
UNIVERSITY OF SOUTHAMPTON

FACULTY OF ENGINEERING & PHYSICAL SCIENCES

Aerodynamics and Flight Mechanics

Implementation and Verification of LES models for SRT Lattice

Boltzmann Methods

by

Christos Gkoudesnes

ORCID ID: 0000-0001-6576-873X

Thesis for the degree of Doctor of Philosophy

March 2021

mailto:C.Gkoudesnes@soton.ac.uk
https://orcid.org/0000-0001-6576-873X




UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING & PHYSICAL SCIENCES

Aerodynamics and Flight Mechanics

IMPLEMENTATION AND VERIFICATION OF LES MODELS FOR SRT LATTICE

BOLTZMANN METHODS

by Christos Gkoudesnes

In the last two decades, the Lattice Boltzmann Method (LBM) has experienced tremen-

dous progress and rise in its application by academia and industry. This fact has led

to the development of a variety of LBM solvers, both commercial and academic. Two

critical factors for this success are its inexpensive numerical step and parallel scalability

compared to more mainstream approaches, such as Finite Volume Navier-Stokes solvers.

The main target of this project is the introduction and testing of LES models into the

academic solver AMROC, developed currently at the University of Southampton. The

three LES models to be considered are Constant and Dynamic Smagorinsky (CSMA &

DSMA) and WALE.

Initially, three wall-free test cases, namely Forced and Decaying Homogeneous Isotropic

Turbulence (FHIT & DHIT) and the Taylor-Green Vortex (TGV), were employed to

verify the algorithms of the new implementations. To further improve the understanding

of the models and their inter-coupling with LBM, besides the Standard (STA) Single

Relaxation Time (SRT) collision model, I have also used the Regularised (REG) collision

model for comparative analysis. Simultaneously, I have also investigated the effect of

calculating the strain rate locally, using the non-equilibrium part, or through a finite

difference stencil. An abundance of valuable data and conclusions has been obtained.

The next step was the simulation of the bi-periodic turbulent channel. In this scenario,

I have validated the LES models by capturing the law of the wall. A new algorithm

for imposing macrovariables in ghost cells where bounce-back-like boundary conditions

are applied has been devised in parallel. This capability is of utmost importance for

the LES models, particularly DSMA and WALE, in which the calculation of the eddy

viscosity is based on a stencil. Therefore its calculation is possible in the first fluid cell.

To further improve the ability of the solver to deal with high Re flows, a wall function

has also been implemented and tested using the bi-periodic channel case.

The final test case was a square cylinder on a flat plate at an angle of 90o. This case

aimed to verify the wall function for a body not aligned to the Cartesian mesh.
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Chapter 1

Introduction

1.1 Motivation

In recent years the lattice Boltzmann method (LBM) (Succi, 2001; Mohamad, 2011; Guo

and Shu, 2013; Krüger et al., 2016) has achieved remarkable success in a variety of sci-

entific fields. Some applications are in computational aeroacoustics (Shao and Li, 2019),

multi-scale chemical engineering (Van den Akker, 2018) and fuel cells (Xu et al., 2017),

micro-gaseous flows (Wang et al., 2016), porous media (He et al., 2019), multi-phase

flows with heat transfer (Li et al., 2016), and turbulent flows (Aidun and Clausen, 2010;

Jahanshaloo et al., 2013). There are specific advantages for each one of the above fields

that make LBM a successful choice. However, there are some common benefits that

LBM provides for any application. Its computationally inexpensive numerical scheme,

straightforward parallelisation and close to linear parallel scalability make it a powerful

alternative for subsonic flow simulations compared to the mainstream computational

fluid dynamics solvers that discretise the Navier-Stokes (NS) equations and usually em-

ploy finite volume schemes. Moreover, the utilisation of Cartesian meshes, characteristic

for the LBM, allows easy and automatic mesh generation and hence has the potential

of reducing the time for setting up a simulation considerably, particularly with complex

geometries.

There is a variety of LBM solvers available either for commercial use (XFlow; Power-

Flow; ProLB) or open-source and research-oriented, such as Palabos (Latt et al., 2020)

or OpenLB (Krause et al., 2021). One common attribute of these solvers is that they

have been developed exclusively to implement the LBM without sharing an interface

with other solvers, such as NS-based. In contrast to this condition, another LBM solver

is currently developed in the University of Southampton as a new addition to a broader

software. The AMROC (Adaptive Mesh Refinement in Object-oriented C ++) frame-

work (Deiterding, 2011) implements patch-based, structured adaptive mesh refinement

1
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(SAMR) generically for time-explicit finite volume methods. The LBM has been in-

corporated into AMROC by formulating it on cell-based data structures; treatment of

embedded boundaries with a level-set-based ghost-fluid-type approach allows for effec-

tive handling of moving solid bodies. The interface of AMROC-LBM with the AMROC

framework has ascribed the solver with two attributes. The first characteristic is that

the numerical domain is decomposed into small blocks of cells of various sizes. During

the execution of the LBM scheme itself, these blocks lack information such as their po-

sition in the global domain and they are unaware of whether they contain solid cells or

not. Consequently, one needs to ensure a smooth interface at the borders of the blocks

and, thus, a solution that is independent of their sizes. The second attribute is that the

application of boundary conditions is based on ghost cells. Particularly in the case of

embedded boundaries, AMROC LBM employs the image-based ghost method, a strategy

that has been proposed only very recently in the LBM community (Tiwari and Vanka,

2012; Krüger et al., 2016). Moreover, the utilisation of ghost cells imposes a specific

order to execute the various tasks during the numerical step. This order deviates from

the mainstream way of implementing the method (Krüger et al., 2016), adding extra

challenge in developing the software.

In the previous years, the AMROC-LBM solver has been used to simulate a variety of

applications, such as thermal convection (Feldhusen et al., 2016), a flow around a high-

speed train (Kin et al., 2016), studying of insect flight (Feaster et al., 2016), moving

bodies (Laloglu and Deiterding, 2017) and the wake behind a wind turbine Deiterding

and Wood (2016a,b). The main target of this project is to improve the capability of the

solver to deal with high Reynolds turbulent flows. To achieve this goal, a variety of large

eddy simulations (LES) models and a wall treatment approach have been implemented

and tested against benchmark test cases such as homogeneous isotropic turbulence and

bi-periodic channel. In the next section, I will discuss these topics and present the layout

of this thesis.

1.2 Detailed Summary of the Chapters

In Chap. 2, I will present LBM and its implementation in the AMROC framework.

Initially, in Sec. 2.1 I will refer to elements of kinetic theory and present the original

Boltzmann equation. In Sec. 2.2, I will report the derivation of the LBM algorithm and

the discretisation of the phase space, see Secs. 2.2.1 and 2.2.2. A critical aspect of any

LBM implementation is the choice of the collision model. In the literature, there is a

variety of proposed collision models with different levels of complexity and accuracy.

The simplest option is the standard single relaxation time (STA SRT) (Krüger et al.,

2016). One improvement of this model is the regularised SRT (Latt and Chopard,

2006). Some of the most popular is the family of Multi Relaxation Time (MRT) models

(Lallemand and Luo, 2000), the ones based on central moments (Geier et al., 2006)
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and the entropic LBM (Boghosian et al., 2001). Moreover, researchers have suggested

recently more improvements for the regularisation procedure (Malaspinas, 2015; Jacob

et al., 2018). A comparison of some of them to deal with incompressible flows can be read

in (Ezzatneshan, 2019) and turbulent simulations in (Nathen et al., 2018). Finally, a

comprehensive review from a theoretical point of view can be found in (Coreixas et al.,

2019). To avoid complexity, in this project, I will focus on the STA SRT and REG

version, see Sec. 2.2.3. Another reason for these choices is that the SRT model was

found to be less dissipative than other models and thus a better candidate for coupling

with LES (Nathen et al., 2018). In Secs. 2.2.4 and 2.2.5, I will refer to the normalisation

procedure, which rescaling lattice to physical units. Finally, I will close the chapter by

explaining how the solver treats an external force, see Sec. 2.2.6.

In Chap. 3, I will present the LES models that have been coded in the AMROC-LBM

solver. Thanks to its time-explicit numerical update and intrinsically low numerical dis-

sipation, the LBM lends itself particularly to LES of engineering applications involving

high Reynolds number flows. In literature, the majority of the proposed LES models

are based on the eddy viscosity approximation (Malaspinas and Sagaut, 2012). I detail

this approach in Sec. 3.1. The first attempt of coupling LES with LBM was the con-

stant Smagorinsky (CSMA) model (Smagorinsky, 1963) reported in (Hou et al., 1994).

Premnath et al. (2009b) improved the behaviour of CSMA in the vicinity of the wall

by combining it with the Van Driest damping function. Another proposal to increase

the accuracy of the model close to the wall was the shear-improved CSMA in (Jafari

and Rahnama, 2011). Later, Malaspinas and Sagaut (2012) presented how to integrate

the CSMA model consistently and, by extension, any turbulence model based on the

eddy viscosity approach into the LBM framework. Other researchers have improved

CSMA by extending it to the dynamic Smagorinsky (DSMA) model (Menon and Soo,

2004; Premnath et al., 2009a). Chen (2009) proposed an LES model for 2D turbulent

simulations based on vorticity-streamfunction equations. The wall-adapting local eddy-

viscosity (WALE) turbulence model (Nicoud and Ducros, 1999) has been tested in LBM

and compared with CSMA by Weickert et al. (2010). WALE was found to be superior

against CSMA with and without the Van Driest damping function in capturing the law

of the wall. Like WALE, the Vreman (2004) model has also been tested to perform bet-

ter close to the wall than CSMA (Liu et al., 2012). The Vreman model was found to be

less expensive than WALE, though it was less accurate in capturing the eddy viscosity

profile in the vicinity of the wall. Beyond the eddy viscosity approach, the approximate

deconvolution method has also been validated for LBM simulations (Malaspinas and

Sagaut, 2011). Furthermore, (PowerFlow) employs a Very LES strategy, based on the

k−ε RANS model, to deal with high Reynolds industrial applications (Li and Jammala-

madaka, 2015). Given the available LES models, we decided to implement three of them.

The first option was the standard CSMA model (Hou et al., 1994) due to its simplicity

and robustness. The model is reported in Sec. 3.2 with two available versions depending
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on how the strain rate is evaluated, locally per cell or through a finite difference sten-

cil. The second model was DSMA, discussed in Sec. 3.3. The final model was WALE,

see Sec. 3.4. I chose this model due to its successful coupling with wall treatment for

engineering applications (Simulia, 2021). Finally, I will conclude the chapter discussing

their performance in the AMROC-LBM solver in Sec. 3.5.

Chap. 4 is devoted to the boundary conditions in the AMROC-LBM solver. Initially,

in Sec. 4.1, I will divide the boundary conditions into two categories, namely bounce-

back-type and reconstruction ones (Krüger et al., 2016). The latter group estimates the

distribution functions in ghost cells based on some imposed macrovariables. On the

other hand, the former group evaluates the unknown distribution functions per lattice

direction. However, it deals only with the directions that point to the fluid domain,

meaning that the state of the macrovariables is unknown after the application of such

boundary condition. This will affect the application of the LES models that employ a

stencil to estimate the eddy viscosity, such as WALE and DSMA. To deal with this issue,

I have devised and proposed a novel algorithm to impose macrovariables in the ghost cells

when a bounce-back-type boundary is used. Its implementation can be found in Sec. 4.3.

In Sec. 4.2, I will detail how the AMROC-LBM solver implements the two types both

for domain and embedded boundaries. In the case of the embedded boundaries, the

solver utilises the image-based ghost method, as I have already mentioned. This is a

relatively new strategy for LBM solvers proposed initially in (Tiwari and Vanka, 2012)

for SRT and extended for MRT collision models in (Kaneda et al., 2014). Mozafari-

Shamsi et al. (2016) have extended the method to deal with thermal boundaries, too.

In all the above references, the simulations were focused on laminar cases. Therefore,

the AMROC-LBM solver is one of the first attempts to employ the image-based ghost

method for high Reynolds turbulent flows.

The chapter will close by presenting the newly implemented wall treatment. Indepen-

dently of LBM or NS-based solvers, wall-resolved LES (WRLES) are still expensive for

modern computers. In a rather optimistic estimation of the simulation of an airliner

wing, a grid of 1011 points with 5 · 106 time steps would have to be used (Spalart et al.,

1997). These numbers are still beyond the capability of modern computer systems, let

alone for industrial application. Consequently, a wall-modelled LES (WMLES) strategy

is vital. Choi and Moin (2012) have shown that for the simulation of a flat plate, the

number of grid points N that is needed scale as N ∼ ReLx for WMLES, N ∼ Re
13/7
Lx

for WRLES and N ∼ Re
37/14
Lx

for DNS, highlighting the importance of the utilisation

of a wall model1. Simultaneously, due to the dependency of LBM on Cartesian grids,

a significant number of cells usually needs to be deployed in the vicinity of the body in

order to approximate its shape accurately. Nonetheless, this can lead to prohibitively

large meshes. The employment of a wall function can improve this situation. One of

the first attempts of introducing a wall model in the LBM framework can be found in

1These resolutions were revisited based on the original estimations of Chapman (1979)
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the thesis of Schneider (2015). He extended the two-layer wall function of Werner and

Wengle (1993) to a three-layer approach for better accuracy in the buffer layer, and by

employing the definition of Balaras et al. (1996) for the mixing length model (Wilcox,

2006), he was able to calculate the wall shear stress. Having the wall shear stress, he

applied a Neumann boundary condition. Malaspinas and Sagaut (2014) proposed a ro-

bust way to implement a wall-modelled strategy in LBM with MRT collision model and

body-fitted grid. To estimate the velocity in the first cell, they suggested either to use

the analytical profile of Musker (1979) or resolve the turbulent boundary layer equations

in a meshless way in the first fluid cell. The eddy viscosity was also estimated by em-

ploying the mixing length model with Van Driest damping function. The algorithm was

extended to SRT collision models and non-body-fitted grids in (Haussmann et al., 2019).

Moreover, besides the Musker velocity profile, they also tested Werner and Wengle and

the three-layer profile of Schmitt (1988). The Musker velocity profile was found to be

the most accurate. Moreover, recently, this approach has been evaluated successfully

for a simulation of internal combustion against a finite volume solver of OpenFOAM

(Haussmann et al., 2020). In (Wilhelm et al., 2018) and invoking the immersed bound-

ary method for the Cartesian grid, an explicit power-law-based wall model was proposed

to deal with non-body-fitted grids. This approach has recently been extended for flows

under adverse pressure gradient, keeping its explicit formulation (Wilhelm et al., 2021).

Finally, a wall-modelled strategy based on the skin friction coefficient and specialised

for the cumulant LBM can be found in (Pasquali et al., 2020). This algorithm has been

designed to port efficiently in general-purpose graphics processing units. The implemen-

tation of the wall treatment in the AMROC-LBM solver is based on (Malaspinas and

Sagaut, 2014; Haussmann et al., 2020) and uses the Musker profile. It is described in

Sec. 4.4. To my knowledge, this is the first time that this approach has been implemented

using the image-based ghost method.

To verify the new implementations, a variety of benchmark testcases have been simu-

lated. Firstly, homogeneous isotropic turbulence (HIT) configurations were employed to

test the new LES models’ capability to capture the expected shape of the power spectra.

Chap. 5 details the three cases of HIT that I have simulated, namely forced HIT (FHIT),

decaying HIT (DHIT) and Taylor Green vortex (TGV). In Sec. 5.1, I will describe the

post-processing routine implemented to evaluate the power spectra and other turbulent

statistics during simulations. In the case of FHIT, I use a model spectrum as a reference

solution, detailed in Sec. 5.1.1. Moreover, I will also present different approaches to

scaling the spectra, namely Kolmogorov spectra, that enabled us to compare spectra of

different Reλ. Sec. 5.2 is devoted to the FHIT case. In the beginning, Sec. 5.2.1 will re-

port the employed force (Abdel Kareem et al., 2009). In comparison with other options

(Cate et al., 2006; Valio et al., 2010), this force has the advantage that it is relatively

easy to implement without the need for initialisation. I started all the simulations with

a zero velocity field. On the other hand, the final Reλ of the simulations depended on

the spatial step and thus the need for the scaling of the spectra. I will start presenting
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the data with direct numerical simulations (DNS) in Sec. 5.2.2. Comparing the two

collision models, I found that the STA model returned less dissipative energy spectra.

This outcome has also been reported in (Nathen et al., 2018). However, examining the

pressure fluctuation spectra, I noticed the STA model experienced instabilities in the

highest wavenumbers. Consequently, I concluded that the more energetic spectra in the

highest wavenumbers are due to instabilities arising from the less accurate collision step.

Moreover, I found that LBM solvers need a resolution of κmaxη ≥ 5 to simulate all the

turbulent scales. This outcome is based on the comparison with the model spectrum.

To the knowledge of the author, this is the first time that this comparison took place

for the LBM. Finally, I noticed that a value of Reλ > 150 is needed to obtain a level

of around 1.6 in the inertial sub-range. For smaller Reλ, the level was around 2, which

deviates from the theoretical value of 1.5. In Sec. 5.2.3, I will carry out a convergence

analysis for the three LES models, and in Sec. 5.2.4, I will compare them against DNS

for two resolutions. I found that the introduction of the LES models has reduced the in-

stabilities but not removed them in the case of the STA model. Moreover, I noticed that

the contribution of the LES models diminished with increasing resolution. This is an

indication of the consistency of the models. No significant discrepancies were observed

among the LES models.

Due to the grid-dependence of the employed force, I decided to simulate DHIT in Sec. 5.3.

This transition was found to be reasonably easy and efficient due to the FHIT data,

which can be utilised as initial solutions. Given the easy implementation of the force

and that it only needs around fifteen thousand iterations to obtain a fully turbulent

flowfield, I suggest this methodology as an alternative to the initialisation of DHIT

based on fabricated and rather complicated initial solutions (Yu et al., 2005b). This

testcase enabled us to verify the LES models under coarse resolutions for which DNS

failed to simulate. Three resolutions have been simulated. Examining the slopes of the

turbulent kinetic energy and dissipation range, I found that they laid in the expected

range (Huang and Leonard, 1994). Increasing the resolution, the LES results converged

to the reference DNS data, showing the expected behaviour. Moreover, in the lowest

resolution, I discovered that there was a deviation in the level of instabilities among the

LES models, appearing in the pressure fluctuation spectra, for the STA model. This

was not the case for the REG model. To further investigate this issue, I compared the

behaviour of the two versions of the CSMA. In the case of the STA model, the way the

strain rate is estimated affects the outcome, though, the discrepancies are diminished

with finer resolution. However, the REG model did not experience such behaviour.

The final HIT case is the TGV reported in Sec. 5.4. Initially, four resolutions of DNS

have been simulated for both STA and REG model. It was found that only the finest

resolution was able to correctly capture the reference data of DeBonis (2013). In the case

of the STA model, DNS failed to simulate the coarsest resolution, indicating extensive

instabilities. However, examining the evolution of the dissipation rates and the spectra,
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there is a strong indication that the REG model is more dissipative than STA. This is

in agreement with the literature (Nathen et al., 2018). For the evaluation of the LES

models, a convergence analysis with three resolutions was carried out and reported in

Secs. 5.4.1, 5.4.2 and 5.4.3. Particularly in the case of Sec. 5.4.2, an extensive comparison

of the vorticity magnitude and the eddy viscosity field took place. I will show that

both DSMA and WALE underperformed during the initial laminar phase, resulting in

excess dissipation compared to CSMA. Another important outcome is that the averaged

estimation of the constant of the model was unaffected by choice of collision model.

Finally, the comparison of the eddy viscosity fields yielded vital information for how

each model adapts to the flowfield.

The following benchmark testcase was the bi-periodic channel, discussed in Chap. 6. In

the beginning, I will report the force, and the post-processing routine that was imple-

mented to collect the mean averaged data. Afterwards, in Sec. 6.1, I will present the

WRLES case of the bi-periodic channel. All three LES models accurately matched the

reference data (Kim et al., 1987; Liu et al., 2012). Overall, the WALE model was found

to be the most accurate. Utilising the same simulation, in Sec. 6.1.1, I will evaluate

the new algorithm for imposing macrovariables in ghost cells. The results indicated

that WALE has benefited from the employment of the new algorithm. In Sec. 6.2, I

will introduce the two WMLES cases. The purpose of these cases is the verification

of the newly implemented wall treatment. Both cases would be impossible to execute

without its employment. The results will be reported in Secs. 6.2.1 and 6.3. In general,

my implementations were able to capture the first-order statistics accurately. DSMA

and, particularly, WALE have benefited significantly from the coupling with the wall

treatment, outperforming CSMA.

The final test case, which I will discuss in Chap. 7, is the experiment reported in (Faria

and Francisco, 2018; Faria et al., 2019). The purpose of this case was to test the new wall

treatment for embedded boundaries. For robustness, I ran this test case only with CSMA

and a relatively high value of the constant. The solver was able to predict reasonably

well the mean averaged streamline velocity profiles, however with some deviation in

longitudinal values.

Finally, in Chap. 8 I will summarise the outcomes of this project and suggest some future

directions.





Chapter 2

Lattice Boltzmann Method

This chapter is devoted to explaining the LBM and particularly the methodology imple-

mented in the AMROC LBM solver. In the beginning, a brief discussion about kinetic

theory and the idea behind the Boltzmann Equation (BE) will take place. Having in-

troduced the BE, I will proceed with the derivation of the LBM. In particular, I will

comment on the discretisation of the phase space followed by the implementation into

the solver. I will also present the rescaling of physical units to lattice ones, which is ex-

ecuted by the program. Finally, the force scheme that has been used during this project

will be given.

2.1 Elements of Kinetic Theory

In macroscopic continuum mechanics, the motion of a fluid can be described by a sum

of conservation laws accompanied by some phenomenological relations. This procedure

leads to the Euler and Navier-Stokes equations.

On the other side of the spectrum, a fluid, such as air, consists of a vast number of

particles/molecules. An estimation of this number can be done as

n =
p

kBT
, (2.1)

where n [m−3] is the particle number density, p [Nm−2] the pressure, kB the Boltzmann

constant defined as 1.38 10−23 m2kg s−2K−1 and T [K] the temperature. For standard

conditions, the result is of the order of 1025 particles per volume. In a microscopic

simulation, the move of these particles would be described by Newtonian mechanics.

However, the direct tracking and interactions of such a huge number are impossible even

with the current computational capacity. A statistical approach can be followed to deal

with this obstacle, leading to the mesoscopic description and the Boltzmann Equation

9
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(BE). To extend this discussion, the order of magnitude of the diameter (d) of the air

molecules (oxygen and nitrogen) is 1 angstrom (10−10 [m]). Therefore, a characteristic

collision cross-section can be estimated as σ = πd2. Knowing σ, the mean free path can

be deduced as l = (nσ)−1. The mean free path is a characteristic average length that

a particle has to travel to meet another particle. The above can be combined to create

the non-dimensional parameter Kn, Eq. (2.2), a quantity that prescribes whether fluid

can be treated as a continuum or not.

Kn =
l

L
, (2.2)

where L is a characteristic macroscopic length. For a typical engineering application, it

is of the order of 1 mm. Consequently, for the scenario of air Kn is of the order of 10−5,

much lower than the continuum limit, which is 0.1, and thus the NS equations can be

applied.

Of high importance for models based on kinetic theory is the velocity distribution func-

tion f(x, e, t), where x and e are the position and velocity, respectively, of a particle. Its

dimensions are [f ] = [n][e−3] = [s3][m−6]. In other words, it describes the possibility of

a particle to be found in position x with velocity e. Consequently, the three-dimensional

physical space is replaced by the six-dimensional phase space (three components of space

and three particle-velocity components).

A property of f(x, e, t) is that

n(x, t) =
ρ(x, t)

m
=

∞̊

−∞

f(x, e, t) ∂e1∂e2∂e3, (2.3)

where ρ is the fluid density and m is the mass of an individual particle. The kinetic

equation
∂f

∂t
+ e · ∂f

∂x
= = (2.4)

describes the evolution of f(x, e, t) in time.

The left-hand side is called the streaming operator. Its first term is the temporal deriva-

tive of f , and the second is the advection of f (spatial acceleration). On the other hand,

the right-hand side is the collision operator. The idea behind this equation is that the

temporal evolution of f is the result of the streaming of the particles and their collisions

with each other, which leads to loss or gain of kinetic energy.

The complexity of the above equation is due to the definition of the collision operator =.

The simplest way to express this operator for Maxwellian fluids (no reactive collisions)

is due to the Maxwell-Boltzmann distribution function feq that describes an equilibrium

state, or in other words, the state with the higher entropy. Therefore, as time passes,

the distribution function f will relax to the Maxwell-Boltzmann equilibria value with a
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given relaxation time τ . This method is called Single Relaxation Time (SRT) or BGK,

Eq. (2.5), based on the work of Bhatnagar et al. (1954).

= =
1

τ
(feq − f). (2.5)

2.2 Lattice Boltzmann Equation

In the previous section, I have referred to the BE Eq. (2.4) as a continuous function in

the phase space. A step towards the lattice Boltzmann Method is the discrete velocity

model of BE,
∂fα
∂t

+ eα ·
∂fα
∂x

=
1

τ
(feqα − fα). (2.6)

Here, the time and space are still continuous coordinates, but the particles’ velocities e

have been replaced by a discrete set eα with index α denoting a lattice direction. The

group of the lattice directions consists of A elements. More details about this derivation

can be found in the article of Aidun and Clausen (2010) or the textbook of Krüger et al.

(2016).

2.2.1 Discretisation of phase space

The first step is to choose the number A of the lattice directions and thus the lattice

model. Since one wants the method to simulate flows, the number of the microscopic

velocities and their directions should satisfy symmetries appearing in the NS equations

and the conservation of mass and momentum (Qian et al., 1992; Latt, 2007; Krüger et al.,

2016). The notation used to refer to a velocity set is DdQA, where d is the dimensions

of the problem. There is a variety of proposed models that can be constructed for both

2D and 3D cases. In general, increasing the number of directions A leads to a more

accurate model though this has the drawback of increasing the memory requirements

of the simulations. In two dimensions, the two most employed models are D2Q7 and

D2Q9, while in 3D D3Q15, D3Q19 and D3Q27. Numerical experiments with D3Q15

have shown that this model is unstable and inaccurate (Mei et al., 2000). Comparing the

performance of D3Q19 and D3Q27 and how they affect wall-bounded turbulent flows

can be found in (Kang and Hassan, 2013). The conclusion was that D3Q19 had returned

less accurate turbulent statistics in some cases where the flow was not aligned correctly

with the Cartesian grid, while D3Q27 has demonstrated better performance. However,

D3Q27 was found to be 30% more expensive both in memory usage and execution time.

In this project, I have focused on 3D simulations. Consequently, the D3Q19 model has

been utilised instead of D3Q27 to reduce the cost of simulations.

Simultaneously with the D3Q19 model, I will also present D2Q9 since I will use it as

a reference to demonstrate some features in the next chapters. Figures 2.1 shows the
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Figure 2.1: The lattice directions for the D2Q9 model.

discretisation of the microscopic velocities for the D2Q9 model. The vectors point to the

eight neighbour cells, where the corresponding distribution functions will be transferred

after each time step. The point at the centre indicates that this specific distribution

function will not be affected by the streaming. The velocity vectors eα and weights wα

of D2Q9 read as, (He and Luo, 1997):

eα =



0, wα =
4

9
, α = 0

(±1, 0)c, (0,±1)c, wα =
1

9
, α = 1, . . . , 4,

(±1,±1)c, wα =
1

36
, α = 5, . . . , 8.

(2.7)

The discretisation of the microscopic velocities for the D3Q19 model is illustrated in

Fig. 2.2. Examining the picture, one can distinguish the directions into two categories,

excluding the central one. The first category consists of the directions that point to the

cube phases and the second to the edges. This information will be useful for demon-

strating the proposed algorithm for imposing macrovariables at the ghost cells in Sec. 4.

For their characteristics, it yields:

eα =



0, wα =
12

36
, α = 0

(±1, 0, 0)c, (0,±1, 0)c, (0, 0,±1)c, wα =
2

36
, α = 1, . . . , 6,

(±1,±1, 0)c, (±1, 0,±1)c, (0,±1,±1)c, wα =
1

36
, α = 7, . . . , 18

(2.8)

In the case of the D3Q27, there would be eight further direction points to the corners

of the cube. These new directions would shape the third category with velocity vectors

(±1,±1,±1)c.
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Figure 2.2: The lattice directions for the D3Q19 model.

To close the discretisation of the phase space, spatial ∆x and temporal ∆t steps need to

be introduced. In the LBM framework, these two variables are related as c = ∆x/∆t,

where c is the lattice velocity (Dellar, 2013). The time-space discretisation that has been

implemented in AMROC follows the common practice of a two-step procedure (Guo and

Shu, 2013). The first step, namely streaming, is a time explicit transport equation of

the form

S : f̃α(x + eα∆t, t+ ∆t) = fα(x, t). (2.9)

The second step is the computation of the contribution of the collision operator. Intro-

ducing the term of the non-equilibrium part f̃neqα (x, t) = f̃α(x, t) − feqα (x, t), this step

can be expressed as

C : fα(x, t+ ∆t) = f̃α(x, t)− ∆t

τ
f̃neqα (x, t) = feqα (x, t) + (1− ∆t

τ
)f̃neqα (x, t).

(2.10)

The notation f̃α refers to the intermediate state of the distribution function after the

streaming and before the collision. The equilibrium function used in AMROC reads

feqα (x, t) = wαρ

[
1 +

eα · u
c2
s

+
(eα · u)2

2c4
s

− u · u
2c2
s

]
+O(u3). (2.11)

Equation (2.11) is a low-Mach number approximation (Frisch et al., 1987) of the Maxwell-

Boltzmann distribution function. As a consequence of this approximation, the Lattice

Boltzmann Equations (LBE), Eq. (2.6), can only be used for low Ma numbers, usually
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Ma ≤ 0.2, and thus incompressible flows. The notation cs is the physical speed of sound

related to c as cs = c/
√

3.

The macrovariables density ρ [kg m−3] and velocity field u [m s−1] can be calculated

through the zeroth and first moments of the distribution function yielding

ρ(x, t) =
∑
α

fα(x, t) =
∑
α

feqα (x, t), (2.12a)

ρ(x, t)ui(x, t) =
∑
α

eαifα(x, t) =
∑
α

eαif
eq
α (x, t), (2.12b)

where ui is the component of the velocity in the direction i. The kinematic viscosity ν

can be estimated as (Hénon, 1987)

ν = c2
s∆t(τ − 0.5). (2.13)

The above procedure leads to the SRT LBM model (Qian et al., 1992). The numerical

integration leads to first order accuracy in time and second order accuracy in space (Junk,

2001; Junk et al., 2005). A Chapman-Enskog expansion of the aforementioned LBM

model (Hudong et al., 1992; Hou et al., 1994) leads to the athermal weakly compressible

Navier-Stokes set of equations
∂ρ

∂t
+
∂ρui
∂xi

= 0, (2.14a)

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xj
+ ν

∂2ui
∂x2

j

, (2.14b)

where the pressure p can be evaluated from the equation of state as p = ρc2
s. Though the

D3Q19 model respects the conservation of mass and momentum, it does not preserve

the energy, and thus the current set-up is only valid for athermal flows. With the

introduction of a second distribution function to handle temperature variations, a two-

population model needs to be employed for thermal flows (Krüger et al., 2016).

Besides the zeroth and first moments of the distribution function, the second order

moments can also yield useful information (Krüger et al., 2009). The convective term of

the momentum flux tensor, appearing in NS equations, can be calculated based on the

equilibrium part as

Πeq
ij =

∑
α

eαieαjf
eq
α = ρc2

sδij + ρuiuj . (2.15)

On the other hand, the shear stress tensor σij is related to the non-equilibrium part as

Πneq
ij =

∑
α

eαieαjf
neq
α = −c

2
sτ

ν
σij . (2.16)
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From Eq. (2.16), one can also devise a relation to estimating the strain rate Sij that

reads

Sij = − 1

2ρc2
sτ

Πneq
ij . (2.17)

This last equation provides the opportunity to calculate the strain rate locally per cell

without applying an FD stencil. This will be very useful in some LES models that I will

discuss in the next chapter.

Mass and momentum conservation imposes some restrictions on the first and second

moments of the non-equilibrium part. These restrictions can be derived from Eq. (2.12)

and read ∑
α

fneqα (x, t) = 0, (2.18a)

∑
α

eαif
neq
α (x, t) = 0, (2.18b)

meaning that the collision step should not alter the macrovariables density ρ and ve-

locity field u. However, it will affect the calculation of variables such as the strain rate

Eq. (2.17).

2.2.2 Implementation in AMROC

At this point, I will comment on the implementation of the LBM algorithm in the

AMROC framework. First of all, the implementation is based on a cell-centred approach

rather than the more frequently employed node-based strategy (Schneider, 2015; Latt

et al., 2020). This behaviour has been inherited by constructing the AMR capability

in the software (Deiterding, 2011). The cell-based formulation is mandatory for AMR

algorithms to be conservative in kinetic energy and density at interfaces of different

levels.

Another important artefact of the AMROC interface is the decomposition of the domain

into smaller blocks of variable sizes. This fragmentation benefits memory allocation by

restricting access to big chunks of memory that could create traffic jams to the different

caches and registers of processors, thus reducing the overall performance. However, this

choice also affects the design and coding of the algorithms implemented in AMROC.

For the communication of blocks with each other, external ghost cells surrounding them

are utilised. The number of layers of external ghost cells depends on the needs of the

employed method.

To further assist the discussion, Algorithm 2.1 illustrates the implementation of the

numerical step for LBM. At the beginning of the numerical step, the program estimates

and imposes values, in this case, the distribution functions, in ghost cells utilised to

model boundary conditions. There are two kinds of boundary conditions. The first one
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is the domain boundaries appearing on the edges of the numerical domain. The second

kind is the embedded boundaries that represent solid bodies inside the domain. Finally,

a synchronisation also takes place to update the values of external ghost cells that are

part of other blocks.

The next step is time integration. The program parses all the blocks and executes

streaming, Eq. (2.9), and collision, Eq. (2.10), in the cells of each block. It is essential

to mention that the function Step is executed locally per block, meaning that the block

has limited information about its position on the whole domain, and it is unaware of

whether to contain or not domain or embedded boundaries. The last observation plays

a significant role in applying algorithms based on stencils, as is the case for some LES

models. Finally, the step finishes with the calculation and storage of the outputs.

It is important to comment here that the order of the various tasks, which appear in

Algorithm 2.1, deviates for the mainstream implementation (see Krüger et al., 2016, page

67). The most common order is the execution of the collision, followed by streaming and

then the application of the boundaries. This deviation will lead to significant challenges,

as I will discuss in the next chapters.

A simplified representation of the decomposition of the 2D domain into blocks can be

seen in Fig. 2.3. This part of the domain consists of four blocks. There is one layer

of external ghost cells, as the dashed lines surrounding the blocks illustrate. Blocks

1 and 2 share a domain boundary on the left, pictured with a lighter colour. On the

other hand, blocks 3 and 4 share a solid body, which is part of a circle. The cells that

represent the surface of the body are depicted in a lighter tone. During the application

of the boundary conditions, the program will impose the new distribution functions in

the regions with the lighter tone and update the one layer of external ghost cells. In

the next phase, the streaming will occur both in the interior region of blocks and the

external layer of ghost cells. This also means that it will be applied in the internal ghost

cells, the embedded boundaries, and the rest of the solid cells.

On the other hand, collision will occur only in the blocks’ internal region, excluding the

external ghost cells. However, it will also apply to all solid cells. In other words, during

the execution of the step function, blocks 3 and 4 have no information about the solid

body. From the above discussion, it is clear that it is of utmost importance to correctly

set-up the ghost cells’ values since one cannot affect them after this stage.

During this discussion, I have assumed a uniform grid. About the AMR implementation,

the interested reader can refer to (Deiterding, 2011).
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Algorithm 2.1: Execution of a numerical step in AMROC

1 Function Boundary Conditions
Result: Set-up the values in ghost cells

2 begin
3 Apply domain boundaries; /* e.g. inlet, outlet */

4 repeat
5 Apply embedded boundaries; /* e.g. no-slip wall */

6 Update ghost cells at the boundaries of blocks

7 until completion;

8 end

9 end
10 forall Processors do
11 forall Blocks in the current processor do
12 Function Step

Result: Evolve one ∆t and update the values in the current block
13 begin
14 Execute streaming; /* Eq. (2.9) */

15 Execute collision; /* STA SRT version Eq. (2.10) */

16 end

17 end

18 end

19 end
20 Function Output

Result: Store the data in binary or ASCII format
21 begin
22 forall Processors do
23 forall Blocks in the current processor do
24 Calculate the user-specific variables.
25 end

26 end

27 end

28 end

2.2.3 LBM with regularised pre-collision distribution function

In Eq. (2.17), I have shown that the non-equilibrium part of the distribution function

is related to the strain rate. Consequently, the symmetries that characterise the strain

rate should also be reflected in the non-equilibrium part. Moreover, these imposed

symmetries are vital for satisfying the conservation of mass and momentum for the

collision step, Eq. (2.18). Nonetheless, due to the discretisation of the phase space,

Eq. (2.10) has been found to underperform, particularly for high Re and high Ma

number flows. One countermeasure that has been proposed early in the history of LBM

is the regularisation of the non-equilibrium part (Latt and Chopard, 2006).

Based on the Chapman-Enskog procedure, the fα can be expanded as fα = f
(0)
α +εf

(1)
α +

ε2f
(2)
α + . . ., where for the zeroth order holds feqα = f

(0)
α . An important assumption is
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Figure 2.3: Decomposition of the numerical domain into blocks.

fneqα ≈ f (1)
α . The NS equations can be derived using the first two terms of the expansion,

namely f
(0)
α and f

(1)
α . A way to improve the accuracy of the non-equilibrium part and

avoid higher order contributions is to impose directly on it the symmetry of the strain

rate. Using Eq. (2.16), one can end up with a relation for f
(1)
α that reads

(fneqα )reg ≈ f (1)
α =

wα
2c4
s

QαijΠ
neq
ij , (2.19)

where Qαij = eαieαj − c2
sδij . This extra step will alter the computation of the collision

step as

C : (fα)reg(x, t+ ∆t) = feqα (x, t) + (1− ∆t

τ
)(f̃neqα )reg(x, t). (2.20)

This procedure leads to the REG SRT collision model. The only significant change in

the algorithm is the execution of Eq. (2.19) before the application of the collision step

as one can see in Algorithm 2.2.

2.2.4 Normalisation, from lattice units to physical ones

The user interface of the AMROC LBM solver has been designed to accept input pa-

rameters in physical dimensions. However, the algorithms run internally in lattice units.

Consequently, a normalisation procedure needs to take place to transform the data from

physical to lattice units. To achieve this goal, a variety of scaling factors are calculated.

In the case of the length, the lattice symmetry imposes that the lattice spatial and

temporal step should be one (δx = δy = δz = δt = 1). Consequently, the size of a

specific dimension in the lattice space is the number of cells Nc [−] in this direction.
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Algorithm 2.2: The function step for the REG version

1 forall Processors do
2 forall Blocks in the current processor do
3 Function Step

Result: Evolve one ∆t and update the values in the current block
4 begin
5 Execute streaming; /* Eq. (2.9) */

6 Apply regularisation; /* Eq. (2.19) */

7 Execute collision; /* REG SRT version Eq. (2.20) */

8 end

9 end

10 end

11 end

On the other hand, a length L [m] describes this dimension in the physical space. A

normalization factor L0 can be defined as

L = L0Nc =⇒ L0 =
L

Nc
= ∆x. (2.21)

The lattice symmetry also applies to the physical space meaning that (∆x = ∆y = ∆z).

The next scaling factor that is calculated by the program is the one for the velocity U0.

The user needs to specify the physical speed of sound cs as input. From theory, it is

known that the lattice speed of sound čs for the D3Q19 model equals 1/
√

3. Therefore,

one can devise the factor as

U0 =
cs
čs
. (2.22)

Combining the two factors, one can estimate the time scaling T0 as

T0 =
L0

U0
. (2.23)

In a previous section, I have mentioned that ∆x and ∆t are related through the equation

c = ∆x/∆t. The same relation stands true for the lattice units and reads č = δx/δt =

1. Combining these two, one can conclude that the physical, temporal step can be

calculated as ∆t = T0. This analysis also shows that the temporal step depends strongly

on the spatial one. Moreover, normalisation for the density is also needed. Imposing the

lattice density ρ̌ as 1, one can set the factor as ρ0 = ρ∞, i.e., the physical density of the

employed liquid. One can deduce more scaling factors with the above normalisations,

such as for viscosity ν0 = L2
0/T0.
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Finally, one needs to non-dimensionalise the relaxation time τ . However, instead of

focusing on τ , AMROC LBM calculates the relaxation frequency ω as

ω =
∆t

τ
=

c2
s∆t

ν + c2s∆t
2

. (2.24)

Examining this equation, one can conclude that the maximum value that ω can achieve

is 2. In order for this to happen, the viscosity ν should be zero. This last condition is

not valid and can lead to unstable simulations (Succi, 2001). However, if one replaces

cs and ν with the physical values of air, it is clear that ω will reach a value very close

to 2, which may lead to unstable solutions (Krüger et al., 2016).

2.2.5 Accelerating simulations through rescaling

Through normalisation, the program provides two options to accelerate the flow in-

ternally by increasing ∆t and keeping the same ∆x. The first option is available by

examining Eqs. (2.22) and (2.23). Decreasing the value of the physical speed of sound cs

will also reduce the value of the scaling factor U0. The latter effect will lead to a propor-

tional increase of T0 and the physical time step ∆t. However, there are two side-effects.

Firstly, if the value of the physical speed of sound must remain constant, such as in

aeroacoustic simulations, this trick is not valid. The second drawback is more general.

By the definition of Ma number, both in physical and lattice space,

Ma =
u∞
cs

=
u∞/U0

cs/U0
=
ǔ∞
čs
, (2.25)

it is expected that by decreasing the physical speed of sound, the non-dimensional pa-

rameter will increase. Nonetheless, this may lead to unstable simulations, as I have

mentioned previously, and thus this sets a limit.

The first option does not need to alter the coding of the previously mentioned algorithms.

This is not true for the second one, which is based on the introduction of an accelerating

parameter, called the speed-up factor s. The idea besides this parameter originates from

the definition of Re number as

Re =
u∞L

ν
=
ǔ∞Nc

ν̌
. (2.26)

One can multiply both numerator and denominator of the second fraction with s with-

out altering the Re number value. This will lead to alterations of lattice velocities as

(ǔ∞)sp = s · ǔ∞ and viscosity as (ν̌)sp = s · ν̌. However, the physical velocity u∞

should stay unaffected; otherwise, this will change the output. To achieve this goal, the



Chapter 2 Lattice Boltzmann Method 21

definition of the velocity scaling factor needs to be altered as

U0 =
u∞

(ǔ∞)sp
. (2.27)

This alteration will lead to similar behaviour as in the case of the first option. Instead of

decreasing the numerator (physical speed of sound), one can increase the denominator

(velocity in lattice space).

Another important observation is that both options will affect the estimation of the

relaxation frequency ω, Eq. (2.24). Either decreasing cs or increasing ν will lead to a

decrease of the value of ω and thus improving the stability of simulations.

2.2.6 Application of external force

Till now, I have reported the LBM implementation in AMROC without the application

of an external force. In this project, there were two cases where a force should be

employed. Therefore, in this section, I will discuss its implementation.

Guo et al. (2002a) have commented on a variety of potential implementations of force

schemes in LBM with different levels of accuracy and complexity and how they affect

the consistency of the method to replicate the NS equations. The accuracy of these

schemes is based on the characteristics of the force itself. A force field with large spatial

and temporal gradients and high values of its magnitude tends to be more inaccurate

for some implementations. The current implementation in AMROC LBM may lead to

such inaccuracies. However, during this project, the forces that I have employed are

either with smooth spatial derivatives and low magnitude, Sec. 5.2, or without spatial

derivatives at all, Chap. 7. Therefore, I kept this formula that reads

C : fα(x, t+ ∆t) = feqα (x, t) + (1− ω)f̃neqα (x, t) +
wα(eα · F)

c2
s

. (2.28)

The above formula is valid for both collision models. The force is applied after the

collision step. The implemented algorithm in AMROC can be seen in Algorithm 2.3.
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Algorithm 2.3: The function step with application of external force

1 forall Processors do
2 forall Blocks in the current processor do
3 Function Step

Result: Evolve one ∆t and update the values in the current block
4 begin
5 Execute streaming; /* Eq. (2.9) */

6 if STA SRT then
7 Execute collision; /* STA SRT version Eq. (2.10) */

8 else
9 Apply regularisation; /* Eq. (2.19) */

10 Execute collision; /* REG SRT version Eq. (2.20) */

11 end
12 Add the force; /* Last term of Eq. (2.28) */

13 end

14 end

15 end

16 end



Chapter 3

Large Eddy Simulations in

AMROC-LBM

Up to this point, a discussion has taken place about the LBM implementation without

any handling of turbulence modelling. This would force us to low Re numbers, while

real engineering applications would be prohibitively expensive. To surpass this obstacle,

three turbulence models of LES have been implemented in AMROC, namely CSMA,

DSMA and WALE. In this section, a presentation of the current available LES models

and their implementation in AMROC will be given.

3.1 LBM and Turbulence Modeling

It was the pioneering work of Hou et al. (1994) that introduced the idea of a subgrid

model for LBM based on the LES model of Smagorinsky (1963). Following the LES

approach, a space filtering operation is applied to the distribution function yielding

fα(x, t) =

˚
fα(x, t)G(x,x′)dx′. (3.1)

For the convenience and efficiency to apply it in the physical space, the box filter has

been employed as the filter function G(x,x′) that reads

G(x,x′) =


1

∆x
, |x− x′| < ∆x

2

0, |x− x′| ≥ ∆x

2
.

(3.2)

The filtering also affects other quantities, such as the velocity field, (u→ u).

In the equations presented in the previous chapter, the relaxation time τ is a global

variable depending only on the physical speed of sound cs, the viscosity of the gas ν and

23
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the time step ∆t. To introduce a sub-grid scale model in LBM, the relaxation time is

transformed into a local variable computed based on the local resolved quantities, called

the effective relaxation time τeff . There is no other change in the equations presenting

in the previous chapter. Therefore, under these conditions, the collision step reads

C : fα(x, t+ ∆t) = f
eq
α (x, t) +

(
1− ∆t

τeff

)
f̃
neq

α (x, t). (3.3)

The same alteration applies to the REG SRT model.

Hou et al. (1994) have stated that altering the relaxation time is analogous to changing

the mean free path of the particles. Invoking the mixing length theory of Prandtl,

one can argue that altering the mean free path is equivalent to changing the viscosity,

leading to the idea of a turbulent viscosity νt. From Eq. (2.24), one can show that the

calculation of τeff is

τeff =
νeff +

c2
s∆t

2
c2
s

, (3.4)

where νeff is the effective viscosity which can be estimated as

νeff (x, t) = ν + νt(x, t). (3.5)

The general equation that describes the eddy viscosity νt reads

νt = (C∆x)2OPLES , (3.6)

where C is the constant of the specific LES model. The above equation has been derived

based on dimensional analysis, and OPLES refers to the time scale of turbulence.

3.2 Constant Smagorinsky

In the case of CSMA (Smagorinsky, 1963), the eddy viscosity reads

νt = (CS∆x)2|S|, (3.7)

where CS is the constant of the model, a user-defined value usually varied from 0 to 0.2.

Examining the equation is clear that

OPCSMA = |S| =
√

2SijSij , (3.8)

with |S| the intensity of the strain rate and Sij the filtered strain rate

Sij =
1

2

(
dui
dxj

+
duj
dxi

)
. (3.9)
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LBM provides two possible ways to estimate the eddy viscosity for CSMA. The first

option is to calculate the strain rate based on a finite difference stencil. This capability

is currently available for the AMROC LBM solver. The implementation, which is scaled

on lattice units, is based on a central finite difference scheme that reads

dǔi
dx̌j
≈ ǔi+1 − ǔi−1

2
. (3.10)

The velocity field u is calculated from Eq. (2.12). Having estimated the strain rate, it is

straight forward to calculate its intensity Eq. (3.8) and then the eddy viscosity Eq. (3.7).

In this way, it is evident that communication between neighbour cells is mandatory even

during the collision step. One important note here is that the velocity field used to

estimate the strain rate is evaluated before the streaming. This is possible in AMROC

because the software provides two sets of distribution functions with the same values

at the beginning of the step function. Then, the streaming affects only one of them,

leaving the other to represent the state before it. Therefore, I employ the second set for

the evaluation of stencil calculations for the turbulence models. Though this means that

an error of the order of ∆t is introduced, this condition is vital for the correct values of

macrovariables in ghost cells that have been calculated during the boundary conditions.

However, a second option allows the algorithm to keep its locality for the collision step.

Starting from Eq. (3.4), one can substitute Eq. (3.5) and Eq. (3.7) yielding

τeff =
ν + (CS∆x)2|S|+ c2

s∆t

2
c2
s

[s], (3.11)

in physical units. As it has been shown in the previous chapter, LBM provides a way

to estimate the strain rate locally per cell using the non-equilibrium part, Eq. (2.17).

With the addition of τeff this equation now reads

Sij = − 1

2ρc2
sτeff

Π
neq
ij

[
1

s

]
. (3.12)

The Π
neq
ij is calculated from Eq. (2.16). Using the definition of the intensity of the strain

rate Eq. (3.8), one can derive

|S| = 1

2ρc2
sτ
?
L

|Πneq|
[

1

s

]
. (3.13)

It is apparent that to compute |S| one needs to know τeff which creates an implicit

problem for the calculation of the latter. However an explicit function can be derived if

one replaces τeff in the previous equation by Eq. (3.11) and solves for |S|, i.e.

|S|2 +
τc2
s

C2
S∆x2

|S| − |Πneq|
2ρC2

S∆x2
= 0. (3.14)
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The above equation is a quadratic one for the unknown |S|. Therefore, it makes sense to

keep only the positive root since intensity is by construction a positive quantity, hence

|S| =
−τc2

s +
√
τ2c4

s + 2ρ−1C2
S∆x2|Πneq|

2C2
S∆x2

[
1

s

]
. (3.15)

The final step is to substitute Eq. (3.15) into Eq. (3.11) and after some algebra one

attains

τeff =
τ

2
+

√
τ2

4
+
C2
S∆x2|Πneq|

2ρc4
s

[s]. (3.16)

The above equation is a local per cell calculation contrary to the first option. Dimen-

sional analysis confirms the consistency of the above derivations. The lattice version of

Eq. (3.16) that has been implemented in AMROC LBM solver reads

τeff
∆t

=
1

2∆t

(
τ +

√
τ2 +

18C2
S |Π̌

neq
|

ρ̌

)
[−]. (3.17)

The Algorithm 3.1 reports the implementation of the CSMA model in the AMROC

LBM solver.

Algorithm 3.1: The function step with CSMA turbulence model

1 forall Processors do
2 forall Blocks in the current processor do
3 Function Step

Result: Evolve one ∆t and update the values in the current block
4 begin
5 Execute streaming; /* Eq. (2.9) */

6 Estimate τeff ; /* Stencil Eq. (3.4) or locally Eq. (3.17) */

7 if STA SRT then
8 Execute collision; /* STA SRT version Eq. (3.3) */

9 else
10 Apply regularisation; /* Eq. (2.19) */

11 Execute collision; /* REG SRT version Eq. (3.3) */

12 end
13 if external force then
14 Add the force; /* Last term of Eq. (2.28) */

15 end

16 end

17 end

18 end

19 end
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3.3 Dynamic Smagorinsky

The implementation of the dynamic Smagorinsky model in LBM is based on the work

of Premnath et al. (2009a) and follows the idea of Germano et al. (1991) with the

modification of Lilly (1992). The target is to replace the constant CS of the CSMA

model with a function that takes into consideration local effects, (CS → CS(x, t)). The

role of this function is to modify the length scale of the model.

To create this function, I will introduce the concept of test filtering besides the standard

grid-filtering Eq. (3.1). The test filtering occurs in a coarser grid under consideration

∆̂x/∆x = 2, that is, two times the physical spatial spacing. From now on, the notation

φ̂ will refer to a test filter variable.

The grid-filter Sub-Grid-Scale (SGS) stress tensor τij can be estimated as:

τij = uiuj − uiuj . (3.18)

The first term of the Right Hand Side (RHS) represents the Reynolds stresses, which are

unknown and thus, modelling is needed. Models based on the eddy viscosity assumption

correlate the anisotropic part of the previous tensor with the strain rate Sij and a scalar

variable that is the eddy viscosity, Eq. (3.6), hence yielding

τij −
δij
3
τkk = −2νtSij . (3.19)

The notation δij refers to the delta of Kronecker. One can similarly compute an SGS

stress tensor based on the test-filter scale as

Tij −
δij
3
Tkk = −2(CS∆̂x)2|Ŝ|Ŝij = −2ν̂tŜij . (3.20)

The strong assumption that is imposed in the above equations, and is also inherited by

the DSMA model, is that the constant CS is invariant for both scales, standard filtering

and test filtering. The Tij can be computed as

Tij = ûiuj − ûiûj , (3.21)

where again, the first term of the RHS is unknown. However, one can combine Eq. (3.18)

and Eq. (3.21) to derive

Lij = Tij − τ̂ij = ûiuj − ûiûj , (3.22)

which is the Germano identity (Germano et al., 1991). In the above relation, all terms

are known. By also combining Eq. (3.19) and Eq. (3.20), one has

Lij −
δij
3
Lkk = −2C2

SMij , (3.23)
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where

Mij = ∆̂x
2
|Ŝ|Ŝij −∆x2 |̂S|Sij . (3.24)

The above two relations create a set of five independent equations for the one unknown

CS . The system is overdetermined, and thus a least square minimisation procedure can

be applied following the modification of Lilly (1992). The error function R that has to

be minimised is

R = (Lij −
δij
3
Lkk + 2C2

SMij)
2, (3.25)

which leads to

C2
S = −1

2

〈LijMij〉
〈MijMij〉

. (3.26)

In theory, 〈·〉 refers to averaging in homogeneous directions and, if the problem is sta-

tistically stationary, in time, too. Nonetheless, I apply this procedure locally in each

cell because identifying homogeneous directions in a general situation is either difficult

or impossible. This restriction can introduce some instabilities due to large local values

of the constant (Lilly, 1992). To alleviate this problem, the constant is truncated as

0 ≤ CS ≤ 0.23. Moreover, the term δij(LkkMkk)/3 has been omitted from the numera-

tor since Mij is analogous to the strain rate, which is traceless for incompressible fluids.

This statement is partially correct for the LBM, which is a weakly compressible method.

The filtering is founded on the trapezoidal filter as it is suggested by Premnath et al.

(2009a) due to its natural fitting with Cartesian grids. Below is the algorithm, divided

into three consecutive steps.

φ
?
i,j,k =

1

4
(φi+1,j,k + 2φi,j,k + φi−1,j,k), (3.27a)

φ
??
i,j,k =

1

4
(φ
?
i,j+1,k + 2φ

?
i,j,k + φ

?
i,j−1,k), (3.27b)

φ̂i,j,k =
1

4
(φ
??
i,j,k+1 + 2φ

??
i,j,k + φ

??
i,j,k−1). (3.27c)

To avoid using two layers of external ghost cells, one-sided test filtering has been coded

for the variables in the first layer of ghost cells. This formula, in the case of the left

phase of the domain, reads

φ
?
i,j,k =

1

2
(φi+1,j,k + φi,j,k). (3.28)

The above equation replaces any one of the three steps in Eq. (3.27). In that way, one

ensures that reasonable values will be calculated in the first layer of ghost cells that will

lead to accurate values of CS to the first layer of inner cells. The test-filter is applied for

the variables ui, uiuj and |S|, Sij and their multiplication. Finally, having calculated

the constant CS , Eq. (3.17) is called to compute the effective relaxation time during the

collision phase.
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Algorithm 3.2 reports the implementation of DSMA in the AMROC LBM solver. The

constant CS is estimated at the beginning of the function step, that is, before the stream-

ing. This is important because the streaming will alter the values in ghost cells that

have been calculated during boundary conditions, see Algorithm 2.1. However, in this

way, the calculation of CS lags one ∆t from its use, that is, during the collision step.

Additionally, by employing the data before the streaming, the algorithm deals with the

post-collision state of the distribution functions. This contrasts with the use of the

pre-collision values during the estimation of τeff . Moreover, the strain rate Sij and its

intensity |S|, appearing in the second term of Eq. (3.24), are estimated locally per cell

invoking Eq. (3.12). The τeff , which emerges in this equation, is calculated based on

the data of the previous time step to avoid an implicit problem. On the other hand, the

test-filtering strain rate Ŝij and its intensity
ˆ|S| are estimated based on finite differences,

Eq. (3.10), of the test filter velocity ûi.

Algorithm 3.2: The function step with DSMA turbulence model

1 forall Processors do
2 forall Blocks in the current processor do
3 Function Step

Result: Evolve one ∆t and update the values in the current block
4 begin
5 Calculate the constant CS per cell; /* Eq. (3.26) */

6 Execute streaming; /* Eq. (2.9) */

7 Estimate τeff ; /* Eq. (3.17) */

8 if STA SRT then
9 Execute collision; /* STA SRT version Eq. (3.3) */

10 else
11 Apply regularisation; /* Eq. (2.19) */

12 Execute collision; /* REG SRT version Eq. (3.3) */

13 end
14 if external force then
15 Add the force; /* Last term of Eq. (2.28) */

16 end

17 end

18 end

19 end

20 end

3.4 The WALE model

The idea of the DSMA model was to replace the constant CS in Eq. (3.6) by a local func-

tion. On the other hand, the idea in the WALE (Wall-Adapting Local Eddy-viscosity)

model is to replace |S| with a more advanced operator that can handle the damping of

the eddy viscosity in the vicinity of the wall (Nicoud and Ducros, 1999) effectively. The
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new operator is a function both of the strain rate Sij and the rotation rate Ωij as can

be seen below:

OPWALE =
(JijJij)

3
2

(SijSij)
5
2 + (JijJij)

5
4

, (3.29)

where Jij reads

Jij = SikSkj + ΩikΩkj −
1

3
δij(SmnSmn − ΩmnΩmn). (3.30)

Therefore the eddy viscosity can be computed as

νt = (Cw∆)2OPWALE , (3.31)

where Cw is the constant of the model and is equal to 0.5. To compute the two rates,

central finite differences are used for the derivatives, Eq. (3.10). Similar to the CSMA

model based on stencil, the τeff is estimated through Eq. (3.4) using Eq. (3.5) for the

effective viscosity. Furthermore, the algorithm is based on the second set of distribution

functions unaffected by the streaming. Consequently, an error of order ∆t is also intro-

duced for the case of WALE. Compared to the DSMA model, the WALE model does

not need truncation corrections besides the situation where all the velocities are zero,

i.e. during the initialisation of the flow field, in which scenario nut is set to zero. Other

researchers have investigated the accuracy of this model with the LBM; see for instance

(Weickert et al., 2010; Liu et al., 2012).

Algorithm 3.3: The function step with WALE turbulence model

1 forall Processors do
2 forall Blocks in the current processor do
3 Function Step

Result: Evolve one ∆t and update the values in the current block
4 begin
5 Execute streaming; /* Eq. (2.9) */

6 Estimate τeff ; /* Eq. (3.4) */

7 if STA SRT then
8 Execute collision; /* STA SRT version Eq. (3.3) */

9 else
10 Apply regularisation; /* Eq. (2.19) */

11 Execute collision; /* REG SRT version Eq. (3.3) */

12 end
13 if external force then
14 Add the force; /* Last term of Eq. (2.28) */

15 end

16 end

17 end

18 end

19 end
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3.5 On the performance and implementation of turbulence

models in AMROC

Besides the estimation of the constant CS(x, t) in the case of DSMA, the only difference

in performance among the LES models is due to the calculation of τeff . With a local

estimation of τeff , CSMA is the only model that keeps the locality of the algorithm

during the collision step and thus is the fastest option. CSMA with stencil and WALE

need to communicate with neighbour cells, leading to cache misses and thus reducing

the performance. The size of blocks can improve this condition. In one case, WALE

was 17% more expensive than local CSMA (Gkoudesnes and Deiterding, 2021). On

the other hand, for the estimation of CS in DSMA, the algorithm forces the solver to

parse the domain multiple times to estimate the test filtered quantities. This condition

makes DSMA the most expensive model by almost doubling the wall time needed to

run a simulation compared to the local CSMA. However, the extra cost tends to be

accompanied by more accuracy, as discussed during the results in the next chapters.

All the above models affect the simulation by altering the relaxation time on a local

basis. Nonetheless, in the literature, one can find other ways to implement turbulence

models in LBM. There is the possibility to add the effect of the turbulence modelling

through either an external force (Malaspinas and Sagaut, 2012)or a mixed way (Xia

et al., 2015). These two methods enable a model that is not based on the Boussinesq

assumption incorporated into LBM (Xia et al., 2015). There is also the approximate

deconvolution model with its specific implementation in LBM (Malaspinas and Sagaut,

2011).





Chapter 4

On the Boundary Conditions in

AMROC LBM

The aim of this chapter is threefold. Initially, I will mention briefly two general types of

boundary conditions that LBM employs to model boundaries. Then I will report how

the AMROC LBM solver treats and applies boundaries. Additionally, I will present two

domain boundaries that have been implemented during this project. The purpose of

these open boundaries is to model inlet and outlet conditions.

Secondly, I will show the proposed algorithm for imposing macrovariables in ghost cells.

Some boundary conditions do not impose the quantities density ρ and velocity field u

in ghost cells directly. The absence of accurate macrovariables in those cells can affect

the accuracy of the LES models based on a stencil.

The final section will discuss the newly implemented wall treatment and its integration

into the solver. Contrary to the other boundary conditions, the wall treatment is the

only boundary in the AMROC LBM applied to the first layer of fluid cells avoiding the

ghost cells. I will also comment on how this algorithm interacts with the LES models;

see Chap. 3.

4.1 The two Types of Boundary Conditions for LBM

The purpose of a boundary condition in the LBM framework is to estimate the missing

distribution functions fα that have to be propagated either from outside of the domain

or from a solid surface to a fluid cell. This situation is illustrated in Fig. 4.1 for the D2Q9

lattice model as an example. The vertical red line represents the boundary. Any cell

that lies in the grey area, with coordinates xBC, is a boundary cell, and thus one needs

to take action to calculate the coloured distribution functions. The left image shows

the state of the distribution functions exactly after applying the boundary conditions.

33
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That is, the coloured distributions have just been estimated and are known. The right

image describes the situation after the streaming step. The coloured distributions have

been propagated, and unknown values occupy their previous positions. The application

of the next boundary phase will recalculate them before the next streaming step.

i− 1

j − 1

j

xBC

j + 1

i

xF

i− 1

xBC

i

xF

Streaming

Figure 4.1: Sketch of domain boundaries for D2Q9 model in the AMROC LBM
solver. The vertical red line represents the domain boundary. The left and
right pictures displace the states of the distribution functions before and after
the streaming, respectively.

In a solver based on NS equations, there would be three macrovariables, namely density

and two velocities, that should be imposed or calculated at the boundary cell. How-

ever, in the case of LBM, there is more degree of freedoms (distribution functions), thus

creating an underdetermined system of equations (moments) without a unique solu-

tion. One can distinguish the boundary conditions in LBM into two categories based on

whether they are applied directly to the distribution functions or tried to impose a set of

macrovariables (Malaspinas and Sagaut, 2014). The first case, I call it bounce-back-type,

estimates the unknown distribution functions per lattice direction and is based on reflec-

tions of the distribution functions on the boundary line. For instance, the calculation

of the blue direction in Fig. 4.1 is independent of the calculation of the red one. Some

examples of this kind are the standard bounce-back boundary conditions for modelling

slip and no-slip wall (Krüger et al., 2016; Bouzidi et al., 2001). A critical characteristic
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of this type is that it does not affect the lattice directions outside of the domain or to

other solid cells. Therefore, the resulting macrovariables in these cells are unknown after

applying the boundary condition. In LES models based on a finite difference stencil,

this situation would lead to inaccurate estimation of eddy viscosity close to boundaries.

To avoid this issue, the author has devised a new algorithm that enables the users to

employ the rest of the distribution functions to impose macrovariables by manipulating

the moments Eq. (2.12). I will present it in a later section of this chapter.

The second category of boundary conditions in LBM focuses on the reconstruction of

the distribution functions fα(xBC) in boundary cells. The formula that describes this

approach reads

fα(xBC) = feqα (xBC) + fneqα (xBC). (4.1)

The basic idea is to estimate the equilibrium functions feqα (xBC) based on macrovariables

that are either imposed or calculated depending on the type of boundary condition. The

next step is to estimate the non-equilibrium part fneqα (xBC) usually through an extrapo-

lation scheme from neighbouring fluid cells (Zhao-Li et al., 2002; Guo et al., 2002b). The

second step is not mandatory for the boundary to be effective. However, without apply-

ing it, the boundary is restricted to be only first order accurate (Krüger et al., 2016),

in contrast to the second order of accuracy of the numerical scheme, Sec. 2.2.1. More-

over, by construction, the algorithms of this kind of boundaries impose macrovariables

automatically in boundary cells. Therefore, no additional action is needed to improve

the accuracy of LES.

4.2 Boundary Conditions in AMROC-LBM

As mentioned before in Chap. 1, the application of boundary conditions in AMROC is

based on ghost cells. AMROC provides two distinct functions, see Algorithm 2.1, one for

the application of domain boundaries and the other for the embedded cells representing

a solid body. In the case of the domain boundaries, conditions, such as slip and no-slip

wall, are based on a bounce-back-type strategy. The implementation is similar to the

full-way bounce-back method reported in (Krüger et al., 2016, chap 5). The concept of

this boundary implementation in the AMROC-LBM solver is depicted in Fig. 4.2. The

sketch describes the time evolution of a specific lattice velocity that crosses the domain

boundary. Initially, at t−∆t the streaming step will propagate the distribution function

to the ghost cell located at xBC. As mentioned before in Sec. 2.2.1, the collision step

is not applied in the ghost cells, thus leaving its value unaffected at t − ∆t. At the

beginning of the next step t, the boundary condition will be applied at the opposite

direction, which points to the fluid cell at xF. Finally, the streaming will proper the

new distribution function back in the fluid domain. One significant difference between

my implementation and the one reporting in (Krüger et al., 2016, chap 5) is that they
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propagate the post-collision distribution function while I stream the pre-collision value.

At the next step, they combine collision and boundary condition to alter the distribution

function at the ghost cell. Finally, they stream back to the fluid domain the post-collision

value while streaming the pre-collision one, which will collide at the fluid cell.

xF xBC

t−∆t

xF xBC

t

xF xBC

t

xF xBC

t+ ∆t

Streaming Boundary Streaming

Figure 4.2: Application of the full-way bounce-back method in AMROC LBM
for the modelling of slip and no-slip wall at the domain boundaries.

On the other hand, open boundaries such as inlet and outlet are applied following the

reconstruction approach, Eq. (4.1). In the case of an inlet boundary, the vector of

velocities is given, and the density ρ(xBC) at the boundary is unknown. Therefore, the

density of the first neighbour normal fluid cell ρ(xF) is extrapolated as

ρ(xBC) = ρ(xF). (4.2)

Examining Fig. 4.1 for example, the fluid cell that lies in the normal direction of the

ghost cell with coordinates (i − 1, j) is the cell at (i, j). In the case of the outlet, the

density ρ(xBC) is imposed, and the velocity field needs to be extrapolated from the

normal neighbour fluid cell. Following the same methodology, the estimation of the

velocity field in the ghost cell is

u(xBC) = u(xF). (4.3)

The macrovariables in the fluid cell [ρ(xF),u(xF)] can be calculated by invoking Eq. (2.12).

Having obtained [ρ(xBC),u(xBC)], one can proceed to estimate the equilibrium part

feqα (xBC) of the distribution function by applying Eq. (2.11).

For the extrapolation of the non-equilibrium part fneqα (xBC), two models have been

implemented during this project. The first strategy has been proposed in (Zhao-Li

et al., 2002) and reads

fneqα (xBC) = fα(xF)− feqα (xF) = fneqα (xF). (4.4)

The only difference with the reference is that I extrapolate the post-collision values and

not the pre-collision. The above methodology is of second order accuracy aligning with
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the order of the method, Sec. 2.2.1. Though this strategy recovers the density and

the momentum correctly, it does not correct the stress tensor Πneq
ij . One way to fix

this is to apply the regularisation procedure, see Sec. 2.2.3, as proposed in (Latt et al.,

2008). Since they applied the boundary on the first fluid cell, they used the method

proposed in (Zou and He, 1997) to estimate the missing non-equilibrium distribution

functions locally in this cell. In my case, I extract information from the neighbour fluid

cell where the non-equilibrium part is known. Consequently, one can again employ the

extrapolation scheme of (Zhao-Li et al., 2002) and the final formula reads

fneqα (xBC) =
wα
2c4
s

QαijΠ
neq
ij where, Πneq

ij =
∑
α

eαieαjf
neq
α (xF). (4.5)

This boundary yields no benefits when it is combined with the REG collision model

seeing that the post-collision value of fneqα (xF) is already regularised. Finally, having

calculated the non-equilibrium part either through option one, Eq. (4.4) or two Eq. (4.5),

one can invoke Eq. (4.1) to reconstruct the distribution function at the ghost cell.

In the case of the embedded boundary conditions, the AMROC-LBM solver employs the

image-based ghost method, (see Krüger et al., 2016, chap 11). Again, one can categorise

these boundary conditions into bounce-back-type and reconstruction. The most accurate

bounce-back-type condition implemented into the solver is the Bouzidi model, (Bouzidi

et al., 2001). The author has not implemented this boundary, and it is not used in any

test case in this thesis, and thus it will not be presented here. However, the interested

reader can learn about its implementation in (Gkoudesnes and Deiterding, 2021).

The reconstruction boundaries follow the same idea as in the case of the domain bound-

aries presented above. Nonetheless, an essential difference is how one estimates the

extrapolated values, both macrovariables and non-equilibrium part, through the image

point. The approach followed by AMROC-LBM solver is similar to the strategy re-

ported in (Tiwari and Vanka, 2012). To assist the explanation of the algorithm, Fig. 4.3

displays two possible scenarios of embedded boundaries and how the solver deals with

the estimation of the values at the image point X. The algorithm can be decomposed

into steps:

1. The first step consists of distinguishing fluid and solid cells. The AMROC frame-

work provides the level-set mechanism based on which every cell keeps track of its

distance to its closest solid surface. For instance, in Fig. 4.3, for the cell K, this

distance is the length KM. Moreover, this distance has a sign which depends on

whether the cell exists in the enclosed region from the solid surface or not. Any

cell centre in the enclosed region has a negative sign, and the algorithm treats it as

a solid cell. The level set can also be used to estimate the normal to the wall (see

Deiterding, 2011, chap 3). Having both the distance and the normal, the image



38 Chapter 4 On the Boundary Conditions in AMROC LBM
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Figure 4.3: Two scenarios for the estimation of the image point X. The region
described by the blue dashed line represents the bilinear interpolation.

point coordinates can be located at the same distance in the opposite direction of

the solid surface.

2. In the general situation, the image point will not coincide with the centre of a

fluid cell. Therefore, an interpolation scheme is utilised to estimate the values at

that point. AMROC employs the bilinear spatial interpolation, and its formula

can be found in (see Deiterding, 2011, chap 3). One crucial observation is that,

in the left image, AMROC will use the information in all four corners of the blue

rectangle for the interpolation. However, in the right image, where one corner is

a solid cell, the interpolation will see only the three fluid corners and thus, the

scheme will transform into an extrapolation approach. This approximation is less

accurate than the approach proposed in (Tiwari and Vanka, 2012), where the solid

corner is replaced by the point M′ at the solid surface.

3. When AMROC executes the image point algorithm, it has no access to the LBM

equations, such as moments Eq. (2.12). Consequently, the interpolated values at

the image point are the vector of state, that is the distribution functions fα(x, t).

This situation is in contrast to the strategy in (Tiwari and Vanka, 2012), where the

interpolated values are the macrovariables, density and velocity field, estimated in

the four corners. In this case, the macrovariables at the image point are esti-

mated based on the interpolated values of the distribution functions during the

execution of the embedded boundaries, see Algorithm 2.1. Having the interpo-

lated macrovariables, one can also estimate the interpolated equilibrium part of

the distribution function by using Eq. (2.11) at the image point.

4. The macrovariables at the solid cell is a function of the interpolated values at

the image point. The specific boundary condition dictates the formula of the

equations. Having the macrovariables, one can calculate the equilibrium part

of the distribution function invoking Eq. (2.11), at the ghost cell. Afterwards,

the non-equilibrium part at the image point can be estimated by subtracting the

interpolated equilibrium part from the interpolated distribution functions. Then,
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the non-equilibrium part of the distribution function at the ghost cell can be

calculated using Eq. (4.4) or Eq. (4.5). Finally, the reconstruction of the ghost

cell’s distribution function is due to Eq. (4.1).

The above strategy has also been applied to implement the wall function, as I will discuss

in Sec. 4.2.

4.3 An Algorithm for Imposing Macrovariables in Ghost

Cells with Bounce-back Boundaries

As mentioned before in Chap. 3, various LES models, such as WALE and DSMA, esti-

mate the eddy viscosity based on a stencil. Moreover, it has been also commented that

during the execution of the numerical scheme update step, the solver cannot distinguish

between fluid cell and solid cell. Consequently, the phase of the boundary conditions

discussed in the previous section is of utmost importance to secure correct macrovari-

ables in each ghost cell. In the case of the reconstruction boundaries, this condition is

automatically guaranteed. However, this is not the case for the bounce-back-type bound-

aries. To resolve this issue, I propose here a new algorithm that can be called after

the application of a bounce-back-type boundary and will ensure that invoking the mo-

ments, Eq. (2.12), it will result in correct macrovariables in ghost cells. The algorithm

is decomposed into steps as follows:

1. The first step of applying this algorithm is the identification of the free lattice

directions, that, is, the directions that are not affected by the boundary condition

and point either outside of the domain or to other ghost cells. I index this group

of lattice directions with l. I will refer to the directions that participate in the

boundary condition as non-free ones, and their notation will be k. Assuming the

groups of non-free and free directions have K and L elements, I have A = K + L,

with A = 19 for the D3Q19 and A = 9 for D2Q9 lattice models. For instance, in

the case of the ghost cell at (i− 1, j) in Fig. 4.1, the three coloured directions are

the non-free group and the rest six directions the free group. For more clarity, this

situation is also depicted in the left image of Fig. 4.4 with the three black non-free

and six red free directions.

2. Based on the non-free group, one can estimate a partial density and velocity field

as

(δρ)K =
∑
k

fk, ∀ k ∈ K, non-free directions, (4.6a)

(δρu)K =
∑
k

ekfk, ∀ k ∈ K, non-free directions. (4.6b)
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Assuming the macrovariables density ρ0 and velocity field u0, the idea of the algo-

rithm is to use the free directions to impose them in the ghost cell. However, the

only available equations are the moments, Eq. (2.12), three for 2D and four for

3D cases. The scenario of Fig. 4.4 shows that the unknown variables, six free dis-

tributions, outnumber the equations. This situation leads to the underdetermined

problem

(δρ)L = ρ0 − (δρ)K =
∑
l

fl, ∀ l ∈ L, free directions, (4.7a)

(δρu)L = ρ0u0 − (δρu)K =
∑
l

elfl, ∀ l ∈ L, free directions. (4.7b)

An efficient way to resolve this issue is using the equilibrium function Eq. (2.11),

which the imposed macroscopic quantities can estimate, ρ0 and u0. In this way, I

can divide the group of the free directions L into two smaller groups. The first

group, called the equilibrium E, consists of the distribution functions in which the

equilibrium values will be imposed. The second group is called the moments M

and consists of the distribution functions that will be calculated in such a way

that invoking Eq. (2.12) will results in the expected macrovariables, ρ0 and u0.

For this to be possible, the group M must have as many elements as the number

of the equations, that is, M = 3 for 2D and M = 4 for 3D. In other words, the

restriction for this algorithm to be applicable is L ≥M , that is, the number of the

free directions must be equal or larger than the equations of moments. Moreover,

it is apparent that E = L −M . Another important comment is that the central

distribution, f0, must always belong to the moment group. Given the indexing of

the lattice directions in AMROC-LBM, see Sec. 2.2.1, an easy way to determine

the additional elements of the group M is to pick the last, based on indexing,

available M − 1 elements of the group L. The right image of Fig. 4.4 illustrates

this strategy. The last available element is f8 and has been flagged as the group’s

second element M together with f0. On the other hand, f7 is not available, and

thus the final pick is f6.

3. Having identify the elements of M , the next move is to impose the equilibrium

values in the elements of the group E, that is f1 → feq1 , f2 → feq2 and f4 → feq4 .

One can also calculate partial density and velocity field as

(δρ)E =
∑
e

fe, ∀ e ∈ E, equilibrium directions, (4.8a)

(δρu)E =
∑
k

eefe, ∀ e ∈ E, equilibrium directions. (4.8b)
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4. At this point, I end up with a system of equations that is now solvable. Starting

from the momentum equation, it reads

(δρu)M = ρ0u0 − (δρu)K − (δρu)E =
∑
m

emfm ∀ m ∈M \ {f0}. (4.9)

This linear system is of the type b = Af , with the vector b the values of the

partial moments (δρu)M and the equivalent matrix A the elements of the lattice

velocities em. Solving this system, with the exemption of the central value f0, one

will obtain all the unknown distributions, in this case, f6 and f8. To calculate the

central value, initially, one has to estimate the partial density

(δρ)M−1 =
∑
m

fm, ∀ m ∈M \ {f0}. (4.10)

The final step is to apply the equation of the zeroth moment as

f0 = ρ0 − (δρ)K − (δρ)E − (δρ)M−1. (4.11)
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Figure 4.4: Illustration of the new algorithm for imposing macrovariables for the
D2Q9 lattice model. The left image shows the ghost cell state before applying
the new algorithm and the right image after it.

In the case of the D3Q19 model, the situation is more complicated. Figure 4.5 presents

the state of the distribution functions after applying the new algorithm. I assume that

this ghost cell has a domain boundary on the top phase, hence the five non − free

directions. The strategy of determining the momentum group by parsing the free

directions in descending order is crucial in this case. For instance, if one picks instead

of f14 the distribution function f4, then the equivalent matrix A in the linear system

of equations in Eq. (4.9) will be singular, since one column will be zeroes. Therefore,
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the descending order restricts any lattice direction pointing to a phase, Eq. (2.8), to

participate in the momentum group and thus avoiding the singular matrix. In this way,

this algorithm can be applied without extra consideration for embedded boundaries, in

which case the number of free directions may depend on the location of the ghost cell.

On the other hand, only directions point to edges in the group M leads to a matrix A

that needs factorisation. Consequently, to resolve the arising system of 3 × 3 equations,

an LU decomposition strategy is employed. In the case of D3Q15 or D3Q27 lattice

models, by picking at least one available diagonal direction, one can guarantee that the

matrix A is not singular.

It is important to comment that though the proposed algorithm succeeds in impos-

ing macrovariables, it cannot impose a correct non-equilibrium part of the distribution

function. It is to be expected that the way the boundary condition itself has imposed

the distribution functions and the new algorithm, the conservativeness of the method,

Eq. (2.18), does not hold any more. The application of the collision step in such a cell

will yield an error. However, in the AMROC-LBM solver, we do not rely on collision

in ghost cells, so this inaccuracy does not affect the implementation. As for the LES

models, WALE expects to see correct macrovariables in adjacent cells and ignores the

values of the non-equilibrium part.

Consequently, the proposed algorithm is sufficient for the WALE model. On the other

hand, the estimation of the constant of DSMA needs accurate values of the non-equilibrium

part besides macrovariables in neighbour cells. Therefore, the proposed strategy im-

proves the DSMA model’s performance but cannot entirely eliminate the error close to

boundaries.

Up to this point, I have presented the way to impose macrovariables to a ghost cell

in the case of a bounce-back boundary. The next question is how to estimate these

macrovariables, density ρ0 and velocity components [u0, v0, w0]. The answer to this

question depends on the boundary condition. Currently, the implementation categorises

the boundaries into three types, namely slip, no-slip and sliding wall. The last option is

a boundary with a moving frame parallel to the solid surface.

For all three options, the density ρ0 at the boundary is extrapolated based on Eq. (4.2).

In an embedded boundary, one extrapolates the density estimated by the interpolated

distribution functions at the image point. Since all three types describe wall boundaries,

the normal velocity at the solid surface should be zero. To describe the step, I will assume

that the normal velocity aligns with v0. To achieve the zero normal velocity at the wall,

I impose v0 = −vF , where vF is the velocity normal to the wall at the normal neighbour

fluid cell.

The other two components, u0 and w0 are extrapolated invoking Eq. (4.3) in the case of

the slip wall. On the other hand, for the no-slip and sliding wall boundaries, I apply the

wall function algorithm, see Sec. 4.4. The goal is to estimate the wall shear stress τw
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Figure 4.5: The lattice directions for the D3Q19 model.

using data from the normal neighbour fluid cell. Having estimated τw, one can calculate

the velocity derivative normal to the wall at the solid surface as

∂U

∂n
=

τw
ρ0ν

. (4.12)

The notation U refers to the streamwise velocity, which is the vector sum of the com-

ponents in x and z directions. From this definition, one can estimate the streamwise

velocity UF in the fluid cell. Approximating the above derivative with central finite dif-

ferences between ghost cell and fluid cell, the only unknown is the streamwise velocity

in the ghost cell UBC . Having calculated UBC , one can decompose it into its Cartesian

components u0 and w0. In the case of the sliding wall, I initially subtract the components

of the wall’s velocity from the velocities in the first fluid cell. In this way, I transform the

absolute frame to a relative frame of reference in which the wall appears static. Then I

can invoke the wall function procedure. In the end, I add back the components of the

wall velocity to the values at the ghost cell to return to the absolute frame of reference.

For curved boundaries, one can rotate the Cartesian system of coordinates to align one

axis with the normal wall direction. All the above procedures can then be executed

in the new reference system using the values at the image point. In the end, it is

straightforward to estimate the Cartesian components. Finally, Table 4.1 summarises

the methodology applied for each boundary condition.
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slip wall no-slip wall sliding wall

ρ0 extrapolation extrapolation extrapolation

u0 extrapolation wall function wall function?

v0 opposite sign opposite sign opposite sign

w0 extrapolation wall function wall function?

Table 4.1: The estimation of the imposed macrovariables for bounce-back-type
boundaries. The table describes the case for the y-axis parallel to the normal
direction. The notation ? indicates the application in a relative frame.

4.4 Wall Treatment

The wall treatment that has been implemented in the AMROC-LBM solver follows the

approach proposed in (Malaspinas and Sagaut, 2014; Haussmann et al., 2019). The

difference between this boundary and the boundaries presented in the previous sections

is that the wall treatment is applied to the first layer of fluid cells and not in ghost

cells. The situation is depicted in Fig. 4.6 for both domain and embedded boundaries.

In the case of the domain boundary, since I apply the wall treatment in position xF1,

I now need access to the second layer of fluid cells at position xF2. Similarly, for the

curved boundaries, the image point is now further inside the fluid domain. Its position

has been estimated as two times the distance to the wall MF1 in the normal to the wall

direction.

xF1
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Figure 4.6: The application of the wall treatment in AMROC-LBM for domain
boundaries (left) and embedded boundaries (right).

There is a vital discrepancy between the implementation in AMROC-LBM solver and the

references (Malaspinas and Sagaut, 2014; Haussmann et al., 2019). The difference lies

in the order of the execution of the various functions during a time step. In references,

it is proposed to start the step with collision, followed by streaming and then applying

the wall treatment. However, this order deviates from the current implementation in

AMROC, see Algorithm 2.1. The result is that the wall treatment in the AMROC-

LBM solver deals with the post-collision state of the distribution functions fα(x, t).
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Nonetheless, (Malaspinas and Sagaut, 2014; Haussmann et al., 2019) deal with the post-

streaming state f̃α(x, t). Discussing the algorithm, it will be apparent that this alteration

will affect the outcome. As mentioned before in Sec. 2.2.1, the collision, Eq. (2.10),

should not affect the values of the macrovariables. However, it does change the values

of the non-equilibrium part fneqα (x, t).

To simplify the explanation of the method, I will focus on a domain boundary; see the left

image of Fig. 4.6. The algorithm of the wall treatment is summarised in Algorithm 4.1.

It consists of several steps that read:

1. The first step is the estimation of the macrovariables [ρF2,uF2] in the second fluid

cell at position xF2.

2. The idea of this wall treatment is based on the concept of the canonical bound-

ary layer (Malaspinas and Sagaut, 2014). This boundary layer theory is intrinsic

2D. Consequently, a coordinate system (ex′ , ey′) where one axis is aligned with

the streamwise direction, ex′ , and the other axis with the normal n to the wall

should be constructed and employed. The vector basis parallel to the normal can

be found as ey′ = −n, while one can proceed to estimate the other vector basis as

ex′ =
uF2 − (uF2 · n)n

||uF2 − (uF2 · n)n||
. (4.13)

3. Having estimated the new coordinate system, the streamwise velocity u′F2 can be

calculated as

u′F2 = ex′ · uF2. (4.14)

4. The next step is the estimation of the wall shear stress τw. To do so, the wall

function of Musker has been employed and reads

u+ = 5.424 arctan(0.119760479041916168y+ − 0.488023952095808383)

+ 0.434 log

(
(y+ + 10.6)9.6

(y+ 2 − 8.15y+ + 86)2

)
− 3.50727901936264842. (4.15)

In the above equation, the velocity scaled in wall units u+ is calculated as

u+ =
u′

uτ
, where uτ =

√
τw
ρ

(4.16)

is the friction velocity. Moreover, the relation describing y+ is

y+ =
uτ y

ν
. (4.17)

The solution of Eq. (4.15) for the wall shear stress extraction is an implicit problem.

A Newton-Raphson solver is called to estimate the final solution numerically.
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5. Having estimated the wall shear stress τw, based on data provided by the second

fluid cell at xF2, one can utilise again Eq. (4.15) to estimate the streamwise velocity

u′F1 in the first fluid cell at xF1 position. This time, the problem is explicit, and

there is no need for a numerical method to solve it.

6. Afterwards, one can calculate uF1 in Cartesian coordinates as

uF1 = u′F1 ex′ . (4.18)

Based on this strategy, there is no normal to the wall component of the first fluid

cell’s velocity.

7. The next step is the estimation of the density, ρF1, and non-equilibrium part of the

distribution function. In the case of ρF1, I follow the approach of Haussmann et al.

(2019) which is identical to Eq. (4.2), that is an extrapolation from the neighbour

fluid cell at xF2.

In the non-equilibrium part, I also tried to apply the extrapolation described in

Eq. (4.4), but I noticed that this had detrimental effects on the outcome. As men-

tioned at the beginning of this section, I extrapolate the post-collision values in

contrast to the post-streaming ones (Haussmann et al., 2019). After some exper-

iments, I have concluded that the most robust and accurate solution is achieved

by omitting the non-equilibrium part. However, by avoiding the non-equilibrium

part, this boundary condition is only first order accurate.

8. The final step is the reconstruction of the distribution function in the first fluid cell

Eq. (4.1). Having calculated the macrovariables [ρF1,uF1], one can call Eq. (2.11)

to estimate the equilibrium values.

After applying the boundary condition, the solver will stream the now known distribution

functions from the first layer of fluid cells to the interior domain. The collision will also

occur in these cells, but the outcome will be erased in the subsequent application of the

boundary condition. One side effect of this procedure is that the output occurs before

applying the boundary conditions, see Algorithm 2.1, which may result in erroneous

data in the first layer of fluid cells.

In the LES models, WALE is unaffected because its eddy viscosity is estimated based on

the state of macrovariables that occurs before the streaming. As mentioned before, this

is possible because the AMROC framework provides two vectors of states of which the

only one is affected by streaming. On the other hand, DSMA application in the second

layer of interior cells will see zero values of non-equilibrium part in some adjacent cells

resulting in some inaccuracy during the constant estimation. Though, it should be

mentioned that a wall treatment that will be able to apply accurate values of non-

equilibrium part, in combination with the imposition of accurate macrovaribales in the
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first layer of ghost cells, can lead to a successful application, without inaccuracies, of

DSMA in the vicinity of solid boundaries.

Algorithm 4.1: Implementation of wall treatment approach in AMROC-LBM

1 Function Wall Treatment
Data: The macroscopic variables ρF2 and uF2, the normal n, the viscosity ν and

the distances at the wall for the first and second cell (yF1, yF2)
Result: The unknown distributions at the boundary located in xF1

2 begin
3 Compute the macrovariables [ρF2,uF2] from the previous step;
4 Calculate the streamwise basis vector ex′(n,uF2), Eq. (4.13);
5 Compute the streamwise velocity u′F2, Eq. (4.14);
6 Estimate τw by solving an implicit problem, Eq. (4.15);
7 Compute the streamwise velocity at the first cell u′F1, through Eq. (4.15);
8 Compute the velocity vector at the boundary uF1, Eq. (4.18);
9 Extrapolate the density at the wall using Eq. (4.2);

10 Reconstruct the unknown distributions based on equilibrium values;

11 end

12 end





Chapter 5

Wall free cases

Currently, there is no deterministic approach to describe turbulence. Therefore, there are

no general analytical solutions that can be used for the verification of turbulence models.

As a consequence, the proof of correctness of every implementation of turbulence models

usually takes place against experimental data or code-to-code comparisons. However,

there are a few cases for which an analytic solution seems to fit the results under some

strong assumptions. One such case is Homogeneous Isotropic Turbulence (HIT), where

the shape of the energy spectra, particularly in the inertial subrange and dissipation

range, is supposed to follow a universal behaviour.

In order to simulate HIT, there are mainly two ways. The first option is the addition

of a fictitious external body force that will distort the large eddies of the flowfield. This

concept leads to the Forced HIT (FHIT) case. After some initial time, this extra energy

will be in equilibrium with the viscous dissipation. As long as the flow is provided with

this extra kinetic energy, the flowfield will be in a statistically stationary state, and

thus statistical in time analysis can be applied. Consequently, FHIT enables us to have

sufficient time for statistical analysis of the flowfield. Simultaneously, another advantage

is that FHIT has the potential to simulate higher Re numbers than DHIT.

The second option is Decaying HIT (DHIT), in which an initial solution, representing

some characteristics of turbulent flow, is allowed to decay. After some initial time, this

solution will be turned into a real turbulent flow. After this transient time, one can

start analysing the flow statistically. However, compared to the FHIT, in this case,

there is a limited window for analysis. In literature, there is a variety of such attempts

with LBM (Peng et al., 2010; Yu et al., 2005a). The drawback of this procedure is

the flow statistics are time-dependent because of the decay. Thus, averaging in time

is not suitable. Therefore, one can study the dynamic response of a turbulence model.

Furthermore, compared to FHIT, DHIT tends to simulate smaller Re numbers for the

same resolution. In this chapter, I will present results for both FHIT and DHIT cases.

49
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Finally, the Taylor Green Vortex (TGV) has been chosen as the third benchmark case

for this chapter. TGV enables us to verify the turbulence models during the transition

from the laminar to the turbulent field. Moreover, this test case can be used to exam-

ine the numerical dissipation of the employed numerical scheme or turbulent model by

comparing the dissipation rate with the dissipation rate based on enstrophy.

Besides the verification of the LES models, I will also examine the coupling of collision

models, particularly SRT and REG, with the turbulent models and how they affect each

other. Another investigation will examine the difference of estimating the strain rate

locally through the non-equilibrium part or using a finite difference stencil. Some of the

results have been also published in (Gkoudesnes and Deiterding, 2019a,b, 2021).

In the next section, I will present the background and essential tools to analyse isotropic

turbulence flow. Simultaneously, I will show the implemented routine for statistical and

spectral analysis of the flowfield on-the-fly. For the validation of DNS spectra in the

case of FHIT, the model spectrum of Pope (2000) will be employed. Furthermore, I will

also discuss the force and its implementation that I have used in FHIT.

5.1 Spectral and Statistical Analysis of Turbulent Flows

According to Richardson (Pope, 2000), turbulent flows obey the energy cascade concept

based on which the flow is decomposed into eddies of variable dimensions (wavenum-

bers). Following this idea, the largest eddies are responsible for the turbulent energy

production by stealing energy from the main flow. On the other hand, in the smallest

eddies, this energy is dissipated to heat. A transfer mechanism, obeying the universal

power-law spectrum based on Kolmogorov’s hypotheses, is responsible for supplying the

highest wavenumbers (smaller eddies) with energy from the lowest wavenumbers (large

eddies). The above theory can be illustrated more accurately for homogeneous isotropic

turbulence, because isotropy is the primary assumption, and homogeneity is essential

for accurate statistical analysis in space and time.

The shape of the energy spectrum, particularly in the inertial subrange, can be de-

termined and derived from the −5
3 Kolmogorov law, based on the second similarity

hypothesis. Initially, this outcome enables us to validate the current implementation of

the Lattice Boltzmann method in AMROC as a DNS solver. Simultaneously, the main

contribution of an LES model is the modelling of the dissipation in the smallest scales

or largest wavenumbers in the spectrum. This range is called the dissipation one. In

this way, one can evaluate the LES modelling effect in the dissipation range by com-

paring LES with DNS. Therefore, in this chapter, the test cases offer an unmatched

chance to examine and verify the behaviour of the implemented LES models without

the interaction of boundary conditions or AMR interfaces.
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It is evident from the above discussion that the spectral representation of the velocity

field is vital for post-processing. Consequently, a function has been implemented and em-

ployed to obtain on-the-fly spectra and other turbulent statistics. MPI communication

has been applied to parallelised this piece code. Algorithm 5.1 shows the implemented

method Compute Statistics that is responsible for the statistical and spectral analysis

of the flowfields presented in this chapter. The library FFTW3 (Frigo, 1999) is used,

as a black box, to deal with the Forward Fourier Transform of the components of the

physical velocity and pressure fluctuations. This transformation is from real data (phys-

ical velocity) to complex (spectral velocity). Invoking Fourier theory, it is known that

there is symmetry around the zero wavenumber for the spectral components under these

circumstances, and thus only half of them need to be computed and saved. Therefore, I

used the specialised plan of the FFTW3 for such transformations instead of the regular

forward transform, almost halving the memory requirements and speeding up the pro-

cess. In this way, I stored all the wavenumbers in x-direction and y-direction but only

the positive part of the z-direction.

However, FFTW3 stores the wavenumbers in the standard “in-order” output ordering.

In other words, the positive wavenumbers are stored in the first half of the array and

the negative ones in the second part in backward order. This representation is not ideal

for the looping in the x-direction and y-direction. To handle this obstacle, I shifted the

second half of the indexes by the number of the cells in these directions (N). Moreover,

FFTW3 computes an unnormalised discrete Fourier transformation. Therefore, the

Fourier coefficients are normalised by dividing them by the total number of cells (N3).

Having both the spectral velocities and pressure, normalised and ordered, one can con-

tinue with the computation of their spectra. In turbulence analysis the velocity-spectrum

tensor Φij(κ), where κ is the discrete wavenumber vector, contains valuable information

(see p. 221 of (Pope, 2000)). The subscripts i and j describe the velocity components in

the physical space. Moreover, one can extrude the information of its direction in physical

space as e = κ/|κ| and its lengthscale as ` = 2π/|κ| where |κ| =
√
κ2
x + κ2

y + κ2
z = κ is

the magnitude of the wavenumber vector. However, because it is a second order tensor

it is difficult to interpret this information. Consequently, a less informative although

simpler expression is used, namely the energy-spectrum function E(κ). The relation

between these two variables can be seen in Eq. (5.1) (or Eq. 6.188 in (Pope, 2000))

E(κ) =

˛
1

2
Φii(κ) ∂S(κ). (5.1)

Therefore, E(κ) contains no directional information as a result of using only the trace

Φii and integrating over the sphere S(κ) with a radius the magnitude κ. Assuming a

sphere, the above surface integral can be computed analytically as

˛
∂S(κ) = 4πκ2, (5.2)
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Algorithm 5.1: Statistical and spectral analysis of the flowfield

1 Function Compute Statistics
Data: The components of the velocity (u, v, w) and the pressure fluctuations (δp)
Result: 3D Spectra and other statistical variables

2 begin /* Set-up phase */

3 Compute the plans for FFTW3; /* Real to Complex Fourier Transform */

4 end
5 begin /* Estimate the contribution of each processor */

6 Compute < |u|2 > and then urms and k;
7 Execute the four Fourier transforms, [u(x) 7→ û(κ)];

8 for κx = −N
2 + 1 to N

2 − 1 do

9 for κy = −N
2 + 1 to N

2 − 1 do

10 for κz = 0 to N
2 do

11 Compute |κ| =
√
κ2
x + κ2

y + κ2
z and κbin = round(κ) ;

12 Check if the wavenumber κbin is in the range (0, κmax];

13 Compute the kinetic energy per bin E(κbin) =
∑ 1

2R̂ii(κ);

14 Compute the pressure spectrum per bin ∆P̂ (κbin) = δp̂(κ)δp̂?(κ);
15 Normalize the spectral velocities and pressure fluctuations by N3;

16 end

17 end

18 end

19 end
20 begin /* Gather the results in the master processor */

21 for κbin = κ0 to κmax do
22 Compute the turbulent kinetic energy of Fourier modes

(∑
E(κbin)

)
;

23 Compute the dissipation rate ε = 2ν
∑
κ2
binÊ(κbin);

24 end
25 forall xi = 0 to N − 1 do
26 Compute the magnitude of the velocity;

27 Compute the standard deviation urms =
√
|u|2
3N3 ; /* assuming isotropy */

28 Compute the turbulent kinetic energy in the physical space;

29 end

30 end
31 Compute Kolmogorov scales (η, uη, τη);
32 Compute Taylor microscale and Reynolds number;

33 end

yielding for E(κ)

E(κ) = 2πκ2 Φii(κ). (5.3)

Finally, to estimate Eq. (5.3), one should invoke the relation of Φij(κ) with the covariance

of the velocity. Assuming discretisation of the domain, this relation reads

Φij(κ) ≡ R̂ij(κ), (5.4)
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and the trace R̂ii can be estimated as

R̂ii(κ) ≡ û∗i (κ)ûi(κ) = ûi(−κ)ûi(κ). (5.5)

The notation û∗i is the conjugate of ûi. Given that the velocity field is a real function

in the physical space, its Fourier coefficients experience some symmetry, as the above

equation illustrates. Finally, Eq. (5.3) transforms to

E(κ) = 2πκ2R̂ii = 2πκ2û∗i (κ)ûi(κ). (5.6)

One way to smooth the shape of the spectra is by grouping the wavevectors in bins

around specific wavenumbers κbin, which, in general, are integer multiples of the lowest

one (κ0 = 2π/L, where L is the length of the domain). Implemented this way, a check

takes place to discard the zero wavenumber and the insignificant ones, whose magnitudes

are higher than the Nyquist criterion (|κ| > κmax = N/2). Therefore, Eq. (5.6) now

reads

E(κbin) = 2πκ2
bin〈R̂ii〉bin = 2πκ2

bin〈û∗i (κ)ûi(κ)〉bin, (5.7)

where 〈·〉bin denotes the ensemble average over all the contributing wavevectors |κ| for

each κbin. Finally, a possible implementation reads

E(κbin) =
2πκ2

bin

Ncon
û∗i (κ)ûi(κ) = bf ∗ û∗i (κ)ûi(κ), ∀ |κ| ∈ κbin, (5.8)

where Ncon is the number of contributing wavevectors for the current bin and bf is the

binning factor. Having computed the energy spectrum function, the turbulent kinetic

energy k can be computed as

ksp =
∑
κbin

E(κbin). (5.9)

Another way to compute the spectra is directly through the kinetic energy of the Fourier

modes. For this reason, an alternative way to relate Φij(κ) with E(κbin) is (see also Eq.

6.189 in (Pope, 2000))

E(κ) =

˚ ∞

−∞

1

2
Φii(κ)δ(|κ| − κ) ∂κ. (5.10)

Now, assuming discretisation of the domain and invoking Eq. (5.4), the above equation

can be rewritten as

E(κ) =
1

2
R̂ii(κ) = Ê(κ), (5.11)
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where Ê(κ) is the kinetic energy of the Fourier mode (Pope, 2000). In this case, the

binning procedure yields

E(κbin) =
∑
κbin

1

2
R̂ii(κ), ∀ |κ| ∈ κbin. (5.12)

Finally, the turbulent kinetic energy can be computed similarly as in Eq. (5.9) as

kfr =
∑
κbin

E(κbin). (5.13)

The previous estimations of the turbulent kinetic energy are based on spectral space. One

can also calculate the turbulent kinetic energy in physical space. Assuming homogeneous

isotropic turbulence, the two-point correlation function reads

Rij(r = 0) = 〈ui(x)uj(x)〉L = u2
rmsδij , (5.14)

where 〈·〉L denotes the ensemble-averaged over all the domain (cells), and urms is the

standard deviation of the velocity field. It is evident that under these assumptions, the

deviatoric part of the Reynold stresses is zero. From the previous equation, one can

determine the urms as

urms =

√
〈uiui〉L

3
, (5.15)

and the kinetic energy as

kph =
〈uiui〉L

2
=

3u2
rms

2
. (5.16)

To verify the implementation of the Algorithm 5.1, one needs to show that the estimation

of the value of the turbulent kinetic energy is the same both in physical and spectral

space. One can find both ways to compute the turbulent kinetic energy in the spectral

space in the literature. In order for the Eqs. (5.8) and (5.12) to be equal, the below

equation should be valid:

Ncon = 4πκ2
bin (5.17)

Obviously, this equation will be true in the limit of a continuous spectral space, in

which scenario the number of contributors will be equal with the surface of the sphere

with radius the wavenumber |κ|. Consequently, it is expected that Eq. (5.8) is only

an approximation to Eq. (5.12). To further asses these two options, Fig. 5.1 shows the

evolution in time of the kinetic energy computed by Eqs. (5.9), (5.13) and (5.16) for the

test case of FHIT (N = 128, A = 10−4, ν = 3 · 10−5 m2 s−1).

Moreover, Fig. 5.2 shows the difference between the computation of the turbulent kinetic

energy based on physical space and the other two variations. This plot confirms that the

computation of the turbulent kinetic energy based on the kinetic energy of the Fourier
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Figure 5.1: Evolution of kinetic energy in physical time.

modes Eq. (5.13) is indeed more accurate. Therefore, Eq. (5.13) has been implemented

and used in Algorithm 5.1.
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Figure 5.2: Differences among the various estimations of the turbulent kinetic
energy.

Similar to the velocity, the pressure spectrum can be computed as

∆P (κbin) =
∑
κbin

δp̂(κ)δp̂?(κ), ∀ |κ| ∈ κbin, (5.18)
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where δp̂ are the Fourier modes of the pressure fluctuations calculated as

δp = (ρ− ρ0)c2
s. (5.19)

The notation ρ0 is the base density. The dissipation ε of the flow can be estimated as

ε = 2ν
∑
κbin

κ2
binE(κbin), (5.20)

where ν is the kinematic viscosity. Finally, a variety of turbulence statistics can be

computed based on the dissipation. The Kolmogorov scales can be defined as

η ≡ 4

√
ν3

ε
, (5.21a)

uη ≡ 4
√
εν, (5.21b)

τη ≡
√
ν

ε
. (5.21c)

Last but not least, the Taylor length scale is calculated as

λ =
√

15τηurms. (5.22)

Having computed λ, the Taylor-scale Reynolds number, Reλ, can be defined as

Reλ =
urmsλ

ν
. (5.23)

5.1.1 A model spectrum and Kolmogorov spectra

Many researchers have combined Kolmogorov theory and experimental data to create

model spectra that seem to fit well with the latter. In this project and in the case of

FHIT, I will adopt the one of Pope (2000). It can be described as (see also Eq. 6.246 in

(Pope, 2000)):

E(κ) = Cε2/3κ−5/3fL(κL)fη(κη). (5.24)

The non-dimensional functions fL and fη shape the spectrum in the energy-containing

range and the dissipation range, respectively, while they do not affect it in the inertial

subrange. The fL can be proposed as

fL(κL) =

(
κL√

(κL)2 + cL

) 5
3

+p0

, (5.25)
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and the fη as

fη(κη) = exp

{
− β

(
4

√
(κη)4 + c4

η − cη
)}

. (5.26)

The coefficients of the above model are, C = 1.5, the Kolmogorov constant, cL ≈
6.78, cη ≈ 0.4 and β = 5.2. Finally, p0 specifies the slope of the spectra in the low

wavenumbers, and usually, it has the value of either 2 or 4. A sketch of the energy

spectrum based on the current model can be seen in Fig. 5.3. L is a length describing

slope κ-5/3

Energy containing
 range

Inertial
 subrange

Dissipation
 range

lo
g 

E
(κ

)

log κ

Figure 5.3: Sketch of the energy spectrum based on the model one Eq. (5.24).

the large eddies and is defined as

L =
k3/2

ε
. (5.27)

Finally, another important length scale for the energy-containing region is the longitu-

dinal integral length scale L11 computed as (under the assumption of isotropy)

L11 =
3π

4

´ E(κ)
κ ∂κ

k
. (5.28)

The model spectrum has been designed to reflect a solution to the Navier-Stokes equa-

tions. In the following section, it will be shown that the addition of an external force

will alter the shapes of the spectra at the lower wavenumbers, that is, in the energy-

containing range.

It is essential to provide the different scaling of the spectra, namely Kolmogorov spectra,

that enable us to compare spectra of different Reλ. From the first similarity hypothesis of

Kolmogorov (Pope, 2000), one can assume that the inertial subrange and the dissipation
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range form a universal equilibrium range where velocity statistics are dependent only on

κ, ε and ν.

In this way, the dissipation range can be described by non-dimensionalising E(κ) with

ε and ν (through η)

φ(κη) =
E(κ)

4
√

(εν5)
=
E(κ)

u2
ηη

, (5.29)

where φ(κη) is the Kolmogorov spectrum function. On the other hand, the second

similarity hypothesis states that the inertial subrange spectra should be independent of

ν, thus only a function of ε and a length-scale. This implies that the spectra tend to

the constant C (Kolmogorov constant) in the inertial subrange as they depart from the

dissipation range. A suitable scaling from this range is based on ε and κ, and it defines

the compensated Kolmogorov spectrum function Ψ(κη) as

Ψ(κη) = E(κ)ε−2/3κ5/3. (5.30)

Contrary to the universal equilibrium range, the energy-containing range has no univer-

sal behaviour and is characterised by a particular flow. Another difficulty in the current

report is that the forcing affected primarily the large scales making this range artificial

compared to the NS and the model spectrum. The suitable non-dimensionalisation is

based on the integral length scale L11 and turbulent kinetic energy k.

5.2 Forcing Homogeneous Isotropic Turbulence

The numerical domain for all simulations in this chapter is a cube of length L = 2π. Due

to the need for spectral analysis, all boundaries are periodic, aligning with the Fourier

restriction. The lowest resolvable wavenumber is κ0 = 2π/L = 1, while the largest one

is dependent on the resolution hence κmax = Nκ0/2, where N is the number of cells in

one direction. In this way, the domain consists of N3 cells.

According to Pope (2000), there is a limit of the minimum size of the cube of eight L11,

which can be expressed as

κ0L11 =
π

4
≈ 0.8. (5.31)

The above outcome is because the peak of the spectrum appears to be at κL11 ≈ 1.3

and there is only 5% of the total energy that occupies the range below the value of 0.8.

On the other hand, there is a resolution limit based on the spatial step ∆x. In the case

of a pseudo-spectral method a value of κmaxη ≥ 1.5 or η/∆x ≥ 1/2.1 is assumed a good

criterion. However, in literature (Peng et al., 2010), it is mentioned that the previous

limit cannot be applied for LBM, which is only a second order method. They proposed
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more restrictive ones as κmaxη ≥ π. Based on my results and using the model spectrum

as a reference, I have estimated that a value of

η

∆x
≥ 1.6 =⇒ κmaxη ≥ 5, (5.32)

seems to be more accurate.

Furthermore, it is also crucial to check if the simulation time is adequate for reason-

able statistical analysis and particularly when one averages the data. The ratio of the

averaging time taver with the turbulence turn-over time is a helpful indication

taver
urms
L11

≥ 10. (5.33)

5.2.1 The Force Scheme

In Sec. 2.2.6, I have shown how to apply a body force F in the LBM framework. Here,

I will define the formula of F that has been used in the case of the FHIT. In literature,

a variety of forcing methods has been documented with different advantages and dis-

advantages. For instance, the spectral force due to Cate et al. (2006) allows the user

to specify a priori some turbulence characteristic of the final flowfield. However, be-

ing spectral means that the force has to be computed in the Fourier space every time

step and then transformed back to the physical space. Consequently, this requirement

increases the complexity of the code and adds extra computational time and memory.

To address the extra complexity, Valio et al. (2010) proposed a linear forcing which

allows the user to specify either the final turn-over time or the final dissipation rate.

However, though this scheme reduces the complexity, the resulting force is analogous to

the velocity meaning that an appropriate initial velocity field is a prerequisite.

To avoid the difficulties of the previous two methods, I have decided to employ a third

option proposed in (Abdel Kareem et al., 2009). This method keeps a relatively simple

mathematical algorithm without the need for complicated initialisation. However the

disadvantage of this proposal is that the user cannot specify any turbulent characteristic

of the final flowfield. Moreover, as I will show later, the final Reλ depends on the spatial

step, and thus a normalisation of the spectra presented in the previous Sec. 5.1.1 needs

to be used to compare different resolutions. The formula for the estimation of F reads

F ≡


Fx = 2ρA

(κyκz
|κ|2

)
G(κx, κy, κz, φ),

Fy = −ρA
(
κxκz
|κ|2

)
G(κx, κy, κz, φ),

Fz = −ρA
(κxκy
|κ|2

)
G(κx, κy, κz, φ),

(5.34)
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with G(κx, κy, κz) computed as

G(κx, κy, κz) = sin

(
2πx

L
κx +

2πy

L
κy +

2πz

L
κz + φ

)
. (5.35)

(a) (b)

(c)

Figure 5.4: Slices at 50% of the cube with N=128 cells after the first iteration.

In the above equations, ρ is the density of the fluid, A is the forcing amplitude, L is the

length of the domain (assuming a cube) and φ(κx, κy, κz) is the random phase different

for each combination of the wavevector. F is applied only to the lower wavenumbers

(0 < κ ≤ 2).

As far as the initial solution is concerned, every simulation is started from a zero velocity

field with imposed unit density. Since one can start from a zero velocity field, there is

no need to initialise the non-equilibrium part of the distribution function. This is an
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Figure 5.5: Evolution of Power spectra at the beginning of the simulation.
(N = 128, A = 10−4, ν = 6 · 10−5 m2 s−1)

extra advantage of this force compared to other approaches. If an initial field requires

initialisation of the non-equilibrium part, but one does not provide it, this is an incon-

sistency and will lead to instabilities arising during the initial phase. Then, one needs

to allow some time for these instabilities to dissipate.

Another benefit of the zero initial velocity field is the possibility to have a representation

of the forcing by plotting slices of the first iteration. Figure 5.4 shows the slices at the

centre of the cube in the three planes, XY, XZ and YZ, of the velocity magnitude. The

forcing affects only the large scales of the flow. To further support its establishment,

the continuous line in Fig. 5.5 shows the energy spectrum after the first iteration. It

is evident that the fictitious kinetic energy is applied only at the lower wavenumbers,

and for the choice of (0 < κ ≤ 2), only the 2 ≤ |κ| ≤ 3 wavenumbers are triggered,

with almost the same amount of energy. As time passes, this external energy will be

dissipated, expanding in this way the spectrum to the higher wavenumbers, a proce-

dure that can be observed in Fig. 5.5. I present these results as a verification for the

implementation of the forcing.

Figure 5.6 shows the magnitude of the velocity at the slice of 50% of the z-axis for four

different iterations in time. These pictures demonstrate the initial stretching of the large

artificial eddies and their gradual decomposition into smaller ones until a real turbulent

flowfield appears. Similarly, the growth of the energy in the largest wavenumbers in

Fig. 5.7 describes the appearance of smaller and smaller eddies as time passes.
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(a) (b)

(c) (d)

Figure 5.6: Slices of velocity magnitude at 50% of the z axis of cube with N=128
cells after 5.6(a) 1000, 5.6(b) 7000, 5.6(c) 12000 and 5.6(d) 15000 iterations
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Figure 5.7: Evolution of power spectra in time. (N = 128, A = 10−4, ν =
3 10−5 m2 s−1)
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N 32 128 256 512

Reλ 46 58 65 68

L11 1.02 0.92 0.89 0.88
λ 0.57 0.42 0.37 0.34
η 0.04 0.03 0.02 0.02

η/∆x 0.2 0.57 0.97 1.72
κmaxη 0.68 1.8 3.03 5.41
L11/urms 251.44 133.32 102.64 88.05
taverurms/L11 60.75 131.44 93.13 20.56

Table 5.1: Characteristics of the turbulent field for DNS for four resolutions
with the STA collision model.

N 32 128 256 512

Reλ 56 60 66 70

L11 1.07 0.92 0.9 0.85
λ 0.68 0.43 0.37 0.34
η 0.05 0.03 0.02 0.02

η/∆x 0.24 0.57 0.97 1.67
κmaxη 0.75 1.81 3.01 5.26
L11/urms 262.15 131.97 102.17 81.95
taverurms/L11 58.27 132.8 68.95 31.15

Table 5.2: Characteristics of the turbulent field for DNS for four resolutions
with the REG collision model.

5.2.2 Direct Numerical Simulations

Initially, DNS data were collected to evaluate the capability of the solver to deal with

turbulent cases. For all cases, the input parameters were A = 10−4 and the value of

viscosity ν = 5 · 10−5 m2 s−1. Four resolutions were simulated, and a comparison be-

tween STA and REG collision models was also carried out. In Table 5.1 and Table 5.2,

one can see some characteristics of the flowfields for STA and REG, respectively. Ex-

amining the Re number, it is clear that Re tends to have higher values as the resolution

increases, though convergence is also indicated. This behaviour mainly originates from

the employed force, as mentioned before. Comparing the data between the two tables

shows no significant discrepancies between the two collision models with the exemption

of the lowest resolution N32. It appears that the STA model has estimated a smaller

value of Reλ than the REG model. This divergence is one key point that I will search

and investigate in this chapter.

Inspecting the three lengths, namely L11, λ and η, one can see a convergence towards

smaller values the higher the resolution. This indicates the existence of smaller and

smaller scales of turbulence in higher resolutions, an expected outcome. I have reported

previously that the value of κ0L11 should be smaller than 0.8 for better accuracy. In

this case, the use of the force affects the large eddies, which leads to artificially larger
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values for the length L11. Furthermore, the values of κmaxη getting larger and larger as

the resolution increases indicate the better representation of the small scales. Finally,

the row before the last one reports the eddy turnover times, while the last one shows

how many eddy turnover times have been spent for averaging. All the simulations have

run more than ten times which is assumed to be the minimum threshold for accurate

statistics.

To identify the initial transient period and the onset of the averaging one, a variety of

turbulent characteristics were monitored over the simulation time. Figures 5.8, 5.9 and

5.10 show the turbulent kinetic energy k, dissipation rate ε and Kolmogorov length scale

η, respectively, for the resolution of N 32 for both STA and REG models. First of all,

the onset of the transient time was chosen based on the dissipation rate and turbulent

kinetic energy, variables that need more time to transit compared to Kolmogorov scales.

Comparing the two collision models, in the case of k, they seem to estimate the same

averaged value. This indicates that the force adds the same amount of kinetic energy

for both STA and REG. However, examining the dissipation rate, it is obvious that the

STA model has returned a higher value. A higher value of ε means that more kinetic

energy is removed in the case of STA than REG over time, explaining the lower value

of the Reλ. In the case of η, the difference between the two models is much smaller.

To further enrich this investigation, I also provide for comparison the same plots but

for the resolution of N128 in Figs. 5.11, 5.12 and 5.13. In this scenario, there is no

clear difference between the estimated averaged values for the two models, indicating

that the reduction of the spatial step has alleviated the issue. Another important piece

of information is that the averaged value of the turbulent kinetic energy is three times

larger than in the resolution of N32. This last outcome shows the grid-dependence of

the employed force and explains the higher values of Reλ for finer meshes.

In Fig. 5.14 shows the Kolmogorov spectra for the DNS above. As mentioned before, this

normalisation is suitable for comparing the dissipation range of different Reλ simulations.

The ideal behaviour is for all of them to converge in the highest wavenumbers to the

model spectrum solution. It is clear that as the resolution increases, the results approach

more and more the ideal solution. The resolution of N512 fits precisely. Therefore,

based on this finding and using the model spectrum as a threshold, one can conclude

that κmaxη ≥ 5 is needed to accurately capture all the small scales in the case of LBM

DNS. Comparing the two collision models shows that STA simulations have predicted

spectra closer to the expected one for all the resolutions. At first glance, this observation

could lead to the outcome that the STA model is less dissipative than the REG one. In

the case of N512, the STA solution has overestimated the energy level in the highest

wavenumbers, while the REG solution fits precisely. The mismatching of the spectra

with the model in the lowest wavenumbers is due to the employment of the force.
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Figure 5.8: Evolution of turbulent kinetic energy for STA and REG DNS of
N = 32 resolution.
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Figure 5.9: Evolution of dissipation rate for STA and REG DNS of N = 32
resolution.
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Figure 5.10: Evolution of Kolmogorov length scale for STA and REG DNS of
N = 32 resolution.
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Figure 5.11: Evolution of turbulent kinetic energy for STA and REG DNS of
N = 128 resolution.
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Figure 5.12: Evolution of dissipation rate for STA and REG DNS of N = 128
resolution.
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Figure 5.13: Evolution of Kolmogorov length scale for STA and REG DNS of
N = 128 resolution.
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Figure 5.14: Kolmogorov energy spectra of DNS compared against the model
spectrum.

Similar conclusions can be extracted by inspecting Fig. 5.15. In this plot, the spectra

have been normalised with the turbulent kinetic energy and the integral length scale to

investigate the energy-containing range. This plot’s critical outcome is the coincidence

of all the spectra in this range, indicating that the force produces similar flow fields

independently of resolution. This is a validation of the current procedure of comparing

the spectra using normalisations.
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Figure 5.15: Energy spectra of DNS normalised for comparison of the energy-
containing range.

In Fig. 5.16 shows the compensated Kolmogorov spectra, a normalisation suitable for

comparison of the inertial sub-range. In the lowest-resolution simulations, both STA

and REG have overestimated the peak, which seems to be due to the application of the

force. However, all other resolutions have returned the same level around this range

with a value close to 2. From theory, it is known that the expected value should be

around 1.5. To investigate this mismatching, I have also run another DNS with higher

Reλ of about 165 and with a resolution of N128. The result is shown in Fig. 5.17. To

increase the Reλ, the viscosity was reduced to ν = 10−5. Though this simulation has
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returned a value of κmaxη < 1 and thus it is under-resolved, the inertial sub-range level

is much closer to the theoretical value. Therefore, the high value of the level is due

to the relatively low Reλ in the previous simulations, and it does not seem to be an

imperfection of the current LBM solver.
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Figure 5.16: Compensated Kolmogorov energy spectra of DNS.
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Figure 5.17: Compensated energy spectrum of DNS.

Up to this point, I have focused on the energy spectra and a variety of their normali-

sations. To further investigate the collision models’ differences, I have also calculated

the pressure fluctuation spectra presenting in Fig. 5.18. The first observation is that

increasing the resolution, an increasing number of eddies are captured by the simulations

enlarging the values in the whole range of the wavenumbers, though a convergence seems

to take place, too. However, the most interesting outcome is the excess of the values

appearing in the highest wavenumbers in the STA model for all resolutions, pointing to

numerical instabilities. Consequently, one can conclude that the less accurate estimation

of the non-equilibrium part in the STA model case leads to the appearance of more than

small natural scales in the flowfield. One can combine the knowledge from the previous

energy spectra with the pressure fluctuation ones. The apparent better accuracy of the

STA model, in the case of the energy spectra, originated by the excess of small scales
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that in reality are instabilities arising from the less accurate collision step. Therefore,

just by examining the energy spectra, one could be led to the wrong assumption that

SRT is less dissipative than REG. It seems that by decreasing the spatial step, the situ-

ation gets improved. In the lowest resolution, the excess in the highest wavenumbers is

comparable with the values in the lowest ones. In the case of N32, the dissipation rate’s

immense value is due to excess in the highest wavenumbers.
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Figure 5.18: Pressure fluctuation spectra of DNS.

5.2.3 Large Eddy Simulations

In the previous section I have discussed the performance of the AMROC LBM solver to

deal with turbulence without the use of turbulence models. This section will evaluate

the newly implemented turbulence models and their coupling with the two collision

models. The first results will be about CSMA, followed by DSMA and finally WALE. I

will examine three resolutions, namely N128, N64 and N32.

Constant Smagorinsky

For all the CSMA simulations, the value of the constant C was set to 0.1. Following

the same procedure as in the DNS case, Table 5.3 reports some characteristics of the

flowfields for all the resolutions and both STA and REG models. Again, the final Reλ

is resolution-dependent. In the case of the lowest resolution N32, the addition of the

turbulent model has increased the estimated Reλ, particularly in the STA model value of

κmaxη. The latter is an indication of how well the flowfield has been resolved. Therefore,

one can assume that CSMA has benefited the results, particularly for STA. On the other

hand, in the resolution N128, both STA and REG have yielded identical numbers that

are similar to the REG DNS of the same resolution.

Figure 5.19 shows the Kolmogorov energy spectra of CSMA simulations for the three

resolutions compared against the model spectrum. The same pattern as in DNS can be
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STA REG

N 32 64 128 32 64 128

Reλ 51 55 60 58 58 60

L11 1.07 0.98 0.92 1.12 0.98 0.92
λ 0.63 0.51 0.43 0.71 0.54 0.43
η 0.05 0.03 0.03 0.05 0.04 0.03

η/∆x 0.23 0.35 0.58 0.24 0.36 0.58
κmaxη 0.72 1.11 1.81 0.77 1.15 1.82
L11/urms 264.56 180.17 133 276.12 181.57 132.61
taverurms/L11 57.74 94.6 128.1 55.32 93.87 128.44

Table 5.3: Characteristics of the turbulent field for CSMA (C = 0.1) for three
resolutions for both the STA and REG collision models.
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Figure 5.19: Kolmogorov energy spectra of CSMA compared against the model
spectrum.
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Figure 5.20: Energy spectra of CSMA normalised for comparison of the energy-
containing range.

observed with the STA results to be closer to the model, though increasing the resolution

reduces the difference. Moreover, Fig. 5.20 plots the energy spectra normalised for com-

parison of the energy-containing range. All the curves coincide in the low wavenumbers,
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STA REG

N 32 64 128 32 64 128

Reλ 52 57 60 58 61 61

L11 1.08 1.0 0.93 1.12 1.01 0.93
λ 0.64 0.52 0.43 0.72 0.56 0.44
η 0.05 0.03 0.03 0.05 0.04 0.03

η/∆x 0.23 0.36 0.58 0.24 0.37 0.58
κmaxη 0.73 1.12 1.81 0.77 1.16 1.83
L11/urms 267.44 181.45 132.49 274.57 184.55 133.56
taverurms/L11 57.12 83.11 132.27 55.64 81.71 123.3

Table 5.4: Characteristics of the turbulent field for DSMA for three resolutions
for both the STA and REG collision models.

proving that the turbulent model has not affected the large scales as is expected.
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Figure 5.21: Pressure fluctuation spectra of CSMA.

Finally, Fig. 5.21 shows the pressure fluctuation spectra for the case of CSMA. The

turbulence model was unable to eradicate the numerical instabilities in the case of the

STA model.

Dynamic Smagorinsky

Table 5.4 presents characteristics of the flowfield of the DSMA simulations. Compared

with CSMA data, DSMA has predicted higher values of Reλ in almost all cases. This

is the first indication of less dissipation added due to the turbulence model, which is

expected to improve the overall accuracy. Moreover, DSMA has also slightly improved

the values of κmaxη.

Similarly to the CSMA case, Figs. 5.22, 5.23 and 5.24 are given to examine the grid

convergence of the DSMA turbulence model. The same trends as in the case of CSMA

are observed here, too.
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Figure 5.22: Kolmogorov energy spectra of DSMA compared against the model
spectrum.
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Figure 5.23: Energy spectra of DSMA normalised for comparison of the energy-
containing range.
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Figure 5.24: Pressure fluctuation spectra of DSMA.

WALE

Table 5.5 presents characteristics of the flowfield of the WALE simulations. The WALE

data are much closer to DSMA, indicating similar behaviour for this specific test case.
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STA REG

N 32 64 128 32 64 128

Reλ 52 56 60 59 60 61

L11 1.09 0.99 0.93 1.11 1. 0.94
λ 0.64 0.52 0.43 0.72 0.54 0.44
η 0.05 0.04 0.03 0.05 0.04 0.03

η/∆x 0.23 0.36 0.58 0.24 0.36 0.58
κmaxη 0.73 1.12 1.82 0.77 1.15 1.84
L11/urms 268.56 181.24 133.88 273.23 182.38 134.98
taverurms/L11 56.88 134.34 130.89 55.91 82.68 129.83

Table 5.5: Characteristics of the turbulent field for WALE for three resolutions
for both the STA and REG collision models.

Again, Figs. 5.25, 5.26 and 5.27 are given to examine the grid convergence of WALE.

There are no obvious differences between WALE and the other two models.
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Figure 5.25: Kolmogorov energy spectra of WALE compared against the model
spectrum.
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Figure 5.26: Energy spectra of WALE normalised for comparison of the energy-
containing range.
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Figure 5.27: Pressure fluctuation spectra of WALE.

5.2.4 Comparison of LES and DNS

In the previous section, I performed a grid convergence analysis for the three turbulence

models. All of them returned similar results both in the case of STA and REG collision

models. In this section, I will compare them against each other and the DNS data. To

do so, the results of two resolutions, namely the N32 and N128, will be presented.

N 32 Resolution

Figures 5.28 shows the Kolmogorov energy spectra for the N32 resolution for both colli-

sion models. All the STA versions have predicted more energy in the highest wavenum-

bers compared to REG counterparts. Moreover, there is a noticeable difference in STA

between DNS and all three LES, with DNS to predict more energetic small scales. How-

ever, examining the pressure fluctuation spectra in Fig. 5.29, one can observe that DNS

has also predicted more instabilities in the high wavenumbers compared to LES. There-

fore, one can conclude that the addition of the LES models in the case of STA has

benefited the results by reducing the instabilities. There are no significant differences

among the LES data. On the other hand, in the case of REG, both DNS and LES

energy spectra coincide, while there is only a small reduction for LES in the case of

pressure fluctuation spectra for high wavenumbers. This last deviation seems to be the

only effect of the addition of the LES models for the REG collision model.

N128 Resolution

Following the same procedure, Fig. 5.30 presents the Kolmogorov energy spectra for

N128 resolution. Again, the STA versions have predicted more energetic small scales,

though the difference is smaller than before. Furthermore, in this case, there are no

apparent discrepancies between STA DNS and LES. The latter can also be confirmed by
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Figure 5.28: Comparison of Kolmogorov energy spectra for DNS and LES with
N32 resolution.
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Figure 5.29: Comparison of pressure fluctuation spectra for DNS and LES with
N32 resolution.

examining the pressure fluctuation spectra in Fig. 5.31, where the STA curves coincide.

However, compared to REG, all STA versions have estimated instabilities in the highest

wavenumbers. In the case of REG, in both plots, all the curves match.

Consequently, though the FHIT test case mainly enabled us to compare the two collision

models STA and REG, it did not provide a challenging benchmark for verifying and

evaluating the LES models. To surpass this obstacle, the DHIT case was employed.

5.3 Decaying Isotropic Turbulence

In the previous section, I have examined the test case of FHIT. I have shown that the

final Reλ and thus the input of kinetic energy depended strongly on the resolution and

weakly on the collision and the application of LES models. This behaviour was an

obstacle for the detailed verification of the LES models. Consequently, to have a proper
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Figure 5.30: Comparison of Kolmogorov energy spectra for DNS and LES with
N128 resolution.
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Figure 5.31: Comparison of pressure fluctuation spectra for DNS and LES with
N128 resolution.

benchmark test case and avoid any influence of the force on results, the test case of

DHIT was employed next. In this scenario, the simulation of FHIT has been restarted

without applying the force. To ensure a fair comparison, all simulations in this section

have been initialised based on DNS with the resolution of 5123 running with the REG

collision model. As I have shown in the previous section, this combination has returned

the most accurate results in the energy and pressure fluctuation spectra. All simulations

in this section have run for a final time of 1000 time units. As reference data, I have

used DNS to resolve N512 with the REG collision model.

Initially, I will present the results for three resolutions, namely N32, N64 and N128 for

all three turbulence and the two collision models. The initial solutions for these cases

were based on suitable local volume averaging. Afterwards, I will investigate the effect

of estimating the strain rate locally or using a stencil. Finally, I will close this section

showing contours of vorticity magnitude of instantaneous flowfields.
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Figure 5.32: Evolution of the turbulent kinetic energy k for CSMA with C = 0.1,
DSMA and WALE of a resolution of 323 cells for both STA and REG SRT. The
DNS of 5123 resolution with REG SRT has been added as a reference.
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Figure 5.33: Evolution of dissipation rate ε for CSMA with C = 0.1, DSMA
and WALE of a resolution of 323 cells for both STA and REG SRT. The DNS
of 5123 resolution with REG SRT has been added as a reference.

Figure 5.32 presents the evolution of the turbulent kinetic energy k for the resolution

N32. All the combinations of turbulent and collision models have predicted identical

curves. However, they show some divergence for the DNS reference due to coarse resolu-

tion, particularly during the first 100 time units. Moreover, Fig. 5.33 plots the evolution

of the dissipation rate ε. In this case, there is an observable discrepancy between STA

and REG results, with the former to estimate higher values over the whole duration.

There is no difference between the performance of the LES models. However, there is a

significant discrepancy between the lower resolution LES results and the DNS data. This

is expected since, in the finer DNS, a higher number of small eddies will be simulated,

and thus more kinetic energy will be transferred to them resulted in higher values of the

dissipation rate.
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Figure 5.34: Evolution of Kolmogorov length scale η for CSMA with C = 0.1,
DSMA and WALE of a resolution of 323 cells for both STA and REG SRT. The
DNS of 5123 resolution with REG SRT has been added as a reference.

From the theory of decaying homogeneous isotropic turbulence, one can anticipate that

power-laws of the type k ∼ (t + t0)−n and ε ∼ (t + t0)−n−1 can describe the slopes in

the current plots. Therefore, I have also estimated the exponents based on the reference

DNS results with n = 1.4 for the case of the turbulent kinetic energy and n = 2.4 for

the dissipation rate. These values are in the expected range predicted by the literature

(Huang and Leonard, 1994). Only the former slope seems to be simulated correctly in

the case of LES.

Finally, in Fig. 5.34 I plot the evolution of the Kolmogorov length scale η to enrich the

comparison. All the LES curves collapse together, indicating that the collision models

have no significant effect on this variable. However, there is an apparent discrepancy

between them and the DNS data. Due to the finer resolution, the latter has estimated

much smaller eddies hence the lower value of η.

10-8

10-6

10-4

100 101

E(
κ)

κ

CSMA (C=0.10) 32 STA
DSMA 32 STA
WALE 32 STA
CSMA (C=0.10) 32 REG
DSMA 32 REG
WALE 32 REG
DNS 512 REG

Figure 5.35: Instantaneous energy spectra of CSMA (C = 0.1), DSMA and
WALE for both STA and REG SRT for the resolution of 323 cells at t = 98.17
time units. The curve of the REG DNS on 5123 cells are shown as a reference.
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Figure 5.36: Instantaneous pressure fluctuation spectra of CSMA (C = 0.1),
DSMA and WALE for both STA and REG SRT for the resolution of 323 cells
at t = 98.17 time units. The REG DNS on 5123 cells are shown as a reference.

Up to this point, I have examined the evolution in time of some quantities. To improve

my investigation, Figs. 5.35 and 5.36 show the instantaneous, at t = 98.17, energy and

pressure fluctuation spectra. Again the reference solution is based on the DNS REG of

N512 resolution. The curves of the LES models coincide with the reference in the low

wavenumbers for both plots. This is an indication that neither LES nor collision models

have affected the large scales of the flowfield. However, similar to the FHIT case, the

STA versions have estimated more energetic small scales than REG. Simultaneously,

the same pattern of instabilities appearing in high wavenumbers for the pressure fluc-

tuation spectra in the STA versions. This is the reason for the higher values of the

dissipation rate ε compared to REG. One significant difference is that the LES models

have estimated different instabilities levels with WALE returning the closest solution

to the reference and thus better performance. On the other hand, there is no obvious

difference among REG LES. Nonetheless, the REG versions have underestimated the

values of pressure fluctuations in the small scales significantly, pointing to a dissipative

behaviour in the case of a highly coarse mesh.

N64 Resolution

Following the same order as in the case of N32, Figs. 5.37, 5.38 and 5.39 report the

time evolution of turbulent kinetic energy k, dissipation rate ε and Kolmogorov length

scale η for N64 resolution. By increasing the resolution, all results have been improved,

converging to the reference data. Moreover, the discrepancy between STA and REG

versions in the plot of dissipation rate is much smaller.

Examining the spectra in Figs. 5.40 and 5.41, a better convergence towards the reference

data is also apparent. One significant distinction in this resolution is that all STA

LES results have estimated the same instabilities level in high wavenumbers for the
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Figure 5.37: Evolution of the turbulent kinetic energy k for CSMA with C = 0.1,
DSMA and WALE of a resolution of 643 cells for both STA and REG SRT. The
DNS of 5123 resolution with REG SRT has been added as a reference.
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Figure 5.38: Evolution of dissipation rate ε for CSMA with C = 0.1, DSMA
and WALE of a resolution of 643 cells for both STA and REG SRT. The DNS
of 5123 resolution with REG SRT has been added as a reference.

pressure fluctuation spectra. Another important observation is that both STA and REG

versions for some wavenumbers underestimate the pressure fluctuation spectra, though

STA results seem to be closer to the reference up to the point where instabilities pollute

the curves.

Consequently, one can argue that the addition of the regularisation procedure has in-

creased the scheme’s dissipation. Simultaneously, this procedure is essential to eradicate

the instabilities, which seems to be the main reason for the apparent better performance

of the STA versions in the energy spectra.
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Figure 5.39: Evolution of Kolmogorov length scale η for CSMA with C = 0.1,
DSMA and WALE of a resolution of 643 cells for both STA and REG SRT. The
DNS of 5123 resolution with REG SRT has been added as a reference.
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Figure 5.40: Instantaneous energy spectra of CSMA (C = 0.1), DSMA and
WALE for both STA and REG SRT for the resolution of 643 cells at t = 98.17
time units. The curve of the REG DNS on 5123 cells are shown as a reference.

N128 Resolution

Figures 5.42, 5.43 and 5.44 show the turbulent kinetic energy k, dissipation rate ε and

Kolmogorov length scale η, respectively, for the resolution N128. It is eminent that

all the curves collapsed with the reference data. There is a small discrepancy in the

initial stage of the dissipation rate with LES to slightly under-predict the values. This

is because more small eddies were simulated by the finer DNS, thus increasing the value

of ε. Moreover, as in the N64, there is no difference between STA and REG versions.

Finally, Figs. 5.45 and 5.46 report the instantaneous energy and pressure fluctuation

spectra for this resolution. In the case of the energy spectra, the LES curves converge

closer to the reference DNS. Once more, the STA versions have predicted an apparent less

dissipative behaviour. However, examining the pressure fluctuation spectra, the curves
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Figure 5.41: Instantaneous pressure fluctuation spectra of CSMA (C = 0.1),
DSMA and WALE for both STA and REG SRT for the resolution of 643 cells
at t = 98.17 time units. The REG DNS on 5123 cells are shown as a reference.
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Figure 5.42: Evolution of the turbulent kinetic energy k for CSMA with C = 0.1,
DSMA and WALE of a resolution of 1283 cells for both STA and REG SRT.
The DNS of 5123 resolution with REG SRT has been added as a reference.

of both STA and REG versions collapse with the reference except for the instabilities in

high wavenumbers for STA LES. Consequently, in this case, it is much clearer that the

less dissipative behaviour of STA appearing in the energy spectra is the outcome of the

instabilities rather than an attribute of the method.

Currently, I have demonstrated that the case of DHIT enabled us to perform a grid

convergence analysis for the three LES models with both collision schemes. I have

shown that by increasing the resolution, all LES models can converge to the reference

data. Observing the energy spectra, the STA LES has returned more energetic small

scales and closer to the reference independently of the resolution. This observation has

been recently also reported by Nathen et al. (2018). Nonetheless, examining the pressure

fluctuation spectra, I have noticed that STA versions exaggerate the high wavenumbers,

introducing instabilities and thus polluting the solution. This behaviour is the outcome
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Figure 5.43: Evolution of dissipation rate ε for CSMA with C = 0.1, DSMA
and WALE of a resolution of 1283 cells for both STA and REG SRT. The DNS
of 5123 resolution with REG SRT has been added as a reference.
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Figure 5.44: Evolution of Kolmogorov length scale η for CSMA with C = 0.1,
DSMA and WALE of a resolution of 1283 cells for both STA and REG SRT.
The DNS of 5123 resolution with REG SRT has been added as a reference.

of numerical error arising during the collision step. Therefore, one can conclude that

the STA model’s apparent better performance in the energy spectra is based on the

appearance of more small scales rather than a less dissipative behaviour.

Independently of the resolution, the curves of all REG versions match each other. On

the other hand, STA WALE has calculated a lower level of instabilities in the lowest

resolution case. This is not the case for the other resolutions. This observation indicates

that LES models may be affected and have different behaviour under different collision

models.
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Figure 5.45: Instantaneous energy spectra of CSMA (C = 0.1), DSMA and
WALE for both STA and REG SRT for the resolution of 1283 cells at t = 98.17
time units. The curve of the REG DNS on 5123 cells are shown as a reference.
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Figure 5.46: Instantaneous pressure fluctuation spectra of CSMA (C = 0.1),
DSMA and WALE for both STA and REG SRT for the resolution of 1283 cells
at t = 98.17 time units. The REG DNS on 5123 cells are shown as a reference.

Comparison of local vs stencil (STE) CSMA

In the previous section, I have pointed that the collision model may affect the perfor-

mance of the LES model. To further investigate this observation, I have decided to

examine the effect of estimating the eddy viscosity locally per cell or through a sten-

cil. However, the only LES model that permits us to check the difference is CSMA.

This is possible because the strain rate can be estimated either locally through the non-

equilibrium part or using FD stencil, see Sec. 3.2. On the other hand, the WALE model

needs to calculate the rotation rate, which cannot be estimated locally, while DSMA

needs information from neighbour cells.

Initially, I will focus on the STA collision model. Figure 5.47 shows the evolution of the

turbulent kinetic energy for three resolutions. Again, DNS REG of N512 is used as the
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Figure 5.47: Evolution of the turbulent kinetic energy k for CSMA with C = 0.1
STA SRT for both local and stencil-based estimation of strain rate. The DNS
of 5123 resolution with REG SRT has been added as a reference.
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Figure 5.48: Evolution of dissipation rate ε for CSMA with C = 0.1 STA SRT
for both local and stencil-based estimation of strain rate. The DNS of 5123

resolution with REG SRT has been added as a reference.

reference data. It is evident that as the resolution increases, the results converge to the

benchmark, as is expected. There is no apparent discrepancy between local and STE

CSMA. In Fig. 5.48 one can see the evolution of the dissipation rate. In this case, STE

CSMA has estimated higher values for almost all the time in the coarsest resolution.

As the resolution increases, this deviation diminishes with the higher resolution showing

no evident difference. The Kolmogorov length scale evolution in Fig. 5.49 reveals no

distinction between the two options in question.

Figure 5.50 plots the energy spectra. The coarser the grid, the bigger the difference

between local and STE CSMA to predict more energetic small scales. However, observing

the pressure fluctuation spectra Fig. 5.51, one can conclude that again, the reason for the

apparent better performance is the exaggeration of the instabilities in high wavenumbers.
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Figure 5.49: Evolution of Kolmogorov length scale η for CSMA with C = 0.1
STA SRT for both local and stencil-based estimation of strain rate. The DNS
of 5123 resolution with REG SRT has been added as a reference.
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Figure 5.50: Instantaneous energy spectra of CSMA (C = 0.1) STA SRT for
both local and stencil-based estimation of strain rate. The curve of the REG
DNS on 5123 cells are shown as a reference.

As the resolution increases, this discrepancy between the two options getting smaller and

smaller, and there is no evident distinction in the finest resolution.

To investigate if the last observation is also experienced by the REG model, Figs. 5.52,

5.53 and 5.54 present the evolution of turbulent kinetic energy, dissipation rate and

Kolmogorov length scale for the case of the REG model. In all three figures, the local

and STE CSMA curves collapse, indicating that the REG model is not affected by the

way the strain rate is estimated. This conclusion is also supported by the energy and

pressure fluctuation spectra appearing in Figs. 5.55 and 5.56, respectively. It is evident

that in these plots, there are no differences between local and STE CSMA.

Finally, I will close this section by presenting contours of vorticity magnitude |ω| and

how the different models affect the outcome. In Fig. 5.57, one can see the instantaneous

flowfield at t = 98.17 time units for the case of CSMA and resolution N32. It is evident
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Figure 5.51: Instantaneous pressure fluctuation spectra of CSMA (C = 0.1)
STA SRT for both local and stencil-based estimation of strain rate. The REG
DNS on 5123 cells are shown as a reference.
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Figure 5.52: Evolution of the turbulent kinetic energy k for CSMA with C = 0.1
REG SRT for both local and stencil-based estimation of strain rate. The DNS
of 5123 resolution with REG SRT has been added as a reference.

that in the case of the STA model, there is a discrepancy between the local and STE

CSMA, with the latter to predict significantly more eddies. On the other hand, the

vorticity fields yield no obvious differences in the case of REG. Comparing STA with

REG, the latter has predicted a more dissipative field. The illustration is different

in Fig. 5.58 for the N128 resolution, where all combinations of models have returned

a similar solution. The above observations are a direct confirmation of the previous

results.

Figure 5.59 shows the comparison for the DSMA model. In the resolution N32, STA and

REG have simulated considerably different vorticity fields, with the former to return a

somewhat more energetic. As for the other resolution, there is no eminent distinction in

the case of N128. The same pattern is also observed by the WALE model in Fig. 5.60.
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Figure 5.53: Evolution of dissipation rate ε for CSMA with C = 0.1 REG SRT
for both local and stencil-based estimation of strain rate. The DNS of 5123

resolution with REG SRT has been added as a reference.
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Figure 5.54: Evolution of Kolmogorov length scale η for CSMA with C = 0.1
REG SRT for both local and stencil-based estimation of strain rate. The DNS
of 5123 resolution with REG SRT has been added as a reference.

By evaluating the turbulence models’ performance, all three models were able to accu-

rately capture the majority of the eddies appearing in the reference DNS data for the

high resolution. However, there is a significant divergence between LES and DNS and

LES for the low resolution, and no clear outcome can be concluded.

5.4 Taylor Green Vortex

The TGV case was chosen as the final wall-free benchmark for the newly implemented

LES models. Again the domain was a periodic cube with a length equal to 2πL, where

L = 1. There is no external force, while the initial conditions read
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Figure 5.55: Instantaneous energy spectra of CSMA (C = 0.1) REG SRT for
both local and stencil-based estimation of strain rate. The curve of the REG
DNS on 5123 cells are shown as a reference.
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Figure 5.56: Instantaneous pressure fluctuation spectra of CSMA (C = 0.1)
REG SRT for both local and stencil-based estimation of strain rate. The REG
DNS on 5123 cells are shown as a reference.
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w(x, t0) = 0.

In the above, ρ0 = 1 and U0 = 0.1 leading to Ma ≈ 0.17 at the start of the simulation. To

achieve Re = U0L/ν = 1600, the viscosity ν was set to 6.25 · 10−5. By having estimated

the macrovariables locally per cell, the microvariables were calculated by applying the

equilibrium function Eq. (2.11). All the simulations ran for twenty-time units.
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Figure 5.57: Contours of vorticity magnitude (|ω| = 0.05) at t = 98.17 time
units on 323 cells, for CSMA with C = 0.1 STA (left) and REG (right). The
red dashed line is the version with localised estimation of the eddy viscosity
while the blue dotted the one based on stencil. The black solid line is the DNS
with a resolution of 5123 given as a reference.

Figure 5.58: Contours of vorticity magnitude (|ω| = 0.05) at t = 98.17 time
units on 1283 cells, for CSMA with C = 0.1 STA (left) and REG (right). The
red dashed line is the version with localised estimation of the eddy viscosity
while the blue dotted the one based on stencil. The black solid line is the DNS
with a resolution of 5123 given as a reference.

It is essential to mention that the non-equilibrium part of the distribution function was

set to zero. This decision has added two effects that need to be taken into consideration

in the following discussion. The first is the addition of a second order numerical error

in the initial field. It is expected that as time passes, this error will be dissipated.

Moreover, LES models, such as CSMA and DSMA, that base their calculations on the

non-equilibrium part will see initially a zero eddy viscosity field that gradually will rise

to more reasonable values. These effects will be diminished by increasing the resolution.
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Figure 5.59: Contours of vorticity magnitude (|ω| = 0.05) at t = 98.17 time
units for DSMA on 323 (left) and 1283 (right) cells. The red dashed line is the
STA model and the blue dotted the REG. The black solid line is the DNS with
a resolution of 5123 given as a reference.

Figure 5.60: Contours of vorticity magnitude (|ω| = 0.05) at t = 98.17 time
units for WALE on 323 (left) and 1283 (right) cells. The red dashed line is the
STA model and the blue dotted the REG. The black solid line is the DNS with
a resolution of 5123 given as a reference.

Due to the imposed initial conditions, large scale vortices appear in the flowfield. This

phase is characterised by the absence of small scales, and thus turbulence. As the

time passes, the vortices will start to break into smaller eddies, which finally will be

dissipated. Therefore, this test case has an initial inviscid part followed by the transition

to turbulence and finishes with turbulence decay. The above procedure imposes new

challenges for the turbulence models.

Following the same path as in FHIT, I will begin the discussion comparing four DNS

resolutions against the reference data of DeBonis (2013), which is an NS DNS with
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N512 resolution based on a 13-point dispersion-relation-preserving scheme after Bogey

& Bailley. Figure 5.61 shows the evolution of kinetic energy for the four resolutions of

the STA model. Only the highest resolution can match the reference for the whole time.

The other two resolutions, N128 and N256 follow the reference solution for the first ten

time units, but then they express a steeper slope at the beginning of the last phase, i.e.

the decay of turbulence. Finally, the simulation with the lowest resolution has crashed

almost in the beginning.

For a more comprehensive discussion, I will also report the evolution of two dissipation

rates. The first one, plotted with a solid line, is the temporal derivative of the kinetic

energy ε, while the other, plotted with a dashed line, is the dissipation rate εζ calculated

based on enstrophy ζ Eq. (5.37).

εζ = 2νζ, where ζ =
1

ρ0Ω

ˆ
Ω
ρ
|ω|2

2
dΩ. (5.37)

The former describes the total dissipation while the latter is associated with the small

scales, and thus it is related to turbulence. Furthermore, the difference between these

two variables links to dissipation related to the numerical scheme.

Figure 5.62 reports the two dissipation rates for the case of STA DNS. Only the total

dissipation of the highest resolution fits well with the reference, though it has slightly

under-predicted the peak and the values at the end of the simulation. The curves of

εζ coincide with the total dissipation almost all the time except for around the peak,

pointing to a small contribution of numerical dissipation. The total dissipation of the

N256 DNS follows closely, but it begins to diverge after the peak, at around t∗ = 9. Due

to lower resolution, the presence of numerical dissipation is more evident in this case.

However, its most significant contribution appears in the case of N128 DNS, though it

was not sufficient to correctly capture the shape of the curve, particularly around the

peak. Moreover, the steepest slope after the second peak indicates a much higher pace of

attenuation of small scales compared to the previous two resolutions. The results express

the expected convergence behaviour and the reduction of the numerical dissipation as

the resolution increases.

At this point, the discussion will focus on the REG model. Figure 5.63 shows the

evolution of the kinetic energy for the same four resolutions for REG DNS. Compared

with the STA versions, there is no evident discrepancy among the three finer resolutions,

except for the curve of N128 that seems to be closer to the reference one. An interesting

comment is that the REG collision model has succeeded in running the lowest resolution.

However, the curve fails to follow the other data for the whole duration.

Examining the dissipation rates in Fig. 5.64, they follow the same converging pattern

with higher resolution. Nonetheless, all the REG curves have underperformed compared
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Figure 5.61: Evolution of kinetic energy for DNS STA for a variety of resolutions.
The reference solution is based on (DeBonis, 2013).

to their STA counterparts. In the case of the highest resolution, it appears that REG

has returned a slightly lower peak. The situation is similar for the N256 case though the

difference is more eminent than STA. On the other hand, the lowest resolution, besides

the first two time units, has failed to predict the value of the peak and its position.

However, the most striking discrepancy can be observed for the N128 resolution. The

REG curve starts to diverge from the reference data as early as around t∗ = 4 while

the STA version follows the data reasonably well up to around t∗ = 8. This period is

characterised by the break down of the large vortices into smaller and smaller, signalling

the transition to turbulence. There is also difference in the peak for εζ with REG returns

a value around 7 · 10−3 while STA 8 · 10−3. This reduction indicates significant damping

of the turbulent scales in the simulation of REG DNS.

To further investigate this behaviour, I also report the instantaneous energy and pres-

sure fluctuation spectra at four different time steps around the peak in Figs. 5.65 and
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Figure 5.62: Evolution of dissipation rate (solid) and dissipation rate based on
enstrophy (dashed) for DNS STA for a variety of resolutions. The reference
solution is based on (DeBonis, 2013).

5.66, for both STA and REG DNS for N128 resolution. In the case of energy spec-

tra, the STA versions have predicted more energetic small scales, a similar situation

reporting in the previous two test cases. However, in this scenario, discrepancies can be

observed over the whole spectrum of wavenumbers for the case of t∗ = 12. Examining

the pressure fluctuation spectra, similarly to the previous two sections, the STA curves

suffer from numerical instabilities at the highest wavenumbers. Nevertheless, the two

collision models start to diverge from each other even at the low wavenumbers as time

passes. Finally, it appears that the REG simulation has damped more the small scales

in the range 20 < κ < 40. It seems that this region has not been affected by numerical

instabilities in the case of the STA model.

By compiling all the information from the three testcases, there is a strong indication

that the STA collision model is less dissipative than the REG one, although this obser-

vation is exaggerated by an artificial increase of the small scales due to inaccuracies. In
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Figure 5.63: Evolution of kinetic energy for DNS REG for a variety of resolu-
tions. The reference solution is based on (DeBonis, 2013).

a different interpretation, the regularisation procedure successfully removes the numeri-

cal instabilities in the STA model, but it tends to attenuate some of the flow’s physical

scales. Simultaneously, though this mechanism seems to only affect the small eddies, in

a transient case, such as the break down of the large vortices in TGV, some alterations

in medium and large ones may also lead to some alterations over time. The divergence

between the two models amplifies with lower resolutions.

5.4.1 Resolution N 256

I will finish this section by presenting a convergence analysis for the LES models and their

performance simulating the TGV test case. As mentioned before, the initial TGV phase

is characterised by the absence of turbulence and the second phase by the transition.

Nonetheless, there is no explicit mechanism to inform the LES models that they should

turn off during these phases. Consequently, it is expected that the introduction of the
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Figure 5.64: Evolution of dissipation rate (solid) and dissipation rate based on
enstrophy (dashed) for DNS REG for a variety of resolutions. The reference
solution is based on (DeBonis, 2013).
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Figure 5.66: Instantaneous pressure fluctuation spectra of DNS at different time
steps for the resolution of N128.

sub-grid scale modelling will affect, by dampening, the initial large vortices and their

break down.

The highest resolution that was used for this situation was the N256. As reference

data, I will use the DNS of the exact resolution. Figure 5.67 shows the evolution of the

kinetic energy for the current resolution. All curves coincide with each other, though

some divergence appears in the last phase of turbulence decay. In particular, the WALE

model returns the most considerable disparity against the DNS data.

To better understand these differences, Fig. 5.68 reports the dissipation rates. First of

all, this plot provides a useful direct comparison of the two DNS versions, with the STA

model predicted a larger peak and thus indicating the existence of a larger number of

small scales in the flow. Moreover, subgrid-scale modelling has damped the structures

in the flow field, reducing the LES curves’ shape. As in the case of DNS, the STA LES

versions have returned higher values. The behaviour is identical for both the dissipation

rates.

Analysing the performance of the LES models, it is evident that the CSMA, with C =

0.1, has returned minor dissipative behaviour. In theory, DSMA should perform the

same or slightly better compared to CSMA given that they share the exact mechanism to

calculate the eddy viscosity, but DSMA can also alter the value of the constant C locally.

Nonetheless, some affect this estimation. First of all, in the current implementation, I

have prevented backscattering of the turbulent energy by blocking the value of C to be

negative. It has been shown that in this case, backscattering may improve results, leading

to a less dissipative functioning, (DeBonis, 2013). The reason for imposing the minimum

value of C at zero is robustness. Negative values of C have the potential to reduce the

value of ω to such levels that may render the simulation unstable. This final outcome

can worsen by the second factor: the locality of the constant calculation. Theoretically,

the calculation of C should take place in homogeneous directions. Nevertheless, the
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Figure 5.67: Evolution of kinetic energy for all LES models and DNS of both
STA and REG versions for the resolution of N256.

identification of homogeneity is complicated in a general case, and thus the current

implementation is based locally per cell. The third factor is the imposed macrovariables

in the ghost cells which forcing us to calculate the constant using the data from the

previous time step, introducing, in that way, an error analogous to ∆t.

In the case of WALE, the last factor is also applicable. On the other hand, the WALE

model has a different mechanism for calculating the eddy viscosity, i.e. taking into

account the rotation rate. Consequently, it appears that the WALE model is more

sensitive and triggers more dissipation during the second phase, that is, the transition

to turbulence. Finally, none of the LES models seems to reduce better the disparity

between total and enstrophy based dissipation rate. This means that none of the models

has affected the numerical dissipation of the scheme for this resolution.
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Figure 5.68: Evolution of dissipation rate (solid) and dissipation rate based on
enstrophy (dashed) for all LES models and DNS of both STA and REG versions
for the resolution of N256.

5.4.2 Resolution N 128

We will proceed with the N128 resolution. In Fig. 5.69, one can see the evolution of the

kinetic energy. In this scenario, the divergence between DNS and LES curves is more

obvious, starting after t? = 4. Again, the WALE model returns the largest difference

from DNS. Figure 5.70 plots the dissipation rates. The discrepancy between STA and

REG DNS is highlighted in this figure. The LES models have performed similarly to the

highest resolution, though the disparity among them and against the DNS reference has

been enlarged. Furthermore, STA versions have estimated higher numerical dissipation

values as the difference between the two dissipations specifies.

At this point, I will analyse the response of the three LES models to the three different

phases of the TGV case by examining the vorticity field and how the eddy viscosity

adapted to it. To do so, three different times will be studied. The first instance will
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Figure 5.69: Evolution of kinetic energy for all LES models and DNS of both
STA and REG versions for the resolution of N128.

be at t? = 3, which is in the inviscid phase, characterised by the absence of turbulence.

The second time is t? = 9, which is the peak of the dissipation rate, signalling the end

of the transition to turbulence. Finally, t? = 15 has been chosen as a representative of

the final phase, the decay of turbulence. The last phase’s performance is also illustrative

of the other two test cases, FHIT and DHIT. To non-dimensionalise the results, I have

divided the eddy viscosity by the value of the physical one.

Starting with CSMA, Figs. 5.71, 5.72 and 5.73 report the vorticity field for the three

times respectively. Data for both collision models are given for comparison. It is evi-

dent that as time passes, smaller and smaller scales appear in the flowfield while large

vortices break down. Figures 5.74, 5.75 and 5.76 show the instantaneous eddy viscosity

fields corresponding to the same models and times. The eddy viscosity field is in good

agreement with vorticity for all times, with the least accurate to be during the initial

phase, indicating CSMA’s difficulty to deal with the laminar case.
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Figure 5.70: Evolution of dissipation rate (solid) and dissipation rate based on
enstrophy (dashed) for all LES models and DNS of both STA and REG versions
for the resolution of N128.

By comparing the two collision models, at t? = 3, there is no apparent discrepancy. The

range between the minimum and the maximum value is two orders of magnitude. The

next time, both maximum values have been increased, following the increase of vorticity,

though the STA model has estimated a more significant rise. Furthermore, examining

the flow structures, the REG version presents a smoother flowfield, indicating fewer

small structures than the STA one. Nonetheless, some of these small scales are the

result of numerical instabilities. The same differences are observed for t? = 15, though

at this time, both flowfields are full of small structures pointing to a fully turbulent field.

The next model to be discussed is DSMA. Figures 5.77, 5.78 and 5.79 plot the vorticity

fields. Besides the range of the values, there are no obvious discrepancies between DSMA

and CSMA. On the other hand, the situation is different in the case of eddy viscosity

fields reporting in Figs. 5.80, 5.81 and 5.82. Though both CSMA and DSMA share

the same way to calculate the eddy viscosity, it is clear that the dynamic behaviour of
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Figure 5.71: Instantaneous vorticity field for the resolution of N128 for CSMA
(C = 0.1) STA (left) and REG (right) at dimensional time 3.

Figure 5.72: Instantaneous vorticity field for the resolution of N128 for CSMA
(C = 0.1) STA (left) and REG (right) at dimensional time 9.

Figure 5.73: Instantaneous vorticity field for the resolution of N128 for CSMA
(C = 0.1) STA (left) and REG (right) at dimensional time 15.
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Figure 5.74: Instantaneous eddy viscosity field for the resolution of N 128 for
CSMA (C = 0.1) STA (left) and REG (right) at dimensional time 3.

Figure 5.75: Instantaneous eddy viscosity field for the resolution of N 128 for
CSMA (C = 0.1) STA (left) and REG (right) at dimensional time 9.

Figure 5.76: Instantaneous eddy viscosity field for the resolution of N 128 for
CSMA (C = 0.1) STA (left) and REG (right) at dimensional time 15.
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Figure 5.77: Instantaneous vorticity field for the resolution of N128 for DSMA
STA (left) and REG (right) at dimensional time 3.

Figure 5.78: Instantaneous vorticity field for the resolution of N128 for DSMA
STA (left) and REG (right) at dimensional time 9.

Figure 5.79: Instantaneous vorticity field for the resolution of N128 for DSMA
STA (left) and REG (right) at dimensional time 15.
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Figure 5.80: Instantaneous eddy viscosity field for the resolution of N 128 for
DSMA STA (left) and REG (right) at dimensional time 3.

Figure 5.81: Instantaneous eddy viscosity field for the resolution of N 128 for
DSMA STA (left) and REG (right) at dimensional time 9.

Figure 5.82: Instantaneous eddy viscosity field for the resolution of N 128 for
DSMA STA (left) and REG (right) at dimensional time 15.
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the constant C has altered the outcome significantly. First of all, at t? = 3, the eddy

viscosity field calculated by DSMA is in a better agreement with vorticity.

Moreover, the range between minimum and maximum value has expanded with the

former value to be around the machine error and close to zero. This enormous disparity

is essential for better adaptability to different regions of the flowfield. In the other

two time instances, DSMA has returned a smoother solution with more distinguishable

features than the more blurring versions of CSMA.

Therefore, DSMA appears to deliver a more accurate and less dissipative eddy viscosity

field, though, recalling the dissipation rates, CSMA has performed slightly better. To

investigate this issue further, Figs. 5.83, 5.84 and 5.85 present the instantaneous values of

the constant C estimating at the same three time instances. In general, the algorithm has

identified successfully in all cases the regions of high vorticity. Examining the behaviour

at t? = 3, it is evident that most of the domain has a value around 0.1, a case similar

to CSMA. Moreover, the algorithm has characterised the vortices correctly as regions

of low turbulence. However, some local extrema do not correspond to regions of high

vorticity.

Given that it is still in the first phase, one can conclude that the algorithm has erro-

neously marked part of the domain as a high turbulent one. By looking at the eddy

viscosity field, not all of these high-value regions translated to local extrema for the eddy

viscosity. Nonetheless, this miscalculation is expected to result in excess dissipation. As

for the collision models, there is no apparent discrepancy between the STA and REG

version. This observation is also accurate for the next instance at t? = 9. This time, the

instantaneous values of the constant are a better representation of the corresponding

vorticity field.

Additionally, the part of the domain marked with low values has increased compared

to the first instance. Consequently, this is a piece of solid evidence that the algorithm

cannot distinguish between laminar and turbulent flow accurately. Finally, investigating

the last instance, in this case, the algorithm is capable of capturing the turbulent field

and the existence of small scales. Like in the previous instance, the patterns are identical

to the corresponding vorticity and eddy viscosity fields. Finally, it appears that there

are some noticeable differences between the STA and REG models, with the former to

estimate more regions having extreme values.

To conclude the current discussion, Fig. 5.86 reports the evolution of the average value

of the constant C estimated per saved time step for both collision models. This plot

verifies the previous observation about the poor performance of the model during the

first phase. Nonetheless, after t? = 4, it seems to return the expected behaviour. During

the second phase, the transition to turbulence adopts a relatively low and constant value

of around 0.07. Then, at the peak of the dissipation and the beginning of the final phase,
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Figure 5.83: Instantaneous values of the constant C for DSMA for the resolution
of N 128 for STA (left) and REG (right) at dimensional time 3.

Figure 5.84: Instantaneous values of the constant C for DSMA for the resolution
of N 128 for STA (left) and REG (right) at dimensional time 9.

Figure 5.85: Instantaneous values of the constant C for DSMA for the resolution
of N 128 for STA (left) and REG (right) at dimensional time 15.
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Figure 5.86: Evolution of the domain average value of the constant C for the
DSMA model at N128 resolution both for STA and REG models.

it rises rapidly and then continues to increase with a slower pace up to a value of around

0.09.

Consequently, though for the majority of the time, it keeps an average value lower

than CSMA, the excess of dissipation added during the initial stage appears to play

an essential role in its more unsatisfactory performance compared to CSMA. Another

important observation is that both collision models have estimated identical curves, with

some slight discrepancies during the last phase. Consequently, though the STA model

has been shown to return values closer to the extrema, the average picture is similar to

the REG one.

The extra dissipation during the initial phase can be restricted by reducing the thresh-

old’s value for the maximum available value, that is C = 0.23. However, this may reduce

the robustness of the model and thus, acquiring data from more simulations is vital for

such a decision. To identify the importance of the threshold, I have run the TGV case

without applying it, and the value of C reached unnaturally high values greater than

one. The last outcome is the product of calculating the constant locally per cell and not

averaging in homogeneous directions, which in this case are all three directions. One can

speculate that applying this averaging would have resulted in a smoother field, reducing

the excess of dissipation in some regions. On the other hand, by setting the minimum

value at zero, I have prevented the backscattering of the energy from smaller scales back

to the largest ones. This could also benefit the performance of DSMA, but, at the same

time, it would reduce its robustness.

Finally, I will proceed with the WALE model. Figures 5.87, 5.88 and 5.89 report its

vorticity field. Again, besides the values of minimum and maximum, there are no dis-

crepancies with the other models. The situation is different in the case of the eddy

viscosity field as one can see in Figs. 5.90, 5.91 and 5.92 Firstly, it appears that the

majority of the domain is covered by low values. Simultaneously, there are some dis-

tinguishable spots of high eddy viscosity values. This behaviour also seems to be the
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Figure 5.87: Instantaneous vorticity field for the resolution of N128 for WALE
STA (left) and REG (right) at dimensional time 3.

Figure 5.88: Instantaneous vorticity field for the resolution of N128 for WALE
STA (left) and REG (right) at dimensional time 9.

Figure 5.89: Instantaneous vorticity field for the resolution of N128 for WALE
STA (left) and REG (right) at dimensional time 15.
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Figure 5.90: Instantaneous eddy viscosity field for the resolution of N 128 for
WALE STA (left) and REG (right) at dimensional time 3.

Figure 5.91: Instantaneous eddy viscosity field for the resolution of N 128 for
WALE STA (left) and REG (right) at dimensional time 9.

Figure 5.92: Instantaneous eddy viscosity field for the resolution of N 128 for
WALE STA (left) and REG (right) at dimensional time 15.
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case for the other two time instances. The high values coincide with the vorticity fields,

except for some regions during the first instance.

Interestingly, these are the same regions falsely reported by the DSMA algorithm with

large constant values. Examining the disparity of the range, WALE has predicted the

minimum value two or three orders of magnitude smaller than CSMA, though not as

small as DSMA. However, in the case of the maximum, it has returned the highest

value of all the models. These high values are located in some isolated cells. On the

comparison between STA and REG, as in the previous cases, there is no significant

difference during the initial phase both in the range of values and in the field. However,

in the subsequent two phases, STA has returned slightly bigger values, while the fields

remain reasonably identical.

Therefore, one can conclude that the WALE model behaves noticeably different from

the other two. While the other two models estimate a somewhat diffusive eddy viscosity

field, WALE returns a more concentrated one. To further enhance the comparative

analysis, Fig. 5.93 reports the evolution of the maximum value of the ratio of viscosities

found in the domain for all the turbulence and collision models. The WALE model

appears to have calculated the most significant maximum values during all the period,

and particularly during the initial phase. It also experiences the most considerable

disparity between STA and REG version.

It is essential to discuss how the initial conditions and the zero value non-equilibrium

part have affected the results. First of all, examining Fig. 5.93 it is clear that the zero

value of eddy viscosity at the beginning of the simulation for both CSMA and DSMA is

due to this decision. Therefore, it appears that these two turbulence models have been

benefited from the initial conditions resulting in a less dissipative behaviour during the

initial phase and thus an apparent better performance compared to WALE. However,

there are no apparent discrepancies in the vorticity fields obtained by all three models

during the initial phase. Consequently, one can argue that this inaccuracy plays no vital

role in the verification procedure.

Taking everything into account, one can speculate the capability of the turbulence mod-

els to deal with a turbulence field in general. CSMA has returned the lowest disparity

between minimum and maximum value, with the former to be two or three orders of

magnitude larger than the second higher. Moreover, it has also returned the most dif-

fusive eddy viscosity field. Therefore, having the eddy viscosity spread in a relatively

homogeneous way adds robustness and a way to deal with any numerical instabilities

arising in the domain. On the other hand, the excess of dissipation in the whole do-

main also means a deterioration of the accuracy and damping of physical scales. This

behaviour can be improved using the DSMA model. Its ability to alter the constant C

locally per cell results in having the most extensive range of values for the eddy viscos-

ity, thus expecting to enhance its adaptability with different flowfield regions. However,
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its most significant drawback is its expensive step since the algorithm needs to parse

the domain multiple times to apply the filtering. Finally, the candidate that seems to

provide both accuracy and reasonably expensiveness is the WALE model. Its eddy vis-

cosity field is more concentrated than CSMA, resulting in a less dissipative behaviour

but at the same time with reduced robustness. Nonetheless, both DSMA and WALE

have failed to adapt correctly during the first phase pointing to the excess of dissipation

under a laminar case or during the transition to turbulence.

0
1
2
3
4
5
6
7
8
9

0 5 10 15 20

m
ax

(ν
t/ν

)

t*

CSMA (C=0.1) STA

CSMA (C=0.1) REG

DSMA STA

DSMA REG

WALE STA

WALE REG

Figure 5.93: Evolution of the max value of eddy viscosity in the domain for the
resolution of N 128 for CSMA (C = 0.1) (purple), DSMA (green) and WALE
(blue). Solid lines shows the STA and dashed the REG model.

5.4.3 Resolution N 32

To close the section, Figs. 5.94 and 5.95 show the evolution of kinetic energy and dissi-

pation rates for the N32 resolution. This resolution provides a significant challenge for

the LES models due to their extreme coarseness. Indeed, examining the kinetic energy,

all LES models have predicted significantly lower kinetic energy in the domain compared

to the DNS reference, indicating notable damping of large vortices due to eddy viscosity

during the initial stage. By investigating the dissipation rates, there is also a notable

difference between STA and REG versions. In the case of REG, the previous two res-

olutions’ familiar pattern is applied, where DNS has the more dissipation followed by

CSMA and then the other two models. This time, WALE appears to perform better,

and its curve is close to the DSMA one. However, in the situation of STA, DSMA has

the worst performance. This indicates that resolution is a significant factor that needs

to be considered for the comparison of LES models.
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Chapter 6

Bi-periodic Channel

In the previous chapter, I have verified the newly implemented LES models by simulating

homogeneous isotropic turbulence. The main idea was to prove that their energy spectra

exhibit the expected shape based on Kolmogorov theory. Another situation where a

universal behaviour can be identified and used for testing is the law of the wall appearing

in a turbulent boundary layer.

A very convenient test case to simulate a turbulent boundary layer and examine it

is the bi-periodic channel. The benefit of this canonical case is that plenty of data

for comparison can be found in the literature. To simulate it, a body force needs to

be applied to counterbalance the loss of momentum and to impose the specific Reτ ,

estimated as

Reτ =
uτH

ν
. (6.1)

In the above, uτ is the friction velocity, H is the half-height of the channel and ν the

viscosity of the fluid. I have set H = 1 for all simulations. Given Reτ as input, Rebulk,

can be estimated using Dean’s correlations

Rebulk = (
8

0.073
)4/7Re8/7

τ . (6.2)

The definition of Rebulk is based on the mean bulk velocity ub, which has been set equal

to 1 for this case. Consequently, the viscosity can be estimated by using the equation of

Rebulk that reads

Rebulk =
2ubH

ν
. (6.3)

The next step is the computation of uτ by invoking Eq. (6.1). Finally, the formula of

force reads

Fx = ρ

(
u2
τ

H
+ (ub − 〈u〉)

ub
H

)
, (6.4)

where 〈u〉, is the averaged streamwise velocity estimated over all the domain every time

step. Due to the solver interface, the calculation of 〈u〉 takes place before the beginning

115
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of the numerical step. This procedure leads to two important side-effects. Due to

the order of the execution of the tasks during the numerical step, see Sec. 2.2.1, the

application of the force lags by one ∆t because of the intermediate streaming. Moreover,

some boundary conditions, such as the wall function, are called to impose the correct

macrovariables in the first fluid cell rather than the ghost cell. In this way, the first

fluid cell may contain unknown values after the streaming step, affecting the calculation

of the force. About the first issue, one can expect that the relatively small time step

of the lattice Boltzmann is sufficient to restrict the error. To alleviate the second side

effect, macrovariables are also set in ghost cells resulting in proper distribution functions

propagating from them to the first layer of fluid cells.

A post-processing routine has also been coded to estimate the mean averaged values

reported in this chapter. The spatial averaging has taken place over the whole domain.

The idea is to estimate the profile of the variables in the normal to the wall direction.

In the case of the streamline velocity, the formula reads

〈u〉i =
1

N

∑
N

ui(x, t), where i ∈ Ny, (6.5)

where N = Nx ·Nz is the number of all cells in a plain vertical to the normal direction.

The normal direction consists of Ny points. One can also estimate the covariance of a

variable as

〈uu〉i =
1

N

∑
N

(ui(x, t))
2, where i ∈ Ny. (6.6)

To avoid storing a large amount of data, the temporal averaging is based on informing

the current prediction with the new sample, and thus it takes place simultaneously with

the spatial averaging process. For instance,

〈u〉T+1
i =

〈u〉i + T · 〈u〉Ti
T + 1

, (6.7)

where T is the current number of samples. For the estimation of the Reynolds stresses,

it yields

〈u′u′〉 = 〈uu〉i − (〈u〉i)2. (6.8)

The rms values can be calculated as urms =
√
〈u′u′〉. The pressure has been estimated

by multiplying the density with the square of the speed of sound.

This chapter consists of two parts. In the first part, I will examine the capability of

the LES models to capture the law of the wall by running the bi-periodic channel in

a WRLES mode. To achieve this target, a low Reτ will be simulated, and the results

will be compared with two reference sources from the literature. Simultaneously, I will

report the performance of the new algorithm for imposing macrovariables in ghost cells

described in Chap. 4.
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In the second part of this chapter, I will utilize the bi-periodic channel to verify the

wall function, also reported in Chap. 4. To do so, two Reτ numbers will be simulated,

and a convergence analysis will be carried out. The combination of the first Reτ and

the three resolutions will test the wall function under the expected conditions for its

usability. On the other hand, the second Reτ has been chosen large enough to test

the new implementation under extreme coarse resolution. The data will be compared

against reference results from the literature. It should be highlighted that none of these

two cases could run without the wall treatment employment.

All the simulations in this chapter have been run with the STA collision model. I

have tried to employ the REG model, but the simulations were crushed. The source

of error was found to be in the vicinity of the boundaries. One can speculate that

any inaccuracies in the distribution functions close to a boundary will be magnified by

the regularisation process, Eq. (2.19). The application of regularisation affects all the

distribution functions. Therefore, if some of them are inaccurate, this error will be

distributed to all of them.

6.1 Wall Resolved LES (Reτ = 183.6)

To verify the LES model for wall-bounded flows, I will replicate the numerical experiment

reported in (Liu et al., 2012). The idea is to simulate a turbulent open channel flow

with dimensions (6H × H × 3H) and Reτ = 183.6. This corresponds to a Rebulk

of 5660. A no-slip condition is imposed for the bottom boundary, while at the top, a

slip wall is applied. The algorithm of both boundaries is based on the standard bounce

back method, where distribution functions are reflected following specific instructions

depending on the type of boundary. Therefore, no macrovariables are estimated in

the ghost cells and thus, the new algorithm for imposing macrovariables needs to be

employed, particularly in the case of DSMA and WALE. A resolution of 45 cells per H

has been used following the reference resulting in y+ ≈ 2 for the first fluid cell centre

and ∆y+ ≈ 4 for the spatial step.

I utilised the Musker profile of the wall function to initialise the flowfield and added

turbulent fluctuations of I = 5% intensity. The density was set to ρ = 1 everywhere

in the domain. Like the TGV case, the distribution functions were initialised to their

equilibrium values, while the non-equilibrium part had a zero value. Consequently,

some initial instabilities have been introduced, though it is expected that they have

been dissipated by the time the statistical analysis took place. The domain and the

velocity field’s initialisation can be seen in Fig. 6.1. The simulations were run initially

for 50T , where T = H/uτ , to establish a turbulent field and then for other 16T when

measurement and statistical analysis were carried out. The results will be compared

with two references. The first is the NS DNS data reported in (Kim et al., 1987). The
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Figure 6.1: The domain and the initial velocity field for the case of Reτ = 183.6.

second reference is the data obtained from the MRT LBM solver presented in (Liu et al.,

2012) with WALE as the turbulence model. In their case, they imposed Ma = 0.28,

which is a relatively large value for LBM solvers. However, the MRT collision model’s

stability makes it possible, though with some loss of accuracy. In my case, I imposed

Ma = 0.2 because STA SRT is not as stable.

LES CSMA DSMA WALE

uτ 0.0628 0.0609 0.0642

Rel. Err. 3.23% 6.14% 0.99%

Table 6.1: Estimated friction velocities for each LES models and their relative
error.

Starting the discussion about the results, Table 6.1 reports the estimated friction veloc-

ities uτ for all three models and their relative errors. The expected friction velocity is

uτ = 0.0649. An interesting observation is that DSMA has the worst performance. One

can speculate that the reason is that though one can impose the correct macrovariables

at ghost cells, the algorithm of DSMA also needs accurate non-equilibrium parts to cal-

culate the strain rate locally. However, this restriction cannot be satisfied, leading to an

inaccurate result while calculating the constant at the first fluid cell.

On the other hand, WALE requires only accurate macrovariables at ghost cells to es-

timate its eddy viscosity. By imposing reasonable values with the proposed algorithm,

it has the best performance with its relative error lower than 1%, as expected by a

turbulent model designed to be consistently close to the wall. These two observations

illustrate both the necessity and the efficiency of the newly proposed algorithm, see

Sec. 4.3.

Figure 6.2 shows the mean streamwise velocity profile for the three LES models and

the two reference solutions. Moreover, Fig. 6.3 shows the same information but with

the more usual semi-log axes representation. All three models have captured the two
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first points accurately in the viscous sub-layer. Nonetheless, they have underestimated

the values in the buffer layer. One can speculate that this inaccuracy is the effect of

the relatively high Ma number with the combination of the STA SRT collision model.

Finally, their accuracy has recovered in the log layer where the curve of DSMA fits the

DNS data while the other two have underestimated the values slightly.
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Figure 6.2: Mean streamwise velocity profile scaled at wall units.
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Figure 6.3: Mean streamwise velocity profile in semi-log axes scaled at wall
units.

The following variable to be examined is the Reynolds shear stress 〈uv〉 appearing in

Fig. 6.4. Like the streamwise velocity, all the models show some slight divergence from

the reference data in the region of the buffer layer. However, they can recover in the log

layer, where CSMA and DSMA fit DNS data accurately. On the other side, both STA

and MRT WALE have under-predicted the values close to the peak, indicating that it

is rather due to the turbulence model and not the collision one that affects this plot.

Continuing the discussion, Figs. 6.5, 6.6 and 6.7 plot the RMS streamwise, normal and

spanwise velocity fluctuations, respectively. In the streamwise direction, DSMA and

WALE converge to the WALE reference data, with slightly higher values than DNS.

CSMA overpredicts the values for the majority of the channel height. In the normal, all

the models have performed similarly with DSMA to return a curve somewhat closer to
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Figure 6.4: Reynolds shear stresses scaled at wall units.

the DNS data. Finally, in the spanwise direction, CSMA and WALE predict curves closer

to the DNS data, while DSMA is closer to the WALE reference solution. Consequently,

it appears that no model outperforms the others for this comparison though WALE has

shown more consistency.
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Figure 6.5: RMS streamwise velocity fluctuations scaled at wall units.
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Figure 6.6: RMS normal velocity fluctuations scaled at wall units.
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Figure 6.7: RMS spanwise velocity fluctuations scaled at wall units.

To further enrich the verification procedure, Figs. 6.8, 6.9 and 6.10 present the RMS

streamwise, normal and spanwise vorticity fluctuations, respectively. In this case, there

is no obvious discrepancy among the LES models. All the curves coincide very well with

the WALE reference data, underpredicting the DNS results in the viscous sub-layer and

buffer layer. Thus, one can speculate that the lack of resolution close to the wall is why

this inaccuracy and not the effect of turbulence or collision model. For the estimation

of vorticity, a stencil needs to be applied. Given that the output function is called after

the streaming at the end of the step, the macrovariables in the first ghost cell have

obtained random values polluting the calculation in the first fluid cell. Consequently, I

have omitted the value of the first point as being inaccurate.
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Figure 6.8: RMS streamwise vorticity fluctuations scaled at wall units.

The LBM is a weakly compressible method meaning that pressure fluctuations can also

be estimated. Figure 6.11 shows the RMS pressure fluctuations estimated for the current

test case. All models were able to capture the anticipated shape of the curve. CSMA and

DSMA converge to the WALE reference data while the STA WALE of my simulation

diverges from this reference but comes closer to the DNS one. One can speculate that

the divergence of all the models, including the WALE reference, from the DNS data,

occurs due to the high Ma number used in this case, (Liu et al., 2012).
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Figure 6.9: RMS normal vorticity fluctuations scaled at wall units.
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Figure 6.10: RMS spanwise vorticity fluctuations scaled at wall units.
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Figure 6.11: RMS pressure fluctuations scaled at wall units.

As for the final comparison, I present the eddy viscosity and ωeff estimated by all three

turbulence models for the current case. Figure 6.12 shows the eddy viscosity profile near

the wall. The WALE model, by construction, tries to damp the eddy viscosity in the

vicinity of the wall and follows the expected behaviour of νt ∼ O(y3). Consequently, this

observation is another indication of the correctness of its implementation. In CSMA, it

starts with a high value of eddy viscosity close to the wall and then decreases gradually.
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This action tends to decrease its accuracy though it boosts its robustness. One can see

that the addition of the dynamic behaviour for the DSMA has benefited the eddy vis-

cosity. The eddy viscosity affects the simulation by altering the local collision frequency.
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Figure 6.12: Eddy viscosity profile for the three LES models.

Figure 6.13 reports the effective collision frequency in the vicinity of the wall for the three

models. As it is expected, its shape is opposite analogous to the one of eddy viscosity.

Therefore, though the WALE model predicts the correct damping of turbulence close to

the wall, this results in a higher value for the collision frequency at this area. A value

closer to 2 in a region with large spatial derivatives and thus values of non-equilibrium

part can lead to unstable results, particularly in the case of the STA model. Similarly

to the vorticity calculation, the first cell has been omitted for both variables. Finally,
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Figure 6.13: The profile of the effective collision frequency ωeff close to the
wall.

I will conclude this section by presenting in Fig. 6.14 the instantaneous values of the

constant C calculated by the DSMA model. The locality of the algorithm has created a

highly anisotropic behaviour with many regions experiencing either extrema.



124 Chapter 6 Bi-periodic Channel

Figure 6.14: Instantaneous values of the constant C for the DSMA.

6.1.1 Evaluating the new algorithm for imposing macrovariables

In the previous section, I have illustrated the need for correct macrovariables in the ghost

cells and how this can affect results. To further investigate the topic, I have also run

the WALE model without applying the proposed algorithm. In Table 6.2, I present the

comparison of the estimated friction velocities between the simulation with and without

the application of the new algorithm. The absence of reasonable macrovariables in the

ghost cells has deteriorated the accuracy of the simulation.

WALE with algo w/o algo

uτ 0.0642 0.0632

Rel. Err. 0.99% 2.58%

Table 6.2: Estimated friction velocities for the WALE model with and without
the proposed algorithm.

There were no evident discrepancies in the case of the streamwise velocity between the

two versions. However, a variety of other variables have been altered. I will examine

three of them. First of all, Fig. 6.15 shows the pressure fluctuations. It appears that the

WALE version without the new algorithm has underestimated the variation of pressure

in the vicinity of the wall compared to the more accurate version. The accurate esti-

mation of pressure fluctuations, particularly around bodies, is of utmost importance for

aeroacoustic applications.

The next variable to be discussed is the Reynolds shear stress 〈uv〉+, presented in

Fig. 6.16. Similarly to the pressure fluctuations, the version of WALE without the

algorithm has underestimated the values. This quantity is a measurement of the inten-

sity of the turbulence experienced by the flowfield. This discrepancy can also affect the

turbulence model’s behaviour away from the wall as, indeed, the eddy viscosity, plotted

in Fig. 6.17, indicates. There is a discrepancy between the two versions.
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Figure 6.15: RMS pressure fluctuations for WALE scaled at wall units.
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Figure 6.16: Reynolds shear stresses for WALE scaled at wall units.
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Figure 6.17: Eddy viscosity profile for WALE model.

In this specific testcase, the macrovariables at the ghost cells are affected only by a rela-

tively small number of directions. Therefore, their values are not departed significantly

from their initial ones, which are zeros. In the general case of the embedded bound-

aries, the streaming step may propagate distribution functions from fluid cells and other

solid cells, resulting in more extreme values in the ghost cells. The latter can create an

undefined behaviour for the turbulence model’s response in the vicinity of the wall.
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6.2 Wall Modelled LES

In the previous section, I simulated the bi-periodic channel using WRLES to verify the

new models’ implementation further. In this section, I will focus on examining and

verifying the other new implementation, that is, the wall function.

Initially, I will replicate the numerical experiment presented in (Haussmann et al., 2019)

of a bi-periodic channel with Reτ = 1000 or Rebulk ≈ 39300. I chose this reference

because it provides data using an STA SRT LBM solver without calculating the non-

equilibrium part in the first fluid cell, thus yielding a fair comparison for the current

algorithm. Following their example, I have also carried out a convergence analysis by

running three resolutions. This specific set-up will test the wall function under typically

expected conditions.

As the next step, I will show data obtained using the same resolutions but with Reτ =

20000 or Rebulk ≈ 1.2 ·106. The results will be compared against the ones in (Malaspinas

and Sagaut, 2014). This set-up will let us examine the performance of the algorithm

under very coarse resolution.

6.2.1 WMLES (Reτ = 1000)

This test case’s numerical domain will be the full bi-periodic channel, contrary to the

half channel employed in the previous section. This is to increase the number of cells

and thus improve the accuracy of the averaging procedure, particularly for the coarsest

resolution. In this case, the dimensions will be (6H × 2H × 6H). Three resolutions

will be tested with N = 10, N = 20 and N = 40 per H, respectively.

Following the reference, I also ran the simulations for 550 channel passages (cp) with

cp = 6H/um and um = 1 m/s and I did statistics only for the last 150 cp. I kept the

ensemble frequency 25 Hz. One important difference between my set-up and the one

in the reference is that they used diffusive scaling ∆t ∼ ∆x2 to propagate from one

resolution to the other. This means that by doubling the resolution, the Ma number

is halved. They chose this scaling due to their AMR implementation. In this case, I

used advection scaling ∆t ∼ ∆x because it is in agreement with the AMR provided by

AMROC. In this way, the Ma number is the same for all resolutions. In other words,

for the coarsest resolution N = 10 my time step is approximately the same as theirs

∆tAMROC ≈ ∆tRef , but for the other two resolution is a multiplication, for N = 20,

∆tAMROC ≈ 2∆tRef and for N = 40, N = 20 ∆tAMROC ≈ 4∆tRef . I ran all the

simulations with Ma = 0.1.

The initialisation of the domain was based on the wall function similar to the WRLES

case. I will compare my results with the STA SRT LBM data with CSMA as turbulence

model reporting in (Haussmann et al., 2019). They used C = 0.12, while in this case, I
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set the constant equal to 0.1. They have reported data with and without the calculation

of the non-equilibrium part in the first fluid cell in this reference. The data that I will

plot in this section are the ones without the inclusion of the non-equilibrium part. This

will yield a fair comparison with my data, given that my implementation also assumes

zero values for the non-equilibrium part, see Sec. 4.4. Moreover, the NS DNS data of

(Lee and Moser, 2015) will also be provided.

Before discussing the results, it is essential to mention that, as in the case of the WR-

LES, the estimation of the force and particularly the averaged streamwise velocity 〈u〉
evaluated before the call of the step function. This means that this calculation lags one

∆t. Moreover, in this case, the boundary condition is applied in the first fluid cell re-

sulting in random macrovariables after the streaming for this location. These unknown

values would result in inaccurate calculation of 〈u〉 and thus the force. To alleviate the

problem, I have imposed a zero velocity in the ghost cells.

Starting with the lowest resolution of N = 10, Fig. 6.18 presents the mean averaged

streamline velocity scaled in wall units. In this scenario, y+ at the first cell is around

50 in the log-layer. It appears that there is no significant discrepancy among the LES

models, while their prediction is almost identical to the reference CSMA. I also plot the

Reynolds normal stress in Fig. 6.19. In this case, the LES models have underestimated

the quantities, particularly in the vicinity of the wall, while they seem to catch up with

the reference solutions close to the centreline.
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Figure 6.18: Comparison of mean averaged streamline velocity for N = 10.

Figures 6.20 and 6.21 show the corresponding plots for the resolution of N = 20. The

y+ at the first cell is around 20, inside the buffer layer. Observing the velocity profile

obtained by the three LES models coincides very accurately with the reference data,

with slightly overestimated values around y+ ≈ 200. On the other hand, WALE and

DSMA can damp the oscillations appearing in the Reynolds normal stresses for both

CSMA simulations.

Finally, Figs. 6.22 and 6.23 report the data for the finest resolution. The predicted

y+ at the first cell is less than ten and seems lower than the reference. Furthermore,
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Figure 6.19: Comparison of mean averaged Reynolds normal stresses forN = 10.
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Figure 6.20: Comparison of mean averaged streamline velocity for N = 20.

 0

 2

 4

 6

 8

 10

 12

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

<u
u>

+

y/H

DNS ref
CSMA ref

CSMA (C=0.10)
WALE
DSMA

Figure 6.21: Comparison of mean averaged Reynolds normal stresses forN = 20.

none of the LES models achieved to capture the profile correctly, with WALE to show

the largest divergence. The situation is much better for the Reynold normal stresses

with some discrepancy close to the wall for the DSMA and WALE. It is well known

that the wall function has increased error in the region of the buffer layer (Haussmann
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et al., 2019). Additionally, I have noticed that the prediction of the friction velocity

uτ by all three LES models were getting worse and worse with increasing resolution,

with actually 40% error for the finest one. One can speculate that the main reason for

this divergence is the higher temporal step, four times in the finest resolution, and Ma

number compared to the reference solution in combination with the first cell lying in

the buffer layer.
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Figure 6.22: Comparison of mean averaged streamline velocity for N = 40.
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Figure 6.23: Comparison of mean averaged Reynolds normal stresses forN = 40.

An important observation is that this boundary does not conserve mass. This is in

agreement with the reference (Haussmann et al., 2019). They have stated that this

inaccuracy is the extrapolation of the density from the next fluid cell instead of using

the more accurate algorithm proposed in (Zou and He, 1997) of estimating the density.

However, I used the less accurate method due to the more straightforward extension to

non-Cartesian boundaries. Increasing the resolution has shown to alleviate this issue,

with a loss around ∼ 20% in the case of N = 10 reducing to ∼ 5% for N = 40 at the

end of the simulations.

Another interesting observation is that none of the models under any resolution could

accurately predict the Reynolds shear stresses 〈uv〉, miscalculating them by orders of
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magnitude. In the previous section, I have shown that all LES models managed to

predict this quantity accurately. This result indicates that both their implementations

and the set-up of this testcase coupling with the post-processing algorithm are sound.

This conclusion points the blame to the direction of the algorithm of the wall function.

However, the model imposes a zero normal velocity at the first cell and, in its current

implementation, zero non-equilibrium part that could directly affect the calculation.

Therefore, one can speculate that by not applying the collision step, since fneqi = 0,

and thus applying the force in the first fluid cell, this has a negative effect on shear

stresses. Another difference with the reference that might have affected the outcome

is the application of the force without using the proposed way of Guo et al Guo et al.

(2002a).

Finally, similarly to the first section, Fig. 6.24 shows the instantaneous values of the

constant C calculated by DSMA for N = 40. In comparison with Fig. 6.14, it appears

that the number of small scales has increased in the flowfield, an expected outcome due

to the higher Reτ . Again, it is clear that the locality of the algorithm leads to high

levels of disparity because of not averaging in homogeneous directions.

Figure 6.24: Instantaneous field of the constant for the DSMA model at Re
1000 and N40 resolution.

6.3 WMLES (Reτ = 20000)

In the previous section, I investigated the newly implemented wall function’s perfor-

mance to deal with flows where the first cell lies either in the buffer layer or at the

beginning of the log-layer. The later condition that is a y+ around 50 is the expected

scenario for simulations.

This section will test the wall function under more extreme conditions, where y+ > 100

in the first cell. To do so, I will replicate the numerical experiment of the bi-periodic

channel at Reτ = 20000 reported in (Malaspinas and Sagaut, 2014) and compared with
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the given data. The numerical domain and the three resolutions are the same as in the

previous case. The initial condition is again based on the wall function imposed in the

whole domain. Due to the relatively high Reτ , the constant in the case of CSMA has

been set to C = 0.25 and for the WALE model Cw = 0.7. These values are significantly

higher than the expected ones, but I employed them due to the coarseness of the mesh.

The reference CSMA model also uses the former value of CSMA. Another difference

with the reference (Malaspinas and Sagaut, 2014) is the use of the MRT collision model.

Finally, since there are no DNS data for this case, I will compare it with the Musker

profile.

Figures 6.25, 6.26 and 6.27 report the results for the three resolutions. There is no

significant discrepancy between the LES models and the reference data, with the WALE

model having delivered the closer results and CSMA the largest deviation.
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Figure 6.25: Comparison of mean averaged streamline velocity for N = 10 for
Reτ = 20000.
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Figure 6.26: Comparison of mean averaged streamline velocity for N = 20 for
Reτ = 20000.

Taking everything into consideration, I have illustrated that the current implementation

of the wall function can capture the law of the wall accurately, at least when the first
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Figure 6.27: Comparison of mean averaged streamline velocity for N = 40 for
Reτ = 20000.

cell lies in the log-layer. It is also reasonably accurate under a coarse resolution. This

applies to all LES models though WALE has returned the most accurate data. Though

it returns a reasonable prediction for the normal stresses, I have also noticed that it has

failed to capture the Reynolds shear stresses. I speculate that this issue is a side-effect

of the current set-up. However, the absence of the non-equilibrium part means that the

implemented algorithm is only first order accurate.



Chapter 7

Cylinder on Plate

In the previous chapter, I have verified the newly implemented wall-function algorithm

under the condition of a mesh aligning with the body. This chapter will enrich the

verification by running a scenario with a body non-aligned to the Cartesian mesh.

We chose to simulate one of the experiments conducted in the subsonic aerodynamic wind

tunnel (TA-3) at the Instituto de Aeronáutica e Espaço (IAE) in Brazil. An internal

report describing the facility and the results were provided to us by the collaborators

(Faria and Francisco, 2018; Faria et al., 2019). The motivation of the experiments was to

test the interaction of an atmospheric boundary layer with a building and particularly

to examine the wake. To do so, the experimental set-up consists of square cylinders

mounted on a flat plate. The method of PIV was used to extract the data. A variety of

configurations have been tested with different size of cylinders and angles of attack.

The input parameters that describe the case I have simulated can be found in Table 7.1.

The body has an angle of 45o with the Cartesian grid. Due to this non-alignment, the

length used to estimate the Re number is the diagonal length D2 = 2L2. The apparent

Ma number is Ma = 5/340 ≈ 0.015. However, I have accelerated the flow internally

by employing the speed-up factor with a value of 6. In this way, the Mach number is

Ma = 6 · 5/340 ≈ 0.09, and the simulation is six times faster.

Height 240 (mm)
Length (L) 40 (mm)
AoA 45o

U∞ 5 (m/s)
ν 1.54 · 10−5 (m2/s)
Re 18367

cs 340 (m/s)
Speed-up 6

Table 7.1: Input parameters for the Cylinder case.

133



134 Chapter 7 Cylinder on Plate

To ensure that the domain boundaries would no affect the simulation, a relatively large

domain of (127D × 70D × 35D) has been utilised. As for the boundaries themselves,

I imposed inlet on the left face and outlet to the right, front, back and top, see Sec. 4.2.

The bottom face, where the cylinder is mounted, was modelled by a no-slip wall to

represent better the experiment. The position of the cylinder was 42D away from the

inlet or at one-third of the length of the domain. As for initial conditions, I imposed

U∞ everywhere.

The resolution was (720 × 400 × 200) or 57.6·106 cells, and besides, I have also used four

levels of AMR with a ratio of 2 between the levels. If I had used a uniform grid based

on the finest level, the simulation would end up with ∼ 3 · 1010 cells. In the beginning,

the simulation was run for 2 sec or 177 cylinder passes to establish the flow. Then, I

restarted and ran the simulation for the successive seven passes and saved data with a

frequency of three savings per pass. Following the experimental procedure, an averaged

flowfield has been estimated based on these instances. Figure 7.1 shows the evolution

of the adaptive mesh after the first 2 sec in a plain horizontal to the cross-section of

the cylinder. This plain is 220 mm from the base of the cylinder and is the plain where

the PIV data were measured. In Fig. 7.2, one can see the mesh’s evolution in the other

direction. The expansion of the finer levels emulates the wake beside the cylinder. The

resulting mesh pictured in these two figures consists of ∼ 96.4 · 106 cells.

Figure 7.1: The development of the adaptive mesh after 2 sec in a horizontal
plain.

The final number of cells seems to be relatively large for the given Re number. Moreover,

the resulting value of the y+ at the first cell appears to be ≈ 25 based on the calculation

of the on-line tool provided in the site (CFD ONLINE). As I have demonstrated in

the previous chapter, a more accurate value would be above 50. However, running the
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Figure 7.2: The development of the adaptive mesh after 2 sec in a vertical plain.

test case with such a resolution has ended up with instabilities throughout the whole

domain, and no valid data could be extracted. Therefore, to stabilise the simulation, I

increased the resolution. Simultaneously, only CSMA has been used with a relatively

large constant of C = 0.25 as the most dissipative and stable turbulence model. One

source of instabilities was inaccuracies in the interfaces between different levels leading

to a possibly non-conservative behaviour. Nonetheless, one can speculate that using

a more robust collision model rather than the two available ones, STA and REG, will

improve the situation.

The first variable to be examined is the vorticity ωz plotted on the PIV measurement’s

horizontal plain. Figure 7.3 shows the averaged vorticity measured during the experi-

ment. Figure 7.4 plots the estimated averaged vorticity of the LBM solver. The sim-

ulation seems to have captured quite accurately the expected shape, though the size

appears to be significantly smaller. One can speculate that the main reason for this

difference is the exaggerated eddy viscosity provided by the CSMA model due to the

relatively high value of the constant.

In Fig. 7.3, there are five lines vertical to the flow indicating the five positions where

the streamline and parallel to these lines velocities have been measured. The labels

describing these positions are CASE 1 to CASE 5, with CASE 1 being closer to the

body. Figure 7.5 shows the comparison of streamline velocities between the experiment

and the simulation. It is evident that the simulation accurately captured the velocity

profiles particularly close to the body. In the case of 4 and 5, the simulation predicted

recovery of the deficit faster than the experiment. As in the vorticity case, I attribute

this discrepancy to the turbulence model’s excessive dissipation.

In the case of the longitudinal velocity, the simulation diverges visibly from the experi-

mental data. For the first two cases, it predicts a strong velocity field exactly behind the
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Figure 7.3: Vorticity maps created based on the experimental data (Faria and
Francisco, 2018).

Figure 7.4: Vorticity maps estimated by AMROC LBM solver with CSMA
C = 0.25.
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cylinder, while according to the experimental data, the values there should be around

zero. As the positions move away from the body, the flow appears to become more

energetic, and the experimental data approach the results from the simulation at least

on one side of the cylinder. However, contrary to the smooth transition between the two

sides of the cylinder observed in the experiment, the simulation has returned a more

abrupt one.

To close this chapter I also report the averaged streamline longitudinal and parallel to

the cylinder velocities in Figs. 7.7, 7.8 and 7.9, respectively. I also present the vorticity’s

instantaneous magnitude in Fig. 7.10 estimated after the first 2 sec. The simulation has

captured the expected features in front of the cylinder and the wake. Nonetheless, it

is apparent that even averaging the data, the instabilities can be seen in some of these

plots, particularly in the regions with the accelerated flow.

The main focus of this chapter was to verify the wall function for non-Cartesian geometry.

The currently available collision models, AMR interface, and the first order accuracy of

the wall function seem to have prevented a smooth flowfield. However, the wall function

was the only boundary condition that stabilised the simulation and provided some useful

data under the current set-up. For other solid boundary conditions to be employable,

one should increase the resolution close to ten times, based on the bi-periodic channel

experiment. Such a simulation will be non-available due to high computational cost. The

other option is to increase further the constant of the turbulence model. Nonetheless,

this will reduce the method’s accuracy, further shrinking the wake behind the cylinder.

Therefore, one can conclude that currently, only the wall function has provided a way

to run a relatively high Re number simulation involving complex geometry with the

available collision models.
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Figure 7.7: The averaged streamline velocity.

Figure 7.8: The averaged longitudinal velocity.
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Figure 7.9: The averaged velocity parallel to the height of the cylinder.

Figure 7.10: Instantaneous magnitude of the vorticity.



Chapter 8

Conclusions and Future Work

This project’s target was to provide the essential tools for the AMROC LBM solver to

deal with high Re turbulent flows. This goal has been achieved through the implemen-

tation of a variety of LES models and a wall treatment. Various test cases have been

employed to verify the new implementations, resulting in valuable data and research

findings. Simultaneously, the algorithmic environment provided by the solver’s interface

with the AMROC framework led to extra challenges, see Chap. 1.1. By dealing with

these challenges, a new algorithm was devised. The author will discuss the contribu-

tions, findings, and innovation that this project has provided in the following section.

Finally, a small section about future work will conclude this chapter.

8.1 Key Contributions

During this project, three LES models have been implemented. The first model is the

constant Smagorinsky, and its implementation in the AMROC-LBM solver has been

discussed in Sec. 3.2. Its implementation provides two versions based on the way the

strain rate is evaluated. The first option is due to the non-equilibrium part of the

distribution function, and the second option is based on a finite-difference stencil. The

second turbulence model is the dynamic Smagorinsky detailed in Sec. 3.3. The third

model is the wall-adapting local eddy-viscosity (WALE) discussed in Sec. 3.4.

To add further options for the solver, the author developed the REG SRT model for

AMROC LBM, see Sec. 2.2.3. Moreover, two new approaches for inlet and outlet bound-

ary conditions have been implemented and reported in Sec. 4.2. A significant addition

for LES and high Reynolds turbulent flows was the development of a wall treatment

based on the Musker velocity profile. Its implementation in the AMROV-LBM solver is

discussed in Sec. 4.4. Furthermore, the addition of the force scheme for the FHIT test

case, reported in Sec. 5.2.1, has enabled the solver to simulate homogeneous isotropic
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turbulence, a benchmark test case that can be used for the verification of other LES mod-

els. Similarly to homogeneous isotropic turbulence, the bi-periodic channel is another

benchmark testcase.

Finally, for data collection in the cases of homogeneous isotropic turbulence and bi-

periodic channel, two vital post-processing functions have been implemented. In the

former case, the author coded a routine for evaluating power spectra and other turbulent

statistics, see Sec. 5.1. For improved performance, the power spectra were calculated

during simulations. MPI communication enabled the function to run in parallel. In the

latter situation, a routine, see Chap. 6, with low storage requirements, was implemented

to estimate the mean averaged values and other turbulent characteristics.

For the verification of the LES models and the wall treatment, various test cases have

been simulated, and several observations have been collected. In this section, the most

important research findings of this project will be reported.

In the situation of the FHIT test case, Sec. 5.2, an important outcome was the minimum

resolution of κmaxη ≥ 5 in order for an LBM solver to simulate the dissipation range

adequately. This value was estimated using the model spectrum as a reference; see

Sec. 5.1.1. Another important observation was the more energetic energy spectra of the

STA model compared to REG. However, it was found that this behaviour was mainly

due to instabilities appearing in the pressure fluctuation spectra. To the knowledge of

the author, this is the first time that this finding is reported.

For the case of DHIT, Sec. 5.3, the author employed as an initial solution the results

from the FHIT case. This was an efficient way to set up DHIT compared to the option

of an initial fabricated solution that may need initialisation of the non-equilibrium part

of the distribution function. Another observation was the LES models’ consistency that

converged to the DNS reference data for increased resolution. A significant finding was

the discrepancy of the results between the local and stencil CSMA implementations

for the STA model. The REG model did not experience this behaviour. The two

essential outcomes are that the collision model may affect the LES model’s accuracy,

and depending on the collision model, the way that the strain rate is evaluated may

yield different results.

Simulating TGV, Sec. 5.4, it was concluded that the STA collision model yields a less

dissipative behaviour, though this observation is partially due to instabilities appearing

in the pressure fluctuation spectra. An extensive analysis of the eddy viscosity field

produced by the LES models and how it adapts to flow features has been carried out

and reported in Sec. 5.4.2. It was also found that the two collision models estimated

similar average values for the constant of DSMA in the domain during the simulation.

Moreover, DSMA and WALE appeared to overact in the TGV case’s initial laminar

stage, resulting in a depressed flowfield in later stages compared to CSMA.
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In the bi-periodic channel, all three LES models were successful in performing WRLES,

see Sec. 6.1. The WALE model appeared to be the most accurate, returning the expected

slope of the eddy viscosity in the vicinity of the wall. For the application of the WMLES

cases, Sec. 6.2, the wall treatment was found to capture reasonable well the first order

statistics and normal Reynolds stresses. However, it was unable to capture the Reynolds

shear stresses for any resolution.

Finally, in the square cylinder, Chap. 7, the wall treatment with CSMA successfully

coupled with the AMR algorithm. However, it was apparent that more advanced collision

models are needed to simulate high Reynolds number flows.

The application of bounce-back-type boundaries, see Sec. 4.1, in combination with LES

that requires a stencil operation was found to be problematic. The reason is that a

bounce-back-type boundary will not impose a specific set of macrovariables in a ghost

cell, resulting in unknown values. Consequently, the application of a stencil operation in

a neighbour cell will yield questionable results. To fix this issue, the author has devised

and proposed a new algorithm that utilises the unused lattice directions and imposes

a set of known macrovariables. The algorithm is reported in 4.3 and it is evaluated

in Sec. 6.1.1. This new proposal can be seen as an extension of the ghost-fluid-LBM

approach proposed initially by (Tiwari and Vanka, 2012).

Future Work

As for future work, the author suggests three main directions:

1. Collision Models. During this project, it became apparent that the combination

of STA or REG SRT collision models with LES was not a fully robust approach

for high Reynolds turbulent flows. The author highly suggests implementing more

advanced collision models, see Sec. 1.2. The three test cases of homogeneous

isotropic turbulence and the bi-periodic channel provide a potent tool for testing

and validating combinations of LES and collision models.

2. Boundary Conditions. The author has discussed extensively in the course of

this thesis how the algorithmic environment of the AMROC framework affects the

solver. However, the most affected aspect of it is applying the boundary conditions,

see Chap. 4. Two examples are the non-equilibrium part in the wall treatment

and the REG SRT model’s interaction with boundaries. Consequently, the author

strongly recommends more research into this direction. Given that the approach

of boundary conditions in the AMROC-LBM solver is relatively uncommon in the

LBM community, more investigation may yield significant contributions.
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3. LES modelling. With a local estimation of the strain rate, CSMA appears to be

the most robust LES model currently in the AMROC-LBM solver. Its robustness

arises mainly due to the locality of its application and thus less exposure to inaccu-

racies in neighbour cells. In the AMROC-LBM solver, a source of such inaccuracies

is the boundary conditions. The new algorithm for imposing macrovariables has

enabled LES models based on a stencil, such as WALE, to perform in such an en-

vironment. However, DSMA is still affected by inaccurate boundaries mainly due

to its extensive stencil. Therefore, the author suggests the investigation of further

LES models that are based on a stencil of macrovariables such as the WALE model

without the need for extensive stencils or accurate non-equilibrium parts in the

neighbour cells.



Appendix A

More Results about HIT

The purpose of this appendix is to provide future researchers with more data for com-

parison. These data have been collected during FHIT, DHIT and TGV simulations,

reported in Chap. 5.

145



146 Appendix A More Results about HIT

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 0  100  200  300  400  500

λ

t/τη

λ(t) STA
E[λ] STA = 0.567
λ(t) REG
E[λ] REG = 0.683
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Figure A.14: Evolution of the ratio of turbulent kinetic energy squared to dis-
sipation rate for STA and REG DNS of N = 128 resolution.
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Figure A.15: Evolution of the Taylor length scale for STA and REG DNS of
N = 32 resolution.



Appendix A More Results about HIT 151

10

100

1000

101 102 103

Re
λ(

t)

t

CSMA 32 (C=0.10) STA
DSMA 32 STA
WALE 32 STA
CSMA 32 (C=0.10) REG
DSMA 32 REG
WALE 32 REG
DNS 512 REG

Figure A.16: Evolution of Re number for STA and REG DNS of N = 32
resolution.
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Figure A.17: Evolution of the standard deviation of fluctuations for STA and
REG DNS of N = 32 resolution.
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Figure A.18: Evolution of the Kolmogorov time scale for STA and REG DNS
of N = 32 resolution.
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Figure A.19: Evolution of the Kolmogorov velocity scale for STA and REG DNS
of N = 32 resolution.
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Figure A.20: Evolution of the ratio of turbulent kinetic energy to dissipation
rate for STA and REG DNS of N = 32 resolution.
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Figure A.21: Evolution of the ratio of turbulent kinetic energy squared to dis-
sipation rate for STA and REG DNS of N = 32 resolution.
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Figure A.22: Evolution of the Taylor length scale for STA and REG DNS of
N = 64 resolution.
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Figure A.23: Evolution of Re number for STA and REG DNS of N = 64
resolution.
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Figure A.24: Evolution of the standard deviation of fluctuations for STA and
REG DNS of N = 64 resolution.
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Figure A.25: Evolution of the Kolmogorov time scale for STA and REG DNS
of N = 64 resolution.
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Figure A.26: Evolution of the Kolmogorov velocity scale for STA and REG DNS
of N = 64 resolution.
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Figure A.27: Evolution of the ratio of turbulent kinetic energy to dissipation
rate for STA and REG DNS of N = 64 resolution.
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Figure A.28: Evolution of the ratio of turbulent kinetic energy squared to dis-
sipation rate for STA and REG DNS of N = 64 resolution.

0.1

1.0

10.0

101 102 103

λ(
t)/
λ 0

t

CSMA 128 (C=0.10) STA
DSMA 128 STA
WALE 128 STA
CSMA 128 (C=0.10) REG
DSMA 128 REG
WALE 128 REG
DNS 512 REG

Figure A.29: Evolution of the Taylor length scale for STA and REG DNS of
N = 128 resolution.
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Figure A.30: Evolution of Re number for STA and REG DNS of N = 128
resolution.
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Figure A.31: Evolution of the standard deviation of fluctuations for STA and
REG DNS of N = 128 resolution.
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Figure A.32: Evolution of the Kolmogorov time scale for STA and REG DNS
of N = 128 resolution.
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Figure A.33: Evolution of the Kolmogorov velocity scale for STA and REG DNS
of N = 128 resolution.
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Figure A.34: Evolution of the ratio of turbulent kinetic energy to dissipation
rate for STA and REG DNS of N = 128 resolution.
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Figure A.35: Evolution of the ratio of turbulent kinetic energy squared to dis-
sipation rate for STA and REG DNS of N = 128 resolution.
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Figure A.36: Evolution of the Taylor length scale for CSMA with C = 0.1 STA
SRT for both local and stencil-based estimation of strain rate.
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Figure A.37: Evolution of Re number for CSMA with C = 0.1 STA SRT for
both local and stencil-based estimation of strain rate.
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Figure A.38: Evolution of the standard deviation of fluctuations for CSMA with
C = 0.1 STA SRT for both local and stencil-based estimation of strain rate.
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Figure A.39: Evolution of the Kolmogorov time scale for CSMA with C = 0.1
STA SRT for both local and stencil-based estimation of strain rate.
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Figure A.40: Evolution of the Kolmogorov velocity scale for CSMA with C = 0.1
STA SRT for both local and stencil-based estimation of strain rate.
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Figure A.41: Evolution of the ratio of turbulent kinetic energy to dissipation rate
for CSMA with C = 0.1 STA SRT for both local and stencil-based estimation
of strain rate.
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Figure A.42: Evolution of the ratio of turbulent kinetic energy squared to dissi-
pation rate for CSMA with C = 0.1 STA SRT for both local and stencil-based
estimation of strain rate.
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