HOMOTOPY FIBRATIONS WITH A SECTION AFTER LOOPING

STEPHEN THERIAULT

ABSTRACT. We analyze a general family of fibrations which, after looping, have sections. Methods
are developed to determine the homotopy type of the fibre and the homotopy classes of the map
from the fibre to the base. The methods are driven by applications to two-cones, Poincaré Duality

complexes, the connected sum operation, and polyhedral products.
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2 STEPHEN THERIAULT
1. INTRODUCTION

A fundamental goal in homotopy theory is to determine the homotopy types of spaces and the
homotopy classes of the maps between them. This paper builds on new methods developed in [BT2]
in order to do that in an appropriate context. The applications are wide-ranging, informing on
the homotopy theory of two-cones, Poincaré Duality complexes, connected sums, and polyhedral
products.

To describe the context, it will be assumed throughout that all spaces are CW-complexes so that
weak homotopy equivalences are homotopy equivalences. Suppose that there is a homotopy fibration
E-2y s Zanda homotopy cofibration 3A oy Ly Suppose that h extends to a map

h':Y’' — Z and let E’ be the homotopy fibre of h’. This data is assembled into a diagram

<

F—F
ERY
f
(1) YA—>Y —> Y
oo
7 —— 7.

where the vertical columns and the maps between them form a homotopy fibration diagram. Using

either Dold and Lashof [DL] or Mather’s Cube Lemma [M], there is a homotopy pushout

QZ x¥A ——FE

-

QOZ — F'

where 7y is the projection. Under favourable circumstances, this homotopy pushout may allow
for the homotopy type of E’ to be determined, and possibly also the homotopy class of the map
E — E'. However, much depends on the homotopy class of the map QZ x YA — F, and this can
be difficult to identify with sufficient precision.

Suppose in addition that the map QY 2 07 has a right homotopy inverse s: 07 — QY.
Then the homotopy pushout (2) simplifies to a homotopy cofibration

(3) WxSA-HE-— FE

for some map 6. In the special case when Y’ = Z and k' is the identity map, this implies that E’
is contractible so 6 is a homotopy equivalence. But in general this cofibration by itself says little
about the precision with which 6 can be identified. However, as will be explained in Section 2, the
existence of a right homotopy inverse for QA implies that there is a profound connection between 6,

the homotopy action of QZ on E, and Whitehead products mapping into Y. Specifically, there is a
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homotopy commutative diagram

Q7 x XA E

@) l: l
[v.f1+f
QZASA)VEA Ty

where v is the composite v: Q7 25 vy Y Y, the map ev is the canonical evaluation map,
and [v, f] is the Whitehead product of v and f. That is, the homotopy class of  is identified, at
least up to composition with p, and this gives a measure of control over the homotopy cofibration
0Zx ¥A %5 E — E'. But the level of control is often not fine enough to precisely describe the

homotopy type of E’ in cases of interest. Obtaining that control is the thrust of this paper.

We consider, then, homotopy fibrations £ P,y ", 7 which have a section after looping. That
is, those for which Qh has a right homotopy inverse. This begins with a simple but foundational
case that will play an important role at many points later on. We move on to consider different
families of examples, each of which involves distinctive features that influence how control over 6 is

obtained.

A foundational case. Consider the homotopy fibration E LyvXVvYY 25 B X where qq is the
pinch map to the first wedge summand. Note that ¢; has a right homotopy inverse, so {2q; does as
well, implying that this is an example of a homotopy fibration with a section after looping.

For k > 1, let X"*¥ be the k-fold smash product of X with itself. By [N3, Theorem 4.3.2] there is

a homotopy equivalence

E ~ (7 XM ASY
k=0
where, by convention, X9 A XY refers to Y. Further, let i;: ¥ X — X VXY and iy: Y —
YL X VY be the inclusions of the first and second wedge summands respectively. Let ad®(i1)(iz) = i2
and for k > 1 let ad®(i1)(i2) be the Whitehead product [i1,ad*~1(i1)(i2)]. Then [N3, Theorem
4.3.2] shows that, under the homotopy equivalence for E above, the map p may be identified as
Vi ad*(ir) (iz).

We give an alternative proof of this which has the advantage of having a compatibility with
the map € in (4). Here, the general homotopy cofibration ¥A Ty Ly specifies to XY N
LXVYIY 25 $X and 6 takes the form of a map QXX x XY s E. The point to emphasize is that
our choice of a homotopy equivalence for F has the additional property of respecting the homotopy

action of XX on FE.
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Theorem 1.1 (appearing in the text as Theorem 3.15). Let X and Y be path-connected, pointed
spaces and consider the homotopy fibration E — XX VXY 2 S X. There is a homotopy commu-

tative diagram

VXM Asy — 2 o F

p
VZO:U m\ l

YXVvIY
where:

(a) 0 is a homotopy equivalence;

(b) X0 ~ Xd, where d is the composite

\/XA’“AEYL)QEXMZYLE.
k=0

Note that the maps 0 and d may not be homotopy equivalent but their suspensions are. Con-
sequently, they induce the same map in homology. As 0 is a homotopy equivalence, it induces an
isomorphism in homology, and therefore so does d, and hence d is also a homotopy equivalence by
Whitehead’s Theorem. This ability to use one homotopy equivalence to prove the existence of an-
other will be used repeatedly throughout. It has the advantage of allowing us to exchange maps that
have different properties: in this case the maps 0 behaves well with respect to Whitehead products

while the map d (via ¢) behaves better with respect to the multiplication on QX X.

Two-cones. A two-cone is the homotopy cofibre C' of a map YA — XB where A and B are
both path-connected. More generally, one could consider a map between co-H-spaces instead of
suspensions, but the latter simplifies the exposition. This notion can be iterated: a finite CW-
complex X has cone-length t if ¢ is the smallest number such that there is a sequence of homotopy
cofibrations YAy — Cr_1 — C} for 1 < k <t where Cj is some initial space XAy and C; ~ X.
Cone-length is an upper bound on the Lusternik-Schnirelmann category of X. A great deal of work
has gone into studying cone-length (see [CLOT] for a comprehensive overview). The homotopy
theory around two-cones and their based loop spaces has received particular attention [A, FHT, FT2]
since they are the nearest neighbour to suspensions, whose based loop spaces are well understood
through the Bott-Samelson Theorem, the James construction, and the Hilton-Milnor Theorem.

In Theorem 4.6 we prove a general result which lets us consider, as examples, certain families of

two-cones. One case is the following. Define the two-cone M} by the homotopy cofibration

k- .
DX Ay R o uny

We give a homotopy decomposition of QMj,. Note that as ad”(i1)(iz) is an iterated Whitehead
product, it composes trivially with the pinch map £X VXY -2 ©.X, implying that ¢; extends to
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a map My, — SX. Define the map ~; by the composite

k—1 k—1 t: -
o ad"(i1)(iz2
e\ X Asy Vet sy sy s M,
t=0

Theorem 1.2 (appearing in the text as Theorem 4.9). For k > 1, there is a homotopy fibration

k—1
\/X“AZY%MkimX
t=0

which splits after looping to give a homotopy equivalence

k—1
QM ~ QBX x Q(\/ X" AXY).
t=0

Particular examples of interest occur when X and Y are both spheres or Moore spaces. These

are discussed in Section 4; they give a large family of examples that satisfy Moore’s conjecture.

Poincaré Duality complexes. A finite CW-complex X is a Poincaré Duality complex if H*(X;Z)
satisfies Poincaré Duality. These spaces are generalizations of closed, orientable manifolds. Poincaré
Duality complexes have a long history in both geometry and topology (see the survey by Klein [K])
and recently there has been progress in analyzing their homotopy groups through homotopy de-
compositions of their loop spaces. In particular, Beben and Wu [BW] studied (n — 1)-connected
(2n + 1)-dimensional Poincaré Duality complexes M with n odd, n > 6 and Ha,—1(M;Z) consist-
ing only of odd torsion; Beben and the author [BT1] studied all (n — 1)-connected 2n-dimensional
Poincaré Duality complexes; this case was also considered using different methods by Sa. Basu and
So. Basu [BB], and Sa. Basu [Ba] went on to consider (n — 1)-connected (2n + 1)-dimensional
Poincaré Duality complexes M with H, (M;Z) having at least one integral summand. In [BT2],
Beben and the author developed the new methods that are the basis of this paper and used them
to recover in a unified way the results in [Ba, BB, BT1].

The case of an (n—1)-connected (2n+1)-dimensional Poincaré Duality complex M when n is even
and H,,(M;Z) consists only of odd torsion is trickier. The methods used in [BW] do not work. They
showed that if n is odd then there is a space V and a map M s V where Qh has a right homotopy
inverse and, for an appropriate prime p, H,(V;Z/pZ) = A(x,y) with |z| = n, |y =n+ 1 and =
and y connected by a Bockstein (possibly of higher order). No such space exists when n is even.
The problem boils down to the following. For a prime p and integers » > 1 and m > 2, the mod-p”
Moore space P™(p") is the homotopy cofibre of the degree p” map on S™~!. It is characterized by
the fact that H, (P™(p");Z) is Z/p"Z if n = m and is 0 if n # m. The factor of least connectivity
in QP?"(p") is the homotopy fibre of the degree p” map on S$?"~!, which does retract off QV for a
certain 3-cell complex V/, but the factor of least connectivity in QP?"+1(p") is a space constructed
by Cohen, Moore and Neisendorfer [CMN] whose mod-p homology is much more complex and is not

a factor of QV for some 3-cell complex V. So we approach the problem from a different perspective.
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Instead of trying to find a factor of least connectivity that is indecomposable, we are content to find
a copy of QP"T1(p") in QM and aim to identify the complementary factor.

In doing this we consider a much larger family of examples, most of which are not Poincaré
Duality complexes. A general result is proved in Theorem 5.8 which is then increasingly spe-
cialized. In the case presented below, the attaching map f in a homotopy cofibration S2" N
Vit P""(p") — M factors through Whitehead products and so composes trivially with the
pinch map /", P"*1(p") & P"F1(p") to the first wedge summand. Therefore ¢; extends to a
map M N P (pr). For 1 <k < m, let

m
ix: PPN — \/ P ")
i=1
be the inclusion of the k!’-wedge summand. Note that the Whitehead product [ij,1%) is a map
SPMp") AP (p") — Viv, P"(p"). There is a map S?" — S P"(p") A P"(p") which induces an

injection in mod-p homology.

Theorem 1.3 (appearing in the text as Theorem 7.7). Let p be an odd prime, r > 1 and n > 2.
Suppose that there is a homotopy cofibration

m
SQn L> \/ Pn-i—l(pr) M
i=1
where [ =321 <jckamlis ix] © (djx - v) for djx € Z and at least one d;y reduces to a unit mod-p.

Rearranging the wedge summands \/;11 P (p") so that some dy 4 reduces to a unit mod-p, there is

a homotopy fibration

@P™ () x C) v (\/ PP (")) — M 5 P (pT)
i=2
where C =~ <P” (P")A (\/ P"'H(pr))) \Y (SQ”'H \/P2”(p’")) , and this homotopy fibration splits after
7
looping to give a homotopy equivalence
QM ~ QP (p) x Q((QP”‘H(pT) x C) v (\/ P"+1(pr))>.
i=2

The interpretation of Theorem 1.3 requires care. Some of the spaces M are Poincaré Duality
complexes while others are not, and not all (n — 1)-connected (2n 4+ 1)-dimensional Poincaré Duality
complexes with H,,(M;Z) consisting only of odd torsion have the form described in the theorem. But
there are tangible results. For example, simply-connected 5-dimensional Poincaré Duality complexes
have been classified by Stocker [St]. The classification shows that if M is a Spin manifold and
Hy(M;Z) is a direct sum of Z/p"Z’s for p odd, then the attaching map for its top cell has the form
described in Theorem 1.3. If M is either a non-Spin manifold or a Poincaré Duality complex that is
not a manifold, then the attaching map for the top cell involves a stable term and the theorem does

not apply.
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Connected sums. A classical problem in homotopy theory is to determine the effect on a CW-
complex X, or its loop space QX, by attaching a cell. Rational homotopy theory has had some
success in this direction for certain families of attaching maps. Let S"~! Jo X s XUe bea
cofibration where f attaches an n-cell to X and ¢ is the inclusion. The map f is inert if ¢ induces
an epimorphism in rational homology. This implies that, rationally, 2¢ has a right homotopy inverse.
Inert maps have received notable attention, for example, in [FT1, Hall], as have assorted variants
such as nice, lazy and semi-inert attaching maps [Bu, HeL].

We consider an integral version of an inert map, and generalize from attaching a cell to attaching a
cone, that is, to a cofibration A Lo x L XuCA. Modifiying, we consider a homotopy cofibration
YA L> X %5 X’ where all spaces are assumed to be simply-connected and have the homotopy
type of CW-complexes. The map f is inert if {2 has a right homotopy inverse. Note there is no
localization hypothesis here.

Let ¥4 25 Y — Y’ be another such cofibration, where g need not be inert. As LA is a
suspension we may add to obtain XA ¢ X VY. In Theorem 8.6 we show that f+gisinert. If Cis
the homotopy cofibre of f + ¢ then we give a homotopy decomposition for QC' in terms of X and Y’
and prove additional related statements. The property that f + g is inert, regardless of whether g
is inert, is intriguing.

As a special case we consider the connected sum M#N of two Poincaré Duality spaces M and N
of the same dimension. It is natural to ask how the homotopy type of M#N reflects the homotopy
types of M and N. Theorem 1.4 provides an answer.

Let X and Y be the (n — 1)-skeletons of M and N respectively. Then there are homotopy
cofibrations S"~1 L+ X 5 M and $*!' %5 Y %4 N that attach the top cells to M and N
respectively. The connected sum of M and N has (n — 1)-skeleton X VY and the attaching map for
its top cell is f + g. We prove, among other properties, the following.

Theorem 1.4 (appearing in the text subsumed within Theorem 9.1). Let M and N be simply-
connected Poincaré Duality complexes of dimension n, where n > 2. Let X and Y be the (n — 1)-
skeletons of M and N respectively. If the inclusion X s M has the property that Qh has a right
homotopy inverse, then the following hold:

(a) there is a homotopy equivalence Q(M#N) ~ QM x Q(QM x Y);
(b) the map X VY — M#N has a right homotopy inverse after looping.

In particular, if X My M has the property that Qh has a right homotopy inverse, then so does
X VY — M#N, regardless of whether Y ¥, N has that property. The homotopy fibrations
F—X-"MandG — XVY — M#N then both have sections after looping and fit into the

framework of the paper.
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Interesting examples include connected sums of products of two spheres, which play an important
role in toric topology [BM, GPTW, GIPS]. Another example would take a connected sum of products
of two spheres and take its connected sum with a complex projective space of the same dimension.

Many more examples are considered in Section 9.

Polyhedral products. Let K be a simplicial complex on m vertices. For 1 <14 < m, let (X;, A;) be
a pair of pointed CW-complexes, where A; is a pointed subspace of X;. Let (X, 4) = {(X;, 4;)}™,
be an m-tuple of CW-pairs. For each simplex (face) o € K, let (X, A4)° be the subspace of [/~ X;
defined by

m
(X,A)7 = HE where Y =

X, ifieo
i=1 A;

ifi¢o.
The polyhedral product determined by (X, A) and K is

s

(X, )% = |J (X, 47 ¢

ceK i

X;.
1

For example, suppose each A; is a point. If K is a disjoint union of m points then (X, )X is
the wedge X; V ---V X,,, and if K is the standard (m — 1)-simplex then (X,*)¥ is the product
X1 X x X

Polyhedral products are currently a subject of intense study. They are at the locus of sev-
eral constructions from disparate areas of mathematics: moment-angle complexes in toric topology,
complements of complex coordinate subspace arrangements in combinatorics, monomial rings with
the Golod property in commutative algebra, intersections of quadrics in complex geometry, and
Bestvina-Brady groups in geometric group theory.

An important problem is to study the connection between Whitehead products (and higher White-
head products) and polyhedral products. There has been significant headway on this in the context
of the homotopy fibration

m
(COSX, 05X)K — (EX, )" — [[ =X

i=1
Here, (COYXX, Q¥ X)X is the polyhedral product formed from the pairs (CQXX;, Q¥X;) where
COXX; is the reduced cone on QX X;. In a sequence of papers [GT1, GT2, IK1, IK2] leading up
to K satisfying the combinatorial condition of being totally fillable (this includes shifted complexes
and Alexander duals of shellable complexes) the space (COQXX Q¥ X )K is shown to be homotopy
equivalent to a wedge of spaces of the form X! X; A---AX;, for varioust > land 1 < iy < -+ < i <
m. In [GT3, GPTW] for special cases and [AP, IK3] more generally, under such a decomposition
the map (COXX, QX X)X — (X, %)X is a wedge sum of iterated Whitehead products of the form
[Vi,s [ -+ [vi,,w] ...] where each v;, represents the inclusion of XX, into (XX, )X induced by the
inclusion of the vertex iy into K, and w is a higher Whitehead product corresponding to a (minimal)

missing face of K.
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We go a step further by showing that Whitehead and higher Whitehead products are pervasive
in the formation of the polyhedral products, regardless of whether K is totally fillable. If a set of
(minimal) missing faces is attached to K to form a new simplicial complex K, then we show that

on the level of polyhedral products there is a corresponding homotopy cofibration
24 L (23X, 0% — (32X, 9.

The inclusion (XX, %)% — []/", £X; has a right homotopy inverse after looping, and so fits into the
overall framework of the paper. Consider the homotopy cofibration ([]\~, QXX;)x XA BN 5 BN 5
from (3). On the one hand, in this context E = (COQXX, QX X)X and E' = (CQLX, Q2X)K, and
on the other hand, the James construction implies that there is a homotopy equivalence
(ﬁQEXi)xEA: {7 \V} (X3, A AN X)) AZA.
i=1 k=0 1<i;<--<ixr<m
This homotopy equivalence can be chosen so the following holds, where the homotopy between

suspended maps reflects the same feature in Theorem 1.1.

Theorem 1.5 (appearing in the text as Theorem 12.7). There is a homotopy cofibration

o0

\/ Vo (X A AX) AZA S (COEX, 08 X)K — (COEX, QEX)F

k=0 1<i;<--<ix<m
where the map ¢ has the property that ¢ ~ ¢ for a map ¢’ satisfying a homotopy commutative

diagram

o0 C/
\/ \/ (Xi, A~ A X, ) ASA —— (COENX, QN X)K

k=0 1<iy<--<ip<m

Vit Viciycociy cmlvin [vig Lo-[vig S11

(X, %)X,

This paper is organized as follows. Section 2 reviews the results in [BT2] that will be needed
later. Theorem 1.1 is proved in Section 3. Section 4 then considers two-cones, proves Theorem 1.2,
and relates the results to Moore’s Conjecture. Section 5 proves a general decomposition result in
Theorem 5.8 and in Section 6 this is specialized and applied to certain families of two-cones. Section 7
is a modification of the results in Section 6 that leads to the proof of Theorem 1.3 and applications
to loop space decompositions of (n — 1)-connected (2n + 1)-dimensional Poincaré Duality complexes
which are rationally copies of S?"*!. Section 8 builds on the notion of an inert map and proves a
general decomposition result in Theorem 8.6, while Section 9 specializes this to prove Theorem 1.4
and give an array of examples. Section 10 turns momentarily to algebra to calculate H,(QY) as
a Hopf algebra, where E 5 Y Iy Zisa homotopy fibration with a section after looping. In
Section 11 we return to homotopy theory to address a second foundational case involving extensions

across the inclusion of a wedge into a product, the James construction and Whitehead products
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that leads to the explicit description of Whitehead products in toric topology that is stated in
Theorem 1.5 and proved in Section 12.

It is also useful to have a guide on the sections needed to prove each of the main theorems.
Theorem 1.1 appears in Section 3 and depends only on Section 2. Theorem 1.2 appears in Section 4
and depends on Sections 2 and 3. Theorem 1.3 appears in Section 7 and depends on Sections 2
through 6. Theorem 1.4 appears in Section 9 and depends on Sections 2, 3 and 8. The homological
interlude in Section 10 depends on Sections 2 and 3. Theorem 1.5 appears in Section 12 and depends
only on Sections 2, 3 and 11.

The author would like to thank the referee for a careful reading of the paper, many valuable
suggestions for improvement, and spotting a gap in the original submission, the filling of which led

to more interesting mathematics.
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2. BACKGROUND

This section discusses the ingredients behind Theorem 2.2 as they relate to material that will come
later in the paper. Recall the blanket assumption that all spaces are assumed to be CW-complexes
so that weak homotopy equivalences are homotopy equivalences. We start with a well known lemma
and some notation.

The left half-smash of two path-connected spaces A and B is the quotient space defined by the

cofibration 4 -5 A x B — A x B where 11 is the inclusion of the first factor.
Lemma 2.1. Let A and B be pointed, path-connected spaces. Then there is a homotopy equivalence
AxYXB~(AANYXB)VXIB
which is natural for maps A — A’ and B — B’. O
For path-connected spaces A and B, let
j:B— Ax B

be the inclusion and let

qg: Ax B— ANB

be the quotient map that collapses B to a point. By Lemma 2.1 there is a natural map
i: ANYXB — AXx XB

which is a right homotopy inverse for Xq.
Suppose that f: A — Y and g: B — Y are maps. The map from AV B to Y determined by
f and g is denoted by

flgi:AvB —Y.

In particular, a choice of the homotopy equivalence in Lemma 2.1 is given by 7 L j.

Given maps a: YA — Y and b: ¥B — Y let [a,b]: YAA B — Y be the Whitehead product
of a and b. In what follows we will consider a map 27 x YA — FE with the property that the
composite Q7 A XA 5 QZ x $SA — E is a Whitehead product [, f] for some maps v and f. As
such, in these cases we prefer to write the Whitehead product with domain QZ A XA rather than
307 A A to emphasize the link to the half-smash.

The following was proved in [BT2]. Let ev: QY %Y be the canonical evaluation map.

Theorem 2.2. Suppose that there is a homotopy fibration E 2y Zand a homotopy cofibra-
tion $A v v Suppose that h extends to a map h':Y' — Z and let E' be the homotopy
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fibre of h'. This data is assembled into a diagram

E——=F

Z =—= 7.

where the vertical columns and the maps between them form a homotopy fibration diagram. Suppose

in addition that the map QY 2 07 has a right homotopy inverse s: QZ — QY. Then there is a

map 0: QZ x XA — E such that:

(a) there is a homotopy cofibration
0ZxsA-S B B,

(b) there is a homotopy commutative diagram

WZxYA—" o F

i(u_j)l J{p
(1L
QZASAVEA Dy

where v is the composite v: XQ0Z 25 Yy <5 Y. O

For the benefit of the reader, and to make explicit parts of the construction that will be used
later on, a sketch of the proof of Theorem 2.2 will be given. The key is a link between two seemingly
distinct constructions. First, let Q7 %, E be the connecting map for the homotopy fibration

E -2y " Z. There is a canonical homotopy action

a: QW xE—F

which extends the map QZ V E YL B, The composite QY x E WX 07 x E —%5 E therefore has
the property that its restriction to QY is null homotopic, resulting in a quotient map

0: QY x E— FE.

Second, it is well known that the homotopy fibre of the pinch map YVE — Y is naturally homotopy

equivalent to QY x E. From this we obtain a homotopy fibration diagram

QY XE —> E
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for some map I'. The link between the two constructions is the following, proved in [Gr].
Lemma 2.3. The maps © and I" may be chosen so that they are homotopic.. O

Assume from now on that © and I' have been chosen so that Lemma 2.3 holds. We will discuss
some general properties through to Proposition 2.6, and then use the material developed to sketch
a proof of Theorem 2.2. Suppose for some space B there is a map ¥B — E. One example of
this will be B = A, where A is as in the data for Theorem 2.2 and « will be an appropriate lift
for f, but other examples are also needed in Section 3. The naturality of the homotopy fibration

QY x E— Y VE — Y implies that there is a homotopy commutative diagram

Ixo r
QY x¥B ——= QY x E —— F

(7) i l ) l

YvEB . vyVvE oY

By Lemma 2.1 and its use in defining the map 4, there is a natural homotopy equivalence
(QY ASB)VEB 4 QY x ¥B.

The composite X B QY x £B — Y VB is the inclusion i of the second wedge summand.
The composite QY AXB 5 QY x©B — Y VEB can also be identified; it is a certain Whitehead
product.

To motivate the appearance of Whitehead products, in general suppose that X; and X, are

pointed, path-connected spaces. For j = 1,2, let
i X; — X1V X,
be the inclusion of the j**-wedge summand, and let ev; be the composite
evj: DOX; <5 X, -5 Xy V X,
Ganea [Ga] showed that there is a homotopy fibration
[evy,eva]

EQXl/\QXQ —)Xl\/Xg—)Xl XXQ

where the right map is the inclusion of the wedge into the product and the left map is the Whitehead

product of ev; and evy. Consider the composite

levy,eva]

YOX; AQXy R X v X, — 2 X

where ¢; is the pinch map to the first wedge summand. The naturality of the Whitehead product

implies that this composite is homotopic to [g1 o evy, g1 o evs]. But g1 o evy = ¢y 0 i3 0 ev is null
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homotopic since ¢; o i5 is. Therefore g; o [evy, evs] is null homotopic, so there is a lift

QXl X X2

]
levy,eva]

YOX1 ANQXy —— X1V X

for some map £. Suppose that X5 is a suspension, Xo ~ XX}, and let E: X) — QX X} be
the suspension map, which is adjoint to the identity map on XX}. Then we may precompose
[evy, eva] with LX) A X)) AP ROX A O3 X/, The naturality of the Whitehead product implies
that [evy,evs] o (X1 A E) ~ [evy,evy o ZE]. Since ZF is a left homotopy inverse for ev, we have

evg 0N E =is0evoXFE ~ i5. Combining this with the lift £ gives a homotopy commutative diagram

QX x $X}

ey
[evl,iz]

YOX; A X, ——> X; VEX)

where £ = £ o (X1 A E). Writing QX3 A X} as QX7 A XX), in [BT2] it is shown that £ can be
chosen so that ¢ is the map QX; A BX, — QX5 x LX)

Thus, returning to the case of Y vV ¥ B, there is a homotopy commutative diagram

ilyj
QY AXB)VEB —= QY x £B
(8) \ ‘L
[e'u1 ,’iQ]J_Z‘Q
Y VEB

and the map i L j along the top row is a homotopy equivalence. Combining (7) and (8) and using

the naturality of the Whitehead product results in a homotopy commutative diagram

(QY ASB)VEB — > E

) l
[ev,poa] L(poc

Y

where U =T o (1 x a) o (i L j).
Next, suppose that the map Y "y Z in Theorem 2.2 has the additional property that Qh has
a right homotopy inverse s: QZ — QY. Then the fibration connecting map 22 — E is null

homotopic, so the homotopy action QZ x E - F factors as a composite
QZxE-"5QZxE—E

where 7 is the quotient map and the right map is a choice of extension. The next lemma shows that

an extension may be chosen to be the composite

sx1

T ZxEX oy E- S E
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Lemma 2.4. Suppose that the homotopy fibration E — Y Py 7 has the property that Qh has a

right homotopy inverse s: QZ — QY. Then there is a homotopy commutative diagram

OZxE—>E

I

O x FE —— F.

Proof. Consider the diagram

sx1 Qhx1 a
QZxE — QY xXFE —— QZxFE —— F

A

s S)
VW xE —— QY x F

E.

The left square commutes by the naturality of 7 while the right square commutes by definition of ©.
Since s is a right homotopy inverse of Qh, the top row is homotopic to a. Thus the homotopy
commutativity of the diagram implies that a ~ © o (s X 1) o 7. By Lemma 2.3, ©® o T", and by
definition, @ = I' o (s x 1). Therefore Therefore a ~ "o (s X 1) o™ = @ o 7, giving the asserted

homotopy commutative diagram. O
Define ¥ by the composite
9: QZ x ©B 28 QY x E - E.

Note that as (s x @) = (1 x ) o (s x 1), the definitions of § and @ immediately imply the following.

Lemma 2.5. Suppose that the homotopy fibration E — Y Iy 7 has the property that Qh has
a right homotopy inverse s: QZ —s QY. Then for any map ¥B -~ FE there is a homotopy

commutative diagram
Q7 x ¥B

= .

OZxE —> E.

The map ¥ is the bridge between the homotopy action, in the form of @, and Whitehead products
as in (9).

Proposition 2.6. Suppose that there is a homotopy fibration sequence Q07 By Mg
where Qh has a right homotopy inverse s: QZ — QY. Let a: ¥B — E be a map. Then there is

a homotopy commutative diagram
(2] 9
(QZAEB)VEB ——= QZx¥XB —— E

p
l[evoXs,poa] Lpo l
Y.
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Proof. Consider the diagram

(sA1)V1

(QZASB)VEB — > (QY ASB) VB
i J/ ev,poa] L (poa)
ilj ilj
sx1 FO(ID(a) D
WZx¥B — QY x ¥B E Y.

The left square homotopy commutes by the naturality of ¢ and j while the right triangle homotopy
commutes by (9). The composite I'o (1 X a) o (s x 1) = I'o (s X «) along the bottom row is the
definition of ¥. The naturality of the Whitehead product implies that the composite in the upper
direction around the diagram is [ev o ¥s,po a] L (po «). Thus the homotopy commutativity of the

diagram implies that pofo (i L j) ~ [evoXs,poa] L (poa), as asserted. |

Finally, we justify Theorem 2.2. In the data for Theorem 2.2, focus on the map YA 5 V. The
extension of h to h’ implies that h o f is null homotopic. Thus f lifts to a map g: XA — FE.
However, not every choice of lift g will also make part (a) of Theorem 2.2 hold. For part (a) to
hold, the composite YA -2+ E —» E’ must be null homotopic, or equivalently, g must factor
through the homotopy fibre F' of E — E’. In terms of the data in (5), as the upper square is a
homotopy pullback, F' is also the homotopy fibre of the map ¥ — Y. Since Y’ is the homotopy
cofibre of B4 L Y, the map f lifts to F' so for any such lift we may choose g to be the composite
YA — F — E. Assume from now on that such a g has been chosen. Then [BT2] ensures that
Theorem 2.2 (a) holds.

Define 6 by the composite
0: 0ZxSAZL 0y x E-S E.

Then 6 is a special case of the map ¥ in Lemma 2.5, and as in that lemma, there is a homotopy

commutative diagram

OZ x XA

(10) i1N

OZxE —> E.

Applying Proposition 2.6 to g and 6 we obtain a homotopy commutative diagram

ilyj
(QZASAVEA > 0ZxTA > E

(1) l
[evoXs,pog] Lpog

Y,

)

which is exactly the statement of Theorem 2.2 (b).
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Remark 2.7. Theorem 2.2 also has a naturality property, not explicitly stated in [BT2]. Suppose

that there is a map of principal fibrations

0z —sE-—Csy

07 ——= 7 7. Y.
The map T is natural for maps of principal fibrations by [BT2, Proposition 2.9] and therefore, by its

definition, so is @ provided there is a homotopy commutative diagram of right homotopy inverses

0z — > Qv

(12) i i
0z - av.

The construction of the lift g in [BT2] is natural and hence so is the homotopy commutative dia-
gram (10). The naturality of the Whitehead product then implies that (11) is natural. Thus the
homotopy commutative diagram in Theorem 2.2 (b) is natural for maps of principal fibrations with
compatible right homotopy inverses. Further, the naturality of § ~ @o (1 x g) implies that the ho-
motopy cofibration in Theorem 2.2 (a) is natural in the sense that we obtain a homotopy cofibration
diagram

0
QO xA——-sFE —F

Lo

~ o~ 0 ~ ~
QZ/ xA——F —— F
where the left square homotopy commutes by the naturality of 8 and the dashed arrow is an induced
map of homotopy cofibres that makes the right square homotopy commute.

In conclusion, Theorem 2.2 is natural for maps of principal homotopy fibrations with the property

that the right homotopy inverses satisfy the homotopy commutative diagram 12.
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3. THE FIBRE OF THE PINCH MAP

In this section we prove Theorem 1.1. This begins with some information on homotopy actions
and half-smashes. In Lemma 3.2 it is shown that the homotopy associativity of the homotopy action

QZ x E —% E has a partial analogue in the half-smash case with respect to the map QZ x E 2 E.

Lemma 3.1. Let B,C and D be pointed, path-connected spaces. Then there is a natural homeo-

morphism

(Bx C)x D - Bx (Cx D)

satisfying commutative diagrams

Ixm
BXCXD*X>B><(C[><D)

and

(BxC)x D — = B (CxD)

| i

BANCAND === BANCAD

where in the second diagram the vertical maps are the quotients to the smash products.

Proof. The map B x C x D - (B x C) x D identifies the subspace B x C x * C B x C' x D to
the basepoint. On the other hand, the map B x (C' x D) —— B x (C x D) identifies the subspace
B x %' C B x (C' x D) to the basepoint, where ' is the basepoint of C' x D. But * is the result of
identifying the subspace C' x x C C' x D to the basepoint. Thus 7 o (1 X 7) identifies the subspace
B x C x % C B x C x D to the basepoint. Therefore (B x C') x D and B x (C' x D) are identical
as quotient spaces of B x C' x D. This identification is natural since each quotient map involved is
natural.

The identification of (B x () x D and B x (C'x D) as identical quotient spaces of B x C' x D implies
that the further quotient maps in both cases to the smash product B A C A D are also identical,

giving the second asserted commutative diagram. |

Given a homotopy fibration sequence Q22 ey g , one property of the homotopy

action QZ x E — E is that it satisfies a homotopy commutative diagram

pux1
VW xOQZL X E —— QZx FE

(13) | 7o |-
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where p is the loop space multiplication. If QA has a right homotopy inverse then a factors as the
composite

QZXE-50ZxE-SE
where we may take @ as in Lemma 2.4. Ideally, we would like (13) to descend to a homotopy
commutative diagram

pux1

(QZxQZ)x E QZ x E

T

VZx(QZXE) > QIxE —" ~ E.

However, it is not clear if this diagram does in fact homotopy commute, as will be explained mo-
mentarily. As it would be useful to have such a diagram in what is to come, we will discuss to what
extent valid information can be extracted from the diagram.

The issue is a general one. Let B, C' and W be pointed, path-connected spaces. The homotopy

cofibration sequence B — B x C — B x C % ¥'B induces an exact sequence of pointed sets
(14) 2B, W] 5 [Bx C,W] = [B x C,W] — [B, W].

The inclusion of B into B x C has a left inverse given by the projection B x C — B. Therefore §
is null homotopic, implying that 6* is the zero map. However, as (14) is only an exact sequence
of pointed sets the fact that §* = 0 does not in general imply that 7* is a monomorphism. More
precisely, the homotopy coaction Bx C N (BxC)VXB induces an action [BX C, W] x [E¥B, W] —
[B x C,W] of the group [XB, W] on the set [B x C, W]. The orbits of this action have the property
that if a,b € [B x C, W] are in different orbits then 7*(a) # 7*(b). However, it may be the case that
distinct homotopy classes are in the same orbit and both are sent by 7* to the same element. The
fact that 6* = 0 only implies that the orbit of the trivial map consists of a single homotopy class.
In our case, we may not be able to use the fact that ao (1 x a) ~ ao (u x 1) to show that the
quotient map (2Z x QZ) x E " (QZ x QZ) x E induces a homotopy @o (1 x @)ogp ~ao (ux 1).

However, we are able to prove the following, which will suffice for our purposes.

Lemma 3.2. Suppose that there is a homotopy fibration sequence Q7 B v " Z where Qh
has a right homotopy inverse. Then the diagram

pxl

(QZxQZ)x E QZ x E

QI (VW XE) —=QIxE — > E

has the following properties:

(a) it homotopy commutes when precomposed with the map (QZ x QZ) x E
(QZ xQZ)x E;
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(b) it homotopy commutes after suspending;

(c) it commutes in homology.
Proof. First consider the diagram

pnx1
VI xOVZXxE —— QZxXFE

QLX) K E s QZxE "~ .
The left square commutes by the naturality of the quotient map 7 and the right side commutes by
Lemma 2.4. Thus the homotopy commutativity of the diagram implies that ao(ux1) ~ @o(ux 1)o.

Next consider the diagram

1xa

1xm
OWZXOVIXE — "> QZx (UK E) —= QZx E

l | BN
™ ™ ™
%) 1xa a
QUZXxQZ)X E —= QZx (QZXE) — QZx E —— FE.

The left square commutes by Lemma 3.1, the middle square commutes by the naturality of the
quotient map =, and the right triangle commutes by Lemma 2.4. Notice that Lemma 2.4 also
implies that the top row is homotopic to 1 X a. Thus the homotopy commutativity of the diagram
implies that ao (1 x a) ~a@o (1 x @) o p ow. Hence, from the property ao (1 x a) ~ao (ux1) of a
homotopy action, we obtain @o (1 x @) o om ~a@o (X 1) o, proving part (a).

Since the map Y7 has a right homotopy inverse, part (b) follows from part (a). Part (c) then

follows from part (b) since suspending induces an isomorphism in homology. O

Lemma 3.2 motivates a definition, which appeared in a different context in [Gr].

Definition 3.3. Let f,g: X — Y be maps of pointed, path-connected spaces. Then f and g are
congruent if L f ~ Xg.

Note that if f and g are homotopic then they are congruent but the converse need not hold. Note
also that f congruent to g implies that, in homology, f. = g.. For our purposes, congruence is
often shorthand for saying two maps induces the same map in homology. This will often be used
in the context of homotopy equivalences when both X and Y are simply-connected. In this case,
if f is a homotopy equivalence then it induces an isomorphism in homology, so g also induces an
isomorphism in homology by the congruence property, and hence is also a homotopy equivalence by
Whitehead’s Theorem. Other properties of congruent maps are discussed in [Gr] but they will not

be used here.

Remark 3.4. Lemma 3.2 may now be rephrased as saying the composites ao(ux 1) and ao(1x@)op

are congruent.
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Now specialize to the homotopy fibration sequence
17}
orx -5 F-Lyx vy 4 ux

where ¢; is the pinch map to the first wedge summand. It is known (see, for example, [N4, 4.3.2])
that there is a homotopy equivalence

oo

E~\/ X" AxY

k=0
where X° A XY is regarded as XY, and the map from p can be identified in terms of iterated
Whitehead products based on the inclusions of ¥ X and XY into XX VY. We show in Theorem 3.15
that such an equivalence can be chosen so that it also inherits properties of the homotopy action of
Q¥ X on E.

This begins with an initial homotopy equivalence for F that depends on a special case of Theo-

rem 2.2 proved in [BT2].

Theorem 3.5. Suppose that there is a homotopy cofibration %A —f> Y S ¥’ Let E be the
homotopy fibre of h and let g: XA — E be a lift of f. If Qh has a right homotopy inverse
5: QY — QY then the the lift ¢ may be chosen so that:

(a) the composite QY x LA YOV xE-" Eisa homotopy equivalence;
(b) there is a homotopy fibration
QY xxA Sy Ly
where x is the sum of the maps QY' x YA - LA Ty and QY x DA %
v’ axA @y
Proof. While proved in [BT2], the proof is included to make the assertions transparent. Taking
Z =Y’ in Theorem 2.2 gives a diagram of data

E——F

o
Y =—=Y".

where the vertical columns and the maps between them form a homotopy fibration diagram. Since Qh

has a right homotopy inverse, by Theorem 2.2 there is a homotopy cofibration
' xsA-SE—FE.

As E' is contractible, 6 is a homotopy equivalence. By (10), 6 is homotopic to the composite @o(1x g)
for an appropriate choice of a lift g of f. This proves part (a). Defining x as p o 6, part (b) follows
immediately from the statement of Theorem 2.2 (b). O
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Example 3.6. Start with the homotopy cofibration
DY 5 X VY 45X

where iy is the inclusion of the second wedge summand. Let E be the homotopy fibre of ¢; and let
g: XY — E be a lift of i5. Since the inclusion i of the first wedge summand is a right homotopy

inverse for ¢, Theorem 3.5 applies to show that g can be chosen so there is a homotopy equivalence
OSX kY 2 onxX x E-SE

and there is a homotopy fibration
QZX x TY 5 EX VEY 5 X

where x is the wedge sum of the maps QXX x XY 5 XY 2, ¥XVEY and QEX x XY — 2
OSX ARy S vy v sy

Remark 3.7. Example 3.6 works equally well with XX replaced by a space X’ that is not necessarily

a suspension, but the use of XX is to align with later examples and applications.

Next, we build towards Theorem 3.15. In general, the James construction gives a homotopy
equivalence YOXX ~ \/72 | ¥ X Ak which is natural for maps X — Y. There are different choices
of such an equivalence and it will help if we fix one. Focus on the suspension X £, Qv X. For

k > 1, let e, be the composite

Xk
en: X0 S (onx)<k L o x

where p is the standard loop multiplication. There is a natural homotopy equivalence $(A x B) ~
YAVIBV (XAAB). Tterating this we obtain a natural map X7 A-+- A X — 3(Xq X -+ x Xj).
Let ¢ be the composite

dp: TXM 5 DX k) 2% $ONX.

Let

¢: \/ TXM — TOX
k=1
be the wedge sum of the maps ¢, for k > 1.

Lemma 3.8. The map \/;—, DX 2L $OYX s a homotopy equivalence that is natural for maps
X —Y.

Proof. By the Bott-Samelson Theorem there is an algebra isomorphism H, (QX.X; k) = T(H,(X;k))
where T'( ) is the free tensor algebra functor and k is a field. By construction, the map ¢ induces an
isomorphism onto the suspension of the submodule of tensors of length k. Thus ¢, is an isomorphism.

As this is true for homology with mod-p coefficients for any prime p and for rational coefficients, ¢
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induces an isomorphism in integral homology. Thus ¢ is a homotopy equivalence by Whitehead’s
Theorem.

The naturality of ¢ follows by the naturality of e, and the map LX"¥ — S(X*F), |

We now turn to specifying a homotopy equivalence QXX x XY ~ \/,;“;O X" A SY that will be

needed to prove Theorem 1.1. Let
bi: XAXY — X x XY
be the inclusion i. For k > 2, define
b: XMAZY — (XF) x DY
recursively by the composite

XMADY —= 5 XA (XM IASY) — o X x (XM ASY)

1Xbr—1 -1

X (XTI nY) L (X x XY kDY —— (X)) x 2Y
where ¢ is the homeomorphism from Lemma 3.1.

For k > 1, let
G (XF) X ZY — XM ATY

be the quotient map to the smash product.

Lemma 3.9. For k > 1 the composite
XM ASDY 2 (XF) i Y 25 XAR A RY
is homotopic to the identity map.

Proof. The proof is by induction on k. The k = 1 case holds because b; is defined as the inclusion
XATY -5 X x YY, the map ¢ is a left homotopy inverse of the quotient map X x XY 2 X x Y,
and by definition ¢; = gq.

For k > 2, suppose that qx_1 o by_1 is homotopic to the identity map. Consider the diagram

IXbg_1 -1

XA (XM IATY) o X (XM IASY) 2 X ) (XF 1k BY) — = (X x XF 1) x DY

T~ I l |

XA(XMIATY) == XA (XMIATY) =— (X A XM ATY

where the vertical maps are quotient maps to the smash product. The left triangle homotopy
commutes since ¢ is a right homotopy inverse of ¢, the middle square homotopy commutes by
inductive hypothesis, and the right square commutes by Lemma 3.1. By definition, by is the top
row (up to identification of X A (X"~ AXY) as X" AZY and (X x XF71) x Y as (X *F) x XY)
and the right vertical map can be identified with qi. Thus ¢ o by is homotopic to the identity map,
proving the inductive step. O
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Let
c: XY — QY X x XY

be the inclusion j and for k£ > 1 define ¢; by the composite

e X1

o XMATY 25 (XF) x BV S ONX x BY.

Let

c: \/ X"ATY — Q8X x DY
k=0
be the wedge sum of the maps ¢, for k& > 0, where X"\? A XY is understood to be LY.

Lemma 3.10. The map \/ZO:0 XM ATY -5 QY X x XY is a homotopy equivalence.

Proof. Take homology with field coefficients. By the Bott-Samelson Theorem there is an algebra

isomorphism H,(QYXX) = T(V) where V = H,(X). The homotopy equivalence QXX x XY ~
(QXX AXY) VXY therefore implies that there is a module isomorphism

H.(QSX x DY) <T(V) ® ﬁ*(zy)) @ H,(ZY).

By Lemma 3.9, the map X"* A XY LN (X k) x Y is a left homotopy inverse for the quotient
map (X**) x XY 2% X A XY. Therefore the image of (by), is isomorphic to the submodule
H,(X)®* @ H,(SY). The map (ej, X 1), maps this submodule isomorphically onto V®* @ H, (XY).
Thus, if k > 1, as ¢ is defined as (eg X 1) o b, the image of (cg)« is isomorphic to the submodule
Ve fI*(ZY). Since ¢g is the inclusion of XY into QXX x XY, its image in homology is H,(XY).
Thus ¢, is an isomorphism. As this is true for homology with any field coefficients, ¢ induces an

isomorphism in integral homology so ¢ is a homotopy equivalence by Whitehead’s Theorem. ]

We now define two maps \/Zo:O X" AYY — E, both of which will be homotopy equivalences,
and which are congruent. First, let

do: XY — E

be g. For k > 1, let di be the composite
dy: X" ASY <5 08X x XY 24 0NX x E -5 E.

Let
o0
d: \/ X AZY — E
k=0
be the wedge sum of the maps dj for k£ > 0. Since c is the wedge sum of the maps ¢ for £ > 0, the
map d may equivalently be written as the composite

o0

\/XA’“/\ZY%QEXMEY&QZXMELE.
k=0

Lemma 3.11. The map d is a homotopy equivalence.
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Proof. This follows immediately since d = @ o (1 X g) o ¢ and, by Example 3.6 and Lemma 3.10

respectively, both @ o (1 X g) and ¢ are homotopy equivalences. ]

Next, let

0:2Y — F

be g. For k > 1, let 0 be the composite

Ex0,_1

0t XA (XM IASY) — 0 X (XM IAYY) 225 OSX x E—25 F.

Let

?: \/X““/\EY—)E
k=0

be the wedge sum of the maps 0 for £ > 0. We will show that 0 is congruent to d, that 9 is a

homotopy equivalence, and that it lifts a certain wedge sum of Whitehead products on XX VvV XY
Lemma 3.12. If k=0 or k=1 then 0y = d. If k > 2 then 0y is congruent to dj.

Proof. First, observe that 09 = dy since, by their definitions, both equal g. Next, by definition,
0 =ao(Exdy)oi=ao0(Exg)oi On the other hand, by definition of d; and ¢; we have
dy =ao(1xg)ocy =ao(lxg)o(er x1)oby. By definition, e; = E and b; = 4, so we obtain
dy =ao (E x g)oi. Thusd; =d;.

Now suppose that k > 2 and assume inductively that 0;_; is congruent to di_;. By definition,

drp, =ao (1x g)oc and ¢ = (e X 1) 0 by, so dj, is equivalently described by the composite
(15) XMAY 2 (XF) kDY S ONX x E -2 E.

Consider the diagram

ED((ek_lng) 1xa

X x (X1 x2Y) — 5 08X x (QXX x E) OSX x E

- e b

(Exek,l)xg

(X x X1 xny — 7 (ORX X Q9X) K E > QSX X E — = F

where ¢ is the homeomorphism in Lemma 3.1. The left square commutes by the naturality of ¢. The
right rectangle may not homotopy commute but the two ways around the diagram are congruent by
Lemma 3.2. By definition, e, = po E** where p is an iterated loop multiplication on QX X. Thus

‘ he C()mp()SI( €
X —>X X R X _—
X XXk X QEX QEX xk e QE.X QEX " QEX

is, on the one hand, po (F X ex_1), and on the other hand, ex. Therefore the bottom row in the

diagram is @ o (ex X g).
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Next, by definition of by, there is a commutative diagram

i IxXbg_1
XA XM TIATY) o X x (XM TASY) —— = X & (XXE1 x 2Y)

(X x X*F—1y x 2Y.

Juxtapose the two previous diagrams. In the lower direction we obtain @o (ej X g) oby, which, by (15),
is dj. On the other hand, the upper direction is @o (1 x @) o (E X (ex—1 X g)) o (1 X bg_1) o i which
may be rewritten as @o (E X (@o (ex—1 X g)obg_1))oi. By (15) this is the same as @o (E X dx_1) o1.
Hence dy, is congruent to @ o (E X di_1) o 1.

By the inductive hypothesis, dx_1 is congruent to d;x—1 so @ o (E X di_1) o i is congruent to

ao (E X 0_1)oi. By definition, 0y =@ o (F x 0;_1) o i. Hence dy, is congruent to 0. O
Lemma 3.13. The map 0 is congruent to d. Consequently, 0 is a homotopy equivalence.

Proof. By Lemma 3.12, dj, is congruent to 0 for all £ > 0. Since d and 0 are the wedge sums of the
maps dj and 0 respectively, we obtain that d is congruent to 0. Congruence implies that d, = ..
By Lemma 3.11, d is a homotopy equivalence so d, is an isomorphism. Hence 0, is an isomorphism

and so is also a homotopy equivalence by Whitehead’s Theorem. (]

We next show that 9 lifts certain Whitehead products. In general, given maps u: XA — Z and
v: X B — Z define the iterated Whitehead product

ad®(u)(v): ANNASB — Z

recursively as follows. If k = 0 then ad®(u)(v) = v. If k > 0 then ad®(u)(v) = [u,ad* " (u)(v)]. In

our case the roles of u and v will be played by the inclusions

i1: XX — XX VXYY i9: XY — XX VXYY
of the left and right wedge summands respectively.
Lemma 3.14. For each k > 1 there is a homotopy commutative diagram

Ak Ok
XMAY —— F

p
adk (il ) (7,2) l

YX VYY.

Proof. The proof is by induction on k. For the base case when k¥ = 1 we want to show that

pody = [i1,42]. By Lemma 3.12, 9, = d; so it is equivalent to show that p o d; =~ [i1,i2]. Consider
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the diagram

XASY — '~ X kXY

iE/\l lElxl

i 1 a
(16) OSXAYY — > QXX DY — % OSX X E — = F
p
[evoXQiy,pog] l
$X VY.

The top left square homotopy commutes by the naturality of . The lower triangle homotopy
commutes by Proposition 2.6 with B =Y and oo = g. Observe that the composite @o(1x g)o(Ex1)oq
along the top direction around the diagram is the definition of d;.

Now consider the composite in the lower direction around (16). Write the identity map on XY
as the suspension of the identity map on Y. So we are considering [ev o ¥Qiy,p o g] o (E A X1).
Observe that X % X VXY is a suspension, say i1 ~ i}, so the naturality of E implies that
Q1o E~ Q%) o E ~ Eoi}. As ev is a right homotopy inverse for ©E we obtain ev o 3XQi; o X F ~
ev o X FE o ¥} ~ ¥} ~ i;. Therefore the naturality of the Whitehead product and the fact that

po g =iy imply that
[ev o Xy, pog|lo (EAXL) ~ [evo XQiy o BE,po g] =~ [i1,i2].

Thus the homotopy commutativity of (16) implies that p o dy ~ [i1,2].

Assume inductively that pody_; ~ ad*~!(i;)(i2). Consider the diagram

XA (XMHIASY) — s Xk S(XMLAY)

lE/\l iEKl

i IX0p—_1 a
QXX A (XMFIASY) — = ONX x QXM IAY) — = OSX X E — > E

p
[evoXiq,pody 1] \L

XX VY.

The top left square homotopy commutes by the naturality of . The lower triangle homotopy
commutes by Proposition 2.6 with B = X"~1AY, Z = £X and a = 04_;. The composite
a@o (1 x0g_1)0(FE x1)oi along the top direction around the diagram is the definition of 9. Again
writing the identity map on XY as the suspension of the identity map on Y, the naturality of the
Whitehead product and the inductive hypothesis p o 9,1 ~ ad*~!(i;)(i) then imply that

[evoXQiy,podp_1]o(EAXL) ~ [evoXQij o XE,pody_1] ~ [i1,ad" (1) (iz)] = ad®(i1)(iz).
Thus the diagram implies that p o 03 ~ ad*(i1)(i2), completing the induction. |

Putting all this together we are able to prove Theorem 1.1, re-stated as follows.
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Theorem 3.15. Let X andY be path-connected, pointed spaces and consider the homotopy fibration

E—YXVYY 2% ©X. There is a homotopy commutative diagram

V2 XMAsy — 2 o p

p
Vizo tm\ l

YX VXYY
where:

(a) 0 is a homotopy equivalence;

(b) 0 is congruent to d, where d is the composite

\/X“@AEY%QZXKEYMQEXKEEE.
k=0

Proof. By definition, 0 is the wedge sum of the maps 0 for £ > 0. When k£ = 0 we have 09 = ¢
where p o g = iy while ad®(i;)(i2) = io. When k > 1, by Lemma 3.14 we have p o 0;, ~ ad*(iy)(i).
Thus pod ~ \/3—, ad®(i1)(i2), implying that the asserted diagram homotopy commutes.

Parts (a) and (b) are proved by Lemma 3.13. O
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4. BASED LOOPS ON CERTAIN 2-CONES

The main result in this section is Theorem 4.6, which will then be specialized to prove Theorem 1.2.
We go on to give applications to Moore’s conjecture.

In general, start with the data

7 —

and suppose that Qh has a right homotopy inverse. By Theorem 2.2 (a) there is a homotopy
cofibration

QZxyA-HE - F

where the restriction of 6 to XA is a map
g:XA— FE

which lifts f through p. The goal is to determine the homotopy type of E’ by knowing properties of
the space E and the map . In Theorem 4.6 several hypotheses are given which will let us do this.

One hypothesis is that Z is a suspension. Rewriting the data, we have

E—F

, b

A Y Y’
]
YX == 3¥X

where h has a right homotopy inverse, there is a homotopy cofibration
OSXx YA E-— E

and the restriction of 6 to A is a map ¢g: XA — F that lifts f through p. The appearance of
QXX lets us take advantage of the James construction.

For k > 0, let Ji(X) be the k*f-stage of the James construction. Explicitly, Jo(X) = * and
if & > 1 then Ji(X) = X*¥/ ~ where (21,...,%¢% Tei1,- s Th) ~ (T1,-os %, T, Tegts-- -, Th)-
There is an inclusion Ji(X) — Jgx41(X) given by sending (x1,...,xx) to (1,..., Tk, *). Taking a
direct limit gives the space J(X), and James [J1] showed that there is a homotopy equivalence of

H-spaces J(X) ~ QX X. Let ji be the composite

gr: Je(X) — J(X) = QXX
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Let D be any pointed, path-connected space. For k > 1 let I be the composite

—XEL ORX X (DX x BD) 2 (QLX x QXX) x £D

1Xcy

I;: QXX x (X" AXD) -2,

where ¢, was defined in Section 3 and ¢ is the homeomorphism in Lemma 3.1. Recall that, generi-
cally, the map B 4 Ax B is the inclusion. For k > 1 let Jj, be the composite

Je—1X1

Te: Joo1(X) x ©D 2223 05X i 5D -5 Q8 X x (Q5X x £D) £ (X x O5NX) x BD.

Lemma 4.1. The composite

IkLJk pxl

OSX x (X" AED)V (Jp_1(X) x £D) =% (Q8X x QLX) x ©D 25 Q8 X x ©D

is a homotopy equivalence.

Proof. Take homology with field coefficients. Let V = ﬁ*(X ). By the Bott-Samelson Theorem
there is an algebra isomorphism H,(QXX) = T(V). Let us rewrite this as a module isomorphism
H.(QXX) 2 @2, V. Therefore there is a module isomorphism
H,(QYXX x ¥D) = é Ve @ H,(ED)
t=0
where we regard VO @ H,(XD) as H.(XD).
In homology, the map Ji_1(X) %4 XX induces the injection Rl Vet 5 @, Ve Ob-

serve that the composite
QXX x D L5 QXX x (QEX x £D) £ (QEX x QEX) x £D 23 08X x £D

is homotopic to the identity map: for if the domain QXX x XD is regarded as * x (QXX x ¥.D)
then j can be regarded as b x (1 x 1) where b is the inclusion of the basepoint, so the naturality of ¢
implies that ¢~ o j is equal to the composite * x (QXX x ¥D) ii—) (x x Q¥X) x ¥D —— (ex1)
(2L X x Q¥ X) x XD, implying that (ux 1) o~ o is homotopic to the identity map. Therefore in
homology the map (u X 1) o Ji induces the same map as jx_1 X 1, which is the injection ®f:_11 Ve
H.(£D) —» QR V' ® H,(ED). On the other hand, as in the proof of Lemma 3.10, in homology
the map ¢, induces the inclusion V&* @ H, (SD) — RV ® H, (D). Therefore (1 x 1) o Iy,
induces the inclusion ®;°, V& @ H,(ED) — @;°,V® ® H.(ED). Hence I; L Jj, induces an
isomorphism in homology. As this is true for homology with mod-p coefficients for all primes p and

rational coefficients, I 1 Ji therefore induces an isomorphism in integral homology, and so is a

homotopy equivalence by Whitehead’s Theorem. (]

Next, suppose that there is a map

0:¥D — FE.

For k > 0, let ¢, be the composite

Z: XMEAYD S ONX x ED P2 ONX x B



HOMOTOPY FIBRATIONS WITH A SECTION AFTER LOOPING 31

and let J; be the composite

Jr—1X6

Tt Joo1(X) x SD 2505 X x E—2 QXX x (QXX x E).

Lemma 4.2. There is a homotopy commutative diagram

I LJg
(QEX x (XM ATD))V (Je_1(X) x ED) == (QLX x QX)) x £D

i(lxl)xé
(X x OZX)x F

|+

OSX x (QEX x E).

Proof. Tt suffices to show that the diagram homotopy commutes when restricted to each wedge
summand in the domain. Observe that the definition of I} as ¢ =1 o (1 x ¢) and the naturality of ¢

give a homotopy commutative diagram

I (1x1)x5
QX x (XM ATD)) — s (Q5X x O5X) & 5D —— s (QSX x Q5X) x E

\ J{“’ lsﬁ
1Xcy
1x(1x4)

ONX x (QZX x ©D) — = ONX x (QTX x E).

By definition, ¢; = (1 X §) o ¢k so the composite in the lower direction around the diagram is 1 x ¢.
Thus o ((1 x 1) x d) o Iy ~ 1 x ¢, as asserted.
Next, the naturality of ¢ and j give a homotopy commutative diagram

-1

- ,
T (X)x DS Q89X x BD — - QEX x (Q5X x £D) > (QEX x QXX) x £D

1x6 ilx(lx&) l(lxl)[x&
Jk—1X6 i .

WX KE — > OSX & (Q5X X E) —— > (QEX x QEX) x E.

Observe that the top row is the definition of Ji while along the bottom row the composite jo(jx—1xJ)
is the definition of Jj. Therefore the diagram implies that ((1 x 1) x §) o Ji, =~ ¢~ o Ji. Thus

1

po((I1x1)xd)oJy~¢pop tody~Jy, as asserted. O

Proposition 4.3. Suppose that there is a homotopy fibration sequence QXX O E Py Moy
where Qh has a right homotopy inverse. Suppose that there is a map 6: XD — E such that the
composite

QX x XD XL ONX x E -5 B

is a homotopy equivalence. Then the composite

(1xex) LTk 1xa

QX x (XM ALD)V (Jr_1(X) x D) QXX X (X X E) 23 QX x E -5 E

is a homotopy equivalence.
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Proof. Consider the diagram

I LJy, puxl

(QEX % (X A D))V (Jeo1(X) x £D) 25 (Q5X x Q5X) x £D ONX x D
i(lxl)xé \leé
1
QXX x ONX) x E - ONX x E
(

P

OSX X (XX K E) —> QXX x E —— > E.

The left triangle homotopy commutes by Lemma 4.2 and the upper right square clearly commutes.
The lower right square may not homotopy commute but by Lemma 3.2 the two ways around the
square are congruent. The top row is a homotopy equivalence by Lemma 4.1 and the right column
is a homotopy equivalence by hypothesis. Therefore the upper direction around the diagram is a
homotopy equivalence. In particular, it induces an isomorphism in homology. As congruent maps
induce isomorphisms in homology, this implies that the entire diagram commutes in homology, and
therefore the lower direction around the diagram also induces an isomorphism in homology. Thus
the lower direction around the diagram is a homotopy equivalence by Whitehead’s Theorem, proving

the lemma. O

Now we begin a process of altering the homotopy equivalence in Proposition 4.3 by one in which
the composite @o ¢ has been replaced by a congruent composite @o¢,. As in Section 3, the point is
that ¢, behaves well with respect to multiplications, making Proposition 4.3 easy to prove, while ¢
behaves well with respect to Whitehead products, which is where the applications lie.

Return to the starting map §: XD — E. Let
c: 2D —F
be §. For k > 1, let ¢; be the composite
G XMAED ~ X A (XMTLAED) L X x (XML ASD) 2O oxx K E.
Define dy = ¢y and dg = ¢g (50 do = 09 = §), and for k > 1 define dj, and 9 by the composites
dp: X" AD 2 0NX x E-5 E
%: XMAD S OSX K E -5 E
Lemma 4.4. If k=0 or k=1 then d, =0s. If k > 2 then dj, is congruent to dy,.
Proof. Argue just as for Lemma 3.12, replacing XY -2+ E by ©D B O

The congruence between dj, and dy, lets us alter Proposition 4.3 to the following.
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Proposition 4.5. Suppose that there is a homotopy fibration sequence QXX PPy Monx
where Qh has a right homotopy inverse. Suppose that there is a map 0: XD — E such that the
composite

QX x XD XL ONX x E -5 B

is a homotopy equivalence. Then the composite

(IxTg)LTg
R

QX x (X" AED)V (Jp_1(X) x D) OSX x (WX xE) 22 ovsx xE-S E

is a homotopy equivalence.

Proof. By Proposition 4.3 there is a homotopy equivalence

(IxCr) LTk 1xa

(17) QLX x (X" ASD)V (Jp_1(X) x XD) QXX x (QZX x E) 23 02X x E -5 E.

The restriction of this homotopy equivalence to QXX x (X" AXD)is@ao (1 x @) o (1 x ). By
definition of dy, this equals @ o (1 x di). By Lemma 4.4, dj is congruent to 0, so @ o (1 x dy,) is
congruent to @o (1 x dx), which by definition of 9 equals @o (1 x @) o (1 x ¢). Thus the composite

(1D<E)C)L7k 1xXa

(18) QX x (X AXD)V (Jr_1(X) x D) OZX X (OSX X E) 28 ONX x E -5 E

is congruent to (17). Consequently, both (17) and (18) induce the same map in homology. Since (17)
is a homotopy equivalence it induces an isomorphism in homology. Thus (18) also induces an iso-
morphism in homology. By hypothesis, £ ~ QXX x XD so E is simply-connected. Thus the domain
and range of (18) are simply-connected so the fact that it induces an isomorphism in homology

implies that it is a homotopy equivalence by Whitehead’s Theorem. O

Recall from the setup at the beginning of the section that the restriction of QXX x XA s Eto
YA is amap g: XA — F that lifts f through p.

Theorem 4.6. Suppose that there is a homotopy fibration sequence QXX ey Moyx

with the following properties:

(a) Qh has a right homotopy inverse;
(b) there is a map §: XD — E such that the composite

QX xED 2L ovXx x E -5 E

18 a homotopy equivalence;

(¢c) g can be chosen to factor as a composite
g A5 XMAYD S OSX K E -5 E

for some map £.

Let C' be the homotopy cofibre of £. Then there is a homotopy equivalence

(QEX x C)V (Jp_1(X) x £D) —» E.
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Proof. Consider the diagram

QXX x XA QXX x XA

l AN
(1x£)4-* 1xg
(1D<fk)l_7k 1x

QXX % (X" AED)V (Je_1(X) x D) — L Q¥X x (X x E) — = QXX x B — > E.

Since QXX X YA maps trivially to Ji_1(X) x XD, to show the rectangle homotopy commutes it
suffices to show that (1 x @) o (1 X ¢x)o (1 x ¢) ~1x g. But this holds by hypothesis (c¢). The right
triangle homotopy commutes by (10). As hypotheses (a) and (b) hold, Proposition 4.5 implies that
the composite along the bottom row is a homotopy equivalence. Rewriting, there is a homotopy

commutative square

QXX x XA QXX x XA

(19) \L(lxé)-&-* lg
QSX x (XM ASD)V (Jy_1(X)x ¥D) —— > E.

As the homotopy cofibre of £ is C, the homotopy cofibre of (1 x £) +  in (19) is
(QEX x C)V (Jk—1(X) x £D).

As the homotopy cofibre of 6 is E’, the homotopy commutativity of (19) implies that there is an
induced map of cofibres

a: (XX x O)V (Jy_1(X)x ¥D) — E'.
The homotopy equivalence in (19) and the five-lemma then imply that « induces an isomorphism

in homology and so is a homotopy equivalence by Whitehead’s Theorem. (]

Remark 4.7. Note from the proof of Theorem 4.6 that the restriction of the homotopy equivalence
(XX x C)V (Jp—1(X) x D) — E' to Jx—1(X) x XD is homotopic to the composite

Ixa

(20) Je1(X)x D 25 QXX x (OEX x E) YSQSX K E - E s E.

It will be useful for later to give an alternative description of this composite. Consider the diagram

Jk—1Xd a
XxXD —— > XX XE ———> F

N

Jecl(X)x ED —> OSX x (WX x E) — > QOSX x E —> E.

Jpo1(X

The left square commutes by definition of Jj, the middle square commutes by the naturality of j,
and the right square homotopy commutes since @ is a quotient of the action a and a restricts to
the identity map on E. The diagram therefore implies that (20) is homotopic to the composite
@0 (jr—1 X 0). Writing jr—1 X 0 as (1 x d) o (jr—1 X 1), we conclude that (20) is homotopic to the
composite

T (X)xsD M onx wsp WY p
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where @ o (1 x 0) is assumed to be a homotopy equivalence in hypothesis (c¢) of Theorem 4.6.

An interesting general example of Theorem 4.6 is the following. Start with the homotopy fibration
sequence

OYX — E -2 ux vy 4 yx.

Fix a positive integer k and take A = X"* AY. Recall the definition of Mj, as the homotopy
cofibration

ad®(i1) (@
XM Axy ) oSy M

Observe that ¢; extends to a map ¢j.: My — XX. By Example 3.6 there is a map XY 2 E
lifting 7o through p and for which there is a homotopy equivalence

OEX kY X onX x E -5 E.

[Pk

(The map XY — E was called “¢g” in Example 3.6 for use in Theorem 3.5 but in the setup for
Theorem 4.6 we are about to consider this map will play the role of § and the Whitehead product
ad®=1(i1)(i2) will play the role of g.) Let pj be the composite

Je—1X1 ao(1x4)

P St (X) X DY 25 08X kXY TS E 2L NX VY — M.

Lemma 4.8. For k > 1, there is a homotopy fibration
Je1(X) x BY 25 0 25 wx
which splits after looping to give a homotopy equivalence

QM ~ QX x Q(Jp_1(X) x TY).

Proof. We wish to apply Theorem 4.6 to the homotopy fibration sequence
02X — F-LHyx vy & ux

with appropriate choices of the maps § and g. To do so, hypotheses (a) to (c) for the theorem need
to be checked. As ¢; has a right homotopy inverse so does ¢, and therefore hypothesis (a) holds.
The map § has the property that the composite 23X x Y M ONXxE - Eisa homotopy
equivalence so hypothesis (b) holds. Notice that with this map ¢ the definition of j identifies with
the definition of 0 in Section 3. Thus, relabelling 0;, in Lemma 3.14 by 0, and using the definition

of 03 as @ o ¢, by Lemma 3.14 there is a homotopy commutative diagram

XMASY 2 OSXKE — 2% > E
l”
ad® (i1)(i2)
TX VY.

Thus a map g lifting ad® (i) (i) through p is @o¢;,. Taking £ to be the identity map on X"* AXY, the
factorization of g as @ oty o £ satisfies hypothesis (c). Therefore all the hypotheses of Theorem 4.6
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hold. Since ¢ is the identity map on X"¥ A XY, its homotopy cofibre C is a point. Thus, by
Theorem 4.6, if E’ is the homotopy fibre of My ey mX , then there is a homotopy equivalence
Jr—1(X) x Y ~ E’. The fact that ¢; has a right homotopy inverse then implies that there are

homotopy equivalences
OM ~ Q¥ X x QF ~ QY X x Q(J,_1(X) x TY).

It remains to identify the composite J;_;(X) x XY — E' — My, as pj,. By Remark 4.7, the

homotopy equivalence J;_1(X) x XY ~ E’ is realized by the composite

(X)) x sy 2 gnxy ey XY p L

Composing with E/ —s M, and using the fact that E — E’ —» M, is homotopic to E -2

XX VXY — My, then shows that Ji_1(X) x XY —=s E' — M, is homotopic to the composite

Jrk—1X1

Jec1(X) x Y 25 Q%X x sy UV B P sy usY — My
which is the definition of p,. a

In particular, observe that if £ = 1 then we have attached ad(i1)(i2) = [i1,1i2] so M1 = XX x XY,
and \/2:O X* ASYY =3Y, so we recover the usual homotopy fibration Y — £X x XY — ©X.

Lemma 4.8 identifies the homotopy fibre of ¢}, as Ji—1(X) x XY and the map from the fibre to the
total space as pj,, but we would like an alternate description of the fibre that identifies the map from it
to M, as a wedge sum of Whitehead products. Since p) depends on the inclusion Ji_1(X) ]k—fi 19530.¢
it blends well with the multiplication on 2X X, so we will make use of congruence again to make the
conversion from multiplication to Whitehead products.

Define the map % by the composite

k—1 k—1 t .
o oad (i1)(z
e\ XM asy Vet ey sy s .
t=0

We now prove Theorem 1.2, restated verbatim.

Theorem 4.9. For k > 1, there is a homotopy fibration

k—1 ,
\/X“/\EYﬂ)Mkﬂ)EX
t=0

which splits after looping to give a homotopy equivalence

k—1
QM ~ Q5X x Q(\/ X" ATY).
t=0

Proof. By Lemma 3.10 the map \/?io XMATY -5 QXX x XY is a homotopy equivalence. By

definition, ¢ is the wedge sum of maps ¢; for 0 < ¢ < oo, and the definition of ¢; via the mulitiplication
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on QXX implies that it factors through Ji_1(X) L ORX if ¢ < k — 1. Thus there is a homotopy

commutative square

FLYmaAsy 5 g (X)X SY

(21) l l

V2, XM ASY — > QEX x DY

where I is the inclusion and ¢} lifts \/f;ol ¢t through ji_1. The same argument in Lemma 3.10 that
shows ¢ is a homotopy equivalence also shows that ¢},_; is also a homotopy equivalence.

Next, since g}, factors through ¢; there is a homotopy fibration diagram

E—> o~ . (X)xzY
T
(22) X VY M,
S
$X SX

for some induced map A of fibres. Consider the composite

Jr—1X1 ao(1x46)

ki Je (X)) xSV EES 00X w XY 2V B oA J (X)) x Y.

We claim that & is homotopic to the identity map. To see this, observe that by (22), pj, o & is
homotopic to the composite J;_1(X) x ZY B ONX x DY M E—L2 s¥XVXY — M,
which is the definition of pj,. Thus pj ok =~ pj.. Since Ji_1(X)x XY is a suspension, we may subtract
in order to get p), o (1 — k) ~ . There is a homotopy fibration QXX — J,_;(X) x XY p—;“> My,
where s is null homotopic by Lemma 4.8. The null homotopy for pj, o (1 — ) implies that 1 — & lifts

through s, and hence is null homotopic. Thus « is homotopic to the identity map.

Putting (21) and (22) together gives a homotopy commutative diagram

k—1 At C;“_l Eo(jk—l D<5) A
FLYMAYY 5 ()XY — s e F "~ ], (X)X Y
\LI jkil[xl lp lp;
c ao(1x46)
VE XM ATY —S s ONX xSV E-LeyXvay — M.

Note that the middle squares commute. Along the top row both ¢, _; and kK = Ao@o (ji_1 X ) are
homotopy equivalences. In particular, in homology A, o (@ o (ji—1 X &) 0 ¢,_;)« is an isomorphism.
Along the bottom row the composite @ o (1 x §) o ¢ is the definition of the map d in Section 3.
By Lemma 3.13, d is congruent to the map 9. In particular, in homology d. = 0.. Therefore
(0o1I), = (dolI),, which by the previous diagram equals (@ o (jy—1 X 0)oc},_).. Hence A\,o(do1),

is an isomorphism, implying that A o0 o I is a homotopy equivalence by Whitehead’s Theorem.
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By Theorem 3.15 there is a homotopy commutative diagram

FLXMARY — s VO XMARY — - Jro1(X) x DY

\ LP lp%
V2, ad (i) (iz

YXVYY — = M,

As the top row of this diagram is a homotoopy equivalence and the bottom direction around the
diagram matches the definition of 7, the homotopy fibration Ji_1(X) x £Y p—;“> My, q—;“> ¥ X may
be replaced up to equivalence by a homotopy fibration \/f;ol XMASY 25 M, q—;‘} »X. This
proves the first assertion of the lemma, the splitting of the fibration after looping follows from the

existence of a right homotopy inverse of {q;.. O

Interesting specific examples occur when X = S and Y = S™. Note then that for each k£ > 1

we have X"k A YY ~ Ghmtntl

Example 4.10. For k > 1, define M} by the homotopy cofibration
Skm+n+1 ad” (i1)(i2) Sm+1 v Sn+1 Mk.

Then there is a homotopy fibration

k\7 ghmnt 2 My — 57
t=0
where -y is the composite
k-1 N
\/ gtmAn+1 ViZo ad’(i1)(i2) gLy gL ap
t=0

and after looping this homotopy fibration splits to give a homotopy equivalence

k—1
QM,, ~ Q8™+ x Q< \/ stm+n+1).
t=0

In particular, if k& = 2 then M, is the homotopy cofibre of [i1, [i1,i2]] and there is a homotopy
equivalence QM, ~ QS™T! x Q(§n+ly gmintly

A bit more generally, take X = S™ and let Y be arbitrary. Note then that for each £ > 1 we
have X"\F A XY ~ Bhmtly,

Example 4.11. For k > 1, define M}, by the homotopy cofibration
dF (i) (i
skmetly @ O00) gmity sy

Then there is a homotopy fibration

k—1
\/ 2tm+1Y Yk Mk Sm+1
t=0
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where ;. is the composite

k—1 k—1 t (s .

o ad”(i1)(i2
\/ srmity Ve L OIE) gmity sy g,
=0

and after looping this homotopy fibration splits to give a homotopy equivalence

k—1
QM ~ Q8™+ x Q( \/ zfm“Y).
t=0

In particular, if & = 2 then M, is the homotopy cofibre of [i1, [i1,42]] and there is a homotopy
equivalence QM, ~ QS™T! x Q(TY v ¥mFlY).

Even more can be said about the homotopy theory of the spaces My. Return to the general case,

ad® (i1) (i m . .
of a homotopy cofibration X"\ AXY d(—)(>2) LX VXY —* 3 M, where the inclusion of SX VXY

into My, is now labelled my. In Corollary 4.13 we identify the homotopy fibre of my. To compress

notation, write ad® for ad®(iy)(iz).

k
Lemma 4.12. The homotopy cofibration X"\ A XY LEINS 35 @Y8)) Gy My, has the property that

the map Qmy has a right homotopy inverse.

Proof. By Theorem 4.9, there is a homotopy fibration

k-1 ,
\/ XMAZY 25 M, 2 nX
t=0

which splits after looping to give a homotopy equivalence

k—1
QM ~ QBX x Q(\/ X" AXY).
t=0

Here, ~y; is the composite

k—1 k—1 t

ad m
\/ XM Asy Yt s v sy M g,
t=0

a right homotopy inverse for ¢}, is the composite
i 8X L BX VEY 25 A,

and the homotopy equivalence is given by the composite

k—1
(23) OxX x Q(\/ X" AxY)
=0

where p is the standard loop multiplication. Observe that both i} and 7 factor through XX v XY

so as Qmy, is an H-map the homotopy equivalence in (23) is homotopic to the composite

k—1
QEX x Q(\/ XM Asy) % oBX VEY) x QEX VEY) 5 QEX v EY) T QM
=0

where a;, = \/f:_o1 ad’(i1)(iz). In particular, this implies that Qmy, has a right homotopy inverse. [J
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By Lemma 4.12, Qmy, has a right homotopy inverse s: QM) — Q(XX VXY'). The existence of s
implies that the hypotheses of Theorem 3.5 are satisfied when applied to the homotopy cofibration
k
XMATY Y5 yx vy M Mj.. Therefore we immediately obtain the following.

Corollary 4.13. There is a homotopy fibration
QM x (XM A2Y) 5 SX VY 25 My
where x is the sum of the maps
QM. » (XM ASY) 5 XM ASY 9 wx v sy

and

[evos,ad®)

QM x (X AZY) —E2— QM A (XM ATY) YX VY.

ad® (i1) (i mp
Example 4.14. Consider the homotopy cofibration S*m+n+1 W )02) Gmty gnt Ty My, from
Example 4.10. By Lemma 4.12 the map (my has a right homotopy inverse and by Theorem 3.5

there is a homotopy fibration
QM x Skm-i—n-i—l i> Sm+1 Vv Sn-i-l ﬂ) M,

. X d*
where y is the sum of QM x Skmtntl T, ghmitntl 20, gm+l\, gntl and QM x Skmtntl

QM A Skmtntl M gmtly gntl,
Relation to Moore’s Conjecture. A few definitions are necessary to state the conjecture.

Definition 4.15. Let X be a simply-connected CW-complex and let p be a prime. The homotopy
exponent of X at p is the least power of p that annihilates the p-torsion in 7. (X).

Write exp,,(X) = p” if p” is this least power of p. If the prime is understood this may be shortened
to exp(X) = p". If 7.(X) has torsion of all orders, write exp,(X) = oc.

Definition 4.16. Let X be a simply-connected CW-complex. If there are finitely many Z summands
in 7.(X) then X is elliptic, otherwise X is hyperbolic.

Conjecture 4.17 (Moore). Let X be a simply-connected finite CW-complex. Then the following
are equivalent:

e X is elliptic;

e exp,(X) is finite for some prime p;

e exp,(X) is finite for all primes p.
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Moore’s Conjecture posits a remarkable relationship between the rational homotopy groups of X
and its torsion homotopy groups. The rational homotopy groups deeply influence the torsion homo-
topy groups, and torsion at any one prime deeply influences the torsion that occurs at any prime. The
conjecture has been shown to hold in a wide variety of cases: for H-spaces [L], for torsion-free suspen-
sions [Se|, for various 2 and 3-cell complexes [NS], for generalized moment-angle complexes [HST],
and for families of highly-connected Poincaré duality complexes [Ba, BB, BT1, BT2].

More examples of spaces for which Moore’s Conjecture holds may be extracted from Proposi-

tion 4.9. We give three examples.

Example 4.18. Return to Example 4.10. The k = 1 case has M, ~ S™*+! x S"*+1. A sphere was
shown to have a finite homotopy exponent for any prime p by James [J2] for p = 2 and Toda [To]
for any odd prime. Therefore the product of a finite number of spheres also has an exponent for
any prime p, and of course, this product is elliptic. The case when the attaching map [i1, 2] for the
top cell in S+ x S"*1 is replaced by q - [i1,i2] for a prime ¢ a nonzero integer was considered by
Neisendorfer and Selick [NS] and shown to also be elliptic and have an exponent at every prime p.
Now suppose that & > 2. An argument using the Hilton-Milnor Theorem shows that a wedge of
spheres is hyperbolic and has no exponent at any prime (see, for example, [NS]). Example 4.10
shows that QM ~ QS™HL x O f:_ol Stm+ntly - In particular, Q(S"Tt v S+l is a retract of

QMy., and so My, must be hyperbolic and have no exponent at any prime.

Remark 4.19. Using different methods, Anick [A, Lemma 2.3 and Theorem 3.7] showed that any
space obtained by attaching a sphere to a wedge of two or more spheres by a linear combination
of Whitehead products satisfies Moore’s Conjecture for all primes except possibly 2 and 3. In
particular, this is true of the spaces My for k > 2. Example 4.18 is an improvement in this case as
there is no restriction on the primes. Further, Example 4.10 goes much further by giving an explicit

integral homotopy decomposition of QMj.

Recall from the Introduction that for n > 2, p a prime and r > 1, the mod-p” Moore space P™(p")
is defined as the homotopy cofibre of the degree p” map on S"~!. Note that X P"(p") ~ P"T1(p").
A useful property that will be needed at several points is a result of Neisendorfer [N1, Corollary 6.6]
that describes the homotopy type of the smash product of two mod-p™ Moore spaces.

Lemma 4.20. Let p be a prime, r a nonnegative integer, and assume that p" # 2. If s,t > 2 then

there is a homotopy equivalence

Ps(pr) /\Pt(pr) ~ Ps—i—t(pr) v Ps+t_1(pr).

The p" = 2 case is very different: the smash product P*(2)A P(2) is known to be indecomposable.
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By [N3], if n > 3 and p is odd then exp,(P"(p")) = p"tY by [Th], if n >4, p=2and r > 6
then expy(P"(27)) = 271, and by [C], if n > 3, p=2 and r > 2 then P"(2") has a finite 2-primary
exponent. In all cases, as P"(p") is contractible when localized at a prime ¢ # p, or rationally,
we see that P™(p") is elliptic and has a finite homotopy exponent at every prime p and so satisfies

Moore’s Conjecture.

Example 4.21. Return to Example 4.11. Take Y = P"(p") for n > 3 and p" # 2. The example
shows that
k—1
QM ~ Q8™ Q(\/ Pt (pn)).
t=0
Using the Hilton-Milnor Theorem and Lemma 4.20 iteratively shows that the loops on a wedge of

mod-p” Moore spaces with p” # 2 is homotopy equivalent to a finite type infinite product of mod-p”
Moore spaces. Consequently, My, is elliptic and has a finite exponent at every prime p. Hence My,

satisfies Moore’s Conjecture.
Example 4.22. In Theorem 4.9 take X = P™(p") and Y = P"(p") for m,n > 3 and p” # 2. Then
by Lemma 4.20 there is a homotopy equivalence

QM;, ~ QP™ L (p") x QW

where W is a finite type wedge of mod-p” Moore spaces. Arguing as in the previous example then
shows that M, is elliptic (it is rationally trivial) and has a finite exponent at every prime p. Hence

it satisfies Moore’s Conjecture.



HOMOTOPY FIBRATIONS WITH A SECTION AFTER LOOPING 43
5. AN IMPROVEMENT

The factorization of 4 —%5 E through X"* AXD in Theorem 4.6 gives a condition which lets us
find the homotopy type of E’, but it does not apply to many of the cases we are interested in. The
construction behind that theorem needs as input Whitehead products of the form [i1, f] for some
map f, but if we try to attach S2"*! to Sty Sty §7F! (with X = S" and D =Y = S Vv S")
by [i1,42] + [i2, i3] then the map does not have the right form so the theorem does not apply. To
handle the latter case we have to allow the attaching map to have some component in XD as well
as X"* A XD, in other words, we need to consider the case where g factors through X"\* x ¥.D.

This will require some modifications to the strategy behind proving Theorem 4.6. There were two
key steps: first, take the half-smash of Q23X with the factorization of g as XA Ly XM ARD S

OYX x =D % E to obtain a homotopy commutative diagram

QXX x A QXX x XA

l |
(1x ) 1xg

1X<Cy

1xa a
OSX & (XM AZD)) — L L OSX x (X X E) —e QSX x E — > E.

Second, adjust the bottom row by inserting the wedge Ji_1 x XD via the map .J}, in order to obtain
a homotopy equivalence along the bottom row.
To modify this, first take the half-smash of QXX with a factorization of g as ¥ A Ly XMxsD <k,

OYX x D % E for an appropriate map ¢, to obtain a homotopy commutative diagram

QXX x XA QXX x ¥A

l N
(1x ) 1xg
1XT), 1xaT _

OEX K (XM ED)) — " L OSX X (WX K E) e OSX X E — > E.

Then the bottom row has to be adjusted to obtain a homotopy equivalence. This adjustment involves
more than just inserting an extra space, it also involves removing part of QXX x (X"* x ¥ D), and
this requires some extra hypotheses. The precise statement generalizing Theorem 4.6 is Theorem 5.8.

In general, let B, C' and D be path-connected, pointed spaces. Define e;, e and e3 by the
composites

1x17

e1: Bx (CAXD) — Bx (C x XD)
e2: ¥D 25 O x ¥D L5 B x (C' x £D)
e3: BASD — Bx D 24 Bx (C x D).
Define maps f1, fo and f3 by the composites
fi: Bx (Cx ¥D) 24 Bx (C AXD)
fo: Bx (Cx ¥D) " Cx XD -5 %D

IxT

f3: Bx (Cx ¥D) =5 Bx ¥D -4 BAXD.
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Lemma 5.1. For 1 <i,j < 3, the composite f; o e; is homotopic to the identity map while if i # j

then fj o e; is null homotopic.

Proof. Tn general, the composites D 2+ B x £D -+ 2D and BAYD —» Bx 2D -4 BA XD
are homotopic to the identity maps while the composites 3D Jy Bx 2D % BAYD and
BAYD - Bx YD " %D are null homotopic. The assertions now follow from the definitions of

the maps e; and f; for 1 < i < 3. O
The wedge sum of ey, e and e3 is a map
e: (Bx (CAED)VEDV(BAYD) — Bx (CxXD).
Lemma 5.2. The map e is a homotopy equivalence.

Proof. The wedge sum of C' A XD S Ox XD and 2D L5 C x 2D is a homotopy equivalence.
Therefore, taking half-smashes with B, the wedge sum of B x (C A ¥D) L% B x (C x ¥D) and
Bx¥D 2 B (C'x ¥D) is a homotopy equivalence. Notice that 1x 7 is the definition of e;. Next,
consider 1xj. The wedge sum of XD s BxYD and BASD - BxXDisa homotopy equivalence.
So 1 X j may be rewritten as the wedge sum of the composites XD Iy Bx¥D L Bx (Cx XD)
and BAYD - Bx 2D 24 B (C' x D), that is, 1 x j may be rewritten as the wedge sum of ey

and ez. Therefore the wedge sum of ey, es and ez (that is, e) is a homotopy equivalence. a

In our case, we start as in Theorem 4.6 with a homotopy fibration sequence Q%X g2
Y -5 $X such that Qh has a right homotopy inverse and there is a map §: XD — E such that
the composite

QX xED 2L ovx x E -5 B

is a homotopy equivalence. Assume there is a map ¥ A — Y that lifts through p to XA Y.

The construction of the maps e; and f; above in this case are composites

1x7g

er: QXX x (XM AXD) =5 QXX x (X' x £D)
e2: ID L5 XM x D L5 QXX x (XM x ¥D)

e3: QEX A LD -5 QXX x D 24 QXX w (XM x £D)

and

fi: OBX x (XM x D) 24 08X x (XM A ED)
f2: Q2X x (XM xED) 5 XM x 2D 5 2D

f3: QXX x (X x £D) ZE XX x £D -L QRX A ED.
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By Lemma 5.1, for 1 < 4,5 < 3 the composite f; o e; is homotopic to the identity map and if i # j
the composite f; o e; is null homotopic. By Lemma 5.2, the wedge sum of e;, ez and e3 gives a

homotopy equivalence
e: (QZX x (XM AED)VEDV (QEX ALD) — QXX x (X x ¥D).
Given a map YA Ly XMk YD, let k be the composite
1x4

K QYX X BA -5 Q%X x (XM x £D) Lt (QEZX x (XM ALD))VEDV (QEX AXD).

By definition of x there is a commutative square

QXX x XA QXX x XA

(24) l iw

QXX x (X"* AED)) VEDV (Q5X A ED) QXX x (XM x D).

By the Hilton-Milnor Theorem, x = k1+ko+ks+W where k1, ko and k3 are obtained by composing
with the pinch maps p;, p2 and p3 to QXX x (X"* AXD), D and QXX A XD respectively, and W
factors through a wedge sum of iterated Whitehead products.

We identify k1, ko and k3. Since e is the wedge sum of e;, es and es, the fact that for 1 <4,j <3
the composite f; o e; is homotopic to the identity map while if ¢ # j the composite f; o e; is null

homotopic implies that f; o e ~ p;. Thus using eo x = 1 x £ in (24) we obtain, for 1 <i < 3,
(25) Ki=piok=~ fioeor= fio(lx/).

Lemma 5.3. Suppose that the composite ¥ A RN Y(X"F x $D) 2T 52D s null homotopic. Then

the maps ko and Yk3 are null homotopic.
Proof. By (25), ke ~ fa 0 (1 x £). Consider the diagram

QXX x XA YA

[ l

QX x (XM x D) —= XM x¥D —s D,

The square commutes by the naturality of . As the bottom row is the definition of f3, the lower
direction around the diagram is fs o (1 x £), that is, ko. This equals the upper direction around the
diagram, which is null homotopic after suspending since Y o X/ is null homotopic by hypothesis.
Thus Yko is null homotopic.

By (25), k3 ~ f3 0 (1 x £). By definition, f5 = go (1 x ). Thus k3 factors through 1 x (7 o ¢).
Suspending, ¥k factors through (1 X (w0 £)) ~ 1 x X(m o £). By hypothesis X(m o £) is null

homotopic, and therefore Y x3 is null homotopic. O
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Corollary 5.4. Suppose that the composite ¥?A 2N S(XME % $D) 2T 52D s null homotopic.

Then there is a homotopy commutative square

D(OSX x DA) D(OSX x DA)

J{ Yk1 J{ 2(1xe)
261

L(QTX x (XM A D)) L(OTX x (XM i £D)).

Proof. Following (24) we saw that k = k1 + k2 + k3 + W where W factors through a wedge sum of
Whitehead products. In particular, as Whitehead products suspend trivially, >W is null homotopic.
By Lemma 5.3, ¥ko and Yk3 are also null homotopic. Therefore ¥x ~ ¥k; and the homotopy

commutativity of the asserted diagram follows. O

Some maps need to be defined that modify the maps ¢ and Ji from Section 4. For k = 1 define
the map ¢ by

1L X x D 29 0nX x E.

Note that ) 04 =¢;. For k > 2 a recursive definition is used: define the maps ¢}, by the composite

Cklj 0d

XM v D —T (XM A YD)V ED 2 0N X x B

Also, define the map Jj, by the composite
Tl T (X) x 2D 2 oxx x (XM x £D).
Recall that Jj, was defined in Section 4 as the composite
T 1 (X)) x SD 2 gnx x B2 5 Q8 X x (O2X x E).

Lemma 5.5. The following hold:
(a) the composite LX"F AXD =5 N3 GLE3)))) 4 YOYXX x E is homotopic to X¢y;

(b) the composite

D Ly XM $D 5 ONX w B

s homotopic to jo d;

(c) the composite Ji—1(X) x XD i) QXX x (X" x ¥D) Djf QXX x (QXX X E)
is homotopic to jr—1 X (j 0 0);

(d) the composite

1Kty

Jr—1(X) x XD e anx (X" x ¥D) —5 Q¥ X x (Q¥X x E) —

ao(lxa)

— F

is homotopic to @o (1 x @) o Jy.
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Proof. First, if k = 1 then it has already been observe that observe that ¢ oi = ¢;. For k > 2
observe that ¢, = (¢ Ljod)o(¢+m) = (cp0q)+ (jodom). Observe also that g o i is homotopic
to the identity map on X"* A XD while 7 o1 is null homotopic. As ¥i is a suspension it distributes

on the right so we therefore obtain
¥¢) 0 Xi ~ ¥cp 0 Xgo Xi+ Xj o 86 o B o Bi v~ Xt + * =~ Xy,

proving part (a).
Second, if k = 1 the definition of ¢} as £ x § and the naturality of j implies that ¢} o j =
(Exd)oj~jod. For k > 2 observe that g o j is null homotopic while 7 o j is homotopic to the

identity map on %D. As XD XM SDis a suspension it distributes on the right so we obtain
t.oj=((roq)+(jodom))oj~(chkoqoj)+(jodomoj)~x*+jod,

proving part (b).
Third, by definition, Jj, = jr—1 X j so by part (b) we have

(Ix ) oy =1x5) o0 (k-1 Xj) = (et X (€, 0J)) = jr—1 X (j 00),

proving part (c).

Fourth, since @ is the quotient of the homotopy action QXX x E — E. which restricts to the
identity map on FE, we obtain that the composite F 00X x E % Eis homotopic to the
identity map on E. Using this and part (c) we obtain

Go(lxa)o(lxty) o, ~ao(lxa)o (jr_1 X (jod))=ao (jr_1x0).
On the other hand, by definition, J; = j o (jx_1 X §), so using the naturality of j we have
Go(lxa)oJy=ao(lxa)ojo(jr_1Xxd) ~aojoao (jr_1 X35 ~=ao (jr_1X0J).
Thus @o (1 x@)o (1 x¢)oJ, ~ao (1l xa)oJy, proving part (d). O
Recall from Section 3 that two maps f and g are congruent if 3 f ~ 3g.

Lemma 5.6. The composite

er LT, 1%,

(QZX x (XM ALD))V I 1(X) x ZD —5 Q¥ X x (X"'F x ¥D) —%»

05X x (02X x E) 2%

is congruent to @o (1 x @) o ((1 x ¢) L Jy) (the map appearing in Proposition 4.5).

Proof. Tt is equivalent to prove the statement when restricted to each of the wedge summands
QSX x (X ASD) and Jy_1(X) x £D. By definition, e; is the map QXX x (X A £D) 224
QXX x (X" x D) and by Lemma 5.5 (a), ¢ o is congruent to ;. Therefore (1 x ¢})oe; =

(1x¢),)(1x i) is congruent to 1 x ¢x. Thus @o (1 x@)o(1xT))oe; is congruent to ao (1 xa@)o(1x<y).
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On the other hand, by Lemma 5.5 (d), @o (1 x @) o (1 x¢)oJ; ~ao(1xa)oJg. Ashomotopic

maps are congruent, the lemma follows. O
Putting things together to this point gives the following.

Proposition 5.7. Suppose that there is a homotopy fibration sequence QXX Spty Myx
and a map LA oY that lifts through p to SA - E, together satisfying the following properties:

(a) Qh has a right homotopy inverse;
(b) there is a map §: XD — E such that the composite

QX x 2D XL OvX x E -5 E

s a homotopy equivalence;

(¢c) g factors as a composite
g:SA L XM sD S OSX K E - E

for some map £;

(d) the composite 2 A RN Y(XN x ¥D) 2T 2D s null homotopic.

Then there is a homotopy commutative square

D(OSX x DA) S(QEX x DA)

\L Yk14* i 360

S(QEX x (XM AED)VES_ (X)X ED —— ~ SE

where € is a homotopy equivalence.
Proof. By hypothesis (c), g factors as ¥ A L XM nD S5 ONX x E -2 B Taking the half-

smash with the identity map on QXX then gives the commutativity of the left rectangle in the

diagram

QXX x XA QY X x XA

l =
(1x ) 1xg
1XT),

1Xxa a
OEX K (XM K ED)) — " L OSX X (X K E) e OSX X E — > E.

The right triangle homotopy commutes by (10). Consider the diagram

S(OSX x $A)

S(OEX x $A) S(OSX x $A)
lE(llxé)

\L YK1+* i 360
Se1 LT, Yo

LQTX & (XM AED)) VS, 1(X) x 8D — = $(QLX x (X x ©D)) ——— > $E

where a = @o (1 x @) o (1 X ). The left square homotopy commutes by Lemma 5.4 and the right

square is the suspension of the previous diagram. Consider the composite along the bottom row and
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the string of identifications:
Yao (Xep LYJ;) =YaoX(1lxa)oX(lxty)o(Ser L IJ))
~YaoXN(lxa)o(B(1xt) LX)
=Yao(lxa)o(lxcy L Jg).
The first equality is from the definition of «, the second is from Lemma 5.6 and the third is just
pulling out a suspension coordinate. By Proposition 4.5, @o (1 x @) o (1 x ¢, L Jy) is a homotopy

equivalence. Therefore Ya o (Xe; L XJ}) is a homotopy equivalence. Taking ¢ = a0 (e; L J}) then

gives the asserted homotopy commutative diagram and homotopy equivalence. |

The homotopy commutative diagram in Proposition 5.7 is the suspension of the diagram obtained

in the proof of Theorem 4.6. Let C' be the homotopy cofibre of the composite
$A -5 XM sD -4 XM ASD.

Then the homotopy cofibre of the map Y1 + * in Proposition 5.7 is L(QXX x C)VEJ,_1(X) x XD.
The homotopy cofibre of the map 6 in Proposition 5.7 is E’. Therefore the homotopy commutativity

of the diagram in the proposition implies that there is an induced map of cofibres
P: (OBX x O)VEJp_1(X) x XD — SE’

and the fact that e is a homotopy equivalence implies that 1) induces an isomorphism in homology by
the five-lemma and so is a homotopy equivalence by Whitehead’s Theorem. This gives a description
of the homotopy type of X E’. However, we want to identify the homotopy type of E’. To do this

an extra hypothesis is necessary.

Theorem 5.8. Suppose that there is a homotopy fibration sequence Q23X gy Myx
and a map XA Lo ¥ that lifts through p to ©A —L5 E, together satisfying the following properties:

(a) Qh has a right homotopy inverse;
(b) there is a map §: D — E such that the composite

QX x XD XL OvX x E-S B

s a homotopy equivalence;

(¢c) g factors as a composite
g:3A L XM SD S OSX K E S E

for some map ¢;
(d) the composite X2 A =4 Y(XMF x ¥D) 2T $D is null homotopic;
(e) the composite A L XM ¥D -4 XA ASD has a left homotopy inverse.
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Then if C is the homotopy cofibre of g o £ there is a homotopy equivalence

E' ~ (QSX x O) V (Jy_1(X) x D).

Proof. By Proposition 5.7, hypotheses (a) through (d) imply that there is a homotopy cofibration

diagram
Y(OXX x LA) S(OXX x XA)
| Bosre lze
(26) LOTX x (XMAELD))V (EJp_1(X) x D) ¥ L SE

lz,\vl l =1
¥

R(OSX x C) V (SJp_1(X) x D) SE

where ¢ is a homotopy equivalence, A is the map to the homotopy cofibre of k1, 7 is the map to the
homotopy cofibre of #, and v is an induced map of cofibres. As € is a homotopy equivalence the
five-lemma implies that 1) induces an isomorphism in homology and so is a homotopy equivalence
by Whitehead’s Theorem.

We wish to show that 1 ~ Y¢'. Write ¢»p = 11 L 1o where 91 and 1o are the restrictions of
¥ to B(QXX x C) and XJ;,_1(X) x XD respectively. Similarly write € = €; L ey where ¢; and e,
are the restrictions of € to QXX x (X"* A XD) and Jy_1(X) x XD respectively. Observe that the
bottom square in (26) implies that 19 = X1 o Xeo. In particular, 15 is a suspension. Next, consider
the homotopy cofibration XA oL XN ARD M T By hypothesis (e), g o £ has a left homotopy
inverse. As X"* A ¥.D is a suspension this implies that the homotopy cofibration splits to give a

homotopy equivalence

XM AYD~YAVC.

In particular, 4 has a right homotopy inverse v: C' — X"¥ A X D. Observe that by (25) and the
definition of f; we have k; = fio(1x{) = (1xg)o(1x¥). Therefore A can be chosen to be 1x u and so
has 1 x v as a right homotopy inverse. Hence the bottom square in (26) implies that 1; is homotopic
to X o Xe o Xv. In particular, 41 is a suspension. Hence 1) is a suspension, ¢ = X¢’. Since 1) is
a homotopy equivalence, it induces an isomorphism in homology. Therefore so does ¢’. Since XD
and C are simply-connected, so is (22X x C) V (Jr_1(X) x D). Thus ¢’ induces an isomorphism
in homology between simply-connected spaces and so is a homotopy equivalence by Whitehead’s

Theorem. That is, there is a homotopy equivalence E' ~ (XX x C) V (Jy_1(X) x ¥D). O
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6. APPLYING THEOREM 5.8

In this section examples are given of Theorem 5.8 in action. This begins with a general example
in Proposition 6.4 which will then lead to several more specific families of examples. We first need
a general lemma.

For a space X, let

E: X — QXX

be the suspension, which is adjoint to the identity map on ¥X. Given pointed, path-connected

spaces X1,..., X, for 1 < s < mlet
m
is: DX, —> \/ v X,
i=1
be the inclusion of the s**-wedge summand. Let
I:\/ =X; — \/ 2X;
=2 i=1

be the inclusion, and note that I =iy L --- L 4,,.

Lemma 6.1. Let X1,...,X,, be pointed, path-connected spaces. Let q : \/ZZ1 X, — XX, be the

pinch map onto the first wedge summand and let E be its homotopy fibre. Then the following hold:

(a) there is a map g: \/;-y XX; — E which lifts I through p;

(b) the composite

02X % (\/ 2X,) "L 08X x E -5 B

i=2
18 a homotopy equivalence;
(¢c) the composite
XA\ 2X0) -5 Xix (\/ 2X)) Bl onx, x (\/ 5x)) Monx, xE-SE
i=2 i=2 i=2

is a lift of the Whitehead product [iy,is] L -+ L [i1,4m] through p.

Proof. Let X = Xj andY = \/112 X, so that \/:i1 ¥ X; = XX VXY. To avoid overlapping notation,
let ip,: XX — ¥X VXY and ig: Y — XX V XY be the inclusions of the left and right wedge
summands respectively. Since ¢ o ig is null homotopic, there is a map ¢g: XY — F that lifts the

inclusion through p. By Example 3.6 the composite

QX x XY Y4 onx x E-S E
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is a homotopy equivalence. This proves parts (a) and (b). By Lemma 3.14 there is a homotopy
commutative diagram
0
XAYY —— > E
\ i”
[ir,ir]
XX VvyYY.

By Lemma 3.12, 9, = dy, where d; is the composite X A XY <5 QXX x 5Y Y4 OxX x E -2 E

and c¢; is the composite X A XY X x 2y 24 onx x vy, Remembeing that X = X; and

Y = \/:’;2 X;, we have ig = i1 and iy, = io L --- 1 4,,. The linearity of the Whitehead product
therefore implies that
[iL,iR} ~ [il,ig] 1L [ll,lm]
Thus @o (1 x g) o (E x 1) 04 is a lift of [i1,42] L --- L [i1,4m] through p, proving part (c). O
Parts (b) and (c) of Lemma 6.1 have the following corollaries.
Corollary 6.2. Let B Vit, XX, be a map. A lift of the composite B -5 Vit, XX, LN

Vit X, through p is given by

B-%\/zX; 5 xix (\/ =X) 29 05X x (\/ £X;) 24 05X x E - E. 0
=2 1=2 =2

Corollary 6.3. The restriction of the composite in Lemma 6.1 (c) to X1 ANX X, for some2 <t <m
is a lift of the Whitehead product [i1, 1] through p. a

Proposition 6.4. Let Xi,...,X,, be pointed, path-connected spaces and suppose that there is a
homotopy cofibration 3 A N Vit 2X; — M. Suppose that f = f1 + f2 where:
o f1=21l,i5]0hij for some maps by j: XA — NX1 A X5
e there is at least one t € {2,...,m} such that ©A E) ¥ X1 A Xy has a left homotopy inverse;
e fo factors as YA 5 \/1", 2 X, N Vit ZX; for some map v;
e v 1s null homotopic.
Leth =371y hij and let C be the homotopy cofibre of SA — X3 ANVityXX;). Then the following
hold:
(a) there is a map q¢': M — X extending ¢i;
(b) there is a homotopy fibration

QX x O) v (\/ £X)) — M -5 5y

i=2
(¢) the homotopy fibration in part (b) splits after looping to give a homotopy equiva-
lence

QM ~ QX x Q((QEX1 x C) v (\/ zxi)>.
=2
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Proof. First observe that as fi factors through the Whitehead products [i1,4;] and fo factors
through I, the composite XA N Vit X, 2y vX, is null homotopic, so q; extends to a map
q¢': M — ¥X;. This proves part (a).

To prove parts (b) and (c), Theorem 5.8 will be applied to the homotopy fibration E —2+
Vit 2X; 2y X, and the attaching map f for M. The hypotheses for that theorem need to
be checked. In the notation of Proposition 5.8, let D = \/212 X; and let XD 5 E be a lift of T
through p.

Step 1: The map 4y is a right homotopy inverse for g1, so hypothesis (a) in Theorem 5.8 is satisfied.
With D and § as above, the homotopy equivalence in Lemma 6.1 (b) implies that hypothesis (b) of
Theorem 5.8 is satisfied.

Step 2: For hypothesis (c) of Theorem 5.8 we need to choose a lift g of f through p. Let ¢, ; be the

composite
oy SA P SN A X < XA (V 2X) 5 X x (| 5X0).
=2 i=2
Then by Corollary 6.3 the composite
41 J Ex¢
AL X \/ZX ) 2L 08X, x E-S E

is a lift of [i1, i;] 0 by ; through p. Let £1 = 377", ¢1 ;. Then the composite

g: 245 X x (\/2X) 2L asx x E-5 B
i=2
is a lift of f; through p. Let £5 be the composite
b oA\ X L Xox (\/ X)),
i=2 i=2
Then by Corollary 6.2 the composite
92242 X x (\/=X) B2 o8 X  x E-D B
i=2
is a lift of fo through p. Thus if
;YA — X X (\/ $X;)
i=2
is #1 + 45 and
g:2A 5 X x (\/2X) 2L 08X x BE -5 E
i=2

is g1 + g2 then g is a lift of f through p. By definition, the map ¢} in Section 5 equals E x 1, so the
map g satisfies hypothesis (c) of Theorem 5.8.

Step 3: Consider the composite

24 -5 X x (\7 £X;) 5 \7 oX,.
=2 1=2
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By definition, ¢, ; factors through ¢ and 7 o ¢ is null homotopic. Therefore o ¢; ; is null homotopic
foreach2 < j<m. Ast; = Z;’;Q 1,5, we obtain a null homotopy for mo¢;. By definition, {5 = jovy
and 7 o j is the identity map, so 7 o £ = . By hypothesis, > is null homotopic, and therefore so
is ¥(m o ly). As ¢ = {1 + {3, we obtain a null homotopy for (7 o £). This fulfils hypothesis (d) of
Theorem 5.8.

Step 4: Consider the composition
A5 Xk (\/2X) -5 XA\ =X0).
i=2 i=2
By definition, /5 = j o~ and g o j is null homotopic, so g o ¢3 is null homotopic. Therefore, as
¢ =141 + {3, we have go £ >~ g o ¢;. On the other hand, by definition, ¢; ; factors through ¢ and g o1

is homotopic to the identity map. Therefore g o ¢; ; is homotopic to the composite

(27) SA M SX A X < XA\ 2X).
=2

The sum of the inclusions X1 AX; — X1 A(ViL, XX;) for 2 < j < m is homotopic to the identity

map, so as h = Z;nzz hi; and € = ZTZQ £1,; we have g o ¢; homotopic to h. Hence go f ~ h.

hat
Step 5: By hypothesis, there is a t € {2,...,m} such that ©A —% £X; A X, has a left homotopy

inverse r: XX A X; — X A. Consider the composite

m
(28) 24" XA\ 5X) 2% X ASX, - 2A
=2

tt"-wedge summand. Observe that (27) composed with 1 A ¢; is

where ¢; is the pinch map to the
null homotopic if j # t and is homotopic to hy, if j =¢. Thus in (28) the composite (1 A g;) o h is
homotopic to hy ;. Hence as r is a left homotopy inverse for hq ;, the composite (28) is homotopic
to the identity map. In particular, h has a left homotopy inverse. That is, by Step 4, qo ¢ has a left

homotopy inverse. This fulfils hypothesis (e) of Theorem 5.8.

Step 6: As hypotheses (a) to (e) of Theorem 5.8 hold, applying the proposition immediately implies
assertions (b) and (c), noting that by Step 3, h = g o /. O

The homotopy decomposition of QM in Proposition 6.4 can be made more precise by identifying

— h
the homotopy type of C. One hypothesis is that for some ¢t € {2,...,m} the map XA A YXAX,
has a left homotopy inverse. Let B be the homotopy cofibre of h; ;. The left homotopy inverse for

hi: and the fact that ¥X; A X; is a suspension implies that there is a homotopy equivalence
YX1ANXy=2YAVB.

Lemma 6.5. In Proposition 6.4, there is a homotopy equivalence C ~ <X1 A (\/ EX¢)> VvV B.

i=2
it
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Proof. Let q;: \/111 Y X; — X; be the pinch map to the t"-wedge summand. Then g; o h = hy 4,

so there is a homotopy cofibration diagram

xin(\ 2X) ——= xin(\/ £X3)
7 7

l i

Al X AV X)) ——— C

hi,t

YA —F—= XiA2Xy ——————= B.

The homotopy equivalence X3 A X; ~ XAV B splitting the homotopy cofibration along the bottom
row implies that the map ¥X; A X; — B has a right homotopy inverse b: B — X1 A XX;. As i

is a right homotopy inverse for ¢;, we obtain a composite

B2 X1 AX, 2% X A (\) 2X,) — T
which, by the homotopy commutativity of the lower right square in (29), is a right homotopy
inverse for the map C' — B. Thus the right column in (29) splits to give the asserted homotopy

equivalence. 0O

A family of examples satisfying Proposition 6.4 is the following. In words it says that if there
is a homotopy cofibration 527! N Vi, 8™ — M where the attaching map f is: (i) a sum
of Whitehead products, at least one of which is +[iy,4;] for some t € {2,...,m}, and (ii) a map
factoring through \/]~, S™ that suspends trivially, then the homotopy type of QM can be precisely

determined.
Proposition 6.6. Suppose that there is a homotopy cofibration

st L\ s — M

=

Il
—

7

Suppose that f = f1 + fo where:

o fi=3110d; i, 4] for dj € Z;
e there is at least one t € {2,...,m} such that dy = +1;
e fo factors as S22y ViL, s" SN Vit S™ for some map v;

e >y is null homotopic.

Then there is a homotopy fibration

@s"xT)v(\/ §") — M L s

=2
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m
where C ~ S"~1 A (\/ S™), and this homotopy fibration splits after looping to give a homotopy

i=2
i£t
equivalence

QM ~ Q85" x Q((QS” x C) V (g} S”)).

Proof. The existence of the homotopy fibration and the decomposition for QM will follow from
Proposition 6.4 once the hypotheses on the attaching map f are shown to imply the hypotheses in
the proposition. Observe that the map XA hl% Y X1 A Xj in Proposition 6.4 in our case is of the
form S$?7~! — S?7~! and so is a degree map, which has been labelled d;. The condition that
d; = £1 for some t € {2,...,m} implies that the map 1 A hy; ~ 1 A d; is a homotopy equivalence,
and so has a right homotopy inverse. The conditions on f> and ~ are the same as in Proposition 6.4.
The homotopy type of C follows from Lemma 6.5, noting that as hj; is a homotopy equivalence its

homotopy cofibre B is contractible. O

Remark 6.7. Observe that the homotopy type of QM in Proposition 6.6 depends only on m and

n. In particular, the map « has no influence on the homotopy type.

Corollary 6.8. In Proposition 6.6 the space (Q0S™ x C) V (\/i~, S™*1)) is homotopy equivalent to

a wedge W of spheres. In particular,

QM ~ Q8™+ x QW.

Proof. Tt suffices to show that Q5™ ! x C is homotopy equivalent to a wedge of spheres. By
Proposition 6.6, C' is homotopy equivalent to a wedge of simply-connected spheres. In particular,

C ~ 3C" where C' is a wedge of connected spheres. Therefore
NS x C = QS" x BC" ~ (BQS" AC") v EC.

The James construction implies that Q5™ is homotopy equivalent to a wedge of spheres, and

therefore so is (X€25™) A C’. Hence 2S™ x C is homotopy equivalent to a wedge of spheres. O

We give two examples of Proposition 6.6. The first is not new, as it can be derived from the

results in any one of [BT1, BT2, BB]. The second is new in general.

Example 6.9. In Proposition 6.6, if the cofibration takes the form

2m
Y

i=1
where f = [i1, 2]+ [i3,94]++ -+ [i2m—1, t2m] then M is an (n—1)-connected 2n-dimensional Poincaré
Duality complex. In fact, it is the m-fold connected sum (S™ x S™)#™. Proposition 6.6 then gives

a homotopy decomposition of QM.
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Example 6.10. Modifying the previous example, consider a homotopy cofibration

2m
st Lo\ sm —
i=1
where f/ = [i1,42] + [i3,44] + -+ + [iam—1,42m] + f”. Here, f” is a composite f”: S?n~1 AN

\/z2m, sm SEIN \/2™ 8™ with the property that ¥y is null homotopic. Possibly 7 is a sum of more
Whitehead products, possibly it is a class of finite order, or some combination of the two. Then M’
may or may not be a Poincaré Duality complex but Proposition 6.6 still applies, giving a homotopy
decomposition of QM’. Note that the decompositions for QM’ and the space QM in the previous
example are identical. That is, while f” may mean M % M’, after looping we nevertheless have

QM ~ QM'.

Next, we consider the case when the spaces X; in Proposition 6.4 are mod-p” Moore spaces. The
analogue of Proposition 6.6 involves mod-p” Whitehead products rather than ordinary Whitehead
products. Let a: P™T(p") — Z and b: P"*1(p") — Z be maps. If p" # 2, by Lemma 4.20 there
is a map

us P ) — SPT) A PY(p)
which has a left homotopy inverse. The mod-p” Whitehead product is the composite
[a,0],: PP (pr) — s Py A PRty Y 2

where [a, b] is the usual Whitehead product.

Lemma 6.11. Suppose that for n > 2 there is a homotopy cofibration
P (p \/ P (p) — M.

Suppose that f = f1 + fo where:

° fl = Z;n:Z dj . [’L'l,ij}r for dj € Z/pTZ;
there is at least one t € {2,...,m} such that d; is a unit in Z/p"Z;
fo factors as P> (pr) s /70, PPHL(pr) LN Vit, PP (pT) for some map ~;

>~y s null homotopic.

Then there is a homotopy fibration

m

@P 1 pr)yx C) v (\/ PP (pT) — M 5 PP (pT)
i=2
where C ~ ( \/ P (p ) \Y, PQ”(pT), and this homotopy fibration splits after looping to

z;ét
give a homotopy equivalence

QM ~ QP (p) x Q((QP”“(pT) x C) Vv (\7 P”“(pT»)-

=2
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h .
Proof. The argument is just as for Proposition 6.6, but with the map $A —3% LX; A X in Propo-
sition 6.4 in this case being of the form P?"+1(p") gy P (p") A P™(p"). O

Remark 6.12. As for Proposition 6.6, the homotopy type of QM in Lemma 6.11 depends only on

m and n, with the map ~ having no influence on the homotopy type.

Corollary 6.13. In Lemma 6.11 the space (AP (p")x C)V (2, P" T (p") is homotopy equivalent

to a wedge W' of mod-p” Moore spaces. In particular,
QM ~ QP" 1 (p") x QW'

Proof. The argument is just as for Corollary 6.8 with appeals to Lemma 4.20 in order to decompose

iterated smash products of mod-p™ Moore spaces into wedges of mod-p™ Moore spaces. O
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7. AN APPLICATION TO POINCARE DUALITY SPACES

In Lemma 6.11 a mod-p” Moore space was attached to a wedge of mod-p” Moore spaces. We
want to next consider attaching a sphere to a wedge of mod-p”™ Moore spaces. That is, we consider

a homotopy cofibration of the form

m
s L\ Py — M
i=1

and will assume throughout the section that p is odd and n > 2. Such cofibrations are particularly
interesting because for certain maps f the space M is an (n — 1)-connected (2n + 1)-dimensional
Poincaré Duality complex that is rationally equivalent to S2"*1. A highlight of this section is the
proof of Theorem 1.3.

The distinction between attaching a Moore space and attaching a sphere is large in the sense that
we can no longer appeal to Proposition 6.4 or even to Theorem 5.8. Instead, we have to go back to

the inner workings of the proof of Theorem 5.8 and make a modification that is specific to this case.

This requires some initial lemmas.

Lemma 7.1. Suppose that there is a map A — X A D such that X A XA =G 'Y (X" AYD)

has a left homotopy inverse. Then QXX ANXA 2 ONX A (X" AXD) has a left homotopy inverse.

Proof. Tt will be convenient to write the identity map on a space Z as 1. Let u: XA (XAkAED) —
X A XA be a left homotopy inverse for the map 1x A Xv. Then for each ¢ > 1 the composite

xAtAZv LyntAu

XMaxal XM A (XM ASD) XMIASA

is homotopic to the identity map. Consider the diagram

losx AXv

QXX NXEA QXX ANED

- -

\/toi 1At AXv \/fc: 1y ntAu
Vo XMATA =2 2 XM A (XM ASD) —— s /2 XM ASDA

The right square homotopy commutes by the naturality of the James splitting of XQ> X, where we
have used the fact that Yv is a suspension to rewrite 1oy x A v as 1sosnx A v. The bottom row is
homotopic to the identity map since (1xat A w) o (1xat A Xv) is homotopic to the identity map for
each ¢t > 1. Therefore the homotopy commutativity of the diagram implies that 1gsx A Xv has a

left homotopy inverse. U
Example 7.2. The relevance of Lemma 7.1 is as follows. Let v be the composite
v S2n71 N P2n(pr) L> Pn(pr) /\Pn(pr)

where the left map is the inclusion of the bottom cell and u is the inclusion of the top dimensional

Moore space in the homotopy decomposition of P™(p") A P"(p") in Lemma 4.20. In particular, Zv
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does not have a left homotopy inverse. However, Lemma 4.20 implies that
P (pr) A 5P P () A (SP(07) A P ()
does have a left homotopy inverse. Lemma 7.1 then implies that
QP () A SPM QP () A (SP(p) A PR P)
has a left homotopy inverse.
Next, we consider what will be the analogue of the map ¢ in Theorem 5.8.

Lemma 7.3. Suppose that there is a map S*" LN P(p") x (Vity P"TH(p")) which induces an

inclusion in mod-p homology. If p is odd then the order of £ is p" and ¢ factors as a composite

g2 P2n+1(pr) L) P (p") x (\/ Pn+1(pr))
1=2

for some map 1'.

Proof. By Lemmas 2.1 and 4.20 there are homotopy equivalences

Py (\) PG)) ( \/ P A P"“(zf)) v\ PG
1=2 1=2 1=2

= (VP v e ) vy Prn)

i=2 =2

Since ¢ induces an inclusion in mod-p homology, it must map into at least one of the P21 (p)
wedge summands as the inclusion of the bottom cell (up to multiplication by a unit in Z/p"Z).
Therefore the order of /£ is at least p”. On the other hand, by [CMN], if p is odd then w1 (P*(p")) is
annihilated by p” for any k < 2s. The Hilton-Milnor Theorem implies that any wedge \/;:1 Psi(p")
withn+1<s; <2n+1forall 1 <j <t has the property that ﬂk(\/;:1 P#i(p")) is annihilated
by p" for all k < 2n + 2. Thus, in our case, ma, (P™"(p") x (\/i=y P"T1(p"))) is annihilated by p",
so the order of ¢ is at most p". Hence the order of ¢ is exactly p”. Consequently, ¢ extends to

P2+ (pr) £ Pr(pr) w (T, PP+ (pT)) for some map £'. O
Define the spaces C and C by the homotopy cofibration diagram

Vity PHH(p") === V{5, P""'(p")

| |

(30) S —— Pr(p") x (Vi P ") ————

l :
qol

§2n Pn(pr) A (V:iz Pn+1(pr)) - -

Q\<7Qg<7
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Since ¢ induces an inclusion in mod-p homology so does gof. In particular, thereisat € {2,...,m}

such that the composite

ot T " n ryy 1A T T
75 PRy A\ P ) T P AP ()
1=2

induces an injection in mod-p homology.
Lemma 7.4. The composite
P2 () 5 PR (\7 P (pT)) 5 PM(p") A (\7 PYL(pT)) L4 PR (pT) A P (Y
i=2 i=2
has a left homotopy inverse.

Proof. The restriction of (1 A ;) oqof to S?™ is (1 A q) o qof, which is an injection in mod-p
homology. The action of the Bockstein then implies that (1 Ag:)ogo ¢ induces an injection in mod-p
homology. By Lemma 4.20, P™(p") A P"T1(p") ~ P?"+1(p") v P?"(p"), so composing (1A q;)oqgol’
with the pinch map to P?"*1(p") gives a self-map of P?"*!(p") which induces an isomorphism in
mod-p homology, and hence in integral homology, and so is a homotopy equivalence by Whitehead’s

Theorem. O

Lemma 7.5. Suppose that there is a map S*" N P(p") x (Vity P"TH(p")) which induces an

inclusion in mod-p homology. If p is odd then the following hold:
(a) the homotopy cofibration \/I", P"T1(p") — C — C in (30) splits to give a
homotopy equivalence
C =~ (\7 P (p) v C;
i=2

(b) there is a homotopy equivalence

(P W P ) v (s P =T
=

where the map S*"*1 — C factors through the map C—C.

Proof. The hypotheses imply that Lemma 7.3 holds. The factorization of £ through ¢ in Lemma 7.3

implies that there is a homotopy cofibration diagram

SQn P2n+1(pr) 52n+1

P

(31) s Lo pr(pr) x (VI PPL(Y))

la

G

b

g
i
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which defines the space G and the maps a and b. By Lemma 7.4, ¢/ has a left homotopy inverse.

Therefore as P"(p") x (\/i~, P"T1(p")) is a suspension, there is a homotopy equivalence

Pn(pr) X (\7’7 Pn+1(pr)) ~ P2n+1(pr) Vv @G.

i=2
In particular, the map a in (31) has a right homotopy inverse. The homotopy commutativity of the

bottom right square in (31) then implies that b also has a right homotopy inverse. Thus
C =8y a.

Since G is the homotopy cofibre of ¢/, the left homotopy inverse of (1 A ¢;) o g o ¢ in Lemma 7.4
implies that

6=\ P v (P ALY PG ) v,

In particular, the upper right vertical arrow in (30) composed with C —» G is the inclusion of
/7, PTL(p") into G. Therefore, the map \/7, P**1(p") — C in (30) has a left homotopy
inverse, proving part (a). Further, this implies that its homotopy cofibre C satisfies

C = (P AV PG V(S PG))
i
Finally, note that the inclusion of $2"*+! in C is via the composite $2"+1 —s ¢ —» C, completing

the proof of part (b). O

Recall that for 1 < k < m the map i: P"+(p") — /1o, P"*1(p") is the inclusion of the k-
wedge summand. The Whitehead product [i;,ix] is a map SP"(p") A P™(p") — /i, P*T1(p").
Combining this with the map v in Example 7.2 gives a composite

g2n Xv EP”(pT) /\Pn(pr) [ij k] \/ Pn—i—l(pr)
i=1
where Yv induces an inclusion in mod-p homology. Note that as v factors as the composite 2" —
P2rl(pr)y — S P™(p") A P™(p"), where the left map is the inclusion of the bottom cell and the
right map is the inclusion of the top dimensional Moore space, the map [i;,ix] o v can alternatively
be regarded as S?" —— P2 1(p") B iy \/f:1 PHL(p"), where [ij, ix], is the mod-p” Whitehead
product defined before Lemma 6.11. In what follows the notation will be formulated in terms of

[i5,1k) © L.

Theorem 7.6. Letp be an odd prime, r > 1 and n > 2. Suppose that there is a homotopy cofibration
m
s L \/ Pt (pr) — M.
i=1

Suppose also that f = f1 + fo where:

o fi =31 5lir,i5]0(dj-Xv) ford; € Z;
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o there is at least one t € {2,...,m} such that the mod-p reduction of d; is a unit;
e fo factors as S** 5 \/I, P (p") AN VL, P (p") for some map ~;

e Yy is null homotopic.

Then there is a homotopy fibration

QP T) v (\) PP — M s P
1=2

m

where C ~ (P" (P )A (\/ P"H(pr))) v (52”“ \/PQ"(pr)> , and this homotopy fibration splits after
2
looping to give a homotopy equivalence

QM ~ QP" 1 (p") x Q((QP"“(pT) x C) v (\/ P”"'l(pr))).
i=2
Proof. The proof proceeds in several steps.

Step 1: An observation. We are assuming that f; = Z?:Q[il,ij] o (d; - Xv) so the map XA fg
¥X; A X, in Proposition 6.4 in this case is S" ke P (p") A P™(p"). This does not have a left
homotopy inverse, regardless of the value of d;. Therefore the hypotheses of Proposition 6.4 do not
apply. However, by Lemma 4.20, the map P™(p") A §%" ndi By, P (p") NXP™(p") A P™(p") does
have a left homotopy inverse if the mod-p reduction of d; is a unit. Therefore, by Lemma 7.1, the

map

QPnJrl(pT) " 52” 1IAd;-3v

QP (") A (SPM(p") AP (p))
has a left homotopy inverse.

Step 2: The approach. In light of Step 1, the approach is to modify the proof of Theorem 5.8, on
which the proof of Proposition 6.4 relied. Consider the data

Pril(pt) === P"(p").

The map ¢’ exists since f = f1+ f2 where f; factors through the sum of the Whitehead products [¢;, ¢]
and so composes trivially with ¢;, while f5 factors through I and so composes trivially with ¢;.
Arguing just as for Steps 1 through 3 in the proof of Proposition 6.4 shows that the hypotheses of
the present lemma imply parts (a) through (d) of Theorem 5.8 - which are identical to parts (a)
through (d) of Proposition 5.7. Therefore the k = 1 case of Proposition 5.7 implies that there is a
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homotopy cofibration diagram

(P () x §77) (P () x §77)
\L Yr1+* 0
(32) S(QP (") x (P(p") ASD)VE2D — L yE
i TAV1 =n
S(QP(p7) x T) v £2D v SE

where D = /", P"1(p"), € is a homotopy equivalence, A is the map to the homotopy cofibre of k1,
7 is the map to the homotopy cofibre of 8, and 1 is an induced map of cofibres. As € is a homotopy
equivalence the five-lemma implies that 1 induces an isomorphism in homology and so is a homotopy

equivalence by Whitehead’s Theorem.

Step 3: The homotopy type of E’, setting up. Write 1 = 11 L 1bo L 1)3 where 1)1, 19 and 13 are the
restrictions of ¢ to XC, Z(QP"(p") A C) and %2D respectively. Similarly write € = ¢; L ea L €3
where €1, €2 and €3 are the restrictions of € to P"(p") A XD, QP"T(p") A (P™(p") A £D) and
2D respectively. First, observe that the bottom square in (32) implies that ¢3 = Yo Yez. In
particular, if 15 = 7 o e3 then 13 = ¥¢}. Second, consider the homotopy cofibration S2" a0k
P"(p") AXD % C, which defines the map a. This does not split but, by Step 1, the homotopy
cofibration QP *1(pr) A §2" RACLD) QP (pr) A (PR (p7) A £D) =22 QP (pr) A C does split.
If b is a right homotopy inverse of 1 Aa then, since k3 = 1 x (gof) by (25), the bottom square in (32)
implies that 19 ~ X1 o Xeg 0 3b. In particular, if 95 = 1o ey 0b then o ~ ¥¢p). Third, consider the

homotopy cofibration diagram (in which columns are homotopy cofibrations)

QP2n+1(p [>< S2n QPQ"'H(p ) X SQn

\/%
-~

(33) P(p") x SD —>= QP (") x (P*(p") x D) — = B

Pn+1 (pr E’

where £ is an induced map of cofibres. The splitting C ~ 2DV C in Lemma 7.5 (a) implies that

there is a map

a:C—C 5 g
Note that the map

B: 2D — C 25

is the same as 7 o e o j restricted to XD.
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Step 4: The homotopy type of E'. We claim that the map
—_ — Laph Ly
C Vv S(QP"™(p") AC) v E2D 2T

is a homotopy equivalence. It suffices to show that it induces an isomorphism in homology. To do
this, it suffices to show that it induces an isomorphism in mod-q homology for every prime ¢ and in
rational homology. In mod-p homology, since ¢ induces an injection, the map P*(p") x XD — C
is a surjection. Thus the image of (£ o ), is determined by the image of (o e o j).. That is, the
image of (o L B), is determined by the image of (noeoj),.. By definition of €, eoj ~ €1 L e3. Thus,
after suspending, the bottom square in (32) implies that the image of (X1 o (Ze; L Xeg)). equals
the image of (1 L v3).. Since 8 = 1%, we obtain that the image of (B« L ¥3), equals the image
of (¢1 L v3).. Hence as ¢ = ¢); L 19 L 1)3 is a homotopy equivalence, it induces an isomorphism
in mod-p homology, and therefore so does Lo L )2 L 3. Hence, desuspending, o L 4 L 1% must
induce an isomorphism in mod-p homology. Localizing at a prime ¢ for ¢ # p or rationally, since

P™(p") is contractible, the homotopy cofibration diagram (33) reduces to

SQn SQn SQn
* * *
52n+1 52n+1 SQn-&-l.

In particular, C' ~ §2"! and ¢ o j is a homotopy equivalence. Observe also that « is a homotopy
equivalence. Thus o L ¢} L ¢4 is a homotopy equivalence and so induces an isomorphism in
mod-q, or respectively rational, homology. Hence o L ¢} L 9% induces an isomorphism in integral
homology, as required.

Step 5: The homotopy type of C. As fi = Zﬁz[il,ij] o (d; - ¥v), the map XA hl% YXi1ANXjin

;-5
Proposition 6.4 in this case is $2" “ =5 SP"(p") A P"(p"). As there is at least one t € {2,...,m}

such that the mod-p reduction of d; is a unit, the map S*" de 2y SP™(p") A P™(p") induces an

inclusion in god—p homology. Therefore, by Lemma 7.5, there is a homotopy equivalence C' ~

(PP Pt v (52 P ).
7

As a special case of Theorem 7.6 we prove Theorem 1.3, restated verbatim.

O

Theorem 7.7. Letp be an odd prime, r > 1 and n > 2. Suppose that there is a homotopy cofibration
m
s Lo\ Py — M
i=1

where f =31 i pemlijsir] © (dji - v) for djx € Z and at least one dj reduces to a unit mod-p.

Rearranging the wedge summands \/;~, P"*1(p") so that some dy ; reduces to a unit mod-p, there is
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a homotopy fibration

(QPTH-I \/ Pn+1 _} M q_l> P7L+1(p7')
where C ~ (P" (P )A (\/ P"'H(pr))) v <52”+1 \/PQ"(pr)> , and this homotopy fibration splits after
i=2
i#t

looping to give a homotopy equivalence

QM ~ QP" 1 (p") x Q<(QP”+1 \/ P (p >

Proof. By hypothesis, there is a homotopy cofibration

m
s L\ PPy — M
i=1
where f =37 i p<plij k] o (djk - v) for dj, € Z and at least one djx reduces to a unit mod-p.
Rearrange the wedge summands \/]~, P"*!(p") so that at least one d;; reduces to a unit mod-p.
Let fi = > piylinsix] o (dig - v) and fo = 3o i peplijsin] 0 (djx - v). Then f = fi + fp, there is
ate€ {2,...,m} such that the mod-p reduction of dy , is a unit, as fo does not involve i, it factors
as a composite S — \/T", P+ (p") SEIN Vit P"(p") where v is the same sum of Whitehead
products as in fo but with each i; for 2 < j < k throught of as having range \/;", P"*!(p") rather
than /-, P"=1(p"), and v is null homotopic since it is a sum of Whitehead products. Thus the

attaching map f satisfies the hypotheses of Theorem 7.6, implying that there is a homotopy fibration

QP (p" \/ PrHL(p)) — M Ly Pl (pr)
where C' ~ (P"(pr) A (\/ P"H(pr))) Y (S2n+1 \Y% P2"(pr)>, and this homotopy fibration splits
i=2
i#t

after looping to give a homotopy equivalence

QM ~ QPn—i-l(pr) ~ Q((QPn—H \/ Pn+1 )

Example 7.8. In Theorem 7.6, or Theorem 1.3, if the cofibration takes the form

2m
s L\ P ) — M
i=1
where f = [i1,i2] 0 v + [i3,44] 0 v+ -+ + [i2m—1,%2:m] © v then M is an (n — 1)-connected (2n + 1)-

dimensional Poincaré Duality complex. In fact, it is the m-fold connected sum N#---#N of the

Poincaré Duality complex N defined by the homotopy cofibration
g2n B preti () v P (pr) —— N,

Theorem 7.6 then gives a homotopy decomposition of QM.
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Example 7.9. Modifying the previous example, consider a homotopy cofibration
SQn L) \/ Pn+1(pr) M

where f' = [i1,ia] 0 v + [i3,44] 0V + -+ + [iam_1,42m] 0 v + f”. Here, f” is a composite f”: " SN
\/2m PL(pn) BN \/f;”l P™1(p") with the property that v is null homotopic. Possibly 7 is a sum
of more Whitehead products, possibly it is a class of finite order, or some combination of the two.
Then M’ may or may not be a Poincaré Duality complex but Theorem 7.6 still applies, giving a
homotopy decomposition of QM’. Note that the decompositions for QM’ and the space QM in the
previous example are identical. That is, while f” may mean M 2 M’, after looping we nevertheless

have QM ~ QM’.
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8. INERT MAPS

Recall from the Introduction that if 54 —5 Y -5 V' is a homotopy cofibration then the map f

is inert if Qh has a right homotopy inverse. An interesting example we have already seen is the

" (

homotopy cofibration X% A By 2000 w3\ sy ™ a7 in Section 4. By Lemma 4.12,

Qmy, has a right homotopy inverse, and hence ad®(i;)(i3) is inert.

The inert property is exactly one of the main hypotheses of Theorem 3.5, and that theorem will
play a key role in what follows. As such, it is useful to recall what it says, compressed slightly to
only what will be needed subsequently. Suppose that A Loy M viisa homotopy cofibration
and E is the homotopy fibre of h. If Qh has a right homotopy inverse then there is a homotopy

equivalence

Q' x x4 L E

and a homotopy fibration

QY AxA)vsA DIy by
where «y is the composite XQY” 25 Yy 45y
Suppose that there are homotopy cofibrations
f J
SA—X —>M
and
SA-Ly 5N
Since YA is a suspension, f and g can be added: f + g is the composite
frg: oA SvAavsa M xvy
where ¢ is the comultiplication on ¥ A. Define C' by the homotopy cofibration

vA™M xvy .

Let ¢3: X VY — X be the pinch map to the first wedge summand. Then there is a homotopy

cofibration diagram

f+g
YA—— XVY —= C

b

J

(34)
S A X M

that defines the map ¢. Let h be the composite

h: XVY 2% x 25 M
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Note that by (34), h is homotopic to the composite X VY — C -2 M. Let E and E’ be the
homotopy fibres of h and ¢ respectively. Then we obtain the following diagram of spaces and maps

that collects the data that will go into Theorem 2.2:

E—F

o b

(35) YA XVY —=C
TR
M —— M.

Lemma 8.1. Suppose that f is inert. Then both Qh and Qp have right homotopy inverses.

Proof. As f is inert there is a map t: QM — QX such that Qj ot is homotopic to the identity map
on QM. Consider the composite

oM -5 ox 25 ox vy) 2 anr

where ¢; is the inclusion of the left wedge summand. By definition, h = j o q1, so as ¢; o i is the

identity map on X, we obtain
QhoQiyjot~Q0joQq oot ~N0jot~idan.

Thus Qh has a right homotopy inverse. The homotopy commutativity of the bottom square in (35)
then implies that Q¢ also has a right homotopy inverse. |

Since QA has a right homotopy inverse, applying Theorem 2.2 to (35) gives a homotopy cofibration
(36) OMxSAY S E B

Next consider the homotopy cofibration XA Lo x 5 M. Let F be the homotopy fibre of j.
Since f is inert the map €2j has a right homotopy inverse so by Theorem 3.5 there is a homotopy

equivalence
(37) OM x 54 2 R,

The homotopy cofibrations (36) and (37) can be put together. By definition, h = j o ¢1, so there

is a homotopy fibration diagram

(38) X

h

L
]

M ==
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where ¢ is the induced map of fibres. The right homotopy inverse s: QM — Q(X VYY) for Qh
implies that ¢ o s is a right homotopy inverse for €2j. The naturality property in Remark 2.7

implies that there is a homotopy commutative diagram of cofibrations

9f+g
OMx YA —— F —— F'

NN

OM x XA ——= F —— %

(39)

Note that 6, being a homotopy equivalence implies that the map 674, has a left homotopy inverse.

Moreover, this inverse is independent of g. We record this for future reference.

0
Lemma 8.2. The map QM x SA ¢ E has a left homotopy inverse that is independent of the

map g. O

Next, consider the special case when g is the trivial map. In (35) the homotopy cofibration
2A ™ X VY — O becomes A T X vY 2 M VY and the map C — M can be chosen to
be the pinch map M VY -2 M. Therefore the homotopy fibre E’ of  becomes QM x Y. Hence

the homotopy cofibration (36) becomes
(40) OMxSA " p QM Y.

In this case we show that the cofibration (40) splits in a way that behaves well with respect to the
map ¢ in (39).

Lemma 8.3. The map E — QM x Y in (40) has a right homotopy inverse r: QM x Y — E

such that £ o r is null homotopic.

Proof. The identifications in (35) when g = * imply that there is a homotopy fibration diagram

EFE— QM xY

In particular, the upper square is a homotopy pullback. From the naturality of the pinch map ¢; we
obtain a pullback map
QX xY

jvi
XVY ——= MVY
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that defines 7. Since f is inert, 25 has a right homotopy inverse t: QM — QX. Let r be the
composite

tx1

mOMxY 2 ox xy S E.

Then the previous diagram implies that the composite QM x Y -+ E — QM x Y is homotopic
to (€4 x 1) o (¢ x 1), which is homotopic to the identity map. Thus E — QM x Y has a right
homotopy inverse.

It remains to show that £ o r is null homotopic. Consider the diagram

tx1 7 0
OMxY —— QX xY E F

L

Xvy . x.

The square homotopy commutes by (38). The definition of 7 as a pullback map implies that the
composite QX x Y s E— X VY is the map from the homotopy fibre of ¢; to the total space.
Therefore composing it with ¢ is null homotopic so the lower direction around the diagram is
null homotopic. Hence the upper direction around the diagram is null homotopic. By definition,
r =7o (t x 1), implying that £ o r is null homotopic when composed with F' — X. Now consider
the homotopy fibration sequence QM S sx LM , where 0 is the connecting map. On the
one hand, we have just seen that ¢ o r must lift through 0. On the other hand, since €25 has a right

homotopy inverse, 9 is null homotopic. Therefore ¢ o r is null homotopic, as asserted. (]

In general, suppose that U —» V/ ‘e Wisa homotopy cofibration where ¢ has a right homotopy
inverse r. Then the composite e: U V W My vV 5 Voinduces an isomorphism in homology,
where V is the fold map. Thus if U, V and W are simply-connected then e is a homotopy equivalence

by Whitehead’s Theorem. In our case, we are assuming that all spaces are simply-connected, so the

existence of the right homotopy inverse in Lemma 8.3 implies the following.

Of+x
Corollary 8.4. From the homotopy cofibration QM x$A 5 E —— QM xY we obtain a homotopy
equivalence

9f+*\/7“

(M x TA)V (QM x Y) EVE—Y 4 F

where V is the fold map. O

0
Now return to the general case of the homotopy cofibration QM x LA “5 F — E'. We will
use the special case when g = * to show a splitting in the general case, and identify the homotopy
type of E’. This requires a preliminary lemma, which is stated abstractly. To distinguish identity

maps on different spaces, for a space V let 1y, : V. — V be the identity map on V.

Lemma 8.5. Suppose that there are homotopy cofibrations P 5 Q LN R, and P 4Q L R,

where all spaces are simply-connected. Also suppose that there are maps Q Fy P oand R, =5 Q
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such that kop ~1p, koq~1p, jy0s~1g, and ko s ~x. Then the composite R, =Q i>Rp

is a homotopy equivalence.

Proof. Start with the homotopy cofibration P 4Q ay R,. Since all spaces are simply-connected,
the fact that j, o s ~ 1p, implies that the composite

pVs

e:PVR, 25 QvQ -5 Q

is a homotopy equivalence, where V is the fold map. Since kog ~ 1p, ko s ~ %, and the fold map

is natural, we obtain a homotopy commutative square

PV R, *6>Q
\Lm lk
P=———P

where ¢; is the pinch map to the first wedge summand. Restricting to R, we therefore obtain a
homotopy cofibration
R, Q-5 P

Now the fact that ko p ~ 1p implies that we obtain a homotopy pushout diagram

R, R,

L

P p Q Jp Rp

RN

P—— P —— x

To be clear, k o p ~ 1p implies that the homotopy cofibre along the bottom row is trivial, and
therefore the homotopy cofibre of j, o s is trivial. Hence jj, o s induces an isomorphism in homology

and so, as spaces are simply-connected, it is a homotopy equivalence by Whitehead’s Theorem. [

Theorem 8.6. Suppose that there are homotopy cofibrations 3 A L> X —>Mad>sA-LY —
N where f is inert. Define the homotopy cofibration LA M XVY — C and the homotopy
fibration E' —s C' 25 M as in (35). Then the following hold:
(a) the composite QM X Y s E — E' is a homotopy equivalence, implying that
there is a homotopy fibration QM x Y — C 25 M ;
(b) there is a homotopy equivalence QC ~ QM x Q(QM x Y);
(¢) f+ g is inert, that is, the map QX VY) — Q(M+#N) has a right homotopy
muverse;

(d) there is a homotopy fibration

(QCATA)VSA-L X VY —C
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where U = [y, f + 9] + (f + 9)-
Proof. By (36) and (40) there are homotopy cofibrations

OMxSAY

and

OMxSAYS E oM« Y.

By Lemma 8.2 there is a map t: F — QM x XA such that tods, 4 and to¥s,, are both homotopic
to the identity map on QM x LA. By Lemma 8.3 there is a map QM x Y —— E such that the
composite QM x Y — E — QM x Y is homotopic to the identity map and tor is null homotopic.
Therefore, by Lemma 8.5 the composite QM x Y —s E — E’ is a homotopy equivalence. This
proves part (a).

For part (b), consider the homotopy fibration £/ — C 5 M. By Lemma 8.1, Qe has a right
homotopy inverse. This immediately implies that there is a homotopy equivalence QC ~ QM x QFE’.
Now substitute in the homotopy equivalence for E’ in part (a) to obtain the asserted homotopy
equivalence.

For part (c), let i: X VY — C denote the map to the cofibre of f + g. To say that f + g is
inert means that €2 has a right homotopy inverse. To see this is the case, consider the loops on the

homotopy pullback diagram in (35),

OF — QF'

L

Qi

(41) QX VY) —= QC
lﬂh ngo
QM ——— QM.

We check that the homotopy equivalence in part (b) can be chosen to factor through Qi. First, by
Lemma 8.1, the map Qh has a right homotopy inverse s: QM — Q(X VY'). Thus Qi o s is a right
homotopy inverse for Q. Second, by part (a) the composite QM x Y —— E — E’ is a homotopy
equivalence. Let 7’ be the composite QM xY — E — X VY. Then the homotopy commutativity
of (41) and the fact that Q¢ is an H-map implies that the composite

sxQr’

QM x QUM x V) ZE QX VY) x X VY) 45 ox vY) 25 Qo

is a homotopy equivalence, where p is the loop multiplication.
Finally, now knowing that f + g is inert by (c), part (d) is an immediate consequence of Theo-

rem 3.5 applied to the homotopy cofibration A fﬂ Xvy —C. O

Remark 8.7. Theorem 8.6 says something notable. The fact that f is inert implies that f + g is

inert, regardless of what g is.
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9. BASED LOOPS ON CONNECTED SUMS

In this section we apply Theorem 8.6 to analyze the based loops on a connected sum of simply-
connected Poincaré Duality complexes and prove Theorem 1.4. Suppose that M and N are simply-
connected Poincaré Duality complexes of dimension n, where n > 3. Let X and Y be the (n — 1)-

skeletons of M and N respectively. Then there are homotopy cofibrations
st L x M

st Ly N

where f and g are the attaching maps for the top cells of M and N respectively. The connected
sum M#N is given by the homotopy cofibration

S vy s M#N.

This is exactly the situation considered in the previous section, taking A = "2 and C = M#N.
Note that as n > 3 the space S" ! is a simply-connected suspension. As in Section 8, there is a
map M#N 25 M, where explicitly in this case it is the map given by collapsing Y C M#N to a
point. So from Theorem 8.6 we immediately obtain the following, which is a more comprehensive

version of Theorem 1.4.

Theorem 9.1. Let M and N be simply-connected Poincaré Duality complexes of dimension n,
where n > 3. If the attaching map f for the top cell of M is inert then the following hold:

(a) there is a homotopy fibration QM x Y — M#N 25 M;

(b) there is a homotopy equivalence Q(M#N) ~ QM x Q(QM x Y);

(¢c) the attaching map f + g for the top cell of M#N is inert, that is, the loop map

QX VY) — Q(M+#N) has a right homotopy inverse;

(d) there is a homotopy fibration

(EQM#AN) A S ) v ST L X VY — M#N
where U =1[v,f+g]+ (f+9). -

We now give several examples of Theorem 9.1. First, we consider taking the connected sum with

an (n — 1)-connected 2n-dimensional Poincaré Duality complex.

Proposition 9.2. Let M be an (n — 1)-connected 2n-dimensional Poincaré Duality complex such
that n > 2 and the attaching map for the top cell of M is inert. Let N be an (n — k)-connected,
2n-dimensional Poincaré Duality complex withn —k > 1 and 3k —2 <n. LetY = N —*. ThenY

1 a suspension and there is a homotopy equivalence

QM#N) ~ QM x Q(QM AY)VY).
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Proof. It is well known that if m > 2 and V' is an (m — 1)-connected CW-complex of dimension at
most 2m — 1 then V is homotopy equivalent to a suspension. In our case, Y is (m — 1)-connected
for m = n — k4 1, the condition n — k > 1 implies Y is simply-connected, and the condition that
3k — 2 < n implies that Y is of dimension < 2m — 1. Therefore Y is a suspension.

Since the attaching map for the top cell of M is inert, by Theroem 9.1 (b), there is a homotopy
equivalence Q(M#N) ~ QM xQ(QM xY"). Since Y is a suspension, there is a homotopy equivalence
OM XY ~ (QM AY) VY, and the assertion follows. O

The hypotheses of Proposition 9.2 hold in a wide variety of cases. By [BT2], if n ¢ {4, 8} then the
attaching map for the top cell of an (n — 1)-connected 2n-dimensional Poincaré Duality complex M
is inert. If n € {4,8} then the attaching map for the top cell is not known to be inert in all cases
but it may be inert for specific cases: for example, the attaching maps for the top cells in S* x S*
and S8 x S® are both inert.

Observe that if n = 2 or n = 3 then the condition 3k — 2 < n implies £k = 1, and N is then
either a simply-connected four-manifold if n = 2 or a 2-connected 6-manifold if n = 3; both cases
are then simply repeating known decompositions from [BT1] or [BB|. However, if n = 4 then k = 2
is valid, so we obtain a homotopy decomposition for Q(M#N) when M = S* x §* and N is any 2-
connected 8-manifold. This is new - in [BT1] it was shown that if H*(N;Z) is torsion-free then such
a decomposition exists but Proposition 9.2 dispenses with the torsion-free cohomology condition.
More generally, in [BT1] it was shown that if M = S™ x $?"~™ and H*(N;Z) is torsion-free
then Q(M#N) decomposes. Proposition 9.2 significantly generalizes this to M being any (n — 1)-
connected 2n-dimensional Poincaré Duality complex with n > 2, and N not having a torsion-free
cohomology condition but some control over the dimensional range in which the middle cells appear.

Next, we prove a general result in Proposition 9.5 about taking the connected sum with a product

and then increasingly specialize it.

Lemma 9.3. Let Xq,..., X, be simply-connected spaces and let j: \/f:1 X, — Hle X; be the

inclusion of the wedge into the product. Then Qj has a right homotopy inverse.

Proof. This is well known. Let j;: X; — \/f:1 X, be the inclusion. Then j o j; is the inclusion of
the it" factor in Hle X;. Looping to multiply, the product of the maps Qj; for 1 <+ < k is a right
homotopy inverse for €. O

The next lemma gives one source of Poincaré Duality complexes for which the right homotopy

inverse hypothesis of Theorem 9.1 holds.

Lemma 9.4. Let k > 2 and suppose that M, ..., My are nontrivial simply-connected finite dimen-
stonal Poincaré Duality complexes. Let M = Hle M; and let J: M —x — M be the inclusion.

Then QJ has a right homotopy inverse.



76 STEPHEN THERIAULT

Proof. As each M; is simply-connected, it may be approximated by a CW-complex. Doing so, let d;
be the dimension of M;. Then D = Zle d; is the dimension of M. As M; is nontrivial, we have
d; > 1. Therefore as k > 2 we obtain d; < D. Thus the inclusion M; — M factors through the
(D — 1)-skeleton of M, which is homotopy equivalent to M — %. Hence the inclusion \/f:1 M; SN
Hle M; = M of the wedge into the product factors as a composite \/f:1 M; — M — % M. By

Lemma 9.3, €25 has a right homotopy inverse. Therefore, so does 2J. O
Theorem 9.1 and Lemma 9.4 immediately imply the following.

Proposition 9.5. Suppose that M = Hle M; for k > 2 and each M; is a nontrivial simply-
connected Poincaré Duality complex of dimension n. Let N be any other simply-connected Poincaré

Duality complex of dimension n and let Y = N — x. Then there is a homotopy equivalence
Q(M#N) ~ QM x Q(QM x Y).

We consider special cases of Proposition 9.5 in which the decomposition of Q(M#N) can be
further refined.

Example 9.6. Suppose that the product M in Proposition 9.5 has dimension 2n for n > 2. Let N
be an (n — 1)-connected 2n-dimensional Poincaré Duality complex. Then Poincaré Duality implies
that Y = N — % is homotopy equivalent to a wedge of d copies of S™, where d is the rank of
H*(N;Z). If d > 1 then Y is a suspension, so QM x Y ~ (QM AY) VY. Siimilarly, if M is
(2n+1)-diimensional for n > 2 and N is an (n—1)-connected (2n+ 1)-dimensional Poincaré Duality
complex then Y = N — % is homotopy equivalent to a wedge of some number of copies of §™, S"+1
and Moore spaces P"1(m) for various values of m. Again, if Y is nontrivial then it is a suspension.

Therefore, in both cases we obtain a homotopy equivalence
QM#N) ~ QM x (AM AY)VY).

Example 9.7. Suppose that M = Hle S™i for k > 2, each sphere is simply-connected, and N is as
in Example 9.6. Since QM ~ Hle QS™ | iterating the fact that Z(X xY) XX VEY V (EX AY)
and iterating the fact from [J1] that

TS ~ <7 STt

r=1
shows that XQM is homotopy equivalent to a wedge of spheres. If M has dimension 2n and N is an
(n — 1)-connected 2n-dimensional Poincaré Duality complex with Y = N — x nontrivial, then Y is
homotopy equivalent to a wedge of copies of S™, implying that (QM AY) VY is homotopy equivalent
to a wedge W of spheres. Thus Q(M#N) ~ QM x QW. If M has dimension 2n + 1 and N is an
(n—1)-connected (2n+ 1)-dimensional Poincaré Duality complex with Y = N — x nontrivial, then ¥
is homotopy equivalent to a wedge of spheres and Moore spaces, implying that (QM AY) VY is also
homotopy equivalent to a wedge W' of spheres and Moore spaces. Thus Q(M#N) ~ QM x QW’.
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Example 9.8. Suppose that M = Hle CP™: for k > 2, M has dimension 2n, and N is an (n —1)-
connected 2n-dimensional Poincaré Duality complex. Since QCP" ~ S! x QS?"+1 arguing as in
the Example 9.7 shows that XQCP" is homotopy equivalent to a wedge of spheres, as is XQM.
Therefore, as in Example 9.7, we obtain a homotopy decomposition of Q(M#N) in terms of QM

and the loops on a wedge of spheres.

Example 9.9. In Example 9.7, suppose that M = 5™t x §™2 where m; + my = 2n, and N is
an (n — 1)-connected 2n-dimensional Poincaré Duality complex. The decomposition Q(M#N) ~
QM x QW in Example 9.7 implies that SQ(M#N) A S?"~1 is homotopy equivalent to a wedge U

of spheres. Theorem 9.1 (d) then implies that there is a homotopy fibration
UV S22 (5™ v §M2) VY — (ST x ST )#N

where the restriction of ¥ to U is a Whitehead product and the restriction of ¥ to S?"~! is the
attaching map for the top cell of (S™! x S™2)#N. Similarly, if m; + ma = 2n + 1 and N is an
(n—1)-connected (2n+1)-dimensional Poincaré Duality complex then the decomposition Q(M#N) ~
QM x QW' in Example 9.7 implies that SQ(M#N) A S2" is homotopy equivalent to a wedge U’ of
spheres and Moore spaces. Theorem 9.1 (d) then implies that there is a homotopy fibration

U'v S§2 Ly (S vy ST VY — (™ x S™2)4N
where the restriction of ¥ to U’ is a Whitehead product and the restriction of ¥ to S is the

attaching map for the top cell of (S™! x S™2)#N.

Example 9.10. We finish with an interesting specific example. Let X be the Wu manifold, which
is a 1-connected 5-manifold whose mod-2 cohomology satisfies H*(X;Z/27Z) = A(z, Sq'(x)), where
A is the free exterior algebra functor and Sq' is the first Steenrod operation. As a CW-complex,

X = P3(2) Ue®. By Examples 9.7 and 9.9 we obtain: (i) a homotopy equivalence

Q((S? x SHY#X) ~0S5? x Q8% x QW
where

W = ((25? x QS%) A P3(2)) v P3(2)
is homotopy equivalent to a wedge of mod-2 Moore spaces; and (ii) a homotopy fibration

U'v St L 82V %) v PR(2) — (S? x S#X
where
U' = ¥°0Q((5% x S*)#X)

is a wedge of spheres and mod-2 Moore spaces, the restriction of ¥ to U’ is a Whitehead product,

and the restriction of ¥ to S* is the attaching map for the top cell of the connected sum.
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10. HOPF ALGEBRAS AND ONE-RELATOR ALGEBRAS

Now that we have many examples of inert maps we take a homological time-out in order to
consider the effect an inert map has in homology. To set the stage, consider a homotopy cofibration
wA L vy Py v with the property that Qh has a right homotopy inverse. Our aim is to calculate
the homology of QY”. Take homology with field coefficients. By the Bott-Samelson Theorem there
is an algebra isomorphism H, (QXY) 2 T(H,(Y)), where T( ) is the free tensor algebra functor.

Proposition 10.1. Suppose that there is a homotopy cofibration XA Ty Py where Qh has
a right homotopy inverse. Let fv: A — QXY be the adjoint of f and let R = Im(ﬂ). Then there is
an algebra isomorphism

H.(QY") = T(H.(Y))/(R)
where (R) is the two-sided ideal generated by R.

Proof. First observe that there is an algebra map T(H,(Y)) (OR), H,.(QY"). Since Qh has a right

homotopy inverse, (2h), is a surjection. Since f is homotopic to the composite A Eoaxa 2
QXY where E is the suspension, the composite Qh o f is null homotopic. Therefore (Qh)«(R) = 0.

As (£2h). is an algebra map, we obtain a factorization

~ (QR).
T(H.(Y)) ——> H.(QY")

where «a is the quotient map and b is an induced algebra homomorphism. Since (Q2h), is surjective,
so is b.

On the other hand, by Theorem 3.5 there is a homotopy fibration
QY x$A S sy Ly

where y is the sum of the maps QY’ x £4 - £4 L3 SY and QY x D4 -Ls Qv' Ax A <] sy

for s: QY — QY a right homotopy inverse of Qh. Consider the composite
H.(QQY" x $A)) 2% B(0Y) = T(H.(Y)) -2 T(H.(Y))/R.

Notice that the maps m and ¢ are suspensions, so the adjoint of f o is homotopic to a:: QY x A —
A i> QXY and the adjoint of [ev o s, f] 0 ¢ is homotopic to 8: QY x A — QY' A A @)E&ﬁ Oy
where the right map is the Samelson product of evo s (the adjoint of ev o s) and f The James
construction implies that 2x is homotopic to the multiplicative extension of 1 3. Therefore, as a
is an algebra map, a o (2x). is determined by its restriction to a o (aw L 8).. By definition, a sends

the image of ‘]?; to the identity element. Therefore a o e is trivial. Also, the Samelson product

commutes with homology in the sense that ((ev 6 s, f))s = (€06 ), f+), where the bracket on the
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right is the commutator in T'(H,(Y)). The triviality of ao f, therefore implies that ao ((ev o s, f)),
is also trivial. Thus a o B, is trivial, implying that a o (a L ), is trivial, and hence a o (x). is
trivial.

Further, as homotopy fibration QY’ x ¥4 = 2V 5 V7 has the property that Qh has a
right homotopy inverse, there is an isomorphism T(H,(Y)) = H,(QY') ® H,(Q(QY' x SA)) of
right H.(Q2(QY’ x £ A))-modules. Since a is an algebra map and a o (Qx). is trivial, we obtain a

factorization

~ (Qh) .
T(HL(Y)) ——> H.(QY")

where c is an algebra map and a surjection.

Finally, consider the composite

T(H.(Y))/(R) = HQY") = T(H.(Y))/(R) = H.(QY").
As b and c are surjections, so are co b and b o ¢. Therefore co b and b o ¢ are surjective self-maps
of T(H,(Y))/(R) and H,(QY") respectively. Any surjective self-map of a graded finite type module
is an isomorphism, so both co b and b o ¢ are isomorphisms. As b and ¢ are algebra maps, these

isomorphisms are as algebras. O

Remark 10.2. There is an improvement to Proposition 10.1 if Y is a suspension. In that case the
Bott-Samelson Theorem improves to a Hopf algebra isomorphism H, (QXY) = T(H,(Y)), where
the tensor algebra is primitively generated. The quotient maps b and ¢ in the proof are then Hopf

algebra maps, and we obtain an isomorphism of Hopf algebras H, (QY') = T(H,(Y))/(R).

ad® (i1) (i m
Example 10.3. Consider the homotopy cofibration X"\¥ A XY M LX VYIY =% Mg. By

Lemma 4.12, Qmy has a right homotopy inverse. Therefore Proposition 10.1 applies and we obtain

an algebra isomorphism

H. QM) = T(H. (X VY))/(R)

where R is the image in homology of the adjoint of ad®(i1)(iz).

A specific case of interest is the homotopy cofibration S*7m+n+1 adk(i—m Sl gl
We have T(H,(S™ V S™)) = T(z,y) where |z| = m and |y| = n. The adjoint of the iterated
Whitehead product ad®(iy)(iz) is an iterated Samelson product, and its image in homology is the

iterated commutator ad*(z)(y). If m,n > 1 then by Remark 10.2 there is an isomorphism of Hopf

algebras

H, (QMy) = T(z,y)/(ad"(z)(y)).
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The special case of Example 10.3 is an example of the notion of a one-relator algebra. In general,
an algebra is a one-relator algebra if it is not free and can be written as the quotient of a free
associative algebra by a two-sided ideal generated by a single element. There are many other

examples of one-relator algebras that can be obtained from Proposition 10.1.

Example 10.4. Let M be an (n — 1)-connected 2n-dimensional Poincaré Duality complex where
n > 2. By Poincaré Duality, as a CW-complex M has one zero-cell, d n-cells for some d > 0 and
one 2n-cell. If d = 0 then M ~ S?". Otherwise, there is a homotopy cofibration

d

st Lo\ sm 2y m

i=1
where f attaches the top cell to M. In [BT2] it was shown that that if d > 2 then Qh has a right
homotopy inverse. Therefore Proposition 10.1 and Remark 10.2 apply to show that there is an

isomorphism of Hopf algebras

d
H.(QM) = T(H.(\/ $")/(R)

i=1
where R = Im(ﬁ). Written explicitly, let v; € H, (\/?:1 S"~1) be a generator corresponding to the i
wedge summand of \/f:1 S"~1. The image R of f* is generated by a single element r € T'(vy,...,vy).

Therefore there is an isomorphism of Hopf algebras
H*(QM) = T(vly B ’l]m)/(T)
A particular example of note is when M is a simply-connected four-manifold.

The following example of a connected sum of products of two simply-connected spheres was

calculated in [GIPS] using the Adams-Hilton model.

Example 10.5. Fix an integer n > 4. Let M = #% (S™ x S"~™i) where m; > 2 for each

1 <i < d. Then there is a homotopy cofibration

d
srt L\ sy snome Iy
k=1

where f is the sum of the Whitehead products attaching the top sphere to each copy of S™ x S,
Iterating Theorem 9.1 shows that the map Qh has a right homotopy inverse. Therefore Proposi-

tion 10.1 and Remark 10.2 imply that there is a Hopf algebra isomorphism

d
HL(QM) = T(H.(\/ 5™ v 57~ 1)) /(R)

i=1
where R = Im(f,). Explicitly, let u; € H,(S™ 1) and v; € H,(S"~™i~1) be generators correspond-
ing to the i*" wedge summand in \/;l:1 S™i vy §S™=™i - The image R of }; is then generated by the

single element [u1,v1] 4 - -+ + [ug, v4]. Therefore there is an isomorphism of Hopf algebras

H.(QM) 2 T(uy,v1,...,uq,vq)/([ur,v1] + -+ + [ug, va)).
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Example 10.6. Let M be an (n — 1)-connected (2n + 1)-dimensional Poincaré Duality complex

for n > 2. By Poincaré Duality,

Z ifm=0orm=2n+1
Z° ifm=n
H™(M) =
7o G ifm=n+1
0 otherwise
for some integer d > 0 and some finite abelian group G. Assume that d > 1. Let X be the (n + 1)-
skeleton of M. As in [BT2], there is a homotopy equivalence X ~ (\/?:1(5" VS VBV where V

is a wedge of (n + 1)-dimensional Moore spaces. Therefore there is a homotopy cofibration

d
s Lo (\/ sm Vst vey L M
i=1
By [BT2], (% has a right homotopy inverse. Thus, by Proposition 10.1 and Remark 10.2 there is an

isomorphism of Hopf algebras

d
H,(QM) = T(H,((\/ S" v S")vV))/(R)

i=1
where R = Im(f)*. As in the previous example, this may be rewritten as an isomorphism of Hopf
algebras

H (QM) =2 T({u1,v1, ..., uq,va} & Ho(V))/(r)

where |u;| =n — 1, [v;| = n and r generates the image of f,.

Remark 10.7. Proposition 10.1 does not apply in general to an (n — 1)-connected (2n + 1)-
dimensional Poincaré Duality complex with d = 0. That is, in the case when X is homotopy
equivalent to a wedge of Moore spaces. For example, if all the Moore spaces are of the form

P 1(pr) for a fixed odd prime p and integer r, then there is a homotopy cofibration
m .
52 L\ pripr) s
i=1

We will show that Qi does not have a right homotopy inverse, implying that one of the hypotheses
of Proposition 10.1 fails to hold. By Theorem 7.6 there is a homotopy fibration

@P™0r) D)y (\ PG L 0 s Pty

that splits after looping and where C ~ S?"t1 v W where W is a wedge of mod-p” Moore spaces. In
particular, QC is rationally nontrivial (because of the factor Q52" *!). However, Q(\/|, P"1(p"))
is rationally trivial, so 2 cannot have a right homotopy inverse. It would be interesting to calculate

H,.(QM) in this case.
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11. A SECOND FOUNDATIONAL CASE

This section is in preparation for the next. To set things up, suppose that there is a space M with

m

the property that there is a factorization of the inclusion \/!", ¥X; — [[/~, XX, as a composite

m m
\/ZXii>Ml>HEXi

i=1 i=1

for some maps v and w. In addition, suppose that there is a homotopy cofibration
AL M —
with the property that w o f is null homotopic. Then w extends to a map

m
w’:M’—>HEXi

=1

and there is a homotopy fibration diagram

E—F

N

(42) M — M
[IZ, 32X — [[Z, =X

that defines the spaces E and E’ and the maps p and p’. The inclusion w o v of the wedge into the
product has a right homotopy inverse after looping, implying that Qw also has a right homotopy
inverse s: [[\2, QX X; — QM. Theorem 2.2 then implies that there is a homotopy cofibration

[[esxixsa 5% E— E
i=1

and a homotopy commutative diagram

[, OSXi xSA — ~ F

i: ip
[y f1+f

(T, QOEX) ABA) VEA —= M

where ~ is the composite L([]\~, QXX;) =% NOM % M. On the other hand, the suspension
of a product splits as a wedge, and the James construction lets us further split each of the spaces
YQYX;. In this section we show that those splittings can be chosen so that the maps from the
wedge summands into M can be identified as iterated Whitehead products.

Recall from Lemma 3.8 that there is a natural homotopy equivalence

\/ Ex* BN 0030 ¢
k=1
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defined as follows. For & > 1, let e be the composite
E><k:
er: X0 25 (QuXx)*F K onx

where p is the standard loop multiplication. There is a natural homotopy equivalence Y(A x B) ~
YAVYBV (XAAB). Iterating this we obtain a natural map XX; A+ A X — X(Xq x -+ x X).

Let ¢ be the composite
op: TXM 5 N(XF) 2% $ONX.
Let

¢: \/ TXM — TOXX
k=1
be the wedge sum of the maps ¢ for k > 1. As shorthand, this is called the ¢-decomposition of

YOYX.
Let X1,...,X,, be path-connected spaces. For 1 < j < m, let
m
tj: Xj — \/ X;
i=1
be the inclusion of the j**-wedge summand. Applying the James construction gives a map
Qst; ¢
Oxx; — an(\/ X,).
i=1
Multiplying the maps 23t; together for 1 < j < m gives a map

(43) U ﬁQEXZ- — Qz(\n} X;).

i=1 i=1

As ¥ is not Q31 for some map v, it need not necessarily be the case that the decomposition
of X(JT", OXX;) obtained by combining the natural decomposition of the suspension of a product
with the ¢-decomposition of each QXX is compatible with the ¢-decomposition of ZQX(\/[2, X;).
However, in Proposition 11.1 we will show that a decomposition of Z([];~, 2XX;) may be chosen

to be compatible with the ¢-decomposition of QX (\/I", X;).

Proposition 11.1. There is a homotopy equivalence

<7 \/ SXi, A A X, — Z(ﬁ QrX;)
k=1 1<i;<--<ipx<m i=1

satisfying a homotopy commutative diagram

> I o0 m
V Vo OEXo A AX = VR SV XM
k=1 1<

i1 < <ip<m

ie ¢

E(Hgl QEX%’) ZQZ(\/Zl Xi)

where I is an inclusion of wedge summands.
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Proof. First consider the diagram

til X"'Xtik

X, x - x Xy, (Vi Xi)=*

ek
Ex---xXE EXFk
tail X-“Xﬂztik

QYX;, x -+ x QNX;, OBV, X)) s an (VI Xo).

The left square clearly commutes and the right square commutes by definition of e;. Now suspend

and use the naturality of the map XAA B — (A x B) to obtain a homotopy commutative diagram

Etil/\"'/\tik m &
X AN X, Vit X"

(05t X xQ8t;,,)

SOSX;, % - x Q8X;,) ——— 5 SAS(VT, X ) e RO, X)),

Observe that the map Xt;, A--- At;, is the inclusion of a wedge summand. Doing this for each

1<idp <--- <4, < m then gives a homotopy commutative diagram

Ik m
\/ X, A AX;, SV, XN

1<i1 < <ip<m
Pk
\Lsk

D(QSty XX Uty Tm
DOSX] X - x Q8X,,) 2OV, X)) S SOn(VE, X)),

where [j is an inclusion of wedge summands. Finally, assembling these diagrams for each k£ > 1

gives a homotopy commutative diagram

\/ \/ SXi A A X, . Ve SV, X))
k=1 1<i; <--<ip<m
l o
ls
S(QXt1 X - X Q) Xm
DOSX] x -+ x Q0X,,) DOV, X)) s won(Vr, Xo).

where I is an inclusion of wedge summands. Observe that the bottom row is XW.

It remains to show that ¢ is a homotopy equivalence. Take homology with field coefficiets. For
1<i<m,letV, = PNI*(XZ) By the Bott-Samelson and Kunneth Theorems, there is an algebra
isomorphism

H.(QEX; x - xQ8X,, ) 2TWV) @ - @T (V).

The submodule consisting of elements of tensor length £ is \/,; <. <, <, Vis ® - @ Vi,.. Thus the

previous isomorphism implies there is a module isomorphism

o0

H.(Q5X) x - x Q8X,,) 2= \/ V  Vue--aV,

k=1 1<i; <--<ip<m
For a fixed sequence (i1, ...,4) with 1 <4y <--- <4, < m, the composite

S(EX-- X
_—

SXi, A A Xi, —— DXy, % - x Xi,) B sosx, x - x QEX;,
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induces the inclusion of the submodule ¥V;, ® --- ® V;, Therefore €, induces the inclusion of the
submodule V1§i1§---§ik§m YV, ®---®V;, into .FNI*(Z(QEXl x - x QX X,,), implying that € induces
an isomorphism in homology. As this is true for mod-p homology for all primes p and rational
homology, ¢ incudes an isomorphism in integral homology. Hence it is a homotopy equivalence by

Whitehead’s Theorem. O

Next is a variation on Proposition 11.1 that involves half-smashes and a generalization of the

map c from Section 3. The maps by in Section 3 may be defined more generally as follows. Let
bi: X1 AXY — X x XY
be the inclusion i. For k& > 2, define
br: Xi A AXp AXY — (X)X - x X)) x BY
recursively by the composite

XiAXo A AXpASY — 5 Xy x (Xo A+ X ASY)

1D<Ek71

— X ) (X X - X Xp) X BY) —2— (X x X5 X - X Xp) X 2.
Note that the naturality of i and ¢ in all variables implies that by is also natural in all variables.
Note also that the map by in Section 3 is given by taking each X; for 1 <1i < k equal to a common
space X. Applying the naturality of by to the inclusions X; i) V%, X; then immediately gives
the following.

Lemma 11.2. Let Xy,...,X,, and Y be path-connected spaces. For any 1 < i3 < -+ <4 < m
there is a homotopy commutative diagram

tiy /\~~/\t1‘,k/\1

Xi, Ao A Xy ASY (Vit, X)) AzY

lbk \Lbk

(ti1><~..><tik)[><1 m X O
(X;, X x X;,) x 2Y (Vi Xi)*F x BY.

In what follows, the £k = 0 case of a smash product X;, A --- A X;, A XA refers to XA. By

Lemma 3.10, there is a homotopy equivalence

V (VL XM ASA =5 QB(VIL, X;) x DA,
k=0

Lemma 11.3. There is a homotopy commutative diagram

[e%s} I 0 m
\/ \/ (Xi, Ao A X3 ) ASA — \[(VIZ, X)) A 54
k=0 1<ij<-<ip<m k=0
I |
g

(", Q2X;) x ©A QB(V™, X;) x SA
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where €' is a homotopy equivalence and I is an inclusion of wedge summands.

Proof. The proof is similar to that for Proposition 11.1. It begins with the same first step, just
half-smashed with 3 A. Consider the diagram

(tiy ><-~><tik)><1

(X;, x - x X;,)x ZA (Vi X;)*F x 2A
ep X1
iEkal

mx1
SV, X))k x £A 2 ORI, X)) x DA,

l(Ex---xE)lxl
(QZt,-lxmeEtik)lxl
QXX x---xQ¥X,;, ) x XA

The left square clearly commutes and the right square commutes by definition of ey.
Next, juxtapose the diagram above with that in Lemma 11.2 (with Y = A) to obtain a homotopy

commutative diagram

(til/\"'/\tik)/\l

(X, Ao AN X ) AZA (Vit, X)MAxA

(2%t ><~~><QZtik)l><1

mX1
QXX x - x QX ) ) BA — L ORI X))k x DA — s QR(V, X)) x DA

i=1 <%0

Observe that ¢;, A --- At; A1 is the inclusion of a wedge summand. As in Proposition 11.1, a
similar diagram exists for each 1 <47 < --- <4, < m, and then all such diagrams for k£ > 1 may be

assembled to give a homotopy commutative diagram

\/ \/  EXy A AX ABA — s R S(VE, X)) ASA

k=1 1<i;<--<ig<m
c
ig

(QBt1 X+ XQEtyy ) X1

(QEX1 % - X Q5 Xm) X £A QS(V™, X)) x 24— QR(V™, X)) x BA

where [ is an inclusion of wedge summands. Observe that the bottom row is ¥ x 1 so the homotopy
commutativity of the diagram implies that co I ~ (¥ x 1) o¢’. An argument as in Proposition 11.1

shows that €’ is a homotopy equivalence. O

Recall from the setup at the beginning of the section that there is a composite \/:’;1 X, —
M= [T:%, £X; that is homotopic to the inclusion of the wedge into the product. For 1 < k < m,
let vy be the composite

m
ve: BXp 25 \/ BX; 5 M.
i=1

Recall as well that two maps f and g are congruent if ¥ f ~ ¥g, implying that f. = g..
Theorem 11.4. There is a homotopy cofibration

(7 \V/ XA AX)AEA-SE - E

k=0 1<i3<---<ip<m
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where the map C is congruent to a map ' satisfying a homotopy commutative diagram

<7 V (Xil/\"'/\Xik)/\ZAi>E

k=0 1<i1<---<ip<m

\ p
Vito Vlgilg-ugikgm[”h J[vig [ [vig  f1]-]

M.

Proof. The proof is broken into steps.

Step 1: setting up. After looping, the inclusion \/;7;1 XX, — H;il ¥ X; has a right homotopy
inverse. A specific choice of a right homotopy inverse is given by the map ¥ defined in (43). Let s

be the composite

5: ﬁQZXi = QZ(\7 Xi) % QM.

i=1 i=1
Then as w o v is homotopic to the inclusion of the wedge into the product, s is a right homotopy

inverse for Quw.
As an intermediate stage, define the space F and the map p by the homotopy fibration
_ m m
E -2 (\/zxi)vaﬁ \/EX,»
i=1 i=1

where ¢; is the pinch map. By Example 3.6 there is a lift
g: XA —FE

of the inclusion S A —2 (Vir, £X;) VXA and a homotopy equivalence

m
@o(1Xg) —

Qr(\/ X)) x A =3 E.

i=1
Since w extends the inclusion of the wedge into the product and w o f is null homotopic, there is a

homotopy commutative square

(VI £X,)VEA Y
Vit 82X, — [[X, X,
Let a: E — E be the induced map of fibres and let g be the composite
g: XA 9. F % E.

Notice that as g is a lift of the identity map on A to E, the map g is a lift of f to E. Further,
we claim that the composite ¥4 2+ E —» E’ is null homotopic. Since ¢ lifts f, the composite
AL E— FE Ll) M’ is homotopic to XA Tom — m by (42), which is null homotopic
since M’ is the homotopy cofibre of f. Thus XA —%+ E — E" lifts to the homotopy fibre of p’. But

by (42), as Qw has a right homotopy inverse, so does Qu’, implying that the connecting map for the
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/
w

homotopy fibration E' - M’ [T, £X; is null homotopic. Hence the lift of £A S E—F
to the homotopy fibre of p’ must be null homotopic, implying that the composite ¥4 —2+ E —» E
is null homotopic.

With this choice of g and the existence of a right homotopy inverse for Qw, Theorem 2.2 implies
that there is a homotopy cofibration
(44) J[o=x)xs4 -5 E— B

i=1

where, by definition, 6 is the composite

m
(JJosx) x A ™ oM x E - E.

i=1

Step 2: the map (. Consider the diagram

\/ \/ (Xiy A=A X3 ) ASA — ([[, O5X,) x TA
k=0 1<iy3<---<ip<m
(45) if U1 o
c Quix
Vo (VI XM ASA —— 5~ NV, X))k XA —= QM x B —> E.

The left square homotopy commutes by Lemma 11.3 and the triangle homotopy commutes by def-
inition of s. In the upper direction around the diagram, I' o (s X g) is the definition of 6 and,
by Lemma 11.3, ¢’ is a homotopy equivalence. So if {( = 6 o &’ then by (44) there is a homotopy
cofibration .

\V \/ Xy AAX)ASA-SE - B

k=0 1<i3<--<ip<m

Step 3: the map ¢’ and the congruence with (. In the lower row of (45) inserting the homotopy

equivalence
m
ao(1Xg) —

B: O2(\/ SX,) x TA =3 E
i=1
and its inverse gives T'o (Qu x g)oc~T o (Qux g)o B~ oao (1 xg)oec. Notice that the composite

@o(1xg)ocisthe map d from Section 3. By Theorem 3.15, d is congruent to a map 0 that satisfies

a homotopy commutative diagram

0 —
V/tio(\/:il Xi)/\k AYA — o F

(16) = i
ViZ, ad®(iw)(isa)

(\/211 LX;)vEA
where iy and ix4 are the inclusions of \/;~; ©X; and ¥ A respectively into (\/!-; £X;) V ZA. Let

(=To(Quxg)opftodol.
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The congruence between d and d = @o(1x g)oc implies that ¢’ is congruent to T'o(Qux g)oB~todol.
As 8 =a@o (1 xg), we obtain a congruence between ¢’ and T' o (Qu X g) o co I. The latter is the
lower direction around the diagram (45), and so is homotopic to the upper direction around that

diagram, which is 6 o &’ = (. Hence ¢’ is congruent to (.

Step 4: identifying Whitehead products. Finally, consider the diagram

_ o @
ViZo(Vi, XM asA — "~ F OR(VIL, X)) K B4 =~ QM x B —> I
\ ip l \L ‘/p
Ve, ad®(iw ) (isa) vVg 1vp
Vi, 2X;))VEA — (VL 2X;)VEA —— M VE — M.

The left triangle homotopy commutes by (46), the left of centre square homotopy commutes by
the homotopy equivalence (3, the right of centre square homotopy commutes by naturality and the
right square commutes by the definition of I" in Section 2. The upper direction around the diagram,
precomposed with I, is the definition of ¢’. The lower direction around the diagram, precomposed
with I, behaves as follows. Observe that the restriction of I to the wedge summand X;, A- - -AX;, AXA
is the inclusion #;, A - At;, A 1. Thus the restriction of ad”(iw)(iga) to Xiy A--- A X;, A LA is
[Xti, [Bti,, [+ [Zti,, ixal] - -]. The naturality of the Whitehead product, the definition of vy as

v o Xy, and the fact that po g >~ f imply that

(v\/(pog))o [ZLiu[ELiw["'[ELikviﬁA]]"'] = [Uila[vim["'[vik?f“"']'

Thus the lower direction around the diagram is the wedge sum of the iterated Whitehead products

[Viys [Vigs [+ - [vig, f]] -+ -] for all 1 <43 <--- <ip <m and all k > 0. Hence

poclﬁ\/ \/ [vilv[viza["'[vik’f“"']

k=0 1<iy<--<ip<m

as asserted. O
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12. POLYHEDRAL PRODUCTS AND WHITEHEAD PRODUCTS

The main application of Theorem 11.4 is to polyhedral products. We first recall and formalize
the definition in the Introduction. Let K be an abstract simplicial complex on the vertex set
[m] = {1,2,...,m}. That is, K is a collection of subsets o C [m] such that for any ¢ € K all
subsets of o also belong to K. We will usually refer to K as a simplicial complex rather than an
abstract simplicial complex. A subset o € K is a simplex or face of K. The emptyset () is assumed
to belong to K. For 1 < i < m, let (X, A;) be a pair of pointed CW-complexes, where A; is a
pointed subspace of X;. Let (X, A) = {(X;, 4;)}™, be the sequence of CW-pairs. For each face
o € K, let (X, A)? be the subspace of [/, X; defined by

(XA — ﬁYi here ¥, — X, ifico

i=1 A; ifiédo.
The polyhedral product determined by (X, A) and K is

(X, A% = J&x 47 <[] x

oeK i=1

For example, suppose each A; is a point. If K is a disjoint union of m points then (X, )X is
the wedge X; V -V X,,, and if K is the standard (m — 1)-simplex then (X,x)¥ is the product
X1 X x X,

We aim to apply Theorem 11.4 in the context of a homotopy cofibration ¥4 — (XX, %)% —
(XX, f)?; this will be done in Proposition 12.6. To prepare some definitions and preliminary results
are needed.

The boundary of a simplex o, written Jo, is the simplicial complex consisting of all the proper
subsets of 0. A simplex o is a (minimal) missing face of K if o ¢ K but do C K. The geometric
realization of K is written |K|. Note that if o is a face of K with k elements then |o| & AF~1
and |0c| = OAF~L. The dimension of K, written dim(|K|), is the dimension of the geometric
realization | K.

Given a simplicial complex K on the vertex set [m], let S = {o1,...,0,} be a subset of the set of

missing faces of K. Define a new simplicial complex K by
K=KUS.

In terms of geometric realizations, |K| is obtained from |K| by taking the missing faces indexed by S
and gluing them to |K| along their boundaries. The naturality of the polyhedral product implies
that the simplicial inclusion K — K induces a map (X, A)% — (X, A)K.

We now specialize to pairs of the form (X;,*) in order to better identify certain spaces. By

definition of the polyhedral product we have

(X, E)Am_l = ﬁ X;.
i=1
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The fat wedge is the subspace of H;il X; defined by

FW(X1,...,Xm) ={(x1,...,2m) € HXi | at least one z; is x}.
i=1

The definition of the polyhedral product implies that

(X, )22 = FW(Xy,..., Xm).

Thus if 0 = (i1, ...,9) C [m] then
k
(X% =][%:, and (X0 =FW(X,,...,X;,).
j=1
Therefore, in our case, for each missing face o = (i1,...,i;) € S there is a cofibration
k
(47) FW(Xi,,.., Xi,) — [[ Xi, — Xy Ao A X,
j=1

We show that an analogue is true for the map of polyhedral products (X, )% — (X, x)¥.

Remark 12.1. It is worth pointing out in what follows that when we write \/ g Xi A -2 A X,
we mean o = (iy,...,i;) and it is understood that the number of vertices k may be different for

distinct missing faces in S.

Lemma 12.2. Suppose that for 1 < i < m each space X; is path-connected and each missing face

in S has at least two vertices. Then there is a homotopy cofibration

(X, 95 — (X, 05 — \/ Xi, A A X,
oS

Proof. Define the space C by the cofibration
(X, )" — (X, 95 —C.

In general, if L is a simplicial complex on the vertex set [m] then by [BBCG] 3(X, x)¥ is homotopy

equivalent to \/__; ¥X;, A--- A X;, where 7 = (i1,...,14), and this decomposition is natural with

TEL
respect to simplicial maps L — L’. In our case, as K consists of all the faces of K together
with the missing faces indexed by S, we obtain ¥C' ~ \/ s XX A--- A X;,. We claim that this
decomposition for X.C' desuspends.

Fix 0 = (i1,...,4,) € S. Consider the diagram
FW(X,,..., X)) —= Tl Xi) —= Xy Ao A X,

| | -

(X, 0K ————— (X, 5K C

where the map g, will be defined momentarily. Since ¢ is a missing face for K but is a face of K,

the full subcomplexes of (X, A)%X and (X, A)X on the vertex set {iy,...,ix} are FW(X,,,...,X;,)
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and H§=1 X, respectively. Therefore, by the naturality of the polyhedral product with respect to
simplicial maps, the left square above commutes. This induces a map of cofibres, which gives the
right square and defines g,. Notice that the decomposition of XC implies that ¥g, is the inclusion
of a wedge summand. Thus if

g: V X, AN Xy — C
ceS
is the wedge sum of the maps g, for all 0 € S, then ¥g is a homotopy equivalence. This implies

that g, induces an isomorphism in homology. As each space X; is path-connected and we assume
that each missing face in S has at least two vertices, the spaces X;, A---AX;, are simply-connected.
Hence, by Whitehead’s Theorem, g, inducing an isomorphism in homology implies that g is a

homotopy equivalence. O

Remark 12.3. A useful piece of information to record from the proof of Lemma 12.2 is that if

o € S then the inclusion of o into K induces a homotopy cofibration diagram
asz) —— Hki X; —— Xil AREE /\Xik

| o
K

A ANX;

ik

FW (X,

19

i1
where g, is the inclusion of a wedge summand.

We now specialize further to pairs of the form (XX, *) in order to turn the cofibration in
Lemma 12.2 one step to the left. The (reduced) join of two pointed spaces A and B is the quotient
space A* B = (A x I x B)/ ~ where I = [0,1] is the unit interval and the defining relations are
given by (a,1,b) ~ (a’,1,b), (a,0,b) ~ (a,0,b") and (*,t,%) ~ (x,0,*) for all a,a’ € A, b1’ € B and
t € I. There is a well known homotopy equivalence A* B ~ XA A B.

In the case of pairs (XX, *), for each missing face o = (i1,...,ix) € S there is a homotopy
cofibration

k
Xiy o0 Xy — FW(EX5,,...,5X;,) — [[ =X,
Jj=1
that induces the cofibration in (47). Let

b \/Xil*"'*Xik —>(M,§)K
cES

be the wedge sum of the composites X;, *---x X; — FW(ZX; L 3X,) — (X, %)X for all

19

a:(il,...,ik)es.

Lemma 12.4. Suppose that each missing face in S has at least two vertices. Then there is a
homotopy cofibration

\ Xy s X D (22X, 05 — (32X, 9%
ceS
that induces the homotopy cofibration in Lemma 12.2.
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Proof. In general, as K = K U S, the definition of the polyhedral product implies that there is a
pushout

k
UG'ES FW(XZU cee 7Xik) - UUES (Hj:l X’ij)

(48) l |

(Ka f) K (X7 f)f

By Lemma 12.2, the homotopy cofibre along the bottom row is \/ Xiy A+ AN X;,.. The fact
that (48) is a pushout implies that the cofibre of the top row is also \/, cs Xi; A--- A X, By

Remark 12.3, the restriction of (48) to FW(X;

gEeS

ey Xip) — Hle X, corresponding to a fixed o
induces the inclusion of the wedge summand X;, A---AXj;, into the cofibre. In our case each such map
FW((EX,,,....,2X;,) — H§:1 ¥ X, is induced by a map X;, *-- -+ Xy, — FW(EX;,,...,2X;,).

Therefore there is a homotopy cofibration sequence

k
\ X xx X — | FW(EX;,, ... 2X5,) — (HEX,-]) — \/ X, A ASXG,

oces oceSs cesS Mj=1 oS

Hence, as (48) is a pushout, the definition of f implies that there is a homotopy cofibration

\/ Xi 0 X, D (2X, 05— (2X, 9K,

Tk
ceS

O

Remark 12.5. Lemma 12.4 is also proved in [IK2, Theorem 5.1 and Remark 5.2] as a consequence
of a grand organizational scheme for polyhedral products called the fat wedge filtration. Our for-

mulation is more elementary as the focus is only on what is needed for Lemma 12.4.

Observe that X;, *--- x X; o~ Ek’lXi1 A - A X;,. As we assume each missing face 0 =

(i1,...,ix) € S has at least two vertices, we have k > 2 so ¥¥~1X; A--- A X;, is a suspension. Let

A=\/SF2X A A X

1k *
ceS

As in Remark 12.1, note that the number k depends on o and may be different for distinct elements

of §. The homotopy cofibration in Lemma 12.4 may now be rewritten as follows.

Proposition 12.6. Let K be a simplicial complex on the vertex set [m], let S be a subset of the

missing faces of K, and let K = K US. Then there is a homotopy cofibration

TA — (2X, 0K — (X, 5K, O

The point of Proposition 12.6 is to put us in a position to apply Theorem 11.4. Let K be

a simplicial complex on the vertex set [m], let S be a subset of the missing faces of K and let
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K = K US. Then there is a homotopy fibration diagram

E—>F

Pk

(EX, 0K —— (2X,)F

-k

H?ll 2Xi H?il 2Xi

where w and W are inclusions. By [DS], there is are homotopy equivalences
E~(COEX,05X)K  F~ (COEX, 0uX)K

and, under these equivalences, the maps p and p become maps of polyhedral products induced
by appropriate maps of pairs of spaces. The inclusion of the vertex set into K induces a map of

polyhedral products
v \/ X — (2X, %)

i=1
with the property that the composite \/\*; £X; = (2X, 5K % [T~ , £X; is the inclusion of the
wedge into the product. For 1 < k < m, let vy be the composite
ver BX 25\ 2X, 2 (2X, 0K,
i=1

By Lemma 12.6 there is a homotopy cofibration
TA — (ZX, )% — (2X, 95

Thus all the hypotheses of Theorem 11.4 apply and we obtain the following, which is a restatement
of Theorem 1.5.

Theorem 12.7. There is a homotopy cofibration

o0

\/ Vo (X A AX) AZA S (COEX, 08 X)K — (COEX, QEX)F

k=0 1<i;<--<ix<m
where the map ( is congruent to a map (' satisfying a homotopy commutative diagram

o0 C(
\/ V(XA AX ) ATA —— (COSX, ORX)K

k=0 1<i1<--<ip<m

\ LP
v:ozl v1§z‘1§---§ik§m[vi1 7[vi2’[“'[vik ’f]]

(ZX, %K. O

The value of Theorem 12.7 comes from the potential for playing off ¢ and ¢’ in order to determine
the homotopy type of (COQYXX| QEX)f or the homotopy class of p. One way this can be used is

explored in the next subsection. Before beginning that, it is worth noting that there are many
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contexts in which one might examine the transition in polyhedral products from (COYXX, Q¥ X )
to (COLX, Q¥ X)K.

Example 12.8. One way to form a simplicial complex is to start with the vertex set and iteratively
add one missing face at a time. For example, if o = (iy,...,4,) is a missing face of K and K = KUo
then the space XA in Theorem 12.7 is X;, *--- x X;,, and the theorem informs on the homotopy
type of (CQXX, QEiX)?.

Example 12.9. The process in Example 12.8 may be accelerated by building up the simplicial
complex skeleton-by-skeleton. Let K be a simplicial complex. For 0 <t < m—1 let K; be the full ¢-
skeleton of K. That is, K; is the simplicial complex consisting of all the faces of K of dimension < ¢.
Notice that if 0 € K; then 0o C K;_1. Notice also that K is the vertex set of K. For 1 <t <m—1,
let S; = {01,...,0.,} be the set of ¢t-dimensional faces of K. Observe that

Kt = Kt,1 USt

Theorem 12.7 then gives an approach to analyzing the homotopy type of (CQXX, QX X)X by “fil-
tering” it via the spaces {(CQXX, Q¥ X)Ke1m 1,

Example 12.10. Another curious example is to start with a simplicial complex K and attach all of

its missing faces simultaneously. That is, if S is the set of all missing faces of K, then let K = KUS.

Properties when (COY X, Q¥ X)X — (COYX, M)ﬁ is null homotopic. This is related to
Example 12.10. Let K be a simplicial complex on the vertex set [m]. For a subset I C [m] the full
subcompler K of K is the simplicial complex consisting of those faces in K whose vertices all lie
in I. There is a simplicial inclusion K; — K but this does not have a left inverse that is a simplicial
map. On the other hand, the induced map of polyhedral products (X, A)%7 — (X, A)X does have
a left inverse constructed via projection maps [DS]. A missing face 7 of K has the property that
OrCKbutt¢ K. If 7= (i1,...,ix), let I = {i1,...,ir}. Then K = 07, so (X, A)?7 retracts off
(X, A)X. In the case of pairs (CX, X), the polyhedral product (CX, X)?™ is homotopy equivalent to
YELXG %% X, [GT2]. In particular, (CX, X)?7 is not contractible if each of X;, through X;, is
not contractible. Therefore if K — L is any simplicial inclusion and K and L share a missing face 7
then (CX, X)97 is a nontrivial retract of both (CX, X)X and (CX, X)’. Hence if the induced map
of polyhedral products (CX, X)X — (CX, X)" is null homotopic then it must be the case that
every missing face of K is a face of L. Consequently, there must be a factorization K — K — L
where K = K U S for S the set of all missing faces of K.

This lets us focus on when the map (CX, X)X — (CX, X)¥ is null homotopic. Note that while
it is necessary to fill in the missing faces of K to obtain such a null homotopy of polyhedral products

it may not be sufficient. An example when it is sufficient is the following. Take m = 3 and let
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K = {{1},{2},{3}} be the simplicial complex determined by the three vertices. The missing faces
of K are S = {(1,2),(1,3),(2,3)}. Let K = KUS, so K is the boundary of A%. Then, as in [GT1],
CX, X))k — (CX, K)? is null homotopic.

Specialize now to the case when (CX, X) is of the form (COQYXX QY. X). In Proposition 12.11
it is shown that the homotopy types of S(COXX, Q¥ X)X and (CQXX, QEiX)? are, in a precise

sense, complementary.

Proposition 12.11. Let K be a simplicial complex on the vertex set [m] and let S be the set of
missing faces of K. Suppose that K = K US has the property that the map of polyhedral products
(COYX, QN X)E — (CO¥X, QEiX)? is null homotopic. Then there is a homotopy equivalence

o —

sV \V (X, A A Xy, )ADA | ~ (COEX, Q8 X)E v E(CorX, 05 X)X,

k=0 1<i;<---<ip<m

Proof. By Theorem 12.7 there is a homotopy cofibration

(oo}
V Vo (X A AX) ASA S (COEX, 08 X)K — (COSX, O8X)F.

k=0 1<i;<---<ip<m

By hypothesis, the right map is null homotopic. The assertion now follows immediately. O

One condition implying that the map (CQYX, Q¥ X)X — (CQZX,QZX)? is null homotopic
is if the map ¢ in the homotopy cofibration of Theorem 12.7 has a right homotopy inverse. In that

case the congruence in Theorem 12.7 allows for more to be said.

Proposition 12.12. Let K be a simplicial complex on the vertex set [m], let S be the set of missing
faces of K and let K = K US. If the map ¢ in Theorem 12.7 has a right homotopy inverse
then the map (CQXX, QX X)K SR (X, %)E factors through the wedge sum of Whitehead products
Ve, \/1§i1§~~§ik§m[”iw [Vig, [ -+ [Viy, f]] and Proposition 12.11 holds.

Proof. Let

sz(CQEX,QEX)K—>\/ \/ (Xi, Ao AX; ) ASA

i1
k=0 1<i;<--<ig<m

be a right homotopy inverse of (. Consider the composite

(COZX, 08X)K =5 \/ \/ (X A A X)) A DA S (CoBX, 08X K.

k=0 1<i;<--<ip<m
Since ¢ and ¢’ are congruent, they have the same image in homology. Therefore, (¢’ 05). = (0 8)«.
As s is a right homotopy inverse of ¢, the map (¢ o s), is the identity map in homology. Thus ¢’ o s
induces an isomorphism in homology and so is a homotopy equivalence by Whitehead’s Theorem.
Consequently, the homotopy commutative diagram involving ¢’ in Theorem 12.11 implies that p

factors through the sum of Whitehead products /3, V< <...<ip < Virs [Vin, [ - [Viy,, f]-
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Next, by Theorem 12.7 there is a homotopy cofibration

(oo}
V V(X A AX) ASA S (COEX, Q8X)K — (COZX, QEX)F.

k=0 1<i;<---<ip<m
The existence of a right homotopy inverse for ¢ implies that the right map in this homotopy cofi-

bration is null homotopic. Therefore Proposition 12.11 holds as well. O

Propositions 12.11 and 12.12 raise several interesting questions.

Problem 12.13. For which K and K is the map (CQEX,05%X)X — (COXX, 02X)K null

homotopic?

Problem 12.14. For which K and K does the map ¢ in Proposition 12.11 have a right homotopy

inverse?

Problem 12.15. In the homotopy decomposition in Proposition 12.11, does each of the wedge
summands LX;, A --- A X;, A LA map wholly to one of (COXX, QXXX or B(CANX, QXXX or

are there cases when there is a nontrivial decomposition
ZXil /\/\Xlk/\EA’:B\/C

with B retracting off (CQXX, Q% X)X and C retracting off $(CQXX, QX X)X ? For which (i1, . .. , i)
does £X;, A -+ A X;, A XA map wholly into (CO¥XX, Q% X)K or into £(COXX, QN X)K?

Despite the potential ambiguity involved in the homotopy decomposition in Proposition 12.11
stated in Problem 12.15, there are cases where interesting information can be extracted regardless.
Suppose that for 1 < i < m each space X; is a sphere. By definition, the space A is a wedge
sum of spaces of the form X;, A--- A X;,, and so is homotopy equivalent to a wedge of spheres.

Therefore each of the spaces X;, A---AX;, AXA is homotopy equivalent to a wedge of spheres, and

(o]

hence \/ \/ (Xiy Ao+ A X;,) AZA is homotopy equivalent to a wedge of spheres. Any
k=0 1<ii<--<ir<m

retract of this large wedge is then homotopy equivalent to a wedge of spheres. In particular, from

the decomposition in Proposition 12.11 we obtain the following.

Corollary 12.16. Let K be a simplicial complex on the vertex set [m] and let S be the set of
missing faces of K. Suppose that K = K U S has the property that the map of polyhedral prod-
ucts (CQLX, QX)X — (M,M)? is null homotopic. If each space X; is a sphere for
1 <i<m, then (CQXX, QZliX)f 18 homotopy equivalent to a wedge of spheres. O

More is true. If the map (COQXX, QNX)X — (COXX, O¥X)X null homotopic then in the

homotopy cofibration

\/ Vo (X A A X)) ARA S (COEX, Q8X)K — (COEX, QEX)F

k=0 1<i;<--<ip<m
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the map ( induces an epimorphism in homology. If each X; a sphere for 1 < ¢ < m then
oo

\/ \/ (Xi, A A Xy, ) A ZA is homotopy equivalent to a wedge of spheres so (, be-
k=0 1<i;<--<ip<m
ing an epimorphism implies that a subwedge W may be chosen so the composite

o0
W \/ Vo (X A A X)) AZA S (COEX, Q8 X)K
k=0 1<i;<--<ix<m
induces an isomorphism in homology and so is a homotopy equivalence. Thus ¢ has a right homotopy
inverse, and now Proposition 12.12 applies. Moreover, as ¢’ is congruent to ¢ by Theorem 12.7, they
have the same image in homology, so the composite
o0
W \/ Vo (X A AX,) ARA S (COEX, 08 X)K
k=0 1<i;<--<ip<m
is a homotopy equivalence and the statement on “factoring through” a wedge sum of Whitehead

[1392)

products in Proposition 12.12 becomes “is” a wedge sum of Whitehead products.

Corollary 12.17. Let K be a simplicial complex on the vertex set [m] and let S be the set of
missing faces of K. Suppose that K = K U S has the property that the map of polyhedral prod-
ucts (CQLX, Q¥ X)K — (COYX, QEiX)? is null homotopic. If X; is a sphere for 1 < i < m
then (COXX, QX X)X and (COXX, inX)? are both homotopy equivalent to wedges of spheres and
the map (COQXX, QX X)X AN (2X, %)X is a subwedge of the wedge sum of Whitehead products

\/2021 vlgilg...gikgm[vim[in['” [Uzka.ﬂ] O

Carrying on, the retraction of S off 25? induces a retraction of the pair (CS',S') off the
pair (CQS2,052). Hence for any simplicial complex K we obtain a retraction of (CS!, S1)¥
off (CS? QS5%)K. Further, this retraction is natural for maps of simplicial complexes. Writ-
ing (CS',S') in the more standard way as (D?,S%'), the polyhedral product (D2, SY)¥ is the
moment-angle compler that is critical to toric topology, more commonly written as Zx. In the
context of Corollary 12.16, we obtain compatible retractions of Zx and Z4 off (CQS?,05%)K and
(CQ52, Q52K respectively. The compatible retractions implies that as the map (CQS2, 252)K —
(CQS?, 9732)? is null homotopic, so is the map Zx — Z3. As (CQS?%,08%)K and (CNS?, 9752)?

are homotopy equivalent to wedges of spheres so are Zx and Z4.

Corollary 12.18. Let K be a simplicial complex on the vertex set [m] and let S be the set of
missing faces of K. Suppose that K = K US has the property that the map of polyhedral products
(CQS?%,08%)K — (CNS?, 9752)? is null homotopic. Then the map Zx — Z3 is null homotopic,
both Zx and Zz are homotopy equivalent to wedges of spheres, and the map Zx — (ij,f)K 18

a subwedge of the wedge sum of Whitehead products \[3y V1< <...<ip < Viss [Vin, [~ [viy, fl]. O

Corollary 12.18 is connected to important problems in toric topology and combinatorics. By [BP]
the space Zx is homotopy equivalent to the complement of the complex coordinate subspace de-

termined by K. A major question is combinatorics is to determine for which K these complements
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of coordinate subspace arrangements are homotopy equivalent to a wedge of spheres. A series of
papers [GT1, GT2, GW, IK1, IK2] identified families of simplicial complexes K for which Zk is
homotopy equivalent to a wedge of spheres, including shifted complexes and those whose Alexander
duals are vertex decomposable, shellable or sequentially Cohen-Macauley. All of these are subsumed
by what [IK2] calls totally fillable or totally homology fillable complexes. Another family of simpli-
cial complexes for which Zj is homotopy equivalent to a wedge of spheres is flag complexes whose
1-skeleton is a chordal graph [GPTW]. Several papers have examined when the map from Zx to
(CP™, %)X is described by Whitehead products [AP, GT3, IK3].

We end by posing a problem regarding how large might be the family of simplicial complexes
with the property that Zx is homotopy equivalent to a wedge of spheres. Let F be the collection
of simplicial complexes that are either totally fillable or flag complexes having a 1-skeleton that is a

chordal graph.

Problem 12.19. Are there examples of K and K in Corollary 12.18 for which Z4 or Z is homotopy

equivalent to a wedge of spheres but K or K is not in F?
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