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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND PHYSICAL SCIENCE

Institute of Sound and Vibration Research

FAST, LARGE SCALE OPTIMIZATION ALGORITHMS FOR TOMOGRAPHIC

IMAGE RECONSTRUCTION

by Yushan Gao

Tomography imaging techniques produce volumetric images of the three-dimensional

structure of an object. X-ray radiation is one of the standard modalities used for three-

dimensional imaging and in this case, X-ray projection images are typically collected

from the object at different orientations. These projections are then used to compute

a volumetric representation of the object’s internal x-ray attenuation profile. Scientific

and industrial tomographic imaging applications require the use of ever more massive

datasets as they increasingly use larger and higher resolution detectors and use increas-

ing numbers of projections to scan the object with the required resolution. Furthermore,

the need to discern ever-finer details within an object leads to an increase in the desired

resolution of the reconstructed volume. If this is paired with the usage of non-standard

tomographic scanning trajectories, then the filtered back-projection algorithm, which

remains the primary workhorse for the tomographic reconstruction of large datasets, is

no longer applicable. Compared to back-projection based methods, iterative algorithms

have many advantages for linear tomographic image reconstruction. However, for large-

scale tomographic reconstruction using computation nodes with limited storage capacity,

the projection data and the reconstructed image vector have to be both partitioned into

many smaller blocks. Each iteration in a traditional iterative method needs access to

either all projection data or to the entire image (or to both) and thus needs to iterate

over individual blocks that need to be copied to the processing node. This additional

data access can significantly reduce reconstruction speed. To address these challenges,

this project develops novel algorithms that are tailored to large-scale tomographic recon-

struction. The algorithms are designed to fit on modern high-performance computing

infrastructures, where each computation node does not have fast access to the entire

dataset at once and where communication between different nodes is relatively slow.

This thesis includes the introduction of the developed algorithms, the comparison of

them with existing methods and the application of them on realistic parallel network.

mailto:yg3n15@soton.ac.uk




Declaration of Authorship

I, Yushan Gao , declare that the thesis entitled Fast, large scale optimization algorithms

for tomographic image reconstruction and the work presented in the thesis are both my

own, and have been generated by me as the result of my own original research. I confirm

that:

� this work was done wholly or mainly while in candidature for a research degree at

this University;

� where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated;

� where I have consulted the published work of others, this is always clearly at-

tributed;

� where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work;

� I have acknowledged all main sources of help;

� where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself;

Signed:.......................................................................................................................

Date:..........................................................................................................................

v

mailto:yg3n15@soton.ac.uk




Acknowledgements

I would like to thank my supervisors, especially Dr Thomas Blumensath, for his support

during four years’ studies at the University of Southampton. During four-year research,

every time when my research meets challenges, my supervisor is always ready to provide

insightful opinions and ideas. Every time when I submit a report, Thomas always provide

detailed feedbacks and revise suggestions. Every time when I prepare a paper, Thomas

always help me to improve it as much as he can, even including helping me correct

grammar mistakes, which is far beyond his supposed duty. Thomas not only teaches

me project-related knowledge, but also influences me on wider aspects. His rigorous

attitude towards scientific research and efficient working habits leave me a very deep

impression and I am determined to learn from him in my future career.

I also would like to thank researcher Dr Boardman Richard in µ − vis laboratory and

my colleagues Josh Greenhalgh, Dr Ander Biguri and Lindroos Reuben, who are always

ready to help me on any computer-related difficulties I encountered. Especially at my

final stage when I need to run TIGRE toolbox on Iridis 5 clusters, Ander and Lindroos

helped me a lot in terms of the installation issue even on weekends. Furthermore, many

thanks for my second supervisor Prof. Paul White and Dr Jordan Cheer as being my

examiners in my eighteen-month’s viva. Fruitful suggestions have been proposed and

these feedbacks play important roles in my remained research activities. Many thanks

to you and wish you will always enjoy your lives in future.

Finally, I would like to thank my best friend Fanzi Liu. You are the person I admire the

most through all peers I met in UK. Thank you for your positive attitude towards life

and your tough spirit that always encourage me to face various challenges. You really

set a good example for me and there are so many things that I should learn from you.

Also thank you for your music which accompanies me through lonely working nights

and through countless ups and downs.

The study life in University of Southampton is my happiest time in my past 28 years

and I am so lucky to meet so many good people: a fantastic supervisor, kind and helpful

colleagues and my life-long friends. With all your generous help, I believe that I am

always on the way to becoming a better man, both in academic research domain and in

daily life. I will never say goodbye to you and to the university!

vii





Contents

Abstract iii

Declaration of Authorship v

Acknowledgements vii

List of Symbols xix

List of Acronyms xxii

1 Introduction 1

1.1 Thesis background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 CT reconstruction algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Analytical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Iterative methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 The research objective of this project . . . . . . . . . . . . . . . . . . . . . 8

1.4 Published papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Literature review on iterative methods 13

2.1 Terminologies in algorithm descriptions . . . . . . . . . . . . . . . . . . . 13

2.2 Solving objective functions without regularization terms . . . . . . . . . . 16

2.2.1 Kaczmarz method . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 SIRT-type algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.3 Block operations of iterative algorithms . . . . . . . . . . . . . . . 23

2.2.3.1 Concepts of block partition . . . . . . . . . . . . . . . . . 23

2.2.3.2 Row-action methods . . . . . . . . . . . . . . . . . . . . . 26

2.2.3.3 Column-action methods . . . . . . . . . . . . . . . . . . . 29

2.2.3.4 Combinations of row and column-action methods . . . . 31

2.2.4 Parallel applications of iterative algorithms . . . . . . . . . . . . . 32

2.3 Algorithms with regularizations . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.1 Semi-convergence and early stopping criteria . . . . . . . . . . . . 34

2.3.2 Tikhonov regularization . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.3 Total variation regularizations . . . . . . . . . . . . . . . . . . . . 37

2.3.3.1 Derivative method . . . . . . . . . . . . . . . . . . . . . . 39

2.3.3.2 Proximal method . . . . . . . . . . . . . . . . . . . . . . 40

2.4 Other related method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

ix



x CONTENTS

3 CSGD 47

3.1 Algorithm description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.1 Basic CSGD iteration . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.2 CSGD algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Preliminary simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.1 Range of β for different M,N and α, γ . . . . . . . . . . . . . . . . 59

3.2.2 Comparison of CSGD and block ADMM . . . . . . . . . . . . . . . 65

3.2.2.1 Computation efficiency comparison . . . . . . . . . . . . 65

3.2.2.2 Communication cost and storage demand comparison . . 66

3.2.3 Importance sampling approach . . . . . . . . . . . . . . . . . . . . 68

3.3 Computational complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.4 Fixed step CSGD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4 BSGD 83

4.1 Block Stochastic Gradient Descent . . . . . . . . . . . . . . . . . . . . . . 83

4.2 BSGD algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3 α and γ selection criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4 Comparision between CSGD and BSGD . . . . . . . . . . . . . . . . . . . 90

4.5 Best partition of M,N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.6 Automatic parameter tuning . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.7 Comparison to other methods . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.8 Further trials on accelerating BSGD . . . . . . . . . . . . . . . . . . . . . 100

4.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5 Adding TV regularisation 107

5.1 TV de-noising on the whole of x . . . . . . . . . . . . . . . . . . . . . . . 109

5.2 TV de-noising on parts of xJ . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6 Application on parallel architectures 123

6.1 Basic concepts in parallel applications of BSGD/CSGD . . . . . . . . . . 124

6.2 Synchronous application of BSGD/CSGD in CPU nodes . . . . . . . . . . 128

6.3 Synchronous application of BSGD in GPU nodes . . . . . . . . . . . . . . 133

6.4 A flexible parallel application of BSGD . . . . . . . . . . . . . . . . . . . . 136

6.4.1 Redefining BSGD time counting system . . . . . . . . . . . . . . . 138

6.4.2 Two asynchronous BSGD forms . . . . . . . . . . . . . . . . . . . 140

6.4.3 Simulations to compare BSGD and ABSGD . . . . . . . . . . . . . 143

6.4.4 ABSGD in non-block communications . . . . . . . . . . . . . . . . 148

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7 Conclusions 153

7.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

A Open area for mathematical analysis of CSGD and BSGD 159

A.1 CSGD fixed point analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

A.2 BSGD fixed point analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 161



CONTENTS xi

References 167





List of Figures

1.1 X-ray penetrating an object with non-homogeneous attenuation coefficients 2

1.2 Popular scanning geometries in 2D and 3D cases . . . . . . . . . . . . . . 3

1.3 The square pixels model for transmission tomography image reconstruction. 6

2.1 Basic scheme of iterative reconstruction process . . . . . . . . . . . . . . . 14

2.2 ART projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Steepest gradient descent illustration . . . . . . . . . . . . . . . . . . . . . 21

2.4 An example for a 3D object partition . . . . . . . . . . . . . . . . . . . . . 25

2.5 Two main incomplete datasets in 2D CT scanning . . . . . . . . . . . . . 37

3.1 The black box of CSGD iteration . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 SNR comparisons when using or not using unselected image blocks . . . . 53

3.3 The general work scheme for CSGD(J) . . . . . . . . . . . . . . . . . . . . 54

3.4 The general work scheme for CSGD(I,J) . . . . . . . . . . . . . . . . . . . 54

3.5 Circular scanning geometry in this thesis . . . . . . . . . . . . . . . . . . . 56

3.6 The intensity distribution of matrix A in the tiny CT system . . . . . . . 57

3.7 SNR comparisons of two CSGD algorithms . . . . . . . . . . . . . . . . . 58

3.8 CSGD convergence property in noise free dataset . . . . . . . . . . . . . . 60

3.9 CSGD convergence property in noisy dataset . . . . . . . . . . . . . . . . 61

3.10 CSGD reconstruction speed when sub-matrix is short-fat . . . . . . . . . 62

3.11 Best parameter setting for CSGD when sub-matrix is short-fat . . . . . . 62

3.12 CSGD reconstruction speed when sub-matrix is tall-thin . . . . . . . . . 63

3.13 CSGD reconstruction speed comparisons in larger dataset . . . . . . . . . 64

3.14 Comparisons of CSGD and ADMM . . . . . . . . . . . . . . . . . . . . . . 66

3.15 The work scheme of block ADMM method . . . . . . . . . . . . . . . . . . 66

3.16 The work scheme of CSGD method . . . . . . . . . . . . . . . . . . . . . . 67

3.17 Reconstruction speed of CSGD with ordered subsets partition,α > 1
2 . . . 69

3.18 Reconstruction speed of CSGD with ordered subsets partition,α < 1
2 . . . 70

3.19 Sinogram for each separate image blocks . . . . . . . . . . . . . . . . . . . 71

3.20 Slicing detector into 2 or 4 sub-areas in importance sampling . . . . . . . 73

3.21 Comparisons of CSGD and CSGD-IM,α > 10
M . . . . . . . . . . . . . . . . 74

3.22 Comparisons of CSGD and CSGD-IM,α < 10
M . . . . . . . . . . . . . . . . 75

3.23 Partition on volume and detector in the 3D cone-beam CT scanning ge-
ometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.24 Another detector partition in 3D scanning case . . . . . . . . . . . . . . . 76

3.25 Comparisons of CSGD and CSGD-IM in 3D scanning geometry . . . . . . 76

3.26 Comparisons of CSGD and fixed-step CSGD . . . . . . . . . . . . . . . . 79

xiii



xiv LIST OF FIGURES

4.1 BSGD reconstruction speed when sub-matrix is tall-thin . . . . . . . . . . 87

4.2 BSGD reconstruction speed when sub-matrix is square . . . . . . . . . . . 88

4.3 Best parameter setting for BSGD . . . . . . . . . . . . . . . . . . . . . . . 89

4.4 Data communication in BSGD for an improper parameter setting . . . . . 90

4.5 Data communication in CSGD with optimized parameter setting . . . . . 91

4.6 Data communication in BSGD with optimized parameter setting . . . . . 91

4.7 Reconstruction speed comparisons of BSGD and CSGD . . . . . . . . . . 93

4.8 Reconstruction results comparisons of BSGD, CSGD and the other ma-
ture algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.9 Convergence trends using complete automatic parameter tuning . . . . . 98

4.10 Comparison of BSGD with other SIRT-type methods for a 2D (top) and
3D (bottom) setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.11 reconstruction speed comparisons of BSGD and BSGD-KatyushaXs . . . 104

5.1 SNR trend of different algorithms with TV regularizations . . . . . . . . . 110

5.2 Reconstruction results of different algorithms with TV regularizations . . 111

5.3 Time spent on TV de-noising under different image sizes . . . . . . . . . . 112

5.4 reconstruction speed comparisons of CSGD-TV and ADMM-TV . . . . . 113

5.5 Reconstruction results of CSGD-TV and ADMM-TV . . . . . . . . . . . . 114

5.6 Result of TV de-noising on a phantom image . . . . . . . . . . . . . . . . 115

5.7 Partition image into 4 separate sub-images . . . . . . . . . . . . . . . . . 115

5.8 TV de-noising results on separate sub-images . . . . . . . . . . . . . . . . 116

5.9 Illustration on the proposed borrowing method . . . . . . . . . . . . . . . 117

5.10 Error trend when using different borrow width for separate TV de-noising 117

5.11 SNR trend of two TV de-noising methods . . . . . . . . . . . . . . . . . . 119

5.12 Reconstruction results when performing TV de-noising on separate image
blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.1 Block point-to-point communication illustration . . . . . . . . . . . . . . . 125

6.2 Non-block point-to-point communication illustration . . . . . . . . . . . . 126

6.3 Broadcast illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.4 Scatter illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.5 Gather illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.6 Reduce illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.7 The general data communication scheme in CSGD . . . . . . . . . . . . . 129

6.8 The general data communication scheme in BSGD . . . . . . . . . . . . . 129

6.9 Scalability comparisons of CSGD and BSGD . . . . . . . . . . . . . . . . 132

6.10 Reconstruction speed comparisons of BSGD and CSGD in realistic par-
allel network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.11 Speed-up measurement of BSGD in 3D scanning dataset when using two
different communication schemes . . . . . . . . . . . . . . . . . . . . . . . 134

6.12 Time spent on each procedure in BSGD when using two different com-
munication schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.13 Scalability of BSGD when used in multi-GPU network in 3D scanning
geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.14 Time spent on each procedure in BSGD under different numbers of GPUs 137

6.15 Percentage of spent time on each procedure in BSGD under different
numbers of GPUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138



LIST OF FIGURES xv

6.16 Illustration of virtual time spent on each node under different communi-
cation delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.17 Reconstruction speeds of BSGD and ABSGD . . . . . . . . . . . . . . . . 145

6.18 Time spent on each procedure in BSGD and ABSGD,case 1 . . . . . . . . 146

6.19 Time spent on each procedure in BSGD and ABSGD,case 2 . . . . . . . . 147

6.20 Time spent on each procedure in BSGD and ABSGD,case 3 . . . . . . . . 148

6.21 Reconstruction speed when using automatic parameter tuning in ABSGD 149

6.22 Reconstruction speed comparisons of BSGD and ABSGD in a 2-GPU
workstation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150





List of Tables

3.1 Matlab profiler results of each CSGD operation . . . . . . . . . . . . . . . 57

3.2 The best parameter in block ADMM. . . . . . . . . . . . . . . . . . . . . . 65

3.3 Storage demand for each node in CSGD and block ADMM . . . . . . . . 68

4.1 Comparisons of storage demands and communication overhead for each
node between CSGD and BSGD . . . . . . . . . . . . . . . . . . . . . . . 92

5.1 2D scanning geometry for few-views projections . . . . . . . . . . . . . . . 109

5.2 RE changing trend under different image size K and partition numberN 118

6.1 Partition on A in scalability test . . . . . . . . . . . . . . . . . . . . . . . 128

6.2 3D cone-beam scanning geometry in ABSGD application . . . . . . . . . . 149

xvii





List of Symbols

Mathematics

Rr∗c real matrix with r rows c columns set

Iin input X-ray intensity

Iout output X-ray intensity

a thickness of an object with the same attenuation coefficient

x attenuation coefficient of an uniform object

ax the axil of the horizontal direction for a two dimension image

ay the axil of the vertical direction for a two dimension image

A system matrix

r number of rows of A

c number of columns of A

y projection data

e noise vector blurring projection data

xtrue scanned image vector

xrec reconstructed image vector during reconstructions

ai,j element of A of ith row and jth column

M the number of row blocks

N the number of column blocks

Ii indexes of ith row block

Jj indexes of jth column block
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Chapter 1

Introduction

1.1 Thesis background

Computed tomography (CT) is a non-destructive and non-invasive technique to produce

the internal structure of an object. It uses X-rays, gamma rays, etc. as the imaging

medium. The light source and detector scan the target along a certain trajectory to

obtain projections of a certain physical quantity of the object. After computer processing

projections, the distribution of the certain parameter is then obtained. Since the 1970s,

CT has become a basic imaging method in the research of biomedicine and industrial

testing (Bayford and Lionheart, 2004; Bartscher et al., 2007; Taina et al., 2008; Schindler

et al., 2017; De Chiffre et al., 2014; Gholizadeh, 2016).

To derive the linear model that will be at the heart of this thesis, we consider a single-

energy X-ray beam, which contains Nin monochromatic photons that pass through a

uniform object of length a. Due to the photoelectric effect and the Compton effect, the

rays passing through the object are attenuated and scattered. The number of photons

is thus reduced to Nout. According to Lamber-Beer law (Soleimani and Pengpen, 2015):

Nout = Nine
−xa (1.1)

or

Iout = Iine
−xa, (1.2)

where Iin and Iout are incident and detected X-ray intensity. x is the attenuation coef-

ficient within the homogeneous object.

When X-rays penetrate an inhomogeneous object, x becomes a function of two spacial

coordinate, ax and ay, x(ax, ay), as shown in Fig.1.1. The relationship between Iout and

Iin along a certain path L is then

Iout = Iine
−

∫
L x(ax,ay)dl. (1.3)

1
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Point source

Figure 1.1: Diagram showing the X-ray penetrating an object with non-
homogeneous attenuation coefficients.

or equivalently,

yi = ln

(
Iin
Iout

)
=

∫
L
x(ax, ay)dl. (1.4)

In CT scanning, measurements yi are taken over many different paths L. Common scan

trajectories include: parallel-beam, fan-beam, cone-beam and helical scan. In parallel

beam scanning, measurements are taken along parallel beams, either in a 2D plane or

in a 3D volume (see Fig.1.2(a)). The object or the source and detector are then rotated

and repeated parallel paths are measured for different rotation angles. Parallel beam

CT is common at synchrotron imaging beamlines, where x-ray paths are approximately

parallel once they reach the object. Fan-beam scanning uses a point like x-ray source and

a linear detector. As the source is relatively close to the object, at each rotation angle,

measured X-ray paths follow a fan shape. Again, the object or the source/detector pair

are then rotated and several projection measurements are taken form different directions.

Cone-beam scanning is an extension of fan-beam from 2D to 3D. A 2D detector panel

is used to collect projection images using a point source. The object or the source

and detector are again rotated and measurements taken from a range of angles. Helical

scanning is similar to cone-beam scanning, but now the object or the source and detector

pair also move at a constant rate in the direction of the rotation axis. The scanning

geometry is illustrated in Fig.1.2. In this thesis, the fan and cone-beam scan geometries

are used throughout unless stated otherwise.

1.2 CT reconstruction algorithms

Given a set of measurements yi, the CT reconstruction problem is the estimation of the

x-ray attenuation x(ax, ay). For most X-ray CT scan trajectories, this is known to be an
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Detector moving 
direction
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moving 
direction

Scanned object

(a) 2D parallel scanning geometry

X-ray source

Scanned object

(b) 2D fan-beam scanning geometry

X-ray source

Detector panel

Rotation direction

(c) 3D cone-beam circular scanning geometry

X-ray source

Detector panel

Helical trajectory

(d) 3D cone-beam helical scanning geometry

Figure 1.2: Popular scanning geometries in 2D and 3D CT.(a) shows a parallel
scanning with single source-detector pair. (b) shows a equal spaced fan-beam
scanning geometry whereas equal angular fan-beam scanning is omitted here.
(c) shows a cone-beam circular scanning model for 3D volume. The point source
and the central line of the detector plane locate at the middle of the volume. (d)
shows a cone beam helical scanning trajectory. In the following presentation,
fan-beam(b) and cone-beam(circular trajectory, i.e.(c)) scanning geometries are
default settings in 2D and 3D simulations.

ill-posed inverse problem. For many scan trajectories, approximate analytical methods

exist solutions, though many, more general, iterative algorithms have also been proposed.

Among the analytical methods, the filtered back projection (FBP) algorithm is currently

the most commonly used method for parallel-beam and fan-beam scans. (Gordon et al.,

1975; Turbell, 2001). The algorithm is easy to be implemented in hardware and can

compute good image estimates when sufficiently many measurements have been taken.

In 3D cone-beam reconstruction, the Feldkamp Davis Kress method (FDK), which is an

approximate application of FBP to 3D case, has been widely used in commercial CT

machines (Hsieh et al., 2013).

Iterative methods start with a discretisation of the forward model and then apply itera-

tive optimisation algorithms to estimate the x-ray attenuation (Censor, 1983). Iterative

methods have the advantage that they work for generic trajectories. They also often

provide better results when limited measurements are available. Importantly, iterative
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methods can often be easily adapted to use a variety of constraints to stabilize the recon-

structed image when the dataset has limited projections and when measurement noise

is amplified due to the ill-conditioning of the model (Censor, 1983).

1.2.1 Analytical methods

The FBP is proposed for 2D (and slice wise reconstruction of 3D) parallel beams and fan-

beam reconstructions based on the central slice theorem (Gordon et al., 1975; Turbell,

2001). The reconstruction process is mainly divided into two steps: the first step is to

perform Fourier transform(FT) on the projection data and a filter is multiplied on the

FT results. Then an inverse FT (IFT) is applied on the filtered results. In the second

step, the IFT results is back-projected and accumulated to obtain the final image. In the

actual calculation, the bandwidth of the filter applied in the first step must be limited,

so there are various smooth truncation windows to relieve the aliasing artifacts caused

by the filter’s limited bandwidth , such as Shepp-logan filter, Cosine filter, Hamming

filter, Hann filter (Kak, 1979; Othman et al., 2016; Hu, 1999; Hsieh, 2003). The filters

effectively regularise the reconstruction.

The FDK algorithm is an approximate reconstruction algorithm for cone-beam circular

scanning. (Manzke et al., 2005; Hsieh et al., 2013). It is actually an approximation

of a 3D extension of the FBP algorithm. The algorithm regards cone-beam rays as a

combination of fan-beam rays with different angles in the az-axis (defined in Fig.1.2(c)

and Fig.1.2(d)) direction. Accurate FBP is achieved on the central plane. For non-

central planes, the fan-beam reconstruction formula is modified to perform approximate

reconstruction. When the cone angle in az direction is small, the reconstruction result

is good, but since it is an approximate algorithm, when the cone angle becomes large,

the reconstruction quality degrades severely. Another fact of FDK is that it is only

applied in the case when the scanning trajectory is circular, whose curve theoretically

does not meet Tuy’s condition for accurate reconstruction (Natterer, 2001). As a result,

for the case where high-precision reconstruction is required, FDK and circular scanning

methods often cannot meet the requirements. Precise reconstruction algorithms for

helical scanning trajectory, which meet Tuy’s condition, have been proposed, such as

Grangeat algorithm (Grangeat, 1991), Katsevich algorithm (Katsevich, 2002a,b), BPF

algorithm (Zou and Pan, 2004), etc. However, the discussion of them is beyond the

scope of the thesis and thus is omitted here.

FBP and FDK have been widely used in the field of medical image reconstruction be-

cause of their computational efficiencies and numerical stabilities. Generally, analytical

methods directly calculate the reconstructed image without an iterative process and

thus a visually acceptable reconstruction result can be quickly obtained whenever there

is sufficient projection data and the projection noise is not too large. However, the

main disadvantage of analytical methods is that they require equally spaced projections
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and high signal-to-noise ratio (SNR) projection data (Wang et al., 2008; Flores et al.,

2014). The implicit regularisation used is also hard to control as filtering is done in the

projection domain. To obtain uniformly spaced projections, analytical methods have to

demand the scanning trajectory to be strictly circular or helical. For medical applica-

tions, this is easy to achieve if imaging relatively small and nearly cylindrical objects.

However, for many industrial applications, sometimes the object is too large to allow

the X-ray source to rotate around it, or objects are too dense for X-ray penetration in

certain directions. In these cases, only limited views or even random views are available

and significantly stronger regularization terms are needed to stabilise the solution.

1.2.2 Iterative methods

When the projection data is limited or the projection angle is not uniformly distributed,

strong regularization plays an important role in stabilising the reconstruction. (This

will be introduced in the next chapter.) The analytical methods then often cannot

get results of sufficient quality. Iterative methods, which can be combined easily with

explicit regularization terms, can overcome the shortcomings of analytical methods, and

can obtain higher-quality images in this case. Different from the analytical methods, the

iterative methods discretize the image from the very beginning. The fundamental model

to the 2D X-ray CT reconstruction is formulated in the following way: A cartesian grid

of square picture elements, called pixels, is introduced into the space of scanned object

so that it covers the whole object. The pixels are numbered in some agreed manner,

say from 1(top left corner) to c(bottom right corner pixel), as shown in Fig.1.3. The

model of 3D scanning is similar to the 2D case by expanding pixels into cubic cell,

called voxels. The X-ray attenuation function is assumed to take a constant value xj

throughout the jth pixel/voxel for j = 1, 2, · · · , c. The source and detector are still

both assumed to be points and the rays between them to be lines. Further, assume

that the length of intersection of the ith ray with the jth pixel/voxel, denoted by aij

for all i = 1, 2, · · · , r, j = 1, 2, · · · , c, represents the weight of the contribution of the

jth pixel/voxel to the total attenuation along the ith ray. The physical measurement

of yi (defined in Eq.1.4), which represents the line integral of the unknown attenuation

function along the path of the ray, turns out to be a finite sum in this discretized model:

yi =
c∑
j=1

aijxj + ei, i = 1, 2, · · · , r. (1.5)

In matrix notation we write Eq.1.5 as

y = Axtrue + e, (1.6)

where A ∈ Rr×c is the system matrix and e is the error vector, which represents the

measurement inaccuracy, noise corruption of data and the fact that the original problem
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Figure 1.3: The square pixels model for 2D tomography image reconstruction.
Within the pixel the attenuation x is assumed to be constant. It can be seen
that if the size of pixels is too large, then some pixels contain various attenuation
information inside, which means that the discretization of the continuous image
causes error and this error decreases as the size of the pixel decreases. For
simplicity, in this thesis, the error caused by discretization is not considered.

has undergone discretization. One common source of the error vector comes from the

fact that X-ray interactions follow a Poisson stochastic process. According to the defini-

tion of yi in Eq.1.4, randomness in the the measurement of yi is introduced by statistical

fluctuations in Nout whilst Nin may considered to be known with negligible error. A

detailed discussion on the error is beyond the scope of the thesis. In general it can be

concluded that when the number of Nout is large enough, it is safe to assume that e is

approximately Gaussian. As a result, in the following of the thesis, the noise contami-

nating the projection data y is assumed to be independent and identically distributed

Gaussian noise.

The maximum likelihood estimation in iterative methods then becomes solving the least

squares cost function 1
2‖y −Ax‖2. Many iterative algorithms which will be presented

in next chapter can be understood as iterative optimisation algorithms that try to min-

imise this cost function, or to minimise a cost function that is similar to this one.

Detailed discussions can be found in the next chapter. It needs to be noted that due

to ill-conditioning of the system, minimising the cost function does not guarantee small

reconstruction errors measured by the signal-to-noise ratio (SNR) of the reconstructed

image. The SNR is defined as

SNR = 20log10
‖xtrue‖2

‖xrec − xtrue‖2
, (1.7)

where xrec and xtrue are reconstructed vector and the original discretized true vector

respectively. In this thesis, the SNR reflects the reconstruction quality during solving

the linear system. In CT reconstruction, it is important to realise that(Censor, 1983):

1)The matrix A is very sparse with less than 1 percent of its entries non-zero because
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only few pixels have a non-zero intersection with each X-ray. 2)The system matrix A is

extremely large, with r and c of the order of magnitude 105 or even higher, in order to

produce images with good resolution. Although the matrix is sparse, the storage of A

is still often infeasible due to the enormous number of non-zeros. 3) The linear system

is typically severely ill posed and sometimes under-determined due to lack of projection

information. In 2D parallel or fan-beam scanning geometry, the system can be“mildly

ill-posed”. However, for 3D cone-beam circular scanning geometry, the linear system is

“severely ill-posed” even if there are enough projections (Lionheart, 2013). Therefore,

regularisation terms need to be introduced in real applications, as otherwise any noise

(and there always is noise in real applications as mentioned above) will lead to very

large errors in the reconstructed image. In view of the features of the system matrix,

including sparsity, inconsistency, ill-conditioning, etc., an optimization criterion is set up

with the system of equations. Iterative methods are then used to optimize the problem,

which is a topic that goes back a long way (Forsythe, 1953).

After discretizing the CT projection process, the next step of iterative methods is the

development of reconstruction algorithms. Such algorithms should be capable of han-

dling the problem within the special mathematical environment of huge dimensions and

sparseness. It should also be efficiently implementable on computers. The large size of A

means that solving Eq.1.5 or Eq.1.6 directly is infeasible(Censor and Herman, 1987). It-

erative algorithms solve them by simply using matrix-vector multiplications to update an

image vector xrec, making it gradually approach the true solution. All iterative methods

consist of three major steps which are repeated iteratively. First, a forward projection

(FP) of the current estimated image xrec creates artificial raw projection results which,

in a second step, are compared to the real projection y in order to compute a residual.

In the last step the correction term is back projected (BP) onto the volumetric object

estimate (Oliveira et al., 2011; Tang et al., 2012; Zhang et al., 2006; Hsieh et al., 2013).

The estimated image xrec can start from anywhere. Generally, it starts from the zero

space or a standard FBP reconstruction result (Beister et al., 2012).

The FP and BP mentioned above generally are the matrix-vector multiplications involv-

ing A and AT . Based on the portion of A used in each iteration, the iterative methods

can be further divided into two categories, deterministic algorithms and random algo-

rithms. The deterministic algorithms are algorithms which, given a particular initial

value on image space, the output after a fixed number of iterations is determined. This

is because in each iteration’s FP and BP, the whole of A is used. This kind of CT recon-

struction algorithm includes Landweber iteration, simultaneous iterative reconstruction

technique (SIRT), component averaging (CAV), etc. (These algorithms will be intro-

duced in the next Chapter). In the case of random algorithms, on the contrary, even with

the same initial value on the image space, the output of the iteration is not necessarily

the same after a determined number of iterations. This is because in each iteration’s FP

and BP, only a random part of A is used. This random selection causes the uncertainty
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in the results, thus making the iteration unstable. Classical random algorithms include

algebraic reconstruction technology (ART) with random sampling strategy, stochastic

gradient descent (SGD), stochastic variance reduced gradient (SVRG), stochastic aver-

aging gradient (SAG), etc. (These algorithms will be introduced in the next Chapter).

As mentioned above, when the linear model of CT scanning is severely ill-posed, for

example, when the projection view’s range is limited or the view is sparse, or when a

3D cone-beam circular scanning trajectory is adopted, a regularization term needs to

be introduced to stabilise the solution. All iterative methods mentioned above can be

used to optimize the objective function containing regularization terms such as Tikhonov

regularization (Calvetti et al., 2000; Ying et al., 2004), total variation(TV) regularization

(Borsic et al., 2001; Wang et al., 2017a), wavelet regularization (Verhaeghe et al., 2008;

Belge et al., 2000) or early stopping regularization (Elfving et al., 2014). A detailed

discussion will be introduced in the next chapter.

One drawback of iterative algorithms is their slow computation efficiency when per-

forming FP and BP. This has become a bottleneck impeding the application of iterative

methods in modern commercial CT scanners (Pan et al., 2009). With the development

of X-ray detection technology, the resolution of both detectors and reconstructed images

are getting increasingly higher. The increase in the amount of data makes the use of

serial computing architectures, such as traditional CPUs, far too slow for tomographic

reconstruction. Instead, graphic processing units (GPUs) are typically used as they have

significant speed advantages over CPUs and thus are widely utilised to perform FP and

BP computations (Kazantsev et al., 2013; Thompson and Lionheart, 2014). There are

several mature toolboxes, such as TIGRE (Biguri et al., 2016) and ASTRA (van Aarle

et al., 2015), that implement these operations on GPU as black-box operations and

provide efficient interfaces to FP and BP operations for high level computing languages

such as Matlab or Python.

1.3 The research objective of this project

Given that scientific and industrial tomographic imaging applications use increasingly

larger and higher resolution detectors and require the use of more and more projections to

scan an object, paired with the use of non-standard tomographic scanning trajectories,

iterative methods are increasingly used in the reconstruction process. However, for

large-scale tomographic reconstruction using computation nodes with limited storage

capacity, the size of the projection data and the reconstructed image vector both exceed

the maximum storage capacity of the computation nodes. As a result, both projection

data and reconstructed image vector have to be partitioned into many smaller blocks.

Since each iteration needs access to either all projection data or to the entire image

(or to both), the computation nodes (e.g. GPUs) need to iterate over individual blocks
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several times to compute individual FP and BP operations. This additional data access

can significantly reduce reconstruction speed. As a result, the main research goal of this

thesis is to improve iterative methods by reducing the data access to both projection

data y and reconstructed image vector x. Two algorithms that especially suit large-scale

3D image parallel reconstruction problems are proposed in this thesis, which are based

on the latest developments in the field of random algorithms. The algorithms should be

able to run efficiently on modern high-performance computing infrastructures, such as

distributed computer networks equipped with GPUs, where each computation node does

not have fast access to the entire dataset at once and where communication between

different nodes is relatively slow.

There are three novel contributions in the thesis. Main contribution one is that the

Coordinate-reduced Steepest Gradient Descent (CSGD) algorithm is proposed in the

thesis, which is inspired by steepest gradient descent. CSGD is a distributed stochastic

gradient descent algorithm specifically designed for very large tomographic inverse prob-

lems. In CSGD, the computation amount of projection can be easily tuned according

to different parallel computation resources. When it is applied in parallel computation

networks, the computation amount of each iteration is much less than the only available

alternative approach, the block alternating direction method of multipliers (ADMM)

(Parikh and Boyd, 2014), which has the same parallel computation architecture with

CSGD and thus the reconstruction speed of CSGD are much faster than block ADMM.

Main contribution two is that based on the proposed CSGD and inspired by SAG

(Schmidt et al., 2017), another parallel algorithm Block Stochastic Gradient Descent

(BSGD) is proposed and it overcomes the original CSGD’s drawback which does not

approach the least square solution and the error variance of the calculated gradient does

not converge to zero at the solution. Mathematical analysis shows that the fixed point

of BSGD are at the least square solution, which is the best solution that minimises the

error energy and is the maximum likelihood estimate. It has the same parallel com-

putation architecture with the other gradient-based methods but the communication

overhead is greatly reduced. Simulation shows that BSGD is of the fasted reconstruc-

tion speed when compared with CSGD and the other iterative methods which have been

applied in the CT reconstruction field. Given the ill-conditioned nature of the tomo-

graphic reconstruction problem, simulations in the thesis show empirically, that BSGD

can be embedded into a proximal optimisation algorithm and thus is able to compute

regularised least squares solutions.

Main contribution three is the further exploration of the two proposed algorithms. The

exploration mainly includes an importance sampling strategy and automatic parameter

tuning trick. These two important tricks are very useful in terms of further accelerat-

ing two proposed algorithms. Besides, when the projection views are few and sparse,

CSGD and BSGD are experimentally proved to be able to substitute gradient descent

procedure in proximal gradient methods, which means that by combining CSGD/BSGD
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with the TV denoising procedure, the objective function including a quadratic data fi-

delity term and a TV regularization term can be approximately optimized. Furthermore

when solving the TV-based objective function, the TV denoising procedure can also be

parallelized onto separate computation nodes by new proposed slicing methods. The

last exploration is to apply BSGD and CSGD in realistic parallel networks (Iridis su-

percomputer in University of Southampton). The scalability of BSGD and CSGD are

compared with each other and experiments verify that BSGD is faster than CSGD in

realistic parallel computation environment. Apart from the synchronous application,

the BSGD’s asynchronous application property is also explored. The flexible commu-

nication increases each parallel node’s independence and enables them to communicate

with the master node without waiting for each other. Simulations have verified that un-

der certain situations the asynchronous BSGD can achieve a faster reconstruction speed

than synchronous BSGD.

This thesis consists of seven chapters. The second chapter is a literature review of the

main iterative algorithms used in CT and a review of the latest parallel algorithms

developed recently in optimization, which are the basis for our developments. Chapter

3 and 4 describe the two newly proposed algorithms CSGD and BSGD respectively.

Chapter 5 explores the application of CSGD and BSGD in the optimization of TV

norm regularised least squares problems. Chapter 6 illustrates the synchronous and

asynchronous application of the two algorithms. Conclusions and suggestions for future

work are included in Chapter 7. Appendix A presents some basic mathematical analysis

of the two proposed algorithms.

1.4 Published papers

Some of work on this thesis has been published in conferences and peer reviewed journals.

The following publications directly relate to the content of this thesis:

� “A parallel CT reconstruction algorithm using partial row and column blocks of

the system matrix”(Gao and Blumensath, 2017). This is a short conference ab-

stract based on the presentation at the conference TOSCA 2017, Portsmouth. This

conference abstract firstly proposed the basic ideas of reconstructing the CT prob-

lem by using partial access to the projection data and the reconstruction volume,

which is discussed in Chapter 3.

� “A Joint Row and Column Action Method for Cone-Beam Computed Tomogra-

phy”(Gao and Blumensath, 2018b). In 2018 IEEE Transactions on Computational

Imaging. This is a journal paper condensing the research in Chapter 3.

� “A parallel stochastic algorithm for large scale CT reconstruction”(Gao and Blu-

mensath, 2019). This is a short conference abstract based on the presentation at
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dXCT 2019, Huddersfield. The abstract proposed the basic algorithm in BSGD

which is mainly described in Chapter 4.

� “BSGD-TV: A parallel algorithm solving total variation constrained image re-

construction problems”(Gao and Blumensath, 2018a). This is a short conference

abstract published in 2018 iTWIST, Marseille. It presents the combination details

of BSGD and TV-based denoising and shows that this combination can be used

to approximately optimize the objective function containing TV regularizations.

This part is discussed in Chapter 5.

Besides, there is another journal paper that is temporarily uploaded to arXiv(Gao et al.,

2019).

� “ Block stochastic gradient descent for large-scale tomographic reconstruction in

a parallel network”. This journal paper draft concludes the contents in Chapter 4.





Chapter 2

Literature review on iterative

methods

As mentioned above, solving the linear equation directly is prohibitive due to the large

size of the system matrix A. Iterative methods thus become mainstream tools to solve

the inverse problem Eq.1.5. Unlike analytic methods which perform reconstruction

within a single step using a specific inversion formula, iterative methods refine and

modify the image iteratively in order to minimize an objective function. This objective

function is based on the imaging system model and regulariser. Mathematically, the

objective function tries to simultaneously optimize two different aspects of the recon-

struction: the fidelity of reconstructed image data with measured projection data and

the suppression of image noise by means of a regularization term that penalizes noisy so-

lutions to the optimization problem (Stiller, 2018). Iterative reconstruction then consists

of minimizing the objective function by repeated update of the image data, thus max-

imizing conformity between measured and reconstructed data, and minimizing image

noise. The global iterative process is illustrated in Fig.2.1.

In this chapter, the iterative algorithms for reducing the date fidelity (i.e. the corre-

sponding objective function does not contain regularization terms) are firstly introduced,

followed by introductions of the optimization methods for objective functions containing

regularizations terms.

2.1 Terminologies in algorithm descriptions

Before introducing the iterative algorithms, it is worthy to first explain the terms that

are frequently appeared in the thesis.

13
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Figure 2.1: Basic scheme of iterative reconstruction process.

� iteration. An ”iteration” will refer to the computational steps that are repeated in

an iterative algorithm. Each iteration will compute updates of internal parameters

and image.

� update direction. The update direction is the difference (possibly scaled) in the

estimates of a quantity (such as the image we are trying to recover) before and after

an iteration, that is, it is the vector that, when scaled and added to the previous

estimate of a quantity, produces a new estimate. For example, in gradient descent

method, the update direction is the minus gradient direction of current xrec. In

the stochastic gradient descent methods, the update direction is stochastic but the

expectation of this direction is an unbiased estimation of the gradient.

� step-length. It is the multiplier used to scale the update direction during an

iteration. The µ is used as the step length in this thesis. It can be either a

constant or a variable that changes in each iterations.

� epoch. A group of iterations during reconstruction. The number of iterations in

each epoch depends on the algorithm and its parameters. For example, in this

thesis, the gradient descent methods, which uses the whole of y,A and update
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the whole of xrec in each iteration, are considered an epoch that only consists of

one iteration. The stochastic gradient descent methods, using one row of A and y

to calculate the update direction, are regarded as containing r iterations for one

epoch. In the following k can be used to denote the iteration number but can

also be used to denote epoch number. The important point is that in simulations,

when a new xkrec is obtained, the reconstruction quality can be estimated and the

simulations may be terminated when a stopping criterion has been satisfied.

� objective function. In this thesis, the most general form of objective function F (x)

is defined as F (x) = f(x) + g(x), where f(x) is a data fidelity term and g(x) is

a regulariser to stabilise the ill-posed problem. Generally the f(x) is assumed as
1
2‖y −Ax‖2. If the g(x) adopts the TV regulariser, then F (x) can be expressed

as:

F (x) =
1

2
‖y −Ax‖2︸ ︷︷ ︸

f(x)

+λTV (x)︸ ︷︷ ︸
g(x)

, (2.1)

where the definition of TV (x) is presented in section 2.3.3. As the optimisation

of F (x) is typically broken into separate steps, significant part of this thesis focus

on the optimisation of f(x).

� convergence. In this thesis, when talking about convergence, unless otherwise

stated, we will mean the convergence in the euclidean norm of a sequence of esti-

mates xk towards the minimiser of the objective function. In terms of the conver-

gence rate, it is the empirical rate of change of a cost function whilst it approaches

a minimal value. Generally speaking, convergent iterations usually hint that a

stable or approximately stable solution is gradually approached. This is usually

reflected by the fact that the reconstructed image’s quality no longer changes and

finally become stable.

� reconstruction speed. Depending on the performance measure used, the recon-

struction speed can be measured in terms of the change in the distance from the

true image or in terms of the change of the cost function. In this thesis, it is

an empirical measure of the computation speed to reach a certain level of error

between the estimated image and the true image, which is reflected in the SNR

trend. (defined in Eq.1.7)

� CPU. Central Processing Unit (CPU) in a computer is used to execute basic cal-

culations. For example, in the thesis the update on xrec is regarded as executed

on CPUs.

� RAM. Random Access Memory (RAM) in a computer is the memory that exchange

data with CPU. Its size is a limiting factor influencing the size of dataset to be

addressed by a single computer.
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� GPU. Graphics Processing Unit(GPU) is typically computationally faster than

CPU. In the thesis, GPU can be easily used to execute intensive matrix-vector

multiplications by using functions provided by existing CT reconstruction tool-

boxes.

� parallel network. It is a computer cluster containing several computation nodes.

The computation nodes can be computers or GPUs. The proposed algorithms are

specially designed for the parallel network with several computation nodes.

� master node. It is a node in a parallel network, which is responsible for data col-

lection and distribution. Generally it is not responsible for intensive computation

and is only used to the data storage ans some basic and simple computations.

� computation nodes. They are also named as servants or parallel nodes. They can

execute code simultaneously with different dataset. Generally, the computation

nodes calculate the intensive matrix-vector multiplications in this thesis.

2.2 Solving objective functions without regularization terms

Reducing data fidelity consists of the following three main steps: 1)Forward projection

(FP) to produce synthesized projections of the current (partial of) image, which is often

calculated as the matrix-vector using (partial of) A and (partial of) x. 2) Estimation

of the residual between the synthesized projections and the experimentally acquired

projections y. 3) Back projection (BP) of the weighted residual, which is often calculated

as the matrix-vector using (partial of) AT and (partial of) the weighted residual, to

update the volume. The iterative cycle is repeated until a predefined stopping criterion

is met, e.g. if a fixed number of iterations or a sufficiently small difference between the

solutions of two subsequent iterative steps is reached.

2.2.1 Kaczmarz method

Kaczmarz method, also known as algebraic reconstruction technology (ART), was first

proposed in 1937 (Sznajder, 2016) to solve Eq.1.5 and has been used as one of the most

classical reconstruction methods in CT reconstruction since 1970 (Elfving et al., 2014).

In fact, the first commercial CT scanner adopts this algorithm. To introduce Kaczmarz

method, the linear system Eq.1.5 is expanded as

y1 = a11x1 + a12x2 + ...+ a1cxc

...

yr = ar1x1 + ar2x2 + ...+ arcxc.

(2.2)
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In Eq.2.2, each separate equation is called as a hyper-plane. For simplicity, the linear

system is temporarily assumed to be consistent (i.e. e = 0). The idea of the Kaczmarz

type algorithms is to exploit the geometric structure of the Eq.2.2, and then using a

sequential of projections to seek the solution. The recursive process at the kth iteration

can be formulated as follows

xk+1 = xk −AT
i

Aix
k − yi
‖Ai‖2

, (2.3)

where yi is the ith single projection, Ai is the ith row vector of the system matrix A and

‖ · ‖ is l2 norm of a vector or matrix. In the most classical Kaczmarz, the i is sampled

in a cyclic sequential way, i.e. i = mod(k, r) + 1, where mod() is the function returning

the remainder of a division. For a given xk, Eq.2.3 generates a xk+1 that satisfies the

ith equation in Eq.2.2. This update produces the following constrained optimization:

arg min
Aixk+1=yi

‖x− xk‖22. (2.4)

Two geometric explanations of the above optimization when the linear system is con-

sistent can be illustrated by Fig.2.2. It has illustrated that if the system is consistent

(a) consistent system (b) inconsistent system

Figure 2.2: Geometric illustrations of the classical Kaczmarz iterations with
m = 4. Pi, i = 1, 2, 3, 4 is the hyper-plan formed by Aix = yi.

(i.e. there is a common point for all hyper-planes), the Kaczmarz gradually approaches

the solution. Furthermore, (Tanabe, 1971) has proved that regardless of the system is

consistent or is not, the Kczmarz method converges to the solution x? = A†y, where

A† is the M-P inverse of matrix A (Sheng and Chen, 2010). According to the definition

and property of A†, if the system is consistent, then x? is the solution of the system and

if the system is non-consistent, then x? can be the least square solution or the lest norm

solution. By comparing the projection processes displayed in Fig.2.2, it is natural to

have the intuition that convergence of the classical Kaczmarz algorithm highly depends

on the geometric positions of the associated hyper-planes. If the normal vectors of every

two successive hyper-planes keep reasonably large angles, the convergence of the classical
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Kaczmarz algorithm will be fast, whereas two nearly parallel consecutive hyper-planes

will make the convergence slow down. As a result, a good sampling sequence can accel-

erate the convergence speed of Kaczmarz methods. Another method to accelerate the

convergence speed of Kaczmarz is to introduce relaxation parameter into the iteration.

The iteration with relaxation is

xk+1 = xk − µAT
i

Aix
k − yi
‖Ai‖2

, (2.5)

where the µ is the relaxation parameter. The use of relaxation parameters is important

in practice. In the area of image reconstruction, it was demonstrated experimentally

that small relaxation parameters significantly improve the practical performance of the

Kaczmarz(Herman, 2009). However, the convergence property then becomes a bit com-

plicated. When the system is consistent, it has been proved that when 0 < µ < 2, the

relaxation variants of Kaczmarz still converge to the least norm solution of the system

(Herman et al., 1978; Censor, 1981; Dai and Schön, 2015). When the system is not con-

sistent, it has been proved that as the relaxation parameters go to zero, the relaxation

variants of Kaczmarz approach a weighted least squares solution (Censor et al., 1983).

This particular weighted least squares solution minimizes the sum of the squares of the

Euclidean distances to the hyper-planes determined by the equations.

As indicated in Fig.2.2, convergence of classical Kaczmarz algorithm depends on the

sequence of successive projections, which relies upon the ordering of rows in the matrix

A. In some real applications (Herman et al., 1978; Natterer, 2001), it is observed that

instead of selecting rows of A sequentially at each step of the Kaczmarz algorithm,

randomly selection can often improve its convergence. It has been proved that the rate

of convergence can be significantly improved if the row index i in Eq.2.3 is sampled with

probabilities
‖Ai‖22
‖A‖2F

(Strohmer and Vershynin, 2009). In terms of the convergence, if the

system is consistent, the Kaczmarz with importance sampling converges to the A†y in

expectation (Bai and Wu, 2018). If the system is non-consistent, random Kaczmarz

methods converges exponentially to the true original vector within a specified error

bound, on expectation on the condition that A is of full column rank (Needell, 2010;

Huang et al., 2020). Furthermore, it is found that the condition on the rank of A is

not necessary, and proved that random Kaczmarz can converge to least norm solution

on expectation, within a specified error bound (Zouzias and Freris, 2013). Random

Kaczmarz can also be accelerated by relaxation parameter and the iteration is similar to

Eq.2.5. The optimal relaxation parameter and the convergence rate of random Kaczmarz

with relaxation under consistent and non-consistent situations is provided by (Moorman

et al., 2020). It shows that when the system is consistent, the algorithm can still converge

to the A†y in expectation. Similarly, when the system is non-consistent, the sequence of

iteration results converge to the A†y within a specified error bound , which is controlled

by the step length µ.
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2.2.2 SIRT-type algorithms

The above discussed Kaczmarz method uses a “ray-by-ray” update strategy, which

means that for every ray that is calculated, all pixel values associated with that ray

are updated. SIRT-type methods distinguish themselves from Kaczmarz methods in

that they do not update the iterated vector after each equation, but after an entire

sweep through all the equations, and thus, during one sweep, they use the same residual

vector for each equation. A rather general class of SIRT-type methods is given by

xk+1 = xk + µkCATR(y −Axk), (2.6)

where C and R are two positive definite diagonal matrices of orders c and r. This section

mainly introduces four SIRT-type algorithms: SIRT, Cimmino’s algorithm, CAV and

Landweber iterative method. They distinguish themselves from each other by different

weighting matrices C and R.

1. SIRT

SIRT is well known as it has been applied to a rather diverse set of reconstruction

problems in medicine and biology since it was introduced more than four decades

ago (Gilbert, 1972; Dilz et al., 2019). It updates each reconstructed image voxel by

combining all single projection values whose corresponding X-rays passes through

this voxel. It goes through all equations and then updates one image voxel at

the end of each iteration using the average value of all computed changes for that

imaging voxel. Taking the average correction value can suppress some interference

factors, and the calculation result is independent of the pixel iteration order. SIRT

updates are

∀j : xk+1
j = xkj + µ

∑
i

[
ai,j
(
yi −

∑
h ai,hx

k
h

)
/
∑

h ai,h
]∑

i ai,j
, (2.7)

When it is rewritten into matrix-vector multiplication form shown in Eq.2.6, the

C and R are then defined as:

C̃j,j =
1∑
i ai,j

,

R̃i,i =
1∑
j ai,j

,
(2.8)

where C̃j,j and R̃i,i are the jth and ith diagonal element of C and R respectively.

The main advantage of SIRT, especially compared with ART, is that the noise

artefacts are more effectively suppressed and thus a soother reconstructed image

with less artifacts is obtained (Guo and Devaney, 2005; Gregor and Fessler, 2015).

2. Cimmino’s algorithm
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Cimmino’s algorithm can be viewed as a simultaneous application of Kaczmarz

method. It projects the xk to all hyper-planes and then average all single projection

movements as the next general movement direction. The update can be rewritten

as:

xk+1 = xk +
µ

r

r∑
i=1

yi −Aix
k

‖Ai‖2
AT
i , (2.9)

When change Eq.2.9 into Eq.2.6, the C and R are changed as:

C = I,

R̃i,i =
1

r‖Ai‖22
.

(2.10)

3. CAV algorithm

One drawback of applying the Cimmino’s algorithm in CT reconstruction is the

slow convergence rate, which is caused by the sparsity of A. Look back to Eq.2.9,

it can be rewritten as

xk+1
j = xkj +

µk

r

r∑
i=1

yi −Aix
k

‖Ai‖2
aij . (2.11)

Since A is sparse, only a relatively “small” number of the elements a1j , a2j , · · · , arj
are non-zero, but in Eq.2.11 the sum of their contributions is divided by the rel-

atively “large” r, slowing down the progress of the algorithm. This observation

leads to a modified algorithm “component averaging (CAV)’ (Censor et al., 2001b)’

which replaces r by the non zero elements for each column of A. The iteration in

CAV then becomes

xk+1
j = xkj + µk

r∑
i=1

yi −Aix
k

AT
i SAi

ai,j , (2.12)

where S ∈ Rc×c is a diagonal matrix diag(s1, s2, · · · , sc). sj is the non zero element

number for jth column of A. Eq.2.12 can also be expressed as a matrix-vector

multiplication by setting:

C = I,

R̃i,i =
1

AiSAT
i

.
(2.13)

Both the Cimmino’s algorithm and CAV have been used in CT reconstructions and

are shown to converge to a weighted least square solution. Compared with Cim-

mino’s algorithm, the CAV method can significantly increase the reconstruction

speed (Censor et al., 2001b), achieving the same image quality with Cimmino’s

algorithm by using less matrix-vector multiplications.

4. Landweber algorithm

Traditional Landweber projection is to simply set C and R as unit matrices. It

is also known as gradient descent(GD) method and its corresponding objective
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function to be minimised is the quadratic objective function:

F (x) =
1

2
‖y −Ax‖22. (2.14)

GD updates xk along the negative gradient direction, gradually reducing the gra-

dient ‖g‖ = ‖AT (y − Axk)‖ to zero , leading xk to the least-square solution

x? = (ATA)−1ATy, which minimizes the residual norm(energy) ‖r‖.

For the objective function Eq.2.14, the maximum limit of step length µ is pro-

portional to 1
‖A‖2 (Gordon and Tibshirani, 2012). However, in large-scale CT

scanning, calculating the l2 norm of A is impossible due to the large computation

overhead. As a result, the µ in realistic applications often needs to be repeatedly

tuned until a value leading to a fast convergence rate is found. One method to

avoid complicated parameter tuning is to choose µ so that the residual is reduced as

much as possible in that direction. This is achieved by making gk perpendicular to

the next gk+1, as illustrated in Fig.2.3. Using (gk)Tgk+1 = 0 and xk+1 = xk+µgk,

Figure 2.3: Different colours mean different equipotential of objective function
Eq.2.14. The iterations approach the minimum of the objective function in a
zig-zag manner, where the new search direction is orthogonal to the previous.

µ is:

µ =
‖gk‖2

‖Agk‖2
. (2.15)

With the adaptive step size, it converges faster than GD with a constant µ, es-

pecially when µ is not well tuned. However, it requires an extra matrix-vector

multiplication as well as a vector l2 norm computation, so the computation over-

head per iteration is increased compared to the GD with constant µ. The main

drawback of GD is the slow convergence rate, which means that there often needs

lots of iterations before the convergence. This is the nature of most SIRT-type al-

gorithms (Van Scoy et al., 2017). A research direction thus becomes to accelerate
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the convergence rate of GD. This section mainly introduces the most classical ac-

celeration method, which is named as Nesterove’s acceleration (Kim et al., 2013).

Followed by a gradient descent iteration, xk+1 further “slides” along with a direc-

tion given by two adjacent iterations. The algorithm is shown in Algo.2.1.

Algorithm 2.1 Nesterov’s accelerated GD in CT reconstruction area

1: Initialization: Determine the maximum allowed epoch number Kmax. x1 = 0 and
r = y. µ is a constant step-length. τ0 = 0 ,λ0 = 0

2: for k = 1, 2, · · · ,Kmax do

3: λk =
1+
√

1+4(λk−1)2

2

4: τk = 1−λk−1

λk

5: r = y −Axk

6: gk = AT r
7: x̃k+1 = xk + µgk

8: xk+1 = (1− τk)x̃k+1 + τkx̃k

9: end for
10: xsolution = xKmax+1

In general, the corresponding objective function for SIRT-type iteration can be viewed

as a weighted quadratic objective function. Let FR(x) be the following weighted least-

squares objective function:

FR(x) =
1

2
‖y −Ax‖2R =

1

2
(y −Ax)TR(y −Ax). (2.16)

The gradient of FR(x) is

gR(x) = −ATR(y −Ax). (2.17)

Then Eq.2.6 can be written as

xk+1 = xk − µkCgR(x). (2.18)

Eq.2.18 implies that the minimisers for FR(x), labelled as x?, satisfy the equation

gR(x?) = 0, i.e.,

ATRAx? = ATRy, (2.19)

which is called as normal equation. There is a solution of Eq.2.19 with the minimal C

norm, i.e. a x? that has the minimal ‖x?‖C = x?TCx?, which is denoted by xC,R(A,y)

(Ben-Israel and Greville, 2003). If we define ‖A‖C,R as

‖A‖C,R = sup‖x‖C=1‖Ax‖R, (2.20)

then it has been proved that when 0 ≤ µ ≤ 2
‖A‖2C,R

and the initial iterated vector

(i.e. x0) starts from 0, SIRT-type algorithms converge to xC,R(A,y) (Jiang and Wang,

2003).
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It is worthy to mention that there is a link between SIRT-type iteration and the least

square problem. The general SIRT-type iteration in Eq.2.6 can be transformed and

then it solves a quadratic objective function. To be more specific, let ŷ = R
1
2 y and

x̂ = C−
1
2 x and Â = R

1
2 AC

1
2 (NOTE: as R and C are diagonal and positive, the above

matrix square-roots and inverses are well defined and easy to compute). The least

squares problem ‖ŷ − Âx̂‖2 has a gradient descent algorithm that computes x̂k+1 =

x̂k + µÂT (ŷ − Âx̂) which, if we multiply both sides by C
1
2 , we obtain the Eq.2.6.

Therefore, SIRT-type algorithms compute the least square solution to a linear problem

with ŷ = R
1
2 y and x̂ = C

1
2 x and Â = R

1
2 AC

1
2 . As a result, in this thesis, the proposed

algorithms are mainly designed to efficiently solve quadratic objective function Eq.2.14.

2.2.3 Block operations of iterative algorithms

The iteration in Kaczmarz is totally sequential since it uses one hyper-plane formed

by a single X-ray to update the reconstructed vector. This property makes Kaczmarz

method is of minor computation cost per update but is hard to be parallelised. On the

contrary, the SIRT-type iteration uses all hyper-planes to update the whole of x by using

the intact system matrix A. According to the previous discussions, the FP and BP

process can be parallelised in GPUs via mature reconstruction toolboxes. However, the

computation cost per iteration can be enormous and unacceptable when the size of A is

large, especially when the size of x and y both exceed the limited GPU memory. Block

operations can be viewed as a moderate method between Kaczmarz and SIRT-type by

dividing the A into many blocks and each iteration only uses one block of them. To

be more specific, block operations on iteration algorithms can be further divided into

row-action and column-action methods. Before introducing these methods, the partition

methods on A, as well as on x and y, is firstly introduced.

2.2.3.1 Concepts of block partition

In modern CT scanning, the increasing size of y and x makes it difficult for the com-

putation node, (e.g. GPU), to store all of the data within one data transmission. As

a result, y and x are often divided and stored in many separate files and then sent to

GPUs block by block. This property naturally benefits the application of block algo-

rithms which only operate on parts of y and x. This section mainly introduces the

concepts and mathematical expressions of partitions.
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Recall that the A is of r rows and c columns:

A =


a11 a12 . . . a1c

a21 a22 . . . a2c

...
...

...
...

ar1 ar2 . . . arc

 . (2.21)

Some basic definitions in the partition of system matrix A are concluded here: Ii is the

ith row index set, indexing m rows in A. For example, AI1 is the first row block of A:

AI1 =


a11 a12 . . . a1c

a21 a22 . . . a2c

...
...

...
...

am1 am2 . . . amc

 . (2.22)

In this thesis, M is used to reflect the total row block number of A. A with M row

blocks can then be expressed as:

A =


AI1

AI2
...

AIM

 . (2.23)

Similarly, Jj is the jth column index set, indexing n columns in A. For example, AJ1

means a column block of A

AJ1 =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
...

ar1 ar2 . . . arn

 . (2.24)

N is used to reflect the total column block number of A. A with N column blocks can

be expressed as:

A =
[
AJ1 ,AJ2 , · · · ,AJN

]
. (2.25)

Besides, Ii and Jj are also the index set of corresponding X-ray measurements y and

volume x. Corresponding blocks are yIi and xJj .

In the above example, the row blocks and column blocks all contain sequential row/column

index numbers. In fact, arbitrary index sets are allowed as long as there is no overlap

between row/column blocks.
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If the row and column partitions are combined together, then the linear system Eq.1.5

is divided into MN blocks:yI1

...

yIM

 =

 AJ1
I1
,AJ2

I1
, ...,AJN

I1

...

AJ1
IM
,AJ2

IM
, ...,AJN

IM


xJ1

...

xJN

 , (2.26)

where A
Jj
Ii

is called a sub-matrix of A. To illustrate the partition in both y and x

better, a partition example in a 3D object is presented in Fig.2.4. In the figure, each

separate projection view data is partitioned as a data block yIi . In fact, the partition

can be rather flexible. It can combine several projection views as a data block. Further-

more,the detector can be divided into several sub-detectors and take one sub-detector’s

corresponding projection data as a data block. This division method can be useful for

the following proposed algorithms and will be illustrated in Chapter 3 and 4. In terms

of the 3D volume partition, the volume can be split the along the central plane and then

the total column block number is eight. It should be pointed out that the partition is

generic and does not assume trajectory must be circular.

3D volume
Point source

Detector plane

Figure 2.4: The 3D image is partitioned into eight sub-blocks, indexing from
xJ1 to xJ8 . The red frame sub-block is labelled as xJ1 . One single projection
view forms a separate row block and the index is yIi . Here only illustrate the
first row block index yI1 .

The partition on the projection data and the volume has important meaning when the

dataset is of enormous size. For example, when using toolbox TIGRE (Biguri et al.,

2016) or ASTRA (van Aarle et al., 2015) to calculate the FP result y = Ax, it is

performed in a way that the toolboxes use arbitrary blocks and compute partial forward

projections repeatedly, summing the results to compute the full projection. When using

toolboxes to calculate BP, the process is similar to FP process. In this way the TIGRE

or ASTRA can theoretically reconstruct arbitrary size of CT dataset with arbitrary

scanning trajectories. To avoid having to circle through all blocks in each iteration, row-

action and column-action methods are proposed and based on these two types algorithms

we propose methods that update results after the computation with a single block.

In the following, I and J reflect a random element from set {Ii}Mi=1 and set {Jj}Nj=1

respectively. As a result, yI , xJ and AJ
I are random data blocks from sets {yIi}Mi=1,
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{xJj}Nj=1 and {AJj
Ii
}i=M,j=N
i=1,j=1 . Within these notations, the introduction on row-action

and column-action methods are followed.

2.2.3.2 Row-action methods

In some of the literatures, row-action methods are also called “ordered subset” methods

(Xu et al., 2010; Guo and Chen, 2012). They divide the A and y into M row blocks

and keep x undivided. Then the linear system in Eq.1.5 becomes:yI1

...

yIM

 '
AI1

...

AIM

x. (2.27)

According to (Elfving et al., 2017), the general row-action algorithm is shown in Algo.2.2.

Here and in the following the random sample generally means that the row blocks can

Algorithm 2.2 Generic row-action iteration

Initialization: Determine the maximum allowed epoch number Kmax. Partition row
indices into sets {Ii}i∈[1,M ]. x1 ∈ Rc is the arbitrary initial vector. xk is the estimation

of x in the kth epoch. µi, Ci and Ri are the relaxation parameter and coefficient matrix
for the ith row block.
for k = 1, 2, · · · ,Kmax do

x̃1 = xk

for i = 1, 2, ...,M (inner iterations) do
Randomly or sequentially select I from {Ii}i∈[1,M ]

x̃i+1 = x̃i + µiCiA
T
I Ri(yI −AI x̃

i)
end for
xk+1 = x̃M+1

end for
xsolution = xKmax+1

be either sampled with replacement or without replacement, and the possibility to be

selected is the same among all participant blocks.

Row block applications can be applied on Kaczmarz algorithm. In the previous dis-

cussion, the Kaczmarz iteration only uses a single hyper-plane in each step, whilst the

block Kaczmarz method selects multiple hyper-planes during one iteration (Needell and

Tropp, 2014; Needell et al., 2015). The block Kaczmarz projects the current x onto

the solution space yI = AIx, where I is defined in section 2.2.3.1. The iteration then

becomes (Needell and Tropp, 2014; Needell et al., 2015)

xk+1 = xk + A†I(yI −AIx
k), (2.28)

where A†I is a M-P inverse of AI . However, consider that in the large scale case, the

calculation of A†I can be infeasible and thus this kind of block application is not of
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interest in this thesis. Compared with block Kaczmarz, the block version of SIRT and

CAV are more feasible.

A block form of SIRT, which is also known as simultaneous algebraic reconstruction

technique(SART) (Andersen and Kak, 1984), was propose in 1984. It separates the

A and y based on the projection views and the definition of Ci and Ri in Algo.2.2

are similar to Eq.2.8 but is calculated based on AI instead of A. SART is regarded

as a compromise between Kaczmarz and SIRT methods. Instead of treating each ray

as a separate unit or treating them as a whole, the SART algorithm considers single

projections within one projection view as a related system. Similarly, in the Block-

iterative CAV (BICAV) (Censor et al., 2001a; Fernández et al., 2008), the weighting

matrix Ci is still unit matrix whilst the Ri then counts the number of non-zero elements

for each column of sub-matrix AI .

The block application of SIRT and CAV can significantly reduce the computation cost for

each iteration, thus can meet the large data challenge to some extent. These algorithms

have already been sealed as black boxes in the mainstream CT reconstruction toolboxes

such as TIGRE and ASTRA.

The above introduction has included popular block algorithms when the weighting ma-

trices Ci and Ri are not unit matrices. In the following of the thesis, the weighting

matrices Ci and Ri will be simplified as unit matrices, and the objective function is

the simple quadratic function shown in Eq.2.14. The main reason is that the weighted

quadratic objective function can be transformed into a least square problem. The de-

tailed explanations can be found in the end of section2.2.2.

Row-action type Landweber methods are also called as mini-batch stochastic gradient

descent (mini-batch SGD). It can be seen that if the M = r and the step length µi in

Algo.2.2 is 1
‖Ai‖2 then the mini-batch SGD becomes Kaczmarz method. The step length

µi can also be a constant or a decreasing sequence, such type algorithms are called as

SGD when M = r.

The idea to use a stochastic gradient instead of accurate gradient in optimization stems

from the 1950s. It comes from the fact that the gradient g at xrec of Eq.2.14 can be

written as:

g = AT (Axrec − y) =

r∑
i=1

gi =

r∑
i=1

AT
i (Aixrec − yi). (2.29)

It shows that the expectation of gi is proportional to the true gradient

Egi =
1

r

r∑
i=1

gi =
1

r
g. (2.30)

Theoretical analysis established in various papers of SGD have guaranteed a convergent

process when the random update direction is an unbiased estimation of the true gradient
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(Bottou, 2010). A constant step length µ may help to accelerate the convergence rate

at the initial stage but the final reconstruction results can be stuck at a relatively low

precision level and it only converges to the least square solution within an error bound.

In reality to ensure the convergence to the least square solution, the step length needs

to decrease to 0 (Luo, 1991). The reason why a decreasing step length is required is

because the stochastic direction (after being multiplied by r) in each iteration can be

viewed as a true gradient direction being blurred by a stochastic noise vector. Although

the expectation of the noise vector is zero, the variance of the noise vector does not

go down when the iteration goes on. As a result, a mini-batch SGD is more popular

than the original SGD in realistic applications by setting 1 < M < r. The calculated

stochastic gradient is the sum of several gi and thus the variance of the noise vector is

depressed (Ruder, 2016; Konečnỳ et al., 2015). Apart from using the mini-batch SGD,

another method to reduce the variance is to accumulate the previous stochastic gradient,

this method is called the incremental aggregated gradient (IAG) (Blatt et al., 2007) or

stochastic averaging gradient (SAG) (Roux et al., 2012; Schmidt et al., 2017). These

two algorithms are similar except that the previous method samples I from {Ii}i∈[1,M ]

cyclically while the later samples I randomly in each iteration. The SAG algorithm

is shown in Algo2.3. It can be seen that SAG introduces new variables {ĝi}i∈[1,M ].

Algorithm 2.3 SAG

Initialization: Determine the maximum allowed epoch number Kmax. {ĝi}i∈[1,M ]

stores each stochastic gradient for different row blocks and initial values are zero
matrices.
for k = 1, 2, · · · ,Kmax do

Random select Ii from {Ii}i∈[1,M ]

r = yIi −AIix
k

ĝi = AT
Ii

r

g =
∑M

i=1 ĝi

xk+1 = xk + µg
end for
xsolution = xKmax+1

This means that storage demand of SAG is larger than for SGD, which is a drawback.

However, both theoretical analysis and simulation results have verified that by recording

each row block’s stochastic gradient ingredients and summing them up, the accumulated

g gradually approaches the true gradient direction. This property enables a constant

step length µ ensuring the convergence to the least square solution and thus SAG has a

faster convergence speed than SGD.

There is another famous algorithm to gradually reduce the error variance of estimated

gradient, which is called Stochastic Variance Reduced Gradient (SVRG) (Johnson and

Zhang, 2013). This algorithm not only converges with a constant step length but also

does not require the storage of ĝi. However, the cost is that it needs to calculate a full

gradient with a predetermined frequency. The SVRG is shown in Algo.2.4. The idea is
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Algorithm 2.4 SVRG

Initialization: Determine the maximum allowed epoch number Kmax.
for k = 1, 2, · · · ,Kmax do

x̃ = xk

g = ∇f(x̃) = 2AT (Ax̃− y)
xtem = x̃
for t = 1, 2, · · · , f do

Randomly select Ii from {Ii}Mi=1

xtem = xtem−µ(M∇fIi(xtem)−M∇fIi(x̃)+g),∇fIi(x) is the stochastic gradient
for 1

2‖yIi −AIix‖2.
end for
xk+1 = xtem

end for
xsolution = xKmax+1

that although the variance of ∇fIi(xtem) is high, the variance of difference ∇fIi(xtem)−
∇fIi(x̃) decreases as the algorithm goes on. As a result, with more iterations, the update

direction becomes close to the full gradient direction ∇f(x), hence eliminating its high

error variance.

2.2.3.3 Column-action methods

In this section, the column-action methods, which are closely connected to coordinate

descent (CD) optimization algorithms, are considered. The column-action methods di-

vide the reconstructed image vector xrec and A into N column blocks. The general

column-action algorithm is shown in the Algo.2.5 (Elfving et al., 2017).

Algorithm 2.5 Generic column-action iteration

Initialization: Determine the maximum allowed epoch number Kmax. Partition col-
umn indices into sets {Jj}j∈[1,N ] , {xJj}j∈[1,N ] = 0. r = y −Ax. µj and Rj are the

relaxation parameter and coefficient matrix for the jth column block.
for k = 1, 2, · · · ,Kmax do

x̃1 = xk

for j = 1, 2, ..., N(inner iterations) do
Select Jj as index J

x̃j+1
J = x̃jJ + µjRj(A

J)T r

r = r−AJ(x̃j+1
J − x̃jJ)

end for
xk+1 = x̃N+1

end for
xsolution = xKmax+1

The coordinate minimization algorithm is the most simple and intuitive one among

coordinate descent families. It is especially popular when each iteration only updates
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one pixel (i.e. N = c). The iteration in coordinate minimization is

µk =
(AJj )T r

‖AJj‖2
,

xk+1 = xk + µkej ,

r = r− µkAJj ,

(2.31)

where ej is a vector that the jth element is 1 while the other elements are 0. Note that

µ at the kth iteration can be obtained by solving eTj ∇f(xk + µej) = 0. It is easy to

extend the preliminary single-update method into block form(Sauer et al., 1995; Fessler

et al., 1997; Zheng et al., 2000; Benson et al., 2010; Fessler and Kim, 2011; Kim and

Fessler, 2012). Block form CD can be further accelerated by randomly sampling blocks in

each iteration, which is called Random Block Coordinate Descend (RBCD). The general

RBCD iteration is
Jj ∈ {J1, · · · , JN}

xJj = arg min f(xJj ,xĴ),
(2.32)

where Jj ∪ Ĵ = {Jj}Nj=1. The objective function Eq.2.14 can be expanded

f(x) =
1

2
xTATAx− yTAx +

1

2
yTy

=
1

2
(
∑
j

AJjxJj )
T (
∑
j

AJjxJj )− yT (
∑
j

AJjxJj ) +
1

2
yTy.

(2.33)

According that Eq.2.32 only minimizes xJj , it can be simplified as:

arg min f(xJj ,xĴ) = arg min
1

2
(AJjxJj )

T (AJjxJj ) +
∑
i 6=j

(AJixJi)
T (AJjxJj )− yTAJjxJj

=
1

2
arg min(AJjxJj )

T (AJjxJj ) +

∑
i 6=j

(AJixJi)
T − yT

AJjxJj .

(2.34)

The gradient direction of Eq.2.34 is

(AJj )TAJjxJj + (AJj )T

∑
i 6=j

(AJixJi)
T − yT

 = (AJj )T (Ax− y). (2.35)

RBCD iteration then becomes:

xk+1
Jj

= xkJj + µ(AJj )T (y −Ax), (2.36)

where µ can be determined by line search and differs for different xJj (Qin et al., 2013)

or it can simply be a constant (Lu and Xiao, 2015; Shalev Shwartz and Tewari, 2011).

Both pixel-based or block-based CD have been widely applied to CT reconstructions,
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which can be traced back to the 1990s (Sauer and Bouman, 1993; Bouman and Sauer,

1996; Thibault et al., 2007). Many researches have focused on the selection sequence of

image blocks. The selection criteria can be random (Hsieh et al., 2008; Chang et al.,

2008; Richtárik and Takáč, 2014; Nesterov, 2012) or sequential(He and Buccafusca,

2016). Both forms show fast convergence of the high spatial frequencies and converge

slowly at low spatial frequencies (Bouman and Sauer, 1996). When compared with other

analytical algorithms as proposed in (De Man et al., 2005), CD methods have a rapid

convergence rate when they are initialised with FBP result, which usually provide good

estimations of the low spatial frequency of the image. Traditional CD methods just

randomly select pixels or pixel groups (i.e. each block has the same probability to be

selected), whilst an importance sampling strategy based on a calculated pixel selection

criterion is proposed by (Yu et al., 2007, 2010). By non-homogeneously selecting pixel

groups, the convergence rate of RBCD is increased by focusing on pixels which are

in most need of an update. Another research interest is the partitioning of x space

(Ha and Mueller, 2015; Benson et al., 2010; Fessler and Kim, 2011). However, most of

them require more complicated computations, including solving a new symmetric linear

system to determine which pixels should be updated simultaneously. Their iterations are

no longer simple matrix-vector multiplications. As a result, this area is of less interest

in this thesis.

2.2.3.4 Combinations of row and column-action methods

Algo.2.2 and Algo.2.5 have shown that full access to either x or y is required for row

or column-action methods. For large-scale CT reconstruction where both the projection

numbers and the pixel numbers of the reconstructed image are too large to be stored

within one node, it is not fast enough to use either of these methods individually. Com-

binations of row-action and column-action methods was proposed to solve it. In general,

these combined methods enable each iteration to only select a block of coordinates and

to estimate the corresponding partial gradient based on a row block of system matrix A

(Chen and Gu, 2016; Zhang and Gu, 2016). When applying these methods to the linear

system, the general update scheme is

xJ = xJ − µ∇JfI(x), (2.37)

where µ is the step-length and fI(x) = 1
2‖yI −AIx‖22. ∇JfI(x) is AJ

I (yI − AIx). Re-

cently, several articles have discussed similar applications of this approach. In this thesis,

these algorithms are uniformly called “stochastic block coordinate descent” (SBCD).

In particular, Wang (Wang and Banerjee, 2014) and Zhao (Zhao et al., 2014) indepen-

dently proposed similar SBCD algorithms and both explored the application of variance

reduction technique (Johnson and Zhang, 2013) to further accelerate the convergence.

Konečnỳ (Konečnỳ et al., 2017) proposed a semi-stochastic coordinate descent method
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to combine the stochastic gradient method and coordinate descent method to minimise

a strongly convex problem. This method, however, requires the full gradient to be cal-

culated in the first step. Xu (Xu and Yin, 2015) mathematically proved the convergence

rate of SBCD when the step-length is decreasing and when the update strategy adopts

Gauss-Seidel type, showing that the SBCD method has the same convergence rate as

stochastic gradient methods when the objective function is convex. The sampling meth-

ods on row and column space is a research hotspot in SBCD type algorithms. For

example, Shalev (Shalev Shwartz and Tewari, 2011) proposed a combination of SGD

and RBCD methods to minimise l1-regularized smooth convex problems by uniformly

sampling the row blocks and non-uniformly selecting the column blocks. Leventhal (Lev-

enthal and Lewis, 2010) combines the importance sampling scheme in Kaczmarz with

RBCD method and established its iteration complexity. Chen (Chen and Gu, 2016)

researched the application of SBCD in the sparsity constrained non-convex optimiza-

tion by combining hard thresholding technique (Blumensath and Davies, 2009). Zhang

and Lu separately proposed the optimal sampling method in the SBCD method, by

randomly selecting column blocks and selecting row blocks based on a calculated prob-

ability (Zhang and Gu, 2016; Lu and Xiao, 2015) . Their methods can be regarded as a

variant of the work in (Leventhal and Lewis, 2010).

Despite the fact that SBCD combines row-action and column-action methods. For each

iteration, the computation of the gradient requires the accurate calculation of the block

residue rI = yI −AIx, which still requires access to all of x. In other words, the system

matrix A in SBCD type method is not actually separable in the column direction due

to the need to calculate rI . This can be challenging for the computation nodes, for

example, GPUs in a distributed network, whose capacity is limited.

2.2.4 Parallel applications of iterative algorithms

From a general point of view, Kaczmarz method belongs to a particular case of SGD with

the learning rate equal to 1
AiAT

i
(Kamath et al., 2015; Needell et al., 2014). As a result,

the parallel algorithms designed for SGD are also suitable for the Kaczmarz method for

CT reconstruction. For example, recently an Elastic Averaging SGD (EASGD) method

was proposed (Zhang et al., 2015). It uses a parameter server architecture (Li et al.,

2014), allowing each computation node to maintain its own local reconstructed x. In

the master node, there is an averaged vector x̃ which is linked with all computation

nodes’ parameters. The algorithm has both synchronous and asynchronous forms as

well as a momentum form. Experiments show that the asynchronous form EASGD

is stable and plausible under communication constraints. A similar parameter server

architecture is also proposed in (Kamath et al., 2015), where a fusion centre assigns

each computation node a block of system matrix A and the corresponding projection

data block. Each node performs sequential Kaczmarz process and the fusion centre
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performs a component average. This method requires synchronization between all nodes

and the communication cost dramatically increases when the data size increases. To

reduce the communication cost, a distributed randomized Kaczmarz was then proposed

and makes the node only communicate with its neighbour, achieving an asynchronous

communication between nodes. More discussions on asynchronous Kaczmarz or SGD

methods can be found in (Liu et al., 2014; Recht et al., 2011; Zhao and Li, 2016).

The SIRT-type algorithm is widely applied in parallel CT reconstruction task (Li et al.,

2005). Benson applied SIRT to a parallel framework to mitigate the sequential computa-

tional cost and observed the speed differences between pre-calculating the system matrix

or calculating it on the fly when iteration is conducted on a distributed network (Benson

and Gregor, 2005). Castro compared speed-up factors of SIRT and SART under differ-

ent block numbers (Bilbao-Castro et al., 2004, 2006). Gregor improved the traditional

SIRT method and the improved algorithm showing faster convergence rates than tradi-

tional SIRT in a parallel environment (Gregor and Benson, 2008). However, all of the

literature mentioned above requires each node to keep a full copy of the reconstructed

x. Recently, Palenstijn proposed a method that requires each node only to keep a slice

of the volume object (Palenstijn et al., 2015). This method requires a circular scanning

trajectory and the block direction should be perpendicular to the scanning rotation axis.

Each node is assigned with a sub-volume of the object and thus only a small area of the

detector receives X-rays passing through this particular sub-volume. The iteration in

Eq.2.6 of each node is independent except for the two neighbouring nodes which have

overlapping projection areas. To obtain accurate forward projection data (Ax in the

SIRT iteration), the communication thus only happens between such two nodes who

share the overlapping area. In this parallel scheme, the communication cost between

nodes decreases because of the reduced storage on x but heavily depends on the number

of blocks. When the block number increases, the overlapping area also increases, which

means that the communication load becomes heavier. As a result, the scalability of

this parallel method is limited. Besides, this methodology is only suitable for standard

circular scanning strategies, which limits its application . However, this method divides

x into several blocks and assigns them to different nodes, which is an improvement to

the previous method that requires each node to keep a full copy of x. Concerning the

parallel computation form BICAV, the process is similar to the block form SIRT, which

adopts a parameter server form. A master node assigns different projection data into

different computation nodes and each node performs BICAV. Finally, the master node

communicates with all computation nodes through a weighted sum of all partial results

(Bilbao-Castro et al., 2006).

Coordinate descent type algorithms, especially RBCD, are also suitable for parallel

computation (Yu et al., 2006). A comprehensive convergence theory of parallel CD is

established in (Richtárik and Takáč, 2016) and the theoretical speed-up is claimed as a

simple expression depending on the number of parallel processors. In CT reconstruction,
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the parallel CD is mainly studied in (Wang et al., 2016; Sabne et al., 2017; Wang et al.,

2017b), focusing on the hardware application in CPU-GPU architecture and on the

data transformation between GPU/CPU buffers. However, in mature reconstruction

toolboxes adopted in this thesis, projection data transformation has already been sealed

into the “black box” of matrix-vector multiplication operations. Research into detailed

hardware data transformation is thus of less interest in this project.

2.3 Algorithms with regularizations

In tomography, the system matrix A in Eq.1.5 is always ill conditioned and the linear

system is always ill-posed (Natterer, 2001). Since the solution of an ill-posed linear

system is always severely influenced by the noise vector on the projection data, using

Landweber projection or its block form without regularisation cannot obtain satisfying

reconstruction results. This is because that the least square solution obtained by these

methods, denoted by x? is not a meaningful approximation of the true solution(i.e. the

image vector representing the scanned object). Regularization is thus often added when

solving ill-posed linear system. In this section, three main regularization methods are

introduced after explaining the semi-convergence property in the ill-posed system.

2.3.1 Semi-convergence and early stopping criteria

For the following discussion, the ill-posed linear system is rewritten as:

y = Axtrue + e = ỹ + e, (2.38)

where the xtrue is the scanned object, e is the error vector. According to Theorem 1.1

in (Elfving et al., 2010), SIRT-type iteration Eq.2.6 always converge to a solution of

x? that minimises ‖y −Ax‖R and thus x? is a weighted least square solution. When

the noise vector is zero and the system is overdetermined, it is easy to prove that the

x? ≡ xtrue. However, if e is non-zero, then the story is different. Since the linear

system is ill-posed and A is ill-conditioned, x? can be arbitrarily far away from xtrue.

A brief explanation is presented here by using the Landweber projection as an example:

According to the previous discussion, the Landweber projection, as well as its stochastic

block version, converges (or converges on expectation) to the least square solution x? =

(ATA)−1(ATy) = (ATA)−1(AT (ỹ + e)) = xtrue + (ATA)−1(ATe). For simplicity

it is assumed that the original linear system is overdetermined and there is only one

solution (i.e. the solution is the original scanned object vector xtrue) in the noise-free

case. As A is ill conditioned, ATA is also ill conditioned and thus (ATA)−1(ATe)

is a large vector even if e is a small disturbance. As a result, during the iterations,

although the distance of xk to x? and the weighted residual norm (i.e. value of FR(x)
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in Eq.2.16) decrease stably, the distance of xk to xtrue, which reflects the reconstruction

quality, will typically reduce initially but then increase. This phenomena is often called

semi-convergence. In other words, when talking about semi-convergence, it does not

mean the algorithm does not converge, instead, it still converge to x?. However, in the

discussion of semi-convergence, the reference solution is changed from x? to xtrue and

it is inevitable that the iteration will approach xtrue and then move away from it. This

phenomena widely exists in both Kaczmarz and SIRT-type iterations (Elfving et al.,

2010, 2014). It is thus common to stop iterative algorithms after a few iterations, long

before the method has converged to x?. This strategy is called early stopping. Here the

iteration number plays a regularization role.

(Elfving et al., 2010, 2014) have proposed the error analysis by dividing the difference

between the realistic iterated vector and the ideal optimal solution ( i.e. the result when

dataset is noise free):

xk − x̃ = xk − x̃k + x̃k − x̃, (2.39)

where x̃ is the minimiser of ‖Ax − ỹ‖2R (definition of ỹ is in Eq.2.38) and x̃ ≡ xtrue

in overdetermined system. x̃k is the iterated results (at kth iteration) of Kaczmarz

or SIRT-type algorithm when e is zero. Thus the difference is decomposed into two

components: the noise error xk − x̃k and the iteration error x̃k − x̃. Kaczmarz and

SIRT-type algorithms have been shown that their noise error is increasing and the error’s

upper bound is scaled by
√
k and k respectively. On the contrary, the iteration error

is always decreasing if the step length µ is set properly. (The discussion on proper

µ is mentioned in section 2.2.) When the iterations are at the early stage, the noise

error is negligible and thus the norm of the difference (i.e. ‖xk − xtrue‖) decreases but

when k increases to some point the noise error is large enough to make the ‖xk −xtrue‖
increase. This mathematically explains the semi-convergence phenomena. It shows that

this property widely exists as long as the system is ill-posed, i.e. a small change on e

causes huge changes on x?, making x? stay far away from xtrue.

Whilst SIRT and Kaczmarz converge to a limit point x?, due to the ill conditioning of

the CT inverse problem, the algorithms can provide solutions that are arbitrarily far

away from xtrue. For ill-posed tomographic problems, regularisation is often achieved

through filtering of the projections (as with the FBP or FDK algorithms) or through

early stopping of iterative methods. Whilst these approaches can provide good results

in practice, it is difficult to quantify the amount of regularisation and the quality of

the solution. In this thesis, we thus take a different view on the solution of ill-posed

tomographic reconstruction. We split the problem into two steps. 1) the explicit charac-

terisation of a regularisation function g(x) chosen suitably for our specific problem and

2) the efficient optimisation of the resulting cost function f(x) + g(x). There has been

significant research into the selection of different regularisation terms and their suitabil-

ity to tomographic problems. This thesis instead focuses entirely on the second problem,
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the efficient solution of the optimisation problem when f(x) is a least squares cost func-

tion. In fact, as discussed further below, optimisation of composite cost functions of the

form f(x) + g(x) can often be done in two steps that deals with each term individually.

We thus here deal primarily with the issue of efficient optimisation of f(x) and then

show how to use this approach in combination with a commonly used regulariser.

2.3.2 Tikhonov regularization

Ill-posed problems must be regularized if one wants to successfully achieve the task

of numerically approximating their solutions. It is often said that the art of applying

regularization methods is to maintain an adequate balance between a solution’s accuracy

and stability. There is a large body of work on regularization methods. Among all

regularization methods, perhaps the best known and most commonly used method is

the Tikhonov-Phillips method, which was originally proposed by Tikhonov and Phillips

in 1962 and 1963 (Tikhonov, 1963). This method replaces the linear system Eq.1.5 by

a penalized least-squares problem of the form (Donatelli et al., 2012):

F(x) =
1

2
‖y −Ax‖2 + λ‖Tx‖22, (2.40)

where λ > 0 is known as the regularization parameter, T is some suitably chosen

Tikhonov matrix and a common choice is the unit matrix I or a matrix approximating

the first or second order derivative operator (Hansen and O’Leary, 1993). Taking the

T = I as example. The minimiser of Eq.2.40 is

x?λ = (ATA + λI)−1ATy, (2.41)

and it can be iteratively approached by iterative shrinkage-thresholding algorithm (ISTA)

or fast iterative shrinkage-thresholding algorithm (FISTA)(Beck and Teboulle, 2009b).

It can be seen that the norm of the residual, i.e. ‖rλ‖ = ‖y−Ax?λ‖, is an increasing func-

tion of λ and the norm of x?λ is the decreasing function of λ. The curve L = {‖x?λ‖, ‖rλ‖}
is known as L-curve because under suitable conditions on A and y it is shaped roughly

like the letter “L”. The value λ that corresponds to the point (‖x?λ‖, ‖rλ‖) at the “ver-

tex” of the “L” is denoted as λL. It is suggested to use λL as the optimal relaxation

parameter in the reconstruction (Hansen, 1992). A heuristic motivation for this choice

of λ is that when λ > 0 is “tiny”, then the associated solution x?λ has a large norm

and is likely to be contaminated by the propagated error that stems from errors in the

given projection data y. Conversely, when λ is large, the vector x?λ generally is a poor

approximation of a solution of Eq.1.5 and the associated data fidelity ‖rλ‖ is large. The

choice λ = λL seeks to best balance the data fidelity and the propagated error in the

computed approximate solution x?λ.
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2.3.3 Total variation regularizations

Generally, the Tikhonov regularization term prevents the pixels blowing up and it does

not use much priori image information. This section introduces the total variation (TV)

regularization, which uses the prior information such as the assumption that the gradient

of the image is sparse.

In many real-world applications, projection data can only be obtained at imperfect

angle ranges due to constraints of data acquisition time or constraints of the scanning

geometry, which both cause incomplete data problems. An incomplete dataset is mainly

caused by two reasons: one is limited-views scanning and the other one is the few-

view scanning (or sparse-views scanning). A limited-views problem means that the

scan angle range is small (e.g., 90◦ coverage or even less). For example, in industrial

non-invasive detection, when the object size is large, the projection angle range can be

rather limited because it is infeasible to rotate around the large volume (Banjak et al.,

2016). The few-views problem refers to the situation that a full scanning view range

(360◦ for cone beam scanning and 180◦ for parallel scanning) is achieved, but there

is a large gap between adjacent projection views. For example, in medical scanning,

the interval of the projection angle is supposed to be large, aiming to reduce the side

effect caused by X-ray dose (Tian et al., 2011). An illustration of limited-views problem

and few-views problem is shown in Fig.2.5. Image reconstruction using an incomplete

Possible detector plans

Object

X-ray point source
trajectories

(a) Limited-views problem

Possible detector plans

Object

X-ray point source
trajectories

(b) Few-views problem

Figure 2.5: Two main incomplete datasets in 2D CT scanning.

dataset has been a hot research topic in recent years. Iterative algorithms based on

the minimization of total variation (TV) constraints is of particular interest. The TV

constraint can be derived from the compressed sensing (CS) theory proposed in (Cand

and Wakin, 2008), which can achieve an exact recovery of an image from sparse samples

of its discrete Fourier transform. The exact recovery depends on the fact that there

exists some representation of the image for which the corresponding coefficients are
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sparse. Although in many realistic applications the image function of the object to be

detected is not sparse, it often has the characteristic of an approximate slice continuity.

As a result, the gradient magnitude of the image is sparse. For images with sparse

gradient properties and insufficient projections, according to the CS theory, images can

be reconstructed by minimizing the total variation of the image (i.e., the l1 norm of the

gradient image) while subjecting to a data fidelity condition. For a discrete 2D image

x ∈ RK×K , the basic TV regularizer is

TV (x) = ‖∆f‖1,

=
∑

2≤i,j≤K

√
(xi,j − xi−1,j)2 + (xi,j − xi,j−1)2,

(2.42)

where TV (x) is a function calculating the total variation of x when it is expanded into

2D or 3D image forms and xi,j is the pixel intensity at ith row and jth column of 2D

image x. For the 3D case, the TV norm is similar to Eq.2.42 and an extra dimension is

added. In limited-view problems, simulations and theoretical analysis both demonstrate

that artifacts in the reconstructed images are directional and the basic TV norm in

Eq.2.42 is unable to effectively eliminate the directional artifacts (Chen et al., 2013; Jin

et al., 2010). Consequently, the TV regularizer is re-designed. Detailed discussions can

be found in(Chen et al., 2013; Jin et al., 2010; Islam, 2013; Kongskov and Dong, 2017;

Wang et al., 2017a).

Total variation regularizer was first proposed for image denoising in (Rudin et al., 1992)

and then extended to image deblurring in (Rudin and Osher, 1994). In comparison to

the well known Tikhonov regularizers, TV regularizers can better preserve sharp edges

or object boundaries that are usually the most important features to recover. TV-based

algebraic reconstruction then optimises the cost function

x = arg min
xrec

TV (xrec),

subject to‖y −Axrec‖22 ≤ ε,
(2.43)

or equivalently (Sidky and Pan, 2008)

x = arg min
xrec

1

2
‖y −Axrec‖22 + λTV (xrec), (2.44)

where λ is a relaxation parameter and ε reflects the data inconsistency caused by noise

vector e. The optimization problems cannot easily be solved using standard gradient due

to the non-smoothness of the objective function. Many algorithms have been proposed

in the literatures. In this section these algorithms are categorized into derivative method

and proximal method.
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2.3.3.1 Derivative method

In the earliest TV constrained CT reconstruction, Sidky proposed an ART-TV algorithm

based on the combination of the steepest gradient descent of the TV norm and the

Kaczmarz method (Sidky et al., 2006). The principle of the algorithm is as follows:

during the projection process, the image is roughly obtained by the Kaczmarz method

shown in Eq.2.3. After a complete cycle of update steps, a steepest descent iteration

reducing the TV norm is carried out. The basic algorithm is shown in Algo.2.6.

Algorithm 2.6 ART-TV algorithm

Initialization: Determine the maximum allowed epoch number Kmax. x0 ∈ Rc is the
arbitrary initial vector. The ART(x) means a whole Kaczmarz iterations through
all system matrix rows. λ is a predefined parameter to control the TV decreasing
step-length. tmax is the maximum loop number for TV decreasing process.
for k = 1, 2, · · · ,Kmax do

xold = xk

xnew = ART (xk)
dA = ‖xnew − xold‖2
for t = 1, 2, ..., tmax do

V(i,j) = ∂TV (xnew)
∂xnew(i,j)

xnew = xnew − λdAV
end for
xk+1 = xnew

end for
xsolution = xKmax+1

In terms of the calculation of V in Algo.2.6, since TV (x) is not differentiable everywhere,

the derivative method uses an approximated smoothed formula and obtains the partial

derivative function:

∂TV (x)

∂x(i,j)
≈ 2(xi,j − xi−1,j) + 2(xi,j − xi,j−1)√

ξ + (xi,j − xi−1,j)2 + (xi,j − xi,j−1)2
−

2(xi+1,j − xi,j)√
ξ + (xi+1,j − xi,j)2 + (xi+1,j − xi+1,j−1)2

−

2(xi,j+1 − xi,j)√
ξ + (xi,j+1 − xi,j)2 + (xi,j+1 − xi−1,j+1)2

,

(2.45)

where ξ is a non zero minimal value to make the denominator non-zero.

The ART-TV is easy to implement and many variants have been proposed during the

last two decades (Sidky and Pan, 2008; Herman and Davidi, 2008; Yu and Wang, 2009;

Sidky et al., 2011; Chen et al., 2013; Islam, 2013). One improvement algorithm, adaptive

steepest descent projection onto convex sets (ASD-POCS) (Sidky and Pan, 2008), over-

comes the assumption of ART-TV which requires the linear system to be consistent (i.e.

e = 0), and considers the situation when the linear system is inconsistent by adopting
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an adaptive step-length to control the reduction of the TV norm. The ART-TV method

can also be improved by using Block-ART (Herman and Davidi, 2008) or Block-SART

(Yu and Wang, 2009) methods to substitute the original ART.

2.3.3.2 Proximal method

It is worthy to stress that the proximal methods are an important motivation for the

thesis, as they allow to solve regularised least squares estimation problems by alternating

between least squares estimation (which can be done efficiently with newly proposed

algorithms) and a proximal operation to enforce the constraint. Before introducing

proximal methods, some basic concepts of proximal operator and proximal method’s

corresponding mathematical model are first introduced.

A function is called convex if the line segment between any two points on the graph of

the function lies above the graph between the two points. Classical TV regularization

term is proved to be a convex function (Selesnick et al., 2020). One important property

of convex function is that a strictly convex function on an open set has no more than

one minimum.

The proximal method can quickly solve a convex optimization problem: the objective

function F (x) is not differentiable everywhere but can be divided as a sum of convex-

differentiable function f(x) and a convex but not necessary differentiable function g(x).

i.e.

x? = arg min
x

F(x) = arg min
x

[f(x) + g(x)], (2.46)

Traditional GD-type is only able to achieve the minimization of differentiable function,

and thus GD-type algorithms are not suitable for the optimization of Eq.2.46 due to

the possibly non-differentiable function g(x). For this kind of mathematical model, a

proximal operator is introduced

proxµ(g)(x) = arg min g(u) +
1

2µ
‖u− x‖22. (2.47)

The proximal operator is only designed for the non-differentiable function g(x) and is

irrelevant to the differentiable function f(x). Eq.2.47 can be explained as given a vector

x, find another vector u = proxµ(g)(x). By making g(u) + 1
2µ‖u− x‖22 minimal, the u

makes the value of g(u) small and is located near the original vector x.

To deepen the understanding of proximal operator, here discuss three special and simple

situations for function g(x): 1) g(x) = 0, 2)g(x) = ‖x‖1, 3) g(x) = ‖x‖22 to further

illustrate the proximal operator. When g(x) = 0, the proximal operator proxµ(g)(x) =

arg min 0+ 1
2µ‖u−x‖22 = x. When the g(x) = ‖x‖1, the proximal operator proxµ(g)(x) =



Chapter 2 Literature review on iterative methods 41

arg min ‖u‖1 + 1
2µ‖u− x‖22 = Sµ(x). Using [Sµ(x)]i to express the ith element of Sµ(x):

[Sµ(x)]i =


xi − µ, xi > µ

0, −µ < xi < µ

xi + µ, xi 6 −µ,

(2.48)

which is called as soft thresholding function. When g(x) = ‖x‖22, since it is differentiable,

it is easy to show that proxµ(g)(x) = arg min ‖u‖22 + 1
2µ‖u− x‖22 = 1

1+2µx.

The proximal method to iteratively optimize Eq.2.46 is expressed as (Beck and Teboulle,

2009b; Kamilov, 2016; Rose et al., 2014; Combettes and Pesquet, 2011):

xk+1 = proxµ(g)(xk − µ∇f(xk)), (2.49)

where the µ is not only step length to reduce the data fidelity of f(x) but is also the

footage parameter in the proximal operator. For this iteration, it can be explained that

given the current kth iteration result xk, first reduce f(x) by moving xk along with

the minus gradient direction with a step length µ and obtain an intermediate updated

value x̃k. Based on x̃k, an u is found by using proximal operator. The found u makes

the non-differentiable function g small enough and is close to the intermediate updated

value x̃k. The u is thus used as the next iteration result xk+1.

Eq.2.44 can be changed into Eq.2.46 if f = 1
2‖y −Axrec‖22 and g = λTV (xrec). This is

because that the quadratic objective function f(x) = 1
2‖y−Ax‖2 and the TV definition

TV (x) are both convex functions. However the TV norm is not differentiable everywhere.

This can be easily explained by the Eq.2.45. It can be seen that if ξ = 0 and xi,j+1 = xi,j

then the denominator is zero.

The general iteration for TV-based optimization problem can be regarded as alterna-

tively performing a gradient descent step and then applying the proximal operator on

the iterated intermediate result to reduce the TV norm. To be more specific, an in-

termediate updated value x̃k is first obtained after a GD step, and then the proximal

operator is applied on x̃k as:

proxµ(g)(x) = proxµ(λTV )(x) = arg minλTV (u) +
1

2µ
‖u− x‖22

arg min 2µλTV (u) + ‖u− x‖22
(2.50)

Unlike previous mentioned g(x) = 0, ‖x‖1 or ‖x‖2 case, when g(x) = λTV (x), there is

no simple and direct solution of Eq.2.50. According to the discussion in Eq.4.1 in (Beck

and Teboulle, 2009a) , the Eq.2.50 is a TV-based denoising problem and need to be

solved by an iterative algorithm. As a result, the proximal method to optimize the TV-

based regularization model Eq.2.44 is divided into two steps: The first step is to reduce

the data fidelity of quadratic objective function f(x) = 1
2‖y − Ax‖2 with step length
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µ and obtain an intermediate image vector x̃k. The second step is to perform a TV-

based denoising algorithm to denoise the intermediate vector x̃k with the regularization

parameter µλ. The pseudocode of the TV-based denoising algorithm can be referenced

in (Beck and Teboulle, 2009a).

To conclude, the early stopping criteria, Tikhonov regularization and TV regularization

are all widely applied in the iterative CT reconstructions. Early stopping criteria stops

the iteration before they converge, ensuring that the projection error does not propagate

much. The Tikhonov and TV regularizations introduce some prior knowledge of the

image. The Tikhonov regularization prevents the pixel value of reconstructed image

blow up and stabilises the solution when the projection data is noisy and the linear

system is severely ill-posed. The TV regularization term is not differentiable, which is

different from the Tikhonov and thus the traditional gradient descent method is not

suitable for TV-based optimization. Instead, a proximal operator is introduced. The

iteration then includes a gradient descent step to reduce the data fidelity and then

followed by a TV-based denoising procedure. Compared with Tikhonov regularization,

TV regularization introduces more prior information by considering the slice continuity

of the image and it is widely used in the case when the projection views are sparse or

limited.

2.4 Other related method

Solving linear system Eq.1.5 is not only constrained to row-action and column-action

methods. There are other algorithms that are available for general linear inverse prob-

lem. In this section, Block Alternating Direction Method of Multipliers” (block ADMM),

which is widely used in machine learning, is briefly introduced. It shows that it can be

applied in the large scale CT reconstruction cases.

ADMM is a method to solve the decomposable convex optimization problem. It is

very effective in solving large-scale problems. Using the ADMM algorithm, the origi-

nal objective function can be decomposed equivalently into a number of sub-problems.

ADMM then solves each sub-problem in parallel, and then combines the solution of the

sub-problems to find a global solution of the original problem. ADMM was originally

proposed in 1975 and was re-examined by Boyd, who proved that the ADMM is suitable

for large-scale distributed optimization problems (Boyd et al., 2011). After that the

ADMM has been widely applied in CT reconstruction (Chen et al., 2014; Chun et al.,

2014; Wang et al., 2019). The block version of ADMM (Parikh and Boyd, 2014) enables

the total separation on the column direction of A and the partition of the whole linear
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system as 
yI1

yI2
...

yIM

 =


AJ1
I1

AJ2
I1
· · · AJN

I1

AJ1
I2

AJ2
I2
· · · AJN

I2
...

...
. . .

...

AJ1
IM

AJ2
IM

· · · AJN
IM




xJ1

xJ2
...

xJN

 . (2.51)

Each computation node, in the distributed network, only receives A
Jj
Ii

, xJj and yIi and

no longer needs the calculation of rI .

Before introducing the block version of ADMM, it is necessary to give a brief instruc-

tion on the ADMM iteration scheme. The ADMM method can solve a general convex

optimisation problem

min f(z) + g(x),

subject to z = Ax,
(2.52)

with variables x ∈ Rc and z ∈ Rr, where f : Rr −→ R and g : Rc −→ R. The basic

iteration of ADMM follows:

xk+ 1
2 = proxλ(g)(xk − x̃k)

zk+ 1
2 = proxρ(f)(zk − z̃k)

(xk+1, zk+1) = ΠA(xk+ 1
2 + x̃k, zk+ 1

2 + z̃k)

x̃k+1 = x̃k + xk+ 1
2 − xk+1

z̃k+1 = z̃k + zk+ 1
2 − zk+1,

(2.53)

where λ and ρ are relaxation parameters. The graph projection ΠA can be seen as a

linear operator

ΠA(c,d) =

[
I AT

A − I

]−1 [
I AT

0 0

][
c

d

]
, (2.54)

where I is an unit matrix whose size is determined by the size of A. c,d are both vectors

of the same size as x and z.

If f(z) = ‖z −Axtrue‖2 = ‖z − y‖2 and g(x) = 0 or λTV (x), ADMM method solves

Eq.1.5 without or with TV constraints respectively. When g(x) = 0, the xk+ 1
2 =

proxλ(g)(xk − x̃k) in ADMM iteration can be written as

xk+ 1
2 = xk − x̃k. (2.55)

After some manipulations, zk+ 1
2 = proxρ(f)(zk − z̃k) in the ADMM iteration can be

written as

zk+ 1
2 =

1

1 + ρ
2

y +
1

2
ρ + 1

(zk − z̃k), (2.56)

where y is the already obtained projection data.
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Block ADMM assumes that both function f(z) and g(x) are block separable, i.e.

f(z) =

M∑
i=1

fi(zIi),

g(x) =
N∑
j=1

gj(xJj ),

(2.57)

where
z = [zI1 , · · · , zIM ]T

x = [xJ1 , · · · ,xJN ]T ,
(2.58)

with zIi ∈ Rmi , xJj ∈ Rnj , so
∑M

i mi = r and
∑N

j=1 nj = c. To apply block ADMM,

MN new variables xiJj ∈ Rnj , zjIi ∈ Rmi are introduced. Then the block ADMM, after

a detailed deduction in (Parikh and Boyd, 2014), is expressed as

x
k+ 1

2
Jj

= proxλgj(x
k
Jj − x̃kJj )

z
k+ 1

2
Ii

= proxρfi(z
k
Ii − z̃kIi)

(xiJj
k+ 1

2 , zjIi
k+ 1

2 ) = Π
A

Jj
Ii

(xkJj − (x̃iJj )
k, zjIi

k
+ z̃kIi)

xk+1
Jj

= avg(x
k+ 1

2
Jj

, {xiJj
k+ 1

2 }Mi=1)

(zk+1
Ii

, {zjIi
k+1}Nj=1) = exch(z

k+ 1
2

Ii
, {zjIi

k+ 1
2 }Nj=1)

x̃k+1
Jj

= x̃kJj + x
k+ 1

2
Jj
− xk+1

Jj

z̃k+1
Ii

= z̃kIi + z
k+ 1

2
Ii
− zk+1

Ii

(x̃iJj )
k+1 = (x̃iJj )

k + (xiJj )
k+ 1

2 − xk+1
Jj

,

(2.59)

where avg and exch are element-wise averaging and exchange operators, respectively.

The exchange operator exch(c, {cj}Nj=1) is an operator that computes zIi based on

{zjIi}
N
j=1 by reducing or adding a correction term, given by

zjIi = cj +
(c−

∑N
j=1 cj)

N + 1
,

zIi = c−
(c−

∑N
j=1 cj)

N + 1
.

(2.60)

The final solution can be obtained from [x
k+ 1

2
1 , · · · ,xk+ 1

2
N ].

From the description, it can be seen that the most computationally intensive part of

ADMM and its block form is the Π projection. For example, in ADMM, based on

Eq.2.54, this projection is equivalent to solving the linear system[
c + ATd

0

]
=

[
I AT

A − I

][
ĉ

d̂

]
, (2.61)
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where ĉ and d̂ are the projected c and d. A can also be changed as AJ
I in block ADMM

form. To solve this equation, the conjugate gradient for the least square problems

(CGLS) is recommended due to its fast convergence rate (Parikh and Boyd, 2014). Each

ADMM iteration requires several conjugate gradient (CG) iterations, leading to dozens

or even hundreds of matrix-vector multiplies, which leads to significant computational

cost per iteration. A standard technique to speed up the ADMM iteration is to terminate

the CG iteration early. With a predefined tolerance parameter τ , the CG is stopped when

the residual norm of Eq.2.61 is smaller than τ . It should be noted that the tolerance τ

should influence the final image vector xrec’s accuracy. At low precision level, i.e. at the

initial iteration stage, the influence to the xkrec’s accuracy brought by τ is not significant

so the τ is allowed to be set as a relative large value. When the iteration goes on, if

one wish to obtain a high level accuracy solution of xrec, then the τ has to be tuned

down and then the iteration computation cost increases. Early termination in the CG

can result in more ADMM iterations, but leads to a much lower computational cost per

iteration, giving an overall improvement in computational speed.

Apart from early termination, there are other methods to increase the ADMM compu-

tational efficiency. For example, a variable ρ-update scheme (Wang and Liao, 2001) can

be adopted to accelerate the convergence rate.

The block ADMM shares its partition method on the system matrix A with our new

methods. To the author’s best knowledge, it is the only algorithm that enable each

parallel node has partial access to the projection data y and reconstructed volume x.

As a result, similar to the previously mentioned SIRT-type methods, block ADMM will

also be one of our main reference methods to be compared with the proposed methods.

More detailed discussions and comparisons will be presented later.

2.5 Conclusions

For row-action methods, each iteration does not require the calculation or storage of the

entire matrix A in advance but only needs to calculate a set of rows of AI at a time.

This can be an advantage in large 3D reconstruction problems where the storage of the

whole matrix is infeasible. However, if the algorithm is applied in a parallel network,

then each processor (or node) needs to store the whole reconstructed image vector x

since each update is on the entire image, which can be computationally challenging,

especially when performing the forward projection AIx, back projection AT
I (y −Ax)

and TV de-noising on x. When the size of the reconstructed image continues to grow,

the limited storage capability for each separate computation node (for example, GPUs

in a multi-GPU distributed network) may lead to multiple data transmissions to cover

the whole x. On the other hand, using column-action algorithms in a parallel computing

scheme does not require each processor to store the whole reconstructed image but only
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a small part of x. However, they instead require full access to y, which can again be

prohibitive in large-scale situations. A combination of row and column-action methods,

SBCD, is discussed in which each node only requires parts of the reconstructed image

vector x. However, this method requires the block residue rI to be accurately calculated,

implying that x still needs to be processed as a whole for each iteration.

In current CT system case, if the computation node can only process FP and BP in-

volving a part of x and y and the TV de-noising on a part of x, the requirement of a

full access to either y or x, which is the common feature of all widely-applied SIRT-type

methods, leads to multiple communications between computation nodes and the master

node (the node only stores variables but does not involve computations). This impedes

the reconstruction speed. The only algorithm available prior to our work that overcomes

these issues and allows computation nodes to operate with access to only part of x and

y is the block ADMM method, whose original form has been applied in CT reconstruc-

tion. However, the required matrix inversions can become a limiting factors if these

matrices are relatively large. A better combination of row and column-action methods

to allow each iteration only address yI and xJ is thus needed for CT reconstruction.

Such approaches will be developed in this thesis.



Chapter 3

CSGD

The speed of the algorithm is empirically studied here by monitoring the change of

the SNR of reconstructed image. Note that the inclusion of additional regularisation

required to overcome the ill conditioning of the CT inverse problem is discussed in later

chapters.

As mentioned in the previous chapter, when the size of the CT dataset, including the

projection data vector y and reconstructed volume vector x, have both exceed the stor-

age capacity of the computation node, traditional SIRT-type CT reconstruction methods

suffers from heavy communication cost due to the requirement of the full access to ei-

ther y or x. In this chapter, a novel algebraic reconstruction method called Coordinate-

reduced Steepest Gradient Descent (CSGD) is presented in detail. The contributions of

this chapter include: 1) This proposed algorithm is specially designed for the case where

both projection data and reconstruction volume are so large that one computation node

only has partial access to both. The communication overhead between computation

nodes and the master node is reduced compared with the other SIRT-type methods

because the parallel computation system has a tunable access to the dataset. Similar

to the SBCD mentioned in section 2.2.3.4, CSGD selects a block of coordinates and

estimates a stochastic gradient descent direction based on a row block of the system ma-

trix A. However, in CSGD, the residual r or rI is not accurately calculated each time

but is only partially updated. This method thus reduces the computation cost in each

iteration and also enables a more flexible parallel application, at the cost of introducing

a more stochastic update direction. Besides, the computation efficiency is much higher

than block ADMM, which is the other main reference method apart from the SIRT-type

methods. Simulations have verified the speed advantage of CSGD when compared with

block ADMM. 2) The application details of the CSGD is explored in detail, including

determining a rule of the parameter tuning to obtain the fastest reconstruction speed

under a determined parallel network, researching algorithm’s performance under differ-

ent partitions on dataset y and x, showing its ability to reconstruct the image into high

47
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accuracy level under arbitrary dataset division, and proposing an importance sampling

method to further accelerate the CSGD’s reconstruction speed.

This chapter is widely based on the journal article “A Joint Row and Column Action

Method for Cone-Beam Computed Tomography”(Gao and Blumensath, 2018b).

3.1 Algorithm description

3.1.1 Basic CSGD iteration

The proposed CSGD is inspired by SBCD discussed in the previous chapter, which is

modified to 1) find a better strategy to compute step-length µ and 2) to efficiently

approximate the residue rI .

After selecting the row block I, CSGD turns to optimize a block of objective function

fI(x) =
1

2
(yI −AIx)T (yI −AIx). (3.1)

The gradient is

g = ∇fI(x) = (AI)
T (yI −AIx) = (AI)

T rI . (3.2)

If x moves along this direction, all elements in x are changed. Instead, we here use

a coordinate descent approach in which only those voxel elements are updated whose

indices are in the set J . The descent direction is then

g̃ =



0
...

gJ
...

0


=



0
...

(AJ
I )T rI
...

0


. (3.3)

It is worthy to mention that Eq.3.3 assumes that the J contains sequential column

indexes. It is for the purpose of simplifying the expression of the equation and it is not

a necessary requirement in the partition of x space.

Along with this new modified direction, the update, from the current kth iteration to

the next k + 1th iteration, becomes

xk+1 = xk + µg̃→

xk+1
J = xkJ + µgJ

xk+1

Ĵ
= xk

Ĵ
,

(3.4)

where µ is the step-length and Ĵ is the complement to the set J . To compute the

optimal µ that would lead to steepest descent, the direction of the gradient of x in the
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next iteration (∇fI(xk+1)) should be perpendicular to the current update direction (g̃)

(Wang, 2008), i.e.

((AI)
T (yI −AIx

k+1))T g̃ = 0. (3.5)

Using the fact that xk+1 = xk+µg̃ and rI = yI−AIx
k, which means the current partial

residual, Eq.3.5 can be expanded as:

(rI)
TAI g̃ = µg̃T (AI)

TAI g̃. (3.6)

Attention that (rI)
TAI g̃ = g̃TAT

I rI = g̃Tg = gJ
TgJ , where the last equation is ob-

tained by the sparse property of g̃. Besides, using this sparse property, it is also easy to

obtain AI g̃ = AJ
I gJ . Eq.3.6 is then expressed as:

µ =
gJ

TgJ

gJT (AJ
I )TAJ

I gJ
. (3.7)

This calculation does not require a computation node to have access to the whole row

or column block of matrix A. When the matrix A cannot be stored and needs to be

generated on the fly, CSGD iterations thus only require computations with the sub-

matrix AJ
I and its transpose.

An important issue is that the step size derived from Eq.3.7 minimises the current

‖rI‖ instead of ‖r‖. However, we are not interested in the reduction of rI but in the

reduction of r. Our choice of µ can thus potentially be too large and is not guaranteed

to reduce ‖r‖. Furthermore, it is not guaranteed that our update direction g̃ is always

a descending direction of the original cost function. To stabilise our algorithm, we thus

introduce an additional relaxation parameter β, which is a constant between 0 and 1

and needs to be manually tuned in application, into the calculation of µ. This helps us

to avoid overshooting the minimum if g̃ is a descent direction, whilst in cases in which

g̃ is not a descent direction, the increase in r remains small.

The basic iteration of CSGD can be viewed as being performed in a block box and the

input are rI ,xJ and the output is xJ , as is illustrated in Fig.3.1. The output not only

includes the updated image block xJ but also includes the FP result of xJ , which will

be used to update the residual r and will be explained in the next section.

3.1.2 CSGD algorithm

Fig.3.1 shows that CSGD iteration is especially suitable for the case where every com-

putation node, which plays as the block box role, has partial access to both y and x. It

can be seen that the update on rI plays an important role in updating x. As a result,

how to efficiently update rI , where I ∈ {Ii}Mi=1 is the next problem that CSGD tries to
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Figure 3.1: The basic CSGD iteration can be viewed as being sealed in a black
box. Such black box can be a GPU or a computer in a parallel network.

solve. Mathematically, rI can be obtained by calculating yI −AIx = y−
∑N

j=1 A
Jj
I xJj .

This means that for each update of r, we require N matrix-vector multiplications (i.e.

A
Jj
I xJj ). This violates the original desire to reduce the computations and communi-

cation overhead in each iteration. For example, if the number of parallel nodes in a

network is p and p = N
2 , then the accurate calculation of rI (or the accurate calculation

of AIx) requires each parallel node to communicate with the master node twice, whilst

the expected communication time is 1. One possible solution to approximate AIx is to

only sum up the results of recently computed matrix-vector products AJ
I xJ , which can

be computed and outputted by each parallel node, as indicated in Algo.3.1. It should be

noted that in Algo.3.1, the α and γ are percentages of selected row and column blocks.

They cannot be set as arbitrary numbers but should make αM and γN as integrals be-

tween [1,M ] and [1, N ] respectively. In a parallel network with p parallel computation

nodes, it is suggested to set α, γ to make αγMN = p, making each computation node

receive different {rI ,xJ} pairs.

It can be seen that Algo.3.1 is parallelizable on the J-loop (line 7). To be more specific,

line 8 to 12 are performed in each computation node in parallel, as shown in Fig.3.1.

The line 13 illustrates that the ŷI , which is stored on the master node and is cleared

at the beginning of each inner iteration, is used to collect zjI generated by each parallel

node and sum them up for the future’s update on rI . Here the master node is a node

that is responsible for communicating with all parallel computation nodes. A detailed

discussion on the communication between master node and the computation nodes will

be presented in Chapter 6. This update scheme on rI seems appealing since it greatly

reduce the computation amount in the update scheme. For example, if the number of
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Algorithm 3.1 Preliminary algorithm for CSGD

1: Initialization: Determine the maximum allowed epoch number Kmax. Partition row
and column indices into sets {Ii}i∈[1,M ] and {Jj}j∈[1,N ] , {xJj}j∈[1,N ] = 0, ŷ = 0
and r = y. α ∈ (0, 1], γ ∈ (0, 1] are the percentage of the selected row and column
blocks.

2: for epoch = 1, 2, · · · ,Kmax do
3: for ii = 1, 2, · · · , αM do
4: Random select a row block I from sets {Ii}i∈[1,M ] with replacement
5: rI = yI − ŷI
6: ŷI = 0
7: for jj = 1, 2, · · · , γN do
8: Random select a row block J from sets {Jj}i∈[1,N ] with replacement, record

the index j as well
9: gJ = (AJ

I )T rI

10: µ = β (gJ )T gJ

(gJ )T (AJ
I )TAJ

I gJ

11: xJ = xJ + µgJ
12: zjI = AJ

I xJ
13: ŷI = ŷI + zjI
14: end for
15: end for
16: end for
17: xsolution = [xJ1 , ...,xJN ]T

parallel nodes p = N
2 , then the computation amount of the update on rI is halved.

However, simulation results indicate that this algorithm does not approach the least

squares solution because of those missing zjI which should also engage in the update of

rI . As a result, the efficient updating rI in CSGD needs to satisfy two requirements: 1)

the update does not need to calculate zjI = A
Jj
I xJj to cover the whole {Jj}Nj=1. 2) the

update cannot neglect those missing zjI that are not output by current parallel nodes.

One solution to meet these two requirements is to make the master node record all zjI
and gradually update them by p parallel nodes, thus when updating rI , there are p

zjI that contain the latest information whilst the other N − p zjI contains the outdated

information. The algorithm is indicated in Algo.3.2. Line 10 in Algo.3.2 means that only

a small fraction of zjI is updated by the latest xJ whilst the other zjI remains unchanged.

However when updating rI or r in line 12, all {zjI}Nj=1 engage despite some of them store

stale information.

Despite that the Algo.3.1 does not generate iterations that approach the least squares

solution, it provides a framework of CSGD algorithm and Algo.3.2, which is a version of

CSGD algorithm that can empirically be shown to approach the least squares solution,

is a refined version of Algo.3.1. To verify Algo.3.2 has the ability to solve the noise free

linear inverse problem whilst Algo.3.1 does not, a random matrix A ∈ R200×100 was

generated together with a vector x ∈ R100×1. All elements in A and x are uniformly

distributed random numbers in the interval (0,1). The projection y was then y =

Ax. The matrix was divided into 4 row blocks and 4 column blocks using consecutive
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Algorithm 3.2 CSGD algorithm which parallelizes the column blocks (called as
CSGD(J)).

1: Initialization: Determine the maximum allowed epoch number Kmax. Partition
row and column indices into sets {Ii}i∈[1,M ] and {Jj}j∈[1,N ] , {xJj}j∈[1,N ] = 0,
{zj}j∈[1,N ] = 0 and r = y. α, γ are the percentage of the selected row and column
blocks.

2: for epoch = 1, 2, · · · ,Kmax do
3: for jj = 1, 2, · · · , γN In parallel (J loop) do
4: Random select a column block J from sets {Jj}j∈[1,N ] with replacement and

record the index number j
5: for ii = 1, 2, · · · , αM In sequential (I loop) do
6: Random select a row block I from sets {Ii}i∈[1,M ] with replacement

7: gJ = (AJ
I )T rI

8: µ = β (gJ )T gJ

(gJ )T (AJ
I )TAJ

I gJ

9: xJ = xJ + µgJ
10: zjI = AJ

I xJ
11: end for
12: end for
13: r = y −

∑N
j=1 zj

14: end for
15: xsolution = [xJ1 , ...,xJN ]T

rows/columns. Results indicated in Fig.3.2 demonstrate the importance as well as the

effectiveness of recording all zjI and partially update some of them.
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Figure 3.2: The y-axis is the SNR (defined in Eq.1.7) of the reconstructed image
vector, the unit is dB. β is 0.2. The difference is significant when using Algo.3.1
(the blue line) and using Algo.3.2 (the red line). It clearly indicates that it is
necessary to use stale zjI to update rI otherwise the updated rI is not a “good
enough” estimation of the real yI−AIx and thus leads to false update directions
as well as step-lengths.

Algo.3.2 is inherently parallelisable only over the volume block J and the maximum

number of parallel nodes is γN (γ ∈ (0, 1]). For the I-loop, it is still sequential. In a

centralised network, a general work scheme for CSGD is illustrated in Fig.3.3. In this

scheme, take the right computation node as an example, this computation node receives

the reconstructed image block xJ4 obtained from the last iteration. It also receives a

row block index set I2 used to calculate (AJ4
I2

)T rI2 and AJ4
I2

(AJ4
I2

)T rI2 . After the update

of xJ4 and z4
I2

, the node makes a request to the master node and obtains another row

block index set I3 and repeats the process. When the two processes are finished, the

values of z4
I2

and z4
I3

are returned to the master node which performs the update on r.

Further analysis indicates that this method can be further parallelized over both row

and column blocks. This algorithm is indicated in Algo.3.3.

Using the “master-servant” parallel model, the architecture of CSGD(I,J) is indicated

in Fig.3.4. The maximum number of parallel computation nodes increases from γN to

αγMN and different row blocks I for the same column block xJ can be performed in

parallel, thus reducing the computation load for each computation node.

3.2 Preliminary simulations

Before the discussion on the CSGD property, it is worthy to mention that it is hard to

analysis CSGD mathematically. This is because that the CSGD uses highly stochastic
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Figure 3.3: The general work scheme for CSGD(J). The master node randomly
assigns several row and column blocks to several computation nodes. The cur-
rent iteration only updates xJ1 with yI1 ,yI4 , and xJ4 with yI2 ,yI3 . To meet the
parallel computation condition, the column blocks J assigned to different com-
putation nodes should not overlap with each other. Within each computation
node, the update on different row blocks I cannot be further parallelised and
thus the iteration is performed in a sequential form, which limits the scalability
of the proposed algorithm.
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Figure 3.4: The general work scheme for CSGD(I,J). The current iteration only
updates xJ1 with yI1 ,yI4 , and xJ4 with yI2 ,yI3 . The high level master node
is only responsible for collecting reconstructed image block, updating residue
r and assigning projection data block and image block obtained from the last
iteration. The low level master nodes average each reconstructed block, while
computation nodes are main nodes calculating the CSGD iteration.

update direction in each iteration, and the direction is not an unbiased estimation of the

gradient. This means the traditional convergence analysis of SGD is not appropriate for

CSGD. We thus here do not derive a mathematical convergence proof but instead use

empirical performance validation of CSGD.

To reflect the CSGD performance, the SNR of the reconstructed image vector is used to

reflect the reconstruction quality, which is defined in Eq.1.7. In the following, the term

“reconstruction speed” will be frequently used as one measurement of the algorithm’s

property. This term reflects the change of SNR along with realistic spending time. Fur-

thermore, the usage times of matrix-vector multiplications (i.e. the forward projection
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Algorithm 3.3 CSGD algorithm which parallelizes both row and column blocks (called
CSGD(I,J)).

1: Initialization: Determine the maximum allowed epoch number Kmax. Partition
row and column indices into sets {Ii}i∈[1,M ] and {Jj}j∈[1,N ] , {xJj}j∈[1,N ] = 0,
{zj}j∈[1,N ] = 0 and r = y. α and γ are the percentage of the selected row and
column blocks respectively.

2: for epoch = 1, 2, · · · ,Kmax do
3: x̂ = 0
4: for jj=1,2,· · · ,γN . In parallel (J loop) do
5: Random select a column block J from sets {Jj}j∈[1,N ] with replacement and

record the index number j
6: for ii=1,2,· · · ,αM In parallel (I loop) do
7: Random select a row block I from sets {Ii}i∈[1,M ] with replacement

8: gJ = (AJ
I )T rI

9: µ = β (gJ )T gJ

(gJ )T (AJ
I )TAJ

I gJ

10: zjI = AJ
I (xJ + µgJ)

11: x̂J = x̂J + xJ + µgJ
12: end for
13: end for
14: r = y −

∑N
j=1 zj

15: For all blocks J that have been updated, xJ = x̂J/(the times of block J has been
updated)

16: end for
17: xsolution = [xJ1 , ...,xJN ]T

AJ
I xJ as well as AJ

I gJ and the backward projection (AJ
I )T rI) can be used as a reference

of the actual spending time. This is because the matrix-vector multiplication is the most

time-consuming part in each iteration. A brief simulation will present later to further

prove this claim.

In this section, CSGD is applied to both 2D fan-beam and 3D cone-beam CT system with

circular scanning trajectories. Simulations demonstrate that the acceptable range of β

leading to high accuracy solutions and the reconstruction speed change relative to the

percentages of row and column blocks used in each iteration. Since block ADMM has the

same parallel computation architecture with CSGD and also allows each computation

node has partial access to the dataset y and x, it is used as a main reference method

in this section to compare with CSGD. Unless stated otherwise, the partition method

uses consecutive rows and columns. A detailed discussions on differences between using

sequential or shuffled row/column indexes of y and x is presented in section 3.2.3.

The 2D fan-beam CT scanning geometry is indicated in Fig.3.5. The scanned image

adopts a discretized K ×K pixels phantom image provided inherently in Matlab. The

elements outside the K ×K box are all 0. The point source P starts from the above of

the scanned object and the source-detector pair rotates around the object for a circular

circle. The projection is measured with a fixed rotation interval. The linear detector
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contains several evenly distributed detectors. The rays connecting the point source P

and these pixels are then measured. When generating the projection data, it uses the

same FP model as that used in the reconstruction. In other words, despite that original

image is continuous, it is first discretized into K × K pixels and then is scanned to

generate the projection y. When evaluating the quality of the reconstructed image xrec,

the reference is also the discretized K ×K scanned image vector.

Point source：P 

2D image

O

K*K pixels

D

Figure 3.5: The scanning geometry, where the P is the point source location,
O is the geometry center of the object and the rotation center. The D is the
geometry center of the detector. The POD three points are always on one line
and is always perpendicular to the detector.

The first simulation using Fig.3.5 is to verify that the usage of AJ
I is able to reflect the

actual spending time as the computations corresponding to the AJ
I is the most time-

consuming part among the iterations. A large CT scanning geometry is used: K in

Fig.3.5 is 1204, OP = OD = 2000. The rotation interval is 0.1◦. The detector contains

4000 pixels. Then corresponding A ∈ R(1.44×107)×(1.0×106). When N = 4, α = 1
M , γ =

0.5, the percentage of each operation takes is illustrated in Table 3.1. M is changed

from 2 to 200. Since N is fixed, increasing M means that the size of AJ
I decreases

and thus the computation cost for the matrix-vector multiplication is reduced. Despite

this, it can be seen that even when M is increased to a large number (200), the three

matrix-vector multiplications are still the most time consuming parts, taking 94% of the

whole time. This proves that using the “usage of AJ
I ” to reflect the actual computation

time is reasonable.

In the following simulations, unless stated otherwise, K in Fig.3.5 is 16 and the size

of pixels on the detector and on the image are both 1, the length of OP and OD are

always 100. The rotation interval for point source as well as the detector is 10◦. The

detector contains 30 pixels. As a result, the system matrix A, whose sparsity is similar

to the large-scale CT reconstruction cases, only contains 30 × 360
10 = 1080 rows and
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Table 3.1: Matlab profiler results of each CSGD operation

M=2 M=200

operations percentage(%) operations percentage(%)

(AJ
I )T rI 33.2 (AJ

I )T rI 31.5

AJ
I gJ 32.9 AJ

I gJ 31.4

AJ
I xJ 32.6 AJ

I xJ 31.0

other line 1.3 other line 6.1

16 × 16 = 256 columns. The reason why a small-scale 2D scanning problem is used

here is that it can reduce the time for simulation, enabling to perform more simulations

to exploit various properties of CSGD and to test the performance of CSGD after long

enough iterations. It can reflect the performances of CSGD in the large scale situation

because of two reasons. The first reason is that the system matrices in the small-scale

and in the large-scale situation are similar to each other and both of them are very

sparse. To verify it, an intensity distribution of system matrix A in the small-scale

case is indicated in Fig.3.6. The matrix is treated as an image and the different colours

50 100 150 200 250

100

200

300

400

500

600

700

800

900

1000

0

0.2

0.4

0.6

0.8

1

1.2

Figure 3.6: The intensity distribution of matrix A ∈ R1080×256 in the tiny CT
system. The horizontal direction is the column index and vertical direction is
the row index of A. Different colours reflect different element’s values, as shown
in the right side bar. For a certain X-ray, it only passes though a few image
pixels. As a result, the system matrix is very sparse. This property arouses the
following importance sampling strategy.

present different pixel values. It can be seen that the majority elements in A is 0 and the

non-zero element actually takes less than 1% among the whole elements. This property

widely exists in all CT-related system matrices regardless of the size of them. The second

reason is that the y,A,x, although is not of enormous size, are still divided into blocks

and the iteration only uses partial of them. This is the same with the application in the
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large-scale dataset. The simulation results are thus able to provide useful reference to

predict the large scale properties.

A noise free simulation was conducted to verify the difference between CSGD(J) and

CSGD(I,J) as well as their abilities to approach to the true solution. In this noise free

simulation, all data are stored in double-precision floating-point format and M=12,N=4,

α = 1 or 0.5. The SNR of the reconstructed image xrec is shown in Fig.3.7. Fig.3.7 (a)
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Figure 3.7: In this chapter, all simulations are repeated with different β within
range (0, 1] and the fastest reconstruction speed is presented. (a) and (b) are
the final SNR of reconstructed image vectors. For the purpose of visualisation,
all the negative SNR, which means divergent iteration due to improper β, are
set to zeros. (c) and (d) are the fastest reconstruction speeds of two CSGD
algorithms selected from proper range of β.

and (b) has shown that CSGD(J) and CSGD(I,J) can both approach to the true solution

xtrue closely when the system is overdetermined and is noise-free. This is because that

within a proper range of β, the SNR of the final results is about 300dB, which is almost

the precision limit of the double precision floating-point format operation. According to

the definition of SNR, this means that the final iterated xrec is close enough to the xtrue.

Fig.3.7 (c) and (d) show that the CSGD(I,J) method is slow, but it has a more extensive

range of β that leads to highly accurate solutions. This means that the parameter tuning

is easier than for CSGD(J). Furthermore, CSGD(I,J) also enables more computation

nodes to engage in the iteration, thus if the parallel network has sufficient computation
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node, the CSGD(I,J) is more suitable than CSGD(J). For example, in Fig.3.7(d) case,

when α = 0.5, γ = 1, CSGD(I,J) allows for 0.5 × 12 × 4 = 24 computation nodes to

compute CSGD basic iteration in parallel whilst CSGD(J) only allows 4 nodes to be

engaged in the parallel iteration. If one usage of AJ
I spent δt seconds and the number

of parallel nodes in a network is p, the actual spent wall time can be approximated

as δt × usage of AJ
I /p. This is because that the parallel node performs calculation

simultaneously and within δt wall time, there are p matrix-vector multiplications to be

performed. So more engaged parallel node means less actual wall time for the same

usage of AJ
I . If blue line in Fig.3.7(d) is divided by 24 and red line is divided by 4,

then the trend approximately reflects the reconstruction speed over the actual wall time

and then it will show CSGD(I,J) is faster than CSGD(J). As a result, the following

simulations mainly focus on CSGD(I,J) despite its slower reconstruction speed.

3.2.1 Range of β for different M,N and α, γ

This part first discusses the rough range of β for which the algorithm is able to reach

the true solution in the noise free setting, by setting M , N as different values. For

simplicity, α and γ in this section are always 1, i.e. the number of parallel nodes is MN .

In the following content of the thesis, unless specially stated in the figure, the projection

data y are noise free and all variables are stored as single-precision floating-point format

to reduce the simulation time. Experiments have verified that using single-precision

floating-point format makes the SNR limit decreases from around 300dB to 100dB. This

can be verified by performing long enough GD iterations and then observe the SNR

limit. The simulation results are not presented here.

The SNR after 2000 epochs (simulations show that it is long enough to reach the true

result) for different β is indicated in Fig.3.8.
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Figure 3.8: The available range of β is influenced more by N instead of M .
When N increases, the range of β shrinks rapidly. Different choice of M,N, β
lead to different final precision level but this property is not important. This
is because in CT reconstruction area, a medium accuracy solution (around 20
dB) is already clear enough to present all inner details of the scanned object
and thus only initial reconstruction speed is of interest here.

It indicates that when N is fixed, increasing M gradually narrows the range of β. When

M is fixed, increasing N rapidly narrows the range of β. In both simulations, CSGD

presents a good slicing scalability. Here “epochs” is used instead of “usage of AJ
I ” to

compare the speed under different partitions. This is because different M,N lead to

different computation costs per projection, whilst α = γ = 1 ensures that each epoch

covers all sub-matrices AJ
I and thus have the same computation cost. Simulations are

also conducted when the linear system has added noise, i.e. e in Eq.1.6 is not zero. In

the following simulations, e is a Gaussian noise whose average value is zero and variance

is σ. The generation of such type e in MATLAB is easy to be achieved by using

function randn(). The above simulation was repeated for several times when σ = 0.01

(Fig.3.9) and the e is independently generated form the function randn() each time.

The simulation results are similar to each other, here only present one result from all

simulations. Generally, the noisy and noise free models have the same properties. They

can all reconstruct the image to a high accuracy and the reconstruction speed is almost

the same. Here it is worthy to mention that under the noisy case, the semi-convergence
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Figure 3.9: When σ = 0.01, the SNR of y is 100 dB. The range of β is similar
to the above noise free model. The final SNR all comes to the same precision
level. When M or N increases, the reconstruction speed decreases.

is existing and this phenomena is significant if the noise are severe. However, in the

simulations shown in Fig.3.9, the semi-convergence phenomena is not significant, this is

because of two reasons. The first reason is the scanning model is a 2D model, and thus

the formed linear model is not severely ill-posed (Natterer, 2001). The second reason

is that the added noise is not severe. These two reasons makes the semi-convergence

phenomena not obvious. Simulations have shown that if the σ is increased from 0.01 to

0.1, then the semi-convergence phenomenon becomes significant but the final SNR also

comes to the same precision level as shown in Fig.3.9. As a result, it is not presented in

this part.

For a specific partition, when the number of parallel nodes ( defined as p in this thesis)

is smaller than MN , setting α and γ for fast reconstruction speed is another aspect

worth exploring. Two noise-free cases are tested: 1)short-fat (SF) case: M=12, N=2

with γ = 1 and γ = 1/2 case are indicated in Fig.3.10. It can be seen that when

γ is determined, reducing the α accelerate the reconstruction speed. This is because

that a smaller α means more frequent update on x space within the same usage of AJ
I

and the frequent update on x has compensate the slow reconstruction speed due to the

stochastic update direction. When α = 1
12 , a comparison for different γ is indicated in
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Figure 3.10: For M = 12, N = 2 SF situation, reducing α enlarges the range
of acceptable β, except the situation when α = 1

M , where the CSGD algorithm
becomes unstable within a narrow β range. A smaller α also increases the
reconstruction speed than α = 1 situation.

Fig.3.11. It can be seen that when α = 1
M , reducing γ does not significantly influence

the reconstruction speed. This is because that each column block xJ is independently

updated and has the same update frequency. Despite that a smaller γ makes some zjI
outdated and thus cause the update rI inaccurate, the influence is not severe because in
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Figure 3.11: α = 1
M , γ = 1

N is not significantly slower than γ = 1 case, which
suggests that the CSGD allows to reduce γ while maintaining reconstruction
speed. This property can be useful when p is smaller than N .
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reality partition, the N is usually not large (in this thesis, the N is usually set as 4,8,16

whilst M can reach 60), thus minimising γ into minimal 1
N and random select xJ does

not cause severe delay. 2) The trend in Fig.3.10 and Fig.3.11 can be repeated when the

shape of AJ
I is tall-thin (TT) case (i.e M=N=8), the simulation results are indicated in

Fig.3.12. It again demonstrate that the shape does not influence reconstruction speed
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Figure 3.12: For different γ, reducing α contributes to a faster reconstruction
speed. (f) illustrates that when α = 1

M , different γ does not cause significant
difference in terms of reconstruction speed.

much and reducing α helps to increase the reconstruction speed at different γ settings.
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This is mainly because that the smaller α leads to a more frequent update on the image

space.

The above results can be repeated for larger problems: K is 64, OP and OD is 300. Angle

gap is 2◦ and detector pixel number is 400 with pixel length being 0.5. A ∈ R72000×4096.

The simulation results are indicated in Fig.3.13. Besides, it is worthy mentioning that

this simulation dataset will be repeatedly used in the following demonstration. Results

in Fig.3.10, Fig.3.11, Fig.3.12 and Fig.3.13 all show that α = 1
M is the best choice among

all γ setting and γ does not significantly influences the reconstruction speed when the

α is determined. As a result, the suggested α, γ setting method is:

γ = min{1, pN },
α = p

MNγ ,
(3.8)

where p is the number of parallel nodes in a network.
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Figure 3.13: All simulations are performed within the β range [0.1,1]. The
shape of AJ

I is TT case. α = 1
M is still the best choice among all γ setting in

the larger CT model. (d) indicates that when α is set as 1
M , reducing γ does

not significantly influence the reconstruction speed. This property makes the
setting of γ flexible. If number of parallel node p is smaller than N , setting
γ = p

N is thus recommended.
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In this section, the reconstruction speed of CSGD under different partitions and different

α, γ settings has been discussed. Simulations indicate that CSGD generates iterations

that approach the true image in the noise free case within a wide range of M,N settings.

Despite the M,N settings influencing the shape of the sub-matrix AJ
I , they do not signif-

icantly influence the reconstruction speed. As a result, when partitioning the projection

data and image into M and N blocks respectively, the only factor that needs to be con-

sidered is whether the partitioned data block fits the storage space of the computation

nodes. For different γ settings, α = 1
M always leads to the fastest reconstruction speed.

3.2.2 Comparison of CSGD and block ADMM

As discussed in section 2.4, the block ADMM method shares the same partition method

on the system matrix A as CSGD. To facilitate the following comparison of CSGD

and block ADMM, a random tiny system matrix A ∈ R256×128 and a random vector

x ∈ R128×1, whose elements are both uniformly distributed random numbers in the

interval (0,1), are used to reduce the computation amount in simulations. When using

large CT models, all simulation results presented in the following are still reproducible.

3.2.2.1 Computation efficiency comparison

Both CSGD and Block ADMM use consecutive columns and rows in the partitions.

They are stopped when their solutions are of 80 dB SNR. For block ADMM, we used

two loops to determine the best ρ and τ values that led to the fastest reconstruction

speed. The outside loop is for different initial ρ which is between 0.1 and 20 and the

inside loop is for τ which is between 0.1 and 0.9. For different partitions, the best

parameters leading to the least matrix-vector multiplies are indicated in Table 3.2.

Table 3.2: The best parameter in block ADMM.

ρ τ

M=2,N=2 7 0.3

M=2,N=4 2 0.2

M=4,N=2 8 0.9

M=4,N=4 12 0.7

The comparisons of CSGD and block ADMM are indicated in Fig.3.14. It can be seen

that CSGD uses much less matrix-vector multiplication. This is because that the block

ADMM requires a graph projection procedure, as shown in Eq.2.54, which requires

several extra matrix-vector-involved iterations to solve. The CSGD thus become more

efficient and use less usage of AJ
I than the block ADMM. In the figure, the α = γ = 1.
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It should be noted that the fully distributed form is not the instance when the CSGD

is the most efficient. According to the previous simulations, α < 1 situation can further

increase the computation efficiency in CSGD, and then the CSGD should outperform

the block ADMM more significantly.
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Figure 3.14: The y-axil is the SNR of iterated x. The x-axil is the usage of
AJ
I and the basic unit is 1× 104 times. The α = γ = 1. The CSGD algorithm

greatly reduces the required matrix vector operations to meet the predefined
SNR than the ADMM method.

3.2.2.2 Communication cost and storage demand comparison

The above simulation indicates that to obtain a solution with a predefined SNR, CSGD

requires much fewer matrix-vector multiplications, which means fewer computations in

each computation node. This is an advantage of CSGD over the block ADMM method.

Another aspect to be compared is the communication cost. To demonstrate the difference

between block ADMM and CSGD, let M and N = 2. An illustration of the work

procedure of block ADMM is indicated in Fig.3.15. Each computation node (ovals in

xJ1,yI1

 avg: J1 column block

xJ1,yI2

xJ2,yI1

xJ2,yI2

avg: J2 column block

 exch: I1 row block

 exch: I2 row block

Figure 3.15: The work scheme of block ADMM method
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the figure) keeps partial xJ and yI . There are two types of master node (square box

in the figure). One type performs “avg” procedure for column blocks and the other

type performs “exch” procedure for row blocks. (Their definitions and functions have

been explained in section 2.4) For the left-bottom master node, it stores x
k+ 1

2
J1

, xkJ1 and

x̃kJ1 . For the right-top master node, it stores z
k+ 1

2
I1

, zkI1 and z̃kI1 . The work scheme can

be divided into five parts: The first part happens in four master nodes: bottom two

master nodes perform proxλgj(x
k
Jj
− x̃kJj ) = xkJj − x̃kJj (defined in Eq.2.55) and right

two master nodes perform proxρfi(z
k
Ii
− z̃kIi) (defined in Eq.2.56). The second part

happens in four computation nodes for Π projection. These two parts can be performed

in parallel. After these two parts, the “avg” and “exch” parts happens in four master

nodes again. For the left-bottom master node, it communicates with the corresponding

computation node to ask for xiJ1
k+ 1

2 (i ∈ [1, 2]) which exist in each computation node.

After the average process the master returns xk+1
J1

to the computation nodes. Similarly,

the right-top master node communicates with the corresponding computation nodes to

ask for zjI1
k+ 1

2 (j ∈ [1, 2]). After the “exch” calculation, the calculated zjI1
k+1

(j ∈ [1, 2])

is reassigned to the corresponding computation nodes. The following dual update on

x̃k+1
Jj

, z̃k+1
Ii

happens in the master nodes and the update on (x̃iJj )
k+1 happens in the

computation nodes.

The same distributed architecture is also suitable for the CSGD method, although in the

previous CSGD algorithm description, a so called “high level master node” is introduced.

In fact, the “high level master node” is not necessary in reality and after removing the

“high level master node”, the work scheme of CSGD is indicated in Fig.3.16.

xJ1,yI1

 Average the J1 
column block

xJ1,yI2

xJ2,yI1

xJ2,yI2

Average the J2 
column block

Update rI1

Update rI2

Figure 3.16: The work scheme of CSGD method, which can be the same as for
the block ADMM.

For the bottom master nodes, they do not have to store any variables and they simply

communicate with the corresponding computation nodes and average column blocks.

For the right side master nodes, they only store the corresponding projection data yI .

For example, the right-top master node only stores yI1 . To update rI1 , the master node

asks for zjI1(j ∈ [1, 2]) from corresponding computation nodes. It is interesting to find

that although zjI has different meanings in CSGD and block ADMM, the size of both
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is equal to the block dataset yI . As a result, the communication cost of CSGD and

ADMM is the same.

The storage demand for the master node, as discussed above, is different between the two

nodes. Further analysis indicates that for the computation nodes, the storage demand

of CSGD is also lower than for block ADMM. Table 3.3 clearly indicates the comparison

results.

Table 3.3: Storage demand for each node in CSGD and block ADMM

CSGD ADMM

left-bottom(master node) None xkJ1 ,x̃kJ1 and x
k+ 1

2
J1

right-top(master node) yI1 zkI1 ,z̃kI1 and z
k+ 1

2
I1

,yI1

left-top(computation node) xkJ1 ,yI1 ,z1
I1

x1
J1

k+ 1
2 ,z1

I1

k+ 1
2 ,xkJ1 ,(x̃iJj )

k,z1
I1

k
,z̃kI1

3.2.3 Importance sampling approach

In the previous simulations, the partition method adopts a partitioning where blocks

use consecutive rows and columns. In a circular scanning geometry, the sequential pro-

jection views often provide unnecessarily similar projection information, especially in

the case where the projection view gap is small. One way to increase the reconstruction

speed is to simply shuffle the projection views and then divide them into several row

blocks. This is called ordered subsets method (Hudson and Larkin, 1994). To demon-

strate the effectiveness of ordered subsets, the simulation results using A ∈ R72000×4096

are indicated in Fig.3.17 and Fig.3.18, which illustrates α > 1
2 and α < 1

2 situations

respectively.
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Figure 3.17: When α is 1, 15
20 ,

10
20 , the ordered subsets method increases the

reconstruction speed.

It can be seen that when α approximately equals 1
M , the ordered subsets barely increases

the reconstruction speed. To further increase the reconstruction speed, an importance

sampling method is proposed. This strategy is proposed based on the scanning geometry

and the system matrix A’s sparsity property. If the reconstructed volume is properly

divided, projections of each sub-volume are then constrained within a relatively small

area on the detector. For example, in the 2D image case, if the image is divided into

2×2 sub-images by halving each dimension of the image, projections within all projection

views of each sub-image are indicated in Fig.3.19.
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Figure 3.18: When α is 1
20 , the ordered subsets method barely helps to increase

the reconstruction speed.

CSGD-IM breaks each single projection into several sub-projections and only samples

partial sub-projections from each single projection for the selected sub-volume xJ (e.g.

divide the projection into 2 sub-projections in Fig.3.19(a) and sample 1 sub-projection).

This sampling is not done uniformly but is based on a selection criteria that uses the

relative sparsity of each matrix {AJ
Îi
}, i.e. the denser a sub-matrix is, the higher the

probability that it is selected. Here Îi means a sub-area of the detector for a certain

projection view. As we do not have access to matrix A in large scale CT scanning

scenarios, to estimate the sparsity pattern of A, CSGD-IM computes the fraction of a

sub-image’s projection area on each sub-detector and these fractions are used as pos-

sibility distributions. If a sub-detector has a higher fraction than the other, then it

has higher possibility to be selected in iterations. When the row block Ii contains sev-

eral projection angles, the importance sampling strategy is repeatedly applied to each

projection angle contained in the row block. The CSGD-IM algorithm is indicated in

Algo.3.4.

The advantage of CSGD-IM is that it provides each computation node more projection

views within one row block than CSGD and thus reduces the row block number M .

For example, assume that the detector contains Nd detector pixels and each divided

sub-image contains Np pixels. The size of each element in both x and y space is b bytes.

The computation node’s storage capacity is assumed to be b × (Nd + Np). This means

that each time the original CSGD is only allowed to process and address one projection

view for one selected sub-image and thus M should equal the projection view number.
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Figure 3.19: (a) By slicing each dimension of image into 2 parts, the image
is divided into 4 parts.(b) The sinogram indicates that the projection of each
sub-image is constrained into a small area (approximately half) of the detector
for all projection views θ.

CSGD-IM with the partition of Fig.3.19 can use two projection angles by choosing one

detector sub-areas for each projection angle, thus halving M . According to the previous

simulations indicated in Fig.3.8, a smaller M can increase the reconstruction speed

especially when M is already very large compared with N .

However, simply dividing the detector into 2 sub-areas and sampling 1 sub-area makes

some sub-detectors hard to be selected because of the relatively small projection fraction,

as illustrated in Fig.3.20(a). It implies that in the following iterations, when it comes to

xJ1 and yI1 , the sub-detectors reflected by solid lines will be more frequently selected

than dashed lines. This fact means z1
Id

cannot be updated fully and timely, where Id

here is a subset of I1 for those dashed lines. According to line 14 in Algo.3.3, z1
Id

is used

to update rId together with zj=2,3,4
Id

. At the initial iteration stage, the inaccurate and

outdated z1
Id

does not influence much for roughly reducing ‖rId‖ since the other three

xJj=2,3,4 will generate most of the projection information. However, when the iteration

goes on and ‖rId‖ has been reduced to nearly zero (in the noise free model), then an

accurate and updated z1
Id

is required, although z1
Id

contains loads of zero projection
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Algorithm 3.4 CSGD with importance sampling strategy.

1: Initialization: Determine the maximum allowed epoch number Kmax. Partition
row and column indices into sets {Ii}i∈[1,M ] and {Jj}j∈[1,N ] , {xJj}j∈[1,N ] = 0,
{zj}j∈[1,N ] = 0 and r = y. α and γ is the percentage of the selected row and
column blocks respectively.

2: for epoch = 1, 2, ...,Kmax do
3: x̂ = 0
4: for jj=1,2,· · · ,γN . In parallel (J loop) do
5: Random select a column block from sets {Jj}j∈[1,N ] with replacement
6: for ii=1,2,· · · ,αM In parallel (I loop) do
7: Random select a row block from sets {Ii}i∈[1,M ] with replacement
8: Importance sample one sub-detector area from each single projection view.

All indexes represented by those selected sub-detector areas form the row
index set Ît.

9: gJ = (AJ
Ît

)T rÎt

10: µ = β (gJ )T gJ

(gJ )T (AJ
Ît

)TAJ
Ît
gJ

11: zj
Ît

= AJ
Ît

(xJ + µgJ)

12: x̂J = x̂J + xJ + µgJ
13: end for
14: end for
15: r = y −

∑N
j=1 zj

16: For all blocks J that have been updated, xJ = x̂J/(number of times block J has
been updated)

17: end for
18: xsolution = [xJ1 , ...,xJN ]T

data. To avoid some sub-detectors being rarely selected for specific sub-images, in the

2D fan-beam case, the detector can be divided into 4 sub-detectors and each time we

select 2 adjacent sub-detectors, as indicated in Fig.3.20(b).
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Figure 3.20: Slicing detector into 2 or 4 sub-areas in importance sampling. (a)
Assume that one computation node requests xJ1 and yI1 containing 3 projection
views θ1, θ2 and θ3. Instead of receiving all 3 full projections, the computation
node samples 3 sub-detectors from each view. Here the solid lines stand for
sub-detector areas that have high probability to be selected because most of the
sinogram information falls on them. Dashed lines stand for the sub-detector
areas that have low probability to be selected due to the small sinogram fraction.
(b) Î1−4 present 4 different sub-detectors. In the previous importance sampling
method, only Î1 + Î2 or Î3 + Î4 can be selected. Now, a more flexible sampling
method selects 2 adjacent sub-detectors each time. For θ2 view, the possibility
to choose Î1 + Î2 is almost the same as Î2 + Î3, thus avoid making z1

Î3,θ2
overly

outdated.

The following simulations indicate that the importance sampling by dividing the detector

into 2 or 4 sub-detectors can increase the reconstruction speed, as indicated in Fig.3.21

and Fig.3.22. The simulation data still adopts A ∈ R72000×4096 in this case. Simulations

have verified that the importance sampling method which divides the detector into 4

sub-areas and sample 2 adjacent sub-detectors outperforms the ordered subset CSGD

for all α, γ settings. The importance sampling represented by blue lines, however, only

accelerates the reconstruction speed at the initial stage. When the SNR is higher than

20 dB, then it stops to outperform the original CSGD because of those rarely updated

zjId .
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Figure 3.21: Three methods’ reconstruction speed is compared. Black lines are
CSGD with ordered subsets, which include shuffled projection views with one
row block. Red lines represent the importance sampling method which divides
the detector into 4 sub-areas and samples 2 adjacent sub-detectors. Blue lines
are the importance sampling method which divide the detector into 2 sub-
areas and samples 1 sub-area each time. Under all α, γ settings the importance
sampling which divide the detector into 4 sub-areas outperform the other two
reference methods.
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Figure 3.22: When α is reduced, the trend reflected in Fig.3.21 still holds. The
importance sampling which divide the detector into 4 sub-detectors and sample
2 adjacent parts is of the fastest reconstruction speed among the others.

The importance sampling method also works for 3D cone beam data. Slicing of the

volume and of the corresponding projection area is indicated in Fig.3.23. Another slicing

I

Point source
3D volume

Detector plane

Figure 3.23: Example cone beam CT setting for the first projection view, where
the 3D volume rotates horizontally. The 3D volume is divided into 8 sub-
volumes. The projection of one sub-block is mainly concentrated in a small
area on the detector. If the detector is also divided into 2 × 2 sub-areas, then
the currently selected sub-volume (bold red frame) is mainly projected onto the
top-left and top-right sub-detector area, i.e. Î1 and Î2 area.

methods on the detector is to slice it into 2 × 4 detectors and each time selecting 2

adjacent sub-detectors, as illustrated in Fig.3.24.

Importance sampling in 3D scanning case only samples a quarter of a full projection,

thus the maximum allowed projection views is 4 times larger than with ordered subsets.

To verify the property of importance sampling, a cone-beam circular scanning model
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Figure 3.24: The detector is divided into 2×4 sub-detectors and when sampling
the sub-detector, there are 6 areas in total to be considered as candidates:
(1,3),(3,5),(5,7),(2,4),(4,6),(6,8)

shown in Fig.1.2(c) is adopted and the source-detector starts with scanning from the

left of the volume and then rotates around the object clockwise. The parameter is set as

OP = 1000, OD = 536; 3D volume is a 16×16×16mm3 cubic containing 643 voxels; The

detector is a 50 × 50mm2 square panel containing 4002 detector pixels. The scanning

interval is 1◦. The simulations are indicated in Fig.3.25. To shorten the simulation time,

all simulations are terminated before the optimal result was reached. The first row of

Fig.3.25 is the reconstruction speed of CSGD under different α, γ settings, indicating

that for each γ case, α = 1
M is the fastest form. When comparing CSGD and CSGD-IM,

only α = 1
M is presented in the second row. It indicates that the importance sampling

with 2× 4 slicing detector method is the fastest method under different γ settings.
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Figure 3.25: The y-axis is dB and x-axis is “usage of AJ
I ”. The first row reflect

the reconstruction speed of CSGD under different α, γ settings. The second
row reflects the comparisons of CSGD with ordered subsets and importance
sampling methods with two different partitions on the detector.
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3.3 Computational complexity

There are several important aspects when comparing computational efficiency of the

methods. The methods are designed to allow parallel computation. It is envisaged that

this will be performed on a distributed network of computation nodes. Computation

nodes produce two outputs, as displayed below.

1. x̂J = xkJ + µgJ

2. zjI = AJ
I xJ .

These are then either sent to larger, but slow storage or directly to other nodes, where

they are eventually used to compute:

1. xJ = meani(x̂J)

2. r = y −
∑

j zj or rIt = yIt −
∑

j zjIt,

which can be performed efficiently using message passing interface reduction methods.

Three aspects affect performance:

1. Computational complexity in terms of multiply-adds.

2. Data transfer requirements between data storage and processing units as well as

between different processing units.

3. Data storage requirements, both in terms of fast access random access memory

(RAM) and in slower access (e.g. disk based) data storage.

Each of these costs are dominated by different properties:

1. Computational complexity is dominated by the computation of matrix vector prod-

ucts involving AJ
I and its transpose, especially as A is not generally stored but

might have to be re-computed every time it is needed. The computational com-

plexity is thus O(|I| × |J |), though computations performed on highly parallel

architectures, such as modern GPUs, are able to perform millions of these compu-

tations in parallel.

2. Data transfer requirements are dominated by the need for each of the parallel

computation nodes to receive rI and xJ and transmit x̂iJ and zjI . Note that the

size of the required input and output vectors are the same, the data transfer

requirement is thus O(|I|+ |J |).
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3. Central data storage requirements are dominated by the need to store the original

data and the current estimate of x. It is also needed to compute and store av-

erages/sums over x̂iJ/zjI . These computations can be performed efficiently using

parallel data reduction techniques. The proposed approach would mean that each

node would thus require O(|I|+ |J |) local memory.

3.4 Fixed step CSGD

At the first glance on CSGD, it seems that the step-length µ = β (gJ )T gJ

(gJ )T (AJ
I )TAJ

I gJ
can be

further simplified and make it a constant µ = β. This simplification makes the algorithm

more concise and the mathematical analysis simpler. The algorithm is indicated in

Algo.3.5. Due to the fact that µ is a constant, the pseudocode in line 10 can be moved

Algorithm 3.5 CSGD algorithm which uses a constant step-length.

1: Initialization: Determine the maximum allowed epoch number Kmax. Partition
row and column indices into sets {Ii}i∈[1,M ] and {Jj}j∈[1,N ] , {xJj}j∈[1,N ] = 0,
{zj}j∈[1,N ] = 0 and r = y. α and γ is the percentage of the selected row and
column blocks respectively, µ is a constant.

2: for epoch = 1, 2, ...,Kmax do
3: x̂ = 0
4: for jj=1,2,· · · ,γN . In parallel (J loop) do
5: Random select a column block J from sets {Jj}j∈[1,N ] with replacement
6: for ii=1,2,· · · ,αM In parallel (I loop) do
7: Random select a row block I from sets {Ii}i∈[1,M ] with replacement

8: gJ = (AJ
I )T rI

9: zjI = AJ
I (xJ + µgJ)

10: x̂J = x̂J + xJ + µgJ
11: end for
12: end for
13: r = y −

∑N
j=1 zj

14: For all blocks J that have been updated, xJ = x̂J/αM
15: end for
16: xsolution = [xJ1 , ...,xJN ]T

out of the for-loop and then the algorithm is indicated in Algo.3.6. Actually, Algo.3.6

is the first algorithm proposed during this project. However, this simpler version is of a

slow reconstruction speed, despite the number of matrix-vector multiplications per epoch

decreases from 3αγMN to 2αγMN . For example, in a tiny CT scanning system whose

system matrix is indicated as Fig.3.6, the reconstruction speed of CSGD with constant

step-length and the range of step-lengths is shown in Fig.3.26. It shows that using a

constant step-length in CSGD impedes the original CSGD’s performance. The range of

step-length leading to high accuracy solution also becomes narrower than before, making

µ harder to be tuned. The simulation result justifies the importance of calculating the

step length µ using Eq.3.7. Despite the slow reconstruction speed, this simpler fixed
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Algorithm 3.6 CSGD algorithm which uses constant step-length.

1: Initialization: {ĝi}i∈[1,αM ] = 0. g = 0. The other initialization is the same with
Algo.3.5.

2: for epoch = 1, 2, ...,Kmax do
3: {ĝi}i∈[1,αM ] = 0
4: for jj=1,2,· · · ,γN . In parallel (J loop) do
5: Random select a column block J from sets {Jj}j∈[1,N ] with replacement
6: for ii=1,2,· · · ,αM In parallel (I loop) do
7: Random select a row block I from sets {Ii}i∈[1,M ] with replacement

8: ĝiiJ = (AJ
I )T rI

9: zjI = AJ
I (xJ + µĝiiJ )

10: end for
11: end for
12: r = y −

∑N
j=1 zj

13: For all blocks J that have been updated,gJ =
∑αM

ii=1 ĝiiJ
14: For all blocks J that have been updated, xJ = xJ + µ

αM gJ
15: end for
16: xsolution = [xJ1 , ...,xJN ]T

Figure 3.26: A tiny, noise free CT scanning geometry indicated as Fig.3.6 is
used here. Red lines are repeated reconstruction speeds when CSGD using a
constant β (i.e. calculate µ using Eq.3.7) and blue lines are speeds when CSGD
using a constant µ.

step CSGD which accumulates partial stochastic gradient ingredients is illuminating for

the next proposed algorithm, which is empirically shown to approach the true solution

in the noise free setting even with a constant step-length.
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3.5 Conclusions

This chapter presents the first parallel algorithm CSGD. It is designed for a distributed

reconstruction of cone beam CT data under arbitrary scan trajectories. In the dis-

tributed network, each node is assumed to have limited storage capacity and thus all

nodes operate with limited access to the projection data and reconstructed volume.

The properties of CSGD have been studied in details. Simulations indicate that when

the 2D or 3D object is scanned by a circle trajectory and with sufficient projection

views, the shape of sub-matrix AJ
I (TT,SF or square) does not significantly influence

the reconstruction speed. As a result, the division rule on the dataset and volume is

not rigid and the only requirement for dataset division is that the divided projection

data and volume can be small enough to be stored by those separate computation nodes.

The CSGD allows arbitrary α, γ selection criteria and they all lead to converging results.

The reconstruction speeds differ for different α, γ settings. Simulations experimentally

indicate that for different γ settings, α = 1
M leads to the fastest reconstruction speed.

An importance sampling strategy have been developed, which has been shown to further

increase the reconstruction speed. In the original CSGD, since the image is divided into

N sub-images, projections of them are not distributed on the whole detector but on

a limited sub-detector area. If the scanning geometry for each sub-volume still adopts

the whole geometry situation, a lot of zero projection results will be generated. These

zero projections have little information and often contribute little to the reconstruction.

The importance sampling method divides the detector into many sub-detectors and each

time only samples partial of sub-detectors. This enables each row block to contain more

projection views and let sub-detectors with massive non-zero projection data to be used

more frequently in iterations than those with loads of zero projection data.

The parallel architecture can be the same as that of block ADMM, which is a general

algorithm for separable convex optimization. However, for large scale CT reconstruction,

block ADMM is less attractive compared to CSGD. One advantage of CSGD is that it

requires less storage compared to block ADMM. Another significant advantage of CSGD

is that it reconstructs the image to a predefined precision with significantly fewer matrix

vector products as it avoids the calculation of matrix inverses. This means that the

CSGD has much higher computation efficiency than block ADMM.

One open area of this chapter is the formal analysis of the convergence property CSGD.

This chapter mainly focuses on the properties of the CSGD under different parameter

settings and prove that the CSGD is able to present an increment SNR trend of the

reconstructed image to a high accuracy solution, showing its ability to reduce the data

fidelity. In the noise free model, CSGD with any α, γ selection criteria can all quickly

achieve a 80dB and even higher reconstruction results, which is already enough to present

inner details of the reconstructed image. When the Gaussian-type noise is added, the

CSGD algorithm is also able to generate an approximately stable result. However, where
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the results is is not fully understood yet. A conjecture is that the CSGD should converge

to the least square solution with an error bound. Some efforts have been made to explore

the convergence property of CSGD, which will be presented in Appendix A.

In this thesis, the simulation results for projection data corrupted by severe noise are

not presented. Those simulations show significant semi-convergence phenomenon. With

a proper early termination strategy, for example, terminating the iteration when the

SNR has achieved its peak value, the CSGD shows similar relative reconstruction speed

comparison results under different α, γ parameter settings shown in Fig.3.9 to 3.12, and

the simulations also prove the claim made in Eq.3.8 for how to determine α, γ for a fast

reconstruction speed. However, after introducing the early stopping strategy, it then

becomes difficult to convince readers that the CSGD are converging. Furthermore, in

simulations, when to determine the CSGD is easy to determine, as the SNR trend is

visible (the xtrue is a known vector), but in realistic when to determine the iteration is

difficult and it becomes another research topic. Consider the fact that the main focuses of

Chapter 3 are to illustrate that the CSGD has the ability to reduce the data fidelity and

obtain an increment SNR trend and to show the recommended parameter(mainly α, γ)

setting, this thesis does not present the severe noise simulations whose semi-convergence

is significant. The detailed discussions on semi-convergence property of CSGD thus is

another open area of this thesis.
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BSGD

4.1 Block Stochastic Gradient Descent

In this chapter, another parallel algorithm is proposed. This algorithm is inspired by

SAG, which stores and sums up all previously calculated sub-gradients. The new al-

gorithm can be viewed as a combination of CSGD and SAG and is called the “Block

Stochastic Gradient Descent” (BSGD) method. It belongs a SGD type algorithm but

the computation overhead per iteration is further reduced.

The contributions of this chapter includes: 1) This algorithm is also specially designed

for the case where both projection data and reconstruction volume are so large that

one computation node only has partial access to both. However, different from CSGD,

the new proposed BSGD sums up all previous calculated sub-gradients. Simulations

show that the calculated gradient has a decreasing error variance compared with the

true gradient direction (i.e. the expectation of ‖gk − gktrue‖ decreases on expectation

with each iteration, where gk,gktrue are calculated gradient and the true gradient at kth

iteration ). 2) Comparisons of BSGD with CSGD and other SGD-type algorithms is

presented, including reconstruction speed, storage capacity and communication schemes

in the parallel networks. Simulations further verify that the importance sampling trick

proposed in Chapter 3 is also applicable to BSGD, and it shows that this version of BSGD

has the fastest reconstruction speed among all reference algorithms. 3) Most of SIRT-

type iteration, including BSGD, requires a well tuned step length. If the step length is

set improperly small, the BSGD often needs enormous matrix-vector multiplications to

reconstruct the image into predefined precision. To overcome this difficulty, an automatic

parameter tuning trick is proposed to dynamically enlarge the step-length to a range that

makes the update of the image vector xrec more aggressive than small step length case

whilst empirically enabling the iteration approach the least squares solution. Simulation

results show that the accelerated algorithm reconstructs the image to the same quality

with much less matrix-vector multiplications than original BSGD with constant small

83
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step lengths. 4) The proposed automatic parameter tuning mainly works for the case

when initial step-length is improperly small. If the initial step is well tuned, this tuning

strategy cannot significantly improve the performance. In this case, a recent acceleration

technique KatyushaXs is first applied on BSGD and is shown to be effective. The

KatyushaXs acceleration is similar to Nesterov acceleration by gradually updating the

step length and thus it does not introduce extra expensive computation and it shows

that this acceleration method works well with BSGD.

4.2 BSGD algorithm

The new proposed algorithm is named as Block Stochastic Gradient Descent (BSGD).

The inspiration of BSGD comes from the fixed step CSGD, which divides y,x into M,N

blocks respectively and the SAG, which stores the old stochastic gradient ingredients

obtained from different row blocks. Similarly, in BSGD, the stochastic gradient ingredi-

ents representing the BP results for different A
Jj
Ii

are also recorded and is named as ĝiJj .

They are summed up as a new update direction. Meantime, FP results for different A
Jj
Ii

are also recorded into new introduced variables zjIi , which are used to update the residual

r. A difference between BSGD and the other row-action methods or the combinations of

row and column-action methods is that BSGD adopts a more stochastic update scheme.

Instead of updating x after and only after the exact residual r being computed, BSGD

computes a stochastic approximation of the residual by only processing a subset of x in

each iteration and using previously computed estimates of AJ
I xJ for those blocks that

are not used in the current iteration. The hope is that the increase in uncertainty in the

gradient estimate is compensated for by a reduction in computation and communication

cost. BSGD thus does not compute all AT
I rI and AIxI in each iteration. Instead, during

each iteration, only αM row indexes from {Ii}Mi=1 and γN column indexes from {Jj}Nj=1

are used, which is the same as CSGD. The algorithm is shown in Algo.4.1.
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Algorithm 4.1 BSGD

1: Initialization: Determine the maximum allowed epoch number Kmax. Partition
row and column indices into sets {Ii}i∈[1,M ] and {Jj}j∈[1,N ] , {xJj}j∈[1,N ] = 0,

{zj}j∈[1,N ] = 0, {ĝi}Mi=1 = 0 and r = y. α and γ are the percentage of the selected
row and column blocks respectively.

2: for epoch = 1, 2, · · · ,Kmax do
3: for jj=1,2,· · · ,γN . In parallel (J loop) do
4: Random select a column block Jj from sets {Jj}j∈[1,N ] with replacement
5: for ii=1,2,· · · ,αM In parallel (I loop) do
6: Random select a row block Ii from sets {Ii}i∈[1,M ] with replacement

7: zjIi = A
Jj
Ii

(xJj )
8: end for
9: end for

10: r = y −
∑N

j=1 zj

11: for the selected Ii and Jj in parallel do

12: ĝiJj = (A
Jj
Ii

)T rIi
13: end for
14: For all blocks J that have been updated, gJ =

∑M
i=1 ĝiJ ,xJ = xJ + µgJ

15: end for
16: xsolution = [xJ1 , ...,xJN ]T

The BSGD can also be combined with previously proposed importance sampling strat-

egy, which is named as BSGD-IM, as shown in Algo.4.2

4.3 α and γ selection criteria

For each iteration, the total usage time of AJ
I is 2αγMN and the maximum required

parallel nodes is αγMN . When α and γ are both 1, then BSGD becomes GD. When

γ = 1 and α < 1 and each column block samples the same row blocks each time, then

BSGD becomes SAG. An extreme situation is that when α = 1
M , γ = 1

N , where the

BSGD only uses one AJ
I for each iteration and thus becomes sequential. It is clear

that the computation cost for g decreases when α, γ decreases. However the variance of

‖g−gtrue‖ increases at the same time, making the iteration process more stochastic and

thus slowing down the reconstruction speed. As a result, how to select α, γ to balance

the computation cost and reconstruction speed is of interest here. The selection criteria

should reduce the computation cost by using small α and γ while maintaining a fast

converging speed. Here the simulation data in Fig.3.13 (i.e. A ∈ R72000×4096) is used.
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Algorithm 4.2 BSGD-IM

1: Initial: The same as Algo.4.1.
2: for epoch = 1, 2, · · · ,Kmax do
3: for jj=1,2,· · · ,γN . In parallel (J loop) do
4: Random select a column block Jj from sets {Jj}j∈[1,N ] with replacement
5: for ii=1,2,· · · ,αM In parallel (I loop) do
6: Random select a row block Ii from sets {Ii}i∈[1,M ] with replacement
7: Importance sample one sub-detector area from each single projection view.
8: All indexes represented by those selected sub-detector areas form the row

index set Ît.
9: Each parallel node records its own Ît for the later BP procedure.

10: zj
Ît

= A
Jj

Ît
xJj

11: end for
12: end for
13: r = y −

∑N
j=1 zj

14: for the selected Ii and Jj in parallel do

15: ĝiJj = (A
Jj

Ît
)T rÎt (Attention that Ît is recorded in each node )

16: end for
17: For all blocks J that have been updated, gJ =

∑M
i=1 ĝiJ ,xJ = xJ + µgJ

18: end for
19: xsolution = [xJ1 , ...,xJN ]T

By setting M = 60, N = 16, the converging speed with different α, γ settings are shown

in Fig.4.1. All the parameters are well tuned and the fastest cases are presented here.

It can be seen that for each different γ settings, reducing α under 1
2 can significantly

increase the converging speed. Fig.4.1(f) shows that when reducing α to 1
M , different γ

settings can have slightly different converging speeds but the difference is not obvious.

This suggest that in a parallel network where p is far less than MN , reducing α and

γ does not cause significant delayed reconstruction speed. In the Fig.4.1 case, M =

60, N = 16 means that AJ
I ∈ R1200×256, which is a tall-thin shape. The shape of AJ

I can

also be changed by setting M = 60, N = 4. In the Fig.4.2. In the figure, M = 60, N = 4

means that AJ
I ∈ R1200×1024, which is a square shape. Simulations show that regardless

the shape, reducing α under 1
2 can still increase the reconstruction speed. Fig.4.2(d)

shows that when reducing α to 1
M , different γ does not show significant differences.
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Figure 4.1: The reconstruction speeds under different α, γ settings with a de-
termined partition M = 60, N = 16 are compared with each other.
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Figure 4.2: Repeated simulations which are similar to Fig.4.1 when the M =
60, N = 4.

From the above simulations, the suggested selection criteria is the same as CSGD

algorithm, as shown in Eq.3.8. According to the criteria, when p is smaller than N , then

α should be reduced to the minimal 1
M while keeping γ as large as possible ( pN ) to cover

image blocks as many as possible. The following simulations justify this criteria. For

M = 60, N = 16 case, assume that p is 8 or 16. For M = 60, N = 4 case, assume that

number is 2 or 4, then the comparisons of different α, γ are shown in Fig.4.3.

It is important to point out that when p is smaller than N , setting γ = 1 is not forbidden

but is inefficient in 2 cases: 1)The first case is when N , the number of image blocks,

cannot be divided by p without remainder. For example, when N = 6 but p is 4,

then it means that there are 2 “inner loops” for the calculation of zjI and ĝiJ . Take the

calculation of zjI as example. In the 1st inner loop, 4 parallel nodes receive {xJj}j=1,2,3,4.

Since γ = 1, there is a 2nd “inner loop”, where 2 parallel node receive {xJj}j=5,6 and

the other 2 nodes remains static, which is a waste of computation resources. 2) The

second case is when the updates of r, g and x are also performed on parallel nodes.

For example, assume that M = N = 4 and α = 1
4 , γ = 1 but p is 2. If I1, {Jj}4j=1 are

selected, then the data communication is shown in Fig.4.4, which shows that there are 2

“inner loops” in total for each update of r and g. The communication cost is larger than

the case when γ = p
N because an extra transmission on x block, which happens on (d)
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Figure 4.3: Reducing α to 1
M and maximizing γ to p

N (red lines )helps a bit to
increase the reconstruction speed.

procedure in Fig.4.4. This illustration justifies α, γ selection criteria which encourages

to reduce γ as p
N instead of 1.
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(a) FP process for xJ1
,xJ2

(b) FP process for xJ3
,xJ4

(c) BP process for xJ3
,xJ4

(d) BP process for xJ1
,xJ2

Figure 4.4: The square box represents the master node and oval boxes represent
parallel computation nodes. The blue parallel node is the root node, which is
responsible for the date gathering and distribution. If I1, {Jj}Nj=1 are selected
and there are 2 parallel nodes, then 4 procedures are required: (a) The parallel
nodes request xJ1 ,xJ2 and old z1

I1
, z2
I1

. Besides, the root node also requests rI1 .

Each computation node calculates difference ∇zjI1 = zjI1−A
Jj
I1

xJj , j ∈ [1, 2] and

updates zjI1 = A
Jj
I1

xJj . The non-root node (black) sends ∇z2
I1

, and in the root

node, rI1 = rI1 +∇z1
I1

+∇z2
I1

; Each computation node returns updated zjI1 . (b)

In the 2nd inner-loop, the above procedure is repeated. Attention that xJ3 ,xJ4
have to replace xJ1 ,xJ2 due to the limited storage capacity. When rI1 finishes
updating, it is broadcasted from the root node to non-root node for the latter
gradient calculation. (c) Each computation node requests gJj , ĝ

1
Jj
, j ∈ [3, 4] and

the computation node calculates difference ∇ĝ1
Jj

= (A
Jj
I1

)T rI1 − ĝ1
Jj
, j ∈ [3, 4]

and updates ĝ1
Jj

= (A
Jj
I1

)T rI1 . gJj is updated as gJj = gJj + ∇ĝ1
Jj

, after

updating gJj , the corresponding xJj is updated as xJj = xJj + µ × gJj . (d)
repeat the (c) to update xJj , j ∈ [1, 2]. Since xJj , j ∈ [1, 2] are no longer in the
computation nodes, the computation nodes have to re-request xJj , j ∈ [1, 2].

4.4 Comparision between CSGD and BSGD

In this section the differences between CSGD and BSGD including the storage demand,

parallel computation scheme and their ability to approach the least squares solution are

analysed.
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To simplify the illustration, assume that at one iteration, I1 and J1, J2, · · · , JγN are se-

lected, the parallel computation scheme of CSGD and the detailed illustrations are shown

in Fig.4.5. The parallel computation scheme of BSGD is more complicated than CSGD.

Figure 4.5: Data communication in CSGD. The square box is the master node
which stores all necessary variables and the oval boxes are γN parallel compu-
tation nodes. The computation nodes request three variable blocks xJj , z

j
I1
, rI1

from master node. After every node finishes the update of zjI1 block, ∇zjI1 ,

which is the difference between the old and new updated zjI1 , are summed up
via MPI-reduce (explained in section 6.1) to root node (blue oval node). The
output of computation nodes are used to update the corresponding blocks in
the master node. Notice that rI1 is only outputted by the root node.

It contains two master-computation node communications, as illustrated in Fig.4.6.

(a) FP process for xJ1
, · · · ,xJγN (b) BP process for xJ1

, · · · ,xJγN

Figure 4.6: Data communication in BSGD. (a) The general parallel nodes re-
quest two variables xJj , z

j
I1

from the master node while the root computation
node requests an extra rI1 . rI1 is updated with the same way as CSGD, fol-
lowed by a MPI-broadcast (explained in section 6.1) procedure that the root
node sends updated rI1 to the other parallel nodes. The output procedure is also
similar to CSGD except that x block is kept in each node. (b) Each computa-
tion node requests gJj , ĝJj from master node. Notice that since α = 1

M , γ = p
N ,

there is no inner node communication and gJj can be updated parallelly and
separately by gJj = gJj +∇ĝ1

Jj
, where ∇ĝ1

Jj
is the difference between the old

and new updated ĝ1
Jj

computed within each parallel node.

It should be noticed that the communication scheme of BSGD is the same as other

SIRT-type algorithms. Compared with other SIRT-type methods, the previous CSGD
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enjoys a simpler communication scheme and thus will enjoy a wider parallel scalability.

The detailed discussion on this part is mainly presented in Chapter 6.

The storage demand is another aspect where CSGD outperforms BSGD. Assume that r̃

and c̃ are the size of y and x space respectively, Table.4.1 illustrates the storage difference

and communication difference between the two methods. BSGD requires more storage

Table 4.1: Comparisons of storage demands and communication overhead for
each node between CSGD and BSGD

CSGD BSGD

total storage (N + 1)r̃ + 2c̃ (N + 1)r̃ + (M + 2)c̃

Master-Computation
root request 2 r̃

M + c̃
N 2 r̃

M + 3 c̃
N

root push 2 r̃
M + c̃

N 2 r̃
M + 3 c̃

N

nodes communication
other request 2 r̃

M + c̃
N

r̃
M + 3 c̃

N

other push r̃
M + c̃

N
r̃
M + 3 c̃

N

Computation nodes root MPI-reduce (γN − 1) r̃
M (γN − 1) r̃

M

inner communication root broadcast 0 r̃
M

space and communication overhead compared to CSGD. This is mainly caused by the

new introduced variable {ĝi}Mi=1. However, the new introduced variable can gradually

reduce the error variance of the estimated update direction, making the iteration faster

and closer to the least square solution than CSGD and some other existing methods

like CAV and SIRT. To verify the advantage of BSGD, the dataset used in Fig.3.13 is

adopted again and is blurred by Gaussian-type noise, with the SNR of each projection set

to 31.1dB. A term DS is introduced to reflect the distance to the least square solution.

It is defined as:

DS = ‖xlsq − xk‖, (4.1)

where xlsq,x
k are the least square solution and the reconstructed image vector at kth

epoch. Simulation results are shown in Fig.4.7. All parameters in each method are well

tuned to ensure the fastest reconstruction speed. We see that BSGD not only approaches

the least square solution, it also shows a faster reconstruction speed compared to CSGD,

SIRT and CAV. The figure also show that BSGD-IM is of the fastest reconstruction

speed, achieving the SNR limit within the least usage of AJ
I . However, it does not

reach the least square solution. This is because that the BP procedure in line 15 of

Algo.4.2 is an inaccurate calculation procedure. To be more specific, in BSGD, the

ĝiJj = (A
Jj
Ii

)T rIi . In BSGD-IM, however, the ĝiJj = (A
Jj

Ît
)T rÎt , where Ît is a subset of Ii.

This approximated calculation inevitably introduces error and thus cannot enable the

sum of ĝi to approach the true gradient direction gtrue, making the final solution cannot

approach the least square solution.
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Figure 4.7: The projections are blurred by a white Gaussian noise whose vari-
ance σ = 0.2. In contrast to BSGD, SIRT, CAV and CSGD do not achieve the
least square solution and are slower in terms of the reconstruction speed than
new proposed BSGD.

The reconstructed images are presented in Fig.4.8. From the figure it can be seen that

both CSGD and BSGD generate artifacts at the border of sub-image. However, this

artifacts gradually disappear as iteration goes on and the quality of final reconstructed

images is good enough to present the inner details of the object, as SIRT methods does.

The BSGD-IM also generates artifacts. However due to the fastest reconstruction speed,

the artifacts already disappears after 5000 matrix-vector multiplications. All methods

finally present clear enough inner details of the object, showing the effectiveness of

the proposed CSGD, BSGD and BSGD-IM in CT reconstruction. Furthermore, by

comparing the reconstructed images, SIRT and CSGD can present clear results after

50000 projections, BSGD and BSGD-IM can present satisfying results after 10000 and

5000 projections. As a result, the BSGD-IM is of fastest reconstruction speed, the BSGD

ranks the second place, the CSGD and SIRT approximately has the same reconstruction

speed. It should be pointed out that the image quality is estimated by the SNR of the

image, i.e. using Fig.4.7(a) instead of the DS trend. Although the BSGD-IM does not

converge to the least square solution, the quality of reconstructed image is not influenced

by this property. The SNR reflects the distance between the reconstructed image and

the true image vector whilst the DS reflects the data fidelity. Unable to converge to the

least square solution means that the data fidelity cannot be minimised, but it does not

influence the distance to the true image vector. This is the reason why the BSGD-IM

does not approach to the least square solution closer than BSGD but the reconstruction

speed is faster and the final reconstruction results have negligible differences between

the other methods.

4.5 Best partition of M,N

This section discusses the optimal partition on y and x space. Assume that the storage

amount for each computation node is G and G < c̃ < r̃, it is clear that there is an

optimal M and N setting that makes the total storage amount in the master node
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(a) SIRT (b) SIRT (c) SIRT

(d) CSGD (e) CSGD (f) CSGD

(g) BSGD (h) BSGD (i) BSGD

(j) BSGD-IM (k) BSGD-IM (l) BSGD-IM

Figure 4.8: The first column is 5,000 “FP+BP” projections while the second
and the third are 10,000 and 50,000 projections respectively. BSGD and CSGD
finally reconstruct the images with high quality, despite of the margin artefacts
at initial iterations. The BSGD-IM is of the fastest reconstruction speed, pro-
viding a clear reconstruction result within only 5,000 FP+BP projections. The
BSGD is the second fastest method, which provides clear reconstructed image
within 10,000 usage of AJ

I . Reconstructed images by CAV are similar to SIRT
and thus are omitted here.
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(i.e. square box in Fig.4.6) minimal while enabling the data blocks to be small enough

to fit in the computation nodes. According to Table.4.1, the total storage demand is

(N+1)r̃+(M+2)c̃. According to Fig.4.6, the computation nodes first store zjI , rI ,xJ and

then push zjI back to the master node while maintaining the other two data blocks. At

this stage, it means that the computation node must be large enough to store zjIi , rIi ,xJj
and ∇zjIi . Then the computation nodes request and store ĝiJj and gJj . As a result, G

must also be large enough to store rIi ,xJj , ĝ
i
Jj
,gJj and ∇ĝiJj .

The total constrained optimization then becomes:

min (N + 1)r̃ + (M + 2)c̃,

s.t. 3
r̃

M
+

c̃

N
6 G

r̃

M
+ 4

c̃

N
6 G

1−N 6 0

1−M 6 0.

(4.2)

The lagrangian equation of this constrained problem can be expressed as

L = (N+1)r̃+(M+2)c̃+µ1(3
r̃

M
+
c̃

N
−G)+µ2(

r̃

M
+4

c̃

N
−G)+µ3(1−N)+µ4(1−M).

(4.3)

The Karush–Kuhn–Tucker (KKT) conditions can be expressed as:

(a)r̃ − µ1c̃
1

N2
− 4µ2c̃

1

N2
− µ3 = 0

(b)c̃− 3µ1r̃
1

M2
− µ2r̃

1

M2
− µ4 = 0

(c)3
r̃

M
+

c̃

N
−G 6 0

(d)
r̃

M
+ 4

c̃

N
−G 6 0

(e)1−M 6 0

(f)1−N 6 0

(g)µ1(3
r̃

M
+

c̃

N
−G) = 0

(h)µ2(
r̃

M
+ 4

c̃

N
−G) = 0

(i)µ3(1−N) = 0

(j)µ4(1−M) = 0

(k)µ1, µ2, µ3, µ4 > 0

(4.4)

In fact, µ3, µ4 should both be 0, otherwise M or N is 1, which violates the KKT condition

in (c) and (d).
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If µ1 = 0 and µ2 6= 0, according to (a), (b), (h), r̃
M = 2 c̃

N , and M = 3 r̃
G , N = 6 c̃

G .

Similarly, if µ2 = 0 and µ1 6= 0, according to (a), (b), (g),
√

3 r̃
M = c̃

N , and M = (3 +√
3) r̃G , N = (

√
3 + 1) c̃G . However, these solutions violate either (c) or (d). This means

that µ1, µ2 should both be non-zero. According to (g) and (h), M = 11
3
r̃
G , N = 11

2
c̃
G .

Since M,N should both be integer then optimal partition on x,y space is shown in

Eq.4.5.

M = d11r̃

3G
e

N = d11c̃

2G
e.

(4.5)

4.6 Automatic parameter tuning

In this section, an automatic parameter tuning strategy is proposed to accelerate the

reconstruction speed when the step-length µ is not set properly. Broadly speaking,

up to a limit, increasing µ increases reconstruction speed. However, in practice, it is

difficult to determine the upper limit. As a result, in realistic large scale tomographic

reconstructions, instead of using a fixed step-length µ, an automatic parameter tuning

approach is adopted. Parameter tuning is not a new concept in machine learning and

optimization. For example, the hypergradient descentAtilim Gunes et al. (2017) or the

Barzilai-Borwein (BB) method (Conghui et al., 2016) can be used for SGD or SVRG.

However these methods are not directly applicable to BSGD, as they require updating

all of xest in each iteration. Furthermore, BSGD uses dummy variables z to store

information about previous xest. Due to this, the stochastic gradient calculated by

BSGD is much noisier than the estimate obtained by traditional stochastic gradient

methods. An automatic parameter tuning method is proposed here which is different

from the BB method or hypergradient descent method. It only exploits the parameters

generated during the iteration process: the residual r and update direction g, as shown

in Algo.4.3.

This automatic parameter tuning is applied after f epochs. It tests whether ‖r‖ is

continually decreased during the past 2f epochs, in which case µ is increased by 1 + ε.

To reduce µ, using a similar condition on r alone (i.e. line 8 in Algo.4.3, named as

“criteria 1”) was not found to be sufficient to ensure a high accuracy solution. An

additional criteria (line 9 in Algo.4.3, named as “criteria 2”) is thus adopted. The criteria

2 is motivated by the general parameter tuning methods that compute inner-products

between adjacent gradients and determine to increase or decrease µ according to the

positivity of the inner-product (Atilim Gunes et al., 2017; Plakhov and Cruz, 2004).

The proposed automatic parameter tuning trick thus compares the inner-products of

two “virtual” gradients. To do this, several stochastic gradients during a period of

several epochs (f epochs in Algo.4.3) are accumulated to compute an effective update

direction (EUD) g to reduce the stochastic error variance. It is observed that when
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Algorithm 4.3 Automatic µ tunning strategy

1: t1, t2, ε and δ are positive constants, f = M .
2: At each kth epoch where mod(k, f) == 0, sum up all g in the past f epoch as an

effective update direction (EUD) gk/f .

3: Calculate the inner product between two consecutive g as θk/f = (gk/f )T gk/f−1

‖gk/f‖‖gk/f−1‖ .

4: if mod(k,f)==0&k > f then
5: if ‖r‖k < ‖r‖k−f < ‖r‖k−2f and θk/f > t2 then
6: µ = (1 + ε)µ
7: end if
8: if ‖r‖k > ‖r‖k−f > ‖r‖k−2f then
9: if | θk/f − θk/f−1 |> t1 or θk/f < t2 then

10: µ = (1− δ)µ
11: end if
12: end if
13: end if

BSGD approaches a stable solution with a properly fixed µ, then the change of two

adjacent EUDs does not vary significantly. On the contrary, these two directions vary

significantly when BSGD suffers from oscillatory behaviour or an increase in the norm

of r. This is because that BSGD uses some old values z/ĝ in the calculation of each

update. To ensure the convergence, the changes in x among a period of epochs is not

allowed to be too large, then these old values for z/ĝ are good approximations to the

current values. Due to the small movement of x during 2f epochs, the two EUDs, should

also be similar to each other and the θ, which represents the cosine angle of two EUDs

is always close to 1 in a converging iterations (i.e. t2 is close to 1 and t1, which reflects

the change of θ, is close to 0). If not, it means that the step-length is too big and the

iteration is likely to diverge.

In this section, the simulation data all uses the one in Fig.3.13. The variance of gaussian

type noise is 0.2, making the SNR of y 31.1 dB. When δ = 0.4 and ε = 0.04, the results

are shown in Fig.4.9. In the figure, blue lines mean step length for BSGD (fixed µ

form) is always 2 × 10−7. For BSGD with automatic parameter tuning, however, it

means that the initial step length is 2 × 10−7 and its value will be tuned in future’s

iteration. The other colors have similar meanings. Results in Fig.4.9(a)-(d) demonstrate

that automatic tuning (solid lines) provides faster reconstruction speed than the original

method when initial step-length µ0 is set improperly (dashed lines). When the initial step

length is set as 2× 10−5, the original BSGD diverges whilst the BSGD with automatic

parameter tuning generates a converging iterations by gradually tuning the step length to

a proper range, as shown in Fig.4.9(e)-(f). Despite that, the automatic parameter cannot

guarantee that it converges to the least square solution, the SNR trend empirically shows

that it reconstructs the image to the same level as BSGD using constant step-lengths.

Only two α, γ cases are provided here and similar results (omitted for brevity) are

obtained for other values of M,N,α and γ.
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Figure 4.9: BSGD (dashed) vs BSGD with parameter tuning (solid), using
t1 = 0.1, t2 = 0.7, ε = 0.04, δ = 0.4. It can be seen that for µ0 = 2 × 10−5,
the original BSGD does not converge but automatic parameter tuning, when
initialised with µ0 = 2× 10−5, can adapt the step-lengths into a range leading
to stable iterations.
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For both increasing and decreasing µ, the frequency of parameter changes is f = M

epochs rather than 1 epoch. One reason is that the high stochastic noise in the gradient

updates can be reduced after a period of epochs. Another reason is that the calculation

of ‖r‖ can be time consuming when the size of r is large and reducing the frequency of

computation on ‖r‖ is beneficial to save the reconstruction time. It has been experi-

mentally validated that setting the test frequency f to M leads to a good compromise

between increased computational demand and improved overall reconstruction speed.

However, the setting of frequency can be flexible. For example, the frequency can be set

as a value with which the whole x space has just been updated at least once. If N can

divide γ without remainder, and the set {Jj}Nj=1 is sampled without replacement, then

f = 1
γ is also feasible.

4.7 Comparison to other methods

In section 4.4, the comparison of CSGD and BSGD shows that BSGD has a faster

reconstruction speed even though BSGD has more complex communication schemes.

In this section BSGD is compared to other SIRT-type methods including GD, GD with

Nesterov acceleration, SAG and SVRG methods. They all have the same communication

scheme and the only difference is that the other SIRT-type methods unavoidably update

all of x in each step, thus when N > p, the communication overhead, as well as the

usage of AJ
I , is larger than BSGD. In this section, both 2D and 3D simulations are

presented. The scanning geometries are the same as in Fig.3.13 and Fig.3.25. The

comparisons are shown in Fig.4.10. All simulations, except the automatic parameter

setting case, are well tuned to ensure the fastest reconstruction speed. It can be seen

that the reconstruction speed of automatic parameter tuning is slightly slower because of

the non-optimally chosen small initial step-lengths. For well-tuned parameters, BSGD

shows similar reconstruction speed to SVRG. However, according to Fig.4.4, when p is

smaller than N , then BSGD has a simpler communication scheme compared to SVRG.

This is because that each parallel node only updates one image blocks. The BSGD-IM

is the fastest among all reference methods. The detector partitioning is the same as

discussed in Fig.3.20(b) and Fig.3.24. It clearly shows that BSGD-IM, which is the

combination of BSGD and the importance sampling trick, is the fastest method. One

drawback of BSGD-IM is that it does not converge to the least square solution, but the

final SNR limit of BSGD-IM is similar to the other methods, which means that the final

solution’s accuracy is similar to the other methods.
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Figure 4.10: Comparison of BSGD with other SIRT-type methods for a 2D
(top) and 3D (bottom) setup. The projection data y are blurred by Gaussian
noise. In 3D case, due to the large computation complexity on the least square
solution, DS trend along with usage of AJ

I is omitted. For 2D and 3D case
the automatic parameter setting methods use initial step-length 1× 10−6. The
step lengths in the other methods have been well selected to ensure the fastest
reconstruction speeds.

4.8 Further trials on accelerating BSGD

Section 4.6 presents an automatic parameter tuning strategy to accelerate the recon-

struction speed of BSGD when its step length µ is set improperly small or large. How-

ever, this automatic parameter tuning does not works well if the µ has been well tuned

through repeated trials in simulations. In this section, further trials on acceleration the

BSGD when µ is well tuned is presented.

One of the most famous and widely applied acceleration tricks is Nesterov’s acceleration,

as demonstrated in Algo.2.1. It can be seen that Nesterov’s acceleration performs a

simple step of gradient descent to go from xk to x̃k+1, and then it moves further than

x̃k+1 in the direction given by the previous point x̃k.
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However, this momentum acceleration is dangerous for stochastic SIRT-type methods.

During iterations, each update direction is not an accurate direction and if this stochastic

direction is added to the momentum and moves further along this direction, it may

hurt the performance because it leads to error accumulation. Simulations also verify

that when BSGD is combined with Nesterov’s acceleration methods, no accelerated

reconstruction speeds can be obtained.

Recently, the “Katyusha” acceleration method was proposed (Allen-Zhu, 2017), which

is the first acceleration method for stochastic gradient descent methods. The main

ingredient of this kind of acceleration is “Katyusha momentum”, a novel “negative

momentum” on top of Nesterov’s momentum. It can be incorporated into a variance-

reduction based algorithm and speed it up. Since previous simulations have verified

that the BSGD has the same properties with variance-reduction based algorithms, it is

worthy for BSGD to give Katyusha a hug.

The classical Katyusha is combined with SVRG and the momentum step is applied

after every single stochastic step. The SVRG-Katyusha is shown as Algo.4.4. It can

Algorithm 4.4 Katyusha acceleration on SVRG

1: Initialization: w1 = v1 = x̃1 = x1

2: for k = 1, 2, · · · ,Kmax do
3: gk = ∇f(x̃k)
4: for t = 1, 2, · · · , f do
5: s = (k − 1)f + t
6: xs+1 = τ1v

s + 0.5x̃k + (1− τ1 − 0.5)ws

7: ∇̃s+1 = gk +M∇fIi(xs+1)−M∇fIi(x̃k).
8: vs+1 = vs − α ˜∇s+1

9: ws+1 = xs+1 + τ1(vs+1 − vs)
10: end for
11: x̃k+1 = 1

f (
∑f

t=1 w(k−1)f+t)
12: end for

be seen that after a full gradient calculation, the momentum step is applied after each

inner-iteration. However, BSGD was experimentally observed to be not suitable for this

kind of acceleration. This is because some zjIi/ĝiJj inevitably store stale forward/back

projection information and thus BSGD cannot afford frequent momentum shifts. For

example, for the current kth epoch, due to α, γ < 1, some zjIi inevitably store results

for A
Jj
Ii

xk−τJj
, where τ can be 1,2 or even larger integer, which is influenced by α and γ.

To be more specific, let us start with the analysis on the original BSGD method. At

the kth iteration, xk+1
Jj

= xkJj + µgkJj . zjIi and ĝiJj store the forward and back projection

information of xk,xk−1, · · · ,xk−τ , here τ is a delayed coefficient influenced by α, γ. For

example, when α = γ = 1, τ = 0, when α = 1
M , γ = 1

N , and if Ii, Jj are sampled

without replacement, τ = MN − 1. With proper step-lengths, the information stored

in zjIi and ĝiJj is similar to A
Jj
Ii

xkJj and (A
Jj
Ii

)T (yIi −
∑N

j=1 A
Jj
Ii

xkJj ), thus making the

calculated gk similar to true gradient gktrue on expectation. As a result, when this
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process is repeatedly applied to (k + 1)th, (k + 2)th iterations, a converging trend is

obtained. Now consider that when Katyusha acceleration is applied after every single x

update. If xk+1 is further moved by a momentum step to x̃k+1 after kth iteration, it can

be imagined that the average distance between x̃k+1 and xk,xk−1, · · · ,xk−τ (defined

as d in this section) becomes larger than that between xk+1 and xk,xk−1, · · · ,xk−τ .

In the next (k + 2)th iteration, the information stored in zjIi , ĝ
i
Jj

may still be able to

approximate A
Jj
Ii

x̃k+1
Jj

and (A
Jj
Ii

)T (yIi −
∑N

j=1 A
Jj
Ii

x̃k+1
Jj

). However if this acceleration

is applied after every x update, the distance d will continue increasing and there will

be a point that the information stored in zjIi , ĝ
i
Jj

is too old to approximate A
Jj
Ii

x̃Jj and

(A
Jj
Ii

)T (yIi −
∑N

j=1 A
Jj
Ii

x̃Jj ). As a result, applying the original Katyusha acceleration,

which manually moves xk+1 a bit further away from xk after every iteration is not a

good idea. In 2008, a modified Katyusha was proposed, which is named KtyushaXs

(Allen-Zhu, 2018). Its main difference with classical Katyusha is that the KatyushaXs

applies a momentum step after a period of iterations. The KtyushaXs combined with

SVRG is shown in Algo.4.5. where the SVRG1ep is one epoch process of SVRG and is

Algorithm 4.5 SVRG with KatyushaXs

1: Initialization: Partition data and A into M row blocks. f = 2M . Determine the
maximum allowed iteration number K. Initialization: x̃0 = x̃1 = x1

2: for k = 1, 2, ...,Kmax do

3: xk+1 =
3
2
x̃k+ 1

2
xk−(1−τ)x̃k−1

1+τ

4: x̃k+1 = SV RG1ep(xk+1, µ,M, f)
5: end for
6: xsolution = xKmax+1

defined in Algo.4.6.

Algorithm 4.6 x̃ = SVRG1ep(x, µ,M, f)

1: x̃ = x
2: g = ∇f(x)
3: for t = 1, 2, · · · , f do
4: Randomly select an i from [1,M ]
5: ∇̃t = g +M∇fIi(x̃)−M∇fIi(x)
6: x̃ = x̃− µ∇̃t
7: end for

BSGD and BSGD-IM can be combined with KatyushaXs. To simplify the algorithm

description, Algo.4.1 is then expressed as Algo.4.7. where BSGD1ep is a “black box”

function with input x, µ, α, γ, z,g, performing line 3-15 in Algo.4.1. The output of this

function is the updated variables x, z,g. Inspired by Algo.4.5, the BSGD-KatyushaXs

algorithm is shown in Algo.4.8. Combining BSGD-IM with KatyushaXs is similar to

Algo.4.8 and is not shown here.
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Algorithm 4.7 BSGD, simplified expression

1: Initialization: Determine the maximum allowed epoch number Kmax. Partition
row and column indices into sets {Ii}i∈[1,M ] and {Jj}j∈[1,N ] , {xJj}j∈[1,N ] = 0,

{zj}j∈[1,N ] = 0, {ĝi}Mi=1 = 0, and r = y. α and γ are the percentage of the
selected row and column blocks respectively.

2: for epoch = 1, 2, ...,Kmax do
3: [x,z,g]=BSGD1ep(x,µ,α,γ,z,g)
4: end for
5: xsolution = x

Algorithm 4.8 BSGD-KatyushaXs

1: x̃ = xtem = x = 0. f is the frequency of applying a momentum step. τ ∈ (0, 0.5) is
a constant.

2: x̃0=x̃1=x1

3: for k = 1, 2, ...,Kmax do

4: xk+1 =
3
2
x̃k+ 1

2
xk−(1−τ)x̃k−1

1+τ

5: xtem = xk+1

6: for t = 1, 2, · · · , f do
7: [xtem,z,g]=BSGD1ep(xtem,µ,α,γ,z,g)
8: end for
9: x̃k+1 = xtem

10: end for
11: xsolution = x̃Kmax+1

Similar to SVRG with KatyushaXs, when τ = 0.5, the BSGD-KatyushaXs is the same

as BSGD as x̃k = xk+1. As a result, in simulations τ is tuned under 0.5. The BSGD-

KatyushaXs and BSGD-IM-KatyushaXs are applied in the above 2D simulation case

with different f and τ , as shown in Fig.4.11. In the figure, the constant step lengths in

BSGD(-IM) are well tuned to ensure the fastest reconstruction speed, which are denoted

by green lines. BSGD(-IM) with KatyushaXs is presented by three different colors to

denote different acceleration frequencies. Simulations show that with a τ < 0.5 and a

f > 2M , the BSGD-KatyushaXs is able to accelerate the BSGD and the BSGD-IM-

KatyushaXs is able to accelerate the BSGD-IM. The 2M is experimentally showed to

be an effective threshold value above which the KatyushaXs begin to accelerate original

BSGD(-IM).

4.9 Conclusions

BSGD can be viewed as an improvement of CSGD. It accumulates the previous sub-

gradients, thus making the error variance of the estimated gradient decrease along with

iterations. It has a faster reconstruction speed than CSGD, but the total storage amount

of all variables has increased and the communication scheme is more complicated as well.

It requires 2 inner-loops to update r and x separately. This communication is the same
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Figure 4.11: The comparisions of BSGD(-IM) with their KatyushaXs acceler-
ation trick. The first row is BSGD group and the second row is BSGD-IM
group. BSGD(-IM) are denoted by green lines whilst the other three colours
are accelerated references.

as the other SGD-type methods such as SAG and SVRG. However, BSGD does not

have to iterate over all blocks of x each time since it is able to estimate a high accuracy

solution even when γ < 1. It thus provides flexible sampling of sub-matrix AJ
I . In this

chapter, the sampling method is the same as that in CSGD. The data communication is

minimized by setting α = 1
M and adjusting γ according to the number of actual parallel

computation nodes. This sampling method enables x blocks to be updated within the

parallel computation nodes. Simulation results have shown that under noise free case,

the BSGD can approach to the true solution. This is mainly reflected in the results

shown from Fig.4.1 to Fig.4.3.

The importance sampling is also applicable to BSGD and simulations have verified that

BSGD-IM has the fastest reconstruction speed compared with other existing SIRT-type

methods including mini-batch SGD, SAG, SVRG. An automatic parameter tuning strat-

egy is also proposed to accelerate the case when the initial step-length is set improperly

small or large. In addition, KatyushaXs acceleration is applied to BSGD. Instead of ap-

plying a momentum step after every single stochastic iteration, the BSGD-KatyushaXs

method applies a momentum acceleration with an update frequency f . Simulations show

that when f ≥ 2M , the BSGD-KatyushaXs and BSGD-IM-KatyushaXs effectively ac-

celerate the BSGD and BSGD-IM algorithms, even when they are well tuned to the

fastest reconstruction speeds.
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The open area of this chapter is also the convergence property of BSGD. Similar to

CSGD, the main research interest of BSGD focuses on the reconstruction speed of BSGD

under different parameter settings and how to further accelerate the speed. As a result,

the convergence analysis of BSGD is not fully illustrated by simulations. In this chapter,

SNR trends, which can reach around 120 dB in the noise free model and single-precision

floating-point format, is believed to be able to show that the BSGD is able to closely

approach to the true solution. Besides, the DS trends shown in Fig.4.7, Fig.4.9 and

Fig.4.10, which directly reflect the distance of the reconstructed image vector to the

least square solution, shows that the BSGD approaches to the least square solution

much closer than CSGD and achieves the same level with SAG and SVRG. As a result,

the conjecture is that the BSGD converges on expectation to the least square solution.

This conjecture is not fully proved. In fact, for both CSGD and BSGD, only the SNR

trend at the initial stage is paid attention. This is because that the early-stopping

strategy is adopted to avoid the semi-convergence property, which is not presented in

this thesis because of the model is not severely ill-posed and the noise is not severe. The

initial increasing SNR trend is also related to the decrease of the data fidelity, which

hints that both CSGD and BSGD can be possible to be incorporated in the proximal

method system. This will be discussed in the next chapter.





Chapter 5

Adding TV regularisation

In Chapter 3 and Chapter 4, two parallel algorithms have been proposed and compared

with each other as well as with other SIRT-type methods. The algorithms empirically

converged to least squares or weighted least squares solutions, which are only good

estimates if enough data is available and if the system matrix is well conditioned. As

the CT reconstruction problem is typically very ill-conditioned, this chapter shows how

the efficient computational method of the previous sections can be adapted to include

explicit regularisation. This chapter uses the TV regularisation term as an example

regulariser.

To be more specific, This chapter discusses the case in which we have fewer measurements

than unknowns, especially when we have few, but equally spaced projections covering

a full scan circle. Under this case the linear system is severely ill-posed. As a result, a

regularization terms is needed. As discussed in section 2.3, Tikhonov regularization and

TV regularization is two popular regularizations. According to the difference discussed

in section 2.3, TV regularization is more suitable for the case when the projection views

are sparse or limited. As a result, in this chapter the regularization term is constrained

as TV regularization.

We evaluate the reconstruction quality provided by BSGD/CSGD combined with TV

denoising (i.e. BSGD/CSGD-TV) to approximately optimize the objective function con-

taining TV regularizations. The combination is inspired by the proximal methods like

ISTA and FISTA. In the FISTA, for example, solving the TV constrained objective

function Eq.2.44 includes two steps: the first step is to reduce the data fidelity (i.e.

reducing ‖y −Axrec‖2), followed by the second step, a TV de-noising procedure (Beck

and Teboulle, 2009b). Many literature have revealed that in the fist step, not only the

GD can be used to reduce the data fidelity, many SGD-type algorithms can also be

used to substitute GD to reduce the iteration computation overhead. Those stochastic

algorithms include SVRG, SGD and even delayed SGD where the stochastic gradient

calculated by a row block of y is further blurred by an extra noise vector (Schmidt

107
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et al., 2011; Beck and Teboulle, 2009b,a; Nitanda, 2014). Consider the fact that sim-

ulations have verified that the CSGD/BSGD can reduce the data-fidelity just like the

other mature stochastic methods, the combination of TV denoising and CSGD/BSGD

should also be feasible to approximately optimize the objective function Eq.2.44. Here

the “approximately” hints that the CSGD-TV and BSGD-TV may not be able to min-

imise the TV-constrained objective function. However, simulations will show that the

reconstructed result will have minor difference with result obtained from FISTA.

Generally speaking, CSGD/BSGD is used to reduce the data fidelity as the first step,

then a TV de-noising procedure is performed. The algorithm is shown in Algo.5.1, where

Algorithm 5.1 BSGD/CSGD-TV

1: Initialization: Determine the maximum allowed epoch number Kmax. Partition row
and column indices into sets {Ii}i∈[1,M ] and {Jj}j∈[1,N ] , {xJj}j∈[1,N ] = 0, g = 0,
{zj}j∈[1,N ] = 0, {ĝi}i∈[1,M ] = 0, and r = y. α and γ are the percentage of the
selected row and column blocks respectively.

2: for epoch = 1, 2, · · · ,Kmax do
3: for t=1,2,· · · ,f do
4: [x,z,g]=BSGD1ep(x,µ,α,γ,z,g)
5: or
6: [x,z,r]=CSGD1ep(x,µ,α,γ,z,r)
7: end for
8: x = arg minu ‖u− x‖2 + 2µλTV (u)
9: end for

10: xsolution = x

BSGD1ep has been defined in Algo.4.7. CSGD1ep has a similar definition, performing

lines 3-15 in Algo.3.3. According to the discussions in Fig.4.5 and Fig.4.6, in a master-

servant parallel network, all variables (x, r,g, · · · ) are stored in the master node whilst

the parallel computation nodes do not have full access to them. As a result, the TV

de-noising procedure (line 8 in Algo.5.1), which is performed on all of x, is initially

performed in the master node as discussed in section 5.1. Simulations show the effec-

tiveness of BSGD/CSGD-TV by comparing the SNR trend of x and the reconstruction

results with other algorithms. Since the TV norm is a sum of l2 norms of the pixel

gradients, it has the potential to be parallized over the computation nodes. As a result,

in section 5.2, the TV de-noising procedure is moved from the master node to parallel

computation nodes to further parallelize the BSGD/CSGD-TV. To reduce the commu-

nication cost between master node and computation nodes, the TV de-noising is applied

on partial image blocks xJ instead of the whole set {xJj}Nj=1. Simulations prove the

effectiveness of such combinations of BSGD/CSGD and TV regularizations, suggesting

that BSGD/CSGD-TV have a parallel computation scheme with more flexibility and

less communication overhead than other SIRT-type algorithms.
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5.1 TV de-noising on the whole of x

In this section, CSGD/BSGD-TV are compared with the following popular methods:

GD-TV(ISTA), Fast Iterative Shrinkage-Thresholding Algorithm(FISTA) (Beck and

Teboulle, 2009b), SVRG-TV,SAG-TV. To compare reconstruction speeds, it is impor-

tant to unify the frequency of applying TV de-noising. For example, assume that y,x

space are divided into M,N blocks for all methods. ISTA/FISTA then performs a TV

de-noising step after 2MN matrix-vector multiplications while SAG and SVRG, which

generally calculate a stochastic gradient using a row block per iteration, perform the

TV de-noising step after 2N matrix-vector multiplications. In this case, it is not appro-

priate to compare each other’s reconstruction speed using “the usage of AJ
I ” due to the

different number of TV de-noising steps used. To ensure the “usage of AJ
I ” measure is

still proportional to computing time, in this section, the application frequency of TV

de-noising is unified: TV de-noising is performed only after performing 2MN matrix-

vector multiplications. As a result, f in CSGD-TV is d 2
3αγ e and in BSGD-TV is d 1

αγ e.
Besides, the iteration number within TV de-noising procedure is also unified as 20 to

unify the computation amount.

An ASTRA-generated 2D scanning geometry with few projections is adopted. The

scanning geometry is shown in Table.5.1, the default pixel size for image and CCD size

for detector are both 1. The definitions of geometry parameters are mentioned in Fig.3.5.

Table 5.1: 2D scanning geometry for few-views projections

K Detector size OP OD

256 550 300 300

Projection view gap Projection view number Noise variance SNR of y

10 36 1 31.0dB

Using this geometry, the simulations results are shown in Fig.5.1. In the figure, the

step-length µ and the TV regularization parameter λ are carefully selected from a wide

range to ensure the best performance (i.e. the highest SNR limit) of all algorithms.

Especially for λ, it is selected from a wide range [0.1, 1, 10, 50, 100]. It can be seen that

BSGD/CSGD-TV can both reconstruct the image into a high accuracy solution, despite

that the final solution is different from each other, which means that they converge

to different locations. However, these solutions’ locations are near to the location of

the actual image vector. BSGD-TV shows the fastest reconstruction speed among all

candidate methods. CSGD-TV is fast at the initial stage, while the final location of

iterated x stays a bit far from the location of xtrue, especially when compared with

BSGD-TV and FISTA.
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Figure 5.1: SNR trends for different methods to reconstruct the xrec. For
CSGD/BSGD, α = 1

18 , γ = 4
16 .

To prove the effectiveness of CSGD/BSGD-TV, the reconstruction results after different

iterations are shown in Fig.5.2. It can be seen that the initial reconstructed images ob-

tained from CSGD/BSGD-TV inevitably exist artefacts around the image block margins,

but these artefacts gradually disappear as iterations go on. The final images provided by

CSGD/BSGD-TV do not have significant difference from the other existing first-order

methods but enjoys a reduced communication overhead in the reduction of data fidelity,

especially when p is smaller than image block number N , as discussed in Chapter 4.
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Figure 5.2: Reconstruction results after different projection times of different
methods.

5.2 TV de-noising on parts of xJ

In the above section, the TV constraints are applied on the whole of x. This process

can be viewed as performed by the master node since parallel nodes do not have full

access to x. In this section, the TV constraints are moved to parallel computation

nodes and are applied on xJ separately. There are three reasons why this research is

of interest here: 1) When x is large, it is possible that x is stored in a distributed way

and thus it is separated into different files. As a result, even the master node cannot

have easy access to the whole of x. 2) The master node may lack calculation ability

and only has storage ability. For example, the master node is one or several hard discs
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and the computation nodes are several GPU/CPUs. In this case, the hard discs have

to transport the whole of x to one node when it needs to be de-noised, which increases

the communication overhead. 3) The computation complexity of TV de-noising methods

increases rapidly when the size of image increases. Applying TV de-noising on the whole

of x, due to the lack of parallel computation ability, can be much slower than separately

and simultaneously de-noise {xJj}Nj=1. To verify this assumption, the TV de-noising

algorithm is applied on different size of images and the time spent on each case is shown

in Fig.5.3.
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Figure 5.3: The iteration number of TV de-noising is predetermined as 20.
The image size K is [64, 128, 256, 512, 1024, 2048, 4096]. (a) shows that the time
spent on TV de-noising (T (K)) for different image sizes K. (b) shows that the
increase speed of T (K) is almost the same with that of the image size. This
suggests that if x is divided into N sub-blocks and are de-noised among N
parallel nodes, the total time spent on TV de-noising can be N times shorter
than non-splitting case if the communication cost is ignored.

One simple method to parallelize the TV part and to reduce the computation cost is to

approximate the TV term as a sum over x space, i.e.

TV (x) ≈
N∑
j=1

TV (xJj ). (5.1)

This approximation enables the block ADMM, which is mentioned in Chapter 3, to

be a candidate parallel method to solve the approximated TV-constrained optimization

problem:

arg min
1

2

M∑
i=1

‖yIi −AIix‖2︸ ︷︷ ︸
f(y)

+λ

N∑
j=1

TV (xJj )︸ ︷︷ ︸
g(x)

,

s.t.y = Ax,

(5.2)

where f(y) and g(x) are both block separable functions, as mentioned in Eq.2.57. De-

tailed iteration methods have been discussed in session 2.4 and thus only simulation

results are presented in this section. Block ADMM-TV is directly compared with CSGD-

TV as proposed in Algo.5.1. To satisfy the constraint in Eq.5.2, σ in Table 5.1 is currently
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set as 0. The parameter choice for block ADMM-TV is carefully selected as discussed

in section3.2.2.1 to ensure the best reconstruction speed. The reconstruction speed of

block ADMM-TV and CSGD-TV is shown in Fig.5.4. It can be seen that these two

methods have similar initial reconstruction speeds. Although the reconstruction speeds

of CSGD-TV becomes slow as iteration goes on, it uses significantly fewer matrix-vector

multiplications to achieve the predefined SNR.
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Figure 5.4: TV (x) is approximated as
∑N

j=1 TV (xJj ). Reconstruction speed
between CSGD-TV and block ADMM-TV clearly shows that the CSGD-TV
are much faster than ADMM-TV.

The images reconstructed by the two methods are compared and they show different

reconstruction quality, as shown in Fig.5.5.
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10dB,block ADMM-TV

(a)

10dB,CSGD

(b)

20dB,block ADMM-TV

(c)

20dB,CSGD

(d)

Figure 5.5: Reconstructed images from ADMM-TV and CSGD-TV. The
ADMM-TV exists more severe inner artifacts than CSGD-TV, suggesting that
directly approximate TV (x) as a sum-up over x space is not an appropriate
choice for ADMM-TV.

It can be seen that the CSGD-TV method presents visually smoother images whilst se-

vere inner noise and artefacts at inner margins exist in block ADMM images. As a result,

in CT reconstruction, dividing the TV term according to the partition on x space and

then applying the block ADMM method is not appropriate. This is because that strictly

speaking, the TV constraint defined in Eq.2.43, is not separable since the calculation

always ignores the overlapping margin (x and y in Eq.2.43 often begin with 2 rather

than 1). If the image is divided into many sub-images, the real TV norm of the original

intact image is not a simple accumulation of TV norms of each sub-image blocks i.e.

TV (x) 6=
∑N

j=1 TV (xJj ). If TV (xJj ) is minimised separately, the border generated by

xJj cannot be effectively de-noised, which causes artefacts at the margins among neigh-

bouring sub-image blocks, leading to arg minx ‖TV (x)‖ 6= ∪Nj=1 arg minxJj
‖TV (xJj )‖.
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A phantom image is used to verify the inaccuracy of minimizing TV norms in blocks.

The phantom image is firstly de-noised without splitting (i.e. minimizing TV (x)) as a

“reference solution”, as shown in Fig.5.6. The phantom image is then divided into N

0

0.2

0.4

0.6

Figure 5.6: The TV de-noising result of intact phantom image, which is used as
a reference solution when x is divided into N blocks and the TV de-noising is
performed on each xJ . The number of iterations in the TV de-noising process
is predefined as 20.

parts, as illustrated in Fig.5.7. Those divided sub-images are de-noised in parallel and

J1

J2

J3

J4

Figure 5.7: Partition the image into N = 4 blocks. If each block get de-noised
separately, then the inner margins will be ignored due to the definitions of TV
norm, thus affecting the approximation of the TV de-noising on the whole image.
“inner margins” here refer to the boundaries between neighbouring sub-image
blocks. For example, the inner margins of image block xJ1 are the right and
bottom margins.

the results are assembled. The comparisons of the assembled solution and reference so-

lution are shown in Fig.5.8. Simulation results clearly show that TV (x) term cannot be

directly divided in x space, which explains why the block ADMM-TV performs poorly

in this case.

To overcome the influence brought by inner margins, when de-noising TV (xJ), xJ need

to “borrow” extra pixels, with width w pixels, from its neighbouring image blocks
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Figure 5.8: TV de-noising is applied on separate sub-images and the iteration
number is also 20, which is the same as Fig.5.6. (a) is the assembled TV de-
noising result when halving each image dimension(N = 4). (b) is the difference
between assembled solution and reference solution shown as Fig.5.6. It clearly
shows that at the “inner margins” which are generated by sub-image blocks,
the difference are significant. (c) and (d) are repeated simulation results when
dividing each image dimension into 4 parts (N = 16). The differences still
mainly exist around the inner margins.

to wrap its “inner margins”. For xJ1 in Fig.5.7, its neighbouring image blocks are

{xJj}j=2,3,4. The borrowing process is shown in Fig.5.9. When w is 1,10,15,20, the

differences between reference solution and assembled solution are shown in Fig.5.10.
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Figure 5.9: (a) xJ1 borrows some extra pixels, with width w pixels, from its
neighbouring image blocks. (b) The new image block is named as x̃J1 . When
TV de-noising procedure is applied after date fidelity reduction, the target image
block should be x̃J1 instead of xJ1 . After the de-noising process, the borrowed
pixels should be deleted. The above procedure is applied in parallel for all
{xJj}Nj=1.
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Figure 5.10: The first row shows that when N is 4, the differences between
assembled solution and reference solution gradually disappear when w increases
to 20. The second row is the repeated simulation when N is 16. As a result, for
different partitions, setting w = 20 makes the separate TV de-noising have the
same results with non-partition case.

To further verify the influence of w on the accuracy of separate TV de-noising, different

image sizes and division methods are compared. The relative error RE here is defined

as
‖xseperate−xwhole‖

‖logic(xseperate−xwhole)◦xwhole‖ , where xseperate is the result obtained by applying TV de-

noising on separate {xJj}Nj=1 and xwhole is one obtained by applying TV on x without

division. The logic(v) function sets all non-zero elements in v as 1. The “◦” is the

Hadamard product operation. The simulation results are shown in Table 5.2. It can be
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Table 5.2: RE changing trend under different image size K and partition
numberN

K N w=1 w=10 w=15 w=20

256 4 1.90E-02 4.80E-05 2.40E-09 0

256 16 8.30E-02 9.20E-05 7.00E-09 0

512 4 6.30E-03 2.30E-05 1.30E-09 0

512 16 7.30E-02 6.40E-05 4.10E-09 0

1024 4 4.30E-03 1.70E-05 1.80E-09 0

1024 16 5.10E-02 4.00E-05 2.60E-09 0

seen that when w = 20, the separate TV de-noising is the same as the whole TV de-

noising regardless the image size and partition methods. As a result, the TV de-noising

process can be moved to the parallel computation nodes and the algorithm is shown

in Algo.5.2. f in the Algo.5.2 should be the same as in Algo.5.1. This means that for

Algorithm 5.2 BSGD/CSGD-TV, applying TV on {xJj}Nj=1

1: Initialization: Determine the maximum allowed epoch number Kmax. Partition row
and column indices into sets {Ii}i∈[1,M ] and {Jj}j∈[1,N ] , {xJj}j∈[1,N ] = 0,g = 0,
{zj}j∈[1,N ] = 0, {ĝi}i∈[1,M ] = 0, and r = y. α and γ are the percentage of the
selected row and column blocks respectively.

2: for epoch = 1, 2, · · · ,Kmax do
3: for t=1,2,· · · ,f do
4: [x,z,g]=BSGD1ep(x,µ,α,γ,z,g)
5: or
6: [x,z,r]=CSGD1ep(x,µ,α,γ,z,r)
7: end for
8: for j=1,2,· · · ,N in parallel do
9: “Wrap” xJj to x̃Jj with width w = 20

10: x̃Jj = arg minu ‖u− x̃Jj‖2 + 2µλTV (u)
11: “Dewrap” x̃Jj to xJj with width w = 20
12: end for
13: end for
14: xsolution = x

each epoch, the computation amount includes: 2MN matrix-vector multiplications +

N partial TV de-noising operations.

Assume that p is smaller than N and can divide N without remainder, it is clear that

each parallel node needs to communicate with the master node N
p = 1

γ times. Thus it is

natural to consider only performing TV de-noising on p image blocks instead of on all

blocks to reduce the communication times between computation nodes and the master

node. However, if f remained unchanged, this means that each iteration contains: 2MN

matrix-vector multiplications + γN partial TV de-noising operations, thus making the

“the usage of AJ
I ” not an appropriate time reference in this section. As a result, when
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the TV de-noising is only performed on γN image blocks, then the original f should also

be γ times smaller than before. The algorithm is shown in Algo.5.3, where f for CSGD

Algorithm 5.3 BSGD/CSGD-TV, applying TV on γN {xJj}j∈[1,N ]

1: Initialization: Determine the maximum allowed epoch number Kmax. Partition row
and column indices into sets {Ii}i∈[1,M ] and {Jj}j∈[1,N ] , {xJj}j∈[1,N ] = 0, g = 0,
{zj}j∈[1,N ] = 0, {ĝi}i∈[1,M ] = 0, and r = y. α and γ are the percentage of the
selected row and column blocks respectively.

2: for epoch = 1, 2, · · · ,Kmax do
3: for t=1,2,· · · ,f do
4: [x,z,g]=BSGD1ep(x,µ,α,γ,z,g)
5: or
6: [x,z,r]=CSGD1ep(x,µ,α,γ,z,r)
7: end for
8: Computation nodes again request latest xJj from the master node in parallel
9: for the selected γN xJj in parallel do

10: “Wrap” xJj to x̃Jj with width w = 20
11: x̃Jj = arg minu ‖u− x̃Jj‖2 + 2µλTV (u)
12: “Dewrap” x̃Jj to xJj with width w = 20
13: end for
14: end for
15: xsolution = x

is decreased from d 2
3αγ e to d 2

3αe and for BSGD is decreased from d 1
αγ e to d 1

αe. The SNR

trend and reconstructed images when using Algo.5.3 are shown in Fig.5.11 and Fig.5.12.
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Figure 5.11: “whole” in the figure means that the TV de-noising is applied on
the whole of x, while the “partial” means that the TV de-noising is applied
on γN selected image blocks xJ . The partial TV de-noising has some negative
effects on final solutions’ accuracy, especially making the final solution of CSGD-
TV have a lower solution accuracy, but in general the trend is very similar to
the original case.

Simulations have verified that Algo.5.3 can effectively reconstruct x to the same accuracy

level as Algo.5.1, but with advantages including: 1) the ability to incorporate the TV

de-noising into parallel computation nodes, and 2) no further significant communication
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Figure 5.12: The reconstructed images of BSGD/CSGD-TV(partial). The are
similar to the previous results provided by BSGD/CSGD-TV(whole), especially
after 40,000 usage of AJ

I .

overheads are required between master node and computation nodes. The “Wrap”

process indeed requires some extra communication overhead but since the width w only

needs to be 20 pixels for all problem sizes, thus the extra data communication can be

ignored especially when x is huge.

5.3 Conclusions

In this chapter the combinations of BSGD/CSGD and TV regularization is experimen-

tally shown to be effective. When the projection data is limited, then TV regularization

leads to better reconstruction quality. However, the introduced TV de-noising process

can be time-consuming, especially when the image size is huge. In traditional GD-

TV/FISTA, the TV de-noising process is performed after a full gradient calculation,

which requires 2MN usage of AJ
I , whiles in the other TV-constrained optimization al-

gorithm, such as SVRG-TV, SAG-TV, the TV de-noising is performed after a stochastic

gradient calculation, which requires 2N usage of AJ
I . The difference in the frequency

with which TV de-noising is performed makes the “usage of AJ
I ” no longer reflect the

actual wall time during reconstruction. To overcome this issue, in this chapter the fre-

quency of performing TV de-noising in all methods is unified, including SVRG-TV,SAG-

TV and the new proposed CSGD/BSGD-TV. Only after 2MN usage of AJ
I then the

TV de-noising is performed. With this unified de-noising frequency, BSGD-TV shows

the fastest reconstruction speed, achieving a high-SNR solution within the least usages

of AJ
I . Apart from the speed advantage, BSGD-TV, as well as CSGD-TV, have another

advantage, which is the ability to perform TV de-noising in a parallel and stochastic way.

The TV norm, according to the definition, is a sum of l2 gradient norms. However, it

cannot address pixels located at margins. As a result, directly splitting image x into N

blocks and then performing TV de-noising on all partial image block xJ does not strictly

equal to the case when performing TV de-noising on the whole of x. A “wrap” scheme
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is proposed. When performing a TV de-noising on xJ , this allows xJ to temporar-

ily borrow some pixels with width w from its neighbouring image blocks, thus the inner

margins of xJ are wrapped by new borrowed pixels. Similarly, when the TV de-noising is

finished, a “de-wrap” procedure is applied to remove those borrowed pixels. Simulations

have verified that when w is 20 pixels, arg minx ‖TV (x)‖ = ∪Nj=1 arg minxJj
‖TV (xJj )‖.

This property enables the TV de-noising to be performed within parallel computation

nodes, where each of them has limited access to the whole of x. When p is smaller than

N , arg minx ‖TV (x)‖ then requires the communications between the master node and

computation nodes to be larger than one time. To reduce the communication cost, the

TV de-noising procedure adopts a similar partial update strategy as BSGD/CSGD. It

does not cover all {xJj}Nj=1. Instead, it only addresses γN image blocks, where γ fol-

lows the proposed selection criteria shown in Eq.3.8. Simulations have verified that this

partial update strategy, named as BSGD/CSGD-TV(partial), reconstructs the scanned

object into high-SNR solution without sacrificing speed compared with BSGD/CSGD-

TV(whole), which performs TV de-noising on the whole of x.

Whilst we have here looked at TV constraints, other regularisers could be treated in a

similar way. However, this was not explored here.





Chapter 6

Application on parallel

architectures

The previous chapters have developed two algorithms and studied their basic mathe-

matical properties, including reconstruction speed comparisons and their ability to be

combined with TV regularizations. In this chapter, the research no longer focuses on

the algorithms’ mathematical properties but instead focuses on the realistic applica-

tion of the algorithms in concrete parallel computing architectures. The two proposed

algorithms show different performance in different scenarios. This is because the two

algorithms use different communication schemes. This chapter will discuss this phe-

nomenon in detail. Furthermore, in realistic applications, an asynchronous form of

BSGD is proposed to further accelerate the reconstruction speed in certain settings.

The contributions of the chapter includes: 1) The CSGD and BSGD have been first

applied in a realistic parallel network to measure their scalability. The measurement to

reflect the reconstruction speed is changed from the “usage of AJ
I ” to the realistic wall

time. Using this measurement, experiments have proved that the BSGD outperforms

CSGD in terms of reconstruction speed. 2) An asynchronous BSGD is first proposed,

enabling the fastest node to perform more computations and do not have to wait for

the slowest node. This asynchronous communication has increased the communication

efficiency and experiments have verified that it can outperform original BSGD algorithm

if one node is significantly slower than the other nodes.

This chapter includes three parts. In section 6.1, the basic concepts and functions of

parallel computation and communication, including point-to-point communication and

collective communication, are introduced. Using these functions, the performances of

BSGD/CSGD using different numbers of parallel computation nodes are presented and

compared with each other in section 6.2 and 6.3. In the last section 6.4, the asynchronous

communication scheme of BSGD is studied to illustrate that the reconstruction speed

can be further increased when the parallel nodes have different computational abilities.

123
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6.1 Basic concepts in parallel applications of BSGD/C-

SGD

When applying BSGD/CSGD in a parallel network, it is required that each node com-

municates with each other node, sending data blocks such as zjI ,xJ etc. This kind of

communication should follow the Message Passing Interface (MPI) standard. MPI is a

message-passing standard that works on a wide range of parallel computing architec-

tures. It provides a communication protocol for programming parallel computers and

remains the dominant model used in high-performance computing today. MPI defines

the syntax and semantics of a core of library routines that is useful to a wide range

of users writing portable message-passing programs in many programming languages

including C, C++, Fortran and Python (Barker, 2015).

In this chapter, the Python language together with the mpi4py package is used to imple-

ment different aspects of BSGD/CSGD when they are applied in a network with several

computation nodes. In recent years, Python has occupied an increasing share in the

field of numerical computing, and in the field of high-performance computing as well.

This is because Python has become more than just a separate computer programming

language, but has become a complete ecosystem composed of huge libraries and tools, as

well as numerical calculations, including Numpy, Scipy, Pandas, etc. These numerical li-

braries and tools generally encapsulate and call efficient algorithm libraries implemented

by Fortran, C, C ++, etc., so they make up for the shortcomings of Python’s perfor-

mance to a certain extent without compromising its flexibility and ease (Ceder, 2010;

Bressert, 2012). In terms of the application of Python to high-performance parallel com-

puting, there is a Python library built on top of MPI, mpi4py, which allows Python’s

data structures to be easily passed to multiple processes. Mpi4py is a very powerful

library that implements many interfaces in the MPI standard, including point-to-point

communication, collective communication, blocking / non-blocking communication, and

inter-group communication. It also has good support for Python objects such as numpy

arrays and they are very efficient to be communicated (Zaccone, 2015).

In mpi4py, some basic concepts will be used in future simulations. They are recalled

below (Zaccone, 2015):

� process

A “process” is an execution of a particular subroutine. In this thesis, one process

will control one parallel computation node to perform the FP,BP or the updates

on r,g,x. In the following, different processes are distinguished by their ranki(i =

0, 1, · · · , p− 1).

� master node
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The master node is used to store all necessary variables and send/receive data

blocks to/from computation nodes. Unless specifically stated, it does not perform

any projection operation or update on r,g,x. In this thesis’s illustrations, the

master node is presented by a rectangle.

� computation node

Computation nodes are mainly used to perform the projections. They request data

blocks from the master node and then send results back to the master node. In

this thesis’s illustrations, the computation nodes are presented by ovals.

� root node

The root node is also a computation node. It is responsible for the data collection

and distribution when the collective communications are performed. It also per-

forms the updates on r,g,x. The definition of collective communications will be

introduced below. In this thesis’s figures, the root node is labelled as a blue oval

to differentiate it from the other computation nodes (black oval).

� point-to-point communication

Sending and receiving data are the two foundational concepts in mpi4py. Almost

every single communication can be implemented with basic send and receive calls.

The most general command to send and receive matrix data in mpi4py is “Send()”

and “Recv()”. They are block communications, which means that both functions

will wait for each other until both of them have finished and then return back to

each process for the following code to be executed. An illustration of “Send” and

“Recv” is shown in Fig.6.1.

Wall time flow Wall time flow

Cost time

Figure 6.1: In a 2-process parallel network, rank0 sends a zjI to rank1. This
process costs ∇t seconds. If rank0 performs the Send command at time t0 but
rank1 performs the Recv command at t1 (t1 > t0), due to the block communica-
tion definition, rank0 will “wait” between t0 and t1 and both rank0 and rank1

will finish data communication at the time t1 +∇t. The “tag” in command is
used to give a special name for the transferred data to ensure the receiver to
receive the correct data.

During the block communication, the sender or receiver is not able to perform any

other actions until the corresponding message has been sent or received. Blocking

communications have a number of disadvantages. Potential computational time

is simply wasted while waiting for the call to complete the block communication.
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An alternative approach is to allow the program to continue execution while the

messages is being sent or received. This is known as non-blocking communication.

In mpi4py, non-blocking communication is achieved using the “Isend” and “Irecv”

methods. The “Isend” and “Irecv” methods initiate a send and receive operation

respectively, and then return immediately. These methods return an instance of the

“Request” class, which uniquely identifies the started operation. The completion

can then be managed by applying the “Test”, “Wait”, and “Cancel” functions to

the Request class. An illustration of non-block communication is shown in Fig.6.2.

Wall time flow
Wall time flow

Figure 6.2: In the non-block communication case, each process does not wait
for each other during the data communication. Instead, the “Isend” or “Irecv”
returns immediately with a request class “sendreq” or “recvreq”. These requests
will be checked to see whether the data communication is accomplished in the
future using wait function.

� collective communications

Collective functions involve communication among all processes in a process group

(which means the entire process pool or a program-defined subset). A typical func-

tion is “Bcast”. It is used to broadcast data from the root node to all processing

units. An illustration of “Bcast” is shown in Fig.6.3.

Figure 6.3: The “Bcast” is only performed on the root node rank0. In this case,
the root node will send zjI to all other parallel computation nodes.
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“Scatter” is another data distribution function. It differs from broadcast, in that

it does not send the same message to all processing units. Instead it splits the

message and delivers one part of it to each processing unit. An illustration showing

a matrix that is scattered to different nodes is shown in Fig.6.4.

Figure 6.4: In this case, the “Scatter” function cuts the matrix into p row blocks
and send them to rank0, · · · , rankp−1 respectively.

“Gather” is a reverse function of “Scatter” function. It is used to store data from

all processing nodes on a single processing nodes. An illustration is shown in

Fig.6.5.

Figure 6.5: The “Gather” function is a reverse of “Scatter”. Followed by Fig.6.4,
this function collects row block AI from all nodes and forms a new variable
whose content is the intact A.

“Reduce” function is used to collect data or partial results from different processing

nodes and to combine them into one result by a chosen operator. Reduction can

be seen as an inverse version of broadcast and the common operator includes

“sum”,“min” and “max”. An illustration using the “sum” operator is shown in

Fig.6.6.

Figure 6.6: The “Reduce” function with sum operator sums up all sendobj and
stores in a new variable recvobj in rank0.

These functions will be used in the next 2 sections to explore the scalability of two

algorithms and the asynchronous BSGD form.
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6.2 Synchronous application of BSGD/CSGD in CPU nodes

In previous BSGD or CSGD applications, each epoch uses αγMN sub-matrices in one

iteration and the number of parallel nodes (defined as p) is always assumed to be αγMN .

Each node thus only processes one sub-matrix in each iteration. In this chapter this

assumption no longer holds. This means that M,N,α, γ are pre-determined, and the

actual number of parallel nodes (p) can be smaller than αγMN and thus each node has

to process more than one sub-matrix within one epoch, making the data communication

more complicated. The speed-up under different p situations is measured. Here the

speed-up for n nodes is defined as:

speed-up =
wall time using 1 nodes

wall time using n nodes
(6.1)

If α, γ follow Eq.3.8, and α is set to 1
M , which means that all parallel computation

nodes always address the same row block I, then we can see that the update of r

in both BSGD/CSGD is convenient. The update can be accomplished using “Reduce”

which accumulates all∇zjI (the difference between updated zjI and previous one) from all

parallel computation nodes. Furthermore, since α = 1
M , the image block xJ addressed by

different computation nodes is also different from each other. As a result, when updating

x in CSGD and g in BSGD, there is no data communication between computation

nodes and the blocks of x,g can be updated in each parallel computation node. These

properties have already generated data flow diagrams shown in Fig.4.5 and Fig.4.6. In

this chapter however, to test the parallel scalability in the most general setting, α, γ

no longer follow Eq.3.8. This means that the data communication for BSGD/CSGD is

more complex, as shown in Fig.6.7 and Fig.6.8.

To test the scalability of BSGD/CSGD, Iridis 5 computer cluster is used in this section.

Iridis 5 is a high performance computer cluster provided by University of Southampton,

with each parallel node equipped with 40 CPUs. The previous 2D system matrix A ∈
R72000×4096 is adopted. The detailed partition and α, γ in this section are shown in

Table.6.1. It can be seen that the maximum number of selected blocks is 16. As a

result, the applied number of parallel nodes in Iridis 5 is set to 1, 2, 4, 8,16 respectively.

Table 6.1: Partition on A in scalability test

size of A M N α γ

72000× 4096 5 8 2
5 1

The mpi4py package is used here to execute the inner-node communications. The FP/BP

projections are performed in matrix-vector multiplications using Python’s numpy.dot()
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Figure 6.7: The general CSGD work flow. When the computation nodes request
data blocks from the master node or send data block back to the master node,
a for-loop with point-to-point communication or collective communication can
be used. The data blocks are chosen at a totally random manner. In this figure,
the root node (blue oval) addresses I1, J1 block, the second node addresses I1, J2

while the last node address I2, J1 data block. Each parallel nodes sends ∇zjI and
the updated x̂J to the root node. Since different Ii are used among all nodes,
instead of performing a “Reduce” function, the root node performs a “Gather”
function to collect all variables and then sequentially updates relative rI with
different ∇zjI and the averaged xJ with different x̂J .

(a) the first time of communication (b) the second time of communication

Figure 6.8: The data block addressed by each parallel node is the same as
Fig.6.7. In BSGD, there are 2 times communication between the root and
computation nodes. In the first time of communication, the root node gathers
∇zjI from all parallel nodes using “Gather” and updates relevant rI . After this
procedure the updated rI needs to be sent back to each parallel node. This
procedure can be completed by “Scatter” function if a matrix [rI1 , rI1 , · · · .rI2 ]
is formed, or is accomplished by a for-loop using point-to-point communication.
The update of g,x happens in the second time of communication and is simi-
lar to the first communication. Attention that because of a more general and
random selection method on α, γ, the update of g,x only happens on the root
node. This is a difference between here and Fig.4.6.

function. To make detailed comparisons of BSGD/CSGD under different scenarios, the

percentage of projections over the whole computations is tuned to two different scales.

In the first case, the percentage of projections is tuned to be very high. This is achieved

by repeatedly generating AJ
I by slicing A with index set I, J . Take the BSGD as an

example, before the FP zjI = AJ
I xJ is performed in each node, AJ

I is generated by

slicing A (i.e. AJ
I = A[I, J ] in Python code). When it comes to BP ĝiJ = (AJ

I )T rI ,
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the slicing procedure is repeated again. Although this repeated slicing seems to be

redundant because AJ
I is already stored in parallel nodes after FP and thus can be

directly used for the following BP, the repeated generation of AJ
I reflects the actual

process happening in mainstream CT toolboxes such as TIGRE and ASTRA because

these toolboxes only output results of FP/BP whilst the generated AJ
I will be deleted

internally. In the second case, the percentage of projections is tuned down. This time AJ
I

is still repeatedly generated but the sliced AJ
I is pre-calculated and stored in a Python

list object Alist. When FP/BP requires a AJ
I , they will directly sample it from Alist,

which makes the generating of AJ
I much faster than slicing methods and thus reduces

the percentage of projections over the total reconstruction time. To test the speed-up,

different p are set and the code of BSGD/CSGD is shown in Algo.6.1 and Algo.6.2. For

simplicity of coding, the master node and the root computation node are the same node.

The speed-up comparisons of CSGD/BSGD and the percentage of each procedure over

Algorithm 6.1 Apply CSGD algorithm in Iridis 5 network

1: Initialization: Determine the maximum allowed epoch number Kmax. Partition
row and column indices into sets {Ii}i∈[1,M ] and {Jj}j∈[1,N ] , {xJj}j∈[1,N ] = 0,
{zj}j∈[1,N ] = 0 and r = y. α and γ is the percentage of the selected row and
column blocks respectively. Determine the number of parallel nodes p.

2: for k = 1, 2, · · · ,Kmax do
3: Random select αM row blocks from {Ii}i∈[1,M ] and γN column blocks from

{Jj}j∈[1,N ]. Record all i in ibox and all j in jbox

4: for l = 1, 2, · · · , αγMN
p do

5: The root node scatters p {zjIi}i∈ibox,j∈jbox{rIi}i∈ibox , {xJj}j∈jbox to p parallel
nodes

6: Delete corresponding i, j from ibox, jbox
7: All parallel nodes compute zjIi ,∇zjIi , x̂

i
Jj

and send them back to the root node
8: end for
9: The root node updates all gathered zjIi , updates xJj by averaging corresponding

gathered x̂iJj , updates rIi by summing up all gathered ∇zjIi .
10: end for
11: xsolution = [xJ1 , ...,xJN ]T

the whole wall time is shown in Fig.6.9. In the figure, “FP+BP” denotes time spent

on two ingredients. One is the time spent on matrix-vector multiplication using AJ
I

and (AJ
I )T , the other is that spent on calculating ∇zjIi and ∇ĝiJj . “Communication”

denotes the time spent on the root node gathering ∇zjIi and ∇ĝiJj from other parallel

nodes and scattering variables blocks (e.g. xJj , rIi , etc.) back to them. “Update”

denotes the time spent on the root node to update r,x and g in BSGD. While the root

node performing update procedure, the other parallel nodes simply keep idle status.

The “Other” denotes time spent on two ingredients. The first is time on the random

selection process to determine which row/column blocks will be selected in the next

epoch. The second is time spent on assembling a new matrix for the latter scatter

process. For example, if the root node scatters xJ1 to process 0 and xJ2 to process 1. It
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Algorithm 6.2 Apply BSGD algorithm in Iridis 5 network

1: Initialization: Determine the maximum allowed epoch number Kmax. Partition
row and column indices into sets {Ii}i∈[1,M ] and {Jj}j∈[1,N ] , {xJj}j∈[1,N ] = 0,
{zj}j∈[1,N ] = 0, {ĝi}i∈[1,M ] = 0 and r = y. α and γ is the percentage of the selected
row and column blocks respectively. Determine the number of parallel nodes p.

2: for k = 1, 2, · · · ,Kmax do
3: Random select αM row blocks from {Ii}i∈[1,M ] and γN column blocks from

{Jj}j∈[1,N ]. Record all i in ibox and all j in jbox

4: for l = 1, 2, · · · , αγMN
p do

5: The root node scatters p {zjIi}i∈ibox,j∈jbox , {xJj}j∈jbox to p parallel nodes
6: Delete corresponding i, j from ibox, jbox
7: All parallel nodes compute zjIi ,∇zjIi and send them back to root node
8: end for
9: The root node updates all gathered zjI , updates rI by summing up all gathered

∇zjI .

10: for l = 1, 2, · · · , αγMN
p do

11: The root node scatters p {ĝiJj}i∈ibox,j∈jbox , {rIi}i∈ibox to p parallel nodes

12: All parallel nodes compute ĝiJj ,∇ĝiJj and send them back to root node
13: end for
14: The root node updates all gathered ĝiJj , updates gJ by summing up all gathered

∇ĝiJ and updates xJ using updated gJ .
15: end for
16: xsolution = [xJ1 , ...,xJN ]T

is necessary to build xscatter = [xJ1 ,xJ2 ]. This two procedures are both executed on the

root node. Similarly, when the root node is performing codes, the other parallel nodes

simply keep idle status. Fig.6.9 illustrates two algorithms’ scalability where (a), (b)

are the case when A is repeatedly sliced in Python environment and (c), (d) are the

case when A is previously sliced and the sub-matrices AJ
I are stored in a list object in

Python environment. Under both situations, the projection operation in CSGD takes

higher a percentage over the whole reconstruction time than in BSGD. This is because

CSGD performs 3 matrix-vector multiplications for each AJ
I whilst the BSGD performs

2. The CSGD shows better scalability than BSGD. This is because the CSGD enjoys

a simpler communication scheme than BSGD. It avoids the communication on g space,

whilst the BSGD, as well as the other first order algorithms including SIRT, SAG, etc.,

has to communicate ĝiJ among computation nodes, thus increasing the communication

overhead and reducing the percentage of projection part. Repeatedly slicing A before

each projection makes the projection process more time-consuming than pre-slicing A

and thus the projection procedure takes more share among the total reconstruction.

This leads to a higher scalability result than pre-slicing A in both CSGD and BSGD.

The figure also shows that in both algorithms, the “FP+BP” and “Communication”

takes the majority of the percentage of the whole reconstruction period. Despite that

the assembling matrix part in “Other” seems to be time-consuming, in 2D simulations,

it actually takes a minimal percentage.
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Figure 6.9: The x-axil is the parallel node number used in simulations. y-
axil is the spending time percentage of each procedure takes or the speed up
measurement. CSGD has better scalability than BSGD and is more suitable for
parallel networks because of the simpler communication scheme.

Although CSGD has better scalability, this does not mean that CSGD can reconstruct

the image to a predefined precision by using less wall time than BSGD. To compare the

actual speed between the two algorithms, the above partitioning method and the range

of p are again used here. This time α, γ are changed according to different p by following

Eq.3.8. In each case the parameters were well tuned to ensure the best performance.

Reconstruction speeds are shown in Fig.6.10. In the figure, different colours stand for

different p situations. Dashed lines represent BSGD and dotted lines represent CSGD.

Fig.6.10(a) shows that BSGD is of faster reconstruction speed based on the usage of AJ
I .

Fig.6.10(b) shows that CSGD is faster than BSGD in terms of the reconstruction speed

over epochs, especially when the number of parallel nodes is smaller than 4. However,

each iteration in CSGD contains 3 times of the usage of AJ
I whilst only 2 matrix-vector

multiplications are included in each BSGD’s iteration. It means that performing one

epoch in CSGD is more time-consuming than BSGD. Fig.6.10(c) and (d) show that

regardless of the slicing method on A, the BSGD shows a faster reconstruction speed

over the actual wall time, despite the fact that CSGD shows better scalability than
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BSGD due to smaller communication overhead.
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Figure 6.10: Reconstruction speed comparisons of BSGD and CSGD in realistic
parallel network.

6.3 Synchronous application of BSGD in GPU nodes

BSGD has shown better performance in terms of reconstruction speed and as a result,

it is applied in a realistic Iridis node which is equipped with four GTX 1080Ti GPUs

to reconstruct a 3D cone beam scanning data. In this section, the data communication

in BSGD is the same as Algo.6.2. The only difference is that the FP and BP process

no longer use CPU to calculate matrix-vector multiplications but use GPU-accelerated

function provided in Python form TIGRE toolbox. Previous 2D simulations show that

assembling a new matrix before scattering data blocks takes minimal percentage among

the whole time. However, this phenomena does not hold in large-scale 3D cases. To verify

this, BSGD is applied in one and two GPUs within one Iridis node respectively to com-

pare the speed-up factor under two different data communication schemes. One scheme

is to use collective communications including “scatter” and “gather” to send and collect

different data blocks to different process. This requires to assemble a new matrix before

the communication. The other method is to use point-to-point communications with a
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“for-loop” to connect each separate node with the root node. To ensure the computation

resources are fair, each process is assigned with 10 CPUs and 1 GPU. The image is set as

a 5123 head phantom and the detector is a 10242 square panel. The size of voxel in 3D

volume and pixel in the detector are both 1mm. OP and OD in Fig.3.5 is 1500mm and

1000mm respectively. The detector scans the image for a contact circle and the number

of projection views θ is set from 88 to 700. (When the number of θ becomes even larger,

the python function Gather and Scatter cannot work due the transferred data size exceed

the buffer size.) The partition is determined: M = 1, N = 4, α = γ = 1, and the BSGD

is executed for 100 epochs for both communication schemes. The speed-up comparisons

under two communication schemes are shown in Fig.6.11. In the Fig.6.11, the projec-
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Figure 6.11: (a) and (b) are the time spent on GPU calculations under different
numbers of θ. (c) and (d) are theoretical and realistic speed-up comparisons.

tion ratio is the ration of spent time on “FP+BP” when using different number of GPUs

(i.e. blue lines divided by red lines in Fig.6.11(a) and Fig.6.11(b)). The actual mea-

sured speed-up is the actual ratio of wall time when using different numbers of GPUs.

The theoretic speed-up is calculated as if the communication is finished instantly ( i.e.

it is calculated as total time when using 1 GPU
total time when using 2 GPUs - total communication time). Fig.6.11(a)-(b) have

demonstrated that when using two GPUs simultaneously, the time spent on projection

part is reduced compared with using one GPU case. However, the time is not exactly
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halved, as shown in “projection ratio” in Fig.6.11(c)-(d). This is because the compu-

tation speed of TIGRE in Python environment currently is unstable. Fig.6.11(c)-(d)

have shown that there is a gap between projection ratio and theoretic speed-up. This is

because the existing “Update” and “Other” procedure mentioned above. It can be seen

that this gap in collective situation is larger that than that in point-to-point situation,

which suggests that the share of “Other” in collective communication is larger than

point-to-point communication.

The time spent on different parts is shown in Fig.6.12. The “Sum of non parallel part” is
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Figure 6.12: Time spent on each procedure in BSGD when using two different
communication schemes Point-to-point communication scheme is more suitable
than collective communication scheme in large 3D dataset because of a smaller
“Other” part.

the sum of time on “Communication”, “Update” and “Other” during 100 epochs. When

using one GPU, the code is completely sequential and projections takes the majority

part of total spent wall time. When using two GPUs, since two GPUs perform the

projection simultaneously, the total spent time on this part is significantly reduced

compared with one GPU case. However, the communication cost increases and thus

increases the ‘Sum of non parallel part”. The “Other” part in collective communication

type is significantly higher than that in point-to-point type. According to the definition

of “Other” in section 6.2, it means that the assembling a new matrix for collective
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communication in 3D cone beam case is time-consuming and thus the point-to-point

communication is more suitable in larger-scale 3D case. As a result, in the following

simulations the point-to-point communication scheme is a default setting.

When the BSGD is scaled to 4 GPU situation, each process is also assigned to 10

CPUs and 1 GPU. In this simulations, the physical cubic head phantom is fixed as

256 × 256 × 256mm3 and the detector physical size is 512 × 512mm2. OP and OD in

Fig.3.5 is 1500mm and 1000mm respectively. A parameter S is defined, and the scanned

phantom contains S3 voxels and the square detector contains S2 pixels. The point source

and detector rotate around the volume horizontally for a full circle through S projection

views. To simplify the comparison under different problem sizes, M = 1, N = 4, α =

γ = 1. Under different sizes S, the speed-up, time spent on each part and their separate

percentage in the reconstruction time is shown in Fig.6.13, Fig.6.14 and Fig.6.15. In all

scenarios BSGD is run for 100 epochs. Fig.6.13 experimentally shows that for a single

node with several GPUs, the speed up is about 1.73 when 2 GPU are used and 2.94 when

4 GPU are used. When the size increases, especially from S =128 to 800, the speed-up

factor remains stable. The reason why the speed-up is various is the computation speed

of TIGRE is unstable in Python environment. Besides, the data communication speed

is also experimentally found to be unstable. Fig.6.14 experimentally shows the time

spent on each procedure in BSGD under different numbers of GPUs. Fig.6.14(c) shows

that the communication cost increases faster along with S than BP. This is because

the TIGRE toolbox uses a simplified computation method to approximate the matrix-

vector multiplication in BP, thus the computation speed of BP is accelerated. A detailed

discussion about the approximations used in TIGRE to efficiently compute BP is beyond

the scope of this thesis. From the multi-CPU and hybrid CPU-GPU simulation results,

it is however worth mentioning that the approximations used in TIGRE do not seem

to affect the reconstruction quality achieved with BSGD. We are here interested in the

use of the method for large scale problems where the cost of matrix vector products

dominates and thus dominates how the algorithm scales. In this setting, the other first-

order algorithms will also have the same communication cost as BSGD and they thus

scale similarly to BSGD. Fig.6.15 further demonstrates that when 4 GPUs are used,

the communication overhead takes larger share than 2 GPU case, taking nearly 40%

among the total wall time. The fast increasing communication overhead suggests that

the parallel scalability of BSGD when using TIGRE toolbox is limited. However, it is

worth mentioning that this drawback is common for all other first-order algorithms since

they all have similar communication schemes.

6.4 A flexible parallel application of BSGD

In this section, BSGD is further researched and is applied in a more flexible parallel way

to further increase its reconstruction speed when computation nodes are of different



Chapter 6 Application on parallel architectures 137

64128 256 512 700 800
S

1.5

2

2.5

3

3.5

4

sp
ee

d-
up

 fa
ct

or

Multi-GPU

theoretic projection ratio(2 GPUs)
theoretic projection ratio(4 GPUs)
actual speed-up(2 GPUs)
actual speed-up(4 GPUs)

Figure 6.13: Scalability of BSGD when used in multi-GPU network in 3D scan-
ning geometry. When the size increases, especially from S =128 to 800, the
speed-up factor remains stable.
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Figure 6.14: When the size gradually increases, especially from S =128 to 800,
the time spent on FP increases faster than the other cost. However in the 4
GPU setting, communication costs are larger than those for BP. This is due to
the efficient implementation of BP in TIGRE, which allows this to be computed
much faster than its counterpart FP. This means that the scalability of BSGD
is limited in TIGRE environment.

computation speeds. It does not require all parallel nodes to wait for each other until

all of them have finished computations. Instead, as long as there is a node that has

finished computation, then the root node immediately communicates with it to update

the corresponding variables. This is an asynchronous communication and so we call this

version of the algorithm Asynchronous BSGD(ABSGD). Two versions of ABSGD have

been proposed and studied in detail.

The ABSGD is mainly proposed to solve the case when the parallel network suffers

from an unforeseen network delay or when one computation node is significantly slower

than the others. However, these two situations are difficult to simulate when the Iridis

5 network is used since each node in it is of the same computation speed and the

communications between nodes are stable for the most of time. It is possible to artificially

introduce some delays for some nodes or during communications, but this makes the

whole simulations rather time-consuming and inefficient. As a result, the simulations

in this section mainly is performed in MATLAB serial code and a virtual wall time t is

introduced to replace the previous time reference “Usage of AJ
I ”. This virtual time t can
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Figure 6.15: Percentage of spent time on each procedure in BSGD under differ-
ent numbers of GPUs. Once a specific problem size has been reached, then the
relative percentage does not change significantly for increasing problem sizes.

be used to reflect different delays in each separate node and communications without

loosing the efficiency of code execution. Besides, it also makes the simulation results

stable and repeatable.

6.4.1 Redefining BSGD time counting system

The previous parallel application of BSGD used synchronous communication. The root

node does not perform the “Gather” function to collect information from all parallel

nodes until all computation nodes have finished their computations. In all simulations

shown in Chapters 3,4 and 5, the computation nodes were assumed to have the same

computation ability and they receive the data at the same time. This assumption means

that all parallel nodes start and finish the computation at the same time, thus the “usage

of AJ
I ”, which is proportional to the time spent on data communication and the data

projection, can be used as a time reference. However, sometimes, the computation nodes

may not have the same computational abilities or the parallel node cannot receive the

data or start the projection at the same time. This phenomenon has been implied in

the demonstrations of BSGD/CSGD general communication frames shown in Fig.6.7

and Fig.6.8. At the data distribution and collection stages, if the master node does

not use collective communication functions such as “Scatter,Bcast,Gather,Reduce” but

use a for-loop with point-to-point communication functions “Send,Recv”, then different

nodes will receive data block at different times and the first node receiving the data

block will also be the first node to finish its calculation and thus becomes the fastest

node. Similarly, the last node receiving a data block is the slowest node. In this case,

the fast computation nodes have to wait for the slow computation nodes to finish their

calculations. This communication property makes the fact that the reconstruction speed

is influenced by the slowest computation node. The existence of waiting time makes “the

usage of AJ
I ” no longer reflect the actual wall time. As a result, here a virtual wall time

t is introduced to be used as a time reference reflecting the reconstruction speed. For
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each parallel node, t is mainly composed of: (1) communication overhead {tcommu,l},
(2) projection time {tproj,l} (3) waiting time {twait,l}, where l ∈ {0, 1, · · · , p− 1} is the

node index among all p parallel nodes. In addition, for the maser node or the root node,

there is an added time: update time {tupd}, which is the time spent on updating r,g,x.

A time counting algorithm for BSGD is shown in Algo.6.3. In the algorithm, the master

node sends/gathers data to/from parallel node using a cyclic point-to-point commu-

nication scheme. The master node performs the update of r,g,x. The parallel node

only performs projections and different computation nodes have different computation

abilities. For simplicity, here we only discuss the case when the selected block number

exactly equals the number of parallel nodes p.

Algorithm 6.3 BSGD, a virtual wall time t is introduced

1: Initialization: All initialization condition is unchanged. t is a virtual wall time on
the master node. {t̃l}l∈[0,p−1] is the “predicted” wall time for each computation node
when they finish current projection. tother is the time spent on selecting different
blocks, which is a tiny amount compared with projection and communication.

2: t = 0
3: for k = 1, 2, · · · ,Kmax do
4: Random select αM row blocks from {Ii}i∈[1,M ] and γN column blocks from

{Jj}j∈[1,N ]. Record all selected i in ibox and all selected j in jbox
5: t = t+ tother (tother can be ignored since it is very small)
6: for l = 0, 1, · · · , p− 1 do
7: The root node sends {zjIi}i=ibox[l],j=jbox[l], {xJj}j=jbox[l] to lth parallel nodes

8: t̃l = t+ tcommu,l
9: t = t̃l

10: end for
11: All parallel nodes compute zjI ,∇zjI
12: For lth parallel node l = [0, 1, · · · , p− 1]: t̃l = t̃l + tproj,l
13: When all parallel nodes finish calculating, root node begin to receive their data

in a sequential way and update rI
14: t = max({t̃l}l∈[0,p−1]) + p(tcommu,l + tupd,rI )
15: for l = 0, 1, · · · , p− 1 do
16: The root node sends {ĝiJj}i=ibox[l],j=jbox[l], {rIi}i=ibox[l] to lth parallel nodes

17: t̃l = t+ tcommu,l
18: t = t̃l
19: end for
20: All parallel nodes compute ĝiJj ,∇ĝiJj and send them back to root node

21: For lth parallel node l = [0, 1, · · · , p− 1]: t̃l = t̃l + tproj,l
22: When all parallel nodes finish calculating, root node begin to receive their data

in a sequential way and update gJ ,xJ
23: t = max({t̃l}l∈[0,p−1]) + p(tcommu,l + tupd,gJ ,xJ

)
24: end for
25: xsolution = [xJ1 , ...,xJN ]T

In simulations, tcommu,l, tproj,l and tupd, are calculated by multiplying the size of data

blocks with parameters τcommu, τproj,l and τupd respectively. For example, an xJ with
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size n is sent to the lth parallel node and AJ
I xJ (AJ

I ∈ Rm×n) is performed in this

node, then tcommu,l = τcommun, tproj,l = τprojmn. To simplify the parameter tuning,

in simulations, τproj is set as different values for the lth node to reflect that different

computation nodes have different computation abilities and τcommu,l, τupd is set as a

constant values. Lines 14 and 23 in Algo.6.3 suggest that for each iteration, the fastest

nodes have to wait for the slowest node, meaning that the synchronous BSGD does not

fully exploit the computational advantage of fast nodes.

6.4.2 Two asynchronous BSGD forms

Here two forms of “asynchronous” BSGD (ABSGD) are proposed, called ABSGD-Ver1

and ABSDG-Ver2 respectively. They both do not require the fast nodes to wait for

the slowest node and can communicate with the master node when they are ready.

ABSGD-Ver1 is shown in Algo.6.4.

In Algo.6.4. The master node first sends data blocks to all parallel nodes as BSGD does.

After the sending process, the master node checks whether there is any computation

node that has already finished computation and is waiting for the master to communicate

the data. If there is no waiting computation node then the master node simply waits

until there is one node that has finished its computation (shown in Algo.6.4 line 26-27).

Otherwise, if there are computation nodes that have finished the computations after

the master sending all data, (shown in Algo.6.4 line 29-30), the algorithm then finds

all waiting nodes and the maser node is going to communicate with them. By only

addressing the waiting nodes or the fastest node, the master node can perform more

updates of r,g and x than synchronous BSGD within the same virtual wall time t, thus

can have a faster reconstruction speed. In addition, the waiting time for each node can

be significantly reduced compared to synchronous BSGD.

In Algo.6.4 line 32, if length(̃i) > 1 , then some nodes still have to wait since only one

computation node can communicate with the master node. This part’s waiting time is

further reduced in ABSDG-Ver2 by only communicating with one waiting node each time

(i.e. enforcing ĩ to only contain 1 element). A while loop to repeatedly check whether

there is a waiting node is proposed, as shown in Algo.6.5. This function is used by

master node. It can be seen that there is only one node is allowed to communicate with

the master node and when the master node finish updating r or g,x, the master node

immediately sends data back to this computation node, thus avoiding the computation

node waiting for the other node which is sending data to the master node. With Check

function, the ABSGD-Ver2 is shown in Algo.6.6.
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Algorithm 6.4 ABSGD-Ver1

1: Initialization: Same as Algo.6.3.
2: for k = 1, 2, ...,Kmax do
3: if k == 1 then
4: Random select αM row blocks and γN column blocks. Record all selected i in

ibox and all selected j in jbox
5: t = t+ tother
6: for l = 0, 1, · · · , p− 1 do
7: The root node sends {zjIi}i=ibox[l],j=jbox[l], {xJj}j=jbox[l] to lth parallel nodes

8: t̃l = t+ tcommu,l
9: t = t̃l

10: end for
11: All parallel nodes compute zjI ,∇zjI
12: Each node: t̃l = t̃l + tproj,l
13: else
14: for l = 1, 2, length(̃i) do
15: if last time the node ĩ(l) has performed FP then
16: The root node sends ĝiJj , r

j
Ii

to node ĩ(l), where i, j is the same pair with

the case when node ĩ(l) performed the FP. This time node ĩ(l) performs
BP.

17: else if last time the node ĩ(l) has performed BP then
18: The root node sends new zjIi ,xJj to node ĩ(l), where i, j is a new pair

that is different from all pairs in other parallel nodes. This time node ĩ(l)
performs FP.

19: end if
20: t̃̃i(l) = t+ tcommu,̃i(l)
21: t = t̃̃i(l)
22: t̃̃i(l) = t̃̃i(l) + tproj,̃i(l)
23: end for
24: end if
25: if t < min({t̃l}l∈[0,p−1]) then

26: Find the node with the smallest t̃, name this node as node ĩ and transfer data
from node ĩ to root node

27: t = t̃̃i + tcommu
28: else
29: Find elements within {t̃l}l∈[0,p−1] that is smaller than t, assemble all these nodes’

index number into one set ĩ and transfer data from those node ĩ to root node
30: t = t+

∑
l∈ĩ tcommu,̃i(l)

31: end if
32: for l = 1, 2, · · · , length(̃i) do
33: Root node updates rI or gJ ,xJ according to data in node ĩ(l)
34: t = t+ tupd
35: end for
36: end for
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Algorithm 6.5 Check(t, {t̃l}l∈[0,p−1])

1: Initialization: flag = 1
2: while flag do
3: t̃min = min({t̃l}l∈[0,p−1]).
4: if t >= t̃min then
5: Find the node with the smallest t̃, name this node as node ĩ
6: Transfer data from node ĩ to root node
7: t = t+ tcommu,̃i
8: The root node performs update.
9: t = t+ tupd

10: The root node sends proper data block back to node ĩ. Reference Algo.6.4 in
terms of selecting “proper” data block

11: t = t+ tcommu,̃i
12: Node ĩ performs projection
13: t̃̃i = t+ tproj,l
14: else
15: flag = 0
16: end if
17: end while

Algorithm 6.6 ABSGD-Ver2, a virtual wall time t is introduced

1: Initialization: Same as Algo.6.3.
2: for k = 1, 2, · · · ,Kmax do
3: if k == 1 then
4: Random select αM row blocks and γN column blocks. Record all selected i in

ibox and all selected j in jbox
5: for l = 0, 1, · · · , p− 1 do
6: The root node sends {zjIi}i=ibox[l],j=jbox[l], {xJj}j=jbox[l] to lth parallel nodes

7: t̃l = t+ tcommu,l
8: t = t̃l
9: lth parallel node does projection

10: t̃l = t̃l + tproj,l
11: end for
12: Check(t, {t̃l}l∈[0,p−1])
13: end if
14: Find the node with the smallest t̃, name this node as node ĩ
15: Transfer data from node ĩ to root node and the root node performs update
16: t = t̃̃i + tcommu + tupd
17: The root node sends data back to node ĩ
18: t = t+ tcommu
19: Node ĩ performs projections
20: t̃̃i = t+ tproj,̃i
21: Check(t, {t̃l}l∈[0,p−1])
22: end for
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6.4.3 Simulations to compare BSGD and ABSGD

To verify the properties of ABSGD algorithms, a tiny CT scanning system where A ∈
R1080×256 is divided into M = 5, N = 16 blocks and a parallel node with 4 computation

nodes (p = 4) are adopted. The projection data are stored in double-precision floating-

point format and there is no added noise on it. All algorithms are stopped when the

virtual time t achieves 4 × 108. During this process the trend of SNR over the virtual

time t can reflect convergence properties of different algorithms. τcommu and τproj are

set to different values and τupd is set as constant 1 for simplicity. The comparisons of the

time spent on each projection and communication under different τcommu, τproj is shown

in Fig.6.16. In simulations, three different types of τproj are set. In the first case (the

first row of figure), τproj,l gradually increases when the node index number increases.

It means that the node 0 is the fastest node and the node 3 is the slowest node. As

a result, the time spent on FP/BP gradually increases when the node number index l

increases. In the second scenario (the second row of figure), the first two nodes (l = 0, 1)

are relatively fast with τproj,l = 1 while the last two nodes (l = 2, 3) are relatively slow

with τproj,l = 2. For both cases, the range of τcommu covers from 0.1 to 5. The figure

have reflected that communication overhead gradually takes larger portion during the

reconstruction process. In the third case, τproj,l = 1, which means that all nodes are of

the same computation ability. It is not shown in the figure because all nodes have the

same shape with “Node 0” in Fig.6.16(a)-(c).
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Figure 6.16: Illustration of virtual time spent on each node under different
communication delays.
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The simulation results of reconstruction speed of BSGD, ABSGD-VER1, and ABSGD-

Ver2 are shown in Fig.6.17. In the figure, the red-solid lines are BSGD results and

blue-dotted lines are ABSGD-Ver1 results. The black-dashed lines are the ABSGD-

Ver2. All simulations are repeated with different step lengths µ from a tiny value to the

largest value ensuring convergence. It can be seen that under first two cases of τproj set-

ting (first two rows), ABSGD-Ver1 and ABSGD-Ver2 both outperform the synchronous

BSGD form. In the third case of τproj setting (third row) where each node is of the

same computation capacity, when the communication overhead is tiny (τcommu = 0.1),

each node can be viewed that they receive the data block at the same time and ABSGD

barely outperforms BSGD. However, when τcommu increases to 1 and 5, different node

receives the data block at different time, and then ABSGD gradually shows the advan-

tage over BSGD. The fact that both ABSGD reaches to over 100 dB suggests that the

asynchronous application of BSGD is able to reach to high accuracy solutions in realistic

applications. The ABSGD-Ver2 is more recommended since it has a simpler communi-

cation scheme than ABSGD-Ver1. Besides, it can even outperform the ABSGD-Ver1

especially when τcommu is 5.
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Figure 6.17: Reconstruction speeds of synchronous BSGD and ABSGD under
three different computation delays.

The main reason why the ABSGD can outperform BSGD is that the waiting time of

computation node is reduced, thus enabling the fast node to perform more projections to

exploit the fast computation ability. Each node’s waiting time is calculated as the total

wall time t minus each node’s projection time and communication time. The waiting

time of each node through different simulations are shown in Fig.6.18, Fig.6.19 and

Fig.6.20.
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Figure 6.18: The relative time distribution on each part. This figure reflects
the case when τproj,l = l+ 1, l = 0, · · · , p− 1. Different row represents different
method’s relative distribution of spending time under different communication
overheads. It can be seen that the increase of τcommu increases the waiting
time and the communication overhead for each node. Each column provides
comparisons of different methods under the same τcommu. It can be seen that
ABSGD-Ver1 and ABSGD-Ver2 both significantly reduce the waiting time and
thus increase the projection time compared with BSGD. It means that the
asynchronous BSGD can perform more projections than BSGD within the same
wall time, leading to more updates on x. This explains why both ABSGD is
faster than BSGD within the same wall time. When τcommu = 5, the ABSGD-
Ver2 can further reduce the waiting time compared with ABSGD-Ver1. This
is due to the algorithm’s property which only processes one computation node
each time.
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Figure 6.19: This figure reflects relative time distribution when τproj,l = 1(l <
2) or 2(l > 1) ABSGD shows the same trend with Fig.6.18. Two ABSGD
algorithms can increase the projection time while reducing the waiting time,
thus increasing the reconstruction speed.
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Figure 6.20: This figure reflects relative time distribution when τproj,l = 1, l =
0, · · · , p − 1. Two ABSGD algorithms can increase the projection time while
reducing the waiting time, thus increasing the reconstruction speed. It is worth
mentioning that when τcommu = 0.1, the waiting time in BSGD is not long
enough to significantly slow down the reconstruction speed, thus making the
ABSGD cannot outperform BSGD even if ABSGD further reduces the waiting
time.

Furthermore, it is worth mentioning that the automatic parameter tuning method

proposed in the section 4.6 is still applicable to ABSGD. Here I combine the automatic

tuning method with ABSGD-VER2. Simulations show that in the toy problem A ∈
R1024×256, when τproj,l = l + 1, l = 0, · · · , p − 1 and τcommu = τupd = 1, the automatic

parameter tuning strategy with previous choice of ε, δ, t1, t2 works well. As shown in

Fig.6.21.

6.4.4 ABSGD in non-block communications

From the above MATLAB serial simulations, it can be seen that when the parallel

computation nodes have different computational abilities, then ABSGD can outperform
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Figure 6.21: All parameters are the same with simulations in section 4.6. The
automatic parameter tuning strategy can tune the step-length µ to a proper
range and accelerate the original ABSGD-Ver2. This simulation adopts double-
precision data type and thus DS achieves 10−10.

BSGD and achieve faster reconstruction speed. In this section, the ABSGD is applied in

a realistic parallel network by using non-blocking communications provided by mpi4py.

In the Python environment, this means that we can use “Isend” and “Irecv” to perform

the data communication in line 6,10 of Algo.6.5 and line 6,15 of Algo.6.6. For the

code simplicity, however, this realistic application is developed at an initial stage, where

only two parallel processes are created to control two parallel nodes. As a result, only

ABSGD-Ver2, which only enable one parallel node to communicate with the master

node, is compared with synchronous BSGD.

In simulations, ABSGD-Ver2 and synchronous BSGD are used to reconstruct a 3D

cone beam scanning data with the usage of TIGRE toolbox. The scanning geometry

is shown in Table.6.2. A 2-GPU workstation is used in this section and the ASTRA

Table 6.2: 3D cone-beam scanning geometry in ABSGD application

K in Fig.3.5 Detector size Image size Detector number

256 150× 150 64× 64× 64 8×K

Voxel number Projection views OP in Fig.3.5 OD in Fig.3.5

K ×K ×K 8×K 1000 1000

toolbox can separately control the GPU to perform different projections. The GPUs

are both Geforce GTX 2080Ti, they are named as GPU0 and GPU1. Two parallel

processes are created and called rank0 and rank1. Each process, equipped with one
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CPU, separately controls a single GPU to perform the FP and BP. The rank0 process is

also used as the master node, which is responsible for the update of r,g,x. During data

assignment, rank0 sends data blocks using “Isend” while rank1 receives data blocks

using “Recv” (There is no need to use Irecv because rank1 will not work until the

data is fully received). At the data gathering process, rank1 sends a data block using

“Send” (Again, there is no need to use “Isend” since rank1 does not have computation

task before next data block is received), while rank0 receives the computed result using

“Irecv”. It can be seen that rank0 does not have to wait during the data transformation

stage. As a result, in ABSGD-Ver2, rank0 can perform more computations than rank1,

whilst in synchronous BSGD, rank0 has to wait for rank1 until the data block finishes

communication. To simulate the case when two GPUs have different computational

abilities, a sleep function time.sleep(ExtraDelay) is added after GPU1 has performed

its projections, in other words, GPU1 is slower than GPU0 by ExtraDelay seconds. For

different ExtraDelay the SNR of the reconstructed x obtained by BSGD and ABSGD-

Ver2 after 600s of wall time and the projection times for each process are shown in

Fig.6.22. This illustrates that ABSGD-Ver2 allows the faster GPU0 to perform more
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Figure 6.22: The step lengths µ in both methods have been carefully tuned
for the fastest performance. When Extradelay = 0, which means that the
two computation nodes have the same computation abilities, the BSGD is the
best option. When Extradelay increases, the ABSGD gradually shows better
performance than BSGD. In the original case, the FP and BP both takes about
0.3 to 0.4s. When Extradelay reaches 2s, it means that GPU0 is 5 times faster
than GPU1.

projections even when ExtraDelay = 0. This is because the “Isend”,“Irecv” function

allows rank0 node to continue the work instead of waiting for rank1 to finish data

communication. When ExtraDelay increases, since rank0 always has to wait for rank1

in BSGD, the reconstruction speed gradually slows down, whilst in ABSGD-Ver2, rank0

can still frequently perform projections as well as the relevant update procedure, thus

having a faster reconstruction speed than BSGD.
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6.5 Conclusions

This chapter is a bit different from the previous chapters. Here the algorithm’s property

is not the main focus. Instead, realistic parallel applications of BSGD/CSGD and a

flexible changes to BSGD were studied. In section 6.2, the general data communication

scheme of CSGD and BSGD were proposed in Fig.6.7 and Fig.6.8. This illustrates that

CSGD has a simpler communication scheme than BSGD. When the number of selected

row and column blocks are pre-determined as αM and γN respectively, and p gradually

increases from 1 to αγMN , then CSGD shows better scalability than BSGD, as shown

in Fig.6.9. Furthermore, the actual reconstruction speed referenced by wall time is

also compared between the two proposed algorithms. In simulations, the number of

parallel nodes is gradually increased and α, γ are changed according to the different p.

Simulations show that although BSGD has worse scalability than CSGD, BSGD still has

faster reconstruction speed compared to CSGD, as shown in Fig.6.10. This is because

BSGD has a faster reconstruction speed over “ the usage of AJ
I ” than CSGD, and this

property compensates BSGD’s drawback in the inefficient communication scheme.

When applying BSGD and CSGD in a parallel network, the default communication

scheme is synchronous. All parallel nodes will wait for each other until the slowest node

has finished computation. After that they are allowed to communicate with the master

node to send the computation results back to update r or g,x. If the parallel nodes have

the same computation speed and can access the master node at the same time, this com-

munication scheme works well. However in realistic parallel networks, it is possible that

the master nodes have to communicate with each parallel computation node in a cyclic

point-to-point way and the computation node may have different computation abilities.

Furthermore, the communication network may also encounter unforeseeable delays dur-

ing the reconstruction process. As a result, developing a more flexible communication

scheme for BSGD is of interest in section 6.4. The proposed flexible communication

enables the fast computation node to immediately communicate with the master node

and does not have to wait for the slowest node. This communication is no longer syn-

chronous but is asynchronous and thus is named as ABSGD. There are two versions

of ABSGD: ABSGD-Ver1 and ABSGD-Ver2. In the ABSGD-Ver1, if there are several

computation nodes that have finished the computation and are waiting for the com-

munication with the master node, the master node will communicate with all of them.

In the ABSGD-Ver2, the master node only communicates with one parallel node each

time. Simulations have both verified that these two algorithms can reduce the waiting

time of those fast computation nodes, enabling the faster computation nodes to per-

form more projections as well as iterations on r,g,x, as shown in Fig.6.18, Fig.6.19 and

Fig.6.20. This efficient communication scheme enables the ABSGD-Ver1 and ABSGD-

Ver2 to both outperform the original synchronous BSGD when the computation nodes

have different computation abilities, as shown in Fig.6.17. The ABSGD-Ver2 is applied

in a 3D realistic reconstruction case where two parallel GPUs are used. Simulations
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show that when the 2 GPUs are of the same computation abilities, the ABSGD has a

slower reconstruction speed than BSGD. However, when one of the GPUs is slower than

the another, the fast GPU can perform more projections instead of waiting for the slow

GPU and thus the advantage of ABSGD appears, as shown in Fig.6.22.

There are two open areas of this chapter: 1) The experiments are mainly performed in a

small scale problem to reduce the experiment time. The application of BSGD and CSGD

on large case 3D cone beam dataset has not performed yet. In the large scale application,

since each node is only equipped with four GPUs, it is possible to require data flow to be

communicated between nodes. Such particular communication scheme and its property

is not researched yet. 2) The programming of ABSGD in MPI environment is not fully

finished. Currently only two nodes can be used for executing ABSGD. When using more

nodes, a judgement criteria for deciding which node to communicate with the master

node should be researched in detail.



Chapter 7

Conclusions

In this thesis, CT scanning is approximated as a linear system and the reconstruction

process is regarded as an optimization of a quadratic objective function added with a

regularization term. Current row and column action methods either require the recon-

structed image vector x to be updated as a whole in each parallel computation node or

require the computation nodes to have full access to the projection data y. For large-

scale CT reconstruction, this requirement causes multiple data communication between

computation nodes (the node responsible for projection computation ) and the master

node (the node which stores all variables for iterative algorithms), making the commu-

nication overhead huge. In this thesis, two algorithms, CSGD and BSGD are proposed,

aiming to reduce times of communication and thus to increase the reconstruction speed.

The contributions presented in this thesis can be concluded as three main parts. In the

first two contributions, two parallel algorithms CSGD/BSGD are proposed respectively

and their mathematical properties are studied in Chapters 3, 4. To be more specific, two

algorithms are proposed and compared with each other as well as with other existing

SIRT-type methods. All nodes were assumed to have the same computational abilities

and they always communicate with the master node at the same time. The data com-

munication and the following projection calculations are the most time-consuming part

among the whole reconstruction process for all SIRT-type methods. As a result, the

“usage of AJ
I ”, which means an intact “request data block→projections→sends results

back to the master node” circle for each computation node, is used as a time reference

to reflect the speed of reconstruction. The first two contributions contained in these two

chapters include the following contributions:

� CSGD is the first algorithm to be proposed and it is inspired by the steepest gra-

dient descent algorithm. In Chapter 3, simulations have experimentally illustrated

that it computes high-accuracy solutions regardless of the partitions of the sys-

tem matrix A. This method reduces the computation cost in each iteration and

also enables a more flexible parallel application, at the cost of introducing a more

153
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stochastic update direction. Besides, the computation efficiency is much higher

than block ADMM, which is another main reference method in this thesis apart

from the first order methods. Simulations have verified the speed advantage of

CSGD when compared with block ADMM.

� BSGD is inspired by the SAG. It uses a more complicated data communication

scheme than CSGD. This is caused by the accumulation of the previous sub-

gradient ingredients ĝiJ , thus making the error variance of the estimated gradient

decrease along with iterations. The complicated communication scheme requires

2 inner-loops to update r, g and x separately, which is the same as the other

SIRT-type row action methods. Despite the same communication scheme, BSGD

does not have to iterate over all of x each time and it computes to high-accuracy

solutions even if the percentage of selected column blocks γ < 1. It is similar

to CSGD, in that it allows a flexible sampling of sub-matrices AJ
I and converges

regardless of the shape of AJ
I or the selection criteria on α, γ. In Chapter 4, BSGD

uses the same sampling method as CSGD. This can simplify the data communi-

cation by minimizing α = 1
M and adjusting γ according to the available number

of computation nodes, enabling x blocks to be independently updated within the

parallel computation nodes. Importance sampling is also applicable to BSGD and

simulations have verified that BSGD-IM has the fastest reconstruction speed com-

pared with the other existing SIRT-type methods including mini-batch SGD, SAG,

SVRG.

The third contribution is the further explorations on two developed algorithms. The

exploration includes : 1) the importance sampling trick and automatic parameter tun-

ing trick. The discussions have presented during the introduction of CSGD and BSGD

during Chapter 3 and 4. 2) The application of two proposed algorithms in few-view

projection data case. Simulation results have shown that they can substitute the GD

in the proximal methods to approximately optimize a TV-regularized objective func-

tion. 3) The application of CSGD and BSGD in realistic parallel network is performed

in Iridis supercomputer, which demonstrates two algorithms scalability. Furthermore,

an asynchronous application framework of BSGD is developed to further increase the

reconstruction speed. The third contribution is expanded as the following:

� An importance sampling method is proposed and is available for two proposed

methods. In the original CSGD and BSGD, the image is divided into N sub-

images and projections of each sub-image are not distributed to the whole detector

but on a limited sub-detector area. The importance sampling method divides the

detector into many sub-detectors and only samples partial of sub-detectors. This

enables each row block to contain more projection views and let sub-detectors with

massive non-zero projection data be more frequently used in iterations than those
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with loads of zero projection data. Simulations have experimentally verified the

improvement brought by importance sampling.

� In realistic settings, the step-length µ may be set too small which leads to a slow

reconstruction speed. An automatic parameter tuning strategy is thus proposed

to accelerate the case when initial step-length is set improperly small. Further-

more, the Katyusha acceleration trick is adopted for BSGD. Instead of applying

a momentum step after every single stochastic iteration, the BSGD-KatyushaXs

applies a momentum acceleration under an update frequency f . Simulations show

that when f ≥ 2M , the BSGD-KatyushaXs effectively accelerates BSGD and

BSGD-IM even when they are well tuned to the fastest reconstruction speeds.

� Simulations in Chapter 3 and 4 mainly discuss two algorithms’ performance when

there is enough projection data. When using few projections, only applying the

SIRT-type algorithms to optimize the quadratic objective function cannot obtain a

high-accuracy solution and the reconstructed image shows severe artefacts. A pop-

ular method to increase the reconstructed image quality is to use a TV de-noising

procedure after the gradient-descent movement. Simulations in Chapter 5 prove

that CSGD and BSGD can be combined with TV de-noising. The combination

is flexible. It can perform CSGD/BSGD iterations with predefined frequencies,

followed by a TV de-noising on the whole of x, or on γN image blocks. Under two

different combinations, the frequencies of CSGD/BSGD iterations are different to

ease the comparison with the other SIRT-type methods with TV constraints. Sim-

ulations have verified that partial de-noising on γN blocks, called BSGD/CSGD-

TV(partial), reconstructs the scanned object with high-SNR without sacrificing

reconstruction speed and image quality compared with BSGD/CSGD-TV(whole),

which perform TV de-noising on the whole of x. Both methods can outperform the

other existing SIRT-type methods due to the reduced communication overhead.

� The scalability of BSGD and CSGD are compared with each other and simula-

tions are performed in a Python environment. Each node has the same com-

putation speed and they execute code simultaneously. CSGD is shown to have

better scalability than BSGD due to a smaller communication overhead and re-

duced communication times. However, BSGD is faster than CSGD in realistic

parallel computation environment. As a result, in the following discussions on

asynchronous applications, only BSGD is discussed.

� In realistic parallel networks, there may be a time delay for each node to receieve

the data from the master node because the master node adopts a cyclic point-

to-point communication method or the communication network has unforeseeable

delay during the reconstruction process. As a result, developing a more flexible

communication scheme of BSGD is of interest in the last part of the thesis. The

flexible communication increases each parallel node’s independence and enables
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them to communicate with the master node asynchronously. It is called AB-

SGD. There are two versions of ABSGD: ABSGD-Ver1 and ABSGD-Ver2. In the

ABSGD-Ver1, if there are several computation nodes that have finished the com-

putation and are waiting for the communication with the master node, the master

node will communicate with all of them. In the ABSGD-Ver2, the master node

only communicates with one parallel node each time. Simulations have verified

that these two algorithms can reduce the waiting time of those fast computation

nodes, enabling the fast computation nodes to perform more projections as well

as iterations on r,g,x, outperforming the original BSGD.

7.1 Future work

Both CSGD and BSGD are inspired by existing SIRT-type methods and can be viewed

as improvements on the steepest gradient descent and SAG methods respectively. Since

both algorithms uses only a block of projection data and image, the update direction is

rather stochastic and cannot be viewed as unbiased estimation of the gradient direction.

This property makes the mathematical analysis rather difficult. Currently only the

fixed point of two algorithms are performed. The fixed point of BSGD is located at

the least square solution whilst the CSGD’s fixed point is located at a weighted least

square solution. From this result, a conjecture is proposed that the BSGD converges to

a solution that is much closer to CSGD. Simulation results have shown corresponding

results. However, rigorous convergence analysis proving whether the BSGD converges

to the least square solution on expectation and whether the CSGD converges to a least

square solution on expectation is missing in this thesis. Due to the lack of theoretical

proof, from the Chapter 3 to 5, the advantages of CSGD/BSGD over the other methods

are both experimentally illustrated instead of mathematically. A more rigorous proof on

the advantage of BSGD/CSGD over other SIRT-type algorithms needs to be performed.

Simulation results for noise-free and slight noise dataset have shown that the CSGD

and BSGD can obtain incremental SNR trends, which hints that they have the abil-

ity to reduce the data fidelity. This means that the CSGD and BSGD can replace

the gradient descent procedure and can combine with TV-based denoising procedure to

approximately optimize TV-based optimization, which is of more realistic application

value. In fact, when the dataset is contaminated by high level noise, situations have

shown that with a proper early termination strategy, for example, terminating the it-

eration when the SNR has achieved its peak value, the CSGD and BSGD show similar

relative reconstruction speed comparison results under different α, γ parameter settings

(for example, shown in Fig.3.9-3.12, Fig.4.1-4.3), and the simulations also prove the

claim made in Eq.3.8 for how to determine α, γ for a fast reconstruction speed. How-

ever, after introducing the early stopping strategy, it then becomes difficult to convince

readers that the CSGD and BSGD are converging. Furthermore, in simulations, when
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to determine the CSGD and BSGD is easy to determine, as the SNR trend is visible

(the xtrue is a known vector), but in realistic applications when to stop the iteration

is difficult to determine and it becomes another research topic. Consider the fact that

the main focuses of Chapter 3 and 4 are to illustrate that the CSGD and BSGD has

the ability to reduce the data fidelity and obtain an increment SNR trend and to show

the recommended parameter(mainly α, γ) setting, this thesis does not present the sim-

ulations under severe noise where the semi-convergence phenomena is significant. The

detailed discussions on semi-convergence phenomena is an open area.

Furthermore, as this thesis mainly focuses on the two algorithms’ basic properties, the

performance of the methods is mainly illustrated on small scale CT scanning problems

to save time. It thus lacks more realistic applications to large scale CT dataset. In

future work, more CSGD and BSGD applications on realistic datasets are needed to be

performed. In the asynchronous application of BSGD, the code currently only covers the

2-GPU case, where rank0 and rank1 communicate with each other using “Isend,Irecv”.

A more general code that enables more than 2 GPUs to get involved in the reconstruction

is missing in this thesis.





Appendix A

Open area for mathematical

analysis of CSGD and BSGD

This appendix includes the mathematical analysis conducted on both BSGD and CSGD.

Fixed point analysis has performed to find a solution that makes the iteration generate

a stable iteration results sequence.

A.1 CSGD fixed point analysis

Whilst a formal convergence proof of general CSGD is not available yet, it is instructive

to analyse the fixed points of the algorithm. The deterministic version of the algorithm

with α = γ = 1 is first analysed.

The algorithm updates two quantities, x and z. Let (xk+1, zk+1) = T (xk, zk) define one

iteration of the algorithm. Let x? and z? be fixed points of the operator T (x, z) defined

by (x?, z?) = T (x?, z?). Similar results to the once derived here for the deterministic

algorithm can also be obtained for the randomised versions and for α < 1 if we look at

points for which (x?, z?) = E{Tr(x?, z?)}, where E{·} is the expectation with respect

to the random iteration operator Tr(x, z), given the current state. In the following

demonstration, I and J are arbitrarily selected from {Ii}Mi=1 and {Jj}Nj=1.
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The deterministic version of the algorithm computes updates of the form

xk+1
J =

1

M

M∑
i=1

xiJ
k+1

=
1

M

M∑
i=1

(xkJ + µijg
i
J)

= xkJ +
1

M

M∑
i=1

µij(A
J
Ii)

T (yIi − zkIi),

(A.1)

and

zk+1
I =

N∑
j=1

zjI
k

=
N∑
j=1

A
Jj
I (xkJj + µijg

i
Jj )

=

N∑
j=1

A
Jj
I (xkJj + µij(A

Jj
I )T rkI )

= AIx
k +

N∑
j=1

µijA
Jj
I (A

Jj
I )T (ykI − zkI )

= AIx
k + SI(y

k
I − zkI ),

(A.2)

where SI is a determined matrix and is defined as SI =
∑N

j=1 µ
i
jA

Jj
I (A

Jj
I )T .

This implies that, at the fixed point x? and z?, we have

z?I = (I + SI)
−1AIx

? + (I + SI)
−1SIyI (A.3)

and
M∑
i=1

µij(A
J
Ii)

T (yIi − z?Ii) = 0. (A.4)

Eq.A.3 can be expanded

z? = (I + ST )−1Ax? + (I + ST )−1STy, (A.5)

where ST is a block diagonal matrix:

ST =


SI1 0 · · · 0

0 SI2 · · · 0
...

...
...

...

0 0 · · · SIM

 . (A.6)

Note that (I+ST ) is a positive semi-definite matrix if µij are positive. Define a diagonal

matrix Dj with diagonal entries µij where Dj(h, h) = µij if h ∈ Ii. Eq.A.4 can thus be

written as

(DjA
J)T (y − z?) = 0. (A.7)
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Combining Eq.A.5 and Eq.A.7 gives

0 = (DjA
J)T (y − (I + ST )−1Ax? − (I + ST )−1STy)

= (DjA
J)T (I + ST )−1(y −Ax?).

(A.8)

This equation has to hold for all J . As Dj is a diagonal matrix, this implies that

0 = AT (I + ST )−1(y −Ax?), (A.9)

which shows

x? =
(
AT (I + ST )−1A

)−1
AT (I + ST )−1y (A.10)

is a weighted least squares solution.

A.2 BSGD fixed point analysis

In this section, some mathematical deductions are presented to show that the fixed point

of BSGD locates at the least square solution. To simplify the deduction, the sampling

of Ii, Jj in inner loops are considered as independent to each other.

Notation: Let us vectorise the sets {(zjIi)
k} and {(ĝiJj )

k} and put their elements into

the vectors z̃k and g̃k. Let A be defined as

A =



AJ1
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...
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IM
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0 AJ2
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...

0 0 0 AJN
IM


∈ RNr∗c

and let

AT =



(AJ1
I1

)T 0 0 0

(AJ2
I1

)T 0 0 0
...

...

(AJN
I1

)T 0 0 0

0 (AJ1
I2

)T 0 0

0 (AJ2
I2

)T 0 0
...

...

0 0 0 (AJN
IM

)T


∈ RMc∗r.
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We have:

x ∈ Rc

y ∈ Rr

z̃ ∈ RNr

g̃ ∈ RMc.

Let us also introduce the matrix IMc =
[
Ic, Ic, · · · Ic

]
, where we concatenate M identity

matrices Ic each of size c ∗ c and define INr similarly.

With this notation INrA = A and IMcAT = AT .

Since

zjIi = A
Jj
Ii

xJj

and

ĝiJj = (A
Jj
Ii

)T (yIi −
∑
j

zjIi).

then

∑
j


(zjI1)k+1

(zjI2)k+1

...

(zjIM )k+1

 = INrz̃
k+1

and

∑
i


(ĝiJ1)k+1

(ĝiJ2)k+1

...

(ĝiJN )k+1

 = IMcg̃
k+1.

To encode the random updates over subsets of index pairs {i, j}, random matrix whose

elements are random numbers are introduced. Here introduce three random diagonal

matrices R1 , R2 and R3, which are diagonal matrices whose diagonal entries are either

0 or 1. Note that R1 is a block matrix with MN square blocks of size r/M along the

diagonal, where random αγMN blocks among total MN blocks ( defined as
(
MN
αγMN

)
)

are identity matrices with the remaining blocks being 0. Similarly R2 and R3 are block

diagonal with MN and N square blocks of size c/N along the diagonal. For R2 there

are
(
MN
αγMN

)
non-zero blocks along the diagonal, whilst for R3 we have n3 blocks, where
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n3 is the number of distinct indices j drawn. We have

R1 =



δ1
1,1Ir/M 0 · · · 0 · · · 0

0 δ1
1,2Ir/M · · · 0 · · · 0

. . .

0 0 · · · δ1
i,jIr/M · · · 0

. . .

0 0 · · · 0 · · · δ1
M,NIr/M


∈ RNr∗Nr

,

R2 =



δ2
1,1Ic/N 0 · · · 0 · · · 0

0 δ2
1,2Ic/N · · · 0 · · · 0

. . .

0 0 · · · δ2
i,jIc/N · · · 0

. . .

0 0 · · · 0 · · · δ2
M,NIc/N


∈ RMc∗Mc

,

R3 =



δ3
1Ic/N 0 · · · 0 · · · 0

0 δ3
2Ic/N · · · 0 · · · 0

. . .

0 0 · · · δ3
j Ic/N · · · 0

. . .

0 0 · · · 0 · · · δ3
NIc/N


∈ Rc∗c

, where δ1
i,j , δ

2
i,j and δ3

j are random coefficients whose values are 0 or 1, which reflects

which A
Jj
Ii

and xJj are selected.

We thus have z̃k+1 = z̃k + R1(Axk − z̃k), g̃k+1 = g̃k + R2(AT rk+1 − g̃k) and xk+1 =

xk + R3µIMcg̃
k+1

With this notation, we can thus write:

rk = y − INrz̃
k (A.11)

so that the update of z̃, g̃ and x becomes:

z̃k+1 = z̃k + R1

[
Axk − z̃k

]
, (A.12)

g̃k+1 = g̃k + R2

[
AT

(
y − INrz̃

k+1
)
− g̃k

]
(A.13)
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and

xk+1 = xk + R3

(
µIMcg̃

k+1
)
. (A.14)

Inserting the first equation into the second and then the second equation into the third,

we get the following recursions:

z̃k+1 = z̃k + R1

[
Axk − z̃k

]
, (A.15)

i.e .

z̃k+1 = (INr −R1) z̃k + R1Axk, (A.16)

g̃k+1 = g̃k + R2

[
AT

(
y −

(
INr (INr −R1) z̃k + INrR1Axk

))
− g̃k

]
(A.17)

i.e .

g̃k+1 = (IMc −R2) g̃k + R2ATy −R2AT INr(INr −R1)z̃k −R2AT INrR1Axk (A.18)

and

xk+1 = xk + µR3IMc (IMc −R2) g̃k + µR3IMcR2ATy

−µR3IMcR2AT INr(INr −R1)z̃k − µR3IMcR2AT INrR1Axk. (A.19)

i.e.

xk+1 =
(
Ic − µR3IMcR2AT INrR1A

)
xk

+µR3IMc (IMc −R2) g̃k

+µR3IMcR2ATy

−µR3IMcR2AT INr(INr −R1)z̃k.

or in matrix form: z̃k+1

g̃k+1

xk+1

 = Mk

z̃k

g̃k

xk

+

 0

R2ATy

µR3IMcR2ATy

 (A.20)

where

Mk =


(INr −R1) 0 R1A

−R2AT INr(INr −R1) (IMc −R2) −R2AT INrR1A

−µR3IMcR2AT INr(INr −R1) µR3IMc (IMc −R2)
(
Ic − µR3IMcR2AT INrR1A

)

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Theorem A.1. For all R1, R2 and R3, the vectorz∗

g∗

x∗


is a fixed point of the algorithm iff

AT (y −Ax∗) = g∗, (A.21)

z∗ =


AJ1
I1

x∗J1
AJ1
I2

x∗J1
...

AJN
IM

x∗JN

 = Ax∗

and

IMcg
∗ = IMc


AT
I1

(yI1 −AI1x
∗)

AT
I2

(yI2 −AI2x
∗)

...

AT
IM

(yIM −AIM x∗)

 = IMcAT (y −Ax∗) = 0.

Proof. To prove the theorem, we look at each line of the Eq.A.20.

The first line

z∗ −R1z
∗ + R1Ax∗ = z∗ (A.22)

holds for all R1 iff z∗ = Ax∗. Thus, using z∗ = Ax∗, the second line gives

−R2AT INr(INr −R1)z∗ + (IMc −R2)g∗ −R2AT INrR1Ax∗ + R2ATy = g∗ (A.23)

If it is expanded it can be seen that:

−R2AT INrAx∗ + R2AT INrR1Ax∗ −R2g
∗ −R2AT INrR1Ax∗ + R2ATy = 0.(A.24)

The above equation can be simplified as

g∗ = AT (y −Ax∗) (A.25)
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where we have used the equality INrA = A. Using g∗ = AT (y−Ax∗) the last line then

gives

x∗ + µR3IMcR2AT INrR1Ax∗ − µR3IMcR2AT INrAx∗ (A.26)

+µR3IMcATy − µR3IMcR2ATy − µR3IMcATAx∗ + µR3IMcR2ATAx∗

−µR3IMcR2AT INrR1Ax∗

+µR3IMcR2ATy

= x∗ − µR3IMcR2AT INrAx∗ (A.27)

+µR3IMcATy − µR3IMcATAx∗ + µR3IMcR2ATAx∗

= x∗ − µR3IMcR2ATAx∗ (A.28)

+µR3IMcATy − µR3IMcATAx∗ + µR3IMcR2ATAx∗

= x∗ + µR3IMcAT (y −Ax∗) = x∗, (A.29)

which can only hold for all R3 iff IMcAT (y − Ax∗) = AT (y − Ax∗) = IMcg
∗ = 0.

This means that the fixed point of the BSGD is located at the least square solution.

Despite that currently it cannot be proved that the BSGD can finally on expectation

converges to the fixed point, at least the analysis hints that the BSGD can approach to

the least square solution closer than CSGD and the previous simulations have verified

this conjecture.
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Richtárik, P. and Takáč, M. (2016). Parallel coordinate descent methods for big data

optimization. Mathematical Programming, 156(1-2):433–484.

Rose, S., Andersen, M. S., Sidky, E. Y., and Pan, X. (2014). Application of incremental

algorithms to ct image reconstruction for sparse-view, noisy data. In 3rd International

Conference on Image Formation in X-Ray Computed Tomography, pages 351–354.

Roux, N. L., Schmidt, M., and Bach, F. R. (2012). A stochastic gradient method with an

exponential convergence rate for finite training sets. In Advances in neural information

processing systems, pages 2663–2671.

Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv

preprint arXiv:1609.04747.

Rudin, L. I. and Osher, S. (1994). Total variation based image restoration with free

local constraints. In Proceedings of 1st International Conference on Image Processing,

volume 1, pages 31–35. IEEE.

Rudin, L. I., Osher, S., and Fatemi, E. (1992). Nonlinear total variation based noise

removal algorithms. Physica D: nonlinear phenomena, 60(1-4):259–268.

Sabne, A., Wang, X., Kisner, S. J., Bouman, C. A., Raghunathan, A., and Midkiff,

S. P. (2017). Model-based iterative ct image reconstruction on gpus. In Proceed-

ings of the 22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, pages 207–220. ACM.

Sauer, K. and Bouman, C. (1993). A local update strategy for iterative reconstruction

from projections. IEEE Transactions on Signal Processing, 41(2):534–548.

Sauer, K. D., Borman, S., and Bouman, C. A. (1995). Parallel computation of sequential

pixel updates in statistical tomographic reconstruction. In Image Processing, 1995.

Proceedings., International Conference on, volume 2, pages 93–96. IEEE.

Schindler, M., Batzle, M. L., and Prasad, M. (2017). Micro x-ray computed tomogra-

phy imaging and ultrasonic velocity measurements in tetrahydrofuran-hydrate-bearing

sediments. Geophysical Prospecting, 65(4):1025–1036.

Schmidt, M., Le Roux, N., and Bach, F. (2017). Minimizing finite sums with the

stochastic average gradient. Mathematical Programming, 162(1-2):83–112.

Schmidt, M., Roux, N. L., and Bach, F. R. (2011). Convergence rates of inexact

proximal-gradient methods for convex optimization. In Advances in neural infor-

mation processing systems, pages 1458–1466.



REFERENCES 177

Selesnick, I., Lanza, A., Morigi, S., and Sgallari, F. (2020). Non-convex total variation

regularization for convex denoising of signals. Journal of Mathematical Imaging and

Vision, pages 1–17.

Shalev Shwartz, S. and Tewari, A. (2011). Stochastic methods for l1-regularized loss

minimization. Journal of Machine Learning Research, 12(Jun):1865–1892.

Sheng, X. and Chen, G. (2010). A note of computation for mp inverse a. International

Journal of Computer Mathematics, 87(10):2235–2241.

Sidky, E., Duchin, Y., Pan, X., and Ullberg, C. (2011). A constrained, total-variation

minimization algorithm for low-intensity x-ray ct. Medical physics, 38(7):S117–S125.

Sidky, E. Y., Kao, C., and Pan, X. (2006). Accurate image reconstruction from few-

views and limited-angle data in divergent-beam ct. Journal of X-ray Science and

Technology, 14(2):119–139.

Sidky, E. Y. and Pan, X. (2008). Image reconstruction in circular cone-beam computed

tomography by constrained, total-variation minimization. Physics in medicine and

biology, 53(17):4777–4807.

Soleimani, M. and Pengpen, T. (2015). Introduction: a brief overview of iterative algo-

rithms in x-ray computed tomography.

Stiller, W. (2018). Basics of iterative reconstruction methods in computed tomography:

a vendor-independent overview. European journal of radiology, 109:147–154.

Strohmer, T. and Vershynin, R. (2009). A randomized kaczmarz algorithm with expo-

nential convergence. Journal of Fourier Analysis and Applications, 15(2):262–278.

Sznajder, R. (2016). Kaczmarz algorithm revisited. Czasopismo Techniczne.

Taina, I., Heck, R., and Elliot, T. (2008). Application of x-ray computed tomography

to soil science: A literature review. Canadian Journal of Soil Science, 88(1):1–19.

Tanabe, K. (1971). Projection method for solving a singular system of linear equations

and its applications. Numerische Mathematik, 17(3):203–214.

Tang, N. D., De Ruiter, N., Mohr, J., Butler, A. P., Butler, P. H., and Aamir, R. (2012).

Using algebraic reconstruction in computed tomography. In Proceedings of the 27th

Conference on Image and Vision Computing New Zealand, pages 216–221. ACM.

Thibault, J.-B., Sauer, K. D., Bouman, C. A., and Hsieh, J. (2007). A three-dimensional

statistical approach to improved image quality for multislice helical ct. Medical

physics, 34(11):4526–4544.



178 REFERENCES

Thompson, W. M. and Lionheart, W. R. (2014). Gpu accelerated structure-exploiting

matched forward and back projection for algebraic iterative cone beam ct reconstruc-

tion. In The Third International Conference on Image Formation in X-Ray Computed

Tomography, 22-25 June 2014, Salt Lake City, Utah, USA.

Tian, Z., Jia, X., Yuan, K., Pan, T., and Jiang, S. B. (2011). Low-dose ct reconstruction

via edge-preserving total variation regularization. Physics in Medicine & Biology,

56(18):5949.

Tikhonov, A. N. (1963). On the solution of ill-posed problems and the method of regu-

larization. In Doklady Akademii Nauk, volume 151, pages 501–504. Russian Academy

of Sciences.

Turbell, H. (2001). Cone-beam reconstruction using filtered backprojection. PhD thesis,
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