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Abstract 14 

In this paper, we analyzed the role of carbon pricing as a vital tool for achieving the sustainable 15 

energy transition and discussed policy implications for reaching this goal in the era of the COVID-16 

19 pandemic. To investigate the connection and cross-correlation between COVID-19 cases and 17 

carbon price returns in EU ETS, we applied two novel approaches: the multifractal detrending 18 

moving average cross-correlation (MF-X-DMA) and the Wavelet Coherence techniques. The 19 

coverage of data is from 2 March 2020 to 19 March 2021. The results of the MF-X-DMA method 20 

show that the cross-correlation is substantial and negatively correlated. Moreover, the results 21 

imply the presence of multifractal cross-correlations and that a significant change in the number 22 

of COVID-19 cases further impacts carbon price fluctuations. Concerning the Wavelet coherence 23 

method results, we can also find a strong (negative) relationship between selected variables, and 24 

this strong correlation is observed throughout the whole study period. In addition, we observe that 25 
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in the first wave of the COVID-19 outbreak, the changes in the COVID-19 cases are leading the 26 

CO2 price returns (particularly in the 16-32 time scale). The results of this study can have 27 

significant implications for policymakers and contributions for environmental experts and 28 

investors. 29 

 30 

Keywords: COVID-19; carbon pricing; EU ETS; cross-correlation analysis; multifractal 31 

detrending moving average; wavelet analysis. 32 

 33 
 34 

1. Introduction 35 

The COVID-19 pandemic has unleashed exceptional shocks through all facets of society, from 36 

strained healthcare systems to the closure of economies. In the meantime, the lockdowns, as an 37 

excessive phenomenon, initiated a severe recession in many economies (OECD, 2020). The global 38 

economic outcomes of the COVID-19 pandemic were dramatic, and it brought the world’s 39 

economy to an impasse circumstance. The International Monetary Fund (IMF) predicted that 40 

global GDP shrank by 3.3% in 2020, far more significant than during the 2008–2009 Global 41 

Financial Crisis, while it anticipated an even more reduction of 5.8% for the Euro Area (IMF, 42 

2021).  43 

In the meantime, the lockdowns triggered by the COVID-19 pandemic have significantly altered 44 

energy consumption patterns and lowered CO2 emissions worldwide. The lockdowns and the 45 

related downfall of economic activity have initiated considerable mitigations in Greenhouse Gas 46 

(GHG) emissions from transportation and industrial activity. The International Energy Agency 47 

(IEA) believes global CO2 emissions ebbed by 8% in 2020 (IEA, 2020). Recent data issued by the 48 

IMF and IEA for 2020 predict emissions will bounce back in 2021. However, the full effect of 49 

COVID-19 in terms of how long the disaster will be and how the consumption pattern of energy 50 
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and the associated levels of CO2 emissions will be affected is unclear. The energy sector is no 51 

exception, with several considerations being raised about the consequences of the clean energy 52 

transition (Dechezlepretre et al., 2020). In response, policymakers worldwide have participated in 53 

arrangements for controlling and holding the contagious virus back (e.g., delivering adequate 54 

healthcare, vaccination, and avoiding economic downfall by instigating stimulus packages) (Hale 55 

et al., 2020). However, with the emergence of new strains of the COVID-19 (such as Delta variant), 56 

and even after vaccination, the number of cases has increased again  recently, and strict measures 57 

taken to control the spread of the virus (e.g., new lockdowns and travel restrictions). Therefore, 58 

despite the initial expectation of a rapid recovery in economic conditions, the outlook for economic 59 

growth has now adjusted downward. For example, in the latest assessment of the global economic 60 

condition, the IMF has predicted that the global economic recovery may have peaked, especially 61 

as sporadic Delta outbreaks continue to flare across different countries (IMF, World Economic 62 

Outlook Update, 2021).  63 

Moreover, the analysis carried out by Carbon Brief has concluded that the pandemic initiated the 64 

largest ever annual reduction in CO2 emissions (Evans, 2020). Energy emissions contribute 60% 65 

of total GHG emissions, so the energy sector needs to decrease its carbon footprint to back climate 66 

change mitigation attempts across the energy supply chain. In all scenarios, CO2 emissions are the 67 

dominant environmental constraint (UNECE, 2020). Accordingly, it is essential to pay attention 68 

to policies and approaches that help us achieve indispensable goals such as (sustainable) energy 69 

transitions in critical situations (e.g., the COVID-19 pandemic) with considering such 70 

environmental constraints. 71 

In the meantime, the European Union (EU) has developed several valuable tools to support the 72 

energy transition, and the Emission Trading System (ETS) is one of the key ones in this area. 73 
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Therefore, we focused on the EU ETS as one of the world's largest carbon markets which plays a 74 

pivotal role in achieving the energy transition (especially during the COVID-19 pandemic). The 75 

EU ETS is arranged as the first and the essential CO2 market globally and still one of the leading 76 

cap-and-trade schemes pursuing emission reduction. The EU ETS is the foundation of the EU’s 77 

attempts to relieve climate change and the principal framework for minimizing GHG emissions 78 

among different sectors like power, industrial, and aviation (European Commission, 2018). Also, 79 

it is enveloping more than 40% of the EU’s GHG emissions and accounts for over 75% of 80 

international CO2 trading (Mirzaee Ghazani and Jafari, 2021). 81 

By looking at the historical development of EU ETS, 2020 was a crucial year due to the following 82 

reasons: the declaration of landmark climate policy schemes in the context of the European Green 83 

Deal; the completion of the governing provisions in advance of Phase IV (2021–2030); and a 84 

marketplace that demonstrated is resilient against economic shocks triggered by the COVID-19 85 

contagion. The suggested Climate Law and the Climate Target Plan (2030) herald for sharper 86 

emissions cutbacks and expect to realize the EU ETS perform a principal task in Europe’s 87 

decarbonization policy. Other possibilities, e.g., to tackle the threat of carbon leakage, are also 88 

deliberated— embracing a carbon border adjustment tool focusing on particular industrial sectors 89 

(ICAP, 2021). In this regard, developments in selected ETSs are illustrated in Fig. 1. Emphasized 90 

dates specify the initial critical announcements by the governments concerning limitations to halt the 91 

dissemination of COVID-19. Even though most of the presented schemes faced an exceptional price 92 

reduction in the early period of the COVID-19 pandemic, prices were retrieved for most ETSs 93 

through the second half of 2020. The slump in production levels contributes to a severe reduction 94 

in demand for allowances, which has caused the prices to tumble significantly now and possibly 95 

the incentives for any investment in clean energy technologies in the future. However, the 96 
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professionals consider that the recent fall in the GHGs because of COVID-19 will be a transitory 97 

period, and as soon as the global economies start to improve and recover production levels, the 98 

carbon emissions are expected to come back to normal (Mintz-Woo et al., 2020). 99 

On the other hand, the pandemic happened at a crucial juncture regarding the connection between 100 

politics and (sustainable) energy transitions. Policymakers and economic agents are displaying a 101 

growing consent in the principal role of carbon pricing in the transition towards a decarbonized 102 

economy. However, by examining the literature, we are witnessing the apparent lack of studies 103 

that analyzed the impact of the COVID-19 outbreak on carbon market developments (despite its 104 

pivotal role in achieving (sustainable) energy transitions) and any interconnection between them. 105 

Therefore, it is necessary to conduct studies in this area. 106 

 107 
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Fig. 1. Price developments in primary (*) and secondary (**) markets (2010-2020) in major ETSs and index of 108 
allowance prices in selected ETSs exclusively in 2020 109 

Source: ICAP, 2021  110 
 111 
The contributions of this research are threefold. First, this study scrutinizes the impact of the 112 

COVID-19 pandemic on sustainable energy transition and its influence on the carbon market as 113 
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one of the critical tools for achieving this aim with considering the relevant policy implications. 114 

Second, we examined the (cross)-correlation between the COVID-19 cases in the EU and returns 115 

of carbon allowances in EU ETS by applying the MF-X-DMA technique. Third, we employed the 116 

wavelet coherence analysis to discover the co-movement between two time series in a joint time-117 

frequency domain. 118 

The remainder of this research is structured as follows: Section 2 presents the study's literature 119 

review. Section 3 shows the data and the methods implemented in the study. The assessment of 120 

the outcomes has been exhibited in Section 4. The policy implications for the current study have 121 

been mentioned in Section 5, and ultimately, Section 6 concludes the study. 122 

2. Literature review 123 

By investigating the literature on the COVID-19 pandemic and its interconnections with economic 124 

factors (e.g., financial assets, macroeconomic variables), several studies took place in this area and 125 

applied different approaches for analyzing the issue. Regrading, we distinguished and classified 126 

the studies on three distinct categories: I) studies that focused on the issue of (sustainable) energy 127 

transition in the era of COVID-19 contagious (Aktar et al. 2020; Hosseini 2020; Jiang et al. 2021; 128 

Klenert et al. 2020; Kuzemko et al. 2020) II) Studies that have dealt with the subject of COVID-129 

19 and environmental issues(Aljadani et al. 2021; Andreoni 2021; Hauser et al. 2021; Meles et al. 130 

2020; Sikarwar et al. 2021; Smith et al. 2021) and III) two different kinds of studies that 131 

implemented the analytical methods including the studies that applied the Multifractal analysis 132 

(Choi 2021; Mensi et al. 2020; Naeem et al. 2021) and the Wavelet (Coherence) approach (Chien 133 

et al. 2021; Goodell and Goutte, 2021; Karamti and Belhassine, 2021; Sharma et al. 2021). In what 134 

follows, we attempted to examine the ideas offered in all of the mentioned studies. 135 

 136 
2.1 COVID-19 and (sustainable) energy transition 137 



8 

 
 

Hosseini (2020) argued that the outburst of the COVID-19 conquered the globe, and its effects are 138 

expected to be much more prevalent over time, directly and indirectly. The COVID-19 crisis has 139 

hit the supply chain of facilities that focused on renewable energy manufacturing and hindered the 140 

transition to sustainable energy in the world. Thus, the climate and energy policies may need to be 141 

reorganized based on the new situations. Finally, he concluded that the logical policies could 142 

change the threats of COVID-19 to the exceptional opportunities for the renewable energies sector. 143 

Kuzemko et al. (2020) employed several groups of researchers in the field of social science to 144 

analyze the consequences of COVID-19 for the politics of sustainable energy transitions. They 145 

recognized some of the direct effects of the “extreme lockdown” on sustainable and fossil energy 146 

sources. They concluded that the politics of sustainable energy transitions are now at a crucial 147 

moment, where the shape and way of national provision for post-pandemic economic retrieval will 148 

be decisive. Klenert et al. (2020) stated that the nexus of COVID-19 and climate change has so far 149 

brought attention to short-term GHG emissions reductions, public health responses, and clean 150 

recovery stimulus packages. They concluded that learning from policy challenges during the 151 

COVID-19 crisis could enhance efforts to reduce GHG emissions and prepare humanity for future 152 

crises.  153 

Aktar et al. (2021) analyzed how the policymakers navigate the impacts of the COVID-19 154 

pandemic on climate change policies. They proposed considering a comprehensive and resounding 155 

overview of the observed facts. Finally, this research sketched policy implications that can be 156 

utilized as a guideline for the situations like the current one in which uncertainty is amplified.  157 

Jiang et al. (2021) overviewed the effects and challenges of COVID-19 on energy demand and 158 

underlined energy-related lessons and arising prospects. Also, the obtained results show noticeable 159 

variations in the energy intensity; the further energy for fighting against COVID-19 is significant 160 
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for balancing energy demand and the recovery in the energy sector. They concluded that this 161 

research could suggest a new way to open innovative methods for boosting energy efficiency, 162 

encouraging energy-saving, and discovering emerging opportunities in the energy sector for the 163 

post-COVID-19 situation.  164 

2.2 COVID-19 and environmental issues  165 

Looking at the literature, we can observe that several studies focus on the relationship between 166 

CO2 emission and different economic factors. For example, we can refer to the study of Asongu et 167 

al. (2016) that analyzed the interconnection between energy consumption, CO2 emissions, and 168 

economic growth (GDP) in 24 African countries by applying a panel autoregressive distributed lag 169 

(ARDL) method. The findings in this study are as follows: Firstly, a long-run relationship between 170 

EC, CE, and GDP is detectable. Secondly, a long-term effect from CO2 emissions to GDP and 171 

energy consumption is noticeable, with mutual directions. Furthermore, they mentioned that 172 

causality runs from either CO2 emissions or CO2 emissions and energy consumption to GDP, and 173 

opposite causal directions are noticeable.  174 

However, studies have turned to this area after the onset of the COVID-19 pandemic. Therefore, 175 

we discussed some of the proposed studies in the following: Smith et al. (2021) evaluated the 176 

consequence of the COVID-19 pandemic on world fossil fuel consumption and CO2 emissions 177 

over the 2020Q1-2021Q4. They utilized a global vector autoregressive (GVAR) model, which 178 

extracts spatial-temporal connections across diverse countries associated with the global 179 

dissemination of economic impact resulting from the COVID-19 diffusion. The obtained outcomes 180 

envisage fossil fuel consumption and CO2 emissions to come back to their pre-crisis levels during 181 

the two-year horizon despite the significant contractions in the first quarter after the outbreak. 182 
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In their study, Meles et al. (2020) examined the consequences of the COVID-19 disaster on the 183 

EU CO2 emissions target for 2030, allowing for an array of scenarios for economic growth. They 184 

discover that current climate policy actions could exceed the existing 40% EU target in 2030 with 185 

diminished economic activity following the COVID-19 crisis. Their investigation emphasizes that 186 

even though current measures will probably decrease emissions by more than 40% by 2030 187 

following the pandemic, they will not be sufficient to satisfy the targets in Paris agreement.  188 

Hauser et al. (2021) proposed an approach to scrutinize the effect of the COVID-19 on demand 189 

for electric power. This approach measures the load saving because of COVID-19 at the national 190 

level by applying the number of active cases and the particular lockdown time as proxies. The 191 

results showed that demand is decreased by about 1–1.7 MW per case in Germany and the UK. 192 

They also discussed that the impact of COVID-19 on CO2 emissions in the power sector is 193 

expected to be insignificant.  194 

Sikarwar et al. (2021) analyzed the influence of declined activities, due to the COVID-19 195 

pandemic, on CO2 emissions and economic actions. In this study, the information from EU-28, 196 

China, the US, and India were deliberated as benchmark entities, and the trends were inferred to 197 

assess the global influence. The results showed that the entire global CO2 emissions contraction 198 

for January-April 2020 compared to the year before was projected to be around 14%, with an 199 

extreme input from the transportation sector.  200 

Andreoni (2021) examined the CO2 emissions because of the socio-economic limitations enforced 201 

by the policymakers during the COVID-19 disaster for 23 EU member states. This paper forecasts 202 

the CO2 emissions alteration in Europe in the course of the first half of 2020. The obtained results 203 

illustrated that −12.1% emissions change between January and June 2020 compared to the similar 204 
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period of the earlier year. This paper underlined that the extent of the COVID-19 influences had 205 

fundamentally impacted the CO2 emissions change. 206 

Aljadani et al. (2021) examined COVID-19 relief under the implementation of an N-shaped 207 

environmental Kuznets curve in Saudi Arabia. The influences of the price and the rent of oil on 208 

CO2 emissions are investigated to characterize the COVID-19 tremor in Saudi Arabia. The results 209 

of the autoregressive distributed lag (ARDL) and non-linear-autoregressive distributed lag 210 

(NARDL) bound testing method specified that under the COVID-19 contagion, the inverted N-211 

shaped environmental Kuznets curve hypothesis is confirmed in the long run. Moreover, they 212 

discovered that oil price reinforces the connection of level, quadratic and cubic of economic 213 

growth and environmental quality through oil rent abates this relationship. Also, the long-run 214 

occurrences of positive shocks on oil price under the existence of the COVID-19 pandemic are not 215 

similar to the negative shocks to CO2 emissions, indicating the presence of asymmetric effects on 216 

CO2 emissions in long-run arrangements.  217 

2.3 COVID-19 and the analytical methods  218 

2.3.1 Multifractal analysis 219 
 220 
Choi (2021) analyzed the efficient market hypothesis for several sectors in the US financial market 221 

throughout the COVID-19 pandemic to recognize its effects on specific sectors. They outlined the 222 

average price for 11 sectors within the S&P 500 and utilized the multifractal detrended fluctuation 223 

analysis (MF-DFA) method to the mean return series to check this hypothesis. The results clarify 224 

that the return series illustrate non-persistent and persistent attributes during the GFC and the 225 

COVID-19 pandemic, respectively.  226 

Naeem et al. (2021) investigated the relative efficiency of conventional and green bond markets 227 

pre and during the COVID-19 pandemic concerning asymmetric multifractal analysis. Precisely, 228 
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the multifractal scaling behavior is studied independently during upward and downward trends in 229 

bond markets with the asymmetric MF-DFA (A-MF-DFA) method. The results approved the 230 

existence of asymmetric multifractality in the green and traditional bond markets.  231 

Mensi et al. (2020) examined the effects of COVID-19 on the multifractality of crude oil and gold 232 

prices. They applied the A-MF-DFA method to 15-min intraday data. The findings exhibit that 233 

multifractality is exceptionally superior in the upside (downside) trend for gold (Brent crude oil), 234 

and this excess asymmetry has been heightened during the COVID-19 pandemic. The gold (oil) 235 

market was inefficient during downward (upward) trends in advance of the outbreak. However, 236 

during the COVID-19 outbreak, they illustrate that the findings have altered. Indeed, they 237 

discovered that gold and oil markets have been inefficient, mainly during the current outbreak.  238 

 239 
2.3.2 Wavelet analysis 240 

 241 
Goodell and Goutte (2021) applied wavelet methods to daily COVID-19 world deaths and daily 242 

Bitcoin prices from 31st December 2019 to 29th April 2020. They discovered that levels of COVID-243 

19 initiated an increase in Bitcoin prices. They infer that the outcomes could be offered to 244 

researchers, policymakers, and investment professionals in the financial markets. 245 

Sharma et al. (2021) examined the time-frequency correlation between the quantity of confirmed 246 

COVID-19 cases, exchange rates, temperature, and stock market return in the 15 highly affected 247 

countries through the COVID-19 contagion. They utilized Wavelet Coherence and Partial Wavelet 248 

Coherence methods. Their findings show (i) there is support for cyclical manner between 249 

temperature and COVID-19 cases, suggesting that typical daily temperature has a notable 250 

influence on the proliferation of the COVID-19 in many countries. (ii) solid connectedness at low 251 

frequencies shows that COVID-19 cases have a remarkable long-run effect on the most influenced 252 

countries' exchange rate and stock markets returns.  253 
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Chien et al. (2021) investigated the time-frequency connection between the COVID-19 pandemic 254 

and volatilities in oil price and the stock market, geopolitical risks, and uncertainty in the economic 255 

policy in the US, Europe, and China. The coherence wavelet method and the wavelet-based 256 

Granger causality tests are checked to the data. The short- and long-run COVID-19 effects are 257 

illustrated differently, and the findings show the decreased industrial productivity, which 258 

strengthened with the surge in the pandemic’s severeness.  259 

Karamti and Belhassine (2021) investigated the relationship between the COVID-19 pandemic 260 

and the most important stock markets within a time-frequency structure. Wavelet coherency 261 

reveals clear distinctions between the short- and long-term markets’ responses. In the short run, 262 

they show vigorous co-movements in the first and second waves of the outbreak. Moreover, they 263 

show that the COVID-19 fear in the US dispersed into the international markets. 264 

3. Data and Methodology 265 

3.1 Data and descriptive analysis 266 

In this part of the study, the statistical examination of data has been considered. The data comprises 267 

daily EU ETS allowance prices (EUA) and the number of COVID-19 cases. The COVID-19 268 

information obtained from the World Health Organization (WHO)2 and related data for EUA 269 

prices is gathered from investing.com3. The data covers from 2 March 2020 to 19 March 2021. 270 

Furthermore, the daily changes are considered as a logarithmic difference in data, i.e., 𝑦𝑡 =271 

(𝑙𝑛 𝑥𝑡 − 𝑙𝑛 𝑥𝑡−1). The developments in the level and difference of data have been shown in Fig. 272 

2. 273 

 274 

 
2 - https://covid19.who.int/info 

3 -https://www.investing.com/commodities/carbon-emissions 
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 275 
(a) 276 

 277 
(b) 278 

Fig. 2. (a)- Daily time series of COVID-19 cases (left axis) and EU ETS allowance prices (right axis). (b)- Changes 279 
in daily data 280 

 281 
Regarding, the information of descriptive analysis of data has been offered in Table 1. Both data 282 

present negative skewness. Moreover, kurtosis is outstanding for both and shows a leptokurtic 283 

manner. However, it is incredibly considerable for EUA returns that confirm excess kurtosis. This 284 

evidence shows that series are different from Gaussian distribution, and the meaningful Jarque–285 

Bera test statistics (especially for the EUA returns) verify it.   286 

Table 1. Summary statistics of data (daily) 287  
Mean Max Min Std. Dev. Skewness Kurtosis Jarque-Bera Prob 

EUA returns  0.0021 0.1249 -0.1736 0.0324 -0.4251 6.6263 156.0711 0.0000 

COVID-19 cases 0.0204 0.6123 -0.9182 0.2664 -0.4355 2.8889 8.6755 0.0130 

*- Jarque-Bera statistic indicates the non-normality of return series at a 1% significance level. 288 
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  289 
Furthermore, to better comprehend the manner of each data, we examined the type of distribution 290 

and matched it with the Gaussian one by utilizing the Q-Q (quantile-quantile) plot. It compares the 291 

prearranged quantities of selected data with quantiles of a particular theoretical distribution (i.e., 292 

the Gaussian distribution). The outcomes, which illustrate the distribution divergence from 293 

normality, are explained in Fig. 3. The change in COVID-19 cases has the nearest shape of 294 

distribution to the normal, and on the contrary, the EUA takes further difference from the normal 295 

distribution, respectively. The results are consistent with the Jarque–Bera test statistics exhibited 296 

in Table 1 and justify implementing suggested methods in the current study. 297 

 298 

  
Fig. 3. The Q-Q plot for standardized data. 299 

 300 

3.2 Cross dependency and unit root tests 301 

In this section of the study, the state of dependencies in the error terms was examined through the 302 

Pesaran (2004) CD test, Breusch and Pagan (1980) LM test, and the Pesaran (2004) scaled LM 303 

test.  304 
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The result of dependencies' tests is indicated in Table 2. It shows that there is cross-dependency 305 

for changes in the COVID-19 cases. However, this finding for the changes in the EUA is not 306 

significant. 307 

Table 2. Cross-sectional dependence tests results 308 

 ∆COVID-19 cases ∆EUA 

Test statistics Value Prob Value Prob 

Pesaran CD 0.6521 0.514 -0.9107 0.362 

Breusch-Pagan LM 360.21 0.000* 66.065 0.474 

Pesaran scaled LM 25.608 0.000* 0.0056 0.995 

* indicate significance at the 1% level. 309 
 310 

To analyze the behavior of the variables in terms of stationarity, we applied two different unit root 311 

tests, including cross-sectionally augmented Im, Pesaran, and Shin (CIPS) (2007) for panel models 312 

and Levin, Lin, and Chu (2002). The results of each of these two methods are presented in Table 313 

3. As can be seen from the obtained results, both data present stationary behavior. 314 

Table 3. Results for unit root tests  315 

 ∆COVID-19 cases ∆EUA 

Test statistics Value Prob Value Prob 

Levin, Lin, and Chu (2002) -8.245 0.00** -20.476 0.00** 

Pesaran (2007) CIPS -4.789 0.00** -2.961 0.03* 

**;* indicate significance at the 5% and 1% levels, respectively. 316 
 317 

3.3 Methodology 318 

In this study, two approaches, multifractal detrending moving average cross-correlation (MF-X-319 

DMA) and Wavelet Coherence methods, have been proposed to investigate the relationship 320 

between CO2 price returns and changes in the cases of COVID-19. The characteristics of these 321 

methods and their advantages are discussed in detail as follows. 322 

3.3.1 MF-X-DMA Method 323 

To analyze the cross-correlation between two series, we used the multifractal detrending moving 324 

average cross-correlation (MF-X-DMA) technique developed by Jiang and Zhou (2011). This 325 
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method detrends the series using moving average and then calculates cross-correlation by 326 

combining detrended and multifractal methods.  327 

The method contains the following steps: 328 

Step 1. Consider two time series 𝑥(𝑖) and 𝑦(𝑖), 𝑐 = 1,2, … , 𝑁, where 𝑁 is the length of the series. 329 

The sequence of cumulative sums is formulated as follows: 330 

𝑥(𝑐) = ∑ 𝑥(𝑖)       𝑐 = 1,2, … , 𝑁.          𝑦(𝑐) = ∑ 𝑦(𝑖)     𝑐 = 1,2, … , 𝑁.

𝑐

𝑖=1

𝑐

𝑖=1

         (1) 331 

Step 2. Measure the moving average for every sequence of cumulative sums in a rolling window 332 

by size v. 333 

𝑥̃𝑛(𝑡) =
1

𝑣
∑ 𝑥(𝑡 − 𝑚)

⌈𝑣(1−𝜃)⌉

𝑚=−⌊𝑣𝜃⌋

, 𝑦̃𝑛(𝑡) =
1

𝑣
∑ 𝑦(𝑡 − 𝑚)

⌈𝑣(1−𝜃)⌉

𝑚=−⌊𝑣𝜃⌋

   𝑡 = 𝑣, 𝑣 + 1, … , 𝑁.      (2) 334 

where 𝜃 is the state factor with the value fluctuating between zeros to one. 335 

Step 3. Detrended the cumulative sum by differencing the moving average from it. 336 

𝑤(𝑡) = [𝑥𝑛(𝑡) − 𝑥̃𝑛(𝑡)][𝑦𝑛(𝑡) − 𝑦̃𝑛(𝑡)]                                                  (3) 337 

Step 4. Divide the series 𝑤(𝑡), where the size of the sequence is Z, into 𝑍𝑣 = [𝑍/𝑣] Non-338 

overlapping boxes equal size 𝑣. Each box constructed as [𝑔𝑛 + 1, 𝑔𝑛 + 𝑣], where 𝑔𝑛 = (n –  1)𝑣 339 

and n=1, 2, …, 𝑍𝑣. 340 

Step 5. Calculate the cross-correlation for each box. 341 

𝐹𝑛(𝑣) =
1

𝑣
∑ 𝑤(𝑡)

𝑣

𝑡=1

                                                                                        (4) 342 

Step 6. Calculate the 𝑞𝑡ℎ order cross-correlation: 343 

𝐹𝑥,𝑦(𝑞, 𝑣) = [
1

𝑍𝑣
∑|𝐹𝑛(𝑣)|𝑞 2⁄

𝑍𝑣

𝑛=1

]

1 𝑞⁄

                                                           (5) 344 
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For 𝑞 ≠ 0. 345 

When 𝑞 = 0, we have 346 

𝐹𝑥,𝑦(0, 𝑣) = 𝑒𝑥𝑝 [
1

2𝑍𝑣
∑ 𝑙𝑛|𝐹𝑛(𝑣)|

𝑍𝑣

𝑛=1

]                                                       (6) 347 

Step 7. We have the power-law relationship for diverse quantities of segment size 𝑣,  348 

𝐹𝑥,𝑦(𝑞, 𝑣)~𝑣ℎ𝑥,𝑦(𝑞)                                                                                        (7) 349 

Under the general multifractal framework, the multifractal scaling exponent 𝜏(𝑞) can be applied 350 

to illustrate the multifractal character, as follows 351 

𝜏𝑥,𝑦(𝑞) = 𝑞ℎ𝑥,𝑦(𝑞) − 𝐷𝑓                                                                             (8) 352 

 353 
where 𝐷𝑓 defines the dimension of geometric support of the multifractal measure in terms of 354 

fractality. It is straightforward to attain the multifractal spectrum 𝑓(𝛼) and the singularity strength 355 

function 𝛼(𝑞) through the Legendre transform. 356 

𝛼𝑧,𝑤(𝑞) =
𝑑𝜏𝑧,𝑤(𝑞)

𝑑𝑞
    ;      𝑓𝑧,𝑤(𝑞) = 𝑞𝛼𝑧,𝑤 − 𝜏𝑧,𝑤(𝑞)                         (9) 357 

The size of the spectrum defines the power of multifractality and can be clarified by ∆𝛼𝑧,𝑤 = 358 

𝑚𝑎𝑥(𝛼𝑧,𝑤) – 𝑚𝑖𝑛(𝛼𝑧,𝑤). The broader spectrum shows the robust multifractality nature of the cross-359 

correlated time series. 360 

3.3.2 Wavelet Coherence Method 361 

Time and frequency domain methods have been utilized in the literature to discover the causal 362 

correlation among the variables. However, it is broadly acknowledged that the conventional 363 

methods will not be exact if the time series are non-stationary. Furthermore, the substantial 364 

structural breakdown(s) prevailing in the datasets triggers suffering the results of conventional 365 

time-domain causality analyses (Adebayo and Odugbesan, 2021). Wavelet techniques have been 366 
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introduced as an imperative innovation to circumvent these obstacles as they let one-dimensional 367 

time data disintegrate into the two-dimensional time-frequency domain (Kirikkaleli and 368 

Gokmenoglu, 2020). Indeed, a multi-scale approach offers a typical structure to express frequency-369 

dependent conduct for examining the connection between changes in COVID-19 cases and CO2 370 

price returns in EU ETS and lets us study both the short- and long-run causal relationships between 371 

the selected variables. 372 

The Wavelet coherence can detect the specific regions in the time-frequency domain where sudden 373 

and notable variations occur in the co-movement arrangements of the observed time-series and are 374 

analogous to conventional correlation. 375 

The origins of the wavelet (𝜓) return to the Morlet wavelet family. There are several types of 376 

wavelets with different specifications applied for diverse purposes (Dogra, 2017). The mother 377 

wavelet implemented in our study is the Morlet wavelet introduced by Goupillaud et al. (1984), 378 

which is the most appropriate for identifying oscillatory components of a signal. The mentioned 379 

wavelet model (𝜓) is an extension of the Morlet wavelet shown in Eq.10. 380 

𝜓(𝑡) = 𝜋−
1
4𝑒−𝑖𝜔0𝑡𝑒−

1
2

𝑡2

  𝑡 = 1,2,3, … . , 𝑇.                                        (10) 381 

A wavelet is formulated by two separate parameters: location (p) and scale (y). The p parameter 382 

has a significant role in discovering the precise position by repositioning the wavelet across time, 383 

while y checks the expanded wavelet for confining various frequencies. From the conversion of 384 

𝜓, the 𝜓𝑝,𝑦 is obtained. Eq.11 refers to this transformation: 385 

𝜓𝑝,𝑦(𝑡) =
1

√𝑦
𝜓 (

𝑡 − 𝑝

𝑦
) ,   𝑝, 𝑦 ∈ ℝ, 𝑦 ≠ 0.                                       (11) 386 

 387 
𝑟(𝑡) in Eq.12, showing time series, where a continuous wavelet can be achieved from 𝜓 as a 388 

function of p and y. 389 

 390 
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𝑊𝑔(𝑝, 𝑦) = ∫ 𝑟(𝑡)
1

√𝑦

∞

−∞

𝜓 (
𝑡 − 𝑝̅̅ ̅̅ ̅̅ ̅

𝑦
) 𝑑𝑡                                                (12) 391 

 392 
The reconstructed times series 𝑟(𝑡)  with the 𝜓 coefficient is 393 

 394 

𝑟(𝑡) =
1

𝐶𝜓
∫ [∫ |𝑊𝑔(𝑎, 𝑏)|

2
𝑑𝑎

∞

−∞

]
∞

0

𝑑𝑏

𝑏2
                                                (13) 395 

 396 
To obtain more exhaustive information about the variables, the Wavelet Power Spectrum (WPS) 397 

is hired in the current study; WPS gives more information about the scale of the time series. 398 

𝑊𝑃𝑆𝑔(𝑝, 𝑦) = |𝑊𝑔(𝑝, 𝑦)|
2

                                                                    (14) 399 

Based on the principal ambition of the current study, we apply the wavelet coherence approach. 400 

The main benefit of this approach over the conventional correlation method is that it lets the study 401 

describe any correlation between two time series 𝑟(𝑡) and 𝑐(𝑡) in joint time–frequency-based 402 

causalities. The cross wavelet transform (CWT) of the time series is as follows: 403 

 404 

𝑊𝑟𝑐(𝑝, 𝑦) = 𝑊𝑟(𝑝, 𝑦)𝑊𝑐(𝑝, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                                                                (15) 405 

where 𝑊𝑟(𝑝, 𝑦) and 𝑊𝑐(𝑝, 𝑦) represent the CWT of two series 𝑟(𝑡) and 𝑐(𝑡) respectively. As 406 

mentioned through Orhan et al. (2019), the equation of the squared wavelet coherence is 407 

𝑅2(𝑝, 𝑦) =
|𝑆(𝑦−1𝑊𝑟𝑐(𝑝, 𝑦)|2

𝑆(𝑦−1|𝑊𝑟(𝑝, 𝑦)|2)𝑆(𝑦−1|𝑊𝑐(𝑝, 𝑦)|2)
                            (16) 408 

𝑆 shows the smoothing process over time, with 0 ≤  R2(p, y)  ≤  1. When R2(p, y) moves toward 409 

one, it illustrates that the variables are correlated with a specific scale, which is revealed in the 410 

figures in red color and enclosed by a black line. Moreover, if R2(p, y) touches zero, indicating no 411 

correlation between the series and is presented in blue color (Kirikkaleli and Ozun, 2019). 412 

Nevertheless, the calculation of R2(p, y) does not allow differentiating the positive correlation 413 

from the negative. Torrence and Compo (1998) suggested a tool to scrutinize the wavelet 414 
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coherence through adjournment indicators in the oscillation of two time series (Rossi and 415 

Fattoruso, 2017). The equation of the wavelet coherence difference phase is constructed as 416 

  417 

𝜙𝑟𝑐(𝑝, 𝑦) = tan−1 (
𝔐{𝑆(𝑦−1𝑊𝑟𝑐(𝑝, 𝑦))}

ℜ{𝑆(𝑦−1𝑊𝑟𝑐(𝑝, 𝑦))}
)                                       (17) 418 

Where 𝔐 and ℜ denote an imaginary operator and a real operator, respectively. 419 

In the current study, we depict a two-dimensional chart, and the black arrows in this chart illustrate 420 

the wavelet coherence phase difference outcomes. When two principal time series show a positive 421 

correlation, the wavelet coherence phase difference approaches zero for a certain scale and is 422 

echoed by rightward arrows. On the contrary, when two time series show a negative correlation, 423 

arrows will be pointing leftward. Moreover, a downward arrow represents that the primary variable 424 

leads the second one by π and vice versa. 425 

4. Empirical results 426 

4.1. Cross-correlations  427 

We begin this section with a statistic test suggested by Podobnik et al. (2009) to check the existence 428 

of cross-correlation statistics between time series 𝑥(𝑗), 𝑦(𝑗), which cover the similar length N, and 429 

functions as follows 430 

𝐶𝑗 =
∑ 𝑥𝑘𝑦𝑘−𝑗

𝑁
𝑘=𝑗+1

√∑ 𝑥𝑘
2 ∑ 𝑦𝑘

2𝑁
𝑘=1

𝑁
𝑘=1

                                                                        (18) 432 

So the cross-correlation test statistic is: 431 

𝑄𝑐𝑐(𝑚) = 𝑁2 ∑
𝐶𝑗

2

𝑁 − 𝑗

𝑚

𝑗=1

      ;        𝑄𝑐𝑐(𝑚) ~ 𝜒2(𝑚)                         (19) 433 
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 434 
Fig. 4. The cross-correlation statistics for the bivariate series. 435 

 436 
If the cross-correlation test matches with the 𝜒2(𝑚) distribution, then there are no cross-437 

correlations between time series; otherwise, the cross-correlations are substantial at a specific 438 

significance level. We apply this test on the EUA price returns and COVID-19 cases combinations 439 

(Fig. 4) to check whether it exceeds critical value at a five percent significance level in 𝑚, changing 440 

in the range (1 to 200). 441 

In the next step, we apply the DMCA (Kristoufek, 2014) method to quantify the existence and the 442 

intensity of cross-correlations. The cross-correlation coefficients are calculated with this formula: 443 

𝜌𝐷𝑀𝐶𝐴 =
𝐹𝐷𝑀𝐶𝐴

2 (𝑠)

𝐹𝑥,𝐷𝑀𝐴(𝑠)𝐹𝑦,𝐷𝑀𝐴(𝑠)
                                                                          (20) 444 

The value of 𝜌𝐷𝑀𝐶𝐴 ranges between −1 and 1. If 𝜌𝐷𝑀𝐶𝐴 be equal with zero; it confirms that the 445 

two series have no cross-correlation. Also, this coefficient separates the level of cross-correlation 446 

between the positive and the negative state. We measure the values of 𝜌𝐷𝑀𝐶𝐴 based on diverse 447 

window size 𝑣 for EUA price returns and COVID-19 cases combination. Also, Fig. 5 shows the 448 

results for 2 to 40 days of cross-correlation. Whatever the time window contains extended periods 449 

for analyzing are considered, the inverse relationship between the two series shows a more stable 450 
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arrangement. Therefore, we can conclude that the relationship between series will be lower in the 451 

longer term. 452 

 453 

  
Fig. 5. The cross-correlation coefficients (𝜌𝐷𝑀𝐶𝐴) for Covid-19 and EUA price returns. 454 

 455 
4.2. The analysis of multifractal detrended cross-correlation  456 

In the following, we implement the MF-X-DMA technique to project the cross-correlation 457 

exponent between the series. We set the scale (𝑣) to be [5, 9, 15, 21, 28] and 𝑞 varying from -5 to 458 

5. Fig. 6 illustrates the log-log plot of fluctuation function 𝐿𝑛(𝐹𝑞(𝑠)) against scale for EUA price 459 

returns and COVID-19 cases combination. It has a positive slope and shows the multifractal 460 

property. 461 

Indeed, we can observe more oscillatory behavior in positive and larger numbers of q, indicating 462 

that the multifractality between the two time series is more significant in this condition. In other 463 

words, a large change in the number of COVID-19 cases presents a further impact on carbon price 464 

fluctuations. 465 

 466 
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 467 
 468 

Fig.6. Log-log plots of fluctuation functions 𝑙𝑜𝑔(𝐹𝑞(𝑠)) versus time scale log(scale) for Covid-19 cases EUA price 469 
returns 470 

 471 
Fig.7.a shows the Hurst exponents for EUA price returns-COVID-19 cases combination that, as is 472 

clear from the figure, decreases with q changing in the range [-5, 5]. For q from -5 to 1.4, Hurst 473 

exponents show weak persistent (0.66-0.5), and after q=1.4, it drops less than 0.5,  which is as we 474 

expected and shows an anti-persistent property. When 𝑞= 2, the power-law exponents are standard 475 

Hurst exponents, and here it is equal to 0.473, which presents weak-persistency (see Table 4).  476 

Table 4. The general Hurst exponents for the time series pair 477 
𝒒 -5 -4 -3 -2 -1 0 1 2 3 4 5 

𝑯𝒒 0.6647 0.6480 0.6304 0.6122 0.5925 0.5681 0.5317 0.4730 0.3915 0.3053 0.2304 

Note: 𝐻𝑞(2) is the standard Hurst exponent. 478 
 479 
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The asymmetric behavior of correlation between two series is also visible in Fig.7.a. When the 480 

values of 𝑞𝑠 are in the negative range, the changing of ℎ is not meaningful, but when we are 481 

approaching the positive and significant values of 𝑞𝑠; the notable changes in ℎ are detectable and 482 

have a solid opposite relationship.  483 

Moreover, positive 𝑞𝑠 indicate large jumps or high volatility in the time-series, so it can be 484 

concluded that CO2 price returns are affected by the jumps in the COVID-19 cases. In return, it is 485 

slightly affected by experiencing small jumps, stagnation, and stability in the number of COVID-486 

19 cases. 487 

As follows, the findings of the Renyi exponent (𝜏(𝑞)) spectra in Fig. 7.b verify the presence of 488 

multifractality property between EUA price returns and COVID-19 cases. 489 

 490 
Moreover, to show the amount of multifractal property, we have drawn 𝑓(𝛼) against 𝛼 491 

(multifractal spectra) in Fig. 8.  492 

 493 
 494 

 
(a) 

  
(b) 

 

Fig. 7. (a) - Hurst exponent 𝒉𝒒(𝒒) as a function for the EUA price returns and COVID-19 cases combination (b)- 

The Renyi exponent 𝝉(𝒒) spectra as a function of 𝒒 
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 495 
 496 

Fig. 8. The multifractal spectra, 𝑓(𝛼), for EUA price returns and COVID-19 cases combination. 497 
 498 

4.3 Wavelet analysis 499 

This section applies continuous WPS and coherence methodologies between changes in the 500 

COVID-19 cases and returns of CO2 prices in EU ETS to examine the interconnection between 501 

them. The wavelet power spectrum for each data has been demonstrated in Figs 9 and 10. 502 

The time scale is offered on the horizontal axis, while the frequency scale is characterized through 503 

the vertical axis. The frequency scale spans high-frequency (2–4 days) to low-frequency (32–64 504 

days). A color-coded (blue to red color; from low to high) has been suggested to determine the 505 

spectra' intensity. The black contour presents the WPS at 5% significance level. 506 

Furthermore, the arrows offer the course of interconnection and causality relationships (Pal and 507 

Mitra, 2019; He et al., 2021). Arrows directing to the right (→) (in-phase) and the left (←) (out of 508 

phase) specify that COVID-19 cases and returns of CO2 prices are positively and negatively 509 

correlated, respectively. Also, the ↗ and ↙ arrows indicate that returns of CO2 prices lead changes 510 

in COVID-19 cases, whereas the ↘ and ↖ arrows designate that vice versa. The straight-up (↑) and 511 

down (↓) arrows indicate that the returns of CO2 prices are leading and lagging, respectively.  512 
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Fig. 10 represents the WPS for the CO2 price returns, which illustrates that the variable is 513 

considerably volatile during the early stages of the COVID-19 outbreak (particularly in the first 514 

75 days, coinciding with the initial wave of the COVID-19 pandemic). Moreover, it exhibits high 515 

power in (0-16) scales in the whole period, specifying that the COVID-19 catastrophe 516 

meaningfully influenced the profile of the CO2 price returns.  517 

 518 

 519 

 520 

 521 

 522 
 523 

 524 
  525 

 526 

 527 

 528 
 529 

Fig. 9. WPS for daily changes of COVID-19.  530 
 531 
 532 

 533 
 534 
 535 
 536 
 537 
 538 
 539 
 540 
 541 
 542 
 543 
 544 
 545 
 546 

Fig. 10. WPS for daily return of CO2 prices.  547 
 548 

In Fig. 11 and the early COVID-19 outbreak, we see a strong (negative) relationship between 549 

variables. Also, when we focus on the direction of the signs, we can infer that two variables have 550 

a negative relationship in all periods. In addition, in the range of 16-32 days, the COVID-19 551 
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variable is leading the CO2 price returns. By looking carefully in Fig. 11, we can also see the 552 

several distinct islands in which the correlation between the selected data is strong, and this strong 553 

correlation is observed throughout the whole period of study; mainly in the range of (0-2) and (4-554 

8) days (low-frequency scales).  555 

 556 
 557 

 558 
 559 

 560 

 561 
 562 

 563 

 564 
 565 
 566 

 567 
 568 

 569 
 570 
 571 
 572 

Fig. 11. Wavelet coherence between changes of COVID-19 and return of CO2 prices.  573 
 574 
 575 

5. Policy implications  576 

The COVID-19 pandemic has once more proved that substantial shocks could deliver significant 577 

influences on the energy transition. The problem is how to constitute such tremors when planning 578 

policies for the long run. The transition will take a long span of years, and therefore there will be 579 

more shocks. Thus far, procedures to form these resilient policies rarely have been respected in the 580 

designing process. Nevertheless, the recent challenge highlights that supposing perpetual 581 

steadiness is a misbelief, and policies that depend on it overlook two considerable risks: (I) If 582 

policy incentives rely on economic situations, recessions could rigorously hinder investments in 583 

green technologies. (II) If the incentives do not adjust to challenging existing situations and 584 

objectives, policies can be abolished when priorities for policymakers change and the economic 585 
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condition is not in good shape. Each of two risks may threaten transition to a low-carbon state, or 586 

at best, interrupt it noticeably. 587 

We can suggest making policies flexible to shocks by arrangements that can lessen the 588 

abovementioned risks. One instance of such policies that ought to become adaptive in that event 589 

are policies about carbon pricing (Steffen et al., 2020). Carbon pricing is destined to become a 590 

crucial part of the energy transition scheme, and it is clear that an incredibly transparent and 591 

efficient mechanism to discover prices helps for any decision-making at different levels (from 592 

traders in the market to policymakers). An onward approach to make an adaptive carbon pricing 593 

contains mixture mechanisms. These could either be the integration of taxes with an environmental 594 

scheme, as only suggested for the US; (Brooks and Keohane, 2020), or implementing programs 595 

like cap-and-trade concerning a price collar, just lately offered for Germany (Edenhofer et al., 596 

2019). The common feature of both schemes is that prices inevitably adapt to new situations—and 597 

the extent of change echoes environmental worries accompanied by potential shocks. Generally, 598 

these cases explain the central concept of resilient policies: to justify an equilibrium between the 599 

two risks as mentioned above, guaranteeing that in the occurrence of shocks, the policy is neither 600 

undermined in a way that imperils the transition (e.g., through weakening green investors’ 601 

confidence) nor demolished it (Polzin et al., 2019). 602 

Nonetheless, we can mention some supportive actions for improving the scheme and 603 

reconstructing it for more resiliency in the face of possible shocks in the future:  604 

• The strengthening the Market Stability Reserve (MSR) (e.g., through declining threshold needs 605 

to be established) and increasing the linear reduction factor (LRF) for moving towards 606 

decarbonization (especially in the power and industrial sectors);  607 
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• Implementing a carbon price floor as a complementary policy to the MSR and combining it 608 

with a quantity-based design to ensure support in low-carbon investments;  609 

• Another policy action scheduled for 2021 is introducing a carbon border adjustment 610 

mechanism (CBAM) by the EU to achieve the targets in the European Green Deal and become 611 

the world’s first climate-neutral bloc by 2050. One of the areas proposed in CBAM is 612 

reviewing and possibly revising all relevant climate-related policy instruments, including ETS.  613 

6. Conclusions  614 

All ETSs are now under pressure because of the COVID-19 pandemic, and the macroeconomic 615 

and political circumstances have radically altered, and energy policies may require to be adjusted 616 

to the latest conditions. In addition, deep-rooted and prearranged energy policies are challenged, 617 

principally by the severely involved industries in the recent crisis. On the other hand, achieving 618 

the goal of the sustainable energy transition is a multifaceted social, political, economic, and 619 

technological challenge. In this regard, the COVID-19 pandemic presents new challenges for 620 

achieving this goal. Also, it shows us to prioritize policies that support the curtailment  in 621 

environmental risks before they strike. Meanwhile, perhaps surprisingly, the COVID-19 crisis is 622 

the perfect time to present carbon pricing more broadly to incentivize a more sustainable future.  623 

By looking at the developments that have been taken place in the EU ETS, we can observe that 624 

the prices remain high during the ongoing public health and economic crisis. It is a good sign that 625 

the reforms made to the system within the last five years are doing their job, keeping the market 626 

stable and more resistant to exogenous shocks. Considering the developments outlined in the study, 627 

the recovery of carbon prices under the EU ETS following the onset of the COVID-19 crisis shows 628 

that the scheme can resist economic shocks, and some studies believe that EU ETS has passed the 629 

resilience test coronavirus pandemic (ICAP, 2021). Moreover, the obtained results in the current 630 
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study showed a notable effect of the COVID-19 pandemic on the carbon market, and also we can 631 

infer that the significant changes in the number of COVID-19 patients  lead to a stronger 632 

relationship between the two series.  633 

In conclusion, by looking at the carbon prices in the EU ETS, we can point to the need to strengthen 634 

the scheme to be more resilient and be sustained effectively in the future and in the face of possible 635 

shocks. With all the actions being undertaken to fight against the COVID-19 pandemic, it will be 636 

critical to assure that EU climate policies are prepared and not been undermined, and the scheduled 637 

stimulus packages for economic recovery should also continue to deliver support to the plans like 638 

the EU Green Deal.  639 
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