoms contribute to the relaxation of the NT ends in a qualitatively different way.
Specifically, the relaxation of the H2O-terminated AlGe hex-7 model is observed to take place via the
substantial (~0.5 Å) increase of the O6-diameter.

Overall, these results indicate that depending on the NT composition and diameter, different
(H-bonding-mediated) relaxation mechanisms can be present at the terminations of imogolite NTs.
These results invite further research in the subject, especially for less idealized models of the NT
terminations, ideally in the presence of solvent.

3.2. Relative Energy of the Finite AlSi and AlGe NT models

Calculation of the grand canonical formation energies (Eform) for the finite models of the AlSi and
AlGe NTs enables comparison of their relative energies per imogolite unit. Eform were computed as:

Eform = Etot − NEN − niµi (3)

where Etot is the total energy calculated for the finite NT model. N indicates the (integer) number of
imogolite building blocks, the energy of which (EN) was obtained from the periodically optimized
analog. ni indicates the number of atoms of species i in the system that needs to be added to the (N)
imogolite units to recover the full stoichiometry of the finite NT model (Table 1). µi is the chemical
potential of the atoms of species i. µi was taken as the DFT energy of the bulk or the molecular reference
for the given atom. These were as follows: bulk Ge and Si in the diamond structure, bulk HPC Al,
isolated singlet H2 molecule, and isolated triplet O2 molecule.

Based on the conclusion that hex-7 models are needed to accommodate the full relaxation of the
NT terminations around an unperturbed core-region, we calculated Eform only for this size of system.
The results are displayed in Table 2. Owing to the more contained distortion of the Al(OH)3 layer
(Figure 3), the H2O termination turns out to be energetically favored over the OH one, regardless
of the AlSI or AlGe composition. The substantially increased Eform difference between the H2O and
OH termination of the (wider) AlGe NT with respect to the (narrower) AlSi indicates that as the NT
diameter increases, the possibility of stabilizing the OH termination via hydrogen-bonding at the NT
rim is progressively lost. The lower formation energy for AlGe–H2O with respect to AlSi–H2O in
Table 2 suggests a more favorable hydration (per imogolite unit). This result stems from the different
H-bonding connectivity of the terminal H2O molecules with the hydroxyl (OH) groups present at the
NT rim for the AlGe and AlSi NTs (Figure 1). We reiterate that these results have been obtained for the
NT models in vacuo, neglecting solvent-induced effects, which may be substantial and majorly alter
the present calculated trends. The present result (in vacuo) should nevertheless provide a useful first
principles reference for further study of the role of solvation for the NT terminations.



Crystals 2020, 10, 1051 8 of 17

Table 2. Computed grand-canonical formation energy (Eform, eV) for the the OH and H2O termination
of the AlSi and AlGe hex-7 models.

Model OH Termination H2O Termination

AlSi hex-7 −95.923 −185.958

AlGe hex-7 −75.729 −275.15

3.3. Electronic Properties of the Finite AlSi and AlGe NT Models

In this section we quantify the effects of the termination relaxation on the electronic properties of
the finite AlSi and AlGe models. Given the neglect of solvent effects in the simulations, which may
alter the relative energies of the H2O- and OH-terminated models (Table 2), we characterized both the
OH- and H2O-terminated hex-7 models, which have been shown (Section 3.1) to accommodate the full
relaxation of the terminations around an otherwise structurally unperturbed core-region.

The PBE0-TC-LRC XC vacuum-aligned density of states (DOS) and layer-resolved projected DOS
(LDOS) for the 7-hex models are displayed in Figure 4 (AlSi) and Figure 5 (AlGe). For a more compact
visualization, the calculated valence band (VB) and conduction band (CB) edges, and the resulting
band gaps (BGs) for all the models at both the PBE and PBE0-TC-LRC levels, are combined in Figure 6.
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with the results for their fully periodic counterparts.

Regardless of the NT composition and the XC-functional considered, the OH termination results in
noticeably lower VB edges by comparison to the H2O-terminated models. The OH-induced downshift
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of the VB edge at PBE0-TC-LRC level is larger (0.78 eV on average) than for PBE (0.59 eV on average).
The OH termination also induces the downshift of the CB-edge of the NTs by comparison to the results
for the H2O-terminated models, with the calculated differences semi-quantitatively following the
results for the VB edge.

The simulations indicate that the finite models of the AlSi NTs result in slightly larger (up to
~0.2 eV) BGs than for the periodic AlSi NTs, especially in the case of the smaller hex-3 and hex-5
systems. The opposite trend is observed for the finite AlGe models, which are found to have narrower
(up to ~0.5 eV) BGs with respect to their periodic counterpart, the only exception being the 3-hex,
H2O-terminated AlGe NT. Comparison of the vacuum-aligned VB and CB edges for the finite AlGe
models (Figure 6) reveals that the BG reduction, with respect to the periodic model, is due to a larger
downshift of the CB edges (up to ~1.1 eV) with respect to the VB ones (up to ~0.7 eV). Conversely, the BG
for the smaller hex-3 and hex-5 AlSi models increases as a consequence of the termination-induced
downshift (upshift) of the VB (CB) edges.

Previous computational studies [31,33,34] of periodically repeated AlSi and AlGe NTs have shown
a clear correlation between the presence of a permanent polarization at the NT wall and the occurrence
of a separation in real-space for the VB and CB edges of the NTs. For pristine hydroxylated NTs,
this separation leads to the CB and VB edges being localized outside and inside the NT, respectively.
The availability of optimized finite models allows us to investigate whether such a separation is
maintained or modified due to the relaxation of the NT terminations. Figure 7 reports the computed
real-space distribution of the VB and CB edges for the optimized hex-7 models of the OH- and
H2O-terminated AlSi and AlGe NTs.

The calculated results indicate that the truncation of the AlSi NTs does not alter the pristine radial
separation of the VB and CB edges. This conclusion holds regardless of the OH or H2O termination of
the NT model. However, and owing to the calculated spilling of the CB edge inside the NT cavity,
this conclusion does not hold for the AlGe NTs, regardless of the H2O or OH termination.

Analysis of the real-space localization of the VB and CB edges along the NT axis indicates that,
apart from the H2O-terminated AlSi NTs, the VB and CB edges tend to accumulate at the NT ends and
the innermost regions, respectively. This result reflects the calculated upward band-bending induced
by the relaxation of the NT terminations (Figures 4 and 5). As noted above, the H2O-terminated hex-7
AlSi NT deviates from this trend with accumulation of the CB edge at the NT ends, and the spreading
of the VB edge across the whole NTs. These results reveal that control over the NT’s composition,
diameter and specific termination could enable the tuning of the radial and longitudinal separation
of the VB and CB edges in imogolite NTs. Such flexibility may in turn translate to synthetic control
over the potentially strongly different optical properties and mechanisms for the relaxation and/or
separation of photo-generated electron–hole (e–h) pairs.

Based on the calculated results, and neglecting solvent effects as well as the known presence of
point-defects in imogolite NTs [19], the photo-generated holes in AlGe and OH-terminated AlSi NTs
should accumulate at the NT ends, potentially favoring photo-oxidative processes therein. The marked
longitudinal and radial separation of the VB and CB edges in the OH-terminated AlSi NTs also suggests
that the solvent-mediated stabilization of this system may result in the beneficial separation of e–h pairs,
with e- and h-accumulation at the NT core (outer surface) and termination (inner surface), respectively.
We hope the present results, although on necessarily idealized models, will stimulate further interest in
and research into the potential of imogolite NTs for photo-catalytic applications. The markedly different
separation of band-edges calculated for periodic models of single- and double-walled imogolite AlGe
NTs [47,56] invites future research also into the quantification of the extent to which the termination
effects in double-walled AlGe NTs can be different from the single-walled analogs considered in
this study.
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3.4. Atomic Charges and Electrostatic Properties of the Finite AlSi and AlGe NT Models

In order to further characterize the termination effects in the AlSi and AlGe NTs, and to sustain
ongoing efforts in the development of continuously improved, atomic charge-based force fields for
imogolite NTs, we performed a charge analysis on all the finite models studied and their 1D periodic
counterparts. Charge analysis was carried out on the basis of three different charge decompositions
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schemes: Hirshfield [76], Mulliken [77] and Bloechel (DDAPC) [78]. In spite of quantitative differences,
all the charge analysis schemes used resulted in the same qualitative trends in terms of the longitudinal
changes of atomic charges due to relaxation of the NT ends. For the sake of compactness, we therefore
discuss here only the results for the DDAPC charges. Hirshfield and Mulliken’s results are available
upon request to the authors.

Figures S1–S4 (Supplementary Material) report ring-averaged, atom-resolved charges for all the
systems studied. For all the compositions and terminations modeled, the atomic charges for the central
rings of the hex-7 models are very similar to those for the periodic analogs, with effectively negligible
differences smaller than 0.01/0.02 a.u. This result reiterates the coexistence of fully relaxed terminations
around an unperturbed core for the hex-7 models.

Our analysis indicates that the Ge3(Si3) and Al5 atoms become less positive moving from the core
to the termination regions, with differences reaching up to 0.3 a.u. in the H2O-terminated models and
0.2 a.u. in the OH-terminated ones. Owing to the reduced positive charge for the terminal Ge3(Si3)
and Al5 atoms, the O6 and O4 atoms at the NT end lose some of their electronic density, leading to
smaller negative charges.

The terminal O4 atoms in the OH-ended models systematically present a less negative charge
with respect to the O6 ones, indicative of an accumulation of electronic density at the outer wall of the
NT termination. Conversely, the O4 atoms at NT rim in the larger hex-5 and hex-7 H2O-terminated
models are more negatively charged than the O6 ones. This behavior is particularly marked in the
hex-5 AlSiH2O case (0.05 a.u. average difference between the O4 and O6 atoms).

In combination with the corresponding structural relaxation (Figure 3), the calculated composition-
and termination-dependent redistribution of the atomic charges at the NT termination (Figures S1–S4)
results in different changes in the electrostatic potential along the NT axis (Figure 8) and in the
accumulation of the VB and CB edges in the finite NTs (Figure 7). As noted above, these changes suggest,
at a very qualitative level, potentially different mechanisms for the relaxation of photo-generated
charge-carriers in the differently terminated AlSi and AlGe NTs.
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We finally note that almost identical longitudinal trends are found for the atomic charges calculated
at both the PBE and the PBE0-TC-LRC level. Thus, the XC-functional does not seem to majorly alter
ground-state charge redistribution in these systems. Qualitatively, the most notable difference is
that the PBE0-TC-LRC functional tends to accumulate more electronic density on the oxygen atoms,
thus leading to larger positive charges on the electropositive atoms (H, Si, Ge, and Al).

4. Conclusions

To summarize, the PBE and PBE0-TC-LRC DFT simulations of differently sized, OH- and
H2O-terminated finite models of AlSi and AlGe NTs indicate that:

1. Models longer than 30 Å (1416–2232 atoms for the composition and termination considered here)
are required to accommodate the relaxation of the NT ends around an unperturbed core region.

2. In vacuo, NT termination by Al atoms coordinated to an additional H2O molecule is energetically
favored over the truncation of the NT at the terminal Si atoms in the presence of additional
hydroxyls (OH).

3. For the largest and most converged models studied, the physical truncation of the AlSi NTs
negligibly alters the calculated BG in comparison to what was obtained at the same level of theory
for the periodic systems, owing to the quantitatively similar shifts for the VB and CB edges.
Whereas H2O termination of the AlSi NTs is found to very weakly alter the energy of the VB and
CB edges with respect to the vacuum level, the truncation-induced downward shifts of both band
edges for the OH-terminated AlSi NTs is substantial (~0.9 eV).

4. In contrast to the results for the AlSi NTs, the terminations effects in the AlGe NTs narrow the
BG by ~0.3 eV (OH termination) and ~0.5 eV (H2O termination), owing to larger (up to ~1.1 eV)
downshifting of the CB edge by comparison to the VB one (up to ~0.7 eV).

5. Regardless of the OH or H2O termination, the accumulation of the VB and CB edges on opposite
sides of the NT cavity typical of the periodic models (VB: inside, CB: outside) is maintained for
AlSi NTs. OH termination of the AlSi NTs leads also to the accumulation of the VB and CB edges
at the NT ends and core, respectively. Conversely, H2O termination suppresses such longitudinal
separation of the VB and CB edges. For AlGe NTs, both the OH and H2O terminations result in
longitudinal separation of the VB and CB edges (VB: end, CB: core), albeit with partial removal of
their radial separation on different sides of the NT cavity. These changes are rationalized on the
basis of the changes that structural relaxation at the NT ends induce in the atomic charges and
electrostatics along the NT-axis.

6. The calculated composition- and termination-dependent radial and longitudinal band separation
and bending suggest potentially different optical excitations and mechanisms for the generation,
relaxation and separation of photo-generated electron–hole (e-h) pairs.

In spite of the clear limitations due to the strongly idealized nature of the models for the
NT terminations and the neglect of solvents, we hope the present results and considerations will
stimulate further research in this subject, especially considering the current lack of computational or
experiment-derived insights into the role of the NT terminations for the (photo-chemical) reactivity
of imogolite NTs. More specifically, we anticipate these results will provide valuable tools towards
future conclusive understanding of the inevitably different (photo-)chemical reactivity of the innermost
and termination regions in single- and double-walled imogolite nanotubes of tunable composition
and length. The results presented provide also a hitherto missing first principles reference for the
development and benchmarking of future tight-binding or force fields descriptions of the termination
effects in imogolite nanotubes.

Supplementary Materials: Supplementary Materials can be found at http://www.mdpi.com/2073-4352/10/11/
1051/s1. Figures S1 to S4: calculated atomic charges for all the considered models.

http://www.mdpi.com/2073-4352/10/11/1051/s1
http://www.mdpi.com/2073-4352/10/11/1051/s1
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