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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF ENGINEERING AND PHYSICAL SCIENCE

Institute of Sound and Vibration Research

FAST, LARGE SCALE OPTIMIZATION ALGORITHMS FOR TOMOGRAPHIC
IMAGE RECONSTRUCTION

by Yushan Gao

Tomography imaging techniques produce volumetric images of the three-dimensional
structure of an object. X-ray radiation is one of the standard modalities used for three-
dimensional imaging and in this case, X-ray projection images are typically collected
from the object at different orientations. These projections are then used to compute
a volumetric representation of the object’s internal x-ray attenuation profile. Scientific
and industrial tomographic imaging applications require the use of ever more massive
datasets as they increasingly use larger and higher resolution detectors and use increas-
ing numbers of projections to scan the object with the required resolution. Furthermore,
the need to discern ever-finer details within an object leads to an increase in the desired
resolution of the reconstructed volume. If this is paired with the usage of non-standard
tomographic scanning trajectories, then the filtered back-projection algorithm, which
remains the primary workhorse for the tomographic reconstruction of large datasets, is
no longer applicable. Compared to back-projection based methods, iterative algorithms
have many advantages for linear tomographic image reconstruction. However, for large-
scale tomographic reconstruction using computation nodes with limited storage capacity,
the projection data and the reconstructed image vector have to be both partitioned into
many smaller blocks. Each iteration in a traditional iterative method needs access to
either all projection data or to the entire image (or to both) and thus needs to iterate
over individual blocks that need to be copied to the processing node. This additional
data access can significantly reduce reconstruction speed. To address these challenges,
this project develops novel algorithms that are tailored to large-scale tomographic recon-
struction. The algorithms are designed to fit on modern high-performance computing
infrastructures, where each computation node does not have fast access to the entire
dataset at once and where communication between different nodes is relatively slow.
This thesis includes the introduction of the developed algorithms, the comparison of

them with existing methods and the application of them on realistic parallel network.
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Chapter 1

Introduction

1.1 Thesis background

Computed tomography (CT) is a non-destructive and non-invasive technique to produce
the internal structure of an object. It uses X-rays, gamma rays, etc. as the imaging
medium. The light source and detector scan the target along a certain trajectory to
obtain projections of a certain physical quantity of the object. After computer processing
projections, the distribution of the certain parameter is then obtained. Since the 1970s,
CT has become a basic imaging method in the research of biomedicine and industrial
testing (Bayford and Lionheart, 2004; Bartscher et al., 2007; Taina et al., 2008; Schindler
et al., 2017; De Chiffre et al., 2014; Gholizadeh, 2016).

To derive the linear model that will be at the heart of this thesis, we consider a single-
energy X-ray beam, which contains N;, monochromatic photons that pass through a
uniform object of length a. Due to the photoelectric effect and the Compton effect, the
rays passing through the object are attenuated and scattered. The number of photons

is thus reduced to Nyye. According to Lamber-Beer law (Soleimani and Pengpen, 2015):
Nout = Nipe™™* (11)

or
Iout = ine—xa’ (12)

where I;, and I,,; are incident and detected X-ray intensity. x is the attenuation coef-

ficient within the homogeneous object.

When X-rays penetrate an inhomogeneous object, z becomes a function of two spacial
coordinate, a, and ay, x(az, ay), as shown in Fig.1.1. The relationship between I,,; and

I;, along a certain path L is then

Iout - Iinei fL x(az,ay)dl. (13)
1
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Point source

Iin A Cl,,y
z(ag, ay)
L
<
3
X
Iout Q,}'Q/('
Q

Figure 1.1: Diagram showing the X-ray penetrating an object with non-
homogeneous attenuation coefficients.

or equivalently,

Iin
yi =In (I t> = /La:(ax,ay)dl. (1.4)

In CT scanning, measurements y; are taken over many different paths L. Common scan
trajectories include: parallel-beam, fan-beam, cone-beam and helical scan. In parallel
beam scanning, measurements are taken along parallel beams, either in a 2D plane or
in a 3D volume (see Fig.1.2(a)). The object or the source and detector are then rotated
and repeated parallel paths are measured for different rotation angles. Parallel beam
CT is common at synchrotron imaging beamlines, where x-ray paths are approximately
parallel once they reach the object. Fan-beam scanning uses a point like x-ray source and
a linear detector. As the source is relatively close to the object, at each rotation angle,
measured X-ray paths follow a fan shape. Again, the object or the source/detector pair
are then rotated and several projection measurements are taken form different directions.
Cone-beam scanning is an extension of fan-beam from 2D to 3D. A 2D detector panel
is used to collect projection images using a point source. The object or the source
and detector are again rotated and measurements taken from a range of angles. Helical
scanning is similar to cone-beam scanning, but now the object or the source and detector
pair also move at a constant rate in the direction of the rotation axis. The scanning
geometry is illustrated in Fig.1.2. In this thesis, the fan and cone-beam scan geometries

are used throughout unless stated otherwise.

1.2 CT reconstruction algorithms

Given a set of measurements y;, the CT reconstruction problem is the estimation of the

x-ray attenuation z(a,a,). For most X-ray CT scan trajectories, this is known to be an



Chapter 1 Introduction 3

Source\.

moving
direction

Detectorpanel ~ udlical traiectory ==

Rotation direction -

(¢) 3D cone-beam circular scanning geometry (d) 3D cone-beam helical scanning geometry

Figure 1.2: Popular scanning geometries in 2D and 3D CT.(a) shows a parallel
scanning with single source-detector pair. (b) shows a equal spaced fan-beam
scanning geometry whereas equal angular fan-beam scanning is omitted here.
(c) shows a cone-beam circular scanning model for 3D volume. The point source
and the central line of the detector plane locate at the middle of the volume. (d)
shows a cone beam helical scanning trajectory. In the following presentation,
fan-beam(b) and cone-beam(circular trajectory, i.e.(c)) scanning geometries are
default settings in 2D and 3D simulations.

ill-posed inverse problem. For many scan trajectories, approximate analytical methods
exist solutions, though many, more general, iterative algorithms have also been proposed.
Among the analytical methods, the filtered back projection (FBP) algorithm is currently
the most commonly used method for parallel-beam and fan-beam scans. (Gordon et al.,
1975; Turbell, 2001). The algorithm is easy to be implemented in hardware and can
compute good image estimates when sufficiently many measurements have been taken.
In 3D cone-beam reconstruction, the Feldkamp Davis Kress method (FDK), which is an
approximate application of FBP to 3D case, has been widely used in commercial CT
machines (Hsieh et al., 2013).

Iterative methods start with a discretisation of the forward model and then apply itera-
tive optimisation algorithms to estimate the x-ray attenuation (Censor, 1983). Iterative
methods have the advantage that they work for generic trajectories. They also often

provide better results when limited measurements are available. Importantly, iterative
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methods can often be easily adapted to use a variety of constraints to stabilize the recon-
structed image when the dataset has limited projections and when measurement noise

is amplified due to the ill-conditioning of the model (Censor, 1983).

1.2.1 Analytical methods

The FBP is proposed for 2D (and slice wise reconstruction of 3D) parallel beams and fan-
beam reconstructions based on the central slice theorem (Gordon et al., 1975; Turbell,
2001). The reconstruction process is mainly divided into two steps: the first step is to
perform Fourier transform(FT) on the projection data and a filter is multiplied on the
FT results. Then an inverse FT (IFT) is applied on the filtered results. In the second
step, the IFT results is back-projected and accumulated to obtain the final image. In the
actual calculation, the bandwidth of the filter applied in the first step must be limited,
so there are various smooth truncation windows to relieve the aliasing artifacts caused
by the filter’s limited bandwidth , such as Shepp-logan filter, Cosine filter, Hamming
filter, Hann filter (Kak, 1979; Othman et al., 2016; Hu, 1999; Hsieh, 2003). The filters

effectively regularise the reconstruction.

The FDK algorithm is an approximate reconstruction algorithm for cone-beam circular
scanning. (Manzke et al., 2005; Hsieh et al., 2013). It is actually an approximation
of a 3D extension of the FBP algorithm. The algorithm regards cone-beam rays as a
combination of fan-beam rays with different angles in the a,-axis (defined in Fig.1.2(c)
and Fig.1.2(d)) direction. Accurate FBP is achieved on the central plane. For non-
central planes, the fan-beam reconstruction formula is modified to perform approximate
reconstruction. When the cone angle in a, direction is small, the reconstruction result
is good, but since it is an approximate algorithm, when the cone angle becomes large,
the reconstruction quality degrades severely. Another fact of FDK is that it is only
applied in the case when the scanning trajectory is circular, whose curve theoretically
does not meet Tuy’s condition for accurate reconstruction (Natterer, 2001). As a result,
for the case where high-precision reconstruction is required, FDK and circular scanning
methods often cannot meet the requirements. Precise reconstruction algorithms for
helical scanning trajectory, which meet Tuy’s condition, have been proposed, such as
Grangeat algorithm (Grangeat, 1991), Katsevich algorithm (Katsevich, 2002a,b), BPF
algorithm (Zou and Pan, 2004), etc. However, the discussion of them is beyond the

scope of the thesis and thus is omitted here.

FBP and FDK have been widely used in the field of medical image reconstruction be-
cause of their computational efficiencies and numerical stabilities. Generally, analytical
methods directly calculate the reconstructed image without an iterative process and
thus a visually acceptable reconstruction result can be quickly obtained whenever there
is sufficient projection data and the projection noise is not too large. However, the

main disadvantage of analytical methods is that they require equally spaced projections
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and high signal-to-noise ratio (SNR) projection data (Wang et al., 2008; Flores et al.,
2014). The implicit regularisation used is also hard to control as filtering is done in the
projection domain. To obtain uniformly spaced projections, analytical methods have to
demand the scanning trajectory to be strictly circular or helical. For medical applica-
tions, this is easy to achieve if imaging relatively small and nearly cylindrical objects.
However, for many industrial applications, sometimes the object is too large to allow
the X-ray source to rotate around it, or objects are too dense for X-ray penetration in
certain directions. In these cases, only limited views or even random views are available

and significantly stronger regularization terms are needed to stabilise the solution.

1.2.2 Iterative methods

When the projection data is limited or the projection angle is not uniformly distributed,
strong regularization plays an important role in stabilising the reconstruction. (This
will be introduced in the next chapter.) The analytical methods then often cannot
get results of sufficient quality. Iterative methods, which can be combined easily with
explicit regularization terms, can overcome the shortcomings of analytical methods, and
can obtain higher-quality images in this case. Different from the analytical methods, the
iterative methods discretize the image from the very beginning. The fundamental model
to the 2D X-ray CT reconstruction is formulated in the following way: A cartesian grid
of square picture elements, called pixels, is introduced into the space of scanned object
so that it covers the whole object. The pixels are numbered in some agreed manner,
say from 1(top left corner) to c(bottom right corner pixel), as shown in Fig.1.3. The
model of 3D scanning is similar to the 2D case by expanding pixels into cubic cell,
called voxels. The X-ray attenuation function is assumed to take a constant value x;
throughout the jy, pixel/voxel for j = 1,2,--- ,c. The source and detector are still
both assumed to be points and the rays between them to be lines. Further, assume
that the length of intersection of the iy, ray with the jy, pixel/voxel, denoted by a;;
forall ¢ = 1,2,---,r,j = 1,2,--- , ¢, represents the weight of the contribution of the
Jtn pixel/voxel to the total attenuation along the i;, ray. The physical measurement
of y; (defined in Eq.1.4), which represents the line integral of the unknown attenuation

function along the path of the ray, turns out to be a finite sum in this discretized model:
(&
yi:Zaijijrei,i:l,Q,---,r. (15)
j=1

In matrix notation we write Eq.1.5 as
Y = AXyrye + €, (16)

where A € R™*¢ is the system matrix and e is the error vector, which represents the

measurement inaccuracy, noise corruption of data and the fact that the original problem
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Figure 1.3: The square pixels model for 2D tomography image reconstruction.
Within the pixel the attenuation x is assumed to be constant. It can be seen
that if the size of pixels is too large, then some pixels contain various attenuation
information inside, which means that the discretization of the continuous image
causes error and this error decreases as the size of the pixel decreases. For
simplicity, in this thesis, the error caused by discretization is not considered.

has undergone discretization. One common source of the error vector comes from the
fact that X-ray interactions follow a Poisson stochastic process. According to the defini-
tion of y; in Eq.1.4, randomness in the the measurement of y; is introduced by statistical
fluctuations in N,y whilst NV, may considered to be known with negligible error. A
detailed discussion on the error is beyond the scope of the thesis. In general it can be
concluded that when the number of N,,; is large enough, it is safe to assume that e is
approximately Gaussian. As a result, in the following of the thesis, the noise contami-
nating the projection data y is assumed to be independent and identically distributed

Gaussian noise.

The maximum likelihood estimation in iterative methods then becomes solving the least
squares cost function %Hy — Ax||%2. Many iterative algorithms which will be presented
in next chapter can be understood as iterative optimisation algorithms that try to min-
imise this cost function, or to minimise a cost function that is similar to this one.
Detailed discussions can be found in the next chapter. It needs to be noted that due
to ill-conditioning of the system, minimising the cost function does not guarantee small
reconstruction errors measured by the signal-to-noise ratio (SNR) of the reconstructed
image. The SNR is defined as

thrueHQ

SNR = 20[0910 (17)

||Xrec - Xtrue||2’
where X, and Xy are reconstructed vector and the original discretized true vector
respectively. In this thesis, the SNR reflects the reconstruction quality during solving
the linear system. In CT reconstruction, it is important to realise that(Censor, 1983):

1)The matrix A is very sparse with less than 1 percent of its entries non-zero because
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only few pixels have a non-zero intersection with each X-ray. 2)The system matrix A is
extremely large, with » and c of the order of magnitude 10° or even higher, in order to
produce images with good resolution. Although the matrix is sparse, the storage of A
is still often infeasible due to the enormous number of non-zeros. 3) The linear system
is typically severely ill posed and sometimes under-determined due to lack of projection
information. In 2D parallel or fan-beam scanning geometry, the system can be“mildly
ill-posed”. However, for 3D cone-beam circular scanning geometry, the linear system is
“severely ill-posed” even if there are enough projections (Lionheart, 2013). Therefore,
regularisation terms need to be introduced in real applications, as otherwise any noise
(and there always is noise in real applications as mentioned above) will lead to very
large errors in the reconstructed image. In view of the features of the system matrix,
including sparsity, inconsistency, ill-conditioning, etc., an optimization criterion is set up
with the system of equations. Iterative methods are then used to optimize the problem,

which is a topic that goes back a long way (Forsythe, 1953).

After discretizing the CT projection process, the next step of iterative methods is the
development of reconstruction algorithms. Such algorithms should be capable of han-
dling the problem within the special mathematical environment of huge dimensions and
sparseness. It should also be efficiently implementable on computers. The large size of A
means that solving Eq.1.5 or Eq.1.6 directly is infeasible(Censor and Herman, 1987). It-
erative algorithms solve them by simply using matrix-vector multiplications to update an
image vector X,.., making it gradually approach the true solution. All iterative methods
consist of three major steps which are repeated iteratively. First, a forward projection
(FP) of the current estimated image X,¢. creates artificial raw projection results which,
in a second step, are compared to the real projection y in order to compute a residual.
In the last step the correction term is back projected (BP) onto the volumetric object
estimate (Oliveira et al., 2011; Tang et al., 2012; Zhang et al., 2006; Hsieh et al., 2013).
The estimated image X,.. can start from anywhere. Generally, it starts from the zero

space or a standard FBP reconstruction result (Beister et al., 2012).

The FP and BP mentioned above generally are the matrix-vector multiplications involv-
ing A and AT, Based on the portion of A used in each iteration, the iterative methods
can be further divided into two categories, deterministic algorithms and random algo-
rithms. The deterministic algorithms are algorithms which, given a particular initial
value on image space, the output after a fixed number of iterations is determined. This
is because in each iteration’s FP and BP, the whole of A is used. This kind of CT recon-
struction algorithm includes Landweber iteration, simultaneous iterative reconstruction
technique (SIRT), component averaging (CAV), etc. (These algorithms will be intro-
duced in the next Chapter). In the case of random algorithms, on the contrary, even with
the same initial value on the image space, the output of the iteration is not necessarily
the same after a determined number of iterations. This is because in each iteration’s FP

and BP, only a random part of A is used. This random selection causes the uncertainty
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in the results, thus making the iteration unstable. Classical random algorithms include
algebraic reconstruction technology (ART) with random sampling strategy, stochastic
gradient descent (SGD), stochastic variance reduced gradient (SVRG), stochastic aver-
aging gradient (SAG), etc. (These algorithms will be introduced in the next Chapter).

As mentioned above, when the linear model of CT scanning is severely ill-posed, for
example, when the projection view’s range is limited or the view is sparse, or when a
3D cone-beam circular scanning trajectory is adopted, a regularization term needs to
be introduced to stabilise the solution. All iterative methods mentioned above can be
used to optimize the objective function containing regularization terms such as Tikhonov
regularization (Calvetti et al., 2000; Ying et al., 2004), total variation(TV) regularization
(Borsic et al., 2001; Wang et al., 2017a), wavelet regularization (Verhaeghe et al., 2008;
Belge et al., 2000) or early stopping regularization (Elfving et al., 2014). A detailed

discussion will be introduced in the next chapter.

One drawback of iterative algorithms is their slow computation efficiency when per-
forming FP and BP. This has become a bottleneck impeding the application of iterative
methods in modern commercial CT scanners (Pan et al., 2009). With the development
of X-ray detection technology, the resolution of both detectors and reconstructed images
are getting increasingly higher. The increase in the amount of data makes the use of
serial computing architectures, such as traditional CPUs, far too slow for tomographic
reconstruction. Instead, graphic processing units (GPUs) are typically used as they have
significant speed advantages over CPUs and thus are widely utilised to perform FP and
BP computations (Kazantsev et al., 2013; Thompson and Lionheart, 2014). There are
several mature toolboxes, such as TIGRE (Biguri et al., 2016) and ASTRA (van Aarle
et al., 2015), that implement these operations on GPU as black-box operations and
provide efficient interfaces to FP and BP operations for high level computing languages
such as Matlab or Python.

1.3 The research objective of this project

Given that scientific and industrial tomographic imaging applications use increasingly
larger and higher resolution detectors and require the use of more and more projections to
scan an object, paired with the use of non-standard tomographic scanning trajectories,
iterative methods are increasingly used in the reconstruction process. However, for
large-scale tomographic reconstruction using computation nodes with limited storage
capacity, the size of the projection data and the reconstructed image vector both exceed
the maximum storage capacity of the computation nodes. As a result, both projection
data and reconstructed image vector have to be partitioned into many smaller blocks.
Since each iteration needs access to either all projection data or to the entire image

(or to both), the computation nodes (e.g. GPUs) need to iterate over individual blocks
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several times to compute individual FP and BP operations. This additional data access
can significantly reduce reconstruction speed. As a result, the main research goal of this
thesis is to improve iterative methods by reducing the data access to both projection
data y and reconstructed image vector x. Two algorithms that especially suit large-scale
3D image parallel reconstruction problems are proposed in this thesis, which are based
on the latest developments in the field of random algorithms. The algorithms should be
able to run efficiently on modern high-performance computing infrastructures, such as
distributed computer networks equipped with GPUs, where each computation node does
not have fast access to the entire dataset at once and where communication between

different nodes is relatively slow.

There are three novel contributions in the thesis. Main contribution one is that the
Coordinate-reduced Steepest Gradient Descent (CSGD) algorithm is proposed in the
thesis, which is inspired by steepest gradient descent. CSGD is a distributed stochastic
gradient descent algorithm specifically designed for very large tomographic inverse prob-
lems. In CSGD, the computation amount of projection can be easily tuned according
to different parallel computation resources. When it is applied in parallel computation
networks, the computation amount of each iteration is much less than the only available
alternative approach, the block alternating direction method of multipliers (ADMM)
(Parikh and Boyd, 2014), which has the same parallel computation architecture with
CSGD and thus the reconstruction speed of CSGD are much faster than block ADMM.

Main contribution two is that based on the proposed CSGD and inspired by SAG
(Schmidt et al., 2017), another parallel algorithm Block Stochastic Gradient Descent
(BSGD) is proposed and it overcomes the original CSGD’s drawback which does not
approach the least square solution and the error variance of the calculated gradient does
not converge to zero at the solution. Mathematical analysis shows that the fixed point
of BSGD are at the least square solution, which is the best solution that minimises the
error energy and is the maximum likelihood estimate. It has the same parallel com-
putation architecture with the other gradient-based methods but the communication
overhead is greatly reduced. Simulation shows that BSGD is of the fasted reconstruc-
tion speed when compared with CSGD and the other iterative methods which have been
applied in the CT reconstruction field. Given the ill-conditioned nature of the tomo-
graphic reconstruction problem, simulations in the thesis show empirically, that BSGD
can be embedded into a proximal optimisation algorithm and thus is able to compute

regularised least squares solutions.

Main contribution three is the further exploration of the two proposed algorithms. The
exploration mainly includes an importance sampling strategy and automatic parameter
tuning trick. These two important tricks are very useful in terms of further accelerat-
ing two proposed algorithms. Besides, when the projection views are few and sparse,
CSGD and BSGD are experimentally proved to be able to substitute gradient descent
procedure in proximal gradient methods, which means that by combining CSGD/BSGD
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with the TV denoising procedure, the objective function including a quadratic data fi-
delity term and a TV regularization term can be approximately optimized. Furthermore
when solving the TV-based objective function, the TV denoising procedure can also be
parallelized onto separate computation nodes by new proposed slicing methods. The
last exploration is to apply BSGD and CSGD in realistic parallel networks (Iridis su-
percomputer in University of Southampton). The scalability of BSGD and CSGD are
compared with each other and experiments verify that BSGD is faster than CSGD in
realistic parallel computation environment. Apart from the synchronous application,
the BSGD’s asynchronous application property is also explored. The flexible commu-
nication increases each parallel node’s independence and enables them to communicate
with the master node without waiting for each other. Simulations have verified that un-
der certain situations the asynchronous BSGD can achieve a faster reconstruction speed

than synchronous BSGD.

This thesis consists of seven chapters. The second chapter is a literature review of the
main iterative algorithms used in CT and a review of the latest parallel algorithms
developed recently in optimization, which are the basis for our developments. Chapter
3 and 4 describe the two newly proposed algorithms CSGD and BSGD respectively.
Chapter 5 explores the application of CSGD and BSGD in the optimization of TV
norm regularised least squares problems. Chapter 6 illustrates the synchronous and
asynchronous application of the two algorithms. Conclusions and suggestions for future
work are included in Chapter 7. Appendix A presents some basic mathematical analysis

of the two proposed algorithms.

1.4 Published papers

Some of work on this thesis has been published in conferences and peer reviewed journals.

The following publications directly relate to the content of this thesis:

e “A parallel CT reconstruction algorithm using partial row and column blocks of
the system matrix” (Gao and Blumensath, 2017). This is a short conference ab-
stract based on the presentation at the conference TOSCA 2017, Portsmouth. This
conference abstract firstly proposed the basic ideas of reconstructing the CT prob-
lem by using partial access to the projection data and the reconstruction volume,

which is discussed in Chapter 3.

e “A Joint Row and Column Action Method for Cone-Beam Computed Tomogra-
phy” (Gao and Blumensath, 2018b). In 2018 IEEE Transactions on Computational

Imaging. This is a journal paper condensing the research in Chapter 3.

e “A parallel stochastic algorithm for large scale CT reconstruction” (Gao and Blu-

mensath, 2019). This is a short conference abstract based on the presentation at
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dXCT 2019, Huddersfield. The abstract proposed the basic algorithm in BSGD
which is mainly described in Chapter 4.

e “BSGD-TV: A parallel algorithm solving total variation constrained image re-
construction problems”(Gao and Blumensath, 2018a). This is a short conference
abstract published in 2018 iTWIST, Marseille. It presents the combination details
of BSGD and TV-based denoising and shows that this combination can be used
to approximately optimize the objective function containing TV regularizations.

This part is discussed in Chapter 5.

Besides, there is another journal paper that is temporarily uploaded to arXiv(Gao et al.,
2019).

e “ Block stochastic gradient descent for large-scale tomographic reconstruction in

a parallel network”. This journal paper draft concludes the contents in Chapter 4.






Chapter 2

Literature review on iterative
methods

As mentioned above, solving the linear equation directly is prohibitive due to the large
size of the system matrix A. Iterative methods thus become mainstream tools to solve
the inverse problem Eq.1.5. Unlike analytic methods which perform reconstruction
within a single step using a specific inversion formula, iterative methods refine and
modify the image iteratively in order to minimize an objective function. This objective
function is based on the imaging system model and regulariser. Mathematically, the
objective function tries to simultaneously optimize two different aspects of the recon-
struction: the fidelity of reconstructed image data with measured projection data and
the suppression of image noise by means of a regularization term that penalizes noisy so-
lutions to the optimization problem (Stiller, 2018). Iterative reconstruction then consists
of minimizing the objective function by repeated update of the image data, thus max-
imizing conformity between measured and reconstructed data, and minimizing image

noise. The global iterative process is illustrated in Fig.2.1.

In this chapter, the iterative algorithms for reducing the date fidelity (i.e. the corre-
sponding objective function does not contain regularization terms) are firstly introduced,
followed by introductions of the optimization methods for objective functions containing

regularizations terms.

2.1 Terminologies in algorithm descriptions

Before introducing the iterative algorithms, it is worthy to first explain the terms that

are frequently appeared in the thesis.

13
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Figure 2.1: Basic scheme of iterative reconstruction process.

e iteration. An "iteration” will refer to the computational steps that are repeated in

an iterative algorithm. Each iteration will compute updates of internal parameters

and image.

update direction. The update direction is the difference (possibly scaled) in the
estimates of a quantity (such as the image we are trying to recover) before and after
an iteration, that is, it is the vector that, when scaled and added to the previous
estimate of a quantity, produces a new estimate. For example, in gradient descent
method, the update direction is the minus gradient direction of current X,e.. In
the stochastic gradient descent methods, the update direction is stochastic but the

expectation of this direction is an unbiased estimation of the gradient.

step-length. It is the multiplier used to scale the update direction during an
iteration. The p is used as the step length in this thesis. It can be either a

constant or a variable that changes in each iterations.

epoch. A group of iterations during reconstruction. The number of iterations in
each epoch depends on the algorithm and its parameters. For example, in this

thesis, the gradient descent methods, which uses the whole of y, A and update
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the whole of X,. in each iteration, are considered an epoch that only consists of
one iteration. The stochastic gradient descent methods, using one row of A and y
to calculate the update direction, are regarded as containing r iterations for one
epoch. In the following k can be used to denote the iteration number but can

also be used to denote epoch number. The important point is that in simulations,

k

when a new x;,.

is obtained, the reconstruction quality can be estimated and the

simulations may be terminated when a stopping criterion has been satisfied.

e objective function. In this thesis, the most general form of objective function F'(x)
is defined as F(x) = f(x) + g(x), where f(x) is a data fidelity term and g(x) is
a regulariser to stabilise the ill-posed problem. Generally the f(x) is assumed as

+lly — Ax||%. If the g(x) adopts the TV regulariser, then F(x) can be expressed

as:
1
F(x) = 5lly — Ax|* + MV (x), (2.1)
N——— M
£(x) g(x)

where the definition of 7'V (x) is presented in section 2.3.3. As the optimisation
of F(x) is typically broken into separate steps, significant part of this thesis focus

on the optimisation of f(x).

e convergence. In this thesis, when talking about convergence, unless otherwise
stated, we will mean the convergence in the euclidean norm of a sequence of esti-
mates x* towards the minimiser of the objective function. In terms of the conver-
gence rate, it is the empirical rate of change of a cost function whilst it approaches
a minimal value. Generally speaking, convergent iterations usually hint that a
stable or approximately stable solution is gradually approached. This is usually
reflected by the fact that the reconstructed image’s quality no longer changes and

finally become stable.

e reconstruction speed. Depending on the performance measure used, the recon-
struction speed can be measured in terms of the change in the distance from the
true image or in terms of the change of the cost function. In this thesis, it is
an empirical measure of the computation speed to reach a certain level of error
between the estimated image and the true image, which is reflected in the SNR
trend. (defined in Eq.1.7)

e CPU. Central Processing Unit (CPU) in a computer is used to execute basic cal-
culations. For example, in the thesis the update on x,.. is regarded as executed
on CPUs.

e RAM. Random Access Memory (RAM) in a computer is the memory that exchange
data with CPU. Its size is a limiting factor influencing the size of dataset to be

addressed by a single computer.
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e GPU. Graphics Processing Unit(GPU) is typically computationally faster than
CPU. In the thesis, GPU can be easily used to execute intensive matrix-vector
multiplications by using functions provided by existing CT reconstruction tool-

boxes.

e parallel network. It is a computer cluster containing several computation nodes.
The computation nodes can be computers or GPUs. The proposed algorithms are

specially designed for the parallel network with several computation nodes.

e master node. It is a node in a parallel network, which is responsible for data col-
lection and distribution. Generally it is not responsible for intensive computation

and is only used to the data storage ans some basic and simple computations.

e computation nodes. They are also named as servants or parallel nodes. They can
execute code simultaneously with different dataset. Generally, the computation

nodes calculate the intensive matrix-vector multiplications in this thesis.

2.2 Solving objective functions without regularization terms

Reducing data fidelity consists of the following three main steps: 1)Forward projection
(FP) to produce synthesized projections of the current (partial of) image, which is often
calculated as the matrix-vector using (partial of) A and (partial of) x. 2) Estimation
of the residual between the synthesized projections and the experimentally acquired
projections y. 3) Back projection (BP) of the weighted residual, which is often calculated
as the matrix-vector using (partial of) AT and (partial of) the weighted residual, to
update the volume. The iterative cycle is repeated until a predefined stopping criterion
is met, e.g. if a fixed number of iterations or a sufficiently small difference between the

solutions of two subsequent iterative steps is reached.

2.2.1 Kaczmarz method

Kaczmarz method, also known as algebraic reconstruction technology (ART), was first
proposed in 1937 (Sznajder, 2016) to solve Eq.1.5 and has been used as one of the most
classical reconstruction methods in CT reconstruction since 1970 (Elfving et al., 2014).
In fact, the first commercial CT scanner adopts this algorithm. To introduce Kaczmarz

method, the linear system Eq.1.5 is expanded as

Y1 = a1121 + a1222 + ... + A1c2¢
(2.2)

Yr = Qr121 + Gr2Z2 + ... + QpcZe.
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In Eq.2.2, each separate equation is called as a hyper-plane. For simplicity, the linear
system is temporarily assumed to be consistent (i.e. € = 0). The idea of the Kaczmarz
type algorithms is to exploit the geometric structure of the Eq.2.2, and then using a
sequential of projections to seek the solution. The recursive process at the k" iteration

can be formulated as follows

b ATAX i (2.3)

where y; is the i*? single projection, A; is the i** row vector of the system matrix A and
|| - || is l2 norm of a vector or matrix. In the most classical Kaczmarz, the i is sampled
in a cyclic sequential way, i.e. i = mod(k,r) + 1, where mod() is the function returning
the remainder of a division. For a given x*, Eq.2.3 generates a x**! that satisfies the

it" equation in Eq.2.2. This update produces the following constrained optimization:

argmin ||x — x*|2. (2.4)
AjxkHl=y;

Two geometric explanations of the above optimization when the linear system is con-

sistent can be illustrated by Fig.2.2. It has illustrated that if the system is consistent

5
TPy

(a) consistent system (b) inconsistent system

Figure 2.2: Geometric illustrations of the classical Kaczmarz iterations with
m=4. P;,1 =1,2,3,4 is the hyper-plan formed by A;x =y;.

(i.e. there is a common point for all hyper-planes), the Kaczmarz gradually approaches
the solution. Furthermore, (Tanabe, 1971) has proved that regardless of the system is
consistent or is not, the Kczmarz method converges to the solution x* = A'y, where
AT is the M-P inverse of matrix A (Sheng and Chen, 2010). According to the definition
and property of A, if the system is consistent, then x* is the solution of the system and
if the system is non-consistent, then x* can be the least square solution or the lest norm
solution. By comparing the projection processes displayed in Fig.2.2, it is natural to
have the intuition that convergence of the classical Kaczmarz algorithm highly depends
on the geometric positions of the associated hyper-planes. If the normal vectors of every

two successive hyper-planes keep reasonably large angles, the convergence of the classical
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Kaczmarz algorithm will be fast, whereas two nearly parallel consecutive hyper-planes
will make the convergence slow down. As a result, a good sampling sequence can accel-
erate the convergence speed of Kaczmarz methods. Another method to accelerate the
convergence speed of Kaczmarz is to introduce relaxation parameter into the iteration.
The iteration with relaxation is

A.xF —
k+1:Xk_MA;F ‘z‘f’; Yi (2.5)

X
where the i is the relaxation parameter. The use of relaxation parameters is important
in practice. In the area of image reconstruction, it was demonstrated experimentally
that small relaxation parameters significantly improve the practical performance of the
Kaczmarz(Herman, 2009). However, the convergence property then becomes a bit com-
plicated. When the system is consistent, it has been proved that when 0 < p < 2, the
relaxation variants of Kaczmarz still converge to the least norm solution of the system
(Herman et al., 1978; Censor, 1981; Dai and Schon, 2015). When the system is not con-
sistent, it has been proved that as the relaxation parameters go to zero, the relaxation
variants of Kaczmarz approach a weighted least squares solution (Censor et al., 1983).
This particular weighted least squares solution minimizes the sum of the squares of the

Euclidean distances to the hyper-planes determined by the equations.

As indicated in Fig.2.2, convergence of classical Kaczmarz algorithm depends on the
sequence of successive projections, which relies upon the ordering of rows in the matrix
A. In some real applications (Herman et al., 1978; Natterer, 2001), it is observed that
instead of selecting rows of A sequentially at each step of the Kaczmarz algorithm,
randomly selection can often improve its convergence. It has been proved that the rate

of convergence can be significantly improved if the row index ¢ in Eq.2.3 is sampled with
A3
Al
system is consistent, the Kaczmarz with importance sampling converges to the Ay in

probabilities (Strohmer and Vershynin, 2009). In terms of the convergence, if the

expectation (Bai and Wu, 2018). If the system is non-consistent, random Kaczmarz
methods converges exponentially to the true original vector within a specified error
bound, on expectation on the condition that A is of full column rank (Needell, 2010;
Huang et al., 2020). Furthermore, it is found that the condition on the rank of A is
not necessary, and proved that random Kaczmarz can converge to least norm solution
on expectation, within a specified error bound (Zouzias and Freris, 2013). Random
Kaczmarz can also be accelerated by relaxation parameter and the iteration is similar to
Eq.2.5. The optimal relaxation parameter and the convergence rate of random Kaczmarz
with relaxation under consistent and non-consistent situations is provided by (Moorman
et al., 2020). It shows that when the system is consistent, the algorithm can still converge
to the Aty in expectation. Similarly, when the system is non-consistent, the sequence of
iteration results converge to the Afy within a specified error bound , which is controlled

by the step length pu.
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2.2.2 SIRT-type algorithms

The above discussed Kaczmarz method uses a “ray-by-ray” update strategy, which
means that for every ray that is calculated, all pixel values associated with that ray
are updated. SIRT-type methods distinguish themselves from Kaczmarz methods in
that they do not update the iterated vector after each equation, but after an entire
sweep through all the equations, and thus, during one sweep, they use the same residual

vector for each equation. A rather general class of SIRT-type methods is given by
xF = xF 4+ FCATR(y — AXY), (2.6)

where C and R are two positive definite diagonal matrices of orders ¢ and r. This section
mainly introduces four SIRT-type algorithms: SIRT, Cimmino’s algorithm, CAV and
Landweber iterative method. They distinguish themselves from each other by different

weighting matrices C and R.

1. SIRT

SIRT is well known as it has been applied to a rather diverse set of reconstruction
problems in medicine and biology since it was introduced more than four decades
ago (Gilbert, 1972; Dilz et al., 2019). It updates each reconstructed image voxel by
combining all single projection values whose corresponding X-rays passes through
this voxel. It goes through all equations and then updates one image voxel at
the end of each iteration using the average value of all computed changes for that
imaging voxel. Taking the average correction value can suppress some interference
factors, and the calculation result is independent of the pixel iteration order. SIRT

updates are

Vi gkt — gk o > [ai,j (yz —>n ai,hxlﬁ) /> ai,h]
)Ty =L TR — ,
Zi Qi,j

When it is rewritten into matrix-vector multiplication form shown in Eq.2.6, the
C and R are then defined as:

(2.7)

~ 1
Cjj = ;
7 D i @i
) : (2.8)
R;;

where C'jﬁj and R“ are the j¥* and i** diagonal element of C and R respectively.

The main advantage of SIRT, especially compared with ART, is that the noise
artefacts are more effectively suppressed and thus a soother reconstructed image

with less artifacts is obtained (Guo and Devaney, 2005; Gregor and Fessler, 2015).

2. Cimmino’s algorithm
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Cimmino’s algorithm can be viewed as a simultaneous application of Kaczmarz
method. It projects the x* to all hyper-planes and then average all single projection
movements as the next general movement direction. The update can be rewritten

as:
H yi — Aix
=xF4+ L (2.9)
Z A ||2
When change Eq.2.9 into Eq.2.6, the C and R are changed as:

C=1

i} 1 2.10

Rii=——3- (2.10
7| Aqll3

. CAV algorithm

One drawback of applying the Cimmino’s algorithm in CT reconstruction is the
slow convergence rate, which is caused by the sparsity of A. Look back to Eq.2.9,

it can be rewritten as

x§?+1 — Z yzHA B aij' (2.11)

Since A is sparse, only a relatively “small” number of the elements a1}, az;, - - , ar;
are non-zero, but in Eq.2.11 the sum of their contributions is divided by the rel-
atively “large” r, slowing down the progress of the algorithm. This observation
leads to a modified algorithm “component averaging (CAV)’ (Censor et al., 2001b)’
which replaces r by the non zero elements for each column of A. The iteration in
CAV then becomes

k
Kl ko, kN YT AX
i=1 i v
where S € R is a diagonal matrix diag(si, s2,- -+ , Sc). s; is the non zero element

number for j** column of A. Eq.2.12 can also be expressed as a matrix-vector
multiplication by setting:

Cc=1,

i 1 (2.13)

Rii=—c7-

A;SA;

Both the Cimmino’s algorithm and CAV have been used in CT reconstructions and
are shown to converge to a weighted least square solution. Compared with Cim-
mino’s algorithm, the CAV method can significantly increase the reconstruction
speed (Censor et al., 2001b), achieving the same image quality with Cimmino’s

algorithm by using less matrix-vector multiplications.

. Landweber algorithm

Traditional Landweber projection is to simply set C and R as unit matrices. It

is also known as gradient descent(GD) method and its corresponding objective
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function to be minimised is the quadratic objective function:
1 2
F(x) = 5lly — Ax|lz. (2.14)

GD updates x* along the negative gradient direction, gradually reducing the gra-
dient [|g|| = |AT(y — Ax¥)|| to zero , leading x* to the least-square solution
x* = (ATA)"' ATy, which minimizes the residual norm(energy) ||r|.

For the objective function Eq.2.14, the maximum limit of step length u is pro-
portional to ﬁ (Gordon and Tibshirani, 2012). However, in large-scale CT
scanning, calculating the ls norm of A is impossible due to the large computation
overhead. As a result, the u in realistic applications often needs to be repeatedly
tuned until a value leading to a fast convergence rate is found. One method to
avoid complicated parameter tuning is to choose u so that the residual is reduced as
much as possible in that direction. This is achieved by making g* perpendicular to

k+1 T yk+1

the next gh+!, as illustrated in Fig.2.3. Using (gF)TgF*! = 0 and x*+1 = x¥ 4 gk,

Figure 2.3: Different colours mean different equipotential of objective function
Eq.2.14. The iterations approach the minimum of the objective function in a
zig-zag manner, where the new search direction is orthogonal to the previous.

W is:
L et
|Ag"|?

With the adaptive step size, it converges faster than GD with a constant u, es-

(2.15)

pecially when p is not well tuned. However, it requires an extra matrix-vector
multiplication as well as a vector I norm computation, so the computation over-
head per iteration is increased compared to the GD with constant p. The main
drawback of GD is the slow convergence rate, which means that there often needs
lots of iterations before the convergence. This is the nature of most SIRT-type al-

gorithms (Van Scoy et al., 2017). A research direction thus becomes to accelerate
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the convergence rate of GD. This section mainly introduces the most classical ac-
celeration method, which is named as Nesterove’s acceleration (Kim et al., 2013).
Followed by a gradient descent iteration, x**1 further “slides” along with a direc-

tion given by two adjacent iterations. The algorithm is shown in Algo.2.1.

Algorithm 2.1 Nesterov’s accelerated GD in CT reconstruction area

1: Initialization: Determine the maximum allowed epoch number K,,.,. x' = 0 and
r =y. uis a constant step-length. 70 =0, =0
2: for k=1,2,--- , K4 do

5 ko 1+;L(>\k—1)2
4. Th= 71_;\:71

5. r=y— AxF

6 gh=ATr

7. % =xF 4 gk

8 xFHl = (1 — 7F)xF+1 4 rhxh
9: end for

10: Xsolution = XKmaIJrl

In general, the corresponding objective function for SIRT-type iteration can be viewed
as a weighted quadratic objective function. Let Fr(x) be the following weighted least-

squares objective function:
1 2 1 T
Fr(x) = Slly — Ax|[g = 5(y — Ax)"R(y — Ax). (2.16)

The gradient of Fr(x) is
gr(x) = —ATR(y — Ax). (2.17)

Then Eq.2.6 can be written as

k+1

xF = xF — yFCgr(x). (2.18)

Eq.2.18 implies that the minimisers for Fr(x), labelled as x*, satisfy the equation

gr(x*) =0, i.e.,
ATRAx* = ATRy, (2.19)

which is called as normal equation. There is a solution of Eq.2.19 with the minimal C
norm, i.e. a x* that has the minimal ||x*||c = x*7 Cx*, which is denoted by xc r(A,y)
(Ben-Israel and Greville, 2003). If we define ||A||cr as

|Allcr = sup)x||c=1lA%||Rr, (2.20)

then it has been proved that when 0 < p < W and the initial iterated vector
C,R

(i.e. x%) starts from 0, SIRT-type algorithms converge to xc r(A,y) (Jiang and Wang,
2003).
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It is worthy to mention that there is a link between SIRT-type iteration and the least
square problem. The general SIRT-type iteration in Eq.2.6 can be transformed and
then it solves a quadratic objective function. To be more specific, let ¥ = R%y and
% =C 3xand A = R*AC? (NOTE: as R and C are diagonal and positive, the above
matrix square-roots and inverses are well defined and easy to compute). The least
squares problem |y — A)EHQ has a gradient descent algorithm that computes %F+! =
%P+ ,uAT(Sf — Af{) which, if we multiply both sides by C%, we obtain the Eq.2.6.
Therefore, SIRT-type algorithms compute the least square solution to a linear problem
with y = R%y and X = Cix and A = R2AC3. Asa result, in this thesis, the proposed

algorithms are mainly designed to efficiently solve quadratic objective function Eq.2.14.

2.2.3 Block operations of iterative algorithms

The iteration in Kaczmarz is totally sequential since it uses one hyper-plane formed
by a single X-ray to update the reconstructed vector. This property makes Kaczmarz
method is of minor computation cost per update but is hard to be parallelised. On the
contrary, the SIRT-type iteration uses all hyper-planes to update the whole of x by using
the intact system matrix A. According to the previous discussions, the F'P and BP
process can be parallelised in GPUs via mature reconstruction toolboxes. However, the
computation cost per iteration can be enormous and unacceptable when the size of A is
large, especially when the size of x and y both exceed the limited GPU memory. Block
operations can be viewed as a moderate method between Kaczmarz and SIRT-type by
dividing the A into many blocks and each iteration only uses one block of them. To
be more specific, block operations on iteration algorithms can be further divided into
row-action and column-action methods. Before introducing these methods, the partition

methods on A, as well as on x and y, is firstly introduced.

2.2.3.1 Concepts of block partition

In modern CT scanning, the increasing size of y and x makes it difficult for the com-
putation node, (e.g. GPU), to store all of the data within one data transmission. As
a result, y and x are often divided and stored in many separate files and then sent to
GPUs block by block. This property naturally benefits the application of block algo-
rithms which only operate on parts of y and x. This section mainly introduces the

concepts and mathematical expressions of partitions.
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Recall that the A is of r rows and ¢ columns:

ail ail ... Qe
azr a2 ... Q2

A= . . - (2.21)
Ar1 QApr2 ... Qpc

Some basic definitions in the partition of system matrix A are concluded here: I; is the

it" row index set, indexing m rows in A. For example, Ay, is the first row block of A:

ail ai19 . Alc
asy a9 . age

Ap=| . . | (2.22)
Aml Am2 ... Qme

In this thesis, M is used to reflect the total row block number of A. A with M row

blocks can then be expressed as:

Arq
Ap,

A= ] . (2.23)
Ary
Similarly, J; is the 4% column index set, indexing n columns in A. For example, A1

means a column block of A

a1 a2 ... Gip
asr a2 ... Qag9n

Al = | (2.24)
Qr1 Ar2 ... Qpp

N is used to reflect the total column block number of A. A with N column blocks can

be expressed as:
A=A AR ... AN (2.25)

Besides, I; and J; are also the index set of corresponding X-ray measurements y and

volume x. Corresponding blocks are y;;, and x,.

In the above example, the row blocks and column blocks all contain sequential row /column
index numbers. In fact, arbitrary index sets are allowed as long as there is no overlap

between row/column blocks.
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If the row and column partitions are combined together, then the linear system Eq.1.5
is divided into M NN blocks:

J J. J
yn AI;’Alf""’AllN X
= |, (2.26)
J1 J2 JN
Yin AIM7AIM7"'7AIM XJIn

where A}:_j is called a sub-matrix of A. To illustrate the partition in both y and x
better, a partition example in a 3D object is presented in Fig.2.4. In the figure, each
separate projection view data is partitioned as a data block yy,. In fact, the partition
can be rather flexible. It can combine several projection views as a data block. Further-
more,the detector can be divided into several sub-detectors and take one sub-detector’s
corresponding projection data as a data block. This division method can be useful for
the following proposed algorithms and will be illustrated in Chapter 3 and 4. In terms
of the 3D volume partition, the volume can be split the along the central plane and then
the total column block number is eight. It should be pointed out that the partition is

generic and does not assume trajectory must be circular.

---------- Detector plane

< 3D volume
Point source

Figure 2.4: The 3D image is partitioned into eight sub-blocks, indexing from
xj, to xj;. The red frame sub-block is labelled as x,. One single projection
view forms a separate row block and the index is yr,. Here only illustrate the
first row block index y7,.

The partition on the projection data and the volume has important meaning when the
dataset is of enormous size. For example, when using toolbox TIGRE (Biguri et al.,
2016) or ASTRA (van Aarle et al., 2015) to calculate the FP result y = Ax, it is
performed in a way that the toolboxes use arbitrary blocks and compute partial forward
projections repeatedly, summing the results to compute the full projection. When using
toolboxes to calculate BP, the process is similar to FP process. In this way the TIGRE
or ASTRA can theoretically reconstruct arbitrary size of CT dataset with arbitrary
scanning trajectories. To avoid having to circle through all blocks in each iteration, row-
action and column-action methods are proposed and based on these two types algorithms

we propose methods that update results after the computation with a single block.

In the following, I and J reflect a random element from set {I;}}, and set {Jj}é-v:l

respectively. As a result, y;, x; and A{ are random data blocks from sets {YIi}i]\il,
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Jivi=M,j=N I . . . .
{xy; é\le and {A} }i) j’J_ 1 - Within these notations, the introduction on row-action
E k2 —

and column-action methods are followed.

2.2.3.2 Row-action methods

In some of the literatures, row-action methods are also called “ordered subset” methods
(Xu et al., 2010; Guo and Chen, 2012). They divide the A and y into M row blocks

and keep x undivided. Then the linear system in Eq.1.5 becomes:

yn All
o~ .| x (2.27)

Yiu AIM
According to (Elfving et al., 2017), the general row-action algorithm is shown in Algo.2.2.

Here and in the following the random sample generally means that the row blocks can

Algorithm 2.2 Generic row-action iteration

Initialization: Determine the maximum allowed epoch number K,,,,. Partition row
indices into sets {I; };c[1,a1)- x! € R is the arbitrary initial vector. x* is the estimation
of x in the k' epoch. pu?, C; and R; are the relaxation parameter and coefficient matrix
for the i*" row block.
for k=1,2,--- , Kjney do
xt = xF
for i =1,2,..., M (inner iterations) do
Randomly or sequentially select I from {I;};c(1,an
xitl = % + MCZA?RZ(YI - A[f(z)
end for
k1 — gM+1

end for

_ K +1
Xsolution = X ™

be either sampled with replacement or without replacement, and the possibility to be

selected is the same among all participant blocks.

Row block applications can be applied on Kaczmarz algorithm. In the previous dis-
cussion, the Kaczmarz iteration only uses a single hyper-plane in each step, whilst the
block Kaczmarz method selects multiple hyper-planes during one iteration (Needell and
Tropp, 2014; Needell et al., 2015). The block Kaczmarz projects the current x onto
the solution space y; = Arx, where I is defined in section 2.2.3.1. The iteration then
becomes (Needell and Tropp, 2014; Needell et al., 2015)

xPTl = xF 4 A}(yl — Axb), (2.28)

where A} is a M-P inverse of A;. However, consider that in the large scale case, the

calculation of A} can be infeasible and thus this kind of block application is not of
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interest in this thesis. Compared with block Kaczmarz, the block version of SIRT and

CAV are more feasible.

A block form of SIRT, which is also known as simultaneous algebraic reconstruction
technique(SART) (Andersen and Kak, 1984), was propose in 1984. It separates the
A and y based on the projection views and the definition of C; and R; in Algo.2.2
are similar to Eq.2.8 but is calculated based on A instead of A. SART is regarded
as a compromise between Kaczmarz and SIRT methods. Instead of treating each ray
as a separate unit or treating them as a whole, the SART algorithm considers single
projections within one projection view as a related system. Similarly, in the Block-
iterative CAV (BICAV) (Censor et al., 2001a; Fernandez et al., 2008), the weighting
matrix C; is still unit matrix whilst the R; then counts the number of non-zero elements

for each column of sub-matrix Aj.

The block application of SIRT and CAV can significantly reduce the computation cost for
each iteration, thus can meet the large data challenge to some extent. These algorithms
have already been sealed as black boxes in the mainstream CT reconstruction toolboxes
such as TIGRE and ASTRA.

The above introduction has included popular block algorithms when the weighting ma-
trices C; and R; are not unit matrices. In the following of the thesis, the weighting
matrices C; and R; will be simplified as unit matrices, and the objective function is
the simple quadratic function shown in Eq.2.14. The main reason is that the weighted
quadratic objective function can be transformed into a least square problem. The de-

tailed explanations can be found in the end of section2.2.2.

Row-action type Landweber methods are also called as mini-batch stochastic gradient
descent (mini-batch SGD). It can be seen that if the M = r and the step length u¢ in
Algo.2.2 is m then the mini-batch SGD becomes Kaczmarz method. The step length
p! can also be a constant or a decreasing sequence, such type algorithms are called as
SGD when M =r.

The idea to use a stochastic gradient instead of accurate gradient in optimization stems
from the 1950s. It comes from the fact that the gradient g at x,.. of Eq.2.14 can be
written as:
r r
g=AT(Axree —y) =Y _8i =Y AT (AiXree — i) (2:29)
i=1 i=1

It shows that the expectation of g; is proportional to the true gradient

1 — 1
Eg, = - =g 2.
g T;lg -8 (2.30)

Theoretical analysis established in various papers of SGD have guaranteed a convergent

process when the random update direction is an unbiased estimation of the true gradient
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(Bottou, 2010). A constant step length p may help to accelerate the convergence rate
at the initial stage but the final reconstruction results can be stuck at a relatively low
precision level and it only converges to the least square solution within an error bound.
In reality to ensure the convergence to the least square solution, the step length needs
to decrease to 0 (Luo, 1991). The reason why a decreasing step length is required is
because the stochastic direction (after being multiplied by r) in each iteration can be
viewed as a true gradient direction being blurred by a stochastic noise vector. Although
the expectation of the noise vector is zero, the variance of the noise vector does not
go down when the iteration goes on. As a result, a mini-batch SGD is more popular
than the original SGD in realistic applications by setting 1 < M < r. The calculated
stochastic gradient is the sum of several g; and thus the variance of the noise vector is
depressed (Ruder, 2016; Konecny et al., 2015). Apart from using the mini-batch SGD,
another method to reduce the variance is to accumulate the previous stochastic gradient,
this method is called the incremental aggregated gradient (IAG) (Blatt et al., 2007) or
stochastic averaging gradient (SAG) (Roux et al., 2012; Schmidt et al., 2017). These
two algorithms are similar except that the previous method samples I from {I;};c(i
cyclically while the later samples I randomly in each iteration. The SAG algorithm

is shown in Algo2.3. It can be seen that SAG introduces new variables {gi}ie[l, M]-

Algorithm 2.3 SAG

Initialization: Determine the maximum allowed epoch number K4, . {g"}ie[l, M)
stores each stochastic gradient for different row blocks and initial values are zero
matrices.
for k=1,2, -+, Kje do

Random select I; from {I;};cqi,a

r=y; — Arx"

gl = A{_r

g = sz\i1 g’

X = xk 4 g

end for

_ <K +1
Xsolution = X ™

This means that storage demand of SAG is larger than for SGD, which is a drawback.
However, both theoretical analysis and simulation results have verified that by recording
each row block’s stochastic gradient ingredients and summing them up, the accumulated
g gradually approaches the true gradient direction. This property enables a constant
step length 1 ensuring the convergence to the least square solution and thus SAG has a

faster convergence speed than SGD.

There is another famous algorithm to gradually reduce the error variance of estimated
gradient, which is called Stochastic Variance Reduced Gradient (SVRG) (Johnson and
Zhang, 2013). This algorithm not only converges with a constant step length but also
does not require the storage of g. However, the cost is that it needs to calculate a full

gradient with a predetermined frequency. The SVRG is shown in Algo.2.4. The idea is
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Algorithm 2.4 SVRG

Initialization: Determine the maximum allowed epoch number K, 4.
for k=1,2, - -, Kjnee do

X = Xk;
g=V/f(x) =2AT(Ax—y)
Xtem = X

Randomly select I; from {I;}4,
Xtem = Xtem — WMV f1,(Xtem) — MV f1,(X)+8),V f1,(x) is the stochastic gradient
for %Hyh - AL‘XH2'

end for

k+1 __
X+ = Xtem

end for

_ <K +1
Xsolution = X ™

that although the variance of V fr,(X¢em ) is high, the variance of difference V f1, (X¢em) —
V f1,(Xx) decreases as the algorithm goes on. As a result, with more iterations, the update
direction becomes close to the full gradient direction V f(x), hence eliminating its high

error variance.

2.2.3.3 Column-action methods

In this section, the column-action methods, which are closely connected to coordinate
descent (CD) optimization algorithms, are considered. The column-action methods di-
vide the reconstructed image vector X,.. and A into N column blocks. The general

column-action algorithm is shown in the Algo.2.5 (Elfving et al., 2017).

Algorithm 2.5 Generic column-action iteration

Initialization: Determine the maximum allowed epoch number K,,,,. Partition col-
umn indices into sets {J;}je,n) » 1%, }jep,n) = 0. T =y — Ax. p; and R; are the
relaxation parameter and coefficient matrix for the j** column block.
for k=1,2, -+, K4 do
5(1 — Xk
for j =1,2,..., N(inner iterations) do
Select J; as index J
%) = %) + R, (A7)
r=r— A" - %)
end for
k1l — gN+1

end for

_ K +1
Xsolution = X ™

The coordinate minimization algorithm is the most simple and intuitive one among

coordinate descent families. It is especially popular when each iteration only updates
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one pixel (i.e. N = ¢). The iteration in coordinate minimization is

k(A7)
SNV AR
K = b 4 pibe, (2.31)
r=r— ,ukAJJ',

where e; is a vector that the 4% element is 1 while the other elements are 0. Note that
p at the k" iteration can be obtained by solving e?Vf(xk + pej) = 0. It is easy to
extend the preliminary single-update method into block form(Sauer et al., 1995; Fessler
et al., 1997; Zheng et al., 2000; Benson et al., 2010; Fessler and Kim, 2011; Kim and
Fessler, 2012). Block form CD can be further accelerated by randomly sampling blocks in
each iteration, which is called Random Block Coordinate Descend (RBCD). The general

RBCD iteration is
Jie{Ji,---,JIn}

. (2.32)
XJj = argmin f(XJj7Xj)7
where J; U J = {Jj}é\f:l. The objective function Eq.2.14 can be expanded
1 1
fx) = §XTATAX —yTAx + §yTy
(2.33)

1 . , , 1
25(2 AJJXJJ')T(Z AJJXJj)—yT(E AJ’XJj)+§yTy-
J J J

According that Eq.2.32 only minimizes x;, it can be simplified as:

arg min f(x;;,X7) = arg min §(AJJ XJj)T(AJJ xj;) + Z(AJlXJi)T(AJJ Xj;) — yTAJJXJ].

i#£]
_ 1 . (AJj )T(AJj )+ Z(AJZ )T_ T AJj
=5 arg min XJ; XJ XJ, y XJ;-
i#j
(2.34)
The gradient direction of Eq.2.34 is
(A7) AYixy + (AT 1Y (ATix)T —y"| = (A%)T(Ax —y). (2.35)
i#]
RBCD iteration then becomes:
X =l + (A (y - Ax), (2.36)

where p can be determined by line search and differs for different x; (Qin et al., 2013)
or it can simply be a constant (Lu and Xiao, 2015; Shalev Shwartz and Tewari, 2011).

Both pixel-based or block-based CD have been widely applied to CT reconstructions,



Chapter 2 Literature review on iterative methods 31

which can be traced back to the 1990s (Sauer and Bouman, 1993; Bouman and Sauer,
1996; Thibault et al., 2007). Many researches have focused on the selection sequence of
image blocks. The selection criteria can be random (Hsich et al., 2008; Chang et al.,
2008; Richtarik and Takac, 2014; Nesterov, 2012) or sequential(He and Buccafusca,
2016). Both forms show fast convergence of the high spatial frequencies and converge
slowly at low spatial frequencies (Bouman and Sauer, 1996). When compared with other
analytical algorithms as proposed in (De Man et al., 2005), CD methods have a rapid
convergence rate when they are initialised with FBP result, which usually provide good
estimations of the low spatial frequency of the image. Traditional CD methods just
randomly select pixels or pixel groups (i.e. each block has the same probability to be
selected), whilst an importance sampling strategy based on a calculated pixel selection
criterion is proposed by (Yu et al., 2007, 2010). By non-homogeneously selecting pixel
groups, the convergence rate of RBCD is increased by focusing on pixels which are
in most need of an update. Another research interest is the partitioning of x space
(Ha and Mueller, 2015; Benson et al., 2010; Fessler and Kim, 2011). However, most of
them require more complicated computations, including solving a new symmetric linear
system to determine which pixels should be updated simultaneously. Their iterations are
no longer simple matrix-vector multiplications. As a result, this area is of less interest

in this thesis.

2.2.3.4 Combinations of row and column-action methods

Algo.2.2 and Algo.2.5 have shown that full access to either x or y is required for row
or column-action methods. For large-scale CT reconstruction where both the projection
numbers and the pixel numbers of the reconstructed image are too large to be stored
within one node, it is not fast enough to use either of these methods individually. Com-
binations of row-action and column-action methods was proposed to solve it. In general,
these combined methods enable each iteration to only select a block of coordinates and
to estimate the corresponding partial gradient based on a row block of system matrix A
(Chen and Gu, 2016; Zhang and Gu, 2016). When applying these methods to the linear

system, the general update scheme is

XJ:XJ—,UVJf](X), (237)

where p is the step-length and f;(x) = %HYI — Ax|3. Vfi(x)is Af(y; — Arx). Re-
cently, several articles have discussed similar applications of this approach. In this thesis,

these algorithms are uniformly called “stochastic block coordinate descent” (SBCD).

In particular, Wang (Wang and Banerjee, 2014) and Zhao (Zhao et al., 2014) indepen-
dently proposed similar SBCD algorithms and both explored the application of variance
reduction technique (Johnson and Zhang, 2013) to further accelerate the convergence.

Koneény (Konecény et al., 2017) proposed a semi-stochastic coordinate descent method
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to combine the stochastic gradient method and coordinate descent method to minimise
a strongly convex problem. This method, however, requires the full gradient to be cal-
culated in the first step. Xu (Xu and Yin, 2015) mathematically proved the convergence
rate of SBCD when the step-length is decreasing and when the update strategy adopts
Gauss-Seidel type, showing that the SBCD method has the same convergence rate as
stochastic gradient methods when the objective function is convex. The sampling meth-
ods on row and column space is a research hotspot in SBCD type algorithms. For
example, Shalev (Shalev Shwartz and Tewari, 2011) proposed a combination of SGD
and RBCD methods to minimise /;-regularized smooth convex problems by uniformly
sampling the row blocks and non-uniformly selecting the column blocks. Leventhal (Lev-
enthal and Lewis, 2010) combines the importance sampling scheme in Kaczmarz with
RBCD method and established its iteration complexity. Chen (Chen and Gu, 2016)
researched the application of SBCD in the sparsity constrained non-convex optimiza-
tion by combining hard thresholding technique (Blumensath and Davies, 2009). Zhang
and Lu separately proposed the optimal sampling method in the SBCD method, by
randomly selecting column blocks and selecting row blocks based on a calculated prob-
ability (Zhang and Gu, 2016; Lu and Xiao, 2015) . Their methods can be regarded as a

variant of the work in (Leventhal and Lewis, 2010).

Despite the fact that SBCD combines row-action and column-action methods. For each
iteration, the computation of the gradient requires the accurate calculation of the block
residue r; = y; — Ax, which still requires access to all of x. In other words, the system
matrix A in SBCD type method is not actually separable in the column direction due
to the need to calculate ry. This can be challenging for the computation nodes, for

example, GPUs in a distributed network, whose capacity is limited.

2.2.4 Parallel applications of iterative algorithms

From a general point of view, Kaczmarz method belongs to a particular case of SGD with

the learning rate equal to A_}A‘_T (Kamath et al., 2015; Needell et al., 2014). As a result,

the parallel algorithms designed for SGD are also suitable for the Kaczmarz method for

CT reconstruction. For example, recently an Elastic Averaging SGD (EASGD) method
was proposed (Zhang et al., 2015). It uses a parameter server architecture (Li et al.,
2014), allowing each computation node to maintain its own local reconstructed x. In
the master node, there is an averaged vector X which is linked with all computation
nodes’ parameters. The algorithm has both synchronous and asynchronous forms as
well as a momentum form. Experiments show that the asynchronous form EASGD
is stable and plausible under communication constraints. A similar parameter server
architecture is also proposed in (Kamath et al., 2015), where a fusion centre assigns
each computation node a block of system matrix A and the corresponding projection

data block. Each node performs sequential Kaczmarz process and the fusion centre
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performs a component average. This method requires synchronization between all nodes
and the communication cost dramatically increases when the data size increases. To
reduce the communication cost, a distributed randomized Kaczmarz was then proposed
and makes the node only communicate with its neighbour, achieving an asynchronous
communication between nodes. More discussions on asynchronous Kaczmarz or SGD
methods can be found in (Liu et al., 2014; Recht et al., 2011; Zhao and Li, 2016).

The SIRT-type algorithm is widely applied in parallel CT reconstruction task (Li et al.,
2005). Benson applied SIRT to a parallel framework to mitigate the sequential computa-
tional cost and observed the speed differences between pre-calculating the system matrix
or calculating it on the fly when iteration is conducted on a distributed network (Benson
and Gregor, 2005). Castro compared speed-up factors of SIRT and SART under differ-
ent block numbers (Bilbao-Castro et al., 2004, 2006). Gregor improved the traditional
SIRT method and the improved algorithm showing faster convergence rates than tradi-
tional SIRT in a parallel environment (Gregor and Benson, 2008). However, all of the
literature mentioned above requires each node to keep a full copy of the reconstructed
X. Recently, Palenstijn proposed a method that requires each node only to keep a slice
of the volume object (Palenstijn et al., 2015). This method requires a circular scanning
trajectory and the block direction should be perpendicular to the scanning rotation axis.
Each node is assigned with a sub-volume of the object and thus only a small area of the
detector receives X-rays passing through this particular sub-volume. The iteration in
Eq.2.6 of each node is independent except for the two neighbouring nodes which have
overlapping projection areas. To obtain accurate forward projection data (Ax in the
SIRT iteration), the communication thus only happens between such two nodes who
share the overlapping area. In this parallel scheme, the communication cost between
nodes decreases because of the reduced storage on x but heavily depends on the number
of blocks. When the block number increases, the overlapping area also increases, which
means that the communication load becomes heavier. As a result, the scalability of
this parallel method is limited. Besides, this methodology is only suitable for standard
circular scanning strategies, which limits its application . However, this method divides
x into several blocks and assigns them to different nodes, which is an improvement to
the previous method that requires each node to keep a full copy of x. Concerning the
parallel computation form BICAV, the process is similar to the block form SIRT, which
adopts a parameter server form. A master node assigns different projection data into
different computation nodes and each node performs BICAV. Finally, the master node
communicates with all computation nodes through a weighted sum of all partial results
(Bilbao-Castro et al., 2006).

Coordinate descent type algorithms, especially RBCD, are also suitable for parallel
computation (Yu et al., 2006). A comprehensive convergence theory of parallel CD is
established in (Richtarik and Takac, 2016) and the theoretical speed-up is claimed as a

simple expression depending on the number of parallel processors. In CT reconstruction,
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the parallel CD is mainly studied in (Wang et al., 2016; Sabne et al., 2017; Wang et al.,
2017b), focusing on the hardware application in CPU-GPU architecture and on the
data transformation between GPU/CPU buffers. However, in mature reconstruction
toolboxes adopted in this thesis, projection data transformation has already been sealed
into the “black box” of matrix-vector multiplication operations. Research into detailed

hardware data transformation is thus of less interest in this project.

2.3 Algorithms with regularizations

In tomography, the system matrix A in Eq.1.5 is always ill conditioned and the linear
system is always ill-posed (Natterer, 2001). Since the solution of an ill-posed linear
system is always severely influenced by the noise vector on the projection data, using
Landweber projection or its block form without regularisation cannot obtain satisfying
reconstruction results. This is because that the least square solution obtained by these
methods, denoted by x* is not a meaningful approximation of the true solution(i.e. the
image vector representing the scanned object). Regularization is thus often added when
solving ill-posed linear system. In this section, three main regularization methods are

introduced after explaining the semi-convergence property in the ill-posed system.

2.3.1 Semi-convergence and early stopping criteria

For the following discussion, the ill-posed linear system is rewritten as:
Yy = AXjrye + €=y +e, (238)

where the X4 is the scanned object, e is the error vector. According to Theorem 1.1
in (Elfving et al., 2010), SIRT-type iteration Eq.2.6 always converge to a solution of
x* that minimises |y — Ax||g and thus x* is a weighted least square solution. When
the noise vector is zero and the system is overdetermined, it is easy to prove that the

* = Xyruee However, if e is non-zero, then the story is different. Since the linear

X
system is ill-posed and A is ill-conditioned, x* can be arbitrarily far away from Xspqye.
A brief explanation is presented here by using the Landweber projection as an example:
According to the previous discussion, the Landweber projection, as well as its stochastic
block version, converges (or converges on expectation) to the least square solution x* =
(ATA) Y (ATy) = (ATA)"YAT(y +e) = xpue + (ATA)"1(ATe). For simplicity
it is assumed that the original linear system is overdetermined and there is only one
solution (i.e. the solution is the original scanned object vector Xy.,e) in the noise-free
case. As A is ill conditioned, ATA is also ill conditioned and thus (ATA)"1(ATe)
is a large vector even if e is a small disturbance. As a result, during the iterations,

although the distance of x* to x* and the weighted residual norm (i.e. value of Fgr(x)
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in Eq.2.16) decrease stably, the distance of xF t0 X¢pye, which reflects the reconstruction
quality, will typically reduce initially but then increase. This phenomena is often called
semi-convergence. In other words, when talking about semi-convergence, it does not
mean the algorithm does not converge, instead, it still converge to x*. However, in the
discussion of semi-convergence, the reference solution is changed from x* to Xypye and
it is inevitable that the iteration will approach X and then move away from it. This
phenomena widely exists in both Kaczmarz and SIRT-type iterations (Elfving et al.,
2010, 2014). It is thus common to stop iterative algorithms after a few iterations, long
before the method has converged to x*. This strategy is called early stopping. Here the

iteration number plays a regularization role.

(Elfving et al., 2010, 2014) have proposed the error analysis by dividing the difference
between the realistic iterated vector and the ideal optimal solution ( i.e. the result when
dataset is noise free):

k

xF % =xF

—x%F %k —x, (2.39)

where X is the minimiser of ||[Ax — y||] (definition of y is in Eq.2.38) and X = X¢pue

k

in overdetermined system. %* is the iterated results (at k" iteration) of Kaczmarz

or SIRT-type algorithm when e is zero. Thus the difference is decomposed into two

k k _ %. Kaczmarz and

components: the noise error x* — %* and the iteration error %
SIRT-type algorithms have been shown that their noise error is increasing and the error’s
upper bound is scaled by vk and k respectively. On the contrary, the iteration error
is always decreasing if the step length p is set properly. (The discussion on proper
1 is mentioned in section 2.2.) When the iterations are at the early stage, the noise

¥ — Xtruel|) decreases but

error is negligible and thus the norm of the difference (i.e. [|x
when k increases to some point the noise error is large enough to make the ||x* — X¢pycl|
increase. This mathematically explains the semi-convergence phenomena. It shows that
this property widely exists as long as the system is ill-posed, i.e. a small change on e

causes huge changes on x*, making x* stay far away from Xyye.

Whilst SIRT and Kaczmarz converge to a limit point x*, due to the ill conditioning of
the CT inverse problem, the algorithms can provide solutions that are arbitrarily far
away from Xy... For ill-posed tomographic problems, regularisation is often achieved
through filtering of the projections (as with the FBP or FDK algorithms) or through
early stopping of iterative methods. Whilst these approaches can provide good results
in practice, it is difficult to quantify the amount of regularisation and the quality of
the solution. In this thesis, we thus take a different view on the solution of ill-posed
tomographic reconstruction. We split the problem into two steps. 1) the explicit charac-
terisation of a regularisation function g(x) chosen suitably for our specific problem and
2) the efficient optimisation of the resulting cost function f(x)+ g(x). There has been
significant research into the selection of different regularisation terms and their suitabil-

ity to tomographic problems. This thesis instead focuses entirely on the second problem,
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the efficient solution of the optimisation problem when f(x) is a least squares cost func-
tion. In fact, as discussed further below, optimisation of composite cost functions of the
form f(x)+ g(x) can often be done in two steps that deals with each term individually.
We thus here deal primarily with the issue of efficient optimisation of f(x) and then

show how to use this approach in combination with a commonly used regulariser.

2.3.2 Tikhonov regularization

Ill-posed problems must be regularized if one wants to successfully achieve the task
of numerically approximating their solutions. It is often said that the art of applying
regularization methods is to maintain an adequate balance between a solution’s accuracy
and stability. There is a large body of work on regularization methods. Among all
regularization methods, perhaps the best known and most commonly used method is
the Tikhonov-Phillips method, which was originally proposed by Tikhonov and Phillips
in 1962 and 1963 (Tikhonov, 1963). This method replaces the linear system Eq.1.5 by

a penalized least-squares problem of the form (Donatelli et al., 2012):
Fix) = Sy — Ax|> + | Tx]2 2.40
) = 5y — Ax|]? + XT3 (2.40)

where A > 0 is known as the regularization parameter, T is some suitably chosen
Tikhonov matrix and a common choice is the unit matrix I or a matrix approximating
the first or second order derivative operator (Hansen and O’Leary, 1993). Taking the

T =1 as example. The minimiser of Eq.2.40 is
x5 = (ATA + \I)1ATy, (2.41)

and it can be iteratively approached by iterative shrinkage-thresholding algorithm (ISTA)
or fast iterative shrinkage-thresholding algorithm (FISTA)(Beck and Teboulle, 2009b).
It can be seen that the norm of the residual, i.e. ||ry|| = ||y —Ax}||, is an increasing func-
tion of A and the norm of x3 is the decreasing function of A\. The curve L = {[|x}]|, |lrAl}
is known as L-curve because under suitable conditions on A and y it is shaped roughly
like the letter “L”. The value X that corresponds to the point (||x}][,|[r)||) at the “ver-
tex” of the “L” is denoted as Aj. It is suggested to use A;, as the optimal relaxation
parameter in the reconstruction (Hansen, 1992). A heuristic motivation for this choice
of A is that when A > 0 is “tiny”, then the associated solution x} has a large norm
and is likely to be contaminated by the propagated error that stems from errors in the
given projection data y. Conversely, when A is large, the vector x generally is a poor
approximation of a solution of Eq.1.5 and the associated data fidelity ||ry|| is large. The
choice A = Ap seeks to best balance the data fidelity and the propagated error in the

computed approximate solution x3.
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2.3.3 Total variation regularizations

Generally, the Tikhonov regularization term prevents the pixels blowing up and it does
not use much priori image information. This section introduces the total variation (TV)

regularization, which uses the prior information such as the assumption that the gradient
of the image is sparse.

In many real-world applications, projection data can only be obtained at imperfect
angle ranges due to constraints of data acquisition time or constraints of the scanning
geometry, which both cause incomplete data problems. An incomplete dataset is mainly
caused by two reasons: one is limited-views scanning and the other one is the few-
view scanning (or sparse-views scanning). A limited-views problem means that the
scan angle range is small (e.g., 90° coverage or even less). For example, in industrial
non-invasive detection, when the object size is large, the projection angle range can be
rather limited because it is infeasible to rotate around the large volume (Banjak et al.,
2016). The few-views problem refers to the situation that a full scanning view range
(360° for cone beam scanning and 180° for parallel scanning) is achieved, but there
is a large gap between adjacent projection views. For example, in medical scanning,
the interval of the projection angle is supposed to be large, aiming to reduce the side
effect caused by X-ray dose (Tian et al., 2011). An illustration of limited-views problem

and few-views problem is shown in Fig.2.5. Image reconstruction using an incomplete

Possible detector plans

Object

X-ray point source

trajectories X-ray point source

Possible detector plans . .
trajectories

(a) Limited-views problem (b) Few-views problem

Figure 2.5: Two main incomplete datasets in 2D CT scanning.

dataset has been a hot research topic in recent years. Iterative algorithms based on
the minimization of total variation (TV) constraints is of particular interest. The TV
constraint can be derived from the compressed sensing (CS) theory proposed in (Cand
and Wakin, 2008), which can achieve an exact recovery of an image from sparse samples
of its discrete Fourier transform. The exact recovery depends on the fact that there

exists some representation of the image for which the corresponding coefficients are



38 Chapter 2 Literature review on iterative methods

sparse. Although in many realistic applications the image function of the object to be
detected is not sparse, it often has the characteristic of an approximate slice continuity.
As a result, the gradient magnitude of the image is sparse. For images with sparse
gradient properties and insufficient projections, according to the CS theory, images can
be reconstructed by minimizing the total variation of the image (i.e., the [ norm of the
gradient image) while subjecting to a data fidelity condition. For a discrete 2D image
x € REXK the basic TV regularizer is

TV(x) = [|Afl1,

- Y \/(ﬂ«“m' = Ti15)% + (@i — Tij-1)?,
2<ij<K

(2.42)

where TV (x) is a function calculating the total variation of x when it is expanded into
2D or 3D image forms and x;; is the pixel intensity at it" row and j** column of 2D
image x. For the 3D case, the TV norm is similar to Eq.2.42 and an extra dimension is
added. In limited-view problems, simulations and theoretical analysis both demonstrate
that artifacts in the reconstructed images are directional and the basic TV norm in
Eq.2.42 is unable to effectively eliminate the directional artifacts (Chen et al., 2013; Jin
et al., 2010). Consequently, the TV regularizer is re-designed. Detailed discussions can
be found in(Chen et al., 2013; Jin et al., 2010; Islam, 2013; Kongskov and Dong, 2017;
Wang et al., 2017a).

Total variation regularizer was first proposed for image denoising in (Rudin et al., 1992)
and then extended to image deblurring in (Rudin and Osher, 1994). In comparison to
the well known Tikhonov regularizers, TV regularizers can better preserve sharp edges
or object boundaries that are usually the most important features to recover. TV-based

algebraic reconstruction then optimises the cost function

x = argmin TV (Xyec),
Xrec (2.43)
SUbjeCt tOHy - Axrec”% < €,

or equivalently (Sidky and Pan, 2008)

1

X = arg min §||y — AXpeel|3 + ATV (Xpee), (2.44)
Xrec

where ) is a relaxation parameter and e reflects the data inconsistency caused by noise

vector e. The optimization problems cannot easily be solved using standard gradient due

to the non-smoothness of the objective function. Many algorithms have been proposed

in the literatures. In this section these algorithms are categorized into derivative method

and proximal method.
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2.3.3.1 Derivative method

In the earliest TV constrained CT reconstruction, Sidky proposed an ART-TV algorithm
based on the combination of the steepest gradient descent of the TV norm and the
Kaczmarz method (Sidky et al., 2006). The principle of the algorithm is as follows:
during the projection process, the image is roughly obtained by the Kaczmarz method
shown in Eq.2.3. After a complete cycle of update steps, a steepest descent iteration

reducing the TV norm is carried out. The basic algorithm is shown in Algo.2.6.

Algorithm 2.6 ART-TV algorithm

Initialization: Determine the maximum allowed epoch number K. x0 € R¢ is the
arbitrary initial vector. The ART(x) means a whole Kaczmarz iterations through
all system matrix rows. A is a predefined parameter to control the TV decreasing
step-length. t,,4, is the maximum loop number for TV decreasing process.
for k=1,2,--- , Kjney do

Xold = Xk

Xpew = ART (xF)

dy = Hxnew - XoldH2

for t =1,2, ..., t;ey do

‘/(Z OTV (Xnew)

7]) = 6xnew(i,j)

Xnew = Xpew — AAV

end for

k+1 _
xiTl = Xnew
end for

. _ LK +1
Xsolution = X ™7

In terms of the calculation of V in Algo.2.6, since TV (x) is not differentiable everywhere,
the derivative method uses an approximated smoothed formula and obtains the partial

derivative function:

OTV(x) _  2(wij —wi1g) +2(zij —Tij1)
gy E+ (@i —wim1y)? + (20 — 245-1)?
2(xiq1,j — Tiy)
\/f + (xi-&-l,j — xi,j)Q + (wz‘+1,j - fl«”z’+1,j—1)2
2(@ij+1 — Tiy)
\/f + ($i7j+1 — xi,j)Q + (xz‘,j+1 - l"z’—l,j+1)2

(2.45)

)

where £ is a non zero minimal value to make the denominator non-zero.

The ART-TV is easy to implement and many variants have been proposed during the
last two decades (Sidky and Pan, 2008; Herman and Davidi, 2008; Yu and Wang, 2009;
Sidky et al., 2011; Chen et al., 2013; Islam, 2013). One improvement algorithm, adaptive
steepest descent projection onto convex sets (ASD-POCS) (Sidky and Pan, 2008), over-
comes the assumption of ART-TV which requires the linear system to be consistent (i.e.

e = 0), and considers the situation when the linear system is inconsistent by adopting
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an adaptive step-length to control the reduction of the TV norm. The ART-TV method
can also be improved by using Block-ART (Herman and Davidi, 2008) or Block-SART
(Yu and Wang, 2009) methods to substitute the original ART.

2.3.3.2 Proximal method

It is worthy to stress that the proximal methods are an important motivation for the
thesis, as they allow to solve regularised least squares estimation problems by alternating
between least squares estimation (which can be done efficiently with newly proposed
algorithms) and a proximal operation to enforce the constraint. Before introducing
proximal methods, some basic concepts of proximal operator and proximal method’s

corresponding mathematical model are first introduced.

A function is called convex if the line segment between any two points on the graph of
the function lies above the graph between the two points. Classical TV regularization
term is proved to be a convex function (Selesnick et al., 2020). One important property
of convex function is that a strictly convex function on an open set has no more than

one minimum.

The proximal method can quickly solve a convex optimization problem: the objective
function F'(x) is not differentiable everywhere but can be divided as a sum of convex-
differentiable function f(x) and a convex but not necessary differentiable function g(x).
ie.

x* = argmin F(x) = arg min[f(x) + g(x)], (2.46)

X
Traditional GD-type is only able to achieve the minimization of differentiable function,
and thus GD-type algorithms are not suitable for the optimization of Eq.2.46 due to
the possibly non-differentiable function g(x). For this kind of mathematical model, a

proximal operator is introduced
. 1 2
prox,(g)(x) = argmin g(u) + ﬂHu —x||3. (2.47)

The proximal operator is only designed for the non-differentiable function g(x) and is
irrelevant to the differentiable function f(x). Eq.2.47 can be explained as given a vector
x, find another vector u = proz,(g)(x). By making g(u) + ﬁ”u — x||3 minimal, the u

makes the value of g(u) small and is located near the original vector x.

To deepen the understanding of proximal operator, here discuss three special and simple
situations for function g(x): 1) g(x) = 0, 2)g(x) = [|x]|1, 3) g(x) = ||x]|3 to further
illustrate the proximal operator. When g(x) = 0, the proximal operator proz,(g)(x) =

arg min O+ﬁ\|u—xH% = x. When the g(x) = ||x||1, the proximal operator proz,(g)(x) =
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argmin ||ul|; + i”u —x||3 = S,(x). Using [S,(x)]; to express the i element of S, (x):

Xi — My X4 = 1%
[Su(X)]i =140, —pu<x<p (2.48)

Xi+p, X < [,

which is called as soft thresholding function. When g(x) = ||x||3, since it is differentiable,

it is easy to show that proz,(g)(x) = argmin ||u/|3 + ﬁ”u —x||% = X.

1
14+2p
The proximal method to iteratively optimize Eq.2.46 is expressed as (Beck and Teboulle,
2009b; Kamilov, 2016; Rose et al., 2014; Combettes and Pesquet, 2011):

X" = prow,(9)(x* — pV f(x")), (2.49)

where the p is not only step length to reduce the data fidelity of f(x) but is also the
footage parameter in the proximal operator. For this iteration, it can be explained that
given the current k" iteration result x*, first reduce f(x) by moving x* along with
the minus gradient direction with a step length i and obtain an intermediate updated

k

value X*. Based on %, an u is found by using proximal operator. The found u makes

the non-differentiable function g small enough and is close to the intermediate updated

value x*. The u is thus used as the next iteration result x*t1.

Eq.2.44 can be changed into Eq.2.46 if f = %Hy — Ax,ec|? and g = ATV (Xec). This is
because that the quadratic objective function f(x) = 3|ly — Ax||? and the TV definition
TV (x) are both convex functions. However the TV norm is not differentiable everywhere.
This can be easily explained by the Eq.2.45. It can be seen that if § = 0 and x; j4+1 = 25

then the denominator is zero.

The general iteration for TV-based optimization problem can be regarded as alterna-
tively performing a gradient descent step and then applying the proximal operator on
the iterated intermediate result to reduce the TV norm. To be more specific, an in-
termediate updated value X* is first obtained after a GD step, and then the proximal

operator is applied on X* as:

1
proz,(g)(x) = proz,(A\TV)(x) = argmin ATV (u) + —|ju — x||3
2p (2.50)

arg min 2u\TV (u) + ||u — x||3

Unlike previous mentioned g(x) = 0, ||x||1 or ||x||? case, when g(x) = ATV (x), there is

no simple and direct solution of Eq.2.50. According to the discussion in Eq.4.1 in (Beck

and Teboulle, 2009a) , the Eq.2.50 is a TV-based denoising problem and need to be

solved by an iterative algorithm. As a result, the proximal method to optimize the TV-

based regularization model Eq.2.44 is divided into two steps: The first step is to reduce
1

the data fidelity of quadratic objective function f(x) = 5|ly — Ax||? with step length
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p and obtain an intermediate image vector x*

. The second step is to perform a TV-
based denoising algorithm to denoise the intermediate vector X¥ with the regularization
parameter uA. The pseudocode of the TV-based denoising algorithm can be referenced

in (Beck and Teboulle, 2009a).

To conclude, the early stopping criteria, Tikhonov regularization and TV regularization
are all widely applied in the iterative CT reconstructions. Early stopping criteria stops
the iteration before they converge, ensuring that the projection error does not propagate
much. The Tikhonov and TV regularizations introduce some prior knowledge of the
image. The Tikhonov regularization prevents the pixel value of reconstructed image
blow up and stabilises the solution when the projection data is noisy and the linear
system is severely ill-posed. The TV regularization term is not differentiable, which is
different from the Tikhonov and thus the traditional gradient descent method is not
suitable for TV-based optimization. Instead, a proximal operator is introduced. The
iteration then includes a gradient descent step to reduce the data fidelity and then
followed by a TV-based denoising procedure. Compared with Tikhonov regularization,
TV regularization introduces more prior information by considering the slice continuity
of the image and it is widely used in the case when the projection views are sparse or
limited.

2.4 Other related method

Solving linear system Eq.1.5 is not only constrained to row-action and column-action
methods. There are other algorithms that are available for general linear inverse prob-
lem. In this section, Block Alternating Direction Method of Multipliers” (block ADMM),
which is widely used in machine learning, is briefly introduced. It shows that it can be

applied in the large scale CT reconstruction cases.

ADMM is a method to solve the decomposable convex optimization problem. It is
very effective in solving large-scale problems. Using the ADMM algorithm, the origi-
nal objective function can be decomposed equivalently into a number of sub-problems.
ADMM then solves each sub-problem in parallel, and then combines the solution of the
sub-problems to find a global solution of the original problem. ADMM was originally
proposed in 1975 and was re-examined by Boyd, who proved that the ADMM is suitable
for large-scale distributed optimization problems (Boyd et al., 2011). After that the
ADMM has been widely applied in CT reconstruction (Chen et al., 2014; Chun et al.,
2014; Wang et al., 2019). The block version of ADMM (Parikh and Boyd, 2014) enables

the total separation on the column direction of A and the partition of the whole linear
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system as
J1 Jo JN
yn All Ah o Ah XN
Ji Jo JN
Y, _ AIz AIQ o Afz Xz (2 51)
J1 Jo JNn
yI]W AIM AIM e AI]\/[ X‘]N

Each computation node, in the distributed network, only receives AJZ, xy; and yy; and

no longer needs the calculation of rj.

Before introducing the block version of ADMM, it is necessary to give a brief instruc-
tion on the ADMM iteration scheme. The ADMM method can solve a general convex
optimisation problem

min f(z) + g(x),

(2.52)
subject to z = Ax,

with variables x € R® and z € R", where f : R" — R and g : R® — R. The basic
iteration of ADMM follows:

X3 = prowy(g)(x* — %)
ZFs = proxp(f)(zk — Zk)
(xFH1, 2y = Ta (x5F7 + %5, 253 4 2P) (2.53)

- . 1
k1 _ gk o xht3

% k+1

— X

k+1

. . 1
BHL gk 4 bty gkl

Z

where A and p are relaxation parameters. The graph projection IIp can be seen as a

AT [e
[O 0] H (2.54)

where I is an unit matrix whose size is determined by the size of A. ¢, d are both vectors

linear operator
I AT

HA(C7d>: [A 1

of the same size as x and z.

If f(z) = ||z — Axpuel|?> = ||z — y||? and g(x) = 0 or ATV (x), ADMM method solves
Eq.1.5 without or with TV constraints respectively. When g(x) = 0, the xk+3 =

prozx(g)(xF — %F) in ADMM iteration can be written as
e = xk %k, (2.55)

After some manipulations, Z"e = prox,(f)(zF — z*) in the ADMM iteration can be

written as

k+3 1 1 k _ sk
z' "2 = + z" —z"), 2.56
gt ) (2.56)

where y is the already obtained projection data.
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Block ADMM assumes that both function f(z) and g(x) are block separable, i.e.

M
f(Z) = Z fi(zfi)v
=1

N (2.57)
g(x) = gi(xy,),
j=1
where
z = [Zfl’ T ’ZIM]T
B - (2.58)
X = [XJ17"' ’XJN] )

with z7, € R™, x5, € R™, so wa m; = r and Eévzl nj = c. To apply block ADMM,
M N new variables x’f,j e R, zi € R™ are introduced. Then the block ADMM, after
a detailed deduction in (Parikh and Boyd, 2014), is expressed as

+3 ko sk
Xy 2 :prox)\gj(xjj —X7)
1

k+35 k ~k
2% = prox, fi(d], — )

o, ) = ), - ), )

1 = ave(ady o, L) (2.59
(27, {Zikﬂ};\,:l) _ exch(zljj%, {Z‘}.ik—’_%};\[zl)

R R

1
~k+1 _ =k k+35 k+
A AT 78

i \k <i \k i \k+2 k+1
()" = (x5)F + (x5,) 2 — x5,

where avg and exch are element-wise averaging and exchange operators, respectively.
The exchange operator exch(c, {cj}é»v:l) is an operator that computes z;, based on

{zjl'i ;V:l by reducing or adding a correction term, given by

(=2 e)

J
z) =cj+———
N1 (2.60)
2 — o (c=>5=16)
L= N+1
1 1
The final solution can be obtained from [X/IfJr2 o ,XI;V+2].

From the description, it can be seen that the most computationally intensive part of
ADMM and its block form is the II projection. For example, in ADMM, based on
Eq.2.54, this projection is equivalent to solving the linear system
c+ ATd I AT | |e
= -, (2.61)
0 A -—-1||d
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where & and d are the projected ¢ and d. A can also be changed as A{ in block ADMM
form. To solve this equation, the conjugate gradient for the least square problems
(CGLS) is recommended due to its fast convergence rate (Parikh and Boyd, 2014). Each
ADMM iteration requires several conjugate gradient (CG) iterations, leading to dozens
or even hundreds of matrix-vector multiplies, which leads to significant computational
cost per iteration. A standard technique to speed up the ADMM iteration is to terminate
the CG iteration early. With a predefined tolerance parameter 7, the CG is stopped when
the residual norm of Eq.2.61 is smaller than 7. It should be noted that the tolerance 7

should influence the final image vector x,..’s accuracy. At low precision level, i.e. at the
k

rec s accuracy brought by 7 is not significant

initial iteration stage, the influence to the x
so the 7 is allowed to be set as a relative large value. When the iteration goes on, if
one wish to obtain a high level accuracy solution of x,.., then the 7 has to be tuned
down and then the iteration computation cost increases. Early termination in the CG
can result in more ADMM iterations, but leads to a much lower computational cost per

iteration, giving an overall improvement in computational speed.

Apart from early termination, there are other methods to increase the ADMM compu-
tational efficiency. For example, a variable p-update scheme (Wang and Liao, 2001) can

be adopted to accelerate the convergence rate.

The block ADMM shares its partition method on the system matrix A with our new
methods. To the author’s best knowledge, it is the only algorithm that enable each
parallel node has partial access to the projection data y and reconstructed volume x.
As a result, similar to the previously mentioned SIRT-type methods, block ADMM will
also be one of our main reference methods to be compared with the proposed methods.

More detailed discussions and comparisons will be presented later.

2.5 Conclusions

For row-action methods, each iteration does not require the calculation or storage of the
entire matrix A in advance but only needs to calculate a set of rows of A; at a time.
This can be an advantage in large 3D reconstruction problems where the storage of the
whole matrix is infeasible. However, if the algorithm is applied in a parallel network,
then each processor (or node) needs to store the whole reconstructed image vector x
since each update is on the entire image, which can be computationally challenging,
especially when performing the forward projection A;x, back projection A (y — Ax)
and TV de-noising on x. When the size of the reconstructed image continues to grow,
the limited storage capability for each separate computation node (for example, GPUs
in a multi-GPU distributed network) may lead to multiple data transmissions to cover
the whole x. On the other hand, using column-action algorithms in a parallel computing

scheme does not require each processor to store the whole reconstructed image but only
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a small part of x. However, they instead require full access to y, which can again be
prohibitive in large-scale situations. A combination of row and column-action methods,
SBCD, is discussed in which each node only requires parts of the reconstructed image
vector x. However, this method requires the block residue ry to be accurately calculated,

implying that x still needs to be processed as a whole for each iteration.

In current CT system case, if the computation node can only process FP and BP in-
volving a part of x and y and the TV de-noising on a part of x, the requirement of a
full access to either y or x, which is the common feature of all widely-applied SIRT-type
methods, leads to multiple communications between computation nodes and the master
node (the node only stores variables but does not involve computations). This impedes
the reconstruction speed. The only algorithm available prior to our work that overcomes
these issues and allows computation nodes to operate with access to only part of x and
y is the block ADMM method, whose original form has been applied in CT reconstruc-
tion. However, the required matrix inversions can become a limiting factors if these
matrices are relatively large. A better combination of row and column-action methods
to allow each iteration only address y; and x; is thus needed for CT reconstruction.

Such approaches will be developed in this thesis.
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CSGD

The speed of the algorithm is empirically studied here by monitoring the change of
the SNR of reconstructed image. Note that the inclusion of additional regularisation
required to overcome the ill conditioning of the CT inverse problem is discussed in later

chapters.

As mentioned in the previous chapter, when the size of the CT dataset, including the
projection data vector y and reconstructed volume vector x, have both exceed the stor-
age capacity of the computation node, traditional SIRT-type CT reconstruction methods
suffers from heavy communication cost due to the requirement of the full access to ei-
ther y or x. In this chapter, a novel algebraic reconstruction method called Coordinate-
reduced Steepest Gradient Descent (CSGD) is presented in detail. The contributions of
this chapter include: 1) This proposed algorithm is specially designed for the case where
both projection data and reconstruction volume are so large that one computation node
only has partial access to both. The communication overhead between computation
nodes and the master node is reduced compared with the other SIRT-type methods
because the parallel computation system has a tunable access to the dataset. Similar
to the SBCD mentioned in section 2.2.3.4, CSGD selects a block of coordinates and
estimates a stochastic gradient descent direction based on a row block of the system ma-
trix A. However, in CSGD, the residual r or r; is not accurately calculated each time
but is only partially updated. This method thus reduces the computation cost in each
iteration and also enables a more flexible parallel application, at the cost of introducing
a more stochastic update direction. Besides, the computation efficiency is much higher
than block ADMM, which is the other main reference method apart from the SIRT-type
methods. Simulations have verified the speed advantage of CSGD when compared with
block ADMM. 2) The application details of the CSGD is explored in detail, including
determining a rule of the parameter tuning to obtain the fastest reconstruction speed
under a determined parallel network, researching algorithm’s performance under differ-

ent partitions on dataset y and x, showing its ability to reconstruct the image into high

47
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accuracy level under arbitrary dataset division, and proposing an importance sampling

method to further accelerate the CSGD’s reconstruction speed.

This chapter is widely based on the journal article “A Joint Row and Column Action
Method for Cone-Beam Computed Tomography” (Gao and Blumensath, 2018b).

3.1 Algorithm description

3.1.1 Basic CSGD iteration

The proposed CSGD is inspired by SBCD discussed in the previous chapter, which is
modified to 1) find a better strategy to compute step-length p and 2) to efficiently

approximate the residue rj.

After selecting the row block I, CSGD turns to optimize a block of objective function

1) = 5(y1 — A" (y1 — Arx). (3.1

The gradient is
g=Vfi(x)=(A)"(yr — Ax) = (A)Tr;. (3.2)

If x moves along this direction, all elements in x are changed. Instead, we here use
a coordinate descent approach in which only those voxel elements are updated whose

indices are in the set J. The descent direction is then

0l T o 1
g=lgs| = [(AD)Tr;] . (3.3)

It is worthy to mention that Eq.3.3 assumes that the J contains sequential column
indexes. It is for the purpose of simplifying the expression of the equation and it is not

a necessary requirement in the partition of x space.

Along with this new modified direction, the update, from the current k** iteration to

the next k + 1*" iteration, becomes

k+1 k

XM =P g -7 JThE (3.4)
k+1 _ k
XS =X,

where p is the step-length and J is the complement to the set J. To compute the

optimal p that would lead to steepest descent, the direction of the gradient of x in the
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next iteration (V f7(x**1)) should be perpendicular to the current update direction (g)
(Wang, 2008), i.e.

(AT (yr — Ax")Tg = 0. (3.5)

Using the fact that x*t1 = x* + g and r; = y; — A;x*, which means the current partial

residual, Eq.3.5 can be expanded as:

(r))"Arg = pug" (A)TALE. (3.6)

Attention that (r;)?Asg = g/ ATr; = glg = g;7gy, where the last equation is ob-
tained by the sparse property of g. Besides, using this sparse property, it is also easy to
obtain A;g = A{gJ. Eq.3.6 is then expressed as:

gJTgJ
g/l (A)TAlg,

= (3.7)
This calculation does not require a computation node to have access to the whole row
or column block of matrix A. When the matrix A cannot be stored and needs to be
generated on the fly, CSGD iterations thus only require computations with the sub-

matrix A{ and its transpose.

An important issue is that the step size derived from Eq.3.7 minimises the current
|lr7|| instead of ||r|. However, we are not interested in the reduction of r; but in the
reduction of r. Our choice of 1 can thus potentially be too large and is not guaranteed
to reduce ||r||. Furthermore, it is not guaranteed that our update direction g is always
a descending direction of the original cost function. To stabilise our algorithm, we thus
introduce an additional relaxation parameter 8, which is a constant between 0 and 1
and needs to be manually tuned in application, into the calculation of y. This helps us
to avoid overshooting the minimum if g is a descent direction, whilst in cases in which

g is not a descent direction, the increase in r remains small.

The basic iteration of CSGD can be viewed as being performed in a block box and the
input are ry,x; and the output is xj, as is illustrated in Fig.3.1. The output not only
includes the updated image block x; but also includes the FP result of x;, which will

be used to update the residual r and will be explained in the next section.

3.1.2 CSGD algorithm

Fig.3.1 shows that CSGD iteration is especially suitable for the case where every com-
putation node, which plays as the block box role, has partial access to both y and x. It
can be seen that the update on r; plays an important role in updating x. As a result,

how to efficiently update r;, where I € {I;}}%, is the next problem that CSGD tries to
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Figure 3.1: The basic CSGD iteration can be viewed as being sealed in a black
box. Such black box can be a GPU or a computer in a parallel network.

solve. Mathematically, r; can be obtained by calculating y; — A;x =y — Z;V: 1 Aij XJj-
This means that for each update of r, we require N matrix-vector multiplications (i.e.
Aij x7;). This violates the original desire to reduce the computations and communi-
cation overhead in each iteration. For example, if the number of parallel nodes in a
network is p and p = %, then the accurate calculation of r; (or the accurate calculation
of Ajx) requires each parallel node to communicate with the master node twice, whilst
the expected communication time is 1. One possible solution to approximate A;x is to
only sum up the results of recently computed matrix-vector products A{ X 7, which can
be computed and outputted by each parallel node, as indicated in Algo.3.1. It should be
noted that in Algo.3.1, the v and v are percentages of selected row and column blocks.
They cannot be set as arbitrary numbers but should make oM and v as integrals be-
tween [1, M] and [1, N] respectively. In a parallel network with p parallel computation
nodes, it is suggested to set o,y to make ayM N = p, making each computation node

receive different {r;,x;} pairs.

It can be seen that Algo.3.1 is parallelizable on the J-loop (line 7). To be more specific,
line 8 to 12 are performed in each computation node in parallel, as shown in Fig.3.1.
The line 13 illustrates that the y7, which is stored on the master node and is cleared
at the beginning of each inner iteration, is used to collect z]} generated by each parallel
node and sum them up for the future’s update on r;. Here the master node is a node
that is responsible for communicating with all parallel computation nodes. A detailed
discussion on the communication between master node and the computation nodes will
be presented in Chapter 6. This update scheme on r; seems appealing since it greatly

reduce the computation amount in the update scheme. For example, if the number of
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Algorithm 3.1 Preliminary algorithm for CSGD

1: Initialization: Determine the maximum allowed epoch number K,,,,. Partition row
and column indices into sets {/;}ie;1,p) and {Jj}jepn,n) » 1%, jepn) =0, Y =0
andr =y. a € (0,1], v € (0,1] are the percentage of the selected row and column
blocks.

2: for epoch = 1,2, -+, Kjge do

3 for ii=1,2,---,aM do

4 Random select a row block I from sets {/; };c[1,a7) With replacement

5: r;=yr—yI

6 yi=20

7 for j;=1,2,--- ,vN do

8 Random select a row block J from sets {J;};c(1,n] With replacement, record
the index j as well

9: gs = (Af)TTIT

o b= B AT AT,

11: XJ=XJ+ ugJs

12: Ziv = A{X] '

13: YI=YI+2)

14: end for

15:  end for

16: end for

17 Xsolution = [XJU ooy XJN]T

parallel nodes p = then the computation amount of the update on ry is halved.

N
2
However, simulation results indicate that this algorithm does not approach the least
squares solution because of those missing ZJI‘ which should also engage in the update of
r;. As a result, the efficient updating r; in CSGD needs to satisfy two requirements: 1)
the update does not need to calculate z][‘ = AinJj to cover the whole {Jj}é-v:l. 2) the
update cannot neglect those missing z) that are not output by current parallel nodes.
One solution to meet these two requirements is to make the master node record all Z]}
and gradually update them by p parallel nodes, thus when updating r;, there are p
Z]I' that contain the latest information whilst the other N — p z; contains the outdated
information. The algorithm is indicated in Algo.3.2. Line 10 in Algo.3.2 means that only
a small fraction of zf,‘ is updated by the latest x; whilst the other zf} remains unchanged.
However when updating ry or r in line 12, all {zjl}é\]:1 engage despite some of them store

stale information.

Despite that the Algo.3.1 does not generate iterations that approach the least squares
solution, it provides a framework of CSGD algorithm and Algo.3.2, which is a version of
CSGD algorithm that can empirically be shown to approach the least squares solution,

is a refined version of Algo.3.1. To verify Algo.3.2 has the ability to solve the noise free

]R200X100

linear inverse problem whilst Algo.3.1 does not, a random matrix A € was

R100X1 " All elements in A and x are uniformly

generated together with a vector x €
distributed random numbers in the interval (0,1). The projection y was then y =

Ax. The matrix was divided into 4 row blocks and 4 column blocks using consecutive
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Algorithm 3.2 CSGD algorithm which parallelizes the column blocks (called as
CSGD(J)).

1:

2:
3:
4:

10:
11:
12:
13:
14:
15:

Initialization: Determine the maximum allowed epoch number K,,,,. Partition
row and column indices into sets {I;}ic;1,a and {J;}jenny 5 {xs;tjepny = 0,
{z’ }je[l,N} =0 and r =y. «a,v are the percentage of the selected row and column
blocks.

for epoch = 1,2, , K;pae do

for jj=1,2,---,yN In parallel (J loop) do
Random select a column block J from sets {J;};e1,n] With replacement and
record the index number j
for i =1,2,--- ,aM In sequential (I loop) do
Random select a row block I from sets {;};c[1,a With replacement
gs = (A7) r;
_ (8)"gs
1= P T AN AT
Xj =Xj+ ugs
7, = A{x;
end for
end for
— v SV i
r=y-—> %z
end for
Xsolution = [XJ17 ey XJN]T

rows/columns. Results indicated in Fig.3.2 demonstrate the importance as well as the

effectiveness of recording all z} and partially update some of them.
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Figure 3.2: The y-axis is the SNR (defined in Eq.1.7) of the reconstructed image
vector, the unit is dB. g8 is 0.2. The difference is significant when using Algo.3.1
(the blue line) and using Algo.3.2 (the red line). It clearly indicates that it is
necessary to use stale z} to update r; otherwise the updated r; is not a “good
enough” estimation of the real y;— A ;x and thus leads to false update directions
as well as step-lengths.

Algo.3.2 is inherently parallelisable only over the volume block J and the maximum
number of parallel nodes is YN (v € (0,1]). For the I-loop, it is still sequential. In a
centralised network, a general work scheme for CSGD is illustrated in Fig.3.3. In this
scheme, take the right computation node as an example, this computation node receives
the reconstructed image block x;, obtained from the last iteration. It also receives a
row block index set I used to calculate (A{;)Trlz and Ai‘ (A{;)Trb. After the update
of x;, and Z‘}Q, the node makes a request to the master node and obtains another row
block index set Is and repeats the process. When the two processes are finished, the
values of zi and Z‘}S are returned to the master node which performs the update on r.
Further analysis indicates that this method can be further parallelized over both row

and column blocks. This algorithm is indicated in Algo.3.3.

Using the “master-servant” parallel model, the architecture of CSGD(I,J) is indicated
in Fig.3.4. The maximum number of parallel computation nodes increases from YN to
ayM N and different row blocks I for the same column block x; can be performed in

parallel, thus reducing the computation load for each computation node.

3.2 Preliminary simulations

Before the discussion on the CSGD property, it is worthy to mention that it is hard to
analysis CSGD mathematically. This is because that the CSGD uses highly stochastic
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Master node

Xin,YiLYu

omputation
node

XYY

omputation
node

Master node

Figure 3.3: The general work scheme for CSGD(J). The master node randomly
assigns several row and column blocks to several computation nodes. The cur-
rent iteration only updates x;, with y,,yz,, and x;, with y,,yr,. To meet the
parallel computation condition, the column blocks J assigned to different com-
putation nodes should not overlap with each other. Within each computation
node, the update on different row blocks I cannot be further parallelised and
thus the iteration is performed in a sequential form, which limits the scalability
of the proposed algorithm.

High level
master node

Xia,Y12 X, Yi3

omputation omputation
node node
Low level master Low level master
node: Average X1 node: Average X4

High level
master node

Figure 3.4: The general work scheme for CSGD(I,J). The current iteration only
updates x;, with yr,,yr,, and xj, with y,,yr,. The high level master node
is only responsible for collecting reconstructed image block, updating residue
r and assigning projection data block and image block obtained from the last
iteration. The low level master nodes average each reconstructed block, while
computation nodes are main nodes calculating the CSGD iteration.

update direction in each iteration, and the direction is not an unbiased estimation of the
gradient. This means the traditional convergence analysis of SGD is not appropriate for
CSGD. We thus here do not derive a mathematical convergence proof but instead use

empirical performance validation of CSGD.

To reflect the CSGD performance, the SNR of the reconstructed image vector is used to
reflect the reconstruction quality, which is defined in Eq.1.7. In the following, the term
“reconstruction speed” will be frequently used as one measurement of the algorithm’s
property. This term reflects the change of SNR along with realistic spending time. Fur-

thermore, the usage times of matrix-vector multiplications (i.e. the forward projection
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Algorithm 3.3 CSGD algorithm which parallelizes both row and column blocks (called
CSGD(L,J)).

1: Initialization: Determine the maximum allowed epoch number K,,,,. Partition
row and column indices into sets {I;}ic;1,a and {Jj}jenny 5 {xstjepny = 0,
{ZJ}]-E[LN} =0 and r = y. « and « are the percentage of the selected row and
column blocks respectively.

2: for epoch = 1,2, , Kjnae do

3: x=0
4:  for jj=1,2,--- yN. In parallel (J loop) do
5: Random select a column block J from sets {J;};cn,n) With replacement and

record the index number j

6: for ii=1,2,---,aM In parallel (I loop) do

7: Random select a row block I from sets {;}ic[1 3 With replacement
8: gs = (A])1y

0 b= BT

10: 7, = A (x5 + pgs)

11: Xj=Xj+x7+ pugs

12: end for

13:  end for

4 r=y-Y N7

15:  For all blocks J that have been updated, x; = x7/(the times of block J has been
updated)

16: end for

_ T
17 Xsolution = [XJ17 ceey XJN]

AJ x7 as well as A7 ;g7 and the backward projection (AJ )'r) can be used as a reference
of the actual spending time. This is because the matrix-vector multiplication is the most
time-consuming part in each iteration. A brief simulation will present later to further

prove this claim.

In this section, CSGD is applied to both 2D fan-beam and 3D cone-beam CT system with
circular scanning trajectories. Simulations demonstrate that the acceptable range of 8
leading to high accuracy solutions and the reconstruction speed change relative to the
percentages of row and column blocks used in each iteration. Since block ADMM has the
same parallel computation architecture with CSGD and also allows each computation
node has partial access to the dataset y and x, it is used as a main reference method
in this section to compare with CSGD. Unless stated otherwise, the partition method
uses consecutive rows and columns. A detailed discussions on differences between using

sequential or shuffled row/column indexes of y and x is presented in section 3.2.3.

The 2D fan-beam CT scanning geometry is indicated in Fig.3.5. The scanned image
adopts a discretized K x K pixels phantom image provided inherently in Matlab. The
elements outside the K x K box are all 0. The point source P starts from the above of
the scanned object and the source-detector pair rotates around the object for a circular

circle. The projection is measured with a fixed rotation interval. The linear detector
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contains several evenly distributed detectors. The rays connecting the point source P
and these pixels are then measured. When generating the projection data, it uses the
same FP model as that used in the reconstruction. In other words, despite that original
image is continuous, it is first discretized into K x K pixels and then is scanned to
generate the projection y. When evaluating the quality of the reconstructed image Xy,

the reference is also the discretized K x K scanned image vector.

2D image
\ K*K pixels

Figure 3.5: The scanning geometry, where the P is the point source location,
O is the geometry center of the object and the rotation center. The D is the
geometry center of the detector. The POD three points are always on one line
and is always perpendicular to the detector.

The first simulation using Fig.3.5 is to verify that the usage of A7 is able to reflect the
actual spending time as the computations corresponding to the AIJ is the most time-
consuming part among the iterations. A large CT scanning geometry is used: K in
Fig.3.5 is 1204, OP = OD = 2000. The rotation interval is 0.1°. The detector contains
4000 pixels. Then corresponding A € R(1:44x107)x(1.0x10%)  \When N = 4, = ﬁ,’y =
0.5, the percentage of each operation takes is illustrated in Table 3.1. M is changed
from 2 to 200. Since N is fixed, increasing M means that the size of A{ decreases
and thus the computation cost for the matrix-vector multiplication is reduced. Despite
this, it can be seen that even when M is increased to a large number (200), the three
matrix-vector multiplications are still the most time consuming parts, taking 94% of the
whole time. This proves that using the “usage of A”I] ” to reflect the actual computation

time is reasonable.

In the following simulations, unless stated otherwise, K in Fig.3.5 is 16 and the size

of pixels on the detector and on the image are both 1, the length of OP and OD are

always 100. The rotation interval for point source as well as the detector is 10°. The

detector contains 30 pixels. As a result, the system matrix A, whose sparsity is similar
360

to the large-scale CT reconstruction cases, only contains 30 x 55 = 1080 rows and
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Table 3.1: Matlab profiler results of each CSGD operation

M=2 M=200
operations percentage(%) operations percentage(%)
(AN Tr; 33.2 (AN Tr; 31.5
Algy 32.9 Algy 31.4
Alx; 32.6 Alx, 31.0
other line 1.3 other line 6.1

16 x 16 = 256 columns. The reason why a small-scale 2D scanning problem is used
here is that it can reduce the time for simulation, enabling to perform more simulations
to exploit various properties of CSGD and to test the performance of CSGD after long
enough iterations. It can reflect the performances of CSGD in the large scale situation
because of two reasons. The first reason is that the system matrices in the small-scale
and in the large-scale situation are similar to each other and both of them are very
sparse. To verify it, an intensity distribution of system matrix A in the small-scale

case is indicated in Fig.3.6. The matrix is treated as an image and the different colours

100 [
200
300
400
500
600 i
700
800
900

1000

Figure 3.6: The intensity distribution of matrix A € R'980%256 in the tiny CT
system. The horizontal direction is the column index and vertical direction is
the row index of A. Different colours reflect different element’s values, as shown
in the right side bar. For a certain X-ray, it only passes though a few image
pixels. As a result, the system matrix is very sparse. This property arouses the
following importance sampling strategy.

present different pixel values. It can be seen that the majority elements in A is 0 and the
non-zero element actually takes less than 1% among the whole elements. This property
widely exists in all CT-related system matrices regardless of the size of them. The second
reason is that the y, A, x, although is not of enormous size, are still divided into blocks

and the iteration only uses partial of them. This is the same with the application in the
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large-scale dataset. The simulation results are thus able to provide useful reference to

predict the large scale properties.

A noise free simulation was conducted to verify the difference between CSGD(J) and
CSGD(I,J) as well as their abilities to approach to the true solution. In this noise free
simulation, all data are stored in double-precision floating-point format and M=12,N=4,
a =1 or 0.5. The SNR of the reconstructed image X,¢. is shown in Fig.3.7. Fig.3.7 (a)
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Figure 3.7: In this chapter, all simulations are repeated with different 8 within
range (0, 1] and the fastest reconstruction speed is presented. (a) and (b) are
the final SNR of reconstructed image vectors. For the purpose of visualisation,
all the negative SNR, which means divergent iteration due to improper 3, are
set to zeros. (c) and (d) are the fastest reconstruction speeds of two CSGD
algorithms selected from proper range of 3.

and (b) has shown that CSGD(J) and CSGD(I,J) can both approach to the true solution
X¢rue closely when the system is overdetermined and is noise-free. This is because that
within a proper range of 3, the SNR of the final results is about 300dB, which is almost
the precision limit of the double precision floating-point format operation. According to
the definition of SNR, this means that the final iterated x;. is close enough to the Xsqye.
Fig.3.7 (c¢) and (d) show that the CSGD(I,J) method is slow, but it has a more extensive
range of 8 that leads to highly accurate solutions. This means that the parameter tuning
is easier than for CSGD(J). Furthermore, CSGD(I,J) also enables more computation

nodes to engage in the iteration, thus if the parallel network has sufficient computation
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node, the CSGD(I,J) is more suitable than CSGD(J). For example, in Fig.3.7(d) case,
when a = 0.5,y = 1, CSGD(I,J) allows for 0.5 x 12 x 4 = 24 computation nodes to
compute CSGD basic iteration in parallel whilst CSGD(J) only allows 4 nodes to be
engaged in the parallel iteration. If one usage of A{ spent dt seconds and the number
of parallel nodes in a network is p, the actual spent wall time can be approximated
as 0t x usage of A{ /p. This is because that the parallel node performs calculation
simultaneously and within §¢ wall time, there are p matrix-vector multiplications to be
performed. So more engaged parallel node means less actual wall time for the same
usage of A7. If blue line in Fig.3.7(d) is divided by 24 and red line is divided by 4,
then the trend approximately reflects the reconstruction speed over the actual wall time
and then it will show CSGD(I,J) is faster than CSGD(J). As a result, the following

simulations mainly focus on CSGD(I,J) despite its slower reconstruction speed.

3.2.1 Range of § for different M,N and «, v

This part first discusses the rough range of § for which the algorithm is able to reach
the true solution in the noise free setting, by setting M, N as different values. For
simplicity, a and + in this section are always 1, i.e. the number of parallel nodes is M V.
In the following content of the thesis, unless specially stated in the figure, the projection
data y are noise free and all variables are stored as single-precision floating-point format
to reduce the simulation time. Experiments have verified that using single-precision
floating-point format makes the SNR limit decreases from around 300dB to 100dB. This
can be verified by performing long enough GD iterations and then observe the SNR

limit. The simulation results are not presented here.

The SNR after 2000 epochs (simulations show that it is long enough to reach the true
result) for different S is indicated in Fig.3.8.
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Figure 3.8: The available range of § is influenced more by N instead of M.
When N increases, the range of 8 shrinks rapidly. Different choice of M, N, 3
lead to different final precision level but this property is not important. This
is because in CT reconstruction area, a medium accuracy solution (around 20
dB) is already clear enough to present all inner details of the scanned object
and thus only initial reconstruction speed is of interest here.

It indicates that when N is fixed, increasing M gradually narrows the range of 5. When
M is fixed, increasing N rapidly narrows the range of 5. In both simulations, CSGD
presents a good slicing scalability. Here “epochs” is used instead of “usage of AIJ ” to
compare the speed under different partitions. This is because different M, N lead to
different computation costs per projection, whilst & = v = 1 ensures that each epoch
covers all sub-matrices A”I] and thus have the same computation cost. Simulations are
also conducted when the linear system has added noise, i.e. e in Eq.1.6 is not zero. In
the following simulations, e is a Gaussian noise whose average value is zero and variance
is 0. The generation of such type e in MATLAB is easy to be achieved by using
function randn(). The above simulation was repeated for several times when o = 0.01
(Fig.3.9) and the e is independently generated form the function randn() each time.
The simulation results are similar to each other, here only present one result from all
simulations. Generally, the noisy and noise free models have the same properties. They
can all reconstruct the image to a high accuracy and the reconstruction speed is almost

the same. Here it is worthy to mention that under the noisy case, the semi-convergence
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Figure 3.9: When o = 0.01, the SNR of y is 100 dB. The range of g is similar
to the above noise free model. The final SNR all comes to the same precision
level. When M or N increases, the reconstruction speed decreases.

is existing and this phenomena is significant if the noise are severe. However, in the
simulations shown in Fig.3.9, the semi-convergence phenomena is not significant, this is
because of two reasons. The first reason is the scanning model is a 2D model, and thus
the formed linear model is not severely ill-posed (Natterer, 2001). The second reason
is that the added noise is not severe. These two reasons makes the semi-convergence
phenomena not obvious. Simulations have shown that if the o is increased from 0.01 to
0.1, then the semi-convergence phenomenon becomes significant but the final SNR also
comes to the same precision level as shown in Fig.3.9. As a result, it is not presented in

this part.

For a specific partition, when the number of parallel nodes ( defined as p in this thesis)
is smaller than M N, setting  and ~ for fast reconstruction speed is another aspect
worth exploring. Two noise-free cases are tested: 1)short-fat (SF) case: M=12, N=2
with 7 = 1 and v = 1/2 case are indicated in Fig.3.10. It can be seen that when
~ is determined, reducing the « accelerate the reconstruction speed. This is because
that a smaller @ means more frequent update on x space within the same usage of A{
and the frequent update on x has compensate the slow reconstruction speed due to the

stochastic update direction. When o = -

i3, @ comparison for different v is indicated in
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Figure 3.10: For M = 12, N = 2 SF situation, reducing « enlarges the range
of acceptable 3, except the situation when o = ﬁ, where the CSGD algorithm
becomes unstable within a narrow S range.
reconstruction speed than o = 1 situation.

A smaller o also increases the

Fig.3.11. It can be seen that when a = ﬁ, reducing v does not significantly influence

the reconstruction speed. This is because that each column block x; is independently

updated and has the same update frequency. Despite that a smaller v makes some z’

outdated and thus cause the update r; inaccurate, the influence is not severe because in

SNR trend,M=12,N=2,a=1/12

150
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Figure 3.11: a = ﬁ,’y = % is not significantly slower than v = 1 case, which

suggests that the CSGD allows to reduce v while maintaining reconstruction
speed. This property can be useful when p is smaller than N.
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reality partition, the N is usually not large (in this thesis, the N is usually set as 4,8,16
whilst M can reach 60), thus minimising 7 into minimal % and random select x; does
not cause severe delay. 2) The trend in Fig.3.10 and Fig.3.11 can be repeated when the
shape of A7 is tall-thin (TT) case (i.e M=N=8), the simulation results are indicated in
Fig.3.12. It again demonstrate that the shape does not influence reconstruction speed
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Figure 3.12: For different v, reducing « contributes to a faster reconstruction
speed. (f) illustrates that when o = ﬁ, different v does not cause significant

difference in terms of reconstruction speed.

much and reducing « helps to increase the reconstruction speed at different v settings.



64 Chapter 3 CSGD

This is mainly because that the smaller « leads to a more frequent update on the image

space.

The above results can be repeated for larger problems: K is 64, OP and OD is 300. Angle
gap is 2° and detector pixel number is 400 with pixel length being 0.5. A € R72000x4096

The simulation results are indicated in Fig.3.13. Besides, it is worthy mentioning that

this simulation dataset will be repeatedly used in the following demonstration. Results
in Fig.3.10, Fig.3.11, Fig.3.12 and Fig.3.13 all show that o = ﬁ is the best choice among

all v setting and ~ does not significantly influences the reconstruction speed when the

« is determined. As a result, the suggested «,y setting method is:
vy = min{1, &},
_ D
O = TNy
where p is the number of parallel nodes in a network.
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Figure 3.13: All simulations are performed within the 8 range [0.1,1]. The

shape of A}’ is TT case. a =

M

is still the best choice among all v setting in

the larger CT model. (d) indicates that when « is set as ﬁ, reducing v does
not significantly influence the reconstruction speed. This property makes the
setting of v flexible. If number of parallel node p is smaller than N, setting

v = & is thus recommended.
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In this section, the reconstruction speed of CSGD under different partitions and different
«, 7y settings has been discussed. Simulations indicate that CSGD generates iterations
that approach the true image in the noise free case within a wide range of M, N settings.
Despite the M, N settings influencing the shape of the sub-matrix A{ , they do not signif-
icantly influence the reconstruction speed. As a result, when partitioning the projection
data and image into M and N blocks respectively, the only factor that needs to be con-
sidered is whether the partitioned data block fits the storage space of the computation

nodes. For different v settings, a = ﬁ always leads to the fastest reconstruction speed.

3.2.2 Comparison of CSGD and block ADMM

As discussed in section 2.4, the block ADMM method shares the same partition method
on the system matrix A as CSGD. To facilitate the following comparison of CSGD
and block ADMM, a random tiny system matrix A € R2%6%128 and a random vector
x € R!?8X1 whose elements are both uniformly distributed random numbers in the
interval (0,1), are used to reduce the computation amount in simulations. When using

large CT models, all simulation results presented in the following are still reproducible.

3.2.2.1 Computation efficiency comparison

Both CSGD and Block ADMM use consecutive columns and rows in the partitions.
They are stopped when their solutions are of 80 dB SNR. For block ADMM, we used
two loops to determine the best p and 7 values that led to the fastest reconstruction
speed. The outside loop is for different initial p which is between 0.1 and 20 and the
inside loop is for 7 which is between 0.1 and 0.9. For different partitions, the best

parameters leading to the least matrix-vector multiplies are indicated in Table 3.2.

Table 3.2: The best parameter in block ADMM.

p T
M=2N=2 7 03
M=2,N=4 2 02
M=4N=2 8 0.9

M=4,N=4 12 0.7

The comparisons of CSGD and block ADMM are indicated in Fig.3.14. It can be seen
that CSGD uses much less matrix-vector multiplication. This is because that the block
ADMM requires a graph projection procedure, as shown in Eq.2.54, which requires
several extra matrix-vector-involved iterations to solve. The CSGD thus become more
efficient and use less usage of A{ than the block ADMM. In the figure, the o = v = 1.
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It should be noted that the fully distributed form is not the instance when the CSGD
is the most efficient. According to the previous simulations, o < 1 situation can further

increase the computation efficiency in CSGD, and then the CSGD should outperform
the block ADMM more significantly.
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Figure 3.14: The y-axil is the SNR of iterated x. The x-axil is the usage of
A{ and the basic unit is 1 x 10* times. The o = v = 1. The CSGD algorithm
greatly reduces the required matrix vector operations to meet the predefined
SNR than the ADMM method.

3.2.2.2 Communication cost and storage demand comparison

The above simulation indicates that to obtain a solution with a predefined SNR, CSGD
requires much fewer matrix-vector multiplications, which means fewer computations in
each computation node. This is an advantage of CSGD over the block ADMM method.
Another aspect to be compared is the communication cost. To demonstrate the difference
between block ADMM and CSGD, let M and N = 2. An illustration of the work
procedure of block ADMM is indicated in Fig.3.15. Each computation node (ovals in

|
‘ - exch: 11 row block
- exch: 12 row block

avg: J1 column block || avg: J2 column block

Figure 3.15: The work scheme of block ADMM method
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the figure) keeps partial x; and y;. There are two types of master node (square box
in the figure). One type performs “avg” procedure for column blocks and the other

type performs “exch” procedure for row blocks. (Their definitions and functions have

. . . . k+1
been explained in section 2.4) For the left-bottom master node, it stores x ;2, x§1 and

- . . k+1 -
Xﬁl. For the right-top master node, it stores z; 2, z’}l and z’}l. The work scheme can

be divided into five parts: The first part happens in four master nodes: bottom two
master nodes perform proxg; (xﬁj — iﬁj) = ng — if}j (defined in Eq.2.55) and right
two master nodes perform proz, fz(z’i — ii) (defined in Eq.2.56). The second part
happens in four computation nodes for II projection. These two parts can be performed
in parallel. After these two parts, the “avg” and “exch” parts happens in four master
nodes again. For the left-bottom master node, it communicates with the corresponding
computation node to ask for xfthr%(i € [1,2]) which exist in each computation node.
After the average process the master returns x]}jl to the computation nodes. Similarly,
the right-top master node communicates with the corresponding computation nodes to
ask for z]I'1 k+%(j € [1,2]). After the “exch” calculation, the calculated zJI'1 kﬂ(j € [1,2])
is reassigned to the corresponding computation nodes. The following dual update on
sht1 ~l;+1

X7 2, happens in the master nodes and the update on (:kf,j)]“'1 happens in the

computation nodes.

The same distributed architecture is also suitable for the CSGD method, although in the
previous CSGD algorithm description, a so called “high level master node” is introduced.
In fact, the “high level master node” is not necessary in reality and after removing the
“high level master node”, the work scheme of CSGD is indicated in Fig.3.16.

\

; ¢
@ Update ru
Update 2

Average the J1 Average the J2
column block column block

Figure 3.16: The work scheme of CSGD method, which can be the same as for
the block ADMM.

For the bottom master nodes, they do not have to store any variables and they simply
communicate with the corresponding computation nodes and average column blocks.
For the right side master nodes, they only store the corresponding projection data yj.
For example, the right-top master node only stores y,. To update ry,, the master node
asks for z}l (7 € [1,2]) from corresponding computation nodes. It is interesting to find
that although z} has different meanings in CSGD and block ADMM, the size of both
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is equal to the block dataset y;. As a result, the communication cost of CSGD and
ADMM is the same.

The storage demand for the master node, as discussed above, is different between the two
nodes. Further analysis indicates that for the computation nodes, the storage demand
of CSGD is also lower than for block ADMM. Table 3.3 clearly indicates the comparison

results.

Table 3.3: Storage demand for each node in CSGD and block ADMM

CSGD ADMM
ko gk k+3
left-bottom (master node) None x7, X7, and X,
: - k+3
right-top(master node) v z’j‘l,z’}1 and z 11+2 Y1

- k 1 1 k+s 3 k1K ok
left-top(computation node) x7 ,yr,,z;, x5 2,27, ,le,(ij) 21, 2T

3.2.3 Importance sampling approach

In the previous simulations, the partition method adopts a partitioning where blocks
use consecutive rows and columns. In a circular scanning geometry, the sequential pro-
jection views often provide unnecessarily similar projection information, especially in
the case where the projection view gap is small. One way to increase the reconstruction
speed is to simply shuffle the projection views and then divide them into several row
blocks. This is called ordered subsets method (Hudson and Larkin, 1994). To demon-
strate the effectiveness of ordered subsets, the simulation results using A € R72000x4096
are indicated in Fig.3.17 and Fig.3.18, which illustrates a > % and a < % situations

respectively.
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Figure 3.17: When « is 1, %, %—8, the ordered subsets method increases the
reconstruction speed.

It can be seen that when « approximately equals ﬁ, the ordered subsets barely increases
the reconstruction speed. To further increase the reconstruction speed, an importance
sampling method is proposed. This strategy is proposed based on the scanning geometry
and the system matrix A’s sparsity property. If the reconstructed volume is properly
divided, projections of each sub-volume are then constrained within a relatively small
area on the detector. For example, in the 2D image case, if the image is divided into
2 x 2 sub-images by halving each dimension of the image, projections within all projection

views of each sub-image are indicated in Fig.3.19.
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Figure 3.18: When « is %, the ordered subsets method barely helps to increase
the reconstruction speed.

CSGD-IM breaks each single projection into several sub-projections and only samples
partial sub-projections from each single projection for the selected sub-volume x; (e.g.
divide the projection into 2 sub-projections in Fig.3.19(a) and sample 1 sub-projection).
This sampling is not done uniformly but is based on a selection criteria that uses the
relative sparsity of each matrix {Ai }, i.e. the denser a sub-matrix is, the higher the
probability that it is selected. Here I; means a sub-area of the detector for a certain
projection view. As we do not have access to matrix A in large scale CT scanning
scenarios, to estimate the sparsity pattern of A, CSGD-IM computes the fraction of a
sub-image’s projection area on each sub-detector and these fractions are used as pos-
sibility distributions. If a sub-detector has a higher fraction than the other, then it
has higher possibility to be selected in iterations. When the row block I; contains sev-
eral projection angles, the importance sampling strategy is repeatedly applied to each
projection angle contained in the row block. The CSGD-IM algorithm is indicated in
Algo.3.4.

The advantage of CSGD-IM is that it provides each computation node more projection
views within one row block than CSGD and thus reduces the row block number M.
For example, assume that the detector contains Ny detector pixels and each divided
sub-image contains IV, pixels. The size of each element in both x and y space is b bytes.
The computation node’s storage capacity is assumed to be b x (Ng + Np). This means
that each time the original CSGD is only allowed to process and address one projection

view for one selected sub-image and thus M should equal the projection view number.
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Figure 3.19: (a) By slicing each dimension of image into 2 parts, the image
is divided into 4 parts.(b) The sinogram indicates that the projection of each
sub-image is constrained into a small area (approximately half) of the detector
for all projection views 6.

CSGD-IM with the partition of Fig.3.19 can use two projection angles by choosing one
detector sub-areas for each projection angle, thus halving M. According to the previous
simulations indicated in Fig.3.8, a smaller M can increase the reconstruction speed

especially when M is already very large compared with N.

However, simply dividing the detector into 2 sub-areas and sampling 1 sub-area makes
some sub-detectors hard to be selected because of the relatively small projection fraction,
as illustrated in Fig.3.20(a). It implies that in the following iterations, when it comes to
x7, and yy,, the sub-detectors reflected by solid lines will be more frequently selected
than dashed lines. This fact means z}d cannot be updated fully and timely, where I
here is a subset of I; for those dashed lines. According to line 14 in Algo.3.3, z}d is used
to update rj, together with ZJI':2’3’4. At the initial iteration stage, the inaccurate and
outdated z}d does not influence much for roughly reducing ||ry, || since the other three
xJ;=2,3,4 Will generate most of the projection information. However, when the iteration
goes on and ||rr,|| has been reduced to nearly zero (in the noise free model), then an

accurate and updated z}d is required, although z}d contains loads of zero projection
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Algorithm 3.4 CSGD with importance sampling strategy.

1:

2:

10:

11:
12:
13:
14:
15:
16:

17:
18:

Initialization: Determine the maximum allowed epoch number K,,,,. Partition
row and column indices into sets {I;}ician and {Jj}tjenn » {xs;}jepn = 0,
{#Z’}jepny) = 0 and r = y. « and 7 is the percentage of the selected row and
column blocks respectively.
for epoch = 1,2, ..., K4 do
x=0
for jj=1,2,---,yN. In parallel (J loop) do
Random select a column block from sets {Jj}je[l, ~] with replacement
for i=1,2,---,aM In parallel (I loop) do
Random select a row block from sets {I;};c[1,a7) With replacement
Importance sample one sub-detector area from each single projection view.
All indexes represented by those selected sub-detector areas form the row
index set ft.
gs = (A}]t)Trft
J T J
n=>5 <gJ)T(5x;’t )g“A}lth

z; = A (x) +pngy)
X =XJ+ X7+ pugy
end for
end for
v _ NV g
r=y-—> %z
For all blocks J that have been updated, x; = X;/(number of times block J has
been updated)
end for
Xsolution = [XJ17 Ex3) XJN]T

data. To avoid some sub-detectors being rarely selected for specific sub-images, in the

2D fan-beam case, the detector can be divided into 4 sub-detectors and each time we

select 2 adjacent sub-detectors, as indicated in Fig.3.20(b).
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Figure 3.20: Slicing detector into 2 or 4 sub-areas in importance sampling. (a)
Assume that one computation node requests x 7, and y, containing 3 projection
views 01,65 and 03. Instead of receiving all 3 full projections, the computation
node samples 3 sub-detectors from each view. Here the solid lines stand for
sub-detector areas that have high probability to be selected because most of the
sinogram information falls on them. Dashed lines stand for the sub-detector
areas that have low probability to be selected due to the small sinogram fraction.
(b) Iy present 4 different sub-detectors. In the previous importance sampling
method, only I 1+ Ig or I3 + I4 can be selected. Now, a more flexible sampling
method selects 2 adjacent sub-detectors each time. For 8, view, the possibility
to choose I; + I is almost the same as I + I 3, thus avoid making z}& 63 overly

outdated.

The following simulations indicate that the importance sampling by dividing the detector
into 2 or 4 sub-detectors can increase the reconstruction speed, as indicated in Fig.3.21
and Fig.3.22. The simulation data still adopts A € R72000x40% iy this case. Simulations
have verified that the importance sampling method which divides the detector into 4
sub-areas and sample 2 adjacent sub-detectors outperforms the ordered subset CSGD
for all «, 7 settings. The importance sampling represented by blue lines, however, only
accelerates the reconstruction speed at the initial stage. When the SNR is higher than
20 dB, then it stops to outperform the original CSGD because of those rarely updated

J
z,-
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Figure 3.21: Three methods’ reconstruction speed is compared. Black lines are
CSGD with ordered subsets, which include shuffled projection views with one
row block. Red lines represent the importance sampling method which divides
the detector into 4 sub-areas and samples 2 adjacent sub-detectors. Blue lines
are the importance sampling method which divide the detector into 2 sub-
areas and samples 1 sub-area each time. Under all o,y settings the importance
sampling which divide the detector into 4 sub-areas outperform the other two
reference methods.
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Figure 3.22: When « is reduced, the trend reflected in Fig.3.21 still holds. The
importance sampling which divide the detector into 4 sub-detectors and sample
2 adjacent parts is of the fastest reconstruction speed among the others.

The importance sampling method also works for 3D cone beam data. Slicing of the

volume and of the corresponding projection area is indicated in Fig.3.23. Another slicing

I, I
/\:/l/ /\2 Il
i . 1 /’13 I4
o Detector plane
~ 3D volume

-Point source

Figure 3.23: Example cone beam CT setting for the first projection view, where
the 3D volume rotates horizontally. The 3D volume is divided into 8 sub-
volumes. The projection of one sub-block is mainly concentrated in a small
area on the detector. If the detector is also divided into 2 x 2 sub-areas, then
the currently selected sub-volume (bold red frame) is mainly projected onto the
top-left and top-right sub-detector area, i.e. I and I, area.

methods on the detector is to slice it into 2 x 4 detectors and each time selecting 2

adjacent sub-detectors, as illustrated in Fig.3.24.

Importance sampling in 3D scanning case only samples a quarter of a full projection,
thus the maximum allowed projection views is 4 times larger than with ordered subsets.

To verify the property of importance sampling, a cone-beam circular scanning model
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Figure 3.24: The detector is divided into 2 x 4 sub-detectors and when sampling
the sub-detector, there are 6 areas in total to be considered as candidates:
(173)7(375)?(5?7)?(274)7(476)7(678)

shown in Fig.1.2(c) is adopted and the source-detector starts with scanning from the
left of the volume and then rotates around the object clockwise. The parameter is set as
OP = 1000,0D = 536; 3D volume is a 16 x 16 x 16mm? cubic containing 64 voxels; The
detector is a 50 x 50mm? square panel containing 400? detector pixels. The scanning
interval is 1°. The simulations are indicated in Fig.3.25. To shorten the simulation time,
all simulations are terminated before the optimal result was reached. The first row of
Fig.3.25 is the reconstruction speed of CSGD under different o,y settings, indicating

that for each v case, a = ﬁ is the fastest form. When comparing CSGD and CSGD-IM,
1

M
with 2 x 4 slicing detector method is the fastest method under different v settings.

only a = is presented in the second row. It indicates that the importance sampling
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Figure 3.25: The y-axis is dB and x-axis is “usage of A”I] ”. The first row reflect
the reconstruction speed of CSGD under different «, settings. The second
row reflects the comparisons of CSGD with ordered subsets and importance
sampling methods with two different partitions on the detector.
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3.3 Computational complexity

There are several important aspects when comparing computational efficiency of the
methods. The methods are designed to allow parallel computation. It is envisaged that
this will be performed on a distributed network of computation nodes. Computation

nodes produce two outputs, as displayed below.

1 %7 =x" + gy
2. Z?ZA‘IZXJ.

These are then either sent to larger, but slow storage or directly to other nodes, where

they are eventually used to compute:

1. x; = mean;(x)

2. r:y—zjzj orrztzyufzjz][t,

which can be performed efficiently using message passing interface reduction methods.

Three aspects affect performance:

1. Computational complexity in terms of multiply-adds.

2. Data transfer requirements between data storage and processing units as well as

between different processing units.

3. Data storage requirements, both in terms of fast access random access memory

(RAM) and in slower access (e.g. disk based) data storage.
Fach of these costs are dominated by different properties:

1. Computational complexity is dominated by the computation of matrix vector prod-
ucts involving A{ and its transpose, especially as A is not generally stored but
might have to be re-computed every time it is needed. The computational com-
plexity is thus O(|I| x |J]), though computations performed on highly parallel
architectures, such as modern GPUs, are able to perform millions of these compu-

tations in parallel.

2. Data transfer requirements are dominated by the need for each of the parallel
computation nodes to receive r; and x; and transmit )Ef] and zz;. Note that the
size of the required input and output vectors are the same, the data transfer
requirement is thus O(|I] + |J|).
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3. Central data storage requirements are dominated by the need to store the original
data and the current estimate of x. It is also needed to compute and store av-
erages/sums over :?cf, / z]I'. These computations can be performed efficiently using
parallel data reduction techniques. The proposed approach would mean that each

node would thus require O(|I| + |J|) local memory.

3.4 Fixed step CSGD

At the first glance on CSGD, it seems that the step-length y = 3 % can be
. T I5.

further simplified and make it a constant ; = . This simplification makes the algorithm

more concise and the mathematical analysis simpler. The algorithm is indicated in

Algo.3.5. Due to the fact that u is a constant, the pseudocode in line 10 can be moved

Algorithm 3.5 CSGD algorithm which uses a constant step-length.

1: Initialization: Determine the maximum allowed epoch number K,,,,. Partition
row and column indices into sets {Ii}ic1ar and {Jj}tjenny » {xs;}jepn = 0,
{zJ}je[l,N} = 0and r = y. « and ~ is the percentage of the selected row and
column blocks respectively, p is a constant.

2: for epoch = 1,2,..., Kjpar do

3: x=0

4:  for jj=1,2,--- yN. In parallel (J loop) do

5: Random select a column block J from sets {J;};¢[1 ) with replacement
6: for i=1,2,---,aM In parallel (I loop) do

7: Random select a row block I from sets {/;};c[1,a1) With replacement
8: gJ = (Ag)TI']

9: z; = Af(x; + pgs)

10: Xj=Xj+x7+ pugs

11: end for

12:  end for

132 r=y-Y 2,7

14:  For all blocks J that have been updated, x; = x;/aM
15: end for

T
16: Xsolution = [XJ17 ey XJN]

out of the for-loop and then the algorithm is indicated in Algo.3.6. Actually, Algo.3.6
is the first algorithm proposed during this project. However, this simpler version is of a
slow reconstruction speed, despite the number of matrix-vector multiplications per epoch
decreases from 3ayM N to 2a-yM N. For example, in a tiny CT scanning system whose
system matrix is indicated as Fig.3.6, the reconstruction speed of CSGD with constant
step-length and the range of step-lengths is shown in Fig.3.26. It shows that using a
constant step-length in CSGD impedes the original CSGD’s performance. The range of
step-length leading to high accuracy solution also becomes narrower than before, making
1 harder to be tuned. The simulation result justifies the importance of calculating the

step length p using Eq.3.7. Despite the slow reconstruction speed, this simpler fixed
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Algorithm 3.6 CSGD algorithm which uses constant step-length.

1: Initialization: {g@ie[l’aM] = 0. g = 0. The other initialization is the same with
Algo.3.5.
2: for epoch = 1,2, ..., K;pqr do
{&'Yicjt,am) =0
for jj=1,2,---,yN. In parallel (J loop) do
Random select a column block J from sets {J; }je[l, ~] with replacement
for ii=1,2,---,aM In parallel (I loop) do
Random select a row block I from sets {;}ic[1 3 With replacement
g7 = (A7) r;
;= Af (x) + &)
10: end for
11:  end for
122 r=y-— Zévzl z/
13:  For all blocks J that have been updated,g; = Zf‘lg gf}’
14:  For all blocks J that have been updated, x; = x; + ﬁgj
15: end for

16: Xsolution = [XJU s Xy

]T

SNR trend, M=12,N=4,0=0.5,vy=1
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Figure 3.26: A tiny, noise free CT scanning geometry indicated as Fig.3.6 is
used here. Red lines are repeated reconstruction speeds when CSGD using a
constant 3 (i.e. calculate p using Eq.3.7) and blue lines are speeds when CSGD
using a constant .

step CSGD which accumulates partial stochastic gradient ingredients is illuminating for
the next proposed algorithm, which is empirically shown to approach the true solution

in the noise free setting even with a constant step-length.
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3.5 Conclusions

This chapter presents the first parallel algorithm CSGD. It is designed for a distributed
reconstruction of cone beam CT data under arbitrary scan trajectories. In the dis-
tributed network, each node is assumed to have limited storage capacity and thus all

nodes operate with limited access to the projection data and reconstructed volume.

The properties of CSGD have been studied in details. Simulations indicate that when
the 2D or 3D object is scanned by a circle trajectory and with sufficient projection
views, the shape of sub-matrix A{ (TT,SF or square) does not significantly influence
the reconstruction speed. As a result, the division rule on the dataset and volume is
not rigid and the only requirement for dataset division is that the divided projection
data and volume can be small enough to be stored by those separate computation nodes.
The CSGD allows arbitrary «, 7y selection criteria and they all lead to converging results.
The reconstruction speeds differ for different «,~ settings. Simulations experimentally
indicate that for different v settings, a = ﬁ leads to the fastest reconstruction speed.
An importance sampling strategy have been developed, which has been shown to further
increase the reconstruction speed. In the original CSGD, since the image is divided into
N sub-images, projections of them are not distributed on the whole detector but on
a limited sub-detector area. If the scanning geometry for each sub-volume still adopts
the whole geometry situation, a lot of zero projection results will be generated. These
zero projections have little information and often contribute little to the reconstruction.
The importance sampling method divides the detector into many sub-detectors and each
time only samples partial of sub-detectors. This enables each row block to contain more
projection views and let sub-detectors with massive non-zero projection data to be used

more frequently in iterations than those with loads of zero projection data.

The parallel architecture can be the same as that of block ADMM, which is a general
algorithm for separable convex optimization. However, for large scale CT reconstruction,
block ADMM is less attractive compared to CSGD. One advantage of CSGD is that it
requires less storage compared to block ADMM. Another significant advantage of CSGD
is that it reconstructs the image to a predefined precision with significantly fewer matrix
vector products as it avoids the calculation of matrix inverses. This means that the
CSGD has much higher computation efficiency than block ADMM.

One open area of this chapter is the formal analysis of the convergence property CSGD.
This chapter mainly focuses on the properties of the CSGD under different parameter
settings and prove that the CSGD is able to present an increment SNR trend of the
reconstructed image to a high accuracy solution, showing its ability to reduce the data
fidelity. In the noise free model, CSGD with any «,~ selection criteria can all quickly
achieve a 80dB and even higher reconstruction results, which is already enough to present
inner details of the reconstructed image. When the Gaussian-type noise is added, the

CSGD algorithm is also able to generate an approximately stable result. However, where



Chapter 3 CSGD 81

the results is is not fully understood yet. A conjecture is that the CSGD should converge
to the least square solution with an error bound. Some efforts have been made to explore

the convergence property of CSGD, which will be presented in Appendix A.

In this thesis, the simulation results for projection data corrupted by severe noise are
not presented. Those simulations show significant semi-convergence phenomenon. With
a proper early termination strategy, for example, terminating the iteration when the
SNR has achieved its peak value, the CSGD shows similar relative reconstruction speed
comparison results under different «, v parameter settings shown in Fig.3.9 to 3.12, and
the simulations also prove the claim made in Eq.3.8 for how to determine «,~ for a fast
reconstruction speed. However, after introducing the early stopping strategy, it then
becomes difficult to convince readers that the CSGD are converging. Furthermore, in
simulations, when to determine the CSGD is easy to determine, as the SNR trend is
visible (the X¢rye is a known vector), but in realistic when to determine the iteration is
difficult and it becomes another research topic. Consider the fact that the main focuses of
Chapter 3 are to illustrate that the CSGD has the ability to reduce the data fidelity and
obtain an increment SNR trend and to show the recommended parameter(mainly «, )
setting, this thesis does not present the severe noise simulations whose semi-convergence
is significant. The detailed discussions on semi-convergence property of CSGD thus is

another open area of this thesis.






Chapter 4

BSGD

4.1 Block Stochastic Gradient Descent

In this chapter, another parallel algorithm is proposed. This algorithm is inspired by
SAG, which stores and sums up all previously calculated sub-gradients. The new al-
gorithm can be viewed as a combination of CSGD and SAG and is called the “Block
Stochastic Gradient Descent” (BSGD) method. It belongs a SGD type algorithm but

the computation overhead per iteration is further reduced.

The contributions of this chapter includes: 1) This algorithm is also specially designed
for the case where both projection data and reconstruction volume are so large that
one computation node only has partial access to both. However, different from CSGD,
the new proposed BSGD sums up all previous calculated sub-gradients. Simulations
show that the calculated gradient has a decreasing error variance compared with the
true gradient direction (i.e. the expectation of ||g¥ — gF...|| decreases on expectation
with each iteration, where g¥, gf. . are calculated gradient and the true gradient at k"
iteration ). 2) Comparisons of BSGD with CSGD and other SGD-type algorithms is
presented, including reconstruction speed, storage capacity and communication schemes
in the parallel networks. Simulations further verify that the importance sampling trick
proposed in Chapter 3 is also applicable to BSGD, and it shows that this version of BSGD
has the fastest reconstruction speed among all reference algorithms. 3) Most of SIRT-
type iteration, including BSGD, requires a well tuned step length. If the step length is
set improperly small, the BSGD often needs enormous matrix-vector multiplications to
reconstruct the image into predefined precision. To overcome this difficulty, an automatic
parameter tuning trick is proposed to dynamically enlarge the step-length to a range that
makes the update of the image vector x,.. more aggressive than small step length case
whilst empirically enabling the iteration approach the least squares solution. Simulation
results show that the accelerated algorithm reconstructs the image to the same quality

with much less matrix-vector multiplications than original BSGD with constant small

83
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step lengths. 4) The proposed automatic parameter tuning mainly works for the case
when initial step-length is improperly small. If the initial step is well tuned, this tuning
strategy cannot significantly improve the performance. In this case, a recent acceleration
technique KatyushaX? is first applied on BSGD and is shown to be effective. The
KatyushaX?® acceleration is similar to Nesterov acceleration by gradually updating the
step length and thus it does not introduce extra expensive computation and it shows
that this acceleration method works well with BSGD.

4.2 BSGD algorithm

The new proposed algorithm is named as Block Stochastic Gradient Descent (BSGD).
The inspiration of BSGD comes from the fixed step CSGD, which divides y, x into M, N
blocks respectively and the SAG, which stores the old stochastic gradient ingredients
obtained from different row blocks. Similarly, in BSGD, the stochastic gradient ingredi-
ents representing the BP results for different Aij are also recorded and is named as gf]j.
They are summed up as a new update direction. Meantime, FP results for different Aij
are also recorded into new introduced variables zi, which are used to update the residual
r. A difference between BSGD and the other row-action methods or the combinations of
row and column-action methods is that BSGD adopts a more stochastic update scheme.
Instead of updating x after and only after the exact residual r being computed, BSGD
computes a stochastic approximation of the residual by only processing a subset of x in
each iteration and using previously computed estimates of A{ xj for those blocks that
are not used in the current iteration. The hope is that the increase in uncertainty in the
gradient estimate is compensated for by a reduction in computation and communication
cost. BSGD thus does not compute all A?r 7 and Arx; in each iteration. Instead, during
each iteration, only aM row indexes from {I;}M, and N column indexes from {.J; }§V:1

are used, which is the same as CSGD. The algorithm is shown in Algo.4.1.
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Algorithm 4.1 BSGD

1: Initialization: Determine the maximum allowed epoch number K,,,,. Partition
row and column indices into sets {/;}icp1a and {Jj}jeq,ny » {XJ; jepn) = 0,

{z'}jen N =0, {6/}, =0 and r =y. o and 7 are the percentage of the selected
row and column blocks respectively.
2: for epoch = 1,2, , Kjge do

3:  for jj=1,2,--- yN. In parallel (J loop) do

4 Random select a column block J; from sets {.J;} e[, n] with replacement
5 for i=1,2,---,aM In parallel (I loop) do

6: Random select a row block I; from sets {I;};c[1,a7) With replacement

7 Zjl.i = Aij (x;)

8 end for

9: end for

10: r=y-y 7

11:  for the selected I; and J; in parallel do

12: &) = (Aij)Tr]i

13:  end for

14:  For all blocks J that have been updated, g; = Zz]‘il gf], Xy =Xj+ ugs
15: end for

T
16: Xsolution = [XJ17 ET) XJN]

The BSGD can also be combined with previously proposed importance sampling strat-

egy, which is named as BSGD-IM, as shown in Algo.4.2

4.3 « and 7 selection criteria

For each iteration, the total usage time of A“} is 2ayM N and the maximum required
parallel nodes is ayM N. When a and ~ are both 1, then BSGD becomes GD. When
v =1 and o < 1 and each column block samples the same row blocks each time, then
BSGD becomes SAG. An extreme situation is that when a = ﬁ,’y = %, where the
BSGD only uses one Af for each iteration and thus becomes sequential. It is clear
that the computation cost for g decreases when «,y decreases. However the variance of
lg — 8true || increases at the same time, making the iteration process more stochastic and
thus slowing down the reconstruction speed. As a result, how to select o,y to balance
the computation cost and reconstruction speed is of interest here. The selection criteria
should reduce the computation cost by using small o and v while maintaining a fast

converging speed. Here the simulation data in Fig.3.13 (i.e. A € R72000x4096) jg yy5e,
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Algorithm 4.2 BSGD-IM

1: Initial: The same as Algo.4.1.

2: for epoch = 1,2, -+, Kjq, do

3:  for jj=1,2,---,yN. In parallel (J loop) do

Random select a column block J; from sets {.J;} e[, n] with replacement

for i=1,2,---,aM In parallel (I loop) do
Random select a row block I; from sets {I;};c[1,a) With replacement
Importance sample one sub-detector area from each single projection view.
All indexes represented by those selected sub-detector areas form the row
index set ft.

9: FEach parallel node records its own I, for the later BP procedure.

10: 7. = AVx Jj

11: end for

12:  end for

132 r=y-— Zjvzl z/

14:  for the selected I; and J; in parallel do

15: gf]j = (AJ{Z)TI‘I} (Attention that I, is recorded in each node )

16:  end for

17:  For all blocks J that have been updated, g; = Zf\il gf,, Xj=XJ+ ugs

18: end for

19: Xsolution = [XJ17 e XN

]T

By setting M = 60, N = 16, the converging speed with different «,y settings are shown
in Fig.4.1. All the parameters are well tuned and the fastest cases are presented here.
It can be seen that for each different v settings, reducing a under % can significantly
increase the converging speed. Fig.4.1(f) shows that when reducing « to ﬁ, different ~
settings can have slightly different converging speeds but the difference is not obvious.
This suggest that in a parallel network where p is far less than M N, reducing « and
~v does not cause significant delayed reconstruction speed. In the Fig.4.1 case, M =
60, N = 16 means that A{ € R1200%256 which is a tall-thin shape. The shape of A{ can
also be changed by setting M = 60, N = 4. In the Fig.4.2. In the figure, M = 60, N =4
means that A{ e R1200x1024 "which is a square shape. Simulations show that regardless
the shape, reducing « under % can still increase the reconstruction speed. Fig.4.2(d)

shows that when reducing « to ﬁ, different « does not show significant differences.
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Figure 4.1: The reconstruction speeds under different o,y settings with a de-
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Figure 4.2: Repeated simulations which are similar to Fig.4.1 when the M =
60, N = 4.

From the above simulations, the suggested selection criteria is the same as CSGD
algorithm, as shown in Eq.3.8. According to the criteria, when p is smaller than N, then
a should be reduced to the minimal ﬁ while keeping v as large as possible (£7) to cover
image blocks as many as possible. The following simulations justify this criteria. For
M = 60, N = 16 case, assume that p is 8 or 16. For M = 60, N = 4 case, assume that

number is 2 or 4, then the comparisons of different a,y are shown in Fig.4.3.

It is important to point out that when p is smaller than N, setting v = 1 is not forbidden
but is inefficient in 2 cases: 1)The first case is when N, the number of image blocks,
cannot be divided by p without remainder. For example, when N = 6 but p is 4,
then it means that there are 2 “inner loops” for the calculation of zJI' and gf,. Take the
calculation of ZJI' as example. In the 1%¢ inner loop, 4 parallel nodes receive {x J; }i=1234-
Since v = 1, there is a 2"¢ “inner loop”, where 2 parallel node receive {x Jj }i=5.6 and
the other 2 nodes remains static, which is a waste of computation resources. 2) The
second case is when the updates of r, g and x are also performed on parallel nodes.
For example, assume that M = N =4 and o = %,fy =1 but pis 2. If I, {Jj}?zl are
selected, then the data communication is shown in Fig.4.4, which shows that there are 2
“inner loops” in total for each update of r and g. The communication cost is larger than

the case when v = % because an extra transmission on x block, which happens on (d)
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Figure 4.3: Reducing « to -7 and maximizing v to % (red lines )helps a bit to

increase the reconstruction speed.

procedure in Fig.4.4. This illustration justifies «, selection criteria which encourages

to reduce v as & instead of 1.
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Figure 4.4: The square box represents the master node and oval boxes represent
parallel computation nodes. The blue parallel node is the root node, which is
responsible for the date gathering and distribution. If Iy, {Jj}évzl are selected
and there are 2 parallel nodes, then 4 procedures are required: (a) The parallel
nodes request xz,,%x7, and old z}l ) z%—l. Besides, the root node also requests ry, .
Each computation node calculates difference Vzgl = ZJI'1 — Agj XJ;,J € [1,2] and

updates ZJI1 = Aﬁ x ;- The non-root node (black) sends Vz?l, and in the root

node, r;, =rp —i—Vz}l + Vzi; Each computation node returns updated zjl'l. (b)
In the 2" inner-loop, the above procedure is repeated. Attention that x Jar XJ,
have to replace xj,,%x, due to the limited storage capacity. When ry, finishes
updating, it is broadcasted from the root node to non-root node for the latter
gradient calculation. (c¢) Each computation node requests g Jj gljj .7 €[3,4] and
the computation node calculates difference vg},j = (Aﬁ Vrp, — gl]j, J € [3,4]
and updates g},j = (Aif)Trh. gy, is updated as g, = g, + Vg},j, after
updating g,, the corresponding x,; is updated as x;, = x;, + p x gy;. (d)
repeat the (c) to update x;;,j € [1,2]. Since x;,,j € [1,2] are no longer in the
computation nodes, the computation nodes have to re-request x,,j € [1,2].

4.4 Comparision between CSGD and BSGD

In this section the differences between CSGD and BSGD including the storage demand,
parallel computation scheme and their ability to approach the least squares solution are

analysed.
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To simplify the illustration, assume that at one iteration, I; and Jy, Ja,- -+, Jyn are se-
lected, the parallel computation scheme of CSGD and the detailed illustrations are shown

in Fig.4.5. The parallel computation scheme of BSGD is more complicated than CSGD.
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Figure 4.5: Data communication in CSGD. The square box is the master node
which stores all necessary variables and the oval boxes are YN parallel compu-
tation nodes. The computation nodes request three variable blocks x J].,zjh,r I

from master node. After every node finishes the update of z?l block, szh,

which is the difference between the old and new updated z]h, are summed up
via MPI-reduce (explained in section 6.1) to root node (blue oval node). The
output of computation nodes are used to update the corresponding blocks in
the master node. Notice that ry, is only outputted by the root node.

It contains two master-computation node communications, as illustrated in Fig.4.6.
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(a) FP process for xz,,- - XN (b) BP process for xz,,- - XN

Figure 4.6: Data communication in BSGD. (a) The general parallel nodes re-
quest two variables x Jj,zjl1 from the master node while the root computation
node requests an extra ry,. ry is updated with the same way as CSGD, fol-
lowed by a MPI-broadcast (explained in section 6.1) procedure that the root
node sends updated ry, to the other parallel nodes. The output procedure is also
similar to CSGD except that x block is kept in each node. (b) Each computa-
tion node requests g, gy, from master node. Notice that since o = ﬁ, v = %,
there is no inner node communication and g, can be updated parallelly and
separately by gj, = gy, + Vg},j, where Vg}]j is the difference between the old

and new updated g},j computed within each parallel node.

It should be noticed that the communication scheme of BSGD is the same as other

SIRT-type algorithms. Compared with other SIRT-type methods, the previous CSGD
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enjoys a simpler communication scheme and thus will enjoy a wider parallel scalability.

The detailed discussion on this part is mainly presented in Chapter 6.

The storage demand is another aspect where CSGD outperforms BSGD. Assume that 7
and ¢ are the size of y and x space respectively, Table.4.1 illustrates the storage difference

and communication difference between the two methods. BSGD requires more storage

Table 4.1: Comparisons of storage demands and communication overhead for

each node between CSGD and BSGD

CSGD BSGD
total storage (N+1)r+2 (N+1D7f+(M+2)¢
root request 2% + ]f, 2% + 3%
Master-Computation root push 9 % N ff 9 % 13 %
other request 2% + ¥ % +3%
nodes communication other push % i % % 13 %
Computation nodes root MPI-reduce (YN —1)4; (VN -1)L
inner communication root broadcast 0 %

space and communication overhead compared to CSGD. This is mainly caused by the
new introduced variable {g'}} . However, the new introduced variable can gradually
reduce the error variance of the estimated update direction, making the iteration faster
and closer to the least square solution than CSGD and some other existing methods
like CAV and SIRT. To verify the advantage of BSGD, the dataset used in Fig.3.13 is
adopted again and is blurred by Gaussian-type noise, with the SNR of each projection set
to 31.1dB. A term DS is introduced to reflect the distance to the least square solution.
It is defined as:

DS = [|x1sg — X" (4.1)

where xlsq,xk are the least square solution and the reconstructed image vector at k"
epoch. Simulation results are shown in Fig.4.7. All parameters in each method are well
tuned to ensure the fastest reconstruction speed. We see that BSGD not only approaches
the least square solution, it also shows a faster reconstruction speed compared to CSGD,
SIRT and CAV. The figure also show that BSGD-IM is of the fastest reconstruction
speed, achieving the SNR limit within the least usage of A{ . However, it does not
reach the least square solution. This is because that the BP procedure in line 15 of
Algo.4.2 is an inaccurate calculation procedure. To be more specific, in BSGD, the
gf,j = (Aij)Tr[i. In BSGD-IM, however, the gf,]_ = (A;:)Trft, where I, is a subset of I;.
This approximated calculation inevitably introduces error and thus cannot enable the
sum of ¢’ to approach the true gradient direction g,,., making the final solution cannot

approach the least square solution.
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Figure 4.7: The projections are blurred by a white Gaussian noise whose vari-
ance o = 0.2. In contrast to BSGD, SIRT, CAV and CSGD do not achieve the
least square solution and are slower in terms of the reconstruction speed than
new proposed BSGD.

The reconstructed images are presented in Fig.4.8. From the figure it can be seen that
both CSGD and BSGD generate artifacts at the border of sub-image. However, this
artifacts gradually disappear as iteration goes on and the quality of final reconstructed
images is good enough to present the inner details of the object, as SIRT methods does.
The BSGD-IM also generates artifacts. However due to the fastest reconstruction speed,
the artifacts already disappears after 5000 matrix-vector multiplications. All methods
finally present clear enough inner details of the object, showing the effectiveness of
the proposed CSGD, BSGD and BSGD-IM in CT reconstruction. Furthermore, by
comparing the reconstructed images, SIRT and CSGD can present clear results after
50000 projections, BSGD and BSGD-IM can present satisfying results after 10000 and
5000 projections. As a result, the BSGD-IM is of fastest reconstruction speed, the BSGD
ranks the second place, the CSGD and SIRT approximately has the same reconstruction
speed. It should be pointed out that the image quality is estimated by the SNR of the
image, i.e. using Fig.4.7(a) instead of the DS trend. Although the BSGD-IM does not
converge to the least square solution, the quality of reconstructed image is not influenced
by this property. The SNR reflects the distance between the reconstructed image and
the true image vector whilst the DS reflects the data fidelity. Unable to converge to the
least square solution means that the data fidelity cannot be minimised, but it does not
influence the distance to the true image vector. This is the reason why the BSGD-IM
does not approach to the least square solution closer than BSGD but the reconstruction
speed is faster and the final reconstruction results have negligible differences between
the other methods.

4.5 Best partition of M,N

This section discusses the optimal partition on y and x space. Assume that the storage
amount for each computation node is G and G < ¢ < 7, it is clear that there is an

optimal M and N setting that makes the total storage amount in the master node
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(j) BSGD-IM (k) BSGD-IM (1) BSGD-IM

Figure 4.8: The first column is 5,000 “FP+BP” projections while the second
and the third are 10,000 and 50,000 projections respectively. BSGD and CSGD
finally reconstruct the images with high quality, despite of the margin artefacts
at initial iterations. The BSGD-IM is of the fastest reconstruction speed, pro-
viding a clear reconstruction result within only 5,000 FP+BP projections. The
BSGD is the second fastest method, which provides clear reconstructed image
within 10,000 usage of A{ . Reconstructed images by CAV are similar to SIRT
and thus are omitted here.
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(i.e. square box in Fig.4.6) minimal while enabling the data blocks to be small enough
to fit in the computation nodes. According to Table.4.1, the total storage demand is
(N+1)74+(M+2)é. According to Fig.4.6, the computation nodes first store z}, rr,xy and
then push ZJI‘ back to the master node while maintaining the other two data blocks. At
this stage, it means that the computation node must be large enough to store zgi, rr,XJ;
and Vzi_. Then the computation nodes request and store gf,j and gy,. As a result, G

must also be large enough to store ry,, x Jj,gf']j,g J; and ng]j.

The total constrained optimization then becomes:

min (N + 1)7 + (M + 2)¢,
T c

t 33—+ S <a

“tCM TN
r ¢ 4.2)
I 14l <q (
M+ N
1-N<O0
1-M<O.

The lagrangian equation of this constrained problem can be expressed as

T c T ¢
=(N+1)r+(M+2)c — 4 —=— —44—— 1-N 1-M).
L= (N+DF+(M+2)e+m B3z + 5 = G) +pz(q; +45 = G) +pal )+ pa( )
(4.3)
The Karush-Kuhn—Tucker (KKT) conditions can be expressed as:
1 1
(a)F — ulcN 4,uQCN —p3 =0
1 1
(0)¢ =355 — pa o — pa =0
(0)3% + % G <0
(d)% + 4% G <0
(e)1—M <0
(1= N <0 4
T ¢
@mBy;+ 5 —6)=0
; ~
(Ml +4 — G) =0
(i)us(1— N) =
(pa(l = M) =0
(k) g, pi2, pigs pra 20

In fact, us, nq should both be 0, otherwise M or N is 1, which violates the KKT condition
in (¢) and (d).
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If py = 0 and pp # 0, according to (a), (b),(h), -7 = 2%, and M = 35, N = 6&.
Similarly, if ps = 0 and y; # 0, according to (a), (b),(g9), V34 = &, and M = (3 +
\/g)g,N =(V3+ 1)% However, these solutions violate either (¢) or (d). This means
that puq, pe should both be non-zero. According to (g) and (h), M = %g,N = %%
Since M, N should both be integer then optimal partition on X,y space is shown in

Eq.4.5.
117

5]
B 1316 (4.5)
=351

N

4.6 Automatic parameter tuning

In this section, an automatic parameter tuning strategy is proposed to accelerate the
reconstruction speed when the step-length p is not set properly. Broadly speaking,
up to a limit, increasing g increases reconstruction speed. However, in practice, it is
difficult to determine the upper limit. As a result, in realistic large scale tomographic
reconstructions, instead of using a fixed step-length u, an automatic parameter tuning
approach is adopted. Parameter tuning is not a new concept in machine learning and
optimization. For example, the hypergradient descentAtilim Gunes et al. (2017) or the
Barzilai-Borwein (BB) method (Conghui et al., 2016) can be used for SGD or SVRG.
However these methods are not directly applicable to BSGD, as they require updating
all of x.5 in each iteration. Furthermore, BSGD uses dummy variables z to store
information about previous x.s. Due to this, the stochastic gradient calculated by
BSGD is much noisier than the estimate obtained by traditional stochastic gradient
methods. An automatic parameter tuning method is proposed here which is different
from the BB method or hypergradient descent method. It only exploits the parameters
generated during the iteration process: the residual r and update direction g, as shown
in Algo.4.3.

This automatic parameter tuning is applied after f epochs. It tests whether [r| is
continually decreased during the past 2f epochs, in which case p is increased by 1 + e.
To reduce p, using a similar condition on r alone (i.e. line 8 in Algo.4.3, named as
“criteria 1”) was not found to be sufficient to ensure a high accuracy solution. An
additional criteria (line 9 in Algo.4.3, named as “criteria 2”) is thus adopted. The criteria
2 is motivated by the general parameter tuning methods that compute inner-products
between adjacent gradients and determine to increase or decrease p according to the
positivity of the inner-product (Atilim Gunes et al., 2017; Plakhov and Cruz, 2004).
The proposed automatic parameter tuning trick thus compares the inner-products of
two “virtual” gradients. To do this, several stochastic gradients during a period of
several epochs (f epochs in Algo.4.3) are accumulated to compute an effective update

direction (EUD) g to reduce the stochastic error variance. It is observed that when
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Algorithm 4.3 Automatic y tunning strategy

1: t1,to, € and & are positive constants, f = M.
2: At each k™ epoch where mod(k, f) == 0, sum up all g in the past f epoch as an
effective update direction (EUD) g#/7.

3. Calculate the inner product between two consecutive g as 6%/f = %.
4: if mod(k,f)==0&k > f then

5 if ||r|® < |e|*~ < ||r]|*=2f and 6%/ > t5 then
6: p=(1+eu

7. end if

8 if [[r||* > |le)|*= > ||r[[*=2/ then

9: if | 0%/7 —0*/ =1 |>t; or F/f < t; then

10: pw=(1-90)u

11: end if

12:  end if

13: end if

BSGD approaches a stable solution with a properly fixed u, then the change of two
adjacent EUDs does not vary significantly. On the contrary, these two directions vary
significantly when BSGD suffers from oscillatory behaviour or an increase in the norm
of r. This is because that BSGD uses some old values z/g in the calculation of each
update. To ensure the convergence, the changes in x among a period of epochs is not
allowed to be too large, then these old values for z/g are good approximations to the
current values. Due to the small movement of x during 2 f epochs, the two EUDs, should
also be similar to each other and the 6, which represents the cosine angle of two EUDs
is always close to 1 in a converging iterations (i.e. o is close to 1 and ¢, which reflects
the change of 6, is close to 0). If not, it means that the step-length is too big and the

iteration is likely to diverge.

In this section, the simulation data all uses the one in Fig.3.13. The variance of gaussian
type noise is 0.2, making the SNR of y 31.1 dB. When é = 0.4 and € = 0.04, the results
are shown in Fig.4.9. In the figure, blue lines mean step length for BSGD (fixed pu
form) is always 2 x 10~7. For BSGD with automatic parameter tuning, however, it
means that the initial step length is 2 x 10~7 and its value will be tuned in future’s
iteration. The other colors have similar meanings. Results in Fig.4.9(a)-(d) demonstrate
that automatic tuning (solid lines) provides faster reconstruction speed than the original
method when initial step-length pg is set improperly (dashed lines). When the initial step
length is set as 2 x 1077, the original BSGD diverges whilst the BSGD with automatic
parameter tuning generates a converging iterations by gradually tuning the step length to
a proper range, as shown in Fig.4.9(e)-(f). Despite that, the automatic parameter cannot
guarantee that it converges to the least square solution, the SNR trend empirically shows
that it reconstructs the image to the same level as BSGD using constant step-lengths.
Only two a,~ cases are provided here and similar results (omitted for brevity) are

obtained for other values of M, N, o and .
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Figure 4.9: BSGD (dashed) vs BSGD with parameter tuning (solid), using

t; = 0.1,¢5 = 0.7, = 0.04,6 = 0.4. It can be seen that for pg = 2 x 1075,
the original BSGD does not converge but automatic parameter tuning, when
initialised with po = 2 x 107°, can adapt the step-lengths into a range leading
to stable iterations.
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For both increasing and decreasing u, the frequency of parameter changes is f = M
epochs rather than 1 epoch. One reason is that the high stochastic noise in the gradient
updates can be reduced after a period of epochs. Another reason is that the calculation
of ||r|| can be time consuming when the size of r is large and reducing the frequency of
computation on ||r| is beneficial to save the reconstruction time. It has been experi-
mentally validated that setting the test frequency f to M leads to a good compromise
between increased computational demand and improved overall reconstruction speed.
However, the setting of frequency can be flexible. For example, the frequency can be set
as a value with which the whole x space has just been updated at least once. If N can
divide v without remainder, and the set {J; }é\le is sampled without replacement, then

= % is also feasible.

4.7 Comparison to other methods

In section 4.4, the comparison of CSGD and BSGD shows that BSGD has a faster
reconstruction speed even though BSGD has more complex communication schemes.
In this section BSGD is compared to other SIRT-type methods including GD, GD with
Nesterov acceleration, SAG and SVRG methods. They all have the same communication
scheme and the only difference is that the other SIRT-type methods unavoidably update
all of x in each step, thus when N > p, the communication overhead, as well as the
usage of A{ , is larger than BSGD. In this section, both 2D and 3D simulations are
presented. The scanning geometries are the same as in Fig.3.13 and Fig.3.25. The
comparisons are shown in Fig.4.10. All simulations, except the automatic parameter
setting case, are well tuned to ensure the fastest reconstruction speed. It can be seen
that the reconstruction speed of automatic parameter tuning is slightly slower because of
the non-optimally chosen small initial step-lengths. For well-tuned parameters, BSGD
shows similar reconstruction speed to SVRG. However, according to Fig.4.4, when p is
smaller than N, then BSGD has a simpler communication scheme compared to SVRG.
This is because that each parallel node only updates one image blocks. The BSGD-IM
is the fastest among all reference methods. The detector partitioning is the same as
discussed in Fig.3.20(b) and Fig.3.24. It clearly shows that BSGD-IM, which is the
combination of BSGD and the importance sampling trick, is the fastest method. One
drawback of BSGD-IM is that it does not converge to the least square solution, but the
final SNR limit of BSGD-IM is similar to the other methods, which means that the final

solution’s accuracy is similar to the other methods.
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Figure 4.10: Comparison of BSGD with other SIRT-type methods for a 2D
(top) and 3D (bottom) setup. The projection data y are blurred by Gaussian
noise. In 3D case, due to the large computation complexity on the least square
solution, DS trend along with usage of A{ is omitted. For 2D and 3D case
the automatic parameter setting methods use initial step-length 1 x 1076, The

step lengths in the other methods have been well selected to ensure the fastest
reconstruction speeds.

4.8 Further trials on accelerating BSGD

Section 4.6 presents an automatic parameter tuning strategy to accelerate the recon-
struction speed of BSGD when its step length p is set improperly small or large. How-
ever, this automatic parameter tuning does not works well if the p has been well tuned

through repeated trials in simulations. In this section, further trials on acceleration the
BSGD when p is well tuned is presented.

One of the most famous and widely applied acceleration tricks is Nesterov’s acceleration,

as demonstrated in Algo.2.1. It can be seen that Nesterov’s acceleration performs a

simple step of gradient descent to go from x* to %*+

I and then it moves further than
ik-‘rl

in the direction given by the previous point x*.
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However, this momentum acceleration is dangerous for stochastic SIRT-type methods.
During iterations, each update direction is not an accurate direction and if this stochastic
direction is added to the momentum and moves further along this direction, it may
hurt the performance because it leads to error accumulation. Simulations also verify
that when BSGD is combined with Nesterov’s acceleration methods, no accelerated

reconstruction speeds can be obtained.

Recently, the “Katyusha” acceleration method was proposed (Allen-Zhu, 2017), which
is the first acceleration method for stochastic gradient descent methods. The main
ingredient of this kind of acceleration is “Katyusha momentum”, a novel “negative
momentum” on top of Nesterov’s momentum. It can be incorporated into a variance-
reduction based algorithm and speed it up. Since previous simulations have verified
that the BSGD has the same properties with variance-reduction based algorithms, it is

worthy for BSGD to give Katyusha a hug.

The classical Katyusha is combined with SVRG and the momentum step is applied
after every single stochastic step. The SVRG-Katyusha is shown as Algo.4.4. It can

Algorithm 4.4 Katyusha acceleration on SVRG

1: Initialization: w! = vl = %1 = x!

2: for k=1,2,--- , K do
3 gh=Vf(Eh

4: fort=1,2,---,f do

5 s=((k—-1f+t

6: x*t = v 4 05%F 4+ (1 — 7, — 0.5)w*

7 Ve =gh 4 MV (x5 — MV £ (%F).
s VS—H = v — av§+1

9 ws+1 — Xs+1 +7 (Vs+1 _ VS)

10: end for
1 &= (DL wikehi
12: end for

—_

be seen that after a full gradient calculation, the momentum step is applied after each
inner-iteration. However, BSGD was experimentally observed to be not suitable for this
kind of acceleration. This is because some zf,‘i / gf,j inevitably store stale forward/back
projection information and thus BSGD cannot afford frequent momentum shifts. For
example, for the current k' epoch, due to a,vy < 1, some z?i inevitably store results
for A}]jxﬁj_T, where 7 can be 1,2 or even larger integer, which is influenced by « and ~.

To be more specific, let us start with the analysis on the original BSGD method. At

the k" iteration, xf’}jl = Xff,j + ugﬁj. zi and g']j store the forward and back projection
information of x¥,x*~1 ... x*=7 here 7 is a delayed coefficient influenced by «, . For

example, when « = v =1, 7 = 0, when a = ﬁ,fy = %, and if I;, J; are sampled
without replacement, 7 = M N — 1. With proper step-lengths, the information stored
in z7 and gf]j is similar to Afxi and (Aij)T(yIi - Zjvzl Aijxﬁj), thus making the

calculated gF similar to true gradient gf,,ue on expectation. As a result, when this
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process is repeatedly applied to (k + 1), (k + 2)™ iterations, a converging trend is
obtained. Now consider that when Katyusha acceleration is applied after every single x

k+1 is further moved by a momentum step to X**1 after k*" iteration, it can

be imagined that the average distance between X**1 and x*,x*=1 ... x¥=7 (defined
k+ k=1 xheT

I and x*, xk-1,

update. If x

as d in this section) becomes larger than that between x
In the next (k + 2)'" iteration, the information stored in zi_, gf,j may still be able to
approximate A}]jiﬁjl and (A}JZ)T(yIi - Zj\]: 1 A}]ji]}jrl) However if this acceleration
is applied after every x update, the distance d will continue increasing and there will
be a point that the information stored in zi, gf,j is too old to approximate A]ijc J; and

(Aij)T(yIi - Zjvzl Aijic J;)- As a result, applying the original Katyusha acceleration,

k+1 a bit further away from x* after every iteration is not a

which manually moves x
good idea. In 2008, a modified Katyusha was proposed, which is named KtyushaX?®
(Allen-Zhu, 2018). Its main difference with classical Katyusha is that the KatyushaX?®
applies a momentum step after a period of iterations. The KtyushaX® combined with

SVRG is shown in Algo.4.5. where the SVRG'® is one epoch process of SVRG and is

Algorithm 4.5 SVRG with KatyushaX?®

. Initialization: Partition data and A into M row blocks. f = 2M. Determine the
maximum allowed iteration number K. Initialization: %° 1 1

—_

=X =X

2: for k =1,2,..., Kipgr do
35k 1k Sk—1
. k1 _ pX Hex —(1-7)X
3: X - 147
4. XMl = SV RGP (xFY pu, M, f)
5. end for
6: Xsolution = XKmaI—HL

defined in Algo.4.6.

Algorithm 4.6 x = SVRGP(x, u, M, f)

I X=X

2: g=Vf(x)

3: fort=1,2,---,fdo

4 Randomly select an i from [1, M]
5 Vi=g+ MVf]i (X) — MV fr,(x)
6: X =%X—puVy

7: end for

BSGD and BSGD-IM can be combined with KatyushaX?®. To simplify the algorithm
description, Algo.4.1 is then expressed as Algo.4.7. where BSGD'? is a “black box”
function with input x, u, o, 7, z, g, performing line 3-15 in Algo.4.1. The output of this
function is the updated variables x,z,g. Inspired by Algo.4.5, the BSGD-KatyushaX?
algorithm is shown in Algo.4.8. Combining BSGD-IM with KatyushaX? is similar to
Algo.4.8 and is not shown here.
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Algorithm 4.7 BSGD, simplified expression
1: Initialization: Determine the maximum allowed epoch number K,,,,. Partition
row and column indices into sets {Litienan and {Jj}ienn » X0, jepn) = 0,
{z/}jepnn) = 0, {&}2, = 0, and r = y. o and 7 are the percentage of the
selected row and column blocks respectively.

2: for epoch = 1,2, ..., Kinge do

3 [x,2,g]=BSGD(x,1,a,7,2,8)
4: end for

9 Xsolution = X

Algorithm 4.8 BSGD-KatyushaX?®

I X = Xgem, = X = 0. f is the frequency of applying a momentum step. 7 € (0,0.5) is

a constant.
2: X0=x!=x!
3: for k=1,2,..., Ko do
A L
5 Xpem = xFH
6: fort=1,2,---,fdo
7 [xtem,z,g]:BSGDlep(Xtem,u,a,'y,z,g)
8: end for
9: )EIH_I = Xtem
10: end for
11 Xsolution = iKmaz—i_l

Similar to SVRG with KatyushaX?®, when 7 = 0.5, the BSGD-KatyushaX? is the same
as BSGD as x¥ = x**1. As a result, in simulations 7 is tuned under 0.5. The BSGD-
KatyushaX?® and BSGD-IM-KatyushaX?® are applied in the above 2D simulation case
with different f and 7, as shown in Fig.4.11. In the figure, the constant step lengths in
BSGD(-IM) are well tuned to ensure the fastest reconstruction speed, which are denoted
by green lines. BSGD(-IM) with KatyushaX® is presented by three different colors to
denote different acceleration frequencies. Simulations show that with a 7 < 0.5 and a
f = 2M, the BSGD-KatyushaX? is able to accelerate the BSGD and the BSGD-IM-
KatyushaX? is able to accelerate the BSGD-IM. The 2M is experimentally showed to
be an effective threshold value above which the KatyushaX® begin to accelerate original
BSGD(-IM).

4.9 Conclusions

BSGD can be viewed as an improvement of CSGD. It accumulates the previous sub-
gradients, thus making the error variance of the estimated gradient decrease along with
iterations. It has a faster reconstruction speed than CSGD, but the total storage amount
of all variables has increased and the communication scheme is more complicated as well.

It requires 2 inner-loops to update r and x separately. This communication is the same
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Figure 4.11: The comparisions of BSGD(-IM) with their KatyushaX?® acceler-
ation trick. The first row is BSGD group and the second row is BSGD-IM
group. BSGD(-IM) are denoted by green lines whilst the other three colours
are accelerated references.

as the other SGD-type methods such as SAG and SVRG. However, BSGD does not
have to iterate over all blocks of x each time since it is able to estimate a high accuracy
solution even when « < 1. It thus provides flexible sampling of sub-matrix A{ . In this
chapter, the sampling method is the same as that in CSGD. The data communication is
minimized by setting o = ﬁ and adjusting v according to the number of actual parallel
computation nodes. This sampling method enables x blocks to be updated within the
parallel computation nodes. Simulation results have shown that under noise free case,

the BSGD can approach to the true solution. This is mainly reflected in the results
shown from Fig.4.1 to Fig.4.3.

The importance sampling is also applicable to BSGD and simulations have verified that
BSGD-IM has the fastest reconstruction speed compared with other existing SIRT-type
methods including mini-batch SGD, SAG, SVRG. An automatic parameter tuning strat-
egy is also proposed to accelerate the case when the initial step-length is set improperly
small or large. In addition, KatyushaX?® acceleration is applied to BSGD. Instead of ap-
plying a momentum step after every single stochastic iteration, the BSGD-KatyushaX?®
method applies a momentum acceleration with an update frequency f. Simulations show
that when f > 2M, the BSGD-KatyushaX?® and BSGD-IM-KatyushaX?® effectively ac-
celerate the BSGD and BSGD-IM algorithms, even when they are well tuned to the

fastest reconstruction speeds.
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The open area of this chapter is also the convergence property of BSGD. Similar to
CSGD, the main research interest of BSGD focuses on the reconstruction speed of BSGD
under different parameter settings and how to further accelerate the speed. As a result,
the convergence analysis of BSGD is not fully illustrated by simulations. In this chapter,
SNR trends, which can reach around 120 dB in the noise free model and single-precision
floating-point format, is believed to be able to show that the BSGD is able to closely
approach to the true solution. Besides, the DS trends shown in Fig.4.7, Fig.4.9 and
Fig.4.10, which directly reflect the distance of the reconstructed image vector to the
least square solution, shows that the BSGD approaches to the least square solution
much closer than CSGD and achieves the same level with SAG and SVRG. As a result,
the conjecture is that the BSGD converges on expectation to the least square solution.
This conjecture is not fully proved. In fact, for both CSGD and BSGD, only the SNR
trend at the initial stage is paid attention. This is because that the early-stopping
strategy is adopted to avoid the semi-convergence property, which is not presented in
this thesis because of the model is not severely ill-posed and the noise is not severe. The
initial increasing SNR trend is also related to the decrease of the data fidelity, which
hints that both CSGD and BSGD can be possible to be incorporated in the proximal

method system. This will be discussed in the next chapter.






Chapter 5
Adding TV regularisation

In Chapter 3 and Chapter 4, two parallel algorithms have been proposed and compared
with each other as well as with other SIRT-type methods. The algorithms empirically
converged to least squares or weighted least squares solutions, which are only good
estimates if enough data is available and if the system matrix is well conditioned. As
the CT reconstruction problem is typically very ill-conditioned, this chapter shows how
the efficient computational method of the previous sections can be adapted to include
explicit regularisation. This chapter uses the TV regularisation term as an example

regulariser.

To be more specific, This chapter discusses the case in which we have fewer measurements
than unknowns, especially when we have few, but equally spaced projections covering
a full scan circle. Under this case the linear system is severely ill-posed. As a result, a
regularization terms is needed. As discussed in section 2.3, Tikhonov regularization and
TV regularization is two popular regularizations. According to the difference discussed
in section 2.3, TV regularization is more suitable for the case when the projection views
are sparse or limited. As a result, in this chapter the regularization term is constrained

as TV regularization.

We evaluate the reconstruction quality provided by BSGD/CSGD combined with TV
denoising (i.e. BSGD/CSGD-TV) to approximately optimize the objective function con-
taining TV regularizations. The combination is inspired by the proximal methods like
ISTA and FISTA. In the FISTA, for example, solving the TV constrained objective
function Eq.2.44 includes two steps: the first step is to reduce the data fidelity (i.e.
reducing ||y — AxXyec||?), followed by the second step, a TV de-noising procedure (Beck
and Teboulle, 2009b). Many literature have revealed that in the fist step, not only the
GD can be used to reduce the data fidelity, many SGD-type algorithms can also be
used to substitute GD to reduce the iteration computation overhead. Those stochastic
algorithms include SVRG, SGD and even delayed SGD where the stochastic gradient

calculated by a row block of y is further blurred by an extra noise vector (Schmidt

107
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et al., 2011; Beck and Teboulle, 2009b,a; Nitanda, 2014). Consider the fact that sim-
ulations have verified that the CSGD/BSGD can reduce the data-fidelity just like the
other mature stochastic methods, the combination of TV denoising and CSGD/BSGD
should also be feasible to approximately optimize the objective function Eq.2.44. Here
the “approximately” hints that the CSGD-TV and BSGD-TV may not be able to min-
imise the TV-constrained objective function. However, simulations will show that the

reconstructed result will have minor difference with result obtained from FISTA.

Generally speaking, CSGD/BSGD is used to reduce the data fidelity as the first step,

then a TV de-noising procedure is performed. The algorithm is shown in Algo.5.1, where

Algorithm 5.1 BSGD/CSGD-TV

1: Initialization: Determine the maximum allowed epoch number K,,,,. Partition row
and column indices into sets {I;}icpi,a and {Jj}jen, Ny » {X; bjep,ny = 0, 8 = 0,
{#/}jen,ny = 0, {&'}icpm) = 0, and r = y. « and 7 are the percentage of the
selected row and column blocks respectively.

2: for epoch = 1,2, -+, Kjpge do

3: for t=1,2,---,f do

4: [x,2,g]=BSGD(x,11,0.,7,2,8)

5: or

6: [x,2,r]=CSGDP(x,11,00,7,2,r)

7. end for

8 x = argminy ||u— x||? + 2uATV (u)
9: end for
10: Xsolution = X

BSGD'P has been defined in Algo.4.7. CSGD'? has a similar definition, performing
lines 3-15 in Algo.3.3. According to the discussions in Fig.4.5 and Fig.4.6, in a master-
servant parallel network, all variables (x,r,g,---) are stored in the master node whilst
the parallel computation nodes do not have full access to them. As a result, the TV
de-noising procedure (line 8 in Algo.5.1), which is performed on all of x, is initially
performed in the master node as discussed in section 5.1. Simulations show the effec-
tiveness of BSGD/CSGD-TV by comparing the SNR trend of x and the reconstruction
results with other algorithms. Since the TV norm is a sum of lo norms of the pixel
gradients, it has the potential to be parallized over the computation nodes. As a result,
in section 5.2, the TV de-noising procedure is moved from the master node to parallel
computation nodes to further parallelize the BSGD/CSGD-TV. To reduce the commu-
nication cost between master node and computation nodes, the TV de-noising is applied
on partial image blocks x; instead of the whole set {x, };V: 1- Simulations prove the
effectiveness of such combinations of BSGD/CSGD and TV regularizations, suggesting
that BSGD/CSGD-TV have a parallel computation scheme with more flexibility and

less communication overhead than other SIRT-type algorithms.
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5.1 TV de-noising on the whole of x

In this section, CSGD/BSGD-TV are compared with the following popular methods:
GD-TV(ISTA), Fast Iterative Shrinkage-Thresholding Algorithm(FISTA) (Beck and
Teboulle, 2009b), SVRG-TV,SAG-TV. To compare reconstruction speeds, it is impor-
tant to unify the frequency of applying TV de-noising. For example, assume that y,x
space are divided into M, N blocks for all methods. ISTA/FISTA then performs a TV
de-noising step after 2M N matrix-vector multiplications while SAG and SVRG, which
generally calculate a stochastic gradient using a row block per iteration, perform the
TV de-noising step after 2N matrix-vector multiplications. In this case, it is not appro-
priate to compare each other’s reconstruction speed using “the usage of A“I’ ” due to the
different number of TV de-noising steps used. To ensure the “usage of AIJ ” measure is
still proportional to computing time, in this section, the application frequency of TV
de-noising is unified: TV de-noising is performed only after performing 2M N matrix-
vector multiplications. As a result, f in CSGD-TV is (%1 and in BSGD-TV is [a%ﬂ
Besides, the iteration number within TV de-noising procedure is also unified as 20 to

unify the computation amount.

An ASTRA-generated 2D scanning geometry with few projections is adopted. The
scanning geometry is shown in Table.5.1, the default pixel size for image and CCD size

for detector are both 1. The definitions of geometry parameters are mentioned in Fig.3.5.

Table 5.1: 2D scanning geometry for few-views projections

K Detector size oP OD
256 550 300 300

Projection view gap Projection view number Noise variance SNR of y

10 36 1 31.0dB

Using this geometry, the simulations results are shown in Fig.5.1. In the figure, the
step-length p and the TV regularization parameter A are carefully selected from a wide
range to ensure the best performance (i.e. the highest SNR limit) of all algorithms.
Especially for A, it is selected from a wide range [0.1, 1, 10, 50, 100]. It can be seen that
BSGD/CSGD-TV can both reconstruct the image into a high accuracy solution, despite
that the final solution is different from each other, which means that they converge
to different locations. However, these solutions’ locations are near to the location of
the actual image vector. BSGD-TV shows the fastest reconstruction speed among all
candidate methods. CSGD-TV is fast at the initial stage, while the final location of
iterated x stays a bit far from the location of X4.,e, especially when compared with
BSGD-TV and FISTA.
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Figure 5.1: SNR trends for different methods to reconstruct the x,... For
CSGD/BSGD, o = #&,v = 1%.

To prove the effectiveness of CSGD/BSGD-TV, the reconstruction results after different
iterations are shown in Fig.5.2. It can be seen that the initial reconstructed images ob-
tained from CSGD/BSGD-TV inevitably exist artefacts around the image block margins,
but these artefacts gradually disappear as iterations go on. The final images provided by
CSGD/BSGD-TV do not have significant difference from the other existing first-order
methods but enjoys a reduced communication overhead in the reduction of data fidelity,

especially when p is smaller than image block number N, as discussed in Chapter 4.
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Usage of A 10000 20000 40000 100000

SNR=6.0dB SNR=7.1dB

SNR=7.8dB

SNR=7.6dB SNR=7.8dB

SVRG-TV
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SAG-TV

SNR=17.8dB SNR=19.8dB

CSGD-TV

SNR=11.9dB SNR=16.4dB SNR=20.8dB

BSGD-TV

Figure 5.2: Reconstruction results after different projection times of different

methods.

5.2 TV de-noising on parts of x;

In the above section, the TV constraints are applied on the whole of x. This process

can be viewed as performed by the master node since parallel nodes do not have full

access to x. In this section, the TV constraints are moved to parallel computation

nodes and are applied on x; separately. There are three reasons why this research is

of interest here: 1) When x is large, it is possible that x is stored in a distributed way

and thus it is separated into different files. As a result, even the master node cannot

have easy access to the whole of x. 2) The master node may lack calculation ability

and only has storage ability. For example, the master node is one or several hard discs
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and the computation nodes are several GPU/CPUs. In this case, the hard discs have
to transport the whole of x to one node when it needs to be de-noised, which increases
the communication overhead. 3) The computation complexity of TV de-noising methods
increases rapidly when the size of image increases. Applying TV de-noising on the whole
of x, due to the lack of parallel computation ability, can be much slower than separately
and simultaneously de-noise {x, }évzl To verify this assumption, the TV de-noising
algorithm is applied on different size of images and the time spent on each case is shown
in Fig.5.3.

30 2 5000 5000
25
15 4000 4000
N
20 X
@ o § 3000 3000 o,
<15 1 % E L
= S ¥ 2000 2000 X
10 g =
{105 =
5 1000 1000
0 0 0 0
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Image size (K) on one dimension Image size (K) on one dimension

Figure 5.3: The iteration number of TV de-noising is predetermined as 20.
The image size K is [64, 128,256,512, 1024, 2048, 4096]. (a) shows that the time
spent on TV de-noising (T(K)) for different image sizes K. (b) shows that the
increase speed of T'(K) is almost the same with that of the image size. This
suggests that if x is divided into N sub-blocks and are de-noised among N
parallel nodes, the total time spent on TV de-noising can be N times shorter
than non-splitting case if the communication cost is ignored.

One simple method to parallelize the TV part and to reduce the computation cost is to

approximate the TV term as a sum over x space, i.e.
N
TV(x)~ Y TV(xy). (5.1)
j=1

This approximation enables the block ADMM, which is mentioned in Chapter 3, to
be a candidate parallel method to solve the approximated TV-constrained optimization
problem:

M N
1 2
arg min 5 E lyr, — Arx||*+A g TV (xy,),

i=1 j=1

(5.2)

) g(x)
s.t.y = Ax,
where f(y) and g(x) are both block separable functions, as mentioned in Eq.2.57. De-
tailed iteration methods have been discussed in session 2.4 and thus only simulation

results are presented in this section. Block ADMM-TV is directly compared with CSGD-
TV as proposed in Algo.5.1. To satisfy the constraint in Eq.5.2, o in Table 5.1 is currently
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set as 0. The parameter choice for block ADMM-TYV is carefully selected as discussed
in section3.2.2.1 to ensure the best reconstruction speed. The reconstruction speed of
block ADMM-TV and CSGD-TV is shown in Fig.5.4. It can be seen that these two
methods have similar initial reconstruction speeds. Although the reconstruction speeds
of CSGD-TV becomes slow as iteration goes on, it uses significantly fewer matrix-vector
multiplications to achieve the predefined SNR.

SNR
25 . . SNR - - 25

20t 20 o

15§ = ] 15
‘ —+Block ADMM-TV

2 2
© —e-CSGD-TV
10+ 10 Mﬁ 1
2 ——Block ADMM-TV
——CSGD-TV
5 /

K/

0 ‘ ‘ : : ‘ o
0 200 400 600 800 1000 1200 0 2 4 6 8
epochs Usage of sub matrix x10°

(a) (b)

Figure 5.4: TV (z) is approximated as Zjvzl TV (x,,). Reconstruction speed
between CSGD-TV and block ADMM-TV clearly shows that the CSGD-TV
are much faster than ADMM-TV.

The images reconstructed by the two methods are compared and they show different

reconstruction quality, as shown in Fig.5.5.
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10dB,block ADMM-TV 10dB,CSGD

20dB,block ADMM-TV 20dB,CSGD

(c) (d)

Figure 5.5: Reconstructed images from ADMM-TV and CSGD-TV. The
ADMM-TYV exists more severe inner artifacts than CSGD-TV, suggesting that

directly approximate TV (x) as a sum-up over X space is not an appropriate
choice for ADMM-TV.

It can be seen that the CSGD-TV method presents visually smoother images whilst se-
vere inner noise and artefacts at inner margins exist in block ADMM images. As a result,
in CT reconstruction, dividing the TV term according to the partition on x space and
then applying the block ADMM method is not appropriate. This is because that strictly
speaking, the TV constraint defined in Eq.2.43, is not separable since the calculation
always ignores the overlapping margin (z and y in Eq.2.43 often begin with 2 rather
than 1). If the image is divided into many sub-images, the real TV norm of the original
intact image is not a simple accumulation of TV norms of each sub-image blocks i.e.
TV (x) # Z;Vﬂ TV (xy;). If TV(xy;) is minimised separately, the border generated by
x; cannot be effectively de-noised, which causes artefacts at the margins among neigh-

bouring sub-image blocks, leading to arg miny |7V (x)|| # Ué-Vzl arg miny 1TV (xx5;)|-
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A phantom image is used to verify the inaccuracy of minimizing TV norms in blocks.
The phantom image is firstly de-noised without splitting (i.e. minimizing TV (x)) as a

“reference solution”, as shown in Fig.5.6. The phantom image is then divided into N

0.6

0.4

0.2

0

Figure 5.6: The TV de-noising result of intact phantom image, which is used as
a reference solution when x is divided into N blocks and the TV de-noising is
performed on each x;. The number of iterations in the TV de-noising process
is predefined as 20.

parts, as illustrated in Fig.5.7. Those divided sub-images are de-noised in parallel and

Figure 5.7: Partition the image into N = 4 blocks. If each block get de-noised
separately, then the inner margins will be ignored due to the definitions of TV
norm, thus affecting the approximation of the TV de-noising on the whole image.
“inner margins” here refer to the boundaries between neighbouring sub-image
blocks. For example, the inner margins of image block x;, are the right and
bottom margins.

the results are assembled. The comparisons of the assembled solution and reference so-
lution are shown in Fig.5.8. Simulation results clearly show that 7'V (x) term cannot be
directly divided in x space, which explains why the block ADMM-TYV performs poorly
in this case.

To overcome the influence brought by inner margins, when de-noising TV (x), x; need

to “borrow” extra pixels, with width w pixels, from its neighbouring image blocks
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Figure 5.8: TV de-noising is applied on separate sub-images and the iteration
number is also 20, which is the same as Fig.5.6. (a) is the assembled TV de-
noising result when halving each image dimension(N = 4). (b) is the difference
between assembled solution and reference solution shown as Fig.5.6. It clearly
shows that at the “inner margins” which are generated by sub-image blocks,
the difference are significant. (c) and (d) are repeated simulation results when
dividing each image dimension into 4 parts (N = 16). The differences still
mainly exist around the inner margins.
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o
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to wrap its “inner margins”. For xj in Fig.5.7, its neighbouring image blocks are
{xJ;}j=234. The borrowing process is shown in Fig.5.9. When w is 1,10,15,20, the

differences between reference solution and assembled solution are shown in Fig.5.10.
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Figure 5.9: (a) xj, borrows some extra pixels, with width w pixels, from its
neighbouring image blocks. (b) The new image block is named as X;,. When
TV de-noising procedure is applied after date fidelity reduction, the target image
block should be xj, instead of x,. After the de-noising process, the borrowed
pixels should be deleted. The above procedure is applied in parallel for all
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Figure 5.10: The first row shows that when N is 4, the differences between
assembled solution and reference solution gradually disappear when w increases
to 20. The second row is the repeated simulation when N is 16. As a result, for
different partitions, setting w = 20 makes the separate TV de-noising have the
same results with non-partition case.
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(e) (f)

To further verify the influence of w on the accuracy of separate TV de-noising, different

image sizes and division methods are compared. The relative error RE here is defined

||Xsepe'rate*xwhole H
Hloglc(xseperate _xwhole)oxwhole

noising on separate {x J; } —, and Xypele is one obtained by applying TV on x without

as

T where Xseperate 15 the result obtained by applying TV de-

division. The logic(v) function sets all non-zero elements in v as 1. The “o” is the

Hadamard product operation. The simulation results are shown in Table 5.2. It can be
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Table 5.2: RE changing trend under different image size K and partition
number N

K N w=1 w=10 w=15  w=20
256 4 1.90E-02 4.80E-05 2.40E-09 0
256 16 8.30E-02 9.20E-05 7.00E-09 0
512 4 6.30E-03 2.30E-05 1.30E-09 0
512 16 7.30E-02 6.40E-05 4.10E-09 0

0
0

1024 4 4.30E-03 1.70E-05 1.80E-09
1024 16 5.10E-02 4.00E-05 2.60E-09

seen that when w = 20, the separate TV de-noising is the same as the whole TV de-
noising regardless the image size and partition methods. As a result, the TV de-noising
process can be moved to the parallel computation nodes and the algorithm is shown
in Algo.5.2. f in the Algo.5.2 should be the same as in Algo.5.1. This means that for

Algorithm 5.2 BSGD/CSGD-TV, applying TV on {x,, };V:I

1: Initialization: Determine the maximum allowed epoch number K,,,,. Partition row
and column indices into sets {Ii}icp a and {Jj}jenny 5 {xs;}tjenn) = 0.8 = 0,
{#/}jenn) = 0, {&'}icp,m) = 0, and r = y. « and 7 are the percentage of the
selected row and column blocks respectively.

2: for epoch =1,2,--+ | K;pge do

3: for t=1,2,---.,f do

4: [x,2,g]=BSCD (x,p,,7,2,)

5: or

6: [x,2,r]=CSCD"(x,pu,0,7,2,r)

7. end for

8  for j=1,2,--- N in parallel do

9: “Wrap” xJ; to 5<Jj with width w = 20
10: X, = argminy [[u — %z, ||> + 2uATV (u)
11: “Dewrap” X, to x; with width w = 20

12: end for
13: end for
14: Xgolution = X

each epoch, the computation amount includes: 2M N matrix-vector multiplications +

N partial TV de-noising operations.

Assume that p is smaller than N and can divide N without remainder, it is clear that
each parallel node needs to communicate with the master node % = % times. Thus it is
natural to consider only performing TV de-noising on p image blocks instead of on all
blocks to reduce the communication times between computation nodes and the master
node. However, if f remained unchanged, this means that each iteration contains: 2M N
matrix-vector multiplications 4+ N partial TV de-noising operations, thus making the

“the usage of A{ ” not an appropriate time reference in this section. As a result, when
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the TV de-noising is only performed on v/N image blocks, then the original f should also
be ~ times smaller than before. The algorithm is shown in Algo.5.3, where f for CSGD

Algorithm 5.3 BSGD/CSGD-TV, applying TV on N {x;, };cn,n

1: Initialization: Determine the maximum allowed epoch number K,,,,. Partition row
and column indices into sets {Ii}icnian and {Jj}jen Ny 5 {xs;}bjepny = 0, 8 = 0,
{z’}jenny) = 0, {&'}icp,m) = 0, and r = y. « and 7 are the percentage of the
selected row and column blocks respectively.

2: for epoch = 1,2, -+, Kjnge do

3:  for t=1,2,--- f do

4 [x,2,g]=BSGD(x,11,0.,7,2,g)

5: or

6: [x,2,r]=CSGDP(x,11,0,7,2,r)

7 end for

8 Computation nodes again request latest x;; from the master node in parallel
9:  for the selected 7N x; in parallel do

10: “Wrap” xJ; to 5(]]. with width w = 20
11: X, = argminy [[u — %z, ||> + 2uATV (u)
12: “Dewrap” X, to x;; with width w = 20
13:  end for

14: end for

15: Xgolution = X

is decreased from [%1 to [:%] and for BSGD is decreased from [a%ﬂ to [1]. The SNR

[0
trend and reconstructed images when using Algo.5.3 are shown in Fig.5.11 and Fig.5.12.
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Figure 5.11: “whole” in the figure means that the TV de-noising is applied on
the whole of x, while the “partial” means that the TV de-noising is applied
on YN selected image blocks x;. The partial TV de-noising has some negative
effects on final solutions’ accuracy, especially making the final solution of CSGD-
TV have a lower solution accuracy, but in general the trend is very similar to
the original case.

Simulations have verified that Algo.5.3 can effectively reconstruct x to the same accuracy
level as Algo.5.1, but with advantages including: 1) the ability to incorporate the TV

de-noising into parallel computation nodes, and 2) no further significant communication
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Figure 5.12: The reconstructed images of BSGD/CSGD-TV (partial). The are
similar to the previous results provided by BSGD/CSGD-TV (whole), especially
after 40,000 usage of A“I].

BSGD-TV

overheads are required between master node and computation nodes. The “Wrap”
process indeed requires some extra communication overhead but since the width w only
needs to be 20 pixels for all problem sizes, thus the extra data communication can be

ignored especially when x is huge.

5.3 Conclusions

In this chapter the combinations of BSGD/CSGD and TV regularization is experimen-
tally shown to be effective. When the projection data is limited, then TV regularization
leads to better reconstruction quality. However, the introduced TV de-noising process
can be time-consuming, especially when the image size is huge. In traditional GD-
TV/FISTA, the TV de-noising process is performed after a full gradient calculation,
which requires 2M N usage of A7, whiles in the other TV-constrained optimization al-
gorithm, such as SVRG-TV, SAG-TV, the TV de-noising is performed after a stochastic
gradient calculation, which requires 2N usage of A{ . The difference in the frequency
with which TV de-noising is performed makes the “usage of A”I] ” no longer reflect the
actual wall time during reconstruction. To overcome this issue, in this chapter the fre-
quency of performing TV de-noising in all methods is unified, including SVRG-TV,SAG-
TV and the new proposed CSGD/BSGD-TV. Only after 2M N usage of Af then the
TV de-noising is performed. With this unified de-noising frequency, BSGD-TV shows
the fastest reconstruction speed, achieving a high-SNR solution within the least usages
of A{ . Apart from the speed advantage, BSGD-TV, as well as CSGD-TV, have another
advantage, which is the ability to perform TV de-noising in a parallel and stochastic way.
The TV norm, according to the definition, is a sum of Iy gradient norms. However, it
cannot address pixels located at margins. As a result, directly splitting image x into N
blocks and then performing TV de-noising on all partial image block x; does not strictly

equal to the case when performing TV de-noising on the whole of x. A “wrap” scheme
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is proposed. When performing a TV de-noising on xj, this allows x; to temporar-
ily borrow some pixels with width w from its neighbouring image blocks, thus the inner
margins of x ; are wrapped by new borrowed pixels. Similarly, when the TV de-noising is
finished, a “de-wrap” procedure is applied to remove those borrowed pixels. Simulations
have verified that when w is 20 pixels, arg miny |7V (x)|| = U;V:l arg miny ;. 1TV (x5;)|-
This property enables the TV de-noising to be performed within parallel computation
nodes, where each of them has limited access to the whole of x. When p is smaller than
N, argminy |7V (x)|| then requires the communications between the master node and
computation nodes to be larger than one time. To reduce the communication cost, the
TV de-noising procedure adopts a similar partial update strategy as BSGD/CSGD. It
does not cover all {x Jj };V: 1- Instead, it only addresses yN image blocks, where v fol-
lows the proposed selection criteria shown in Eq.3.8. Simulations have verified that this
partial update strategy, named as BSGD/CSGD-TV (partial), reconstructs the scanned
object into high-SNR solution without sacrificing speed compared with BSGD/CSGD-
TV(whole), which performs TV de-noising on the whole of x.

Whilst we have here looked at TV constraints, other regularisers could be treated in a

similar way. However, this was not explored here.






Chapter 6

Application on parallel

architectures

The previous chapters have developed two algorithms and studied their basic mathe-
matical properties, including reconstruction speed comparisons and their ability to be
combined with TV regularizations. In this chapter, the research no longer focuses on
the algorithms’ mathematical properties but instead focuses on the realistic applica-
tion of the algorithms in concrete parallel computing architectures. The two proposed
algorithms show different performance in different scenarios. This is because the two
algorithms use different communication schemes. This chapter will discuss this phe-
nomenon in detail. Furthermore, in realistic applications, an asynchronous form of

BSGD is proposed to further accelerate the reconstruction speed in certain settings.

The contributions of the chapter includes: 1) The CSGD and BSGD have been first
applied in a realistic parallel network to measure their scalability. The measurement to
reflect the reconstruction speed is changed from the “usage of A{ ” to the realistic wall
time. Using this measurement, experiments have proved that the BSGD outperforms
CSGD in terms of reconstruction speed. 2) An asynchronous BSGD is first proposed,
enabling the fastest node to perform more computations and do not have to wait for
the slowest node. This asynchronous communication has increased the communication
efficiency and experiments have verified that it can outperform original BSGD algorithm

if one node is significantly slower than the other nodes.

This chapter includes three parts. In section 6.1, the basic concepts and functions of
parallel computation and communication, including point-to-point communication and
collective communication, are introduced. Using these functions, the performances of
BSGD/CSGD using different numbers of parallel computation nodes are presented and
compared with each other in section 6.2 and 6.3. In the last section 6.4, the asynchronous
communication scheme of BSGD is studied to illustrate that the reconstruction speed

can be further increased when the parallel nodes have different computational abilities.

123
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6.1 Basic concepts in parallel applications of BSGD/C-
SGD

When applying BSGD/CSGD in a parallel network, it is required that each node com-
municates with each other node, sending data blocks such as Z]I‘,X 7 etc. This kind of
communication should follow the Message Passing Interface (MPI) standard. MPI is a
message-passing standard that works on a wide range of parallel computing architec-
tures. It provides a communication protocol for programming parallel computers and
remains the dominant model used in high-performance computing today. MPI defines
the syntax and semantics of a core of library routines that is useful to a wide range
of users writing portable message-passing programs in many programming languages
including C, C++, Fortran and Python (Barker, 2015).

In this chapter, the Python language together with the mpidpy package is used to imple-
ment different aspects of BSGD/CSGD when they are applied in a network with several
computation nodes. In recent years, Python has occupied an increasing share in the
field of numerical computing, and in the field of high-performance computing as well.
This is because Python has become more than just a separate computer programming
language, but has become a complete ecosystem composed of huge libraries and tools, as
well as numerical calculations, including Numpy, Scipy, Pandas, etc. These numerical li-
braries and tools generally encapsulate and call efficient algorithm libraries implemented
by Fortran, C, C ++, etc., so they make up for the shortcomings of Python’s perfor-
mance to a certain extent without compromising its flexibility and ease (Ceder, 2010;
Bressert, 2012). In terms of the application of Python to high-performance parallel com-
puting, there is a Python library built on top of MPI, mpidpy, which allows Python’s
data structures to be easily passed to multiple processes. Mpidpy is a very powerful
library that implements many interfaces in the MPI standard, including point-to-point
communication, collective communication, blocking / non-blocking communication, and
inter-group communication. It also has good support for Python objects such as numpy

arrays and they are very efficient to be communicated (Zaccone, 2015).

In mpidpy, some basic concepts will be used in future simulations. They are recalled
below (Zaccone, 2015):

e process

A “process” is an execution of a particular subroutine. In this thesis, one process
will control one parallel computation node to perform the FP,BP or the updates
onr, g, x. In the following, different processes are distinguished by their rank;(i =
0,1,---,p—1).

e master node
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The master node is used to store all necessary variables and send/receive data
blocks to/from computation nodes. Unless specifically stated, it does not perform
any projection operation or update on r,g,x. In this thesis’s illustrations, the

master node is presented by a rectangle.

e computation node

Computation nodes are mainly used to perform the projections. They request data
blocks from the master node and then send results back to the master node. In

this thesis’s illustrations, the computation nodes are presented by ovals.

e root node

The root node is also a computation node. It is responsible for the data collection
and distribution when the collective communications are performed. It also per-
forms the updates on r,g,x. The definition of collective communications will be
introduced below. In this thesis’s figures, the root node is labelled as a blue oval

to differentiate it from the other computation nodes (black oval).

e point-to-point communication

Sending and receiving data are the two foundational concepts in mpi4dpy. Almost
every single communication can be implemented with basic send and receive calls.
The most general command to send and receive matrix data in mpidpy is “Send()”
and “Recv()”. They are block communications, which means that both functions
will wait for each other until both of them have finished and then return back to
each process for the following code to be executed. An illustration of “Send” and

“Recv” is shown in Fig.6.1.

Wall time flow Wall time flow

2
t 7z)_ Costtime V¢ f(ty > to)

Figure 6.1: In a 2-process parallel network, ranky sends a ZJI‘ to rank;. This
process costs Vt seconds. If rankg performs the Send command at time ¢y but
rank; performs the Recv command at t1 (t1 > tg), due to the block communica-
tion definition, ranky will “wait” between ty and t; and both ranky and rank;
will finish data communication at the time t; + Vt. The “tag” in command is
used to give a special name for the transferred data to ensure the receiver to
receive the correct data.

During the block communication, the sender or receiver is not able to perform any
other actions until the corresponding message has been sent or received. Blocking
communications have a number of disadvantages. Potential computational time

is simply wasted while waiting for the call to complete the block communication.
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An alternative approach is to allow the program to continue execution while the
messages is being sent or received. This is known as non-blocking communication.
In mpidpy, non-blocking communication is achieved using the “Isend” and “Irecv”
methods. The “Isend” and “Irecv” methods initiate a send and receive operation
respectively, and then return immediately. These methods return an instance of the
“Request” class, which uniquely identifies the started operation. The completion
can then be managed by applying the “Test”, “Wait”, and “Cancel” functions to

the Request class. An illustration of non-block communication is shown in Fig.6.2.

Wall time flow

Wall time flow

Figure 6.2: In the non-block communication case, each process does not wait
for each other during the data communication. Instead, the “Isend” or “Irecv”
returns immediately with a request class “send,.,” or “recv,e,”. These requests
will be checked to see whether the data communication is accomplished in the
future using wait function.

e collective communications

Collective functions involve communication among all processes in a process group
(which means the entire process pool or a program-defined subset). A typical func-
tion is “Bceast”. It is used to broadcast data from the root node to all processing

units. An illustration of “Bcast” is shown in Fig.6.3.

Figure 6.3: The “Bcast” is only performed on the root node rankg. In this case,
the root node will send z} to all other parallel computation nodes.
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“Scatter” is another data distribution function. It differs from broadcast, in that
it does not send the same message to all processing units. Instead it splits the
message and delivers one part of it to each processing unit. An illustration showing

a matrix that is scattered to different nodes is shown in Fig.6.4.

—————

Figure 6.4: In this case, the “Scatter” function cuts the matrix into p row blocks
and send them to ranko,--- ,rank,_1 respectively.

“Gather” is a reverse function of “Scatter” function. It is used to store data from

all processing nodes on a single processing nodes. An illustration is shown in

Fig.6.5.

—————

A

Figure 6.5: The “Gather” function is a reverse of “Scatter”. Followed by Fig.6.4,
this function collects row block A from all nodes and forms a new variable

whose content is the intact A.

“Reduce” function is used to collect data or partial results from different processing
nodes and to combine them into one result by a chosen operator. Reduction can
be seen as an inverse version of broadcast and the common operator includes

“sum”,“min” and “max”. An illustration using the “sum” operator is shown in

Fig.6.6.

—————

recug; = Reduce(sendoy;, 0p = MPI.SUM, oot = 0)
1

,
recug; = Y1
i

Figure 6.6: The “Reduce” function with sum operator sums up all send,,; and

stores in a new variable recvy; in ranky.

These functions will be used in the next 2 sections to explore the scalability of two

algorithms and the asynchronous BSGD form.
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6.2 Synchronous application of BSGD/CSGD in CPU nodes

In previous BSGD or CSGD applications, each epoch uses ayM N sub-matrices in one
iteration and the number of parallel nodes (defined as p) is always assumed to be ayM N.
Each node thus only processes one sub-matrix in each iteration. In this chapter this
assumption no longer holds. This means that M, N, a,~y are pre-determined, and the
actual number of parallel nodes (p) can be smaller than ayM N and thus each node has
to process more than one sub-matrix within one epoch, making the data communication
more complicated. The speed-up under different p situations is measured. Here the

speed-up for n nodes is defined as:

wall time using 1 nodes

speed-up = (6.1)

wall time using n nodes

If o, follow Eq.3.8, and « is set to ﬁ, which means that all parallel computation
nodes always address the same row block I, then we can see that the update of r
in both BSGD/CSGD is convenient. The update can be accomplished using “Reduce”
which accumulates all Vz} (the difference between updated zz; and previous one) from all
parallel computation nodes. Furthermore, since o = ﬁ, the image block x; addressed by
different computation nodes is also different from each other. As a result, when updating
x in CSGD and g in BSGD, there is no data communication between computation
nodes and the blocks of x,g can be updated in each parallel computation node. These
properties have already generated data flow diagrams shown in Fig.4.5 and Fig.4.6. In
this chapter however, to test the parallel scalability in the most general setting, «,~y
no longer follow Eq.3.8. This means that the data communication for BSGD/CSGD is

more complex, as shown in Fig.6.7 and Fig.6.8.

To test the scalability of BSGD/CSGD, Iridis 5 computer cluster is used in this section.
Iridis 5 is a high performance computer cluster provided by University of Southampton,
with each parallel node equipped with 40 CPUs. The previous 2D system matrix A €
[R72000x4096 j5 adopted. The detailed partition and o, in this section are shown in
Table.6.1. It can be seen that the maximum number of selected blocks is 16. As a

result, the applied number of parallel nodes in Iridis 5 is set to 1, 2, 4, 8,16 respectively.

Table 6.1: Partition on A in scalability test

size of A M N
72000 x 4096 5 8

v
1

oo | 9

The mpidpy package is used here to execute the inner-node communications. The FP/BP

projections are performed in matrix-vector multiplications using Python’s numpy.dot()
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Figure 6.7: The general CSGD work flow. When the computation nodes request
data blocks from the master node or send data block back to the master node,
a for-loop with point-to-point communication or collective communication can
be used. The data blocks are chosen at a totally random manner. In this figure,
the root node (blue oval) addresses I, J; block, the second node addresses L, Jo
while the last node address I, J; data block. Each parallel nodes sends Vz} and
the updated X; to the root node. Since different I; are used among all nodes,
instead of performing a “Reduce” function, the root node performs a “Gather”
function to collect all variables and then sequentially updates relative r; with
different Vz/ and the averaged x; with different x ;.
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(a) the first time of communication (b) the second time of communication

Figure 6.8: The data block addressed by each parallel node is the same as
Fig.6.7. In BSGD, there are 2 times communication between the root and
computation nodes. In the first time of communication, the root node gathers
Vz} from all parallel nodes using “Gather” and updates relevant r;. After this
procedure the updated r;y needs to be sent back to each parallel node. This
procedure can be completed by “Scatter” function if a matrix [r7,,rp,- - .rp,]
is formed, or is accomplished by a for-loop using point-to-point communication.
The update of g,x happens in the second time of communication and is simi-
lar to the first communication. Attention that because of a more general and
random selection method on «,~y, the update of g, x only happens on the root
node. This is a difference between here and Fig.4.6.

function. To make detailed comparisons of BSGD/CSGD under different scenarios, the

percentage of projections over the whole computations is tuned to two different scales.

In the first case, the percentage of projections is tuned to be very high. This is achieved
by repeatedly generating A{ by slicing A with index set I,J. Take the BSGD as an

example, before the FP zJI‘ =

Aix 7 is performed in each node, A{ is generated by

slicing A (i.e. AJ = A[l,J] in Python code). When it comes to BP g = (A{)Try,
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the slicing procedure is repeated again. Although this repeated slicing seems to be
redundant because A{ is already stored in parallel nodes after FP and thus can be
directly used for the following BP, the repeated generation of A{ reflects the actual
process happening in mainstream CT toolboxes such as TIGRE and ASTRA because
these toolboxes only output results of FP/BP whilst the generated A{ will be deleted
internally. In the second case, the percentage of projections is tuned down. This time A{
is still repeatedly generated but the sliced A}] is pre-calculated and stored in a Python
list object Ays;. When FP/BP requires a A}], they will directly sample it from Ay,
which makes the generating of A{ much faster than slicing methods and thus reduces
the percentage of projections over the total reconstruction time. To test the speed-up,
different p are set and the code of BSGD/CSGD is shown in Algo.6.1 and Algo.6.2. For
simplicity of coding, the master node and the root computation node are the same node.

The speed-up comparisons of CSGD/BSGD and the percentage of each procedure over

Algorithm 6.1 Apply CSGD algorithm in Iridis 5 network

1: Initialization: Determine the maximum allowed epoch number K,,,,. Partition
row and column indices into sets {Ii}iciar and {Jj}tjenny » {xs;}jepn = 0,
{zJ}je[l,N} = 0and r = y. « and 7 is the percentage of the selected row and
column blocks respectively. Determine the number of parallel nodes p.

2: for k=1,2,--- | K4 do

3:  Random select aM row blocks from {l;};cni,a and yN column blocks from

{Ji}jep,n)- Record all 7 in iy, and all j in jpos

4: forl:1,2,---,%do

5: The root node scatters p {Z‘}'i}ieibomvjejbox{rIi}iEiboac7{ij}jejbo:c to p parallel
nodes

6: Delete corresponding 4, j from ipos, jbox

e All parallel nodes compute zj}i, Vzi,fcf]j and send them back to the root node

8: end for

9:  The root node updates all gathered zJI'i7 updates x;; by averaging corresponding

gathered f(f,j, updates ry; by summing up all gathered VZ]IZ"
10: end for

T
11 Xsolution = [XJ17 -~-7XJN]

the whole wall time is shown in Fig.6.9. In the figure, “FP+BP” denotes time spent
on two ingredients. One is the time spent on matrix-vector multiplication using A{
and (A{ )T, the other is that spent on calculating Vzi_ and ng,j. “Communication”
denotes the time spent on the root node gathering szli and ng,j from other parallel
nodes and scattering variables blocks (e.g. xj,, ry;, etc.) back to them. “Update”
denotes the time spent on the root node to update r,x and g in BSGD. While the root
node performing update procedure, the other parallel nodes simply keep idle status.
The “Other” denotes time spent on two ingredients. The first is time on the random
selection process to determine which row/column blocks will be selected in the next
epoch. The second is time spent on assembling a new matrix for the latter scatter

process. For example, if the root node scatters x 7, to process 0 and x, to process 1. It
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Algorithm 6.2 Apply BSGD algorithm in Iridis 5 network

1: Initialization: Determine the maximum allowed epoch number K,,,,. Partition
row and column indices into sets {I;}ician and {Ji}tjenn » {xs;}jepn = 0,
{2/} jep,n) = 0, {&'}icp,a = 0 and r = y. a and v is the percentage of the selected
row and column blocks respectively. Determine the number of parallel nodes p.

2: for k=1,2,- -, Kjnee do

3:  Random select aM row blocks from {/;};ci ) and yN column blocks from

{Ji}jen,ny- Record all i in iy, and all j in jpor

4: forlzl,Q,---,%do

5: The root node scatters p {Z‘;i}ieiboz,jejboz7 {%J;}j€jpon to p parallel nodes

6: Delete corresponding 4, j from ipoz, jbox

7 All parallel nodes compute zj]i7 szli and send them back to root node

8: end for .

9 T he root node updates all gathered z/, updates r; by summing up all gathered

Vz].

10: fori=1,2,---, 92 do

11: The root node scatters p {gsz_ }ieiboxlyjejbox’ {r1, }ici,,, to p parallel nodes

12: All parallel nodes compute g% , Vg’ and send them back to root node
J J

13:  end for

14:  The root node updates all gathered gf,j, updates g; by summing up all gathered
vgij and updates x; using updated g.

15: end for

T
16: Xgolution = [XJ17 ceey XJN]

is necessary to build Xscqtter = [X,,X.7,]. This two procedures are both executed on the
root node. Similarly, when the root node is performing codes, the other parallel nodes
simply keep idle status. Fig.6.9 illustrates two algorithms’ scalability where (a), (b)
are the case when A is repeatedly sliced in Python environment and (c), (d) are the
case when A is previously sliced and the sub-matrices A{ are stored in a list object in
Python environment. Under both situations, the projection operation in CSGD takes
higher a percentage over the whole reconstruction time than in BSGD. This is because
CSGD performs 3 matrix-vector multiplications for each Af whilst the BSGD performs
2. The CSGD shows better scalability than BSGD. This is because the CSGD enjoys
a simpler communication scheme than BSGD. It avoids the communication on g space,
whilst the BSGD, as well as the other first order algorithms including SIRT, SAG, etc.,
has to communicate gf, among computation nodes, thus increasing the communication
overhead and reducing the percentage of projection part. Repeatedly slicing A before
each projection makes the projection process more time-consuming than pre-slicing A
and thus the projection procedure takes more share among the total reconstruction.
This leads to a higher scalability result than pre-slicing A in both CSGD and BSGD.
The figure also shows that in both algorithms, the “FP+BP” and “Communication”
takes the majority of the percentage of the whole reconstruction period. Despite that
the assembling matrix part in “Other” seems to be time-consuming, in 2D simulations,

it actually takes a minimal percentage.
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Figure 6.9: The x-axil is the parallel node number used in simulations. y-
axil is the spending time percentage of each procedure takes or the speed up
measurement. CSGD has better scalability than BSGD and is more suitable for
parallel networks because of the simpler communication scheme.

Although CSGD has better scalability, this does not mean that CSGD can reconstruct
the image to a predefined precision by using less wall time than BSGD. To compare the
actual speed between the two algorithms, the above partitioning method and the range
of p are again used here. This time «, v are changed according to different p by following
Eq.3.8. In each case the parameters were well tuned to ensure the best performance.
Reconstruction speeds are shown in Fig.6.10. In the figure, different colours stand for
different p situations. Dashed lines represent BSGD and dotted lines represent CSGD.
Fig.6.10(a) shows that BSGD is of faster reconstruction speed based on the usage of A7.
Fig.6.10(b) shows that CSGD is faster than BSGD in terms of the reconstruction speed
over epochs, especially when the number of parallel nodes is smaller than 4. However,
each iteration in CSGD contains 3 times of the usage of A{ whilst only 2 matrix-vector
multiplications are included in each BSGD’s iteration. It means that performing one
epoch in CSGD is more time-consuming than BSGD. Fig.6.10(c) and (d) show that
regardless of the slicing method on A, the BSGD shows a faster reconstruction speed
over the actual wall time, despite the fact that CSGD shows better scalability than
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BSGD due to smaller communication overhead.
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Figure 6.10: Reconstruction speed comparisons of BSGD and CSGD in realistic
parallel network.

6.3 Synchronous application of BSGD in GPU nodes

BSGD has shown better performance in terms of reconstruction speed and as a result,
it is applied in a realistic Iridis node which is equipped with four GTX 1080Ti GPUs
to reconstruct a 3D cone beam scanning data. In this section, the data communication
in BSGD is the same as Algo.6.2. The only difference is that the FP and BP process
no longer use CPU to calculate matrix-vector multiplications but use GPU-accelerated
function provided in Python form TIGRE toolbox. Previous 2D simulations show that
assembling a new matrix before scattering data blocks takes minimal percentage among
the whole time. However, this phenomena does not hold in large-scale 3D cases. To verify
this, BSGD is applied in one and two GPUs within one Iridis node respectively to com-
pare the speed-up factor under two different data communication schemes. One scheme
is to use collective communications including “scatter” and “gather” to send and collect
different data blocks to different process. This requires to assemble a new matrix before

the communication. The other method is to use point-to-point communications with a
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“for-loop” to connect each separate node with the root node. To ensure the computation
resources are fair, each process is assigned with 10 CPUs and 1 GPU. The image is set as
a 5123 head phantom and the detector is a 10242 square panel. The size of voxel in 3D
volume and pixel in the detector are both 1mm. OP and OD in Fig.3.5 is 1500mm and
1000mm respectively. The detector scans the image for a contact circle and the number
of projection views 6 is set from 88 to 700. (When the number of § becomes even larger,
the python function Gather and Scatter cannot work due the transferred data size exceed
the buffer size.) The partition is determined: M =1, N = 4,a =y = 1, and the BSGD
is executed for 100 epochs for both communication schemes. The speed-up comparisons

under two communication schemes are shown in Fig.6.11. In the Fig.6.11, the projec-
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Figure 6.11: (a) and (b) are the time spent on GPU calculations under different
numbers of §. (c¢) and (d) are theoretical and realistic speed-up comparisons.

tion ratio is the ration of spent time on “FP+BP” when using different number of GPUs
(i.e. blue lines divided by red lines in Fig.6.11(a) and Fig.6.11(b)). The actual mea-
sured speed-up is the actual ratio of wall time when using different numbers of GPUs.
The theoretic speed-up is calculated as if the communication is finished instantly ( i.e.

s total time when using 1 GPU .
it is calculated as total time when using 2 GPUs - total communication time)’ Flg611(a)_(b) have

demonstrated that when using two GPUs simultaneously, the time spent on projection

part is reduced compared with using one GPU case. However, the time is not exactly
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halved, as shown in “projection ratio” in Fig.6.11(c)-(d). This is because the compu-
tation speed of TIGRE in Python environment currently is unstable. Fig.6.11(c)-(d)
have shown that there is a gap between projection ratio and theoretic speed-up. This is
because the existing “Update” and “Other” procedure mentioned above. It can be seen
that this gap in collective situation is larger that than that in point-to-point situation,
which suggests that the share of “Other” in collective communication is larger than

point-to-point communication.

The time spent on different parts is shown in Fig.6.12. The “Sum of non parallel part” is
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Figure 6.12: Time spent on each procedure in BSGD when using two different
communication schemes Point-to-point communication scheme is more suitable
than collective communication scheme in large 3D dataset because of a smaller
“Other” part.

the sum of time on “Communication”, “Update” and “Other” during 100 epochs. When
using one GPU, the code is completely sequential and projections takes the majority
part of total spent wall time. When using two GPUs, since two GPUs perform the
projection simultaneously, the total spent time on this part is significantly reduced
compared with one GPU case. However, the communication cost increases and thus
increases the ‘Sum of non parallel part”. The “Other” part in collective communication
type is significantly higher than that in point-to-point type. According to the definition

of “Other” in section 6.2, it means that the assembling a new matrix for collective
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communication in 3D cone beam case is time-consuming and thus the point-to-point
communication is more suitable in larger-scale 3D case. As a result, in the following

simulations the point-to-point communication scheme is a default setting.

When the BSGD is scaled to 4 GPU situation, each process is also assigned to 10
CPUs and 1 GPU. In this simulations, the physical cubic head phantom is fixed as
256 x 256 x 256mm?> and the detector physical size is 512 x 512mm?. OP and OD in
Fig.3.5 is 1500mm and 1000mm respectively. A parameter S is defined, and the scanned
phantom contains 52 voxels and the square detector contains S? pixels. The point source
and detector rotate around the volume horizontally for a full circle through S projection
views. To simplify the comparison under different problem sizes, M = 1,N = 4,a =
v = 1. Under different sizes S, the speed-up, time spent on each part and their separate
percentage in the reconstruction time is shown in Fig.6.13, Fig.6.14 and Fig.6.15. In all
scenarios BSGD is run for 100 epochs. Fig.6.13 experimentally shows that for a single
node with several GPUs, the speed up is about 1.73 when 2 GPU are used and 2.94 when
4 GPU are used. When the size increases, especially from S =128 to 800, the speed-up
factor remains stable. The reason why the speed-up is various is the computation speed
of TIGRE is unstable in Python environment. Besides, the data communication speed
is also experimentally found to be unstable. Fig.6.14 experimentally shows the time
spent on each procedure in BSGD under different numbers of GPUs. Fig.6.14(c) shows
that the communication cost increases faster along with S than BP. This is because
the TIGRE toolbox uses a simplified computation method to approximate the matrix-
vector multiplication in BP, thus the computation speed of BP is accelerated. A detailed
discussion about the approximations used in TIGRE to efficiently compute BP is beyond
the scope of this thesis. From the multi-CPU and hybrid CPU-GPU simulation results,
it is however worth mentioning that the approximations used in TIGRE do not seem
to affect the reconstruction quality achieved with BSGD. We are here interested in the
use of the method for large scale problems where the cost of matrix vector products
dominates and thus dominates how the algorithm scales. In this setting, the other first-
order algorithms will also have the same communication cost as BSGD and they thus
scale similarly to BSGD. Fig.6.15 further demonstrates that when 4 GPUs are used,
the communication overhead takes larger share than 2 GPU case, taking nearly 40%
among the total wall time. The fast increasing communication overhead suggests that
the parallel scalability of BSGD when using TIGRE toolbox is limited. However, it is
worth mentioning that this drawback is common for all other first-order algorithms since

they all have similar communication schemes.

6.4 A flexible parallel application of BSGD

In this section, BSGD is further researched and is applied in a more flexible parallel way

to further increase its reconstruction speed when computation nodes are of different
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Figure 6.13: Scalability of BSGD when used in multi-GPU network in 3D scan-
ning geometry. When the size increases, especially from S =128 to 800, the
speed-up factor remains stable.
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Figure 6.14: When the size gradually increases, especially from S =128 to 800,
the time spent on FP increases faster than the other cost. However in the 4
GPU setting, communication costs are larger than those for BP. This is due to
the efficient implementation of BP in TIGRE, which allows this to be computed
much faster than its counterpart FP. This means that the scalability of BSGD
is limited in TIGRE environment.

computation speeds. It does not require all parallel nodes to wait for each other until
all of them have finished computations. Instead, as long as there is a node that has
finished computation, then the root node immediately communicates with it to update
the corresponding variables. This is an asynchronous communication and so we call this

version of the algorithm Asynchronous BSGD(ABSGD). Two versions of ABSGD have

been proposed and studied in detail.

The ABSGD is mainly proposed to solve the case when the parallel network suffers
from an unforeseen network delay or when one computation node is significantly slower
than the others. However, these two situations are difficult to simulate when the Iridis
5 network is used since each node in it is of the same computation speed and the
communications between nodes are stable for the most of time. It is possible to artificially
introduce some delays for some nodes or during communications, but this makes the
whole simulations rather time-consuming and inefficient. As a result, the simulations
in this section mainly is performed in MATLAB serial code and a virtual wall time ¢ is

introduced to replace the previous time reference “Usage of A“II ”. This virtual time ¢t can
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Figure 6.15: Percentage of spent time on each procedure in BSGD under differ-
ent numbers of GPUs. Once a specific problem size has been reached, then the
relative percentage does not change significantly for increasing problem sizes.

be used to reflect different delays in each separate node and communications without
loosing the efficiency of code execution. Besides, it also makes the simulation results

stable and repeatable.

6.4.1 Redefining BSGD time counting system

The previous parallel application of BSGD used synchronous communication. The root
node does not perform the “Gather” function to collect information from all parallel
nodes until all computation nodes have finished their computations. In all simulations
shown in Chapters 3,4 and 5, the computation nodes were assumed to have the same
computation ability and they receive the data at the same time. This assumption means
that all parallel nodes start and finish the computation at the same time, thus the “usage
of A7”, which is proportional to the time spent on data communication and the data
projection, can be used as a time reference. However, sometimes, the computation nodes
may not have the same computational abilities or the parallel node cannot receive the
data or start the projection at the same time. This phenomenon has been implied in
the demonstrations of BSGD/CSGD general communication frames shown in Fig.6.7
and Fig.6.8. At the data distribution and collection stages, if the master node does
not use collective communication functions such as “Scatter,Bcast,Gather,Reduce” but
use a for-loop with point-to-point communication functions “Send,Recv”, then different
nodes will receive data block at different times and the first node receiving the data
block will also be the first node to finish its calculation and thus becomes the fastest
node. Similarly, the last node receiving a data block is the slowest node. In this case,
the fast computation nodes have to wait for the slow computation nodes to finish their
calculations. This communication property makes the fact that the reconstruction speed
is influenced by the slowest computation node. The existence of waiting time makes “the
usage of A{ ” no longer reflect the actual wall time. As a result, here a virtual wall time

t is introduced to be used as a time reference reflecting the reconstruction speed. For
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each parallel node, ¢ is mainly composed of: (1) communication overhead {tcommau,i}s
(2) projection time {05} (3) waiting time {t,q4;}, where € {0,1,--- ,p — 1} is the
node index among all p parallel nodes. In addition, for the maser node or the root node,

there is an added time: update time {¢,,4}, which is the time spent on updating r, g, x.

A time counting algorithm for BSGD is shown in Algo.6.3. In the algorithm, the master
node sends/gathers data to/from parallel node using a cyclic point-to-point commu-
nication scheme. The master node performs the update of r,g,x. The parallel node
only performs projections and different computation nodes have different computation
abilities. For simplicity, here we only discuss the case when the selected block number

exactly equals the number of parallel nodes p.

Algorithm 6.3 BSGD, a virtual wall time ¢ is introduced

1: Initialization: All initialization condition is unchanged. t is a virtual wall time on
the master node. {El}le[o,p—l] is the “predicted” wall time for each computation node
when they finish current projection. t,pe, is the time spent on selecting different
blocks, which is a tiny amount compared with projection and communication.

2:t=0

3: for k=1,2, -, Kjnge do

Random select aM row blocks from {Ii}ie[l,M] and YN column blocks from

{Ji}jeq,n)- Record all selected 7 in iy, and all selected j in jpos

t =t + tother (tother can be ignored since it is very small)

for[=0,1,--- ,p—1do
"the root node sends {Z‘}i}i:ibox[l]yj:jboa:[l]7 %7, }imipoul) tO
t :f + tcommu,l
t =1

10:  end for ' ‘

11:  All parallel nodes compute z7, Vz

12 For I'" parallel node [ = [0, 1, ,p— 1]: & = + tproji

13:  When all parallel nodes finish calculating, root node begin to receive their data

in a sequential way and update ry

14: t= maw({tl}le[o,p—l]) + p(tcommu,l + tupd,rl)

15: forl=0,1,--- ,p—1do

=

It parallel nodes

16: EFhe root node sends {gf]j Yimipon [l =jvon [ 11 Yizipeu[l] tO [*" parallel nodes
17: t :~t + 7fcm’nmu,l
18: t =1

19:  end for

20:  All parallel nodes compute gf,j , ng,j and send them back to root node

21:  For " parallel node I = [0,1,- - ,p— 1]: £ =4, + tprojy

22:  When all parallel nodes finish calculating, root node begin to receive their data
in a sequential way and update g, x;

23t =maz({ti}iejop-1) + P(tcommu, + tupdgsx,)

24: end for

T
25 Xgolution = [XJN ceey XJN]

In simulations, tcommu,i, tproji and typq, are calculated by multiplying the size of data

blocks with parameters Teommu, Tproj,; and Tupq respectively. For example, an x; with
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size n is sent to the ['® parallel node and A{x; (A7 € R™") is performed in this
node, then teommui = TeommuTstproji = Tprojmn. To simplify the parameter tuning,
in simulations, 7,.,; is set as different values for the I*" node to reflect that different
computation nodes have different computation abilities and 7Teommau,i, Tupd is set as a
constant values. Lines 14 and 23 in Algo.6.3 suggest that for each iteration, the fastest
nodes have to wait for the slowest node, meaning that the synchronous BSGD does not

fully exploit the computational advantage of fast nodes.

6.4.2 Two asynchronous BSGD forms

Here two forms of “asynchronous” BSGD (ABSGD) are proposed, called ABSGD-Verl
and ABSDG-Ver2 respectively. They both do not require the fast nodes to wait for
the slowest node and can communicate with the master node when they are ready.
ABSGD-Verl is shown in Algo.6.4.

In Algo.6.4. The master node first sends data blocks to all parallel nodes as BSGD does.
After the sending process, the master node checks whether there is any computation
node that has already finished computation and is waiting for the master to communicate
the data. If there is no waiting computation node then the master node simply waits
until there is one node that has finished its computation (shown in Algo.6.4 line 26-27).
Otherwise, if there are computation nodes that have finished the computations after
the master sending all data, (shown in Algo.6.4 line 29-30), the algorithm then finds
all waiting nodes and the maser node is going to communicate with them. By only
addressing the waiting nodes or the fastest node, the master node can perform more
updates of r, g and x than synchronous BSGD within the same virtual wall time ¢, thus
can have a faster reconstruction speed. In addition, the waiting time for each node can

be significantly reduced compared to synchronous BSGD.

In Algo.6.4 line 32, if length(z) > 1 , then some nodes still have to wait since only one
computation node can communicate with the master node. This part’s waiting time is
further reduced in ABSDG-Ver2 by only communicating with one waiting node each time
(i.e. enforcing i to only contain 1 element). A while loop to repeatedly check whether
there is a waiting node is proposed, as shown in Algo.6.5. This function is used by
master node. It can be seen that there is only one node is allowed to communicate with
the master node and when the master node finish updating r or g, x, the master node
immediately sends data back to this computation node, thus avoiding the computation
node waiting for the other node which is sending data to the master node. With Check
function, the ABSGD-Ver2 is shown in Algo.6.6.
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Algorithm 6.4 ABSGD-Verl

1: Initialization: Same as Algo.6.3.
2: for k =1,2,..., Kipgr do

3:
4:

11:
12:
13:
14:
15:
16:

17:
18:

19:
20:

21:

22:
23:
24:
25:
26:

27:
28:
29:

30:
31:
32:
33:
34:
35:

if Kk ==1 then
Random select aM row blocks and v/N column blocks. Record all selected ¢ in
1o and all selected j in Jpon
t =1+ tother
for(=0,1,---,p—1do
The root node sends {27 }i—;,,.1j
4] :f + tcommu,l
t=1
end for ‘ '
All parallel nodes compute z}, Vz}
Each node: t; = t; + ty,054
else
for | = 1,2,length(i) do
if last time the node i({) has performed FP then

The root node sends gf,j,r}i to node g(l), where 7, j is the same pair with

=dnoall %73 Fj=jooptu to I parallel nodes

the case when node () performed the FP. This time node i(l) performs
BP.
else if last time the node 7(l) has performed BP then
The root node sends new Z]Il_,XJ]. to node %(l), where 7,7 is a new pair
that is different from all pairs in other parallel nodes. This time node (1)
performs FP.
end if
iy =t +1

b= i)

commai(l)
ti(l) = ti(l) + 1

end for

end if

if t < min({gl}lé[()m—l]) then
Find the node with the smallest ¢, name this node as node 7 and transfer data
from node 7 to root node
t= f{ + teommu

else
Find elements within {f;},c[o ,—1] that is smaller than ¢, assemble all these nodes’

proj,i(l)

index number into one set 7 and transfer data from those node 7 to root node
=1+ Zlei tcommu,i(l)
end if
for | =1,2,--- ,length(i) do
Root node updates ry or gy, x; according to data in node g(l)
t =1+ tupa
end for

36: end for
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Algorithm 6.5 Check(t, {fl}le[o,p—l])

1: Initialization: flag =1
2: while flag do

3: tNmin = rrfin({fl}le[o,p_l]).

4: if t >=t,;, then

5: Find the node with the smallest 7, name this node as node i
6: Transfer data from node 7 to root node

7: t = t + tcommu,i

8: The root node performs update.

9: t =14 tupd
10: The root node sends proper data block back to node 7. Reference Algo.6.4 in

terms of selecting “proper” data block

11 =1+ tcommu,i
12: Node 7 performs projection
13: tNE =1+ tprojl
14: else
15: flag=10
16: end if

17: end while

Algorithm 6.6 ABSGD-Ver2, a virtual wall time ¢ is introduced

1: Initialization: Same as Algo.6.3.

2: for k=1,2,---, Kjpqp do

3: if k ==1 then

4: Random select oM row blocks and yN column blocks. Record all selected ¢ in
1o and all selected j in Jpos

5 for(=0,1,---,p—1do

6 The root node sends {Zjli}i=ibom[l},j=jboz[l]’ 1%, }j=jpoul tO It parallel nodes
T t~l :f + tcommu,l

8 t=1

9: I*" parallel node does projection

10: ty =1t + tprojl

11: end for

12: Check(t, {tl}le[O,p—l])

13:  end if

14:  Find the node with the smallest ¢, name this node as node i

15:  Transfer data from node 7 to root node and the root node performs update
16: t= E{ + teommu + tupd 5

17: The root node sends data back to node %

18: t =14+ tecommu

19:  Node 7 performs projections

20: 7% =14+ tproj,%

21: Check(t, {51}16[07;0—1})

22: end for
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6.4.3 Simulations to compare BSGD and ABSGD

To verify the properties of ABSGD algorithms, a tiny CT scanning system where A €
R1080%256 i5 divided into M = 5, N = 16 blocks and a parallel node with 4 computation
nodes (p = 4) are adopted. The projection data are stored in double-precision floating-
point format and there is no added noise on it. All algorithms are stopped when the
virtual time ¢ achieves 4 x 10%. During this process the trend of SNR over the virtual
time t can reflect convergence properties of different algorithms. Teomme and 7,..; are
set to different values and 7,4 is set as constant 1 for simplicity. The comparisons of the
time spent on each projection and communication under different 7commu, Tproj is shown
in Fig.6.16. In simulations, three different types of 7,,,; are set. In the first case (the
first row of figure), 7,,4;; gradually increases when the node index number increases.
It means that the node 0 is the fastest node and the node 3 is the slowest node. As
a result, the time spent on FP/BP gradually increases when the node number index [
increases. In the second scenario (the second row of figure), the first two nodes (I = 0,1)
are relatively fast with 7,,,;; = 1 while the last two nodes (I = 2, 3) are relatively slow
with 7p,.0;; = 2. For both cases, the range of Tcommu covers from 0.1 to 5. The figure
have reflected that communication overhead gradually takes larger portion during the
reconstruction process. In the third case, 7,,0;; = 1, which means that all nodes are of
the same computation ability. It is not shown in the figure because all nodes have the
same shape with “Node 0” in Fig.6.16(a)-(c).
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e e re
s er [
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@ 10000 @ communicate afte; @ 10000 F @l communicate afte @ 10000 | @l communicate aftes
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K ] K
g £ g
> 5000 > 5000 > 5000
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Node0 Node1 Node2 Node3 Node 0 Node1 Node2 Node3 Node 0 Node1 Node2 Node3
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Figure 6.16: Illustration of virtual time spent on each node under different
communication delays.
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The simulation results of reconstruction speed of BSGD, ABSGD-VERI, and ABSGD-
Ver2 are shown in Fig.6.17. In the figure, the red-solid lines are BSGD results and
blue-dotted lines are ABSGD-Verl results. The black-dashed lines are the ABSGD-
Ver2. All simulations are repeated with different step lengths p from a tiny value to the
largest value ensuring convergence. It can be seen that under first two cases of 7,,,; set-
ting (first two rows), ABSGD-Verl and ABSGD-Ver2 both outperform the synchronous
BSGD form. In the third case of 7,,,; setting (third row) where each node is of the
same computation capacity, when the communication overhead is tiny (7commu = 0.1),
each node can be viewed that they receive the data block at the same time and ABSGD
barely outperforms BSGD. However, when T.ommy increases to 1 and 5, different node
receives the data block at different time, and then ABSGD gradually shows the advan-
tage over BSGD. The fact that both ABSGD reaches to over 100 dB suggests that the
asynchronous application of BSGD is able to reach to high accuracy solutions in realistic
applications. The ABSGD-Ver2 is more recommended since it has a simpler communi-
cation scheme than ABSGD-Verl. Besides, it can even outperform the ABSGD-Verl

especially when 7.ommu 18 5.
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Figure 6.17: Reconstruction speeds of synchronous BSGD and ABSGD under
three different computation delays.

The main reason why the ABSGD can outperform BSGD is that the waiting time of
computation node is reduced, thus enabling the fast node to perform more projections to
exploit the fast computation ability. Each node’s waiting time is calculated as the total
wall time ¢ minus each node’s projection time and communication time. The waiting
time of each node through different simulations are shown in Fig.6.18, Fig.6.19 and
Fig.6.20.
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Figure 6.18: The relative time distribution on each part. This figure reflects
the case when 7,05, =1+ 1,0 =0,--- ,p— 1. Different row represents different
method’s relative distribution of spending time under different communication

overheads.

It can be seen that the increase of Teomms Increases the waiting

time and the communication overhead for each node. Each column provides
comparisons of different methods under the same T.ommu. It can be seen that
ABSGD-Verl and ABSGD-Ver2 both significantly reduce the waiting time and
thus increase the projection time compared with BSGD. It means that the
asynchronous BSGD can perform more projections than BSGD within the same
wall time, leading to more updates on x. This explains why both ABSGD is
faster than BSGD within the same wall time. When 7eommuy = 5, the ABSGD-
Ver2 can further reduce the waiting time compared with ABSGD-Verl. This
is due to the algorithm’s property which only processes one computation node

each time.
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Figure 6.19: This figure reflects relative time distribution when 7,,,;; = 1(I <
2) or 2(I > 1) ABSGD shows the same trend with Fig.6.18. Two ABSGD
algorithms can increase the projection time while reducing the waiting time,

thus increasing the reconstruction speed.
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Figure 6.20: This figure reflects relative time distribution when 7,.,;; = 1,1 =
0,---,p—1. Two ABSGD algorithms can increase the projection time while
reducing the waiting time, thus increasing the reconstruction speed. It is worth
mentioning that when 7eomme = 0.1, the waiting time in BSGD is not long
enough to significantly slow down the reconstruction speed, thus making the
ABSGD cannot outperform BSGD even if ABSGD further reduces the waiting

time.

Furthermore, it is worth mentioning that the automatic parameter tuning method
proposed in the section 4.6 is still applicable to ABSGD. Here I combine the automatic
tuning method with ABSGD-VER2. Simulations show that in the toy problem A €
R1024x256 " when Tprojl = 1+ 1,1 =0,---,p—1 and Teommu = Tupd = 1, the automatic
parameter tuning strategy with previous choice of €,6,t1,to works well. As shown in

Fig.6.21.

6.4.4 ABSGD in non-block communications

From the above MATLAB serial simulations, it can be seen that when the parallel

computation nodes have different computational abilities, then ABSGD can outperform
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Figure 6.21: All parameters are the same with simulations in section 4.6. The
automatic parameter tuning strategy can tune the step-length p to a proper
range and accelerate the original ABSGD-Ver2. This simulation adopts double-
precision data type and thus DS achieves 1010,

BSGD and achieve faster reconstruction speed. In this section, the ABSGD is applied in
a realistic parallel network by using non-blocking communications provided by mpi4dpy.
In the Python environment, this means that we can use “Isend” and “Irecv” to perform
the data communication in line 6,10 of Algo.6.5 and line 6,15 of Algo.6.6. For the
code simplicity, however, this realistic application is developed at an initial stage, where
only two parallel processes are created to control two parallel nodes. As a result, only
ABSGD-Ver2, which only enable one parallel node to communicate with the master

node, is compared with synchronous BSGD.

In simulations, ABSGD-Ver2 and synchronous BSGD are used to reconstruct a 3D
cone beam scanning data with the usage of TIGRE toolbox. The scanning geometry
is shown in Table.6.2. A 2-GPU workstation is used in this section and the ASTRA

Table 6.2: 3D cone-beam scanning geometry in ABSGD application

K in Fig.3.5 Detector size Image size Detector number
256 150 x 150 64 x 64 x 64 8x K
Voxel number Projection views OP in Fig.3.5 OD in Fig.3.5
KxKxK 8x K 1000 1000

toolbox can separately control the GPU to perform different projections. The GPUs
are both Geforce GTX 2080Ti, they are named as GPUy and GPU;.

processes are created and called ranky and rank;. Each process, equipped with one

Two parallel
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CPU, separately controls a single GPU to perform the FP and BP. The rankg process is
also used as the master node, which is responsible for the update of r, g, x. During data
assignment, rankg sends data blocks using “Isend” while rank; receives data blocks
using “Recv” (There is no need to use Irecv because rank; will not work until the
data is fully received). At the data gathering process, rank; sends a data block using
“Send” (Again, there is no need to use “Isend” since rank; does not have computation
task before next data block is received), while rankg receives the computed result using
“Irecv”. It can be seen that rankgy does not have to wait during the data transformation
stage. As a result, in ABSGD-Ver2, rankg can perform more computations than rank;,
whilst in synchronous BSGD, rankgy has to wait for rank; until the data block finishes
communication. To simulate the case when two GPUs have different computational
abilities, a sleep function time.sleep(EztraDelay) is added after GPU; has performed
its projections, in other words, G PU is slower than GPUy by ExtraDelay seconds. For
different ExtraDelay the SNR of the reconstructed x obtained by BSGD and ABSGD-
Ver2 after 600s of wall time and the projection times for each process are shown in
Fig.6.22. This illustrates that ABSGD-Ver2 allows the faster GPUj to perform more
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Figure 6.22: The step lengths p in both methods have been carefully tuned
for the fastest performance. When FExtradelay = 0, which means that the
two computation nodes have the same computation abilities, the BSGD is the
best option. When Extradelay increases, the ABSGD gradually shows better
performance than BSGD. In the original case, the FP and BP both takes about
0.3 to 0.4s. When FExtradelay reaches 2s, it means that GPUj is 5 times faster
than GPU;.

projections even when ExtraDelay = 0. This is because the “Isend”,“Irecv” function
allows rankg node to continue the work instead of waiting for rank; to finish data
communication. When EztraDelay increases, since rankgy always has to wait for rank;
in BSGD, the reconstruction speed gradually slows down, whilst in ABSGD-Ver2, rankg
can still frequently perform projections as well as the relevant update procedure, thus

having a faster reconstruction speed than BSGD.
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6.5 Conclusions

This chapter is a bit different from the previous chapters. Here the algorithm’s property
is not the main focus. Instead, realistic parallel applications of BSGD/CSGD and a
flexible changes to BSGD were studied. In section 6.2, the general data communication
scheme of CSGD and BSGD were proposed in Fig.6.7 and Fig.6.8. This illustrates that
CSGD has a simpler communication scheme than BSGD. When the number of selected
row and column blocks are pre-determined as aM and yN respectively, and p gradually
increases from 1 to ayM N, then CSGD shows better scalability than BSGD, as shown
in Fig.6.9. Furthermore, the actual reconstruction speed referenced by wall time is
also compared between the two proposed algorithms. In simulations, the number of
parallel nodes is gradually increased and «,~y are changed according to the different p.
Simulations show that although BSGD has worse scalability than CSGD, BSGD still has
faster reconstruction speed compared to CSGD, as shown in Fig.6.10. This is because
BSGD has a faster reconstruction speed over “ the usage of Af ” than CSGD, and this

property compensates BSGD’s drawback in the inefficient communication scheme.

When applying BSGD and CSGD in a parallel network, the default communication
scheme is synchronous. All parallel nodes will wait for each other until the slowest node
has finished computation. After that they are allowed to communicate with the master
node to send the computation results back to update r or g, x. If the parallel nodes have
the same computation speed and can access the master node at the same time, this com-
munication scheme works well. However in realistic parallel networks, it is possible that
the master nodes have to communicate with each parallel computation node in a cyclic
point-to-point way and the computation node may have different computation abilities.
Furthermore, the communication network may also encounter unforeseeable delays dur-
ing the reconstruction process. As a result, developing a more flexible communication
scheme for BSGD is of interest in section 6.4. The proposed flexible communication
enables the fast computation node to immediately communicate with the master node
and does not have to wait for the slowest node. This communication is no longer syn-
chronous but is asynchronous and thus is named as ABSGD. There are two versions
of ABSGD: ABSGD-Verl and ABSGD-Ver2. In the ABSGD-Verl, if there are several
computation nodes that have finished the computation and are waiting for the com-
munication with the master node, the master node will communicate with all of them.
In the ABSGD-Ver2, the master node only communicates with one parallel node each
time. Simulations have both verified that these two algorithms can reduce the waiting
time of those fast computation nodes, enabling the faster computation nodes to per-
form more projections as well as iterations on r, g, x, as shown in Fig.6.18, Fig.6.19 and
Fig.6.20. This efficient communication scheme enables the ABSGD-Verl and ABSGD-
Ver2 to both outperform the original synchronous BSGD when the computation nodes
have different computation abilities, as shown in Fig.6.17. The ABSGD-Ver2 is applied

in a 3D realistic reconstruction case where two parallel GPUs are used. Simulations
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show that when the 2 GPUs are of the same computation abilities, the ABSGD has a
slower reconstruction speed than BSGD. However, when one of the GPUs is slower than
the another, the fast GPU can perform more projections instead of waiting for the slow
GPU and thus the advantage of ABSGD appears, as shown in Fig.6.22.

There are two open areas of this chapter: 1) The experiments are mainly performed in a
small scale problem to reduce the experiment time. The application of BSGD and CSGD
on large case 3D cone beam dataset has not performed yet. In the large scale application,
since each node is only equipped with four GPUs, it is possible to require data flow to be
communicated between nodes. Such particular communication scheme and its property
is not researched yet. 2) The programming of ABSGD in MPI environment is not fully
finished. Currently only two nodes can be used for executing ABSGD. When using more
nodes, a judgement criteria for deciding which node to communicate with the master

node should be researched in detail.



Chapter 7

Conclusions

In this thesis, CT scanning is approximated as a linear system and the reconstruction
process is regarded as an optimization of a quadratic objective function added with a
regularization term. Current row and column action methods either require the recon-
structed image vector x to be updated as a whole in each parallel computation node or
require the computation nodes to have full access to the projection data y. For large-
scale CT reconstruction, this requirement causes multiple data communication between
computation nodes (the node responsible for projection computation ) and the master
node (the node which stores all variables for iterative algorithms), making the commu-
nication overhead huge. In this thesis, two algorithms, CSGD and BSGD are proposed,

aiming to reduce times of communication and thus to increase the reconstruction speed.

The contributions presented in this thesis can be concluded as three main parts. In the
first two contributions, two parallel algorithms CSGD/BSGD are proposed respectively
and their mathematical properties are studied in Chapters 3, 4. To be more specific, two
algorithms are proposed and compared with each other as well as with other existing
SIRT-type methods. All nodes were assumed to have the same computational abilities
and they always communicate with the master node at the same time. The data com-
munication and the following projection calculations are the most time-consuming part
among the whole reconstruction process for all SIRT-type methods. As a result, the
“usage of A{ ” which means an intact “request data block—projections—sends results
back to the master node” circle for each computation node, is used as a time reference
to reflect the speed of reconstruction. The first two contributions contained in these two

chapters include the following contributions:

e CSGD is the first algorithm to be proposed and it is inspired by the steepest gra-
dient descent algorithm. In Chapter 3, simulations have experimentally illustrated
that it computes high-accuracy solutions regardless of the partitions of the sys-
tem matrix A. This method reduces the computation cost in each iteration and

also enables a more flexible parallel application, at the cost of introducing a more
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stochastic update direction. Besides, the computation efficiency is much higher
than block ADMM, which is another main reference method in this thesis apart
from the first order methods. Simulations have verified the speed advantage of
CSGD when compared with block ADMM.

e BSGD is inspired by the SAG. It uses a more complicated data communication
scheme than CSGD. This is caused by the accumulation of the previous sub-
gradient ingredients gf], thus making the error variance of the estimated gradient
decrease along with iterations. The complicated communication scheme requires
2 inner-loops to update r, g and x separately, which is the same as the other
SIRT-type row action methods. Despite the same communication scheme, BSGD
does not have to iterate over all of x each time and it computes to high-accuracy
solutions even if the percentage of selected column blocks v < 1. It is similar
to CSGD, in that it allows a flexible sampling of sub-matrices A{ and converges
regardless of the shape of A{ or the selection criteria on «,~. In Chapter 4, BSGD
uses the same sampling method as CSGD. This can simplify the data communi-
cation by minimizing o = ﬁ and adjusting v according to the available number
of computation nodes, enabling x blocks to be independently updated within the
parallel computation nodes. Importance sampling is also applicable to BSGD and
simulations have verified that BSGD-IM has the fastest reconstruction speed com-
pared with the other existing SIRT-type methods including mini-batch SGD, SAG,
SVRG.

The third contribution is the further explorations on two developed algorithms. The
exploration includes : 1) the importance sampling trick and automatic parameter tun-
ing trick. The discussions have presented during the introduction of CSGD and BSGD
during Chapter 3 and 4. 2) The application of two proposed algorithms in few-view
projection data case. Simulation results have shown that they can substitute the GD
in the proximal methods to approximately optimize a TV-regularized objective func-
tion. 3) The application of CSGD and BSGD in realistic parallel network is performed
in Iridis supercomputer, which demonstrates two algorithms scalability. Furthermore,
an asynchronous application framework of BSGD is developed to further increase the

reconstruction speed. The third contribution is expanded as the following;:

e An importance sampling method is proposed and is available for two proposed
methods. In the original CSGD and BSGD, the image is divided into N sub-
images and projections of each sub-image are not distributed to the whole detector
but on a limited sub-detector area. The importance sampling method divides the
detector into many sub-detectors and only samples partial of sub-detectors. This
enables each row block to contain more projection views and let sub-detectors with

massive non-zero projection data be more frequently used in iterations than those
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with loads of zero projection data. Simulations have experimentally verified the

improvement brought by importance sampling.

e In realistic settings, the step-length p may be set too small which leads to a slow
reconstruction speed. An automatic parameter tuning strategy is thus proposed
to accelerate the case when initial step-length is set improperly small. Further-
more, the Katyusha acceleration trick is adopted for BSGD. Instead of applying
a momentum step after every single stochastic iteration, the BSGD-KatyushaX?
applies a momentum acceleration under an update frequency f. Simulations show
that when f > 2M, the BSGD-KatyushaX® effectively accelerates BSGD and

BSGD-IM even when they are well tuned to the fastest reconstruction speeds.

e Simulations in Chapter 3 and 4 mainly discuss two algorithms’ performance when
there is enough projection data. When using few projections, only applying the
SIRT-type algorithms to optimize the quadratic objective function cannot obtain a
high-accuracy solution and the reconstructed image shows severe artefacts. A pop-
ular method to increase the reconstructed image quality is to use a TV de-noising
procedure after the gradient-descent movement. Simulations in Chapter 5 prove
that CSGD and BSGD can be combined with TV de-noising. The combination
is flexible. It can perform CSGD/BSGD iterations with predefined frequencies,
followed by a TV de-noising on the whole of x, or on v/N image blocks. Under two
different combinations, the frequencies of CSGD/BSGD iterations are different to
ease the comparison with the other SIRT-type methods with TV constraints. Sim-
ulations have verified that partial de-noising on v blocks, called BSGD/CSGD-
TV (partial), reconstructs the scanned object with high-SNR without sacrificing
reconstruction speed and image quality compared with BSGD/CSGD-TV (whole),
which perform TV de-noising on the whole of x. Both methods can outperform the

other existing SIRT-type methods due to the reduced communication overhead.

e The scalability of BSGD and CSGD are compared with each other and simula-
tions are performed in a Python environment. Each node has the same com-
putation speed and they execute code simultaneously. CSGD is shown to have
better scalability than BSGD due to a smaller communication overhead and re-
duced communication times. However, BSGD is faster than CSGD in realistic
parallel computation environment. As a result, in the following discussions on

asynchronous applications, only BSGD is discussed.

e In realistic parallel networks, there may be a time delay for each node to receieve
the data from the master node because the master node adopts a cyclic point-
to-point communication method or the communication network has unforeseeable
delay during the reconstruction process. As a result, developing a more flexible
communication scheme of BSGD is of interest in the last part of the thesis. The

flexible communication increases each parallel node’s independence and enables
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them to communicate with the master node asynchronously. It is called AB-
SGD. There are two versions of ABSGD: ABSGD-Verl and ABSGD-Ver2. In the
ABSGD-Verl, if there are several computation nodes that have finished the com-
putation and are waiting for the communication with the master node, the master
node will communicate with all of them. In the ABSGD-Ver2, the master node
only communicates with one parallel node each time. Simulations have verified
that these two algorithms can reduce the waiting time of those fast computation
nodes, enabling the fast computation nodes to perform more projections as well

as iterations on r, g, X, outperforming the original BSGD.

7.1 Future work

Both CSGD and BSGD are inspired by existing SIRT-type methods and can be viewed
as improvements on the steepest gradient descent and SAG methods respectively. Since
both algorithms uses only a block of projection data and image, the update direction is
rather stochastic and cannot be viewed as unbiased estimation of the gradient direction.
This property makes the mathematical analysis rather difficult. Currently only the
fixed point of two algorithms are performed. The fixed point of BSGD is located at
the least square solution whilst the CSGD’s fixed point is located at a weighted least
square solution. From this result, a conjecture is proposed that the BSGD converges to
a solution that is much closer to CSGD. Simulation results have shown corresponding
results. However, rigorous convergence analysis proving whether the BSGD converges
to the least square solution on expectation and whether the CSGD converges to a least
square solution on expectation is missing in this thesis. Due to the lack of theoretical
proof, from the Chapter 3 to 5, the advantages of CSGD/BSGD over the other methods
are both experimentally illustrated instead of mathematically. A more rigorous proof on
the advantage of BSGD/CSGD over other SIRT-type algorithms needs to be performed.

Simulation results for noise-free and slight noise dataset have shown that the CSGD
and BSGD can obtain incremental SNR trends, which hints that they have the abil-
ity to reduce the data fidelity. This means that the CSGD and BSGD can replace
the gradient descent procedure and can combine with TV-based denoising procedure to
approximately optimize TV-based optimization, which is of more realistic application
value. In fact, when the dataset is contaminated by high level noise, situations have
shown that with a proper early termination strategy, for example, terminating the it-
eration when the SNR has achieved its peak value, the CSGD and BSGD show similar
relative reconstruction speed comparison results under different «,y parameter settings
(for example, shown in Fig.3.9-3.12, Fig.4.1-4.3), and the simulations also prove the
claim made in Eq.3.8 for how to determine «,~ for a fast reconstruction speed. How-
ever, after introducing the early stopping strategy, it then becomes difficult to convince

readers that the CSGD and BSGD are converging. Furthermore, in simulations, when
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to determine the CSGD and BSGD is easy to determine, as the SNR trend is visible
(the X¢ryue is a known vector), but in realistic applications when to stop the iteration
is difficult to determine and it becomes another research topic. Consider the fact that
the main focuses of Chapter 3 and 4 are to illustrate that the CSGD and BSGD has
the ability to reduce the data fidelity and obtain an increment SNR trend and to show
the recommended parameter(mainly «, ) setting, this thesis does not present the sim-
ulations under severe noise where the semi-convergence phenomena is significant. The

detailed discussions on semi-convergence phenomena is an open area.

Furthermore, as this thesis mainly focuses on the two algorithms’ basic properties, the
performance of the methods is mainly illustrated on small scale CT scanning problems
to save time. It thus lacks more realistic applications to large scale CT dataset. In
future work, more CSGD and BSGD applications on realistic datasets are needed to be
performed. In the asynchronous application of BSGD, the code currently only covers the
2-GPU case, where rankg and rank; communicate with each other using “Isend,Irecv”.
A more general code that enables more than 2 GPUs to get involved in the reconstruction

is missing in this thesis.






Appendix A

Open area for mathematical
analysis of CSGD and BSGD

This appendix includes the mathematical analysis conducted on both BSGD and CSGD.
Fixed point analysis has performed to find a solution that makes the iteration generate

a stable iteration results sequence.

A.1 CSGD fixed point analysis

Whilst a formal convergence proof of general CSGD is not available yet, it is instructive
to analyse the fixed points of the algorithm. The deterministic version of the algorithm

with @ = v =1 is first analysed.

The algorithm updates two quantities, x and z. Let (x*1,zF+1) = T(x*, z¥) define one

iteration of the algorithm. Let x* and z* be fixed points of the operator T'(x,z) defined
by (x*,z*) = T'(x*,z*). Similar results to the once derived here for the deterministic
algorithm can also be obtained for the randomised versions and for a < 1 if we look at
points for which (x*,z*) = E{T,(x*,z*)}, where E{-} is the expectation with respect
to the random iteration operator T,.(x,z), given the current state. In the following

demonstration, I and J are arbitrarily selected from {I;}}, and {Jj}j»V:l.
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The deterministic version of the algorithm computes updates of the form

M
1 i i
= Z(Xl} + 158Y) (A.1)
1 i
= XF] + i Z/’Lj(Ai')T(yIi - Zi)v

and

j=1 7j=1
N J J
=Y AP+ i (AP)Trh)
=1 ’ (A.2)

= Ax" +8;(yf —2f),

where S; is a determined matrix and is defined as S; = Zjvzl ,u}Aij (Aij )T

This implies that, at the fixed point x* and z*, we have

25 = (I+S;) Ax* + (I +S;) 7 S1y; (A.3)
and
M .
> (A (yr, — 25) = 0. (A.4)
=1

Eq.A.3 can be expanded
z* = (I +S7)'Ax* + (I +S7)"'Sry, (A.5)

where St is a block diagonal matrix:

S, 0 0
0 S 0

Sy — 2 (A.6)
0 0 --- Sp,

Note that (I 4+ St) is a positive semi-definite matrix if u§- are positive. Define a diagonal
matrix D; with diagonal entries ué where Dj(h, h) = ,ué if h € I;. Eq.A.4 can thus be
written as

(DAY (y —2*) = 0. (A7)
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Combining Eq.A.5 and Eq.A.7 gives

0= (D;A7)" (y — (I +S7)'Ax* — (I + S7)'SrY)

(A.8)
— (D;AY)T(1 +S7)" (y — Ax").
This equation has to hold for all J. As D, is a diagonal matrix, this implies that
0=A"(I+S7) Yy — Ax¥), (A.9)
which shows
x* = (AT(I +S7)"'A) " AT(I +Sp) "y (A.10)

is a weighted least squares solution.

A.2 BSGD fixed point analysis

In this section, some mathematical deductions are presented to show that the fixed point
of BSGD locates at the least square solution. To simplify the deduction, the sampling

of I;, J; in inner loops are considered as independent to each other.

Notation: Let us vectorise the sets {(Z]IZ)k} and {(ggj)k} and put their elements into
the vectors zF and gF. Let A be defined as

(A 0 0 0]
A" 0 0 O
2
J
K: AI}W OJ 0 0 ERNT*C
0 A 0 o0
0 A2 0 o0
0 0 0 A}
and let -
AMmT o 0o o0
(AP)T 0 o0 0
J
F: (AllN)T 0 0 0 ERMC*T"
0 (AT 0 0
P
0 (AP)T o 0
0 0 0 (A/MT
L Ing/
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We have:
x € R¢

y €R"
ze RN
g € RMe,

Let us also introduce the matrix Ip;. = [Ic, I, -IC], where we concatenate M identity

matrices I, each of size ¢ * ¢ and define I, similarly.
With this notation Iy, A = A and I, AT = A7

Since

and

then

and

(gf] N)k+1

To encode the random updates over subsets of index pairs {i, j}, random matrix whose
elements are random numbers are introduced. Here introduce three random diagonal
matrices Rq , Ro and Rg, which are diagonal matrices whose diagonal entries are either
0 or 1. Note that R; is a block matrix with M N square blocks of size r/M along the
diagonal, where random ayM N blocks among total M N blocks ( defined as (a%%v) )
are identity matrices with the remaining blocks being 0. Similarly Rs and Rg are block
diagonal with M N and N square blocks of size ¢/N along the diagonal. For Ry there

are (a%%v) non-zero blocks along the diagonal, whilst for Rg we have ng blocks, where
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na is the number of distinct indices j drawn. We have

_5%’11T/M 0 0 0
0 5%7217"/M 0 0
— - NrxNr
Ri= 0 0 I | . 0 €R
i /M
|0 0 0 Shr N L/
(62 L,y O 0 0 |
0 67 oo/ 0 0
— MecxMe
=1 0 521 0 <R
i,jc/N
0 0 0 Sar.n e/
(SL,y 0 0 0 |
0 &Iy 0 0
_ T ckC
Ry = 0 0 Pl | e 0 €R
7 C/N
0 0 .. 0 .. 5?\[16/1\,
, where 51'1,3" 53 j and 55-’ are random coefficients whose values are 0 or 1, which reflects

which Aij and x J; are selected.

We thus have zFt! = zF + Ry (AxF — 2F), ght! = gF + Ry(ATrh ! — gF) and xF+! =

x* + RagpIp g
With this notation, we can thus write:

rf =y — Iy, 2" (A.11)

so that the update of z, g and x becomes:

7 — 78 L Ry [ka - zk} , (A.12)

g —g" + Ry AT (y — Tn2"*) - 8] (A.13)
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and
XM+ = xF | Ry (uiMcgk“) . (A.14)

Inserting the first equation into the second and then the second equation into the third,

we get the following recursions:

78 4 R, [ka _ z’“} : (A.15)

ie.
7" = Iy, — Ry) 2" + R|AX", (A.16)
gl =g"+ Ry [F (y - (TNT (Iny — R1) 2" + TNTRIKXk>> - gk} (A17)

ie.

"1 = (Inre — Ro) & + RoATy — RoATTy, (In, — R1)Z" — RoATLy, RiAX" (A.18)

and

X" = x* 4+ pRaye (I — Ro) 8 + pR3In RoATy
—uR3T RoATTy, (I, — R1)Z" — pR3Ty RoATIN, RiAX". (A.19)

i.e.

s (IC — MRgiMCRQFTNTRJ) xk
+pR3Iye (Ine — Ro) 8°
+uR3Iy ReATy
—uR3IyRoA Iy, (Iy, — Ry)ZF.

or in matrix form:

ik+1 Zk 0
ghtl| =My, |gk| + RyATy (A.20)
xk+1 xFk pRsIy RoATy
where
(INT' - Rl) 0 R1X
M, = —RoATIN, (Iny — Ry) (Inre — R2) —RoATIN,R1A

—uR3Ty RoATI N, (In, — R1)  pR3Iaze (Tne — Ra) (Ic — ,UR?)TMCRQFTNTRIK)
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Theorem A.1l. For all R;, Ry and Rg, the vector
g*
X*
1s a fized point of the algorithm iff
AT(y — Ax*) = g*, (A.21)
J
Ahlxi‘}1
ATx* _
Z* — ]2. J1 — AX*
IN *
A]AA; X7,
and
Aﬂ (yh - AhX*)
_ _ AT Y, — A[ X>’< _ N
I]\/[Cg>|< :IMc 12( ? . ? ) :IMCAT(y—Ax*) =0.
A?M <YIM - AIIMX*)
Proof. To prove the theorem, we look at each line of the Eq.A.20.
The first line
z* —Riz" + RjAx* = z* (A.22)

holds for all Ry iff z* = Ax*. Thus, using z* = Ax*, the second line gives

_RQFTNT(INT - R1>Z* + (IMC - Rg)g* — RQFTNTRlzx* + RQFy = g* (A23)

If it is expanded it can be seen that:

—RyATIN, Ax* + RoATIN, R Ax" — Rog* — RyATTN, R Ax* + RyATy = 0(A.24)

The above equation can be simplified as

g"=Al(y - Ax")

(A.25)
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where we have used the equality Iy, A = A. Using g* = F(y — Ax*) the last line then

gives

x* + ,uRgiMCRQFTN,«Rlzx* - uRgiMCRQFTNTKX* (A.26)
—l—,uRgiMcFy - ,uRngCRQFy - ,uRgiMCFAx* + MR;}TMCRQFAX*
—puR3Iy Ro ATy, Ry Ax*
+1R3Iy Ry ATy

= x* — uRsI RoATIy, AX* (A.27)
+uR3Iy ATy — uR3I AT Ax* + puRsIp RoAT Ax*

= x* — uRsl) RoAT Ax* (A.28)
+uRsL ATy — uR3I - ATAX* + pRsIy RoATAx*

= X"+ uRsI AT (y — Ax*) = x*, (A.29)

which can only hold for all Ry iff TMCF(y — Ax*) = AT(y — Ax*) = Iy.g* = 0.
This means that the fixed point of the BSGD is located at the least square solution.
Despite that currently it cannot be proved that the BSGD can finally on expectation
converges to the fixed point, at least the analysis hints that the BSGD can approach to
the least square solution closer than CSGD and the previous simulations have verified

this conjecture.
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