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Abstract: We demonstrate that the deep learning algorithm can considerably simplify the 

design and characterization of high efficient self-focusing varied line-spaced gratings. 

Our neural network is implemented with a recovery rate of up to 94% for the transmission 

function parameters. With numerical simulations, and optical experiments, we show that 

the self-focusing varied line-spaced gratings designed in such a way are endowed with 

enhanced functionalities, such as the intensity of first-order diffraction peak being 

enhanced with around a factor of 30 compared with the incident intensity, and a high ratio 

(about 60) between the peak intensity of the first order and the intensity of the zero-order. 

Our results allow the rapid design and characterization of self-focusing varied line-spaced 

gratings as well as optimal microstructures for targeted far-field diffraction patterns, 

which are playing key roles in spectroscopy and monochromatization applications.  
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1.  Introduction 

Diffraction grating is a fundamental optical component which can disperse and diffract the 

light into several different directions. It is primarily used for spectroscopy and 

monochromatization [1], and then extended its applications to physics, biology, astronomy et 

al. [2]. The new proposed diffractive devices with subwavelength structures, such as 

metasurface [3, 4], zone plate [5], photon sieve [6], benefiting from the development of the 

microelectronics fabrication techniques, have gained great success in manipulating the 
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amplitude, phase and polarization of the diffraction pattern, especially in visible range. The 

common issue is the expensive cost for the fabrication of their intrinsic subwavelength features. 

Therefore, the diffraction grating with sophisticated functionalities is still necessary for further 

investigation due to its larger feature size.  

Varied line-spaced grating (VLS grating), whose period changes following a certain rule, 

can split and focus the incident beam simultaneously because each pitch of the varied line-

spaced grating will diffract the incident beam at different angles with the same illumination 

wavelength [7, 8]. The functionality of VLS grating simultaneously splitting and focusing light 

is unmatched by other gratings. However, the realization of controllable and highly efficient 

self-focusing is still an ill-posed inverse problem. Traditional inverse design method of varied 

line-spaced grating was usually based on intuitive considerations, systematic fine-tuning (grid 

searching) or other traditional optimization method [9], which would cost expensively both 

computation resources and time. A small change of its target properties will require a 

recalculation and re-optimization of the model which will consume a huge number of 

resources. Therefore, it is necessary to develop a method being able to work inversely to 

reconstruct or design the VLS grating through the target diffraction pattern on the focal plane.  

Recently, artificial intelligence, especially deep learning, is blooming in the scientific 

research supported by the rapidly increasing computing power, especially with the application 

of the graphic processing unit (GPU) [10, 11]. Application of deep learning algorithm in 

photonics device design has been demonstrated a powerful method[12-19] including the design 

of metamaterial [12, 13], core-shell structures [14], photonics crystal [15] and grating [20]. 

Though the success of the deep-learning method in photonics and optics, there is still very 

limited work focus on the information-enriched diffraction field of the photonics structure [18, 

21-24]. The far-field diffraction pattern is always under-estimated since the lack of the non-

propagating evanescent near-field components, even though far field diffraction is much more 

practical than the near field one for many applications. Very recently, a deep subwavelength 

topological microscopy method, which utilized the far-field diffraction field as the input of the 

deep neural network, was proposed and demonstrated with a deep subwavelength retrieval 

resolution of the dimers [23, 24]. However, this is only for the analysis of the variation of the 

diffraction field of simple dimer structure, the feasibility of neural network analyzing the 

diffraction field of more complex structures, such as a varied line-spaced grating, still needs a 

further investigation. 
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Here, we introduce a high efficiency self-focusing varied line-spaced grating designed by 

the deep learning algorithm based on the target far-field diffraction pattern. The grating has 

been numerically and experimentally demonstrated the peak intensity of 1st order being two 

orders of magnitude stronger than the 0th order intensity on the focus plane. Numerically, this 

method can effectively retrieve the design parameters of the grating with an average of 5% 

error. Our grating would be a promising high-efficiency diffractive device for spectrometer 

application even extending to shorter wavelength, such as EUV and X-ray wavelength. 

2. Results and Discussion 

It is known that the period of the varied line-spaced grating changes following a certain 

rule. Each pitch of the varied line-spaced grating can diffract the light at different angles under 

the illumination of same wavelength incident. This offers the grating a chance to be self-

focusing. This character means that this type of unconventional grating can split and focus 

incident beam simultaneously (see Figure 1). By introducing the rules of the variation of the 

grating’s line space, a focus point could be found in its far-field diffraction propagation field.  

 

Fig. 1. (color online) A high efficiency varied period grating. (a) The sketch of varied period grating using 

the transmission function of Eq. (1). (b) Diffraction pattern of propagation intensity field map pattern of the grating 

design. Inset of (b) is the diffraction pattern on the focus plane of the varied period grating. The light propagates 

along the z positive axis. 

Before applying algorithms to tackle the ill-posed inverse problem, controllable design of 

the high efficiency self-focusing VLS grating, we firstly introduce a representation of the 

grating. We use the transmission function as a representation of the 10 mm×10 mm VLS 

grating with 3001 grating grid units. We define that the duty cycle of transmission part of the 
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VLS grating is 50%, which can guarantee suppressing the even diffraction orders and increase 

the diffraction efficiency of 1st order. Utilizing the symmetry property of the cos function, we 

consider one-dimensional binary grating with the period variation of the variable grating period 

grating satisfying the following transmission function 𝑡(𝑥𝑖): 

𝑡(𝑥𝑖) = {
1,

𝑐𝑜𝑠(2𝜋𝑥𝑖)

𝑇01+𝐴𝑥𝑖+𝐵𝑥𝑖
2 > 0  

0,
𝑐𝑜𝑠(2𝜋𝑥𝑖)

𝑇01+𝐴𝑥𝑖+𝐵𝑥𝑖
2 ≤ 0

 (1) 

where T01 is the initial grating pitch, 𝑥𝑖 is the i-th (0≤ i ≤3000) grid unit position (from 0 

to 10 mm), and A, B are the coefficients of first and second order, respectively. Higher-order 

terms are not considered here and usually ignored due to its very little contribution on the 

change of the grating period.  

Then, we introduce the deep convolutional neural network algorithm, as shown in Fig. 2, 

to assist us in reconstructing the VLS grating. Fig. 2(a) shows this fundamental picture of the 

physics. Diffraction intensity distribution on the focal plane obtained by the detector is used as 

the input of the deep convolutional neural network, and the parameters A, B, T01 of the grating 

transmission function as the output of the network. Deep convolutional neural network is 

selected because it can represent the diffraction pattern into higher dimensions through the 

convolution operation which is not available in the deep fully connected network. This will 

help the deep neural network understand the hidden information in a more sophisticated way.  

To demonstrate this deep learning-assisted parameters reconstruction and grating inverse 

design method, we use a deep convolutional neural network consisting mainly 4 convolutional 

network layers and 2 fully connected layers (see Figure 2(b) for detailed hyperparameters)). 

The weights and bias of the convolutional kernel and fully connected neurons are optimized by 

the Stochastic Gradient Descent (SGD) with momentum optimization method. The 

performance of the regression network is evaluated using the Mean Squared Error (MSE) loss 

function activated by the sigmoid activation function of the output layer, and ReLU activation 

function of the other layers. 



5 
 

 

Fig. 2. (color online) Schematic of the deep-learning-based parameters retrieval and inverse design. (a) 

The scattering field of the grating on the focus plane is recorded by the detector array and transferred to neural 

network as input. (b) The deep convolutional neural network framework consists 4 convolutional layer and 2 full-

connected layers. Here, yellow round squares and blue circles represent the convolutional neurons and fully 

connected neurons, respectively. The input is scattering pattern on focal plane and the output is the three 

parameters of the structure A, B, T01. 

Apart from a reasonable set of network hyperparameters, building a reliable, effective, 

and practical training dataset is also crucial for a trustable neural network[16, 25]. Here, we 

firstly generated the uniformly random parameters set with in the range 1×10-5<A <1×10-2, 

2×10-9<B< 2×10-6 and 1< T01<6. They will be regarded as the ground truth of the neural 

network and used for building the VLS grating design set. In order to limit the precision of the 

generated random number, we discretize each range of the parameters into 10,000 equally 

distributed numbers before the dataset generation. The calculation of the free space propagation 

field from the gratings is carried out using an in-house built Fourier angular spectrum solver. 

The diffraction pattern on the focal plane is extracted as the input of the neural network, 

because they are of our primary attention.  

It shall note that our parameterized representation of the grating is qualitatively different 

from that designing with random generated pixelated designs, most of which are very far from 

optimal. It is known that the requirement of the size of the training dataset exponentially scales 

with the amount of the designing parameters. In our case, generating sufficient quantities of 

the grating design with 3001 pixels randomly would be practically difficult. Also, our deep 

learning algorithm is different from those feeding all designs in full parameters space 

((104)3=1012 designs in our case) into the artificial neural networks. Because high first-order 

diffraction peak intensity I1, low zero-order diffraction intensity I0 is highly desired, we 

artificially selected the grating parameters with I1/I0 >2 for our neural network training. The 
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dataset with only high-performance grating parameters being fed to the deep learning 

algorithms helps the neural network focusing on learning features harvested from the space of 

high-performance VLS grating designs, rather than attempting to extracting features from the 

designs far from optimal.  

In these manners, the network is able to produce the high-performance designs of the 

grating diffracting desired pattern more effectively with substantially less training data. We 

generated N=20,000 sets of parameters of the grating transmission function, of which randomly 

distributed with 14,000 sets of data for training, 3,000 sets for validation, and the remaining 

3,000 sets for testing the performance after training.  

The results of our numerical retrieval of the parameters of the transmission function are 

presented in Figure 3. They demonstrate that the dimensions of parameters B and T01 can be 

retrieved accurately. The recovery rate of our neural network, calculated by Eq. (2), is 94.4%.   

𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑅 = 1 −
1

3𝑁
∑ ∑

|𝑟𝑘,𝑖−𝑔𝑘,𝑚|

𝑔𝑘,𝑚

𝑁
𝑚=1

3
𝑘=1     (2) 

Here, k represents three categorial of the parameters A, B, T01, and m means the mth testing 

sample.  𝑝𝑘,𝑚  and 𝑔𝑘,𝑚  means the predicted value and ground truth value of one test, 

respectively. Indeed, on Figure 3 the solid red, green, blue lines correspond to the median of 

the true values of the parameters as a function of the predicted values, whereas the black dash 

line is the bisector of the first quadrant representing perfect matching between true and 

predicted parameters. The performance of the neural network is quantified by the interquartile 

range (IQR), within which 50% of the true values are found.  Since IQR does not vary 

significantly with the value of the parameters, we use its mean relative deviation to 

quantitively. The average IQRs of the retrieval of A, B and T01 are around 1.31×10-4, 4.47×10-

8, 0.19, respectively.  
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Fig. 3. (color online) The retrieval of the parameters of the VLS grating transmission function, A, B, T01. (a-

c) are the retrieval parameters distribution of A (red), B (green), T01 (blue), respectively. The spread means the 

IQR of the retrieved error distribution. 

The numerical transmission function reconstruction performed with large training sets 

confirmed that artificial intelligence enabled retrieval of the target grating properties from the 

intensity patterns of the far-field diffraction. There are two factors contributing to this 

performance: (1) The deep neural network trained on a reasonable size of dataset creates an 

accurate and strong deconvolution mechanism. (2) Prior knowledge and sparsity of the 

representation of the grating transmission function advance the retrieval of the parameters, 

which is similar as that how sparsity boosts “blind” compressed sensing techniques [26]. 

Further, we used the trained deep convolutional neural network to recover the 

transmission function parameters of the VLS grating with higher first-order diffraction peak 

intensity by feeding a target diffraction pattern on the focal plane. As the orange line shown in 

Fig. 4 (a), we feed a diffraction pattern, whose first and zero order diffraction peak intensities 

are I1 = 1 and I0 = 0.01, respectively. We can obtain a set of parameters (A=8.976×10-5, 

B=1.500×10-8, T01=5.7575) from the neural network, by which we can calculate the 

corresponding focal plane diffraction pattern shown by the blue line in the Fig. 4 (a). The first 

order focus is at 10 mm away from the grating. It shows that the diffraction pattern of produced 

by the designed grating has a good match with the target pattern, although we can see the 

differences in the zoom-in image. The difference of the first-order position relative deviation 

is only a negligible value of 0.5%. We also showed the propagation field of the designed grating 

in Fig. 4 (b). The diffraction intensity distribution meets our expectations. 
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Fig. 4. (color online) Quantitative comparison between (a) Simulated and (b) target diffraction pattern. Red 

dash rectangle gives the zoom-in image around first order diffraction. 

We have demonstrated numerically our VLS grating can split and focus the incident light. 

To verify the numerical prediction, we fabricated the 10 mm×10 mm VLS grating on the glass 

substrate. First, a 110nm chromium layer is deposited on the substrate using electron beam 

evaporation followed by spinning a layer of positive photo resist. Then, the grating design 

layout is transferred onto the resist layer by laser direct writing lithography. Next, after 

development, wet etching technique is used to transfer the pattern to the chromium layer. 

Finally, the VLS grating (see inset of Fig.5(a)) is obtained after removing the resist and 

cleaning. 
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Fig. 5. (color online) Experimental demonstration of the high efficiency VLS grating. (a) Optical experiment 

setup using 532nm collimated laser illuminated on the laser after a beam expander. The diffraction pattern is 

collected by the CCD camera and pass through the computer. Inset: the physical VLS grating. Scale: 20µm. (b) 

Experimentally measured and (c) Numerical calculated propagating diffraction pattern around the focus 

plane(±3.5mm off the focus plane. ). (d) Comparisons of the diffraction pattern on the focus plane between 

simulation and experiment.  Inset: the profile near the first order. 

The proof-of-principle experimental demonstration of the deep learning assisted design 

high efficiency VLS grating was carried out in a custom-built optical setup (see Fig. 5(a)). The 

coherent laser source at wavelength λ=532nm (Lighthouse Photonics Sprout-G 532nm, 1mW) 

is illuminated onto the grating after an attenuator and a beam expander. Here, the attenuator is 

to avoid the saturation of the detector and the beam expander is used for generating plane wave 

to make the illumination beam larger than the grating area. Therefore, the incident area is 10 

mm×10 mm on the VLS grating as the same setting in our numerical simulation. The imaging 

detector is moved along z axis to get the diffraction pattern from -30mm to 30mm off the focus 

plane with a step of 1mm.  

The diffraction pattern is collected by the Basler acA4112-30μm USB 3.0 Mono color 

camera (Sony IMX253 CMOS sensor, 30 frames per second at 12.3 MP Resolution). The pixel 

size is 3.45μm×3.45μm, assuming the number of pixels is 4096×3000, and the size of the CCD 
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photosensitive area is 14.11mm×10.3mm. An example of the detected raw image is shown in 

the computer screen of Fig. 5(a). The experimental propagating diffraction pattern of the 

fabricated physical self-focusing VLS grating, which is shown in Fig. 5(b), matches well 

qualitatively with that of the numerical calculated VLS grating (see Fig. 5(c)). A clear 

enhancement at the 1st order diffraction can be seen in the propagation field pattern for both 

cases. As also shown in the Fig. 5(d), the diffraction pattern on the focus plane also shows a 

good match quantitatively between simulation and experiment. The FWHM being around 

20μm and I1/I0 being around 64 in the experimental measurement is very close to that in the 

simulation with FWHM and I1/I0 being 12μm and 86, respectively. We argue that this small 

mismatch is possibly from the fabrication error and laser beam quality. It shall note that our 

grating outperforms near a factor of 10 comparing with the varied line spaced grating designed 

by conventional optimization method [27, 28] whose I1/I0 is 7. 

3. Conclusion 

In conclusion, we have numerically and experimentally demonstrated a high efficiency 

varied line-spaced grating, which employs deep learning algorithms to design the parameters 

of its transmission function inspiring from a target scattering pattern. Our grating also shows 

an enhancement of the first order diffraction peak intensity over a factor of 30 compared with 

the incident intensity and a high ratio between first order diffraction peak intensity and zero 

order intensity over 60. We expect that much better gratings design shall be possible with two-

dimension grating structures and more sophisticated deep learning method as they will offer 

more flexibilities with more degree of freedoms in design and possibilities to unveil the deeply 

hidden high-dimensional information in the diffraction pattern. Although so far, we 

demonstrate the concept in visible wavelength, it is promising when extending the applications 

to shorter wavelength, such as EUV and X-ray wavelength. 
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