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ABSTRACT
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by Nhat Van-Quoc Truong

Crowdsourcing is emerging as an efficient approach to solve a wide variety of problems

by engaging a large number of Internet users from many places in the world. However,

the success of these systems relies critically on motivating the crowd to contribute, es-

pecially in microtask crowdsourcing contexts when the tasks are repetitive and easy for

people to get bored. Given this, finding ways to efficiently incentivise participants in

crowdsourcing projects in general and microtask crowdsourcing projects in particular is

a major open challenge. Also, although there are numerous ways to incentivise partici-

pants in microtask crowdsourcing projects, the effectiveness of the incentives is likely

to be different in different projects based on specific characteristics of those projects.

Therefore, in a particular crowdsourcing project, a practical way to address the incentive

problem is to choose a certain number of candidate incentives, then have a good strategy

to select the most effective incentive at run time so as to maximise the cumulitive utility

of the requesters within a given budget and time limit. We refer to this as the incentive

selection problem (ISP).

We present algorithms (HAIS and BOIS) to deal with the ISP by considering all charac-

teristics of the problem. Specifically, the algorithms make use of limited financial and

time budgets to have a good exploration-exploitation balance. Also, they consider the

group-based nature of the incentives (i.e., sampling two incentives with different group

size yields two different number of samples) so as to make a good decision on how many

times each incentive will be sampled at each time. By conducting extensive simulations,

we show that our algorithms outperform state-of-the-art approaches in most cases. Also

from the results of the simulations, practical usage of the two algorithms is discussed.
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Chapter 1

Introduction

With the development and popularity of the Internet, web 2.0 applications and smart

devices, people from all corners of the world can be easily gathered together in a vir-

tual space to conduct activities, such as helping build the maps of a disaster area for

humanitarian aid or helping scientists in classifying galaxies according to their shapes.

In fact, a virtual crowd of non-specialised people (individuals who are not specialised in

the problems of interest) assembled in this way can sometimes accomplish tasks more

quickly and at a lower cost (with equivalent or better quality) than computers or ex-

perts (Callison-Burch, 2009; Snow et al., 2008; Zook et al., 2010). However, motivating

them to participate in such crowdsourced projects (projects that are conducted by a

crowd via the Internet) is still a big challenge, especially when tasks are not intrinsi-

cally interesting, as is often the case with microtask crowdsourcing projects. Microtask

crowdsourcing projects are crowdsourcing projects whose tasks are small and can be

completed in seconds or minutes, such as translating a few sentences, transcribing a

short audio clip, or identifying objects in an image. In this thesis, we focus on this chal-

lenge of finding ways to encourage contributors in a microtask crowdsourcing project to

perform tasks. We start the chapter by describing the motivation and challenges of the

research (Section 1.1). Then, we state the research objectives (Section 1.2). After that,

we present the contributions of our research to date (Section 1.3). Finally, we introduce

the structure of the thesis (Section 1.4).

1.1 Motivation of the Research

Attracting a multitude of disparate individuals to join a project or a community is one

of the most intriguing and promising features of the Internet (Mason and Watts, 2010).

Crowdsourcing1 takes advantage of this feature by soliciting the crowd through an open

call in dealing with a wide variety of problems (Doan et al., 2011; Ghezzi et al., 2018).

1The term was coined by Jeff Howe in a June 2006 article of Wired magazine (Howe, 2006).

1
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For example, crowd members can contribute new ideas to a product, provide solutions for

a problem, or vote for an opinion (Simula, 2013). Crowdsourcing attracts organisations

and companies not only because it provides cheap labour, but also because it helps to

solve problems quickly with high quality (Callison-Burch, 2009; Snow et al., 2008; Zook

et al., 2010). Thus, recently there has been significant interest in the research community

in building autonomous agents to run crowdsourcing projects efficiently (Biswas et al.,

2015; Cavallo and Jain, 2012; Itoh and Matsubara, 2016; Jain et al., 2016; Kamar and

Horvitz, 2012; Kara et al., 2018; Sen et al., 2015; Tran-Thanh et al., 2014; Venanzi et al.,

2016). However, the success of crowdsourcing projects relies critically on motivating a

crowd2 to contribute (Doan et al., 2011; Simula, 2013). In microtask crowdsourcing

projects, this is more challenging when the tasks are not intrinsically interesting. The

tasks in these projects are simple and usually do not require any knowledge or techniques

to complete. Hence, after performing these tasks repeatedly, users are likely to get bored.

There are extensive studies of motivation and incentives from many fields of study, such

as psychology, sociology, organisational behaviour, marketing, and computer science

under various perspectives, such as humans in general, workers in firms, customers of

brands, members in social groups or online communities, and contributors in crowd-

sourcing systems. From these studies, various incentive methods can be considered for

use to align the behaviours of users with the objectives of requesters3 in crowdsourcing

projects. For example, we can use methods related to the connections and communica-

tions between the users of the crowdsourcing project, such as providing environments

for the users to communicate (Kraut et al., 2011) or allowing them to give feedback

on the tasks (Kulkarni et al., 2015). We can also use methods related to the tasks to

arouse the intrinsic motivations of the users. An example is showing pop-up messages

before users are predicted to disengage times of a user in a work session to prolong the

session and hence to achieve higher task completion rates (Avi et al., 2016). Another

example is providing a wide variety of tasks to prevent users from becoming bored while

performing a certain type of tasks for a long type (Alsayasneh et al., 2018; Kaufmann

et al., 2011). A different group of incentive methods, which is widely used in microtask

crowdsourcing, is rewarding users for completing tasks. For instance, users will be re-

warded a certain amount of money (e.g., £2.00) for completing a certain number of tasks

(e.g., 20). This incentive method is called paying for performance (Mason and Watts,

2010; Prendergast, 1999). We can also sometimes give them a bonus (e.g., £1.00) for

2In the context of crowdsourcing, the crowd is sometimes referred to using several different names.
Under the view of a component of a crowdsourcing system, they can be called crowdsourcees, while with
the view of a company, we can call them workers. However, when considering them as the ones who
contribute to an organisation or a project, we can use the word contributors or participants. And finally,
they are members of the community and also users of the system, thus we can call them members or
users. As a consequence, when considering a specific case (e.g., a specific system), we use appropriate
names. For example, when talking about a citizen science project, we use the word contributors or
participants (instead of workers). And, in general cases, we use the word “users”.

3In some projects, the requesters can also be the designers. To keep the presentation simple, we use
“requesters” to refer to both.
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completing the tasks with a high quality (Harris, 2011; Yin and Chen, 2015). These and

many other incentive methods are discussed in Chapter 2.

Another effective method to incentivise users in crowdsourcing is using contests4 as

they are effective and cheap. Actually, by rewarding users in a contest, task requesters

do not necessarily have to pay for every task completed as in other types of financial

rewards, such as paying for performance or using bonuses. Indeed, they have to pay

only for a certain number of users, e.g., the top user who has completed the tasks

with the highest quality or the top two who have completed the most tasks. 99designs

(www.99designs.com), TopCoder (www.topcoder.com), and Taskcn (www.taskcn.com)

are some well-known crowdsourcing platforms that use contests to attract users.

Although there are numerous incentives that can be used in a specific crowdsourcing

project, finding ways to efficiently incentivise users is still an open challenge. This is

because the effectiveness of the incentives is usually unknown in advance and is likely

to be different in different projects based on specific characteristics of those projects.

For example, they can be the project purpose (e.g., building data for scientific studies

or collecting data for a company), the task nature (e.g., interesting or boring), or the

user community (e.g., the extent to which they are in contact with each other or the

extent to which the information of a user is exposed to the others in the community).

These differences reflect the fact that users have different motivations (Frey and Jegen,

2001; Heyman and Ariely, 2004; Zheng et al., 2011). Also, the structure (i.e., the group

size and the rewards) of the contests can make a significant difference in performance

(Feyisetan and Simperl, 2019; Ramchurn et al., 2013). Thus, more work is needed to

establish efficient and practical approaches that crowdsourcing designers, the ones who

actually implement and deploy the projects, can use to incentivise users to perform tasks

so as to maximise the overall utility of the requesters. We refer to this as the incentive

problem. In a microtask crowdsourcing project, the utility of the requester on a task is

the benefit that the requester receives after the taks is completed which can be measured

by including task quantity, task quality, task completion time, or some subset of them.

The detailed discussion about utility measurement will be presented in Section 3.3.

One practical way to solve the incentive problem is, first, choosing a certain number

of candidate incentive methods suggested by related studies and from prior knowledge

about the crowdsourcing projects and then, having a good approach to select the most

effective incentive method and identify the most effective incentive in the method. To

clarify the concept of incentive used in our research, an incentive method (such as

paying for performance or contests) might correspond to several incentives as they might

have one or more parameters and each parameter may have a range of possible values.

An example is that, paying for performance (an incentive method) might have one

4We use the term “contest” in a broad sense to refer to any situation in which users exert effort to
submit tasks for prizes, which are provided based on relative performance. The prizes can be tangible
rewards, points, or positions on a leaderboard. Thus, all-pay auctions, lotteries, and leaderboards are
considered contests for the purpose of this work.

www.99designs.com
www.topcoder.com
www.taskcn.com
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parameter, the amount of money paid for completing, say, 50 tasks. The payment

can range from £5.00 to £10.00. Another example is that contests might have two

parameters, the group size (the maximum number of users in a contest, a parameter)

and the amount of prize money for the best user. The group size might range from,

say, 5 to 30, while the prize for the best user can be from £2.00 to £10.00. A candidate

incentive corresponds to an incentive method with specific values of the parameters. For

ease of presentation, we refer to an incentive method as a cluster, as it is a cluster of

incentives. Specifically, a cluster is a group of incentives correspondding to an incentive

method but having different values of the parameters. The chosen incentives in each

cluster are referred to as candidate incentives. When it does not lead to confusion, we

simply use “incentives” instead of “candidate incentives”.

Within a cluster, there might be correlations between the incentives. This means the

difference in the effectiveness between two adjacent incentives (i.e., the values of their

parameters are slightly different) is small. Indeed, it is likely that when the parameter

values of the incentive method change slightly, the effectiveness of the corresponding

incentives also changes gradually. In other words, the correlation between two incentives

in a cluster is the extent to which difference in effectiveness of the incentives based

on the values of their parameters. Figure 1.1 shows possible correlations between the

incentives in two clusters corresponding to the two incentive methods mentioned above.

Specifically, Figure 1.1a shows the effectiveness of the incentives, measured by utility per

cost unit5, in cluster 1 (corresponding to the incentive method paying for performance).

This figure depicts that utility initially increases with increasing payment. However,

when it is larger than £8.00, the effectiveness starts decreasing. Similarly, Figure 1.1b

shows possible correlations in the second cluster. However, if we continue choosing some

incentives in each cluster, the chosen incentives are not correlated. For example, in

cluster 1, if we continue choosing only two incentives, a1 and a2 (other incentives in the

cluster are not candidate incentives any more), these two incentives are not correlated.

Similarly, in cluster 2, if we continue choosing only three incentives, b1, b2, and b3, these

three incentives are not correlated. Later in the section, we will discuss the reason, in

some cases, we have to continue choosing some incentives in each cluster.

Furthermore, currently on many microtask crowdsourcing platforms, such as Amazon

Mechanical Turk (www.mturk.com), Clickworker (www.clickworker.com), and Figure

Eight (www.figure-eight.com, formerly known as CrowdFlower), the requesters can

manage the tasks (e.g., creating a task with descriptions or uploading related data for

a task) and the submissions (e.g., downloading the submissions from the users or send-

ing bonuses to users with high quality submissions) in an autonomous manner using

programmable Application Programming Interfaces (APIs). This makes it possible to

build autonomous agents to monitor and adaptively switch incentives when appropriate.

5The measurement of an incentive’s effectiveness will be discussed in more detail in Section 3.4.

www.mturk.com
www.clickworker.com
www.figure-eight.com
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Figure 1.1: Illustrative examples of correlations between the incentives in a cluster
which has one (a) and two (b) parameters. The green points are the chosen incentives
when we have prior knowledge about the project or the budget for the project is small.

Indeed, it is inconvenient, or almost impossible in many cases, to switch between incen-

tives manually to identify the best one, especially in microtask crowdsourcing, where the

number of tasks and the number of users are usually large. Therefore, it is a key problem

to find an appropriate way for an autonomous agent to select effective incentives in a

microtask crowdsourcing project so as to maximise the requester’s overall utility within

a given budget. We refer to this as the incentive selection problem (ISP).

As mentioned above, the effectiveness of the incentives in a specific crowdsourcing project

is usually unknown in advance. Thus, in order to utilise the most effective one (i.e.,

exploit), the agent has to try each incentive several times to evaluate its respective

effectiveness (i.e., explore). Given this need to balance exploitation and exploration,

budgeted multi-armed bandits (budgeted MABs) form a promising approach for this

problem. Specifically, this approach models the problem as a machine with I arms

(corresponding to I incentives), pulling an arm (providing the corresponding incentive

to a group of users) incurs a fixed cost (attached to the arm) and delivers a random

utility (e.g., the number of tasks completed) drawn from an unknown distribution. The

objective in a budgeted MAB problem (corresponding to the ISP) is to find a pulling

policy that maximises the expected total utility within a given budget (e.g., £500).

A number of algorithms have been proposed to solve the budgeted MAB problem

(Badanidiyuru et al., 2018; Sen et al., 2015; Tran-Thanh et al., 2012, 2010; Zhou and

Tomlin, 2018). However, these algorithms are not designed to work with the time budget

(i.e., the deadline) of the ISP. Moreover, the studies do not consider the group-based na-

ture of the incentives when they are contests. In detail, after pulling an arm, we receive

the utilities of the individuals in the corresponding contest group (i.e., a number of data

points) rather than the total utility of the whole group (i.e., one data point). Thus, as

we will show in Chapter 4, they are not efficient when dealing with the ISP. To illustrate

the importance of the group-based nature, consider the two cases when the group size
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is 5 (i.e., 5 users per contest) and 20 respectively. Current MAB algorithms would not

treat these cases differently. However, the latter clearly provides us with more infor-

mation on each pull (as it has more samples, i.e., users). As a result, the second case

requires fewer pulls of exploration in order to achieve the same level of understanding of

the users’ performance. For example, after 5 pulls of an arm in the second case, we have

sampled the performance of 100 individuals, but would require 20 pulls of an arm in the

first case to reach that sample size. Hence it is necessary to consider the group-based

nature, in order to determine the appropriate numbers of pulls for the arms. Addition-

ally, another important characteristic of the ISP is batched pulling. That is, in each

round, multiple arms can be pulled (i.e., several incentives can be offered at a time) and

an arm can be pulled multiple times (i.e., an incentive can be offered to different user

groups). Many other studies have investigated batched MABs (Anantharam et al., 1987;

Audibert et al., 2014; Gao et al., 2019; Jun et al., 2016; Luedtke et al., 2019; Perchet

et al., 2016; Zhou and Tomlin, 2018; Xia et al., 2016). Yet, none of these studies examine

both the batched and budgeted characteristics of the ISP. For example, in the models

of Audibert et al. (2014); Gao et al. (2019); Jun et al. (2016); Perchet et al. (2016) and

Anantharam et al. (1987), there must be exactly K out of I arms to be pulled in each

round, whereas in the ISP, the number of incentives to be offered at a round is arbitrary.

Although Luedtke et al. (2019); Zhou and Tomlin (2018) and Xia et al. (2016) consider

batched and budgeted MABs, in their models an arm is allowed to be pulled at most

once each time. Therefore, this is a non-trivial extension of the MABs and requires new

approaches that can deal with all the characteristics of the ISP effectively.

The MAB algorithms previously mentioned deal with the ISP with a small number of

candidate incentives, where the budget is large enough to apply all the incentives several

times to estimate their effectiveness. This is the case where we have prior knowledge

about the crowdsourcing project, thus we can choose some (possibly good) incentive

methods, and with each method, we can choose some (possibly good) candidate incen-

tives. That means we can (or have to) determine specific values of the parameters of

each chosen incentive method. Figure 1.1 shows examples of some chosen candidate

incentives. With the first incentive method (paying for performance), we have chosen

two candidate incentives a1 and a2, which correspond to the payment of £6.00 and £9.00

respectively (Figure 1.1a). And with the second incentive method (contests), the chosen

incentives are b1, b2, and b3 (Figure 1.1b). This is also the case where the budget for

the project is small, and hence we have to limit the number of incentives so that we do

not have to spend a large amount of money on exploring. However, when we do not

have enough prior knowledge about the project and the budget for the project is large

enough, we can consider selecting the best incentive from the chosen incentive methods

so that we do not miss the best incentive in the best method. The above-mentioned

MAB algorithms are not a good way to deal with this case of the ISP, i.e., the case where

the candidate incentives are many and correlated. This is because these algorithms need

to explore all the arms (i.e., apply all the candidate incentives) at least once in order to
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identify the best arm (i.e., the most effective incentive). This is not effective as it may

spend a large portion of the budget for exploring the arms, so the remaining budget is

too small for exploiting the best arm explored. In some cases, this is impossible as they

do not have enough budget for pulling each arm once.

There are many studies about MABs where there are many arms (henceforth, many-

armed bandits) (Bubeck et al., 2011; Chaudhuri and Kalyanakrishnan, 2018; Grill et al.,

2015; Li and Xia, 2017; Trovo et al., 2016; Wang et al., 2008). Yet, none of them can be

used to solve the ISP. Actually, they do not consider all the characteristics of the ISP2,

such as the budget constraints, multidimensional structure of the incentives (i.e., an

incentive method has a certain number of parameters), correlations between the arms,

or the group-based nature of the arms. For these reasons, we are motivated to investigate

approaches to deal with the possible variants of the ISP in microtask crowdsourcing. The

first variant corresponds to crowdsourcing projects where the incentives in each cluster

are uncorrelated. We refer to this variant as the ISP1 (uncorrelated ISP or the ISP

with uncorrelated incentives) and the corresponding projects as uncorrelated projects.

The second variant corresponds to crowdsourcing projects where the incentives in each

cluster are correlated. We refer to this variant as the ISP2 (correlated ISP or the ISP

with correlated incentives) and the corresponding projects as correlated projects. The

third variant corresponds to crowdsourcing projects where the incentives in some clusters

are uncorrelated and the incentives in the other clusters are correlated. We refer to this

variant as the ISP3 (mixed-correlated ISP or the ISP with mixed-correlated incentives)

and the corresponding projects as mixed-correlated projects. In summary, our research

question is:

“How to find appropriate approaches for an autonomous agent to maximise

the requesters’ cumulative utility in all (i.e., uncorrelated, correlated, and

mixed-correlated) microtask crowdsourcing projects by effectively selecting

the right incentives within a given budget and a time limit?”

In the next sections, we will show how we address this question in our research.

1.2 Research Objectives

This research has the following objectives:

RO1: The approaches must be efficient. Specifically, they must help requesters of

microtask crowdsourcing projects maximise the overall utility by having a good

balance between exploration (i.e., learning the effectiveness of the incentives) and

exploitation (i.e., applying the most effective incentive). In doing so, they must
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make use of the given budget and the time limit to effectively apply appropriate

incentives at each time. Also, as contests might be a good incentive method to

the projects, the approaches must take advantage of the group-based nature of the

incentives to achieve good performance.

RO2: The approaches must be autonomous. In more detail, the approaches can be used

by autonomous agents to automatically and effectively select the right incentives.

In this way, the requesters can deploy their projects on crowdsourcing platform by

using provided APIs.

RO3: The approaches must be adaptive. More specifically, autonomous agents are

responsible for selecting the right incentives. Also, in a different crowdsourcing

project, the incentives, user performance corresponding to the provided incentives,

the budget, and the deadline might be different; while the requester usually does

not have enough prior knowledge about the user performance in the project to

provide the agents. Hence, the approaches must be able to adaptively change

their behaviours so that the agents can run efficiently in different projects.

RO4: The approaches must be complete. That means they are able to deal with the

ISP in any crowdsourcing project. In other words, the approaches to the ISP must

cover at least the two variants of the problem where the candidate incentives are

uncorrelated and correlated.

In order to achieve these objectives, online learning algorithms are a good approach.

In detail, budgeted multi-armed bandit (MAB) algorithms can deal with the efficiency

(RO1) as they are proposed to deal with the exploration-exploitation tradeoff effectively.

The Bayesian optimisation (BO) approach might also be a good way to help obtain

RO1 when the candidate incentives are numerous and correlated. Specifically, BO is

designed to find the global optima of functions in as few steps (i.e., function evaluations)

as possible. This fits the ISP as applying an incentive incurs a cost. Also, as BO

incorporates prior beliefs, if we have some prior knowledge about user performance in

a given crowdsourcing project, BO can make use of this to find the global optimum

more quickly. Also, the MAB algorithms need to be designed to cover group-based

(rather than only individual-based) incentives to improve their performance. Therefore,

by building algorithms based on MABs and Bayesian optimisation, we can achieve RO2,

as the agents can apply these algorithms in an automatic manner. To attain RO3, the

algorithms must be designed to run effectively in different projects without manually

tuning their situation-specific parameters. Finally, to accomplish RO4, we have two

options. One is to build algorithms which perform well on any crowdsourcing projects.

That means the algorithms can run effectively on uncorrelated, correlated, and mixed-

correlated projects. The other is to build separate algorithms to tackle the variants

separately. We chose the second option, as the problems corresponding to the variants

are inherently different. Indeed, learning the best incentive in crowdsourcing projects
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where there are correlations between incentives is more complicated than in projects

where no incentives are correlated. This is because we have to solve not only the learning

(i.e., identifying the best incentive method) but also the tuning (i.e., choosing the best

parameter values of a method) problems.

1.3 Research Contributions

In solving the ISP, we introduce algorithms which take into consideration the budget

limit, the deadline, and the group-based nature of the problem. The ultimate purpose of

this work is to build algorithms so that autonomous agents can automatically and effec-

tively select the right incentives, so that we can easily deploy projects on crowdsourcing

platforms by using the provided APIs. To this end, we make the following contributions:

(1) We formalise the ISP when there are several candidate incentives as a novel batched

2d-budgeted group-based MAB problem. We refer to this as the ISP1. Here,

“batched” means in each round, multiple arms can be pulled and an arm can be

pulled multiple times. And “d” means “dimension”. The two dimensions are the

financial budget and the time budget (i.e., the deadline). Finally, “group-based”

means the group-based nature of the arms.

(2) We introduce HAIS, a novel adaptive algorithm to solve the ISP1 effectively by

utilising all the characteristics of the problem. Specifically, it makes use of the

limited (financial and time) budgets to have a good balance between exploration

and exploitation. Also, the algorithm has an efficient mechanism for eliminating

clearly ineffective arms (i.e., incentives) so that it can spend more budget on

exploring (together with exploiting) effective ones. Furthermore, it takes account

of the batched pullling and especially the group-based nature of the arms to decide

how many times an arm is pulled each time. Moreover, HAIS can be applied to

any crowdsourcing projects without tuning any situation-specific parameters. This

is because it can identify an appropriate number of pulls on the arms each time

based on the estimates of the arms so far.

(3) We empirically demonstrate that HAIS is generally more effective and efficient

compared to state-of-the-art approaches in an extensive series of simulations. The

results of the simulations show that HAIS ourperforms state-of-the-art benchmarks

in most cases. Specifically, the performance of HAIS is up to 99% of the optimal

solution and up to 35% better than state-of-the-art benchmarks. This is due to

the following reasons. First, HAIS has an efficient strategy in balancing between

exploration and exploitation. Second, HAIS takes advantage of the time budget

to conduct more exploration while exploiting the best incentive so far. Third, the

algorithm has an effective elimination mechanism so that it can eliminate clearly
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ineffective incentives and hence it can spend more budget on exploring effective

ones.

(4) We formalise the ISP when there are many candidate incentives which are corre-

lated and refer to this as the ISP2. In more detail, we consider an incentive method

as a cluster (of the incentives) with parameters whose values are in specific ranges.

An incentive (i.e., an arm) is a combination of specific values of the parameters in

a cluster. It is assumed that there are correlations between incentives in a cluster.

Similar to the ISP1, the ISP2 has the same set of characteristics which are batched

pulling, 2d-budgeted, and group-based nature of the incentives.

(5) We introduce BOIS, a novel algorithm to solve the ISP2 effectively. More spe-

cifically, different from the ISP1, the ISP2 has two sub-problems. The first one is

learning to identify the best cluster and the second one is tuning which is is the best

incentive in the best cluster. Hence, under limited budgets, we combine MABs and

BO in a single process to deal with the two sub-problems effectively. Concretely,

we use a MAB approach to learn the best cluster and BO with Gaussian processes

to tune the parameters of each cluster.

(6) We empirically demonstrate that BOIS is generally more effective and efficient

compared to state-of-the-art approaches in a series of simulations. Specifically, the

performance of BOIS is up to 92% of the optimal solution and up to 48% better

than state-of-the-art benchmarks. This is mainly because BOIS makes use of the

periods before the deadline to gradually determine the best incentive by combining

a MAB technique and BO with Gaussian processes.

Parts of this work have been published in the following venues:

� “Incentive Engineering Framework for Crowdsourcing Systems” at the 4th AAAI

Conference on Human Computation and Crowdsourcing, HCOMP 2016 (Truong

et al., 2016). This workshop paper briefly introduced the incentive engineering

framework, which tries to summarise and present as a literature map the incentives

and motivation factors of users in crowdsourcing projects collected from existing

studies.

� “Adaptive Incentive Selection for Crowdsourcing Contests” at the 17th Interna-

tional Conference on Autonomous Agents and Multi-Agent Systems, AAMAS 2018

(Truong et al., 2018). This is a short paper that introduced the novel idea of

homogeneous-group-size version of the ISP1 (i.e., all incentives have the same

group size). The paper introduced the ISP1 and an algorithm to solve this ver-

sion of the ISP. We also briefly evaluated the performance of the algorithm in the

paper. Concretely, the model, i.e., the ISP1, presented in this paper is a sim-

pler version of the ISP1 mentioned in Contribution 1, where the group sizes of
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the candidate incentives are homogeneous. Also, the algorithm proposed, HAIS,

is a simpler version of the HAIS algorithm in this thesis which is mentioned in

Contribution 2. Hence, the simulations conducted only cover the cases where the

group sizes are homogeneous whereas the ones conducted in this thesis also cover

heterogeneous-group-size cases (Contribution 3). This paper is the preliminary of

the model presented in Chapter 4.

� “What Prize Is Right? How to Learn the Optimal Structure for Crowdsourcing

Contests” at the 16th Pacific Rim International Conference on Artificial Intelli-

gence, PRICAI 2019 (Truong et al., 2019). This publication introduced the ISP2,

the ISP where the candidate incentives are many (compared to the financial bud-

get) and there exist correlations between the candidates. This is the one mentioned

in Contribution 4. We proposed a novel algorithm, BOIS, to effectively identify

the best cluster and the best incentive in this cluster (Contribution 5). We also

evaluated the performance of BOIS in the paper (Contribution 6). This paper is

primarily the content of Chapter 5.

In addition, parts of this work have been submitted to :

� The Journal of Autonomous Agents and Multi-Agent Systems (JAAMAS). The

content of this submission is basically that of Chapter 4. In more detail, it pre-

sented the ISP1 (Contribution 1), the HAIS algorithm (Contribution 2), and ex-

tensive simulations to evaluate the performance of HAIS (Contribution 3). This

submission is primarily the content of Chapter 4.

1.4 Thesis Outline

The remainder of this thesis is structured as follows:

� In Chapter 2, we explore previous studies about motivation and incentives of users

in crowdsourcing. Also, we present studies about online learning techniques which

we use to solve the ISP. Specifically, participants in crowdsourcing projects have

some similarities to employees in companies, members in organisations, or users

in social networks. Thus, we first examine human motivation at work, incentive

mechanisms in organisations, and user motivation and incentives in social networks

and in crowdsourcing. We summarise the related works in a map to visually present

the incentives, system characteristics associated with user motivation, dominant

user behaviours, and the connections between them. After that, we present various

models for multi-armed bandits that can be considered for dealing with both the

ISP1 and ISP2. We then present Bayesian optimisation, a promising technique to

deal with the ISP2.
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� In Chapter 3, we formalise the ISP, our model to deal with the incentive problem.

We also briefly introduce the ISP1 and ISP2, the two variants of the ISP that apply

in different crowdsourcing projects (depending on the amount of the project’s

budget and prior knowledge about user performance in the project). Following

this, we discuss how to measure the utility of the requester and the effectiveness

of the incentives.

� In Chapter 4, we detail how do deal with the ISP1. In the chapter, we first

formalise the ISP1. We then introduce a novel algorithm (HAIS) to solve the

problem. Finally, we conduct extensive simulations to empirically evaluate the

performance of HAIS. This helps us achieve the research objectives RO1, RO2,

and RO3.

� In Chapter 5, we solve the ISP2. Similar to Chapter 4, the chapter begins by

formalising the ISP2. Following this, we propose a novel algorithm (BOIS) to

deal with the problem. After that, we assess the performance of the algorithm

using extensive simulations. The chapter helps us attain the first three research

objectives (RO1, RO2, and RO3). Also, together with Chapter 4, it helps us

accomplish the last research objective (RO4).

� In Chapter 6, we summarise the accomplishment of this research. We also outline

how this research can be improved upon in the future within the chapter.



Chapter 2

Literature Review

In this chapter, we provide an overview of previous research against which our work is

positioned. To do so, we first present studies which are related to the user motivation and

incentives in microtask crowdsourcing in Section 2.1. In this section, we organise many

characteristics of crowdsourcing projects that might affect user motivation. We also

review various incentives from existing studies that can be used to align user behaviours

in crowdsourcing projects. Next, in Section 2.2, we present background literature which

forms the basis of our approaches to the incentive problem. Specifically, the section

describes studies about online learning approaches (multi-armed bandits and Bayesian

Optimisation) that we use to build algorithms to deal with the incentive problem. Fi-

nally, in Section 2.3, we discuss which parts of the existing research form the point of

departure for where new work is needed in order to fulfil the requirements outlined in

Section 1.2.

2.1 Motivation and Incentives in Microtask Crowdsourc-

ing

Behaviours of people are directed by their motivation. Thus, to align user behaviours

in crowdsourcing projects, requesters should find ways to enhance their motivation in

performing tasks or in participating in other activities. As will be shown later in the sec-

tion, much research from many fields of study (such as psychology, sociology, economics,

and computer science) shows that requesters can do this by providing appropriate in-

centives. Therefore, in Subsections 2.1.1 and 2.1.2, we present a review of previous

studies about user motivation and incentives in microtask crowdsourcing. After that, in

Subsection 2.1.3, we review studies about possible interactions between incentives and

motivation.

13
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2.1.1 Motivation

There are many well-established theories about the motivation of human in general,

workers in companies, members in groups or organisations, or users in crowdsourcing.

Based on these theories, we have identified dominant characteristics of crowdsourcing

projects that have significant influence on user motivation. More details of the theories

are presented in Appendix A. These characteristics are grouped into three categories

corresponding to three sources of the motivation: crowd (related to size, structure and

interaction of the worker community), task (related to designing tasks) and system

(related to the platform and system goals). We now review the literature following

these three categories.

First, regarding the crowd, there are many theories in social psychology and sociology

learnt about motivations of people in groups or social communities such as social compar-

ison theory (Festinger, 1954), common identity theory, common bond theory (Prentice

et al., 2006), legitimate peripheral participation (Lave and Wenger, 1991), and collective

effort model (Karau and Williams, 1993). All of these theories are described in Appen-

dix A. Many studies have applied these theories in the context of crowdsourcing in order

to explain several aspects of the motivation or provide approaches that can motivate

users in crowdsourcing projects based on the relationships with others in the projects.

For example, Ren et al. (2007) use common identity theory and common bond theory to

create design principles (in online communities) about group (or community) size and

off-topics in discussion forums that can develop the attachments of individuals to the

group (or the community). While, Ling et al. (2005) use collective effort model (CEM)

to build experiments to find what factors can motivate the contributions of users when

working collectively in online communities. As predicted by CEM, their results show

that emphasising the uniqueness of the contributions of individuals in the group will

motivate their contributions.

Second, regarding the tasks, flow theory (Nakamura and Csikszentmihalyi, 2002) and

the job characteristic model (Hackman and Oldham, 1980) are two well-established the-

ories in psychology and organisational behaviour which can be used to design tasks that

can motivate users in crowdsourcing systems. Nguyen et al. (2015) adopt flow theory in

the context of crowdsourcing. They argue that flow1 experience can lead to engagement

of users. However, based on flow theory, three external conditions usually related to

the present of the flow experience are ability-challenge balance (the balance between

user ability and the challenge of the activity), clear goal, and immediate and unam-

biguous feedback. Hence, they conclude that these three conditions can indirectly affect

user engagement in crowdsourcing systems. In contrast, Zheng et al. (2011) apply job

characteristic model to identify what factors affect user participation in crowdsourcing

contests. After developing a research model and analysing data from 283 users, they

1See “Flow Theory” in Appendix A.
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found that intrinsic motivations have more influence on participation of users than ex-

trinsic motivations. And, three characteristics of the tasks that are positively linked

with intrinsic motivations are autonomy (the freedom and control that users have when

performing tasks), skill variety (the requirement of a wide range of skills and a variety of

activities when performing tasks), and task complexity (the difficulty when performing

tasks).

And finally, regarding the system, goal setting and user interface design are two domi-

nant elements related to user motivation. Goal-setting theory (Locke and Latham, 2002)

is a widely used theory to learn about human motivation. Based on the premise that in-

centives are affected by conscious goals, it identifies two core characteristics of goals that

affect motivation of people in performing tasks. They are goal specificity (goals should

be specific and measurable) and goal difficulty (the difficulty should be high enough

to encourage effort and low enough to be achievable) (Locke and Latham, 2002). Ling

et al. (2005) confirm these two characteristics in the context of online communities. On

the other hand, much research has studied about what characteristics of user interfaces

affect user motivation. Usability (the ease of use) and visual appeal (attractiveness) are

two characteristics that are widely discussed (Holzinger, 2005; Hartmann et al., 2007;

Phillips and Chaparro, 2009). Whilst, Malone (1982) has different approach in design-

ing an enjoyable user interface. Malone (1981) found three factors that make computer

games fun, which are challenge (goals with uncertain outcomes), fantasy (“mental im-

ages” that users evoke when interacting with the system), and curiosity. Based on these

three factor, the author proposes a design framework to support these three factors. An

example for a principle in the framework is to ask about the present of a clear goal in an

activity. Inspired by Malone’s work, Brandtner et al. (2014) introduce design principles

for the user interfaces of crowdsourcing systems. For example, they adopt Malone’s

“clear goal” principle as a specific question “Is a clear goal visible for the user?”.

Besides the above-mentioned approaches that focus on specific characteristics of the

system or motivation aspects of users, some other studies have looked at several char-

acteristics or motivations to have a broader view about the user motivation in crowd-

sourcing. Indeed, Tokarchuk et al. (2012) propose a framework that designers can use to

analyse incentive issue of crowdsourcing systems based on several characteristics of the

systems. After the analysis, they can have a direction to identify appropriate incentives.

However, the framework does not provide specific incentives to choose. And, it does

not consider user behaviours, hence designers cannot use the framework to deal with

particular behaviours of the users. Similarly, Kaufmann et al. (2011) introduce a model

about user motivations in crowdsourcing grounded on self-determination theory and the

job characteristic model. The model helps classify motivations of users in five categories

(enjoyment-based motivation, community-based motivation, immediate payoffs, delayed

payoffs, and social motivation) separated by two main branches (intrinsic motivation

and extrinsic motivation). The model can be used to compare user motivations of a
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system with others; however, in the view of designers, they cannot apply this model in

the design process because it focuses only on user motivations without any connections

with user behaviours and incentives.

In this section, we have introduced dominant works about user motivation. In the next

section, we will review studies about incentives that might affect user motivation so that

we can use to encourage users to perform tasks or participate in other activities in a

crowdsourcing project.

2.1.2 Incentives

In the literature, there is a variety of incentives2that can be taken to motivate human

in general, workers in firms or users in online communities in particular. We have

collected these incentives from many fields of study including economics, psychology,

social psychology, sociology and organisational behaviour. These incentives are grouped

into five categories: members (related to individual workers or groups of them), tasks

(related to designing and delivering tasks), evaluations (related to assessment methods

of user performance), rewards & punishments (related to rewarding or punishing based

on user activities) and platform (related to features provided by the system). Now, we

present studies about incentives based on these categories.

Regarding the first category, members, many studies take advantage of the interactions

between the members to take incentives that can encourage their participation, enhance

their commitment, or improve their performance. Because people have tendency to

compare with others and then change their behaviours towards the betters (Festinger,

1954), we can provide environments for users to show their personal information and

performance history to others. This incentive does not only help increase user perfor-

mance (Huang and Fu, 2013) but also establish both bond-based and identity-based

attachments (attachments to individuals and to groups as a whole) (Kraut et al., 2011).

Additionally, we can make use of the collaboration between members to enhance their

connections and improve the performance by providing communication channels. For

example, in the citizen science project Fold It3 (https://fold.it), members can com-

municate with each other in three different ways: real-time talk through an Internet

relay chat window, discuss by posting messages on a forum, or direct contact by pri-

vate messages. This helps newcomers overcome the difficulties in the first time, helps

players share their strategies or solutions to the puzzles, and importantly increases the

motivations for them to continue playing the game (Curtis, 2015). Besides that, obtain-

ing feedback from other members is also a useful method that can be used in crowd-

sourcing. According to feedback intervention theory (Kluger and DeNisi, 1996), after

2For a simple presentation, in this chapter when it does not lead to confusion we use “incentives”
instead of “incentive methods”.

3An online video game that players, in each puzzle, find the most stable configurations of proteins
by twisting, stretching or rearranging protein backbones and side chains.

https://fold.it
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receiving feedback, users can improve task performance or enhance motivations depend-

ing on many factors such as contents of the feedback, task characteristics or recipients’

personalities. Based on this theory, Zhu et al. (2013) conduct a field experiment on

Wikipedia (www.wikipedia.org) to test the effects of four different types of feedback:

negative feedback (regulating recipients by warnings or reprimands), directive feedback

(directing recipients by instructions, commands, etc.), positive feedback (energising re-

cipients by work acknowledgement or rewards), and social feedback (maintaining social

relationships, supporting group cohesion or self-confidence, etc.). The results, which

agree with the predictions of the theory, suggest a trade-off that negative and directive

feedback lead to improvement in task performance, while positive and social feedback

lead to enhancement of general motivations. That means, system designers can consider

using appropriate types of feedback to focus on task performance or general motivation.

Regarding the second category, tasks, an incentive that has started to attract the inter-

est is personalised task recommendation (providing tasks based on users’ interest and

capabilities) (Geiger and Schader, 2014; Yuen et al., 2015; Aldhahri et al., 2015). The

reason is that recommendation systems have been highly successful in many other ar-

eas, such as product recommendation (recommend products based customers’ interest)

or content personalisation (show appropriate contents to each user based on their in-

terest) (Geiger and Schader, 2014). And if this approach is also successfully applied

in crowdsourcing, it not only helps users find tasks faster and keep their motivations

(because they do not take much time to find and choose the right tasks) but also helps

requesters receive results with better quality (because the tasks are performed by the

right users) and quicker. However, because there are some differences, applying the

approach in crowdsourcing systems needs further research. Several studies have tried

to point out difficulties (Yuen et al., 2015) and potential methods that can be used in

crowdsourcing context (Aldhahri et al., 2015).

After delivering tasks and receiving results, we need to have appropriate incentives to

evaluate user performance (the basis for giving rewards or punishments later). Evalua-

tion is very important to user motivation and user performance. Indeed, if the evaluation

is unfair among users, the ones that are under-evaluated will decrease their motivations.

Additionally, imprecise evaluation can result in lower performance when contributions

are over-evaluated (because they do not have to work as expected by requesters in order

to be paid) or lower motivation when they are under-evaluated. Therefore, choosing

appropriate incentives in the third category is important. There are several methods

of evaluation in the literature (Scekic et al., 2013; Prendergast, 1999), but they can be

categorised by two ways. On one hand, based on the person who is in charge of the

evaluation (computer or human), when contributions can be measured precisely, we can

use objective evaluation (computer can do this); in other cases, we should use subjective

evaluation (Scekic et al., 2013). On the other hand, based on the object of the evaluation,

we can use individual-based evaluation when contributions of individuals can be easily

www.wikipedia.org
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evaluated (objectively or subjectively), relative evaluation when setting absolute perfor-

mance conditions is difficult or impossible, or team-based evaluation when it is difficult

to evaluate contributions of individuals in a team (Scekic et al., 2013). Each method has

its own benefits and side effects, thus choosing appropriate methods should be based on

specific cases. For example, relative evaluation has positive effect on user performance

because people tend to compare with others around and try to improve themselves to-

wards the better people (Festinger, 1954). However, it can diminish the motivation to

help others. Similarly, team-based evaluation can support the collaboration between

members in a team, but it can lead to free-riding phenomenon (Prendergast, 1999).

After evaluating user contributions, we need to reward or punish them based on the

evaluations. Similar to the evaluation, compensation is attached to user motivation and

also user performance. Regarding this fourth category, there are various incentives that

can be used to reward users. According to Zichermann and Cunningham (2011), there

are four types of rewards: Status, Access, Power and Stuff (SAPS). Status is the relative

position of a person in relation to others in the system. We can use badges, levels, or

leader boards to show status. Access is the opportunity to interact with private resources

or interact in a special way, such as being able to see the performance history of other

members or to see some information before others. Power is special rights of users over

others, for example can deactivate or activate accounts of other members. And stuff

means tangible rewards such as money or anything else that can be converted easily into

money.

Although this classification (SAPS) is used in gamification (the practise of applying

game elements in non-game contexts), it covers most types of rewards that can be used.

They are in order of decreasing the desire, the complexity in usage, but increasing in the

price. Indeed, for example, using status requires us to take more time to think about its

usage. Basically, in order to use status, the first step is to choose fundamental elements

(can be points). The next step is to build rules to earn points and then some more

rules to identify point thresholds to increase levels. And then some more rules to deliver

badges for levels. However, by using for example money, it is extremely easy but the

most expensive.

In crowdsourcing, a widely used type of reward is financial rewards (stuff). Although

it is easy to use money to reward, it is complicated to use in order to have optimal

effects on user motivation and user performance. For example, we often believe that

increasing payment leads to improving quality. However, Mason and Watts (2010) and

Araujo (2013) show that higher payment does not result in higher performance but more

users (join a task). One reason for this, according to Mason and Watts (2010), is the

presence of an “anchoring effect”, the effect occurs when people get higher payment,

they will perceive that the value of their contribution is greater, so that they do not put

more effort. In another case, Shaw et al. (2011) find that when using financial incentives

properly (used in combination with asking users to guess the responses of others on the
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same tasks), it can produce results with higher quality. Additionally, one of the most

complicated and controversial issues related to tangible rewarding is its relation with

intrinsic motivation of users. We will discuss this in more detail in Section 2.2.1

Regarding the last category, the platform, one incentive can be used to enhance user

motivation and performance is improving the usability (the ease of use) and the visual

appeal (attractiveness) of the user interface. In general, we can consider using any

principles to improve the usability and the appeal of the user interface. However, in

order to know how well the interface is designed, we need to know how to evaluate a

website or an application with respect to these two characteristics, such as Holzinger

(2005) (to evaluate the usability) or Hartmann et al. (2008) (to evaluate the usability

and the appeal). In particular, as described in Section 2.1.1, if the application tends

to have an enjoyable user interface, designers can consider using directly the framework

developed by Malone (1982) which focuses on three factors: challenge, fantasy and

curiosity, or using its extension in crowdsourcing context (Brandtner et al., 2014).

Besides the above-mentioned incentives, contests are shown to be an efficient approach in

crowdsourcing, however, they do not belong to a specific category. Specifically, they use

relative evaluation (evaluations category), tangible rewarding (rewards & punishments

category), and time pressure (tasks category). Much work has taken a game-theoretic

approach to investigate the optimal (or efficient) design of contests in general and crowd-

sourcing contests in particular. It tries to answer the questions of how to distribute the

prizes (number of prizes and their values) in multiple contests with single prize4 (Di-

Palantino and Vojnovic, 2009) or a single contest with multiple prizes5 (Luo et al., 2016,

2015; Cavallo and Jain, 2013; Chawla et al., 2012; Cavallo and Jain, 2012; Archak and

Sundararajan, 2009; Moldovanu and Sela, 2001). The prize distribution can be a cer-

tain number (one, i.e., winner-take-all, or more) of the best-performance (or luckiest)

users (Luo et al., 2016, 2015; Cavallo and Jain, 2013; Chawla et al., 2012; Archak and

Sundararajan, 2009; Moldovanu and Sela, 2001), or all the users who make non-zero

contributions (Cavallo and Jain, 2012). The design objective can be maximising the

principal’s benefit (Archak and Sundararajan, 2009; Cavallo and Jain, 2013; Chawla

et al., 2012; DiPalantino and Vojnovic, 2009; Moldovanu and Sela, 2001) the agent’s

utility, or the social welfare (Cavallo and Jain, 2012; Luo et al., 2015). In terms of

principal’s benefit, a number of researches focus on (to maximise) the whole submis-

sions (Luo et al., 2016, 2015) or only on the submissions of the highest-performance

agents (Chawla et al., 2012; Archak and Sundararajan, 2009; DiPalantino and Vojnovic,

2009). To model the contests for analyses, a popular approach in contest design studies

4Multiple-contest with single-prize is the model where the users face more than one contests at a
time and have to choose which one(s) to compete with others for a prize. This model is used in some
contest platforms that crowdsource solutions for problems (e.g., designing logo for a company) such as
Taskcn.

5This model is better for the incentive selection problem in microtask crowdsourcing as it is simpler
by omitting the contest-choosing stage but more flexible with the prize distribution (can be single or
multiple prizes).
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is using all-pay auctions6 as it reflects the fact in crowdsourcing that every participant

of a contest has to exert a certain level of effort (Luo et al., 2016; Chawla et al., 2012;

DiPalantino and Vojnovic, 2009; Moldovanu and Sela, 2001). Besides, most recently,

Luo et al. (2015) take a different approach by using Tullock contests7 as they relax the

level of competition by spreading the opportunities to win the prizes for all agents (who

exert non-zero contributions). This approach can be effective in crowdsourcing projects

as it might attract more users to the contests.

Although the work on the contest design is plenty, applying this body of research in build-

ing efficient contests for real-world crowdsourcing projects is still challenging because of

the following reasons. First, these studies are based on the rationality assumption8,

whereas real users in crowdsourcing might be partly rational or irrational, as they might

lack information, knowledge, or time. Second, the studies do not consider other factors

related to the users’ intrinsic motivation that might affect their behaviour, such as the

project purpose, the task nature, or the participant community as described earlier.

Third, contests in these studies are mainly for creative tasks (e.g., designing a company

logo or finding solutions for a problem) where it takes a lot of time (can be hours or

even days) for performing. Because of these reasons, applying the results of this body of

research into microtask crowdsourcing might be different. To deal with this, depending

on a specific microtask crowdsourcing project, these studies can be used together with

some other studies in psychology, sociology, or computer science (e.g., Frey and Jegen

(2001); Gneezy and Rustichini (2000); Heyman and Ariely (2004); Mason and Watts

(2010); Rogstadius et al. (2011)) for better understanding the possible interactions be-

tween the factors (e.g., the incentives, the level of autonomy and interestingness of the

tasks, or the purpose of the projects) related to intrinsic and extrinsic motivations of

the users in order to build more appropriate prize structures.

We have reviewed many incentives can be used to motivate users. The effects of these

incentives are not clearly understood, for example the effects of tangible rewards on

intrinsic motivation. Hence, in order to use them effectively, we need to learn more

about possible interactions between these incentives and user motivation.

2.1.3 Interactions between Incentives and Motivation

Although the incentives are numerous (as presented in the previous subsections), the ef-

fectiveness of particular incentives in specific crowdsourcing projects is usually unknown

in advance. In other words, the net-outcome of these incentives is hard to identify. In

6All-pay auctions are the auctions where every bidder (i.e., agent) has to pay for their bid (i.e., exert
effort).

7Tullock contest is a contest where the probability that agent i = 1, 2, . . . (who exerts effort bi) wins
the contests is pi = bri /

∑
j b

r
j where r > 0. The simplest form of Tullock contests are lotteries where

r = 1.
8The assumption is that the human users act in a fully rational manner.
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some cases, the incentives result in the effect which is higher (i.e., user performance is

better) than expected. Yet, in some other cases, the resulted effect is lower. According

to numerous social studies, this is because, in some cases, the incentives enhance (which

is called crowd in) the intrinsic motivation of users to perform tasks. Thus, they have

a positive effect on user performance. And in some other cases, the incentives diminish

(which is called crowd out) users’ intrinsic motivation, and hence they have a nega-

tive effect on user performance. These crowding effects reflect the fact that there exist

possible interactions between incentives.

Research about crowding effects has a long history for over 45 years (Cerasoli et al.,

2014). However, the relationship between external interventions and on intrinsic mo-

tivation to perform an activity is still an open challenge. In psychology, Deci (1971)

conduct laboratory and field experiments to examine this relationship. They conclude

that monetary incentives may reduce intrinsic motivation for conducting an activity.

Also, verbal and positive feedbacks tend to increase such motivation. After that, a lot of

studies in social sciences (both theoretically and empirically) have been conducted to in-

vestigate these effects. A meta-analysis of 129 studies is conducted by Deci et al. (1999).

They conclude that, in general, tangible rewards have negative effects on intrinsic work

motivation. And, these effects are stronger in more interesting activities. Conversely, in

an another meta-analysis, Cameron et al. (2001) come up with a different conclusion,

that in general, rewards do not diminish intrinsic motivation. In particular, rewards en-

hance intrinsic motivation when the activities are of low interest. These two studies have

one point in common that negative effects happen on high-interest activities. Recently,

Cerasoli et al. (2014) conduct a more thourough meta-analysis which covers hundreds of

studies about crowding effects for over 40 years. They conclude that the net outcome of

incentives and intrinsic motivation has a strong impact on user performance. However,

the conditions in which the impact is positive are still needed to study.

In economy, researchers and practitioners often believe in the relative price effect, which

is higher payment causes higher performance (Frey and Jegen, 2001). That means the

performance level is proportional to the payment. They assume the intrinsic motivation

is constant, and hence it is often omitted. Yet, when conducting a survey about offering

incentives in firms, Prendergast (1999) concede the possibility that intrinsic motivation

might be affected by external factors. Then, Frey and Jegen (2001) combine the psy-

chologists’ idea of crowding effects and the economists’ relative price effect into a model.

Figure 2.1 illustrates the model in the case the crowding-out effect happens. In their

model, work effort is proportional to the compensation level, as presented in the figure

as the solid line S (which is called supply curve in economical studies). But in some

cases, external factors (such as feedback or motivational messages) might crowd in or

crowd out intrinsic work motivation. They integrate these crowding effects by shifting

the supply curve downward (or upward) a distance according to how large the crowding-

out (or crowding-in) effect is. As shown in the figure, when external factors undermine
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Figure 2.1: Net-outcome of the Price- and the Crowding-Out-Effect (Frey and Jegen,
2001). S, the solid line, presents the price effect and S′, the dashed line, presents the
price effect when intrinsic motivation is crowded out by external factors. E1 and E2 are
the work efforts of users corresponding to rewards of 0 and R respectively when intrinsic
work motivation is not affected by external factors. E′1 and E′2 are the work efforts of
users corresponding to rewards of 0 and R respectively when intrinsic work motivation
is affected by external factors. Rθ is the reward level at which the corresponding work
effort when external factors undermine intrinsic motivation is the same as that when

the reward is 0 and external factors do not affect intrinsic motivation.

intrinsic motivation, the supply curve is shifted downward. Thus, the work effort is

reduced from E1E2 down to E′1E
′
2 when the reward ranges from 0 to R. This figure

shows two things about the combination of the relative price effect and the crowding-out

effect. The first one is that even when intrinsic motivation is crowded out by external

factors, work effort is still proportional to the reward. The second one is that when users

perceive their autonomy in performing activities is negatively affected by the factors,

their intrinsic work motivation is diminished and hence their work effort is dropped from

E1 to E′1 (if there is no reward). In this case, the reward must be large enough in order

to encourage users’ work effort to the same level as when the reward is not present. In

the figure, the work effort when the reward is Rθ (if external factors undermine intrinsic

motivation) is the same as when the reward is 0 (if external factors do not undermine

intrinsic motivation).

The model proposed by Frey and Jegen (2001) is consistent with what was found by

Gneezy and Rustichini (2000). Gneezy and Rustichini (2000) study how different com-

pensation levels affect user performance. After conducting two field experiments on

Amazon Mechanical Turk, they found that a higher compensation level results in a

higher performance of users (i.e., they complete more tasks). An interesting point in

their findings is that there exists a discontinuity in user performance when a compen-

sation is offered. Concretely, when users are paid for their tasks with a small reward,
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their performance drops significantly compared to their performance when no reward is

offered. This drop in user performance is indeed the shift of the supply curve in the

model of Frey and Jegen (2001). This is the reason the authors suggest “pay enough or

don’t pay at all’ as the main message which is presented as the title of the paper. In

their experiments, the tasks are interesting (IQ test questions) or meaningful (collecting

monetary donations).

Another study, conducted by Heyman and Ariely (2004), can help us explain why user

effort drops significantly when external factors start to affect user intrinsic motivation.

This study investigates the cause-and-effect relationship between financial rewards and

work effort. They propose a model in which the factor that decides the work effort

of users is the type of the market whether it is monetary, social, or mixed. Based on

the results of three field experiments, they conclude that in monetary markets, where

the expected rewards relate to money (e.g., £1.00), higher payment results in higher

level of effort. Whereas, in social markets, where the expected rewards do not relate to

money (e.g., a £1.00 chocolate bar when its price is not mentioned), different payment

levels do not yield different levels of effort. And, in mixed markets, where both elements

of monetary and social markets are present (e.g., a £1.00 chocolate bar with its price

mentioned), they tend toward monetary markets. That means the effort of users is

decided mainly by how the users perceive the corresponding market as monetary or

social.

The above-mentioned studies investigate crowding effects in classroom activities, vol-

unteer works, or other non-crowdsourcing environments. Rogstadius et al. (2011) is a

rare study that examines interactions between extrinsic incentives and intrinsic moti-

vation and how these affect user performance in crowdsourcing. More specifically, they

learn how financial rewards affect task quality (how good the tasks completed), task

quantity (number of tasks completed), task completion time (how quickly the tasks are

completed), and task attraction (the extent to which the tasks attract users to perform).

Their experiments, run on Amazon Mechanical Turk, show that higher rewards result in

a higher rate in attracting users, more tasks completed, quicker task completion, but not

better task quality. The results from the experiments also show that intrinsic motivation

(emphasising the meaningfulness of the tasks) helps improve the quality of the tasks.

This quality improvement occurs when extrinsic incentives are low. They also suggest

further research to better understand possible interactions between incentives and user

performance in crowdsourcing projects.

To sum up, although researchers have identified important aspects of the effect of ex-

ternal factors on user performance via their intrinsic motivation, it needs more work to

better understand this relationship as suggested by Frey and Jegen (2001), Rogstadius

et al. (2011), Cerasoli et al. (2014), and many other authors. This motivates us, in this

thesis, to find a more practical way to identify the most effective incentive for a partic-

ular crowdsourcing project. In the next section, we will present our approach that uses
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machine learning techniques to learn the most effective incentive among the incentives

suggested by social studies.

2.2 Online Learning

As mentioned above, in a specific crowdsourcing project, we are not sure which incentive

is the best and how to implement an incentive that can maximise the requester’s utility.

Thus, our approach is to use machine learning algorithms to learn the most effective

incentive. In this section, we briefly present the approach and review the studies in

which our approach is based on. We first describe the incentive selection problem (ISP)

in Subsection 2.2.1. Next, we review studies about two methods that we use to solve the

ISP. Specifically, we discuss the literature about MABs in Subsection 2.2.2 and Bayesian

Optimisation in Subsection 2.2.3.

2.2.1 Incentive Selection Problem

Although there are plenty of incentives that can be used to incentivise users in crowd-

sourcing, choosing the most appropriate incentives in a specific crowdsourcing project

is still challenging. Therefore, one practical way for dealing with the incentive prob-

lem (i.e., providing appropriate incentives) is to design incentives that are likely to be

effective based on previous studies and then empirically select the most effective one.

More specifically, the above-mentioned studies can be used to design several incentive

methods. An example is that, using pay for performance (an incentive method) with the

base payment (a parameter) ranges from £1.00 to £2.00 and the payment for every 10

tasks completed (another parameter) is £0.20. Another example is that, using contests

(another incentive method) with the group size ranges from 5 to 30 and the amount of

prize money for the best user is from £1.00 to £5.00. Other relevant studies in psychol-

ogy, sociology, or computer science, e.g., Frey and Jegen (2001); Gneezy and Rustichini

(2000); Heyman and Ariely (2004); Mason and Watts (2010); Rogstadius et al. (2011),

can also be used for this task, as they help us better understand possible interactions

between the factors related to motivations of the users (e.g., the incentives, the level of

autonomy and interestingness of the tasks, or the purpose of the projects). Then, based

on the proposed incentive methods, an adaptive approach could be used to identify the

most effective efficiently, where an incentive is an incentive method with specific values

of the parameters. We refer to this as the incentive selection problem (ISP).

2.2.2 Multi-armed Bandits

Following this direction, as noted earlier, multi-armed bandits (MABs) form a promising

approach. In the classical stochastic MAB problem (Robbins, 1952), the agent is given
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a slot machine with I arms; at each time step, the agent pulls an arm and receives a

reward which is drawn from an unknown fixed probability distribution given the arm.

The agent’s goal is to maximise the cumulative sum of rewards. If the agent knows the

expected reward corresponding to each arm, it will just pull the best arm, i.e., the one

which has the highest expected reward. Nonetheless, the agent does not know these

expected rewards beforehand. So, it has to sample the arms to estimates these values

(exploration) in order to utilise the best one (exploitation). In other words, the agent

needs to balance between exploration and exploitation in order to achieve the goal. In

the ISP, an arm corresponds to an incentive, and pulling an arm means offering the

corresponding incentive to a group of users. The reward of pulling an arm is the total

utility that the agent has from the users in the group. To be easier to review related

studies and connect these studies with the ISP, we can formulate the MAB problem

as follows. The slot machine has a finite collection of arms i ∈ {1, . . . , I}, where the

expected reward of arm i is µi which is unknown a priori. At time step t, the agent pulls

an arm (i) several (n
(t)
i ) times and receives a reward (a utility of r

(t)
i ). The objective is

to maximise the expected utility after T time steps:

max
T∑
t=1

n
(t)
i µi. (2.1)

The ISP has several characteristics that we should consider in order to choose appropriate

variations of the classical MABs to deal with the ISP effectively. First, the ISP has

budget constraints (both financial and time budgets). Second, the pullings are in batches

(i.e., an arm can be pulled multiple times and multiple arms can be pulled at a time).

Third, the ISP has group-based nature of the arms which is discussed in Section 1.1.

Fourth, in some cases of the ISP, there might be many candidate incentives (i.e., arms)

in which the incentives related to an incentive method might have possible correlations.

In these cases, the financial budget might be not enough to learn all the arms. There

are many variations of the classical MABs have been investigated. Some of them which

have one or some of the above-mentioned characteristics which can be considered to

use in dealing with the ISP. Next, we will review the studies about MABs which are

related to these characteristics in Subsections 2.2.2.1 and 2.2.2.2. The studies presented

in these two subsections are not conducted in the context of crowdsourcing. Thus, in

Subsection 2.2.2.3 we will discuss some other studies that attempt to solve the incentive

problem by using MAB techniques. After that, in Subsection 2.2.2.4, we will present a

variation of MABs that deal with many arms.

2.2.2.1 Budget Constraints

In the ISP, pulling an arm incurs a pulling cost (e.g., £2) and the agent has a limited

budget for the pullings (e.g., £500). Formally, it costs ci to pull arm i once. Also, the
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agent has a budget of B for the pullings and it has to finish after T time steps. A number

of studies considering budgeted MABs have been conducted. The (financial) budgeted

MAB model was first introduced by Tran-Thanh et al. (2010), where the number of

times an arm can be pulled (in both exploration and exploitation phases) is constrained

by a single budget B (without a deadline). Their algorithm (budget-limited ε-first,

or ε-first for short) spends εB (where ε is specified in advance, e.g., 0.3) for sequentially

pulling the arms in the exploration phase and (1 − ε)B for pulling the arms with the

highest estimated outcomes in the exploitation phase. Sen et al. (2015) consider the

uniform pulling approach of ε-first and argue that it might be inefficient in some

cases when some ineffective arms can easily be identified and eliminated. From this

argument, they develop three algorithms with three different approaches for eliminating

the ineffective arms (l-split, PEEF, and SOAAv). Simulations on the trust problem of

a supply chain9 show these algorithms are effective, especially SOAAv with its adaptive

approach.

Taking a different approach, Tran-Thanh et al. (2012) use the idea of upper-confidence

bounds (UCBs) from Auer et al. (2002a) to build an algorithm called Fractional KUBE

(henceforth, fKUBE), that combines exploration and exploitation in one process. Spe-

cifically, it spends the first I time steps (from 1 to I) to pull each arm once in order to

have initial estimates of the arms. Then, at time step t (t > I), it pulls the arm that

maximises ucb
(t)
i , where ucb

(t)
i = µ̂i/ci +

√
(2 ln t)/n

(t)
i /ci is the UCB of the estimate of

arm i at time step t. By choosing the arms like this, fKUBE integrates further exploration

into the exploitation phase. Actually, as the estimates are uncertain, instead of looking

at the estimate of an arm based only on the current estimate of its expected utility and

the cost (µ̂
(t)
i /ci), it also considers the uncertainty of the estimate

(√
(2 ln t)/n

(t)
i /ci

)
. In

more detail, when an arm is pulled, this square root term (representing the uncertainty

of this arm’s estimate) will decrease. Therefore, regarding this term, the arms which are

applied less (hence, are more uncertain) have more opportunity to be pulled in the next

period10. We also apply this idea of UCBs to our algorithms (presented in Chapters

4 and 5) for having efficient strategies in identifying the best incentive. The work of

Badanidiyuru et al. (2018) approaches budgeted MABs more generally by dealing with

multi-dimensional bandits (each dimension corresponds to a resource, such as financial

budget or time budget). More specifically, in their model (which is called Bandit with

Knapsacks), there are d resources and each resource (i) has a limited budget (Bi) to be

consumed. Pulling an arm incurs costs on these d resources and receives a reward. The

objective is to maximise the overall reward within the predefined budgets. The authors

propose two algorithms (PD-BwK and BalanceBwK). However, these algorithms cannot

be applied to the ISP because the resources in their model cannot be shared, whereas

in the ISP, the time (a resource in their model) can be shared, i.e., pulling one or more

9In this problem, a supplier can be considered as a node in a tree and each supplier faces a different
MAB problem of choosing the most trustworthy sub suppliers.

10See Sutton and Barto (2018) for more discussion on UCBs.
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arms several times (providing one or more incentives to several groups) can happen at

a given round.

Nonetheless, as we will show in Section 4.3, the algorithms developed by Sen et al.

(2015) and Tran-Thanh et al. (2010, 2012) are not efficient when dealing with the ISP.

It is because these algorithms do not consider the group-based nature of the incentives

(i.e., arms) and the time budget. Also, even the algorithms are designed to work with

the financial budget, they do not have a good exploration-exploitation balance. More

precisely, they do not have an effective and adaptive mechanism for distributing the

financial budget across the time steps. For instance, with ε-first, we have to spec-

ify an appropriate value of ε in advance. Yet, it is difficult to do this when there is

little information about the performance of users in a specific project. And when dif-

ferences in the effectiveness of the arms are low (i.e., it is difficult to differentiate the

arms’ effectiveness), the elimination mechanism of SOAAv might not be effective and the

exploitation-exploration process of fKUBE might be slow in identifying the best arm.

Despite these shortcomings, each algorithm also has its own strength, thus they are still

good candidates for the ISP. Therefore, we implement these algorithms (with some mod-

ifications when possible) to not only evaluate their performance but also to benchmark

our new algorithms.

2.2.2.2 Batched Pulling

In the ISP, the pullings are in batches. That means, in each round multiple incentives can

be offered and an incentive can be offered to different user groups. Various studies about

batched MABs have been conducted. Anantharam et al. (1987) extend the classical

MAB model of Lai and Robbins (1985) from single play into multiple plays. Concretely,

in their model, at each time step the arms have to be pulled in batches in which each

batch has K out of I arms. The rewards corresponding to a specific arm are i.i.d.

In this model, sizes of the batches are fixed. When considering online combinatorial

optimisation, Audibert et al. (2014) propose a more popular model which is called semi-

bandit feedback. The model fits better the ISP as sizes of the batches can be different.

Specifically, an incentive a(t) =
(
a

(t)
1 , . . . , a

(t)
I

)
∈ A ⊆ {0, 1}I conducted at time step t

specifies whether an arm is pulled or not (a
(t)
i = 0 or 1). In thesse two models, each arm

is pulled maximum once in each round. However, an incentive in the ISP can be offered

to different groups of users at the same time. That means the arm corresponding to an

incentive can be pulled multiple times in each round.

Niculescu-Mizil (2009) relax the number of times each arm can be pulled at a time step.

In their model, at each time step, they assume to have K coins, each coin can be used to

pull an arm, and several coins can be used for an arm. Nonetheless, they only consider

the case where the rewards of pulling an arm at a time step are the same. Yet, in the

ISP, the utilities received from different groups of the same incentive are different and



28 Chapter 2 Literature Review

are assumed to be i.i.d. Perchet et al. (2016) introduce a more general model where

sizes of the batches can be different and an arm can be pulled multiple times in a batch.

However, the model is only for two arms. Recently, Esfandiari et al. (2019) and Gao

et al. (2019) extend the model of Perchet et al. (2016) to many arms. Yet, as many other

multiple-play MAB models, in the proposed model, exactly K out of I arms have to be

pulled in each round. A more general model, compared to that of Gao et al. (2019),

is proposed by Jun et al. (2016). They call it (b, r)-batch MABs where in a batch of

b pulls, an arm is pulled maximum r (1 ≤ r ≤ b) times. We can see that (1, 1)-batch

MAB is the classical MAB. Though, as they investigate the pure exploration problem,

they do not consider costs and budget constraints.

Several other works have considered MABs with both batched pulling and budget con-

straints such as Luedtke et al. (2019), Xia et al. (2016), and Zhou and Tomlin (2018).

Yet, in their models, the agent has to play a fixed number, K, of the arms (1 ≤ K ≤ I)

and each arm is played at most once in each round. Moreover, they do not examine

the time budget as in the ISP. As we can see from the above discussion, there is much

work about batched MABs. However, each study focuses on a different aspect of the

batched pulling as in the ISP. Hence, their proposed algorithms cannot applied for the

ISP. Because of this, we need to build different mechanisms that can consider all the

aspects of the batched pulling together with the budget constraints and the group-based

nature of the incentives so as to have efficient pulling policies.

2.2.2.3 Crowdsourcing

The above-mentioned studies are about MABs in general. There are not many stud-

ies that try to use MABs to solve the incentive problem in crowdsourcing. Itoh and

Matsubara (2016) investigate whether using MAB techniques to deal with the incentive

problem is effective or not. Concretely, in their model, there are T tasks that need to be

completed in T time steps (one task at a time step). At each time step t, the requester

provides task t together with one of I (I < T ) predefined incentives and receives a utility

which is drawn from a normal distribution with unknown mean and variance values cor-

responding to the offered incentive. The objective is to maximise the requester’s overall

utility. However, their model is rather simple and difficult to use in practice. In more

detail, they do not consider batched pulling. So, when there are a lot of tasks, providing

the tasks one by one will take a lot of time to finish. This is likely the case in microtask

crowdsourcing as the tasks are usually small and hence numerous. Also, they do not

consider the budget constraint. Specifically, pulling an arm in the model (i.e., offering

the corresponding incentive) does not incur a cost. Additionally, they do not consider

the group-based nature of the incentives. Therefore, their model cannot be used to deal

with the ISP.
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Taking a different approach, Ho et al. (2016) consider the incentive problem as a combi-

nation of MABs and the classical principal-agent model. More specifically, they formalise

the incentive problem as a multiple-round process. In each round, one user (i.e., worker)

completes a task based on a contract designed in advance by the requester. From the

performance of the users so far, their algorithm (AgnosticZooming) helps the requester

adaptively adjust the contracts to be used in a round so that the requester’s utility is

maximised. Each potential contract is treated as an arm in their algorithm. However,

they only consider financial incentives in the form of monotone contracts where the out-

comes are not lower with higher payments. This prevents the algorithm from being used

effectively in crowdsourcing projects where the motivation for participation is not only

money, but can be human capital advancement or community identification (Kaufmann

et al., 2011). In these projects, the outcomes might not be proportional to payments

(Heyman and Ariely, 2004; Rogstadius et al., 2011). This might affect the performance

of their algorithm in crowdsourcing projects whose time budgets are critical, as it takes

a long time to identify a good contract.

2.2.2.4 Many-armed Bandits

Thus far in the discussion, we have reviewed the works about MABs where the number

of arms is smaller than the number of possible pulls. However, in some cases of the

ISP, the number of candidate incentives is large compared to the budget. So, the above-

mentioned algorithms cannot be used in these cases, as it is impossible for them to pull

all the arms to learn the best one. Many-armed bandits are introduced to deal with

these cases (Berry et al., 1997; Li and Xia, 2017; Wang et al., 2008). Berry et al. (1997)

first proposed simple strategies to solve the infinitely many-armed bandits. Yet, their

work is focusing on Bernoulli arms where the reward of pulling an arm is either 0 or

1. Then, Wang et al. (2008) extend to a more general reward distribution. After that,

Li and Xia (2017) embed budget constraints to the model. However, these studies do

not consider possible correlations between the arms as in the ISP. Thus, they are not

efficient for the ISP. For example, to avoid sampling all the arms (which is impossible),

the algorithm proposed by Li and Xia (2017) is to choose randomly K arms and then

apply an UCB-based algorithm for these arms. The value of K is calculated so that it

can balance between choosing enough arms to explore and choosing not too many arms

which can take up a large portion of the budget. But, when the arms have correlations

in terms of the reward distributions, choosing the arms like this does not make use of

the correlations to identify a better arm.

Therefore, another variation of MABs that takes advantage of this information, continu-

um-armed bandits, is a better candidate for the ISP. Kleinberg et al. (2008) study the

Lipschitz MAB problem where the mean-reward distribution is assumed to be smooth

and the smoothness is identified by a constant which is called Lipschitz constant. Trovo
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et al. (2016) extend the work of Kleinberg et al. (2008) to cover budget constraints.

However, the algorithms proposed by these two studies (Zooming and B-Zoom) require

to know the Lipschitz constant in advance. Yet, in a specific crowdsourcing project, we

usually do not have such information, which is the user performance, beforehand. Tak-

ing a different approach to deal with continuum-armed bandits, Bubeck et al. (2011) use

tree-based optimisation to build an algorithm (HOO) which can result in more effective

pulling policy. Specifically, the idea of HOO is that it uses a binary tree to gradually

partition the search space (i.e., the arm set) into smaller parts. The root node covers

the whole search space. Each node has two child nodes which cover two separate parts

of the node. HOO assigns an optimistic estimate of the max utility of the arms corre-

sponding to each node. Based on this tree, in each round, the algorithm explores the

arms by randomly pulling an arm in the part corresponding to the leaf which has the

maximum estimate. After receiving the utility of this arm, it will update the estimates

of nodes on the path from the root to the corresponding leaf. By doing like this, HOO can

focus exploration on parts which have high probabilities of containing good arms. More

recently, Mattos et al. (2018) introduce another algorithm (LG-HOO), which is based on

HOO, to be used in a real world application. The purpose of using LG-HOO is to identify

appropriate times to send notifications to users in a company to help the users have

positive experiences since sending too early or too late might result in negative impacts

on the user experience. Although LG-HOO and HOO algorithms have a good exploration

strategy and do not need a prior knowledge about the smoothness of the mean-reward

function as in Zooming and B-Zoom, they cannot be used for the ISP when one of the

chosen incentive methods has more than one parameter. This is because the basic data

structure of these two algorithms is a binary tree which is used for identifying the op-

timal point in one-dimensional objective functions by partitioning the search space into

parts. However, in the ISP, the number of dimensions of the mean-reward function

of an incentive is the number of parameters of the incentive. Hence, in order for the

algorithms to be used for the ISP, they need to have another data structure that can

work on multidimensional objective functions. Also, the algorithms are designed for ex-

tremely irregular mean-reward functions (the smoothness is determined by the Lipschitz

constant), whereas the functions in crowdsourcing are unlikely to be complicated. For

example, changing the prize for the best user slightly from £3.00 to £3.01 is unlikely

to change the utility a lot. Therefore, in order to solve the ISP effectively, it needs to

find another approach to take more advantage of the possible correlations between the

arms. So in the next subsection, we will be discussing a more promising technique for

this problem, which is Bayesian Optimisation, since it can take more advantage of the

correlations to learn the best incentive quickly.



Chapter 2 Literature Review 31

2.2.3 Bayesian Optimisation

Bayesian Optimisation (BO) has emerged as an efficient approach to optimising a black-

box function where evaluations are expensive (e.g., taking a substantial amount of time

to conduct an evaluation or incurs an economic cost at each evaluation). In fact, BO

has been used in various applications. For example, in AlphaGo (Silver et al., 2016), a

computer programme that plays the game of Go, the authors had to tune many hyper-

parameters (Chen et al., 2018). To evaluate the effectiveness of a single hyper-parameter

value, it takes about 6.7 hours even when they run multiple games in parallel by using 400

GPUs11. And if they use grid search12 to optimise 6 hyper-parameters (5 possible values

per hyper-parameter), they need about 8.3 days. After applying BO to tuning AlphaGo’s

hyper-parameters, they not only reduce the amount of time spent on the tuning but also

improve the win-rate of AlphaGo significantly (Chen et al., 2018). Another example is

in circuit optimisation. Actually, in the circuit design process, designers need to run

simulations to evaluate a design. Yet, a simulation can take hours, days, or even weeks

to complete (Lyu et al., 2018; Okobiah et al., 2014). So, BO attracts more interest

in this field of study; that is to find the best design by using as few simulations as

possible (Lyu et al., 2018; Zhang et al., 2019). Besides, BO has been used in many other

applications such as speed recognition (Dahl et al., 2013), image classification (Snoek

et al., 2015), robotics (Calandra et al., 2014), retrieval systems (Li and Kanoulas, 2018),

recommender systems (Galuzzi et al., 2020), and machine learning algorithms (Snoek

et al., 2012).

Formally, we consider the problem of finding a global maximiser (or minimiser) of an

unknown objective function f :

x∗ = argmax
x∈X

f(x) (2.2)

where X is usually a compact subset of Rd and f is continuous. Also, the shape of f is

unknown in advance, and the only way to estimate this function is through evaluation.

In more detail, we can choose some positions, x ∈ X , to evaluate and then observe the

corresponding values of the function, y = f(x). The observed values can be perturbed

by stochastic noise. The idea of BO is to use a probabilistic model, which is called a

surrogate model and denoted byM, to estimate the objective function. After observing

more data (i.e., samples of the objective function), the model is refined via Bayesian

posterior updating. The posterior embodies our updated beliefs about the objective

11A GPU (graphic processing unit) is a single-chip processor which is initially designed to handle
intensive graphics tasks. However, because of larger memory and capability in internal parallelism,
GPUs are becoming more popular in other purposes, especially running machine learning algorithms
(Steinkraus et al., 2005; Tavara, 2019)

12Grid search is a simple way to find the best values of the hyper-parameters by trying all possible
combinations of the hyper-parameter values (Bergstra and Bengio, 2012).
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Algorithm 1 Bayesian Optimisation

Input: f , T , and n0 . the unknown costly objective function, the time horizon, and
the number of samples identified by a space-filling design

Output: x∗ . a point at which the objective function is maximised

01: D0 ← {(xi, yi)}n0
i=1; . initial dataset includes samples from a space-filling design

02: M0 ← update the model; . calculate posterior mean & standard deviation (µ(.) & σ(.))
03: for t = 1, . . . , T do
04: xnt ← argmaxx α(x,Dt−1);

. select a new point by optimising the acquisition function; nt = n0 + t
05: ynt

← f(xnt
); . query the objective function to obtain the output

06: Dt ← {Dt−1, (xnt
, ynt

)}; . add the new sample to the dataset
07: Mt ← update the model;

08: x∗ ← argmaxx µ(x); . identify the final point at which the posterial mean is maximised
09: return x∗;

(Frazier, 2018; Li and Kanoulas, 2018; Shahriari et al., 2016)

function. Based on the posterior, BO then uses an acquisition function, α : X 7→ R, to

guide exploration, i.e., choosing the next point to evaluate. Specifically, the acquisition

function incorporates the uncertainty of the posterior and the posterior itself. This

function has a high value at a position if the position has a high uncertainty about the

estimate. The function also has a high value at the position whose estimated value is

high. Thus, the acquisition function represents the trade-off between exploration (which

tends to sample high uncertain points) and exploitation (which tends to sample high

estimated points). BO will determine the point which has the maximum value in the

acquisition function to evaluate next.

The procedure of BO is shown in Algorithm 1. An illustrative example of how BO works

over three time periods is shown in Figure 2.2. In the figure, the point to be chosen

to sample (i.e., new observation) in the third period (t = 3) is at the position that the

acquisition function (evaluated at the end of the second period) has the maximum value.

In the same manner, after observing the actual value of this point and then updating

the posterior and the acquisition function, the updated acquisition function will guide

the point to be sampled in the next period (t = 4).

As presented above, an important component of BO is the surrogate model to model the

objective function. The de facto surrogate model which is often used popularly in BO is

Gaussian processes (Chen et al., 2018; Frazier, 2018; Lyu et al., 2018; Snoek et al., 2012).

Another important component is the acquisition function. In the following subsections,

we will discuss in detail these two components.

2.2.3.1 Gaussian Process Prior

A Gaussian Process (GP) (Rasmussen and Williams, 2006) is a powerful non-parametric

statistical model over functions. A GP not only helps us estimate the shape of the
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Figure 2.2: An illustrative example of how Bayesian Optimisation works over three
periods (Brochu et al., 2010). In each plot corresponding to a period, the objective
function f(.) (the dashed line, which is unknown) is shown together with the posterior
mean µt(.) (the solid line) and the posterior uncertainty µt(.)± σt(.) (the purple area
around the posterior mean). The green shaded plot at the bottom is the acquisition

function α(.).

objective function (in the form of the posterior mean µ(.)) but also provides us the

uncertainty of the estimate (in the form of the posterior standard deviation σ(.)). A

GP is a distribution over functions, which can be completely determined by a prior

mean function µ0(x) : X 7→ R and a positive definite covariance function (a.k.a., kernel)

κ(x,x′) : X × X 7→ R:

f(x) ∼ GP
(
µ0(x), κ(x,x′)

)
, (2.3)

where

µ0(x) = E[f(x)] and (2.4)

κ(x,x′) = E
[
(f(x)− µ0(x))

(
f(x′)− µ0(x′)

)]
. (2.5)
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If f ∼ GP(µ0, κ) then f(x) ∼ N
(
µ0(x), κ(x,x)

)
∀x ∈ X , i.e., f(x) is Gaussian. In a

noisy environment, we do not observe the function values, f(x), but only their noisy

versions, y = f(x) + εnoise. Here, the noise is assumed to be i.i.d normal, i.e., εnoise =

N (0, σ2
noise). At time step t, based on the observations so far, Dt = {(xi, yi)}nt

i=1 (where

nt = n0 + t), the model, GPt, is fitted by its posterior mean and variance functions.

Specifically, for any point x, we have:

µt(x) = kt(x)T
(
Kt + σ2

noiseI
)−1

y and (2.6)

σ2
t (x) = κ(x,x)− kt(x)T

(
Kt + σ2

noiseI
)−1

kt(x), (2.7)

where K is the square matrix whose values are Ki,j = κ(xi,xj), kt(x) is a (nt×1) vector

whose ith value is κ(xi,xi), and y is the vector whose ith value is yi.

We have presented GP prior which acts as the surrogate model of BO. However, the

model is updated at every time step after we receive a new sample of the function f to

represent our belief about f . In Subsection 5.2.1, when discussing about how to apply

BO into solving the ISP2, we will discuss in more detail the choice of covariance function.

The next issue is how to effectively choose a new point to explore. BO deals with this

by using an acquisition function which we will discuss in the next subsection.

2.2.3.2 Acquisition Functions

There are many acquisition functions to be used in the literature and in real world. Yet,

we will present the ones which can be considered to use in the ISP.

Probability of Improvement

The idea is to maximise the probability of improvement (PI) over a target τ :

αPI(x;Dt)
def
= P

(
f(x) ≥ τ)

)
= Φ

(
γ(x;Dt)

)
, (2.8)

where

γ(x;Dt) =
τ − µt(x)

σt(x)
. (2.9)

Here, Φ(.) is the cumulative distribution function of the standard normal distribution.

The idea was first introduced by Kushner (1964). This approach can perform very

well when the target is known (Shahriari et al., 2016). However, in general this value
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is unknown. In these cases, the performance of probability of improvement depends

significantly on the choice of the target τ . Indeed, if τ is too small, the search tends

to be around local optima. But if τ is too large, although the search can jump quickly

towards the global optimum, it is slow to reach this optimum as it does not have fine-

tune steps towards the optimum (Jones, 2001). One option is to choose τ as the current

best value of the observations, y+ = maxi=1:nt yi. Another heuristic choice of τ can

be the best posterior mean based on the observations so far. Yet, as presented above

the probability of improvement tends to exploit intensively towards the points which

have high probability of being better than τ (Brochu et al., 2010; Shahriari et al.,

2016). Specifically, as shown in Equation 2.8, the approach only considers if there is an

improvement, i.e., if the output f(x) is greater than or equal to the target τ . It does

not consider the magnitude of the improvement, i.e., f(x)− τ .

Expected Improvement

One possible way to overcome the pure exploitation as in the probability of improve-

ment is to measure the expected improvement (EI) (Mockus et al., 1978). Literally, we

incorporate also the magnitude of the improvement. Formally, the EI function is defined

as below:

αEI(x;Dt)
def
= E

[
max{f(x)− τ, 0}

]
=
(
µt(x)− τ)

)
Φ
(
γ(x;D)

)
+ σt(x)φ

(
γ(x;D)

)
, (2.10)

where φ(.) is the probability density function of the standard normal distribution. As

shown in Equation 2.10, EI tries not only to find a better point than τ (i.e., exploitation)

but also to make use of the uncertainty obtained after updating the surrogate model to

conduct exploration.

GP Upper Confidence Bound

GP Upper confidence bound (GP-UCB), which is based on the idea of UCB in MABs,

is another way to balance between exploration and exploitation (Srinivas et al., 2010).

Formally, a GP-UCB acquisition function is of the following form:

αUCB(x;Dt) = µt(x) + λσt(x). (2.11)

In Equation 2.11, λ is a tunable parameter to adjust the exploration-exploitation balance.

One possible advantage of using GP-UCBs as acquisition functions is that UCBs are

inherently designed to minimise the cumulative regret over the course of optimisation.

This seems to be better when dealing with the ISP.
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Thompson Sampling

Thompson sampling (TS), proposed by Thompson (1933), has been shown experimen-

tally and theoretically to be an efficient approach for sequential decision making under

uncertainty (Agrawal and Goyal, 2012; Chapelle and Li, 2011). Also, TS has been shown

to be an efficient acquisition function when it is applied to BO (Basu and Ghosh, 2018;

Kandasamy et al., 2018). The idea of TS is based on randomisation. Concretely, at a

time step t, it first samples from the posterior. That means,

αTS(x;Dt) ∼ GPt−1, (2.12)

where GPt−1 is the GP’s posterior updated at the previous time step, t − 1. Then, as

with other acquisition functions it chooses the next point by maximising αTS.

We will come back to these acquisition functions later when we apply BO to the ISP.

Specifically, in Chapter 5 we will discuss which functions to be used when dealing with

the ISP and the reasons for the choice.

2.3 Summary

This chapter provides the background knowledge and the detailed review of the relevant

literature. In particular, we first presented studies about incentives, user motivation,

and interactions between incentives and user motivation in microtask crowdsourcing.

We then reviewed studies related to our approach to the incentive problem which is to

use machine learning techniques to learn the best incentive in a specific crowdsourcing

project.

Regarding the user motivation and incentives, our conclusions are as follows. First, there

are numerous studies about user motivation and incentives that cover many important

aspects of the population. In more detail, dominant aspects of the population were ex-

amined, from user participation to user persistence and user performance. Specifically,

there is a large number of established works about user motivation. Important charac-

teristics of crowdsourcing systems attached to user motivation were investigated in the

literature. Similarly, previous work has investigated a variety of incentives that can be

used in many cases. Second, these studies come from many fields of study (including

psychology, sociology, economics, and computer science) and each one focuses on spe-

cific issues (such as task design, goal setting, attachments to group, teamwork, and task

recommendation). Last, it is challenging to understand user motivation and having ef-

fective incentives to encourage users in a specific microtask crowdsourcing project. More

specifically, several studies have investigated approaches to retain users as long as possi-

ble in a work session. However, it needs further studies to make these approaches more
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practical. Similarly, although a large body of research about motivation and incentives

related to engagement of human in general, of workers in companies, of members in

virtual communities, or of contributors in crowdsourcing, there is a lack of research to

find specific ways to encourage users performing tasks on a regular basis. Additionally,

most of the studies focus on separate incentives, while combinations of them can result

in better (or worse) effects.

Therefore, one practical way to solve the incentive problem in microtask crowsourcing is

to solve the incentive selection problem (ISP). Concretely, instead of trying to identify

the best incentive in a specific crowdsourcing project (which is very difficult, or almost

impossible, in many cases), we choose several good candidate incentives and then learn

the best one. Regarding this, we then presented studies about online learning which

can help us design algorithms to deal with the ISP effectively. In more detail, we

reviewed two approaches, multi-armed bandits (MABs) and Bayesian optimisation (BO).

Various MAB models have been proposed. Yet, as the ISP is complex and has multiple

characteristics (i.e., batched pulling, financial and time budget constraints, and group-

based nature of the arms), no models consider all of the characteristics. However, some

ideas of the corresponding algorithms can be used for the ISP. In particular, BO forms a

promising approach for the ISP when there are many candidate incentives. In the next

chapter, we will present the ISP together with its two variants. Then, in the folling two

chapters we will propose our solutions to the two variants of the ISP.





Chapter 3

The Incentive Selection Problem

This chapter forms the basic to the next two chapters (Chapters 4 and 5) which help

us achieve the research objectives discussed in Section 1.2. Specifically, in Section 3.1

we explicitly present the incentive selection problem (ISP) in the form of a batched 2d-

budgeted group-based MAB problem. Then, in Section 3.2, we differentiate the three

variants of the ISP (ISP1, ISP2, and ISP3). In Chapters 4 and 5, we will go into details

together with our solutions to these variants. After that, in Section 3.3, we discuss how

to measure the utility of the requester in a specific crowdsourcing project. This is the

basic to the algorithms which helps not only define the learning objective and but also

evaluate the effectiveness of the algorithms. Finally, in Section 3.4 we introduce how

the proposed algorithms and the benchmarks measure the effectiveness of the incentives.

Based on this measurement, each algorithm can develop its own strategy to effectively

learn the best incentive.

3.1 The Problem

Suppose a requester wants to run a crowdsourcing project. The objective is typically

to maximise the requester’s cumulative utility with a given financial budget B and time

budget T . For ease of presentation, in some places of the thesis when it does not lead

to confusion between the two types of budget, we use “budget” for the financial one.

The utility of the requester on a task is the benefit that the requester receives after the

taks is completed which can be measured by including task quantity, task quality, task

completion time, or some subset of them. We will be discussing how to measure the

utility of the requester in Section 3.3. To achieve the above-mentioned objective, the

requester spends the available budget on providing incentives to encourage participants

(referred to as users) to perform tasks. We refer to this as the incentive problem. As

discussed in Section 2.1.2, although there are various incentive methods to motivate

users, it is still an open challenge in identifying the best incentive method in a specific

39
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crowdsourcing project. Therefore, a more practical way to solve the incentive problem is

to choose some candidate incentive methods which can hopefully have possitive effects

on the performance of users. Then, a good strategy should be applied to select the

best incentive method together with the best implementation of the method (i.e., the

optimal values of the method’s parameters) in order to maximise the cumulative utility.

The candidate methods can be chosen from previous studies about user motivation and

incentives or from experience. The incentive methods can be in the form of contests or

individual-based (i.e., non-contests). Yet, to keep the presentation simple, we consider

individual-based incentivee methods as contests in which the group size (the number of

users in a contest) is one. Hence for now, when we use “incentive methods”1, it means

they are in the form of “contests”. Also in this work, we only consider the contests

where the submissions of all users (not only the best users) in a contest are useful to

the requester. In other words, the utility is additive. This assumption prevents the

model to be applied in projects where the requesters only consider the best submissions

in every contest. Yet, this normally happens in macrotask crowdsourcing. For exam-

ple in macrotask crowdsourcing systems such as 99 Designs (99designs.com), Design

Crowd (www.designcrowd.com), and Crowd Spring (www.crowdspring.com), only the

best submissions are used, the other submissions are discarded. However in microtask

crowdsourcing projects, every task completed is typically useful to the requesters (Feyise-

tan and Simperl, 2019; Ramchurn et al., 2013). Thus, the assumption is reasonable in

the research of this thesis.

The incentive methods can be different in their parameters. These differences can be

presented as the difference in the parameter set and the difference in the values of the

parameters. A parameter of an incentive method is a variable that we can change in

order to adjust the implementation of the method. For example, the group size can be

considered as a parameter whose values are in a specific range, e.g., {1, 2, . . . , 100}. Or,

the motivation method can also be a parameter whose values can be 1 for emphasising

the meaningfulness of the work (Chandler and Kapelner, 2013), 2 for using entertaining

diversions (Dai et al., 2015), or 3 for arousing the curiosity of users (Law et al., 2016)2.

Other possible parameters of an incentive method can be the performance evaluation

method (e.g., the number of tasks completed or the quality of the tasks submitted),

or the motivation method (e.g., showing motivational messages or using entertaining

diversions). We assume that there are correlations between the incentives in an incentive

method. The correlation between two incentives in a method is the extent to which

difference in effectiveness of the incentives based on the values of their parameters. In

more detail, with each incentive method, when changing slightly the value of a parameter

the effectiveness of the method is supposed to change slightly. Hence, an incentive

method is referred to as an incentive cluster (or cluster for short). That means a

cluster is a group of incentives correspondding to an incentive method having the same

1Sometimes just use incentives (instead of incentive methods) when it does not lead to confusion
2See Section 2.1.2 for more information about these and many other motivation methods.

99designs.com
www.designcrowd.com
www.crowdspring.com
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parameter set but different values of the parameters. Examples of possible correlations

between the incentives in a cluster are shown in Figure 1.13.

Since the effectiveness of the incentives is usually unknown in advance, we are interested

in finding an efficient means of selecting incentives (i.e., exploring their effectiveness and

then exploiting the most effective one) to maximise the requester’s overall utility. We

refer to this as the ISP.

3.2 Three Variants of the ISP

On a specific crowdsourcing project, we can have a different strategy to solve the ISP

effectively. So, we consider three variants of the ISP which correspond to three different

types of crowdsourcing projects. For a simpler presentation, we refer to the cluster

in which its incentives are correlated as correlated cluster and the cluster in which its

incentives are not correlated as uncorrelated cluster. The first variant (uncorrelated ISP

or simply ISP1) corresponds to the projects where all clusters are uncorrelated. The

second variant (correlated ISP or simply ISP2) corresponds to the projects where all

clusters are correlated. And the third variant (mixed-correlated ISP or simply ISP3)

corresponds to the projects where some clusters are correlated while the others are not.

We can see that these three variants cover all possible crowdsourcing projects. In the

following subsections, we detail these three variants.

3.2.1 The ISP1 (Uncorrelated ISP)

This is the variant where the incentives are not correlated. This corresponds to crowd-

sourcing projects with a small financial budget or when we have prior knowledge about

user performance. In more detail, on some projects the financial budget is not large

enough4 to learn the best incentive among a large number of candidate incentives in the

chosen clusters. Thus, we have to continue choosing some incentives (among various

candidate incentives in an incentive method) in which we think they are better than

the others. The number of chosen incentives should be small enough4 to estimate all

the incentives within the given budget, i.e., the remaining budget (after exploring the

incentives) should be large enough to exploit the best incentive explored. On some other

projects we might have prior knowledge about the performance of users. And hence, we

can continue choosing a small number of incentives (among various candidate incentives

in an incentive method) which are good enough in incentivising the users. An example of

the chosen incentives in this variant is shown in Figure 1.1. More specifically, the chosen

ones might be a1 and a2 in Figure 1.1a (a cluster) and b1, b2, and b3 in Figure 1.1b

3See Section 1.1 for more discussion about the correlations shown in this figure.
4Details of how to choose an appropriate number of incentives based on their parameters and the

given budget will be discussed in Subsection 4.3.4.
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(another cluster). That means the final candidate incentives (after choosing the second

time) are not correlated. hence, we refer to this variant of the ISP as the uncorrelated

ISP or ISP1.

3.2.2 The ISP2 (Correlated ISP)

This is the variant where the incentives in each cluster are correlated. This corresponds

to crowdsourcing projects with a large financial budget and when we do not have good

prior knowledge about user performance. In more detail, on some projects the financial

budget is large enough to learn the best incentive while keeping all candidate incentives

in the chosen clusters. The budget might not be large enough to apply each incentive at

least once to estimate its effectiveness, it is large enough to have an efficient strategy in

applying the incentives so as to maximise the overall utility of the requesters by making

use of the correlations between the incentives. Also, on these projects we do not have

any prior knowledge about the performance of users. So, we cannot continue choosing

some incentives among various incentives in each method. However, as we a large enough

budget we can keep all the candidate incentives in all incentive methods so that we do

not miss the best incentives. That means the candidate incentives in each cluster are

correlated. Thus, we refer to this variant of the ISP as the correlated ISP or ISP2.

3.2.3 The ISP3 (Mixed-correlated ISP)

This is the variant where the incentives in some clusters are correlated while the incen-

tives in the other clusters are not. This corresponds to crowdsourcing projects where

after choosing some candidate incentive methods we continue choosing some candidate

incentives in some incentive methods. That means, with some incentive methods, the

chosen incentives are uncorrelated as we only kept some incentives; however, with the

other methods, the chosen incentives are correlated as we kept all incentives. This

might be because we have some prior knowledge about the performance of users in

these projects. So, it helps us be confident in choosing some incentives in several in-

centive methods, but not the other methods. We refer to this variant of the ISP as the

mixed-correlated ISP or ISP3.

To deal with the ISP3, we have two ways. The direct way is to build an algorithm to

solve it directly. The indirect way is to apply the solution to the ISP1 or the ISP2 for it.

Specifically, to apply the solution to the ISP1 to the ISP3, we need to continue choosing

some incentives in correlated clusters. Also, to apply the solution to the ISP2 to the

ISP3, we simply consider each incentive in uncorrelated clusters as the only incentive in

a cluster. In this thesis, we chose this indirect way to solve the ISP3 as we can make

use of the solutions designed for the other variants (ISP1 and ISP2). Although this way
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might not be the best way for the ISP3, it is practically acceptable if the solutions to

the other two variants are effective. The direct way is left for future work.

3.3 Measuring the Utility of the Requesters

In order to choose an appropriate metric for the utility of the requester in a crowd-

sourcing project, we need to know the purpose of the project. So, in the ISP we only

consider projects with a specific and fixed purpose. This is reasonable as in many cases

we can convert variable purposes into several specific and fixed ones. Indeed, in practice

there can be long-lasting crowdsourcing projects in which over their lifetime there can be

different dominant aspects of the population to deal with. Accordingly, the requesters

can consider using various incentives to focus on enhancing specific aspects at different

stages. For example, in the early stages of development, incentives need to be chosen

in order to result in the fast recruitment of sufficient numbers of users. After that, the

incentives can be changed to focus on retaining existing users in a work session as long

as possible. Finally, as the project matures, small changes can be made to existing

incentives to emphasise the quality of the work completed by users or the across-session

persistence (i.e., encourage users to come back to the project to perform tasks on a

regular basis) of users. With these long-lasting projects, each stage can be considered

as a sub-project with its own purpose (i.e., focusing on specific aspects) and budgets.

For a simple presentation, in the rest of the thesis we use the term “project” to refer

to a crowdsourcing project with a specific purpose and hence the utility metric is fixed

during its lifetime. In other words, in a project, the requester can include one or some

of the above-mentioned aspects in the utility function. Based on these chosen aspects,

the requester can then choose appropriate incentive methods for the selection process so

as to maximise the overall utility.

In a crowdsourcing project, depending on its purpose we can include task quantity,

task quality, task completion time, or some subset of them in the utility metric. For

example, Yin and Chen (2015) consider the quantity and quality of the tasks. In detail,

the utility function in their study is assumed to be r = whnh + wlnl − cnall where wh

(wl) is the utility obtained from a high (low) quality incentivised task, nh (nl) is the

number of high (low) quality incentivised tasks, nall (= nh + nl) is the total number of

incentivised tasks, and c is the economic cost of the investigated incentive (i.e., using

bonuses) for an incentivised task. Here, an incentivised task is a task in which the bonus,

the incentive used, occurs. A note when choosing an aspect to be included in the metric

is that it should not only measure the effectiveness of the incentives appropriately, but

also be possible to evaluate the effectiveness easily and ideally in an automatic manner.

That is because after offering an incentive in a period of time, the effectiveness of this

incentive should be calculated quickly before deploying another ones (to another groups

of users) in the next period. For example, in Ramchurn et al. (2013), the tasks are
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drawing an evacuation route from a building to the nearest road and the corresponding

metric is the number of valid evacuation routes completed. A valid evacuation route

can be simply defined as the one that really connects a building to a road. This can

be done automatically by checking if the route starts somewhere inside the outline of

the building and ends at a road. We can manage a higher level of quality by defining

a valid evacuation route as one that really connects a building through an entrance to

a road with a walkway or an open space. However, to do this, we have to spend more

time on manually validating submitted routes. We can do this by using an aggregation

method such as majority voting or expectation maximisation (Nguyen et al., 2013). In

detail, we can ask some other users to check if a route is valid or not and then choose

the decision from the majority. This can be done in the form of another task. So, the

total time will be expanded significantly.

3.4 Measuring the Effectiveness of the Incentives

To measure the effectiveness of the incentives, we use density, i.e., the utility-cost ratio

(Tran-Thanh et al., 2010), as it reflects the expected utility (i.e., reward in the context

of MABs) obtained per cost unit. The density of incentive ι is defined as

δι =
µι
cι
, (3.1)

where µι is the expected utility of incentive ι and cι is the cost of applying this incentive

once. However, as the real densities of the incentives are unknown in advance, we have

to estimate them. Right after period t, the estimate of the density of incentive ι is:

d(t)
ι =

µ̂
(t)
ι

cι
. (3.2)

In this equation, µ̂
(t)
ι = (1/m

(t)
ι )
∑t

j=1 r
(j)
ι is the current estimate of incentive i’s ex-

pected utility, where:

� m
(t)
ι =

∑t
j=1 n

(j)
ι is the number of times incentive ι has been applied until the end

of period t,

� n
(j)
ι is the number of times incentive ι is applied in period j (i.e., incentive ι is

offered to n
(j)
ι different groups)5, and

� r
(j)
ι is the total utility of applying incentive ι in period j (i.e., the total utility of

users in all groups of incentive ι in period j).

5An illustrative example of this one is described in Section 4.1.



Chapter 3 The Incentive Selection Problem (ISP) 45

All algorithms examined in this work only estimate the expected utility of an incentive

when the incentive has already been offered before. So, in Equation 3.2, m
(t)
ι > 0 ∀ι.

In Chapters 4 and 5, during the learning process of an algorithm, we have to constantly

update the estimates of incentives’ effectiveness. Therefore, to keep the presentation

simple, by default we use “the estimate of an incentive” instead of “the estimate of

an incentive’s density (or effectiveness)”. Also, we use “the best (worst) incentive” to

denote the incentive with the highest (lowest) estimate, as opposed to “the real best

(worst) incentive”.





Chapter 4

The ISP with Uncorrelated

Candidate Incentives

In this chapter, we deal with the ISP1 (or uncorrelated ISP) that is a variant of the

ISP in which the candidate incentives are not correlated. This is the variant when the

budget for the crowdsourcing project is small in comparison to the costs of the candidate

incentives. So, after choosing candidate incentive methods, we have to continue choosing

some candidate incentives in each incentive method to keep the total number of candidate

incentives small enough1. Thus, after exploring, the remaining budget is large enough1

to effectively exploit the best incentive explored. This is also the case when we have

prior knowledge about the user performance in the project. Hence, in each cluster, we

can choose some candidate incentives with a high confidence that they are good. In this

chapter, we aim to build a solution to the ISP1 which can help us achieve RO1 (the

solution is efficient), RO2 (the solution is implemented in an autonomous manner),

RO3 (the solution is adaptive), and part of RO4 (the solution can be applied in a

certain number of crowdsourcing projects, here the solution covers the projects where

the candidate incentives are not correlated). We first formalise the ISP1 as a batched

2d-budgeted group-based MAB problem in Section 4.1. Then, we introduce HAIS, a

novel adaptive algorithm to solve the ISP1 in Section 4.2. After that, we present an

empirical evaluation of the algorithm by running simulations in Section 4.3. Finally, we

conclude the chapter in Section 4.4.

4.1 The Problem

We have described a general description of the ISP in Chapter 3. Now, we formally

present the first variant of the ISP, i.e., the ISP1, when we continue choosing some

1Details of how to choose an appropriate number of incentives based on their structures and the given
budget will be discussed in Subsection 4.3.4.
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DAY

GROUPS

1 2 3 4 5

Incentive 1 Incentive 2 Incentive 3

Figure 4.1: An example of an applying policy where I = 3, T = 5 (days), g1 = 2,
g2 = 4, and g3 = 3.

candidate incentives in each chosen incentive method.

Let I = {1, 2, . . . , I} denote a set of incentives that are being considered to use in a

crowdsourcing project. Each incentive has a group size (the number of users in a group

offered by this incentive) and a cost (of offering the incentive to a group of users). The

cost of each incentive is deterministic. For example, there may be 3 incentives. Incentive

1 can be contests of five users, where the base payment (the payment that every user

participated in a contest received) is £0.50 and the prize for the best user (who performs

the most tasks in a contest) is £2.50. That means this incentive has 5 as the group size

and £5.00 as the cost (£2.50 for the base payments and £2.50 for the prize). Incentive

2 is almost the same as incentive 1, but the base payment and the prize for the two best

users are £0.70 and £1.50. Similarly, incentive 3 can also be contests, whereby there are

ten users in a contest, the base payment is £0.50, the prize for the best user is £1.50,

and the prize for the second best one is £1.00.

The number of incentives (I) also corresponds to the number of arms in a MAB problem.

Pulling arm i corresponds to offering incentive i to a group of gi (referred to as group

size) users in a specific time period (or period for short, e.g., five hours or one day).

The periods do not overlap and are denoted by t = 1, 2, . . .. Each incentive can be

provided to different groups in the same or different periods. We can only start period

t (i.e., offering incentives to other groups in period t) when all groups in period t − 1

are finished. To illustrate this, Figure 4.1 shows an example where three incentives are

offered to various groups over five periods (corresponding to days here). On the first

day (t = 1), we offer incentive 1 to 4 groups, incentive 2 to 2 groups, and incentive 3 to

3 groups.

Let N =
{
n

(t)
i | t = 1, 2, . . . ; i = 1, . . . , I

}
denote a policy of applying the incentives

(or applying policy for short), where n
(t)
i is the number of times incentive i is applied

in period t (i.e., incentive i is provided to n
(t)
i different groups). For instance, in the

example shown in Figure 4.1, n
(1)
1 = 4, n

(1)
2 = 2, and n

(1)
3 = 3. Applying incentive i

incurs a fixed cost of ci and enjoys a random utility which is drawn independently from
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a fixed unknown distribution with mean µi. Let r
(t)
i be the total utility of applying

incentive i n
(t)
i times in period t. Note that r

(t)
i is the total utility of users in all groups

of incentive i in period t. The objective is to find an applying policy that maximises the

expectation of the overall utility with a given financial budget B and time budget T :

max
T∑
t=1

I∑
i=1

n
(t)
i µi subject to

T∑
t=1

I∑
i=1

n
(t)
i ci ≤ B.

This model is Contribution 1 as presented in Section 1.3.

4.2 The HAIS Algorithm

As discussed in Section 2.2.2, although there are many MAB algorithms that can be

considered to use for the ISP1, since the problem is complex (with several characteris-

tics), these algorithms are not efficient to deal with the ISP1. Therefore, in this section

we introduce Hoeffding-based Adaptive Incentive Selection (henceforth, HAIS),

an adaptive algorithm for the ISP1. We first present the Hoeffding’s inequality and

how HAIS uses this inequality to adaptively build an applying policy (Subsection 4.2.1).

After that, we give an overview of the algorithm (Subsection 4.2.2). Finally, we detail

how HAIS is built and how it acts in the exploration (Subsections 4.2.3 and 4.2.4) and

exploitation (Subsections 4.2.5 and 4.2.6) phases.

4.2.1 The Hoeffding’s Inequality

In general, Hoeffding’s inequality (Hoeffding, 1963) is used to determine the number of

samples needed to obtain a certain level of confidence for a confidence interval around

the expected value of the examples. In particular, let Y1, . . . , Yn be independent random

variables with Yi ∈ [ymin, ymax] for all i, where −∞ < ymin ≤ ymax < +∞. Then,

Hoeffding’s inequality states that:

P (Ȳ − E[Ȳ ] ≥ γ) ≤ exp

(
−2nγ2

(ymax − ymin)2

)
and (4.1)

P (Ȳ − E[Ȳ ] ≤ −γ) ≤ exp

(
−2nγ2

(ymax − ymin)2

)
, (4.2)

for all γ ≥ 0, where Ȳ = 1
n

∑n
i=1 Yi and E[Ȳ ] is the expected value of Ȳ . Applying

this to the ISP1, we can determine the number of sampled users needed in particular

incentives to obtain good estimates of the effectiveness of the incentives. And hence, we

can identify the best incentive with a certain level of confidence.
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We choose Hoeffding’s inequality as it helps us identify the appropriate numbers of times

the incentives are applied in the exploration phase dynamically based on the estimates of

the incentives’ effectiveness so far. Concretely, the inequality is applied to determine the

number of additional users needed on each incentive and then based on the group size

of the incentive to identify the number of times the corresponding incentive is applied.

For example, in a crowdsourcing project, there are two incentives which have the group

sizes of 10 and 5 respectively. In order to obtain initial estimates, the target number

of sampled users in each incentive is at least 25. Thus, in the first periods, incentive 1

is applied 3 times and incentive 2 is applied 5 times. Then, when applying Hoeffding’s

inequality, the result says that to obtain a certain confidence level of Lh (e.g., 50%) in

being sure that the current best incentive is the real best one, each incentive needs to

have 60 sampled users. Since currently incentive 1 (with group size of 10) already has

30 sampled users, it needs 30 more. That means, we need to apply this incentive three

more times. Similarly, as incentive 2 (with group size of 5) already has 25 sampled users,

we need to apply this incentive seven times to have 35 more.

In terms of the value of Lh, it should be chosen to be high enough (e.g., 50%, rather than

only 10%), so that the current best incentive is likely to be the real best incentive, or

at least one of the most effective incentives. However, it should not be too high, as the

algorithm might spend the budget on applying less effective incentives. The advantage

of using the predefined parameter Lh is that we do not have to choose different values

in different crowdsourcing projects in order to obtain effective applying policies as is

required with parameter ε in ε-first (Section 2.2.2.1). More specifically, we could

choose a fixed value of 50% for Lh in all crowdsourcing projects. With each project,

based on Lh and the estimates of the incentives so far, HAIS will adaptively identify the

appropriate number of sampled users needed on each incentive. However, with ε-first,

in projects where the financial budget is large, we should choose small values of ε, such

as 0.02, to prevent spending a large proportion of the budget on exploring the incentives.

And in projects where the financial budgets are small, we should choose large values of

ε, such as 0.10, to have sufficient budget to explore.

4.2.2 Algorithm Overview

HAIS splits the application of the incentives into two phases: exploration and exploita-

tion. In the first phase, it has two steps: sampling and Hoeffding. In the second phase,

it also has two steps: stepped exploitation and pure exploitation.

The sampling step is conducted in the first period. The purpose of this step is to obtain

initial estimates of the incentives in order to apply Hoeffding’s inequality in the next

period. Specifically, in this step, HAIS applies the incentives so that U1 (e.g., 20) users

have been sampled for each incentive. In order to obtain significant estimates of the

incentives, U1 should be large enough to have a meaningful estimate of the incentive,
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e.g., 20. Yet, it should not be too large to take up a large portion of the budget, e.g.,

200. After that, the algorithm eliminates clearly ineffective incentives by comparing the

confidence intervals (corresponding to a certain level of confidence Le, e.g., 95%) of the

estimates. Concretely, an incentive i will be eliminated if there exists another incentive

j whose lower bound of the confidence interval is larger than the upper bound of the

confidence interval of this incentive (i.e., dupperi < dlowerj ). Eliminated incentives will not

be applied in the Hoeffding step.

In the second period, HAIS applies Hoeffding ’s inequality as described in Section 4.2.1.

One issue that might occur in the exploration phase is that, as the performance of users

in each incentive is stochastic, the number of sampled users suggested by Hoeffding’s

inequality can be very large in some cases and this might use up a large portion of B.

This is ineffective since although it better estimates the incentives, it does not have

much budget left to exploit the best incentives explored. Thus, we adapt the idea from

ε-first of using a limited financial budget for exploration (specified by ε1, e.g., 0.1).

This budget bound for exploration (i.e., ε1B) is applied to both steps. Although both

HAIS and ε-first use the same parameter ε1, they have different purposes. In ε-first,

ε1 is used to identify the budget for exploration. So, it should be changed appropriately

based on specific situations. In particular, with ε-first, in projects where the financial

budget is large, we should choose small values of ε1, such as 0.02, to prevent spending

a large proportion of the budget on exploring the incentives. And in projects where

the financial budgets are small, we should choose large values of ε1, such as 0.1, to

have sufficient budget to explore. In contrast to this, HAIS uses ε1 as an upper bound

for the budget for exploration. The parameter that helps HAIS identify the budget for

exploration is Lh. Hence, the parameter ε1 in HAIS can be chosen intuitively, such as

0.1, and it does not have to be changed in different situations.

In the next periods (except the last one), it conducts stepped exploitation, which takes

advantage of the remaining periods to exploit effectively. More specifically, it splits the

residual budget (b) into two parts based on a predefined ε2 (e.g., 0.5, to have two equal

parts). Then, it distributes the first part, ε2b, equally across Ts periods, where Ts + 1

is the remaining periods including the last one. In each of these Ts periods, it uses the

given budget (ε2b/Ts) to apply the best incentive as many times as possible followed by

an update to the estimate of this incentive. The second part, (1 − ε2)b, is spent in the

last period to purely exploit the best incentives, that is to apply the best incentives with

the residual budget.

To illustrate the algorithm, Figure 4.2 shows an example of how HAIS acts in a simple

case. In the first period of the example (day 1), incentives 1 and 3 are applied four

times, while incentive 2 is applied only twice, to have enough U1 = 8 users. Note that

the numbers chosen in this example (e.g., U1 or gi) are for illustrative purposes only.

After this period, suppose that the estimate of incentive 3 is significantly lower than

that of incentive 1 (i.e., dupper3 < dlower1 ). Incentive 3 is therefore eliminated. Hence,
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DAY

GROUPS

COST

STEP

PHASE Exploration Exploitation

1 2 3 4 5

£24 £8 £12 £12 £24

Sampling Hoeffding Stepped Exploitation Pure Exploitation

Incentive 1 Incentive 2 Incentive 3

Figure 4.2: An example of running HAIS where I = 3, g1 = 2, g2 = 4, g3 = 2, T = 5
(days), B = £80, c1 = £2, c2 = £4, c3 = £2, ε1 = 0.40, ε2 = 0.50, U1 = 8, incentive 1

is the real best incentive, incentive 3 is the real worst.

in the Hoeffding step conducted on day 2, HAIS decides to apply incentives 1 and 2, so

that it has an additional 4 users for each incentive with an expectation to differentiate

the incentives’ effectiveness with at least Lh = 50% confidence. After the exploration

phase, we also suppose that the estimate of incentive 1 is higher than that of incentive

2. Thus, incentive 1 is applied in the third period (day 3), followed by an update to

this incentive’s estimate. In the next period (day 4), as the estimate of incentive 1 still

appears to be higher, HAIS just applies this incentive with the given budget (£12). In

the last period, it applies the best incentive (incentive 1) 12 times with the remaining

budget (£24). A high-level overview of the algorithm is presented in Algorithm 2.

To summarise, the key novelty of HAIS is that it combines three techniques that together

result in an adaptive and efficient way to balance exploration and exploitation. First,

it uses Hoeffding’s inequality to identify how much exploration is sufficient to find the

real best incentive with a certain level of confidence. This allows HAIS to adaptively

distribute the budget for exploration without tuning any situation-specific parameters.

Second, the algorithm applies each incentive several times in the first round to obtain

initial estimates of the densities of the incentives, together with using confidence intervals

to eliminate clearly ineffective incentives after this period. Third, it makes use of the time

budget to continue exploring while exploiting the incentives by spreading the residual

budget across the remaining periods. These help us achieve Contribution 2 as presented

in Section 1.3. In the following subsections, details of the four steps will be discussed.

The explanations will be linked to the corresponding parts of the detailed pseudocode

of HAIS shown in Algorithm 3.
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Algorithm 2 High-level Overview of the HAIS Algorithm

Input: financial budget (B), time budget (T ), number of incentives (I), ..

Predefined parameters: ε1, ε2, U1, Lh, ..

Output: applying policy, overall utility, number of periods used

Note: See Algorithm 3 for the full detail version of the HAIS algorithm.

01: Apply all incentives so that each incentive has about U1 sampled users.
02: Update the estimates of all incentives, i.e., di, d

lower
i and dupperi ∀i = 1 . . . I.

03: Eliminate clearly ineffective incentives from being applied in the Hoeffding step. An
incentive (i) is eliminated if there exists another incentive (j) whose the lower bound of
the estimate (dlowerj ) is larger than the upper bound of its estimate (dupperi ).

04: Calculate the target number of sampled users (U2) so as to identify the best incentive
with a confidence level of Lh (see Section 4.2.1).

05: Apply all active incentives so that each incentive has about U2 sampled users.
06: Update the estimates of all active incentives.

07: The budget for stepped exploitation is b2 = ε2b, where b is the residual budget.
08: This budget (b2) is distributed across Ts periods, where Ts + 1 is the remaining periods

including the last one.
09: In each of these Ts periods, apply the best incentive as many times as possible and then

updates the estimate of this incentive.
10: Note that this step might not use all Ts periods (see Section 4.2.5).

11: Apply the best incentive with the residual budget.
12: Apply the second best incentive with the residual budget.
13: Repeat the process until the residual budget is not enough to apply any incentive.

14: return the applying policy, the overall utility, and the number of periods used.
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4.2.3 The Sampling Step

As discussed above, the objective of this step is twofold: to obtain initial estimates of

the incentives’ effectiveness and to preclude clearly ineffective incentives from being used

in the next period.

Regarding the implementation of this step, it first determines a target number of users

that should be sampled on each incentive after this step (i.e., after the first period), u1

(Line 3). If the budget is large enough, this number is U1. However, as discussed in

the previous subsection, when the budget to have U1 users sampled on each incentive

exceeds the maximum budget for exploration ε1B, u1 will be set to a smaller value

so that the budget to have u1 users sampled on each incentive is about ε1B. If this

happens, the Hoeffding step will be skipped as the budget for exploration is exceeded.

Since the group sizes of the incentives are different, we approximate the limited number

of users corresponding to this budget bound by dividing ε1B by the total cost of one

user on each incentive (
∑I

i=1 ci/gi). The purpose of the budget bound for exploration is

to prevent spending too much budget on exploring. So, with this purpose in mind, the

actual cost for exploring does not need to be strictly within the bound. This means it

can be slightly more than this number. Given this, the above-mentioned approximation

is acceptable.
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Based on the target number of users u1 and the group size of each incentive gi, the

number of times each incentive should be applied is calculated by rounding the division

u1/gi to the nearest integer (Line 5). Then the incentive is applied (Line 5) followed

by an update on the estimate of this incentive’s density (Line 6) and an update on

the confidence interval of the incentive’s estimate (Line 7). The confidence interval of

incentive i’s estimate (dloweri , dupperi ) is:

d
(1)
i ± ze

s
(1)
i√
n
∗(1)
i

. (4.3)

In this equation,

� t = 1 as the calculation is at the end of the first period;

� ze is the critical value (z-value) corresponding to the confidence level Le;

� n
∗(1)
i = n

(1)
i gi is the number of sampled users of incentive i at the end of period 1;

� s
(1)
i = 1

c∗i

√∑n
∗(1)
i

u=1

(
r
(1)
i,u−r̄

(1)
i

)2
n
∗(1)
i −1

is the estimate of the standard deviation of incentive

i’s density at the end of period 1; where c∗i = ci/gi is the average cost of a user

in incentive i, r
(1)
i,u is the utility created by the uth user in incentive i in period 1,

and r̄
(1)
i =

∑n
∗(1)
i
u=1 r

(1)
i,u/n

∗(1)
i is the average of the utility received from all users in

incentive i at the end of period 1.

Finally, based on the confidence intervals of the incentives’ estimates, HAIS determines

the set of incentives to be applied in the Hoeffding step, A (Line 8). The incentives that

belong to A are referred to as active incentives. The other incentives are eliminated and

will not be applied in the Hoeffding step. Although the eliminated incentives will not

be applied in the Hoeffding step, these incentives can be applied afterwards. This helps

us ensure we do not miss the real best incentive which is eliminated in the first period

because of a low estimate compared to other incentives.

4.2.4 The Hoeffding Step

We now describe how HAIS uses Hoeffding’s inequality to calculate the number of times

each active incentive should be applied in the subsequent period so that a level of

confidence of at least Lh can be obtained in identifying the real best incentive.

After the sampling step, although the algorithm now has initial estimates of the incen-

tives’ density, it might not be confident enough (i.e., the confidence level is less than
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Algorithm 3 Detailed Pseudo code of the HAIS Algorithm

Input:
B, T , I, . financial budget, time budget, number of incentives
gi, ci (∀i = 1, . . . , I) . group sizes and costs of the incentives

Predefined parameters:
ε1, ε2, U1, Le, Lh, Ls, Ns . see Table 4.2 for their descriptions

Output:
r, t, . overall utility, number of periods used

N =
{
n
(t)
i | t = 1, . . . , T ; i = 1, . . . , I

}
. applying policy

Note: ApplyIncentive(i, n) is to apply incentive i n times and return the total utility.

01: b← B; n
(t)
i ← 0 ∀t = 1, . . . , T ; i = 1, . . . , I;

. overall residual budget; init # of times each incentive is applied in each period

02: t← 1; b1 ← ε1B; . start the first period; residual budget for exploration

03: u1 ← min
{
U1,

b1∑I
i=1 ci/gi

}
; . target # of sampled users on each incentive after period 1

04: for i = 1→ I do

05: n
(t)
i ← [u1/gi]; r

(t)
i ← ApplyIncentive

(
i, n

(t)
i

)
;

06: b← b− cin(t)i ; b1 ← b1 − cin(t)i ; Update d
(t)
i using Equation 3.2;

07: Update dloweri and dupperi using Eq. 4.3; . conf. interval of incentive i’s estimate

08: A ←
{
i | i ∈ {1, . . . , I},∀j 6= i : dlowerj ≤ dupperi

}
; . set of active incentives

09: if (b1 ≥
∑
i∈A ci) and (|A| > 1) then

10: Calculate U2 using Equation 4.16;

11: u2 ← min
{
U2,

b1∑
i∈A ci/gi

+ u1

}
;

12: if u2 > u1 then . check if further exploration is needed
13: t← 2; . start period 2
14: for i ∈ A do . pull the active incentives

15: n
(t)
i ←

[
(u2 − n(1)i ∗ gi)/gi

]
; r

(t)
i ← ApplyIncentive

(
i, n

(t)
i

)
;

16: b← b− cin(t)i ; b1 ← b1 − cin(t)i ; Update di using Equation 3.2;

17: A← {1, . . . , I}; . all incentives are now active

18: Calculate confidence level l(t) using Equation 4.17;
19: b2 ← ε2b; . residual budget for stepped exploitation

20: while (t < T − 1) and (b2 ≥ mini∈{1,...,I} ci) and (l(t) < Ls) and (ns
(t)
i < Ns) do

21: t← t+ 1; i← argmaxi∈{1,..,I}|ci≤b{di};

22: n
(t)
i ← max{1, [b2/(ciTs)]}; r(t)i ← ApplyIncentive

(
i, n

(t)
i

)
;

23: b← b− cin(t)i ; b2 ← b2 − cin(t)i ; Update di using Equation 3.2;
24: Calculate confidence level l(t) using Eq. 4.17; . to consider stop stepped exploiting

25: t← t+ 1;
26: while b ≥ mini∈{1,...,I}ci do
27: i← argmaxi∈{1,..,I}|ci≤b{di};

28: n
(t)
i ← bb/cic; r

(t)
i ← ApplyIncentive

(
i, n

(t)
i

)
; b← b− cin(t)i ;

29: r ←
∑T
t=1

∑I
i=1 r

(t)
i ;

30: return r, t, N;
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Lh) that the best incentive is the real best incentive, as it may not have enough sam-

ples of users in the estimation. Therefore, in order to obtain a higher confidence (i.e.,

greater than or equal to Lh) so that it can exploit effectively in the remaining periods,

it applies Hoeffding’s inequality to determine the minimum number of users needed for

each active incentive at the end of this step. By applying this inequality, we do not

have to explicitly calculate Lh after the sampling step. Specifically, the inequality helps

identify the number of sampled users to obtain the confidence level of Lh. Then, if this

number is less than or equal to u1, it means the level of confidence after the sampling

step is already greater than or equal to Lh. Thus, it does not need to explore more.

This means, the Hoeffding step will be skipped. However, if this number is greater than

u1, it means the confidence level after the sampling step is less than Lh. Hence, it needs

to sample more users.

In more detail, let X
(t)
i,1 , ..., X

(t)

i,u
(t)
i

denote the utility per cost unit of u
(t)
i sampled users

in incentive i from the beginning until the end of period t. The second value of each

subscript denote a specific sampled user. For example, X
(t)
i,5 is the utility per cost unit

of the 5th sampled user. They can be considered as u
(t)
i random variables whose values

are bounded in [βmini , βmaxi ]. According to Hoeffding’s inequality, we have:

P (X̄
(t)
i − δi ≥ γ) ≤ exp

(
−2u

(t)
i γ

2

β2
i

)
and (4.4)

P (X̄
(t)
i − δi ≤ −γ) ≤ exp

(
−2u

(t)
i γ

2

β2
i

)
, (4.5)

where γ > 0, βi = βmaxi − βmini , and X̄
(t)
i = 1

u
(t)
i

∑u
(t)
i
u=1X

(t)
i,u.

From Equations 4.4 and 4.5, we have:

P (X̄
(t)
i − δi < γ) ≥ 1− exp

(
−2u

(t)
i γ

2

β2
i

)
and (4.6)

P (X̄
(t)
i − δi > −γ) ≥ 1− exp

(
−2u

(t)
i γ

2

β2
i

)
. (4.7)

Applying Equation 4.6 to the worst (active) incentive i1
2, the resulting confidence level

that X̄
(t)
i1
− δi1 < γi1 is l

(t)
1 = 1− exp

(
−2u

(t)
i1
γ2
i1
/β2

i1

)
, or:

2To keep the presentation simple, we use i1 and i2 to denote the worst and best incentives respec-

tively at the end of period t instead of i
(t)
1 and i

(t)
2 . These incentives are identified by i1

def
= i

(t)
1 =

argmini∈A:ci≤b(t){d
(t)
i } and i2

def
= i

(t)
2 = argmaxi∈A:ci≤b(t){d

(t)
i }, where b(t) is the residual budget after

finishing period t.
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Performance
per cost unit

0 δi1 δi2X̄
(t)
i1

X̄
(t)
i2

γi1 γi2

X̄
(t)
i1

− δi1 < γi1 X̄
(t)
i2

− δi2 > −γi2
current worst incentive current best incentive

Figure 4.3: Illustration for Equation 4.10.

γi1 = βi1

√√√√ ln
(
1/(1− l(t)1 )

)
2u

(t)
i1

. (4.8)

Similarly, applying Equation 4.7 to the best incentive i2
2, the resulting confidence level

that X̄
(t)
i2
− δi2 > −γi2 is l

(t)
2 = 1− exp

(
−2u

(t)
i2
γ2
i2
/β2

i2

)
, or:

γi2 = βi2

√
1

2u
(t)
i2

ln
(

1/(1− l(t)2 )
)
. (4.9)

To differentiate the effectiveness of the two incentives, the margins of error γi1 and γi2

must be small enough compared to the distance between the expected values of the two

incentives’ densities:

γi1 + γi2 ≤ δi2 − δi1 . (4.10)

This is illustrated in Figure 4.3. The intuition about finding the real best incentive by

comparing the best and worst incentives is that the purpose of the exploration phase is

to quickly identify an incentive which has a high density (compared to others), not the

real best incentive. Then, in the exploitation phase, the algorithm can gradually find

the real best incentive with higher confidence by continuously updating the incentives’

estimates. In contrast, if it focuses on finding the real best incentive in the exploration

phase (by comparing the best incentive to the second best incentive, for example), it is

likely to apply the incentives more. This means it would waste the budget on the less

effective incentives. From Equations 4.8, 4.9, and 4.10, we have:

βi1

√√√√ ln
(
1/(1− l(t)1 )

)
2u

(t)
i1

+ βi2

√√√√ ln
(
1/(1− l(t)2 )

)
2u

(t)
i2

≤ δi2 − δi1 . (4.11)

We assume that (X̄
(t)
i1
− δi1 < γi1) and (X̄

(t)
i2
− δi2 > −γi2) are two independent events.

This is acceptable because we can prevent a user from participating in more than one

group in a period. Thus, the performance of users in different incentives are unrelated
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to each other. In more detail, in crowdsourcing platforms such as Amazon Mechanical

Turk, Clickworker, or Figure Eight, the number of users is large. And, when submitting

new tasks we can easily filter out the users who already participated in the project (by

using the provided APIs). Even with crowdsourcing projects whose potential number of

users is not large or it is difficult to re-recruit users, a small number of users recruited

more than once is not likely to change the result significantly. However, a larger number

of these might do and hence is not considered in this thesis. Therefore, the confidence

level of both these events occurring is l
(t)
1 l

(t)
2 . To keep our analysis simple, we choose

the same confidence level in Equations 4.8 and 4.9, i.e., l
(t)
1 = l

(t)
2

def
=
√
Lh (where t = 2).

Additionally, despite the fact that the numbers of users on the worst and best active

incentives after period 1 (u
(t)
i1

and u
(t)
i2

) might be different (because of different group

sizes), the target number of sampled users to obtain in this step (i.e., until the end of

period 2) is expected to be the same (i.e., u
(2)
i1

= u
(2)
i2

def
= u(2)). Thus, from Equation 4.11

we have:

u(2) ≥
ln
(
1/(1−

√
Lh)
)

(βi1 + βi2)2

2 (δi2 − δi1)2

def
= U2. (4.12)

Since δi (∀i = 1, . . . , I), βi1 , and βi2 are unknown in advance, we use the estimates after

the sampling step to approximate these values:

δi ≈ d(1)
i , (4.13)

βi1 ≈ b
(1)
i1

def
= max

1≤u≤u(1)i1

{X(1)
i1,u
} − min

1≤u≤u(1)i1

{X(1)
i1,u
}, and (4.14)

βi2 ≈ b
(1)
i2

def
= max

1≤u≤u(1)i2

{X(1)
i2,u
} − min

1≤u≤u(1)i2

{X(1)
i2,u
}. (4.15)

Therefore, from Equation 4.12 we have:

U2 ≈
ln
(
1/(1−

√
Lh)
) (

b
(1)
i1

+ b
(1)
i2

)2

2
(
d

(1)
i2
− d(1)

i1

)2 . (4.16)

Similar to the sampling step, this step is also constrained by the budget bound ε1B.

Hence, HAIS uses the approach applied in the sampling step to deal with this (Line 11)

by approximating the maximum number of users based on the total cost of applying the

active incentives (
∑

i∈A ci/gi). Based on the new target number of sampled users u2,

each active incentive will be applied followed by an update to its estimate (Lines 14–16).
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4.2.5 The Stepped Exploitation Step

An important benefit of HAIS is that it can consider stopping sooner, i.e., using fewer

periods (e.g., 7 days) than the time budget (e.g., 10 days). Actually, the algorithm will

stop stepped exploiting when it reaches a certain level of confidence Ls, e.g., 90%. The

confidence level in finding the real best incentive at the end of period t can be calculated

from Equation 4.11. To keep the algorithm simple, we choose the same confidence level

l
(t)
1 = l

(t)
2 =

√
lt (where t > 2). Moreover, we also approximate δi (∀i = 1, . . . , I), βi1 ,

and βi2 with the estimates so far: δi ≈ d
(t)
i , βi1 ≈ b

(t)
i1

, and βi2 ≈ b
(t)
i2

. Thus, from

Equation 4.11, we have the maximum confidence level in finding the real best incentive

at the end of period t:

l(t) ≈

1− exp

− 2(d
(t)
i2
− d(t)

i1
)2(

b
(t)
i1
/
√
u

(t)
i1

+ b
(t)
i2
/
√
u

(t)
i2

)2




2

. (4.17)

Equation 4.17 is used before conducting stepped exploitation (Line 18) and at the end

of each loop in this step (Line 24) to decide whether to continue stepped exploiting or

not (the third condition in Line 20).

Additional information can also be used together with the condition about Ls to con-

sider stopping stepped exploiting sooner. Specifically, we use the number of consecutive

periods that the current best incentive has been applied. If in this step, an incentive has

been applied consecutively in the last 10 periods, this incentive is highly likely to be the

real best one. Thus, we can immediately move to the last step (pure exploitation), even

if the confidence is still less than Ls because the number of sampled users is not large

enough. Therefore, HAIS also uses this information (the fourth condition in Line 20)

to decide when to stop stepped exploiting. In this condition, ns
(t)
i is the number of

consecutive periods that incentive i has been applied at the end of period t.

4.2.6 The Pure Exploitation Step

In the last period, HAIS exploits the incentives (with the residual budget) by using the

density ordered greedy approach described in Tran-Thanh et al. (2010), as it is simple

and efficient. It is referred to as pure exploiting in this thesis. In detail, it applies the

best incentive as many times as it can without exceeding the residual budget. With the

remaining budget, it applies the next best incentive, whose cost is not larger than the

budget, in the same manner. Note that the incentives to be applied in this step can

be the ones which were eliminated after the sampling step (when the residual budget is

not enough to apply any other active incentive). This continues until the budget is not

enough to apply any other incentives.
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DAY

GROUPS

COST

STEP

PHASE
Exploration

Exploitation

Stepped Exploitation Pure Exploitation

1 2 3 4 5

£32 £8 £8 £8 £24

Incentive 1 Incentive 2 Incentive 3

Figure 4.4: An example of applying policy with Stepped ε-first, where I = 3,
T = 5 (periods), B = £80, g1 = 2, g2 = 4, g3 = 2, c1 = £2, c2 = £4, c3 = £2,
ε1 = 0.40, ε2 = 0.50, incentive 1 is the real best incentive, and incentive 3 is the real

worst incentive.

4.3 Experimental Evaluation

To systematically evaluate the performance of HAIS, we use simulations in a wide range

of settings. It would be infeasible to undertake this evaluation in a real crowdsourcing

project as we have to deploy the project multiple times with different financial budgets,

time budgets, number of incentives, and group sizes. Even then we could not guarantee

that we have explored the main cases in a comprehensive fashion. In the following, we

present the benchmarks (Subsection 4.3.1), the experimental settings (Subsection 4.3.2),

the corresponding results (Subsection 4.3.3), and the practical usage of the HAIS algo-

rithm based on the results (Subsection 4.3.4). This section corresponds to Contribution

3 as presented in Section 1.3.

4.3.1 Benchmarks

As state-of-the-art algorithms are not specifically designed to deal with the time con-

straint of the ISP, we make a number of minor modifications:

(1) BOIS . The algorithm will be described in detail in Section 5.2. When applying

BOIS into the ISP1, it considers an incentive as a cluster which has only one incentive.

Although both HAIS and BOIS are to deal with the ISP, they are to solve different variants

of the problem. HAIS is for the ISP1 where the incentives are uncorrelated, while BOIS

is for the ISP2 where the incentives are correlated. Hence, we run BOIS as a benchmark

for HAIS is to evaluate the performance of BOIS on the ISP1 in comparison with HAIS.
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(2) ε-first. This algorithm spends ε1B (where ε1 is specified in advance) in the first

period to explore by applying the incentives evenly until this budget is exceeded (Sec-

tion 2.2.2.1). Then, it spends the subsequent period purely exploiting the best incentives

with the residual budget, i.e., (1− ε1)B as mentioned in Subsection 4.2.6. The purpose

of running this algorithm in addition to Stepped ε-first (as described below) is to see

how effective the stepped exploitation step is.

(3) Stepped ε-first. This algorithm is a modified version of ε-first that is designed

to run more effectively under a time limit. ε-first does not make use of the time

budget to exploit effectively, as after the exploring phase, the best incentive might not

be the real best incentive and this may only be discovered by a number of times the

best incentive is applied while exploiting. Thus, we apply the stepped exploitation of

HAIS to this algorithm to make use of the periods before the deadline to conduct a more

effective exploitation (i.e., exploitation together with further exploration). Like HAIS, it

spends the last period purely exploiting.

To illustrate, Figure 4.4 shows an example of how Stepped ε-first runs in a simple

case. The setting in this figure is the same as the one in Figure 4.2. In the exploration

phase (day 1) of this example, as it does not look at the group sizes (as per HAIS),

it applies the incentives evenly (4 times each). After this period, suppose that the

estimate of incentive 2 is higher than those of the other incentives. So, Stepped ε-

first identifies that incentive 2 is the best one. Compared with ε-first, it is better

as instead of applying incentive 2 (the best incentive) 12 times with the residual budget

of £48 as in ε-first, it distributes half (ε2 = 0.50) of this budget (that is £24) equally

across the next three periods (£8 each on days 2, 3, and 4). Then, on day 2, it applies

the best incentive (incentive 2) and updates this incentive’s estimate. In so doing, it

identifies that incentive 2 is not the best any more. Hence, on day 3, it applies incentive

1 (the new best incentive). We also suppose that the estimates after days 3 and 4 are

consistent with incentive 1 being the best, thus it simply applies this incentive in days

4 and 5. Compared with the example of HAIS in Figure 4.2, as HAIS eliminates the

worst incentive (incentive 3) after the sampling step, it can spend more of its budget

on exploring incentives 1 and 2. It applies the real best incentive (incentive 1) 6 times

compared to Stepped ε-first, which only applies it 4 times. Hence, it better estimates

this incentive and finds that this is the best incentive. In the exploitation phase, HAIS

applies this incentive all the time. However, with Stepped ε-first, after the exploration

phase, it applies incentive 2 twice (in period 2) before identifying and applying the real

best incentive (incentive 1) with the residual budget in periods 3, 4, and 5. From this

example, it can be seen that by exploring the incentives evenly without looking at their

group sizes, Stepped ε-first over-explores the incentives with large group sizes and

under-explores the other ones. Hence, it is easier to miss the best incentive with a small
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group size compared to HAIS. However, compared to ε-first, Stepped ε-first is likely

to be better because it takes advantage of the residual time budget to exploit.

(4) Stepped fKUBE. This algorithm (Section 2.2.2.1) applies all the incentives once

to obtain initial estimates of the densities of the incentives. This can be considered as

an initial exploration step. Then, it applies stepped and pure exploiting techniques as

per HAIS. The only difference is that Stepped fKUBE uses the upper confidence bounds

(UCBs) of the densities’ estimates instead of the densities that HAIS uses. In more

detail, in each period before the last period, it applies the incentive with the highest

UCB once followed by an update to the estimate of this incentive’s density. The UCB

of the estimate of incentive i is:

d
∗(t)
i =

µ̂
(t)
i

ci
+
rmin + (rmax − rmin)

√
(2 lnu(t))/u

(t)
i

ci
. (4.18)

In Equation 4.18, u(t) =
∑I

i=1 u
(t)
i is the total number of users in all incentives until

the end of period t and rmin (rmax) is the minimum (maximum) value of the utility,

which is identified in Table 4.1. We will discuss this table in Section 4.3.2.1. Discussion

about the meaning of Equation 4.18 can be found in Subsection 2.2.2. Finally, in the

last period, fKUBE purely exploits.

(5) Survival of the Above Average (SOAAv). This algorithm (Section 2.2.2.1) ap-

plies different incentives from round to round. In each round, it applies the incentives

that have estimates above (1 + x) times the average of incentives’ estimates in the pre-

vious period once. It then updates these incentives’ estimates. This happens until the

financial budget is exceeded. In the last period, it conducts pure exploitation as in HAIS

to make use of the residual budget.

(6) Exp3. This algorithm (Auer et al., 2002b) maintains a weight list where each item

corresponds to an incentive. The weights will be used to randomly choose an incentive

in the next periods. After applying an incentive and receiving a utility, the algorithm

updates the weight of this incentive based on the received utility. More specifically,

at the beginning the weights of the incentives (w
(1)
i ) are all 1. In the first period, the

algorithm applies each incentive once to obtain initial estimates of the incentives. Then,

it updates the weights of all the incentives. The way Exp3 updates the weights at the

end of period 1 is the same as of in the other periods before the deadline, which is shown

in Equation 4.20. In period t = 2, . . . , T − 1, the probability of choosing incentive i is:

p
(t)
i = (1− γ)

w
(t)
i∑I

j=1w
(t)
j

+
γ

I
. (4.19)
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Then, the received utility, r
(t)
i , will be used to update the weights of the incentives to

prepare for the next period:

w
(t+1)
j =

w
(t)
j exp

(
γ

Icjp
(t)
j

· r
(t)
j −rmin

rmax−rmin

)
, if j = i

w
(t)
j , otherwise

. (4.20)

In the last period, Exp3 conducts pure exploration as in HAIS.

(7) Optimal. It simply applies the real best incentive all the time. To do so, we have

to know the utility means µi (∀i = 1, . . . , I) in advance, which are unknowable in our

setting. Thus, it is unachievable in practice.

4.3.2 Simulation Settings

To evaluate the performance of the algorithms, we run simulations in seven different

settings where the independent variables are financial budget, time budget, number

of incentives, standard deviation of the incentives’ utilities, and maximum group size.

Regarding the latter, we run three settings and in each setting, we draw the group

size of each incentive in each simulation from a discrete uniform distribution from 1

to the maximum group size. We will describe these three settings later in the section.

The simulations in these seven settings only help us compare the algorithms in terms of

performance (i.e., the average density). Based on these simulations, we cannot readily see

why one algorithm performs better (or worse) than the others. Therefore, we run other

simulations on a representative case so that we can better understand the behaviour

of each algorithm (other cases give broadly the same outcomes). Specifically, based on

the simulations, we want to examine how the algorithms spread the budget across the

phases and steps and over the incentives.

Regarding the seven settings, in the simulations of each setting, the related quantities,

i.e., B, T , I, gi, ci, µi, σi, δi ∀i = 1, . . . , I (except the corresponding independent vari-

able) are generated randomly in specific ranges. The ranges of the quantities are shown

in Table 4.1 and will be discussed in more detail later in Subsection 4.3.2.1. In terms

of the maximum group size settings, we run one setting to examine the performance of

the algorithms with different values for the maximum group size. Specifically, in the

simulations of this setting, group sizes of the incentives are generated randomly from 1

to the value of the independent variable. In addition, we also run two more settings in

two special cases. Concretely, since the algorithms (excluding HAIS) apply the incen-

tives without considering the group sizes, when the group size of the real best (worst)

incentive is largest, these algorithms have an advantage (disadvantage) over HAIS. For

example, if the group size of the real best incentive is largest, by applying the incentives

evenly in the exploration phase, ε-first and Stepped ε-first also partially exploit the
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best incentive as it has more sampled users on this incentive. However, HAIS does not

have that exploitation while exploring as in its exploration phase it tries to apply the

incentives so that the number of sampled users on each incentive is almost the same. Ad-

ditionally, by having more sampled users in the exploration phase, ε-first and Stepped

ε-first have a better estimate of the real best incentive and hence they are likely to

recognise that this is indeed the real best incentive after exploring. Therefore, we want

to investigate how HAIS performs compared to other algorithms in these two special

cases. In the simulations of these two settings, we keep the group size of the real best

(worst) incentive fixed with the value of the independent variable (x). The group sizes

of the other incentives are generated randomly from 1 to x−1 (to ensure they are always

smaller).

For each value of the independent variable, we run 20,000 simulations to achieve stat-

istically significant results at the 99% confidence level. Error bars of the line graphs in

Figures 4.5–4.17 represent the confidence intervals. Regarding the simulation to better

understand the algorithms’ behaviours, we run with six incentives where the densities of

incentives 1 to 5 are 90, 80, 75, 70, and 60 respectively. That means, incentive 1 is the

best, while incentive 6 is the worst. In the simulation, the budgets are £3,000 and 10

periods, and the standard deviation of incentive i is 0.4µi ∀i = 1 . . . 6 (the mean value

of the range presented in Table 4.1 which will be discussed in the next subsection). The

group size of each incentive in each period is generated randomly in the range from 1 to

10. We also run the simulation 20,000 times as with the above-mentioned simulations.

Next, in Subsection 4.3.2.1, we detail the ranges of the quantities used for randomisation

in the simulations. Then, in Subsection 4.3.2.2, we detail the values of the predefined

parameters of the algorithms. Finally, in Subsection 4.3.2.3, we present how the per-

formance of a group is generated in the simulations (based on the performance of the

individuals of the group).

4.3.2.1 Ranges of the Quantities for Randomisation

The ranges of the quantities are described in Table 4.1. The values are chosen to repre-

sent realistic settings from a number of real crowdsourcing projects. As the crowdsourc-

ing projects found in the literature are not run using MABs, based on the figures in these

projects (such as budgets or group sizes), we infer the ranges for the related quantities in

our simulations. The papers used for inferring the ranges will be stated when possible.

In more detail, regarding the number of incentives, as will be shown later in Subsec-

tion 4.3.3, the more incentives the worse the performance of the algorithms becomes.

This is reasonable because the more incentives the more budget spent on exploring their

effectiveness. Hence, in a real crowdsourcing project, the chosen number of incentives

should be as small as possible. For this reason, we choose 20 as the maximum value of
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Table 4.1: Ranges for Randomisation of the Parameters in the Simulations. All the
values are integers and uniformly distributed.

Parameter Symbol Min value Max value Unit

Number of incentives I 2 20 Incentives

Group sizes gi 1 50 Users

Real densities δi 60 90 Utility per £

Utility means µi 60 90 -

Utility stand deviations σi 0.2µi 0.6µi -

Financial budget B 10 100 Times of the round cost

Time budget T 2 30 Periods

I. We can have 20 separate incentives or 5 group sizes with 4 payment structures per

group size.

Regarding the group sizes, according to the figures from Yang et al. (2008), the popular

group sizes on Taskcn are from 1 to about 100. However, it is more difficult to recruit

many users (for a contest), especially with crowdsourcing projects that are not run on

other platforms (such as Amazon Mechanical Turk or Clickworker) and hence they have

to recruit users by themselves (Ramchurn et al., 2013). Additionally, when users get

experience with crowdsourcing contests, they tend to participate in the contests with

small group sizes so that they can have a high chance to win the competition (Yang

et al., 2008). Because of this, the chosen maximum value for group sizes is 50 (instead

of 100).

Regarding the densities and utility means, since each crowdsourcing project can use a

different way to measure the utility (as discussed in Section 4.1), the range of densities

can be very different. In our simulations, we combine both the quantity and quality of

the tasks (i.e., number of tasks completed and their corresponding quality) in the metric.

So, we choose [60..90] as the possible utility means and [60..90] as the possible density

values of the incentives. The maximum difference between the best and worst incentives

is 30 but not larger because in real crowdsourcing projects, by using prior knowledge

about the projects (if possible) together with existing studies, we can build good-enough

incentives. Although some of the designed incentives may be relatively poor (e.g., their

densities are 30 or 40), they do not result in a significant difference in the results. Hence,

we skip these cases and concentrate on the more challenging settings where performance

differences are relatively small. Moreover, to observe the performance of the algorithms

more clearly with different values of the independent variables, the density of the best

incentive is always 90.

Regarding the utility standard deviations, when these values are too small (e.g., 0.05µi),

the algorithms can easily identify the real densities of the incentives. Similarly, when

they are too large (e.g., 0.9µi), it is very challenging for all the algorithms to estimate
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the incentives, as they need a much higher budget to obtain better estimates. This is

infeasible in real crowdsourcing projects, where the budgets are usually limited. There-

fore, as the purpose of the simulations is to compare the performance of the algorithms,

we use an average range of the standard deviations, that is from 0.2µi to 0.6µi (∀i).

Regarding the financial budget, to allow us to carry out a meaningful performance com-

parison, the budget should not be too small. If the algorithms do not have a sufficient

budget for exploring, then all of their performances will be low. Also, as the number

of incentives and group sizes are generated uniformly, to be sure the budget is not too

small, its value should be proportional to these quantities. Therefore, we use round cost

to control the minimum value of the budgets. Here, round cost (denoted by round cost)

is the cost of applying all incentives where each incentive has about U1 sampled users.

According to our calculation, the budgets used for the first crowdsourcing project in

Mason and Watts (2010) (experiment 1: image ordering) and the crowdsourcing project

in Yin and Chen (2015) (the experiment with the word puzzle) are about about 94 and

58 times the round cost. In these studies, as they use individual-based incentives, the

round cost is the cost of one user in all treatments of the corresponding experiment.

Moreover, since these two crowdsourcing projects are running behavioural experiments,

the real crowdsourcing projects might use larger budgets. Thus, we choose the possible

range of the generated financial budgets to be from 10 to 200 times the round cost. This

mechanism is applied to the simulations of all the settings except the three related to the

maximum group sizes. Choosing a different mechanism for generating financial budgets

in the three settings is because we want to investigate the performance of the algorithms

with different values of the maximum group sizes. If this mechanism is also applied to

the three settings, the trends can be affected by the financial budgets. Actually, when

the maximum value of the group sizes is large, with this mechanism, the financial budget

is also large. Thus, the budget for exploitation in HAIS, ε-first, and Stepped ε-first is

large. This might affect the general performance of the algorithms. Therefore, in these

three settings, we use the above-mentioned generating mechanism with one change. The

round cost is replaced with the mean value of the range of the group sizes as described

in Table 4.1, that is 25.5. By doing so, different values of the independent variable x

(i.e., the maximum group sizes) do not affect the generated financial budgets. Hence,

the performance of the algorithms is influenced by x only.

Regarding the time budget, as the result of 1 period is uninteresting (i.e., nothing can

be learnt), we choose 2 periods as the minimum value of T . We also choose 30 as the

maximum value of T . Depending on the characteristics of specific crowdsourcing projects

and how long of a period, the most likely time budgets are believed to be likely in this

range. For example, if a period is 1 week, then several (e.g., 8) weeks is a reasonable

deadline. Or, if a period is 1 day, then 30 days for the time budget is feasible.
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Table 4.2: Values of the Algorithms’ Predefined Parameters in the Simulations.

Algorithm Parameter Value Description

HAIS

ε1 0.10 Budget limit for exploration.

ε2 0.50 Budget for stepped exploitation (calculated based on the
residual budget).

U1 20 Target number of sampled users to obtain after the first
(sampling) period.

Le 90% Confidence level to calculate confidence intervals of the
incentives’ estimatesfor eliminate ineffective incentives.

Lh 50% Confidence level to stop exploring.

Ls 90% Confidence level to stop stepped exploiting.

Ns 5 Maximum number of consecutive periods that an incen-
tive is applied in the stepped exploitation step.

BOIS

ε1 0.10 Budget limit for exploration.

ε2 0.50 Budget for stepped exploitation (calculated based on the
residual budget).

U1 20 Target number of sampled users to obtain after the first
(sampling) period.

ε-first ε1 0.10 Budget limit for exploration.

Stepped

ε-first

ε1 0.10 Budget limit for exploration.

ε2 0.50 Budget for stepped exploitation (calculated based on the
residual budget).

Exp3
γ 0.50 Exploration factor

ε2 0.50 Budget for stepped exploitation (calculated based on the
residual budget).

Stepped

fKUBE
ε2 0.50 Budget for stepped exploitation (calculated based on the

residual budget).

SOAAv x 0 x = 0 means the incentives to be applied in a period are
the ones whose estimates are above the average of the
estimates of the ones in the previous period.

4.3.2.2 Values of the Predefined Parameters of the Algorithms

We run the algorithms with different values of the predefined parameters and then choose

appropriate values for the parameters. For example, with ε1 of ε-first, we first run this

algorithm with different values (such as 0.05, 0.1, 0.2, 0.3, and 0.4). Then we choose one

value that helps ε-first perform well in different settings. A similar process is used for

the other predefined parameters such as ε2 of Stepped ε-first and Lh of HAIS.

As changing these values slightly does not result in a significant difference (i.e., the

trends of the algorithms’ performance are broadly the same), in Subsection 4.3.3, we

only present the results on the simulations with the values of the algorithms’ prede-

fined parameters as described in Table 4.2. Regarding the predefined parameters of
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HAIS, as most of them are self-explanatory and some of them are already discussed in

Subsection 4.2.2, we do not explain them here.

4.3.2.3 The Model of Group Performance

In the simulations, we assume that the performance of a group (i.e., the total utility

of all users in the group) is proportional to the group size. This means the more users

there are in a group, the better the performance of the whole group. Specifically, for

every incentive i = 1, . . . , I, suppose µ
(u)
i is the mean utility of a user in the group

(corresponding to this incentive). Then, the mean utility of the whole group is µi =

giµ
(u)
i , where gi is the group size of incentive i. In the literature, there are very few

papers investigating the performance of a group of users in crowdsourcing contests.

This assumption is based on an empirical study conducted by Araujo (2013). In their

work, they investigate the data collected from 99designs, a crowdsourcing platform where

users submit their designs and compete with others for a financial reward. They found

that the quality of the designs in a contest is almost linear in the number of users who

participated in the contest.

4.3.3 Results

In general, HAIS performs the best in most cases (Figures 4.5–4.11). In more detail,

HAIS performs better with a larger financial budget (Figure 4.5), with a looser deadline

(Figure 4.6), with fewer incentives (Figure 4.7), and with smaller values of the standard

deviation of the incentives’ utilities (Figure 4.8). Its performance is reasonably stable

with different group sizes (Figure 4.9), even when the group size of the best incentive is

the largest, i.e., when other algorithms (especially Stepped ε-first) have an advantage

over HAIS (Figure 4.10). Additionally, as shown in Figure 4.9, when all incentives are

individual-based (i.e., their group sizes are all one), HAIS performs much better than the

benchmarks. This emphasises the performance of HAIS in traditional settings where the

group-based nature of the arms is omitted. Moreover, as we can see, Stepped ε-first

performs better when the group size of the best incentive is the largest (Figure 4.10)

than when the group size of the worst incentive is the largest (Figure 4.11). In both

settings, HAIS is shown to remain almost the same level of performance. The reason that

HAIS can do this effectively is that it has (1) a better exploration-exploitation strategy

together with (2) an efficient way of using the time budget in the exploitation phase, and

(3) an effective approach for spending more of the budget on highly effective incentives

in the exploration phase.

Regarding BOIS, the purpose of this benchmark is to see how an algorithm designed for

the ISP2 to be applied into the ISP1 compared to HAIS. With this purpose, we focus more

on the comparison between HAIS and BOIS than the other algorithms. So, we discuss
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Figure 4.5: Performance of Algorithms for Different Financial Budget Sizes
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Figure 4.6: Performance of Algorithms for Different Time Budget Values
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Figure 4.7: Performance of Algorithms for Different Numbers of Incentives
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Figure 4.8: Performance of Algorithms for Different Values of the Standard Deviation
of the Incentives’ Utilities
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Figure 4.9: Performance of Algorithms for Different Values of Maximum Group Size
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Figure 4.10: Performance of Algorithms for Different Values of Maximum Group
Size on the Best Incentive. Group size of the best incentive is fixed with the value
of the independent variable, x, while group sizes of the other incentives are generated

randomly from 1 to x− 1.
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Figure 4.11: Performance of Algorithms for Different Values of Maximum Group Size
on the Worst Incentive. Group size of the worst incentive is fixed with the value of
the independent variable, x, while group sizes of the other incentives are generated

randomly from 1 to x− 1.

the performance of BOIS before other algorithms. In general, BOIS is worse than HAIS in

mose cases and is better than the other algorithms in many cases. The main difference

between HAIS and BOIS is shown in Figure 4.8. In more detail, when the standard

deviation of the utility of each incentive becomes large, the performance of BOIS drops

more clearly compared to that of HAIS. This is because HAIS takes advantage of the

uncorrelated relationship between the incentives to simultaneously (and hence quickly)

explore highly effective incentives in the Hoeffding step. As designed to deal with the

correlated ISP, BOIS cannot do similarly since spending the budget on this might not

be effective when the number of incentives is large. However, as shown in Figure 4.6,

the performance of BOIS approches that of HAIS when the time budget becomes large.

This is because the stepped exploitation of BOIS can reduce the consequence the above

weakness (that does not quickly explore the incentives) by making use of the large time

budget to explore (while exploiting) the best incentives. These results say that it is

better to use HAIS instead of BOIS to deal with the ISP1.

Regarding Exp3, as in general this algorithm does not perform well and does not relate

to the analysis, we first discuss its performance here and will not consider this algorithm

in the remaining subsections. Specifically, Exp3 does not perform well in any settings

(Figures 4.5–4.11). This is because choosing the incentives randomly based on their

weights does not work well when the time budget is small. As reflected in Figure 4.6,

the performance of Exp3 becomes better when the time budget becomes larger. Yet,

in most crowdsourcing projects, the time budgets are usually not large (e.g., several

days or months instead of several years). Regarding ε-first, as the purpose of running

this algorithm is to examine the effectiveness of the stepped exploitation step, we only
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discuss this algorithm in Subsection 4.3.3.2 when explaining the importance and the

usage of stepped exploitation.

Next, we will discuss each of the above-mentioned reasons of why HAIS performs ef-

fectively in the following subsections. In more detail, we will present the exploration-

exploitation strategy (Subsection 4.3.3.1), the way it makes use of the time budget

(Subsection 4.3.3.2), and the elimination technique (Subsection 4.3.3.3). Then, we will

continue with effective ways to use HAIS in a specific crowdsourcing project (Subsec-

tion 4.3.4).

4.3.3.1 Exploration-exploitation Balance

Regarding the exploration-exploitation strategy, as both financial and time budgets are

limited in the ISP1, an algorithm that takes advantage of the budgets can enhance the

overall performance significantly. That is, sufficient exploration should be conducted to

identify highly effective incentives so that the algorithm has enough budget and time to

exploit these incentives effectively.

In general, the performance of Stepped fKUBE is low. This is because one round for

initial exploration is not enough to have good estimates for the next step (stepped

exploitation). Actually, as can be seen from Figures 4.6 and 4.9, the performance of this

algorithm improves significantly when the time budget or the group sizes become large.

This is due to the more periods, the more time for the algorithm to identify the best

incentive. Also, with larger group sizes, it has more sampled users, and hence the initial

estimates become better. Whereas, in most cases, Stepped ε-first performs better than

Stepped fKUBE (Figures 4.5–4.11). The reason is that, Stepped ε-first spends more

of its budget (to have more rounds) for exploring (which is identified by ε1); so it has

better estimates of the incentives. Yet, the performance of Stepped ε-first depends

on choosing an appropriate value of ε1. On the other hand, as it is using Hoeffding’s

inequality, HAIS is more flexible in determining an appropriate budget for exploration.

Actually, Figure 4.12 shows that when the budget for the crowdsourcing project (B)

is large, instead of using all ε1B as in Stepped ε-first, HAIS tends to use less of the

budget (than Stepped ε-first) to explore. Note that although less of the budget is

used for exploring, the total cost for applying the best incentive in the exploration phase

tends to be larger than that of Stepped ε-first. This will be discussed in detail in

Subsection 4.3.3.3.

4.3.3.2 Taking Advantage of the Time Budget

By comparing the performance of Stepped ε-first with the original ε-first, we can see

that stepped exploitation helps take advantage of the time budget, and thus improves
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Figure 4.12: Average Budget Used for Exploration. This is the corresponding result
of the simulations shown in Figure 4.5. 99% confidence intervals are omitted as they

are too small.

the overall performance of the algorithm significantly. Actually, Figures 4.5–4.11 show

that Stepped ε-first performs significantly better than ε-first, especially when the

budget is not large or when the time budget is large enough. Specifically, in Figure 4.5,

with low budgets (e.g., from £500 to £10,000), ε-first does not explore sufficiently;

so its performance is rather low. Meanwhile, although with the same budgets (i.e., not

exploring enough in the exploration phase), Stepped ε-first performs much better,

as it makes use of the time budget to conduct further exploration while exploiting the

incentives. In Figure 4.6, this difference in performance between the two algorithms is

clearer when the time budget is large enough (e.g., larger than 10 periods). As shown

in this figure, since ε-first always uses two periods, its performance is almost the same

with different values of the time budget.

Although using the same exploitation mechanism, HAIS makes use of stepped exploita-

tion better than Stepped ε-first (Figures 4.5–4.11). This is especially the case when

the financial budget is large (Figure 4.5). Actually, as Stepped ε-first has more ex-

ploration rounds when the financial budget becomes larger, after the exploration phase,

it can identify the highly effective incentives better (i.e., the estimated best incentive is

likely to be the real best incentive). Hence, the effect of stepped exploitation on Stepped

ε-first becomes smaller. Note that by doing this, Stepped ε-first also wastes the

budget on applying ineffective incentives in the exploration phase. This is shown in

Figure 4.5 where ε-first’s effectiveness approaches that of Stepped ε-first when the

budget size becomes larger.

In addition, as discussed in Section 4.2.5, HAIS is able to stop stepped exploiting sooner

without significantly affecting the results. Hence, setting a loose deadline is better
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Figure 4.13: Cost Distribution Over the Incentives Across the Phases of Each
Algorithm. sε-first is Stepped ε-first and sfKUBE is Stepped fKUBE.

for its performance as it has enough time to conduct stepped exploitation effectively.

Actually, Figure 4.17 shows the average number of periods used by HAIS in the setting

corresponding to Figure 4.6. This figure shows that although the time budget is large,

HAIS tends to use a lot less of it. This suggests that when applying the algorithm to a

real crowdsourcing project, if the time is not very important, it is better to set a longer

deadline. The algorithm will then automatically select an appropriate time to stop.

4.3.3.3 Effective Elimination

By eliminating clearly ineffective incentives right after having initial estimates and be-

fore conducting more exploration, HAIS can distinguish highly effective incentives more

quickly. The advantage of eliminating is that, it has more of the budget to continue

exploring these incentives (to find the real best one) in the Hoeffding step. Because

of this, the Hoeffding step can be considered as not only exploring but also partially
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exploiting, as it applies only highly effective incentives. The effectiveness of the elimi-

nation is shown in Figures 4.13, 4.14, and 4.15. In more detail, Figure 4.13a shows that,

compared with other algorithms, HAIS spends more of its budget on the best incentive

(incentive 1) and less of its budget on the other incentives. By looking more closely at

how the cost is distributed over the incentives across the phases of HAIS (Figure 4.13b),

we can see that after the sampling step, HAIS identifies ineffective incentives effectively.

This figure shows that, in the Hoeffding step, HAIS spends more of its budget on highly

effective incentives. In contrast to this, Stepped ε-first spends the same amount of

budget to explore each. This helps HAIS not only partially exploit highly effective incen-

tives while exploring but also increase chance of identifying the real best incentive in the

exploitation phase (as the best incentives are likely to be applied more than the others).

Indeed, by looking at how the cost is distributed across the periods, we can see that HAIS

spends the most on the real best incentive in all exploitation periods, i.e., the periods in

the exploitation phase, including the last period (Figures 4.14a and 4.15). Additionally,

Figure 4.14b shows that HAIS spends less than Stepped ε-first on ineffective incentives

in all periods. Note that Stepped ε-first uses only one period to explore, while HAIS

uses two periods. So, Stepped ε-first starts exploiting one period sooner than HAIS.

Therefore, when comparing the total spent until the end of a certain period (i) of HAIS

in the exploitation phase, we need to compare it with that until the end of period i− 1

of Stepped ε-first. For example, we need to compare the total spent from period 1 to

period 3 of HAIS with that of periods 1 and 2 of Stepped ε-first.

Although using an elimination technique like HAIS, SOAAv does not result in a good

performance. Actually, Figure 4.14 shows that SOAAv under-explores the incentives,

especially the highly effective ones in the first (e.g., 3) periods. This results in exploiting

less effective incentives in the rest periods. More specifically, right in the first periods,

SOAAv eliminates the incentives based on the estimates so far (of the incentives’ densities).

However, in these periods, the algorithm does not have enough sampled users to make

good elimination decisions. Hence, the real best incentive can be eliminated with a

probability that is not insignificant. Therefore, in the last periods (e.g., from period 4

to period 9), SOAAv tends to apply the ineffective incentives much more than HAIS and

Stepped ε-first (Figure 4.14). One exception that SOAAv performs better than HAIS

is the case when the difference in the effectiveness of the incentives is small. In detail,

Figure 4.8 shows that when the standard deviation of the utility of each incentive is

less than about 20% of the mean utility of the incentive, SOAAv enjoys slightly higher

overall utility than HAIS. The reason is that, right after the first period, the estimate of

the density of the real best incentive is clearly better than those of the other incentives.

Thus, it is likely that, the estimated densities of the incentives other than the best

one are smaller than the average. Hence, in the next periods, these incentives will be

eliminated. However, as in a crowdsourcing project, the requester will try their best

to determine good enough incentives for the selection, the differences in effectiveness

between the incentives tend to be not too clear as in this case. Therefore, as discussed
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in Section 4.3.2.1, we do not include the case in the simulations by focusing on more

realistic cases where the differences are large enough.

4.3.4 Practical Usage of the HAIS Algorithm

The above-mentioned results suggest several guidelines for using this algorithm effec-

tively in practice. First, the larger the budget the better (Figure 4.5). It is reasonable

that when the budget is larger, HAIS can spend more on exploring the incentives so that

it can better understand before exploiting.

Second, the fewer incentives the better (Figure 4.7). Specifically, when there are more

incentives, it has to spend more of the budget exploring ineffective incentives. But, as

the requesters might be uncertain about the effectiveness of the incentives in specific

crowdsourcing projects, they do not have good reasons to eliminate some chosen can-

didate incentives so as to improve the overall performance of HAIS. Moreover, it is not

clear how the current number of candidate incentives affects the overall performance.

Therefore, we run another simulations to investigate HAIS’ performance with different

ratios of the financial budget compared to the round cost. The result is shown in Fig-

ure 4.16. This figure is consistent with Figure 4.5, that the larger the budget is the

better HAIS performs. It can be seen from this figure that, the performance of HAIS

increases significantly when the budget ratio is from 1 to about 10. After that, it still

improves, but slowly. This suggests that, the budget should be at least 10 times the

round cost. Based on this, with a given financial budget, we can easily determine an

appropriate maximum number of incentives.

Third, the time budget should be large enough (e.g., from 15 to 20 periods), but does not

need to be very large (e.g., 100 periods) so that HAIS has enough time to conduct stepped

exploitation effectively (Figure 4.6). Also, as discussed in Section 4.2.5, HAIS is able to

stop stepped exploiting sooner without affecting significantly the results. Hence, setting

a loose deadline is better for its performance as it has enough time to conduct stepped

exploitation effectively. Actually, Figure 4.17 shows the average number of periods used

by HAIS in the setting corresponding to Figure 4.6. This figure shows that, although

the time budget is large, HAIS tends to use a lot less. This suggests that, when applying

the algorithm to a real crowdsourcing project, if the time is not very important, it is

better to set a long deadline (but not necessarily too long). The algorithm will then

automatically select an appropriate time to stop.

4.4 Summary

In this chapter, we presented the ISP1 (or uncorrelated ISP), a variant of the ISP

where the candidate incentives are not correlated. We then developed HAIS, an adaptive
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Figure 4.14: Cost Distribution Across the Periods Incurred by Each Algorithm
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Figure 4.15: The first three periods of Figure 4.14a

algorithm, to solve the ISP1 efficiently. The algorithm takes into account the group-

based nature of the incentives and uses Hoeffding’s inequality to adaptively determine

how much exploration on each incentive is sufficient. It also makes use of the time

budget to conduct further exploration efficiently while exploiting. Additionally, HAIS

is shown to have a good way to eliminate ineffective incentives, so that it can spend

more budget on highly effective ones. The performance of the algorithm was then

evaluated by simulations in a wide range of settings. Specifically, we run the simulations

with different financial budget sizes, different time budget values, different numbers

of incentives, different values of max group size, and different values of the standard

deviation of the incentives’ utilities. We also run the simulations with some other settings

to have a closer look at how the algorithms perform in particular ways. The results of the

simulations show that HAIS performs the best in most cases. Throughout this chapter,

we obtain the first three contributions as presented in Section 1.3. Specifically, the model

(i.e., the formal presentation of the ISP1 presented in Section 4.1) is Contribution 1,
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the HAIS algorithm (detailed in Section 4.2) is Contribution 2, and the evaluation of the

algorithm’s performance (Section 4.3) is Contribution 3.

The algorithm helps us achieve the first three objectives of the research as mentioned

in Section 1.2. More specifically, in Subsection 4.3.3, HAIS is shown to be efficient

(RO1). Also, as presented in Section 4.2, with a specific crowdsourcing project, it

can be used in an autonomic manner (RO2) without the need to tune any predefined

parameters (RO3). However, HAIS can only be used in crowdsourcing projects when

the candidate incentives do not have any correlations. This is the case when we have

prior information about user performance in the project of interest or when the budget

for the project is low, so in each incentive methods, we have to continue choosing some

candidate incentives. Therefore, to attain the last research objective (RO4), in which

the solution is complete (i.e., can be applied to any crowdsourcing project), we need to

solve the second variant of the ISP, the ISP2, that is when the candidate incentives are

correlated. Indeed, as discussed in Subsection 3.2.3, we do not need to directly solve the

third variant of the ISP, the ISP3, as we can make use of the solution to the ISP1 or the

ISP2 to this variant. We will deal with the ISP2 in the following chapter.





Chapter 5

The ISP with Correlated

Candidate Incentives

We are trying to solve the incentive problem (i.e., providing incentives to motivate

user participation in microtask crowdsourcing) by dealing with the incentive selection

problem (ISP). That is to, instead finding the best incentive in a crowdsourcing project,

we choose some good candidate incentive methods (i.e., clusters) and then have a good

strategy to learn the best incentive so as to maximise the overall utility of the requester.

In Chapter 4, we developed an algorithm to solve the ISP1, a variant of the ISP when

we have chosen some representative incentives in each chosen incentive method because

we have prior knowledge about user performance in the project or the budget for the

project to is small compared to the chosen incentive methods. However in some projects,

we have to (or we do not want to) choose such candidate incentives in each cluster. We

just want to keep all of these candidates and then find a solution to effectively select

the best one. This is when we have very little or no prior knowledge about the user

performance in the project and the financial budget is large enough. This results in

another variant of the ISP which is called the ISP2 (or correlated ISP). The ISP2 is

different from the ISP1 in terms of the possible correlations between incentives in each

cluster. In the ISP1, as we have chosen some representative incentives in each cluster,

these correlations does not exist. So, we can only focus on the learning process, which

is to identify the best incentive among the chosen ones. Yet, in the ISP2, as all the

incentives in each cluster are kept, the correlations exist. Thus, to deal with this problem

effectively we have to consider these correlations. That means, in the ISP2, we have to

consider both the learning (i.e., identifying the best incentive method) and the tuning

(i.e., identifying the best incentive in an incentive method by determining appropriate

values of the parameters of the method). The algorithm proposed in Chapter 4, cannot

deal with this variant. Indeed, the budget for the crowdsourcing projects corresponding

to this variant will not be sufficient to explore all candidate incentives, as there are

many incentives. Even if it is enough, the residual budget is unlikely to be enough to

83
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effectively exploit the best incentive explored. Hence, in this chapter we develop another

algorithm to solve the ISP2. The proposed algorithm in the chapter, takes into account

the possible correlations between the incentives in a cluster to effectively and quickly

identify a highly effective incentive. We first formalise the ISP2 (Section 5.1). We then

develop an algorithm to deal with the ISP2 (Section 5.2). After that, we evaluate the

performance of the algorithm through simulations (Section 5.3). Finally, we conclude

the chapter with a summary (Section 5.4).

5.1 The Problem

In Chapter 3, we have described general descriptions of the ISP together with its two

variants, the ISP1 and the ISP2. Also, in Section 4.1 we have presented the formal

description of the first variant, the ISP1. Now, we formally present the second variant,

the ISP2, when we keep the chosen incentive methods. That means in this variant, there

are much more incentives to be selected in the learning process.

Let C denote the number of clusters that are being considered in a crowdsourcing project.

Cluster i (or Ci for short) has Ki parameters. An incentive a in Ci corresponds to a

structure vector va = (v
(1)
a , . . . , v

(Ki)
a ), where v

(k)
a is the value corresponding to the kth

parameter and v
(k)
a ∈ [v

(k)
min,i, v

(k)
max,i] (v

(k)
min,i, v

(k)
max,i ∈ R). Let ca denote the cost of

applying incentive a once. The expected utility of this incentive is µa which is unknown

in advance. Let N = {n(t)
a | t = 1, . . . , T ; a ∈ Ci; i = 1, . . . , C} denote a policy, where

n
(t)
a is the number of times incentive a is applied in period t, i.e., incentive a is provided

to n
(t)
a different groups. Let r

(t)
a be the total utility of applying this incentive n

(t)
a times

in period t. The objective is to find a policy that maximises the expected overall utility:

max

T∑
t=1

C∑
i=1

∑
a∈Ci

n(t)
a µa s.t.

T∑
t=1

C∑
i=1

∑
a∈Ci

n(t)
a ca ≤ B.

This model is Contribution 4 as presented in Section 1.3.

5.2 The BOIS Algorithm

As presented in Section 2.2.2, although there are a certain number of many-armed bandit

algorithms that can be considered to use for the ISP2, since the problem is complex (with

several characteristics), these algorithms are not efficient to deal with the ISP2. Then, in

Section 2.2.3, we discussed that Bayesian Optimisation (BO) is a promising approach to

the problem. In this section we introduce Bayesian-optimisation-based Incentive

Selection (henceforth, BOIS), a novel algorithm for the ISP2. We first give an overview
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of the algorithm (Subsection 5.2.1). Then, we detail how BOIS splits the learning and

tuning process into steps and how it acts in these steps (Subsections 5.2.2–5.2.4).

5.2.1 Algorithm Overview

The idea of BOIS is using a MAB approach to deal with the learning problem (i.e.,

identifying the best cluster) and using BO with Gaussian processes to tackle the tuning

problem (i.e., finding the optimal values of the parameters of a cluster). In more detail,

in each period (except the first one), it chooses an incentive whose value of the acquisition

function corresponding to this incentive is the largest compared to those of the other

incentives in all clusters. As presented in Subsection 2.2.3, two main components of BO

are the surrogate model and the acquisition function. The surrogate model represents

our belief on the shape of the objective function based on the observations. And the

acquisition function is to help identify an appropriate point to query so as to quickly

learn the best point in the objective function. Regarding the first component, we use

a GP, a non-parametric Bayesian method, to learn the underlying correlation within

a cluster, which is assumed to be a function. In fact, GPs are a useful tool to learn

these functions (Subsection 2.2.3). Regarding the second component, since in the ISP

the objective is to maximise the cumulative utility in a limited time budget, we choose

EI and GP-UCB1 to be as the acquisition function. In more detail, because PI tends

towards exploitation, we skip this function. Also, as TS helps identify the next sample

by sampling from the Gaussian process, it needs the time budget to be large enough

which is not the case in the ISP. Thus, we do not use this function. EI and GP-UCB

are designed to strike a balance between exploration and exploitation. So, we run the

simulations with both of these two functions. However, as will become apparent GP-

UCB performs better than EI in most cases. The reason is that UCB-based methods

in general are inherently designed to not only obtain a good exploration-exploitation

balance but also minimise the cumulative regret, i.e., maximise the cumulative utility

(Subsection 2.2.2.1). Hence, in Section 5.3, we only present the results with the GP-UCB

acquisition function, which is implemented as the UCB of the estimate of the incentive’

effectiveness.

The general idea of tuning parameter values of an incentive method (i.e., finding the best

incentive in a cluster) using BO is the following. In each period, based on the incentives

sampled in the previous periods, BOIS estimates the mean rewards of the incentives so

far in the cluster using Gaussian process regression (GPR). Then, it calculates the UCBs

of the incentives. After that, the incentive with the highest UCB will be the candidate

to be applied of the cluster. BOIS will then choose the candidate incentive in the cluster

which has the highest UCB to be applied in that period.

1See Subsection 2.2.3.2 for details of the acquisition functions.
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Algorithm 4 High-level Overview of the BOIS Algorithm

Input: financial budget (B), time budget (T ), number of clusters (C), ..

Predefined parameters: ε1, ε2, U1, ..

Output: applying policy, overall utility

Note: See Algorithm 5 for the full detail version of the BOIS algorithm.

01: Distribute the budget for sampling (ε1B) over C clusters.
02: In each cluster, apply some incentives so that each incentive has about U1 sampled users.

The number of incentives chosen is constrained by the given budget for sampling of the
cluster.

03: For all incentives in each cluster, estimate the mean rewards (using GPR) and calculate
the UCBs.

04: The budget for stepped exploitation is b2 = ε2b, where b is the residual budget.
05: This budget (b2) is distributed across Ts periods, where Ts + 1 is the remaining periods

including the last one.
06: for each of the Ts periods do
07: Select the incentive (a) with the highest UCB in all clusters.
08: Apply a as many times as possible within the given budget.
09: Update the surrogate model of the cluster containing a (Ci).
10: Calculate the UCBs of all incentives in Ci.

11: Apply the best incentive (in all clusters) with the residual budget.
12: Apply the second best incentive (in all clusters) with the residual budget.
13: Repeat the process until the residual budget is not enough to apply any incentive.

14: return the applying policy and the overall utility.
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In order for the algorithm to use BO, it must have initial estimates of the incentives in

each cluster. Therefore, in the first period (i.e., period 1), it samples several incentives to

obtain good estimates of the effectiveness of the incentives. Hence, this step is referred

to as the sampling step. Then, in each of the next periods (except the last one), it applies

the most promising incentive (a), i.e., the incentive with the largest UCB. After that, it

updates the UCBs of the incentives in the same cluster (i.e., Ci if a ∈ Ci). We refer to

this step as the exploration step. Finally, in the last period it applies the best incentive

with the remaining budget. This step is called the exploitation step, as it simply exploits

the best incentive after exploring in the previous periods. A high-level overview of the

algorithm is presented in Algorithm 2.

Regarding the UCBs, as in the first periods we are not confident about the estimates

of the incentives’ effectiveness, the confidence intervals should be large to make sure

that the algorithm does not leave out the real best incentive. That means at first it

is better to focus on exploring. Then in the next periods, the intervals should become

smaller gradually. By so doing, it not only solves the learning and tuning problems

simultaneously, but also it performs a smooth transition from exploring to exploiting.

In order for BOIS to choose an incentive in a period (t + 1), at the end of the previous
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(a) One parameter

Parameter 1
v(1)min,i v(1)max,i

(b) Two parameters

Parameter 1
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2

v(1)min,i v(1)max,i

v(2)min,i

v(2)max,i

a candidate incentive

Figure 5.1: An illustration of candidate incentives in a cluster in the Sampling step
when the cluster has one (a) and two (b) parameters

period (t), it uses Gaussian process regression to estimate the mean utilities of all incen-

tives in each cluster. The results of the estimation are µ̂
(t)
a and σ̂

(t)
a ∀a ∈ Ci; i = 1, . . . , C.

After that, it calculates the potential effectiveness of all incentives:

d∗(t)a =
1

ca

µ̂(t)
a + z(t) σ̂

(t)
a√

m
(t)
a ga

 . (5.1)

In Equation 5.1, z(t) = Z
(
1− t−1

T−2

)
, where Z is the critical value (e.g., 1.96) corresponding

to the initial confidence level (e.g., 95%) of the estimates. In more detail, as in the

first periods we are not confident about the estimates of the incentives, the confidence

intervals should be large to make sure that the algorithm does not leave out the real

best incentive. That means at first, it is better to focus on exploration. Then in the

next periods, the intervals should become smaller gradually. By so doing, it not only

solves the learning and tuning problems simultaneously, but also it performs a smooth

transition from exploration to exploitation. Literally, the first period (t = 1), z(t) = Z

means that it focuses more on exploration. Then, its value gradually decreases as time

goes by. And finally, when t = T −1, z(t) = 0 means that it focuses only on exploitation.

Additionally, the denominator,

√
m

(t)
a ga, signifies that the exploration level is inversely

proportional to the number of sampled users.

As discussed in Section 3.1 and Section 5.1, the ISP2 corresponds to the crowdsourcing

projects where the incentives in each cluster must be correlated. However, in some

projects, only some clusters are correlated, the other ones are not. In these projects,

we can apply BOIS by considering each incentive in uncorrelated clusters as the only

incentive in a new cluster. We can also consider applying HAIS in these projects by

continue choosing some incentives in correlated clusters. If we have no prior knowledge

about user performance, we can choose the incentives randomly.
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In the next subsections, details of the steps will be discussed. The explanations will be

linked to the corresponding parts of the detailed pseudocode of BOIS shown in Algo-

rithm 5. This algorithm helps us achieve Contribution 5 as presented in Section 1.3.

5.2.2 The Sampling Step

As mentioned above, the purpose of this step (Lines 2–11) is to obtain initial estimates

of the incentives in each cluster, which are then used for the regression in the next step.

BOIS uses the miniMax distance design (Johnson et al., 1990) to sample the incentives

in each cluster to ensure that all other incentives in the cluster are not too far from

the sampled ones. An illustration of this space-filling design is shown in Figure 5.1.

In more detail, for the kth parameter of cluster i, BOIS chooses two values, one in the

first quarter and the other in the third quarter of its range, i.e., v
(k)
min,i + 0.25∆

(k)
i and

v
(k)
min,i+0.75∆

(k)
i , where ∆

(k)
i = v

(k)
max,i−v

(k)
min,i (Figure 5.1a). From these values, we have

a set of 2Ki candidate incentives to be sampled. Figure 5.1b describes four candidate

incentives in a cluster which has two parameters.

One issue is that the financial budget is limited and we also want to spend the budget on

further exploration and exploitation. To deal with this, BOIS only uses ε1B (e.g., 0.2B)

for sampling. This amount might not be enough to sample all the above-mentioned 2Ki

candidate incentives (∀i = 1, . . . , C). Therefore, BOIS simply iterates over the clusters

(Line 4) and at each cluster it chooses a random (without repetition) incentive from

this set. This is conducted by the NextSample() function (Line 5). Once an incentive is

chosen, it will be applied several times so that it has about U1 (e.g., 10) sampled users,

which is calculated by rounding the division U1/ga to the nearest integer (Lines 8–9). By

so doing, it guarantees to have enough sampled users if the group size of the incentive

is small (e.g., 2). bb1/cac in Line 8 is to guarantee the budget being used in this step

does not exceed ε1B. The algorithm stops sampling when the budget for sampling is

exceeded (Lines 6–7).

5.2.3 The Stepped Exploitation Step

At first, BOIS sets the budget for exploration, a specific portion of the residual budget

which is identified by ε2, e.g., 0.5 (Line 12). Then, in each period (t) before the deadline,

it will choose the incentive (a) with the highest potential effectiveness (Line 14). The

incentives are chosen based on their UCBs which contain both the estimates of the

incentives’ effectiveness so far and the certainty of the estimates. Thus, this step can be

considered as both exploiting (choosing the incentives which have high estimates) and

exploring (choosing the incentives which have high potential to be the best incentive).

This is part of the reason that UCBs are a good choice to be used as the acquisition

function in this problem.
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Algorithm 5 Detailed Pseudo code of the BOIS Algorithm

Input:
B, T,C, . financial budget, time budget, number of clusters
Ki (∀i = 1, . . . , C) . number of parameters of each incentive

Predefined parameters:
ε1, ε2, U1, Dmin, and Z . see Table 5.2 for their descriptions

Output:

r, N = {n(t)a | t = 1, . . . , T ; a ∈ Ci; i = 1, . . . , C} . overall utility, applying policy

Note: ApplyIncentive(i, n) is to apply incentive a n times and return the total utility.

01: b← B; . overall residual budget

02: b1 ← ε1B; . residual budget for sampling
03: while true do
04: for i = 1→ C do
05: a← NextSample(Ci);
06: if b1 < ca then
07: Stop the for and while loops;

08: n
(1)
a ← max

{
1,min([U1/ga], bb1/cac)

}
;

09: r
(1)
a ← ApplyIncentive

(
a, n

(1)
a

)
;

10: b1 ← b1 − n(1)a ca; b← b− n(1)a ca;

11: UpdateEstimates(Ci, 1, Z) ∀i = 1, . . . , C;

12: b2 ← ε2b; . residual budget for exploration
13: for t = 2→ T − 1 do
14: a← argmaxa′∈Ci; i=1,...,C{d

∗(t−1)
a′ };

. select an incentive that maximises the acquisition function

15: if d
∗(t−1)
a < Dmin then . a is too bad

16: i← a random cluster;
17: a← a random incentive in Ci;

18: if b2 < ca then . budget for exploration is exceeded
19: Stop the for loop;

20: n
(t)
a ← max

{
1,min([U1/ga], bb2/cac)

}
;

21: r
(t)
a ← ApplyIncentive

(
a, n

(t)
a

)
;

22: b2 ← b2 − n(t)a ca; b← b− n(t)a ca;

23: UpdateEstimates(Ci, t, Z,);

. update the surrogate model
(
µ̂
(t)
a′ and δ̂

(t)
a′ ∀a′ ∈ Ci where a ∈ Ci

)
24: while b ≥ mina∈Ci;i=1,...,Cca do

25: a← argmaxa′∈Ci; i=1,...,C{d
∗(T−1)
a′ };

26: n
(T )
a ← max

{
1, bb/cac

}
;

27: r
(T )
a ← ApplyIncentive

(
a, n

(T )
a

)
; b← b− can(T )

a ;

28: r ←
∑T
t=1

∑C
i=1

∑
a∈Ci

r
(t)
a ; . overall utility

29: return r, N;
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Algorithm 6 The UpdateEstimates() Function

Input: Ci, t, and Z

Output: Ci with updated d
∗(t)
a ∀a ∈ Ci

01: Use Gaussian process regression to estimate µ̂
(t)
a and σ̂

(t)
a ∀a ∈ Ci;

02: Calculate d
∗(t)
a based on Equation 5.1 ∀a ∈ Ci;

In some cases, the potential effectiveness of this incentive (d
∗(t−1)
a ) can be very low since

the sampled incentives so far in this cluster (Ci) had very low utilities. To prevent it

from falling into the trap of exploring ineffective incentives, if d
∗(t−1)
a is less than some

lower bound (Dmin), BOIS will randomly choose another incentive (Lines 15–17). Note

that it is not difficult to determine a value for Dmin. For example, if the utility is

measured by the number of tasks completed and we expect an acceptable incentive to

have about 20 completed tasks per £, then you can set Dmin to this value or even 10

if we are not quite sure about this number. Yet, it should be larger than the possible

minimum number of tasks, e.g., 0.

As in the sampling step, after having an incentive, BOIS will apply the incentive several

times so that it obtains about U1 sampled users (Lines 20–21). This step stops when

the budget for exploration is exceeded (Lines 18–19).

5.2.4 The Pure Exploitation Step

This step (Lines 25–27) simply applies the best incentive explored with the remaining

budget. From Equation 5.1 we can see that in this period the factor z(T ) is zero. That

means it does not explore anymore but totally exploits the incentive with the highest

estimate of the expected effectiveness.

5.3 Experimental Evaluation

To systematically evaluate the performance of BOIS, we use simulations in a wide range

of settings. It would be infeasible to undertake this evaluation in a real crowdsourcing

project as we have to deploy the project multiple times with different financial budgets,

time budgets, and numbers of clusters, as well as different values of the parameters

of each cluster. Even then, we could not guarantee that we have explored the main

cases in a comprehensive fashion. In the following, we present the benchmarks (Sub-

section 5.3.1), the experimental settings (Subsection 5.3.2), the corresponding results

(Subsection 5.3.3), and practical usage of the BOIS algorithm based on the results (Sub-

section 5.3.4). This section corresponds to Contribution 6 as presented in Section 1.3.
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5.3.1 Benchmarks

As presented in Section 2.2, there are no algorithms in the literature what can be used

to solve the ISP2. Specifically, state-of-the-art algorithms are not specifically designed

to deal with choosing the best cluster together with tuning its parameter values. So, we

choose some of them as the benchmarks and make a number of modifications for them

to perform well with the ISP2.

(1) HAIS . The algorithm is described in detail in Section 4.2. When applying HAIS

into the ISP2, it first randomly chooses a certain number of incentives. Then, it applies

these incentives so that it has about U1 sampled users on each incentive. The number of

incentives chosen is identified by ε1B. After that, HAIS deals with the chosen incentives

as described in Algorithm 3. Although both HAIS and BOIS are to deal with the ISP, they

are to solve different variants of the problem. HAIS is for the ISP1 where the incentives

are uncorrelated, while BOIS is for the ISP2 where the incentives are correlated. Hence,

we run HAIS as a benchmark for BOIS is to evaluate the performance of HAIS on the

ISP2 in comparison with BOIS.

(2) ε-first. This algorithm (Section 2.2.2.1) spends ε1B (where ε1 is specified in

advance, e.g., 0.2) in the first period to explore by sequentially applying a random

incentive in each cluster until this budget is exceeded. With a chosen incentive a, it

applies this incentive max{1, [U1/ga]} times to obtain about U1 (e.g., 10) sampled users.

In the second period, it uses Gaussian process regression to estimate the best incentive.

Then it spends the subsequent period purely exploiting the best incentive with the

remaining budget, i.e., (1− ε1)B.

(3) ε-BOIS. This is BOIS but the exploration step is from ε-first. Specifically, in the

first period, this algorithm does exactly the same as in ε-first, that is to use ε1B for

sampling incentives randomly. In the next periods (except the last one), it applies the

stepped exploitation step of BOIS (Section 5.2.3). And in the last periods, the algorithm

conducts pure exploiting as in BOIS (Section 5.2.4). Although ε-BOIS is a combination of

BOIS and ε-first, the second step (stepped exploitation) is the main idea of BOIS and

more complicated than the first step (which is borrowed from ε-first). Therefore, we

name it ε-BOIS. The purpose of running this algorithm is to examine the effectiveness

of the stepped exploitation step of BOIS. For this reason, we do not consider it as a

state-of-the-art algorithm.

(4) Decaying ε-greedy (henceforth, ε-greedy). This algorithm spreads the budget

B over T periods. In each period, with the given budget, it applies the current best

incentive with probability (1 − ε) and a random incentive in a random cluster with
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probability ε, where ε = (T − t)/(T − 1). When t = 1, ε = 1 means that it totally

explores. When t increases, ε gradually decreases. And when t = T , ε = 0 means it

completely exploits the best incentive explored. At the end of each period except the

last one, it uses Gaussian process regression to estimate the best incentive for the next

period.

(5) Random. Similar to ε-greedy, this algorithm spreads the budget B over T periods.

Then in each period, it simply applies a random incentive in a random cluster with the

given budget.

(6) Optimal. It simply applies the real best incentive all the time. To have the optimal

solution, we have to know the expected values µa (∀a ∈ Ci;∀i = 1, . . . , C) in advance,

which is typically impossible in practice. Therefore, this approach represents an upper

bound of what any algorithm could achieve.

5.3.2 Simulation Settings

To evaluate the performance of the algorithms, we run simulations in three different

settings where the independent variables are financial budget, time budget, and number

of clusters. For each value of the independent variable, we run 1,000 simulations to

achieve statistically significant results at the 99% confidence level. Error bars of the line

graphs in Figures 5.3–5.4 represent the confidence intervals. The simulations run in this

chapter are different from the ones in Chapter 4 is that, in this chapter, the candidate

incentives are grouped in clusters and the incentives in each clusters are correlated,

whereas in Chapter 4, all candidate incentives are not correlated.

Next, in Subsection 5.3.2.1, we detail the ranges of the parameter values used for ran-

domisation in the simulations. Then, in Subsection 5.3.2.2, we detail the values of the

predefined parameters of the algorithms.

5.3.2.1 Ranges of the Quantities for Randomisation

In the simulations of each setting, the related parameters, i.e., B, T , C, group sizes,

utility, and the amount of prize money for the best user (except the corresponding

independent variable) are generated randomly in specific ranges. The ranges of these

parameters are chosen to represent realistic settings in real crowdsourcing projects and

are described in Table 5.1. Ranges of some of the parameters are already discussed in

Section 4.3.2.1, and hence we do not discuss here.

Regarding the number of clusters, we choose 10 as the maximum value of C. That means

we can choose up to 10 incentive methods. But, in reality, we believe this number is
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Table 5.1: Ranges for Randomisation of the Parameters in the Simulations. All the
values are integers and uniformly distributed.

Parameter Symbol Min value Max value Unit

Number of clusters C 1 10 Cluster

Group sizes ga 3 50 User

Real densities δa 30, 60(∗) 90 Utility per £

Utility stand deviations σa 0.2µa 0.6µa -

The amount of prize
money for the best user

- 1 25 £

Financial budget B 10 200 Times of the round cost (**)

Time budget T 2 30 Period

(*) Densities of the worst incentives in each cluster are 30, while the

density of the best incentive in the worst cluster is 60 utility per £.

(**) Round cost is the cost of applying all the clusters, where in each cluster

the centre incentive is applied such that it has about U1 users.

likely to be small, such as 3, 2, or even 1. When we have one more cluster, the budget

should be large enough to cover the other sampled incentives. Also, the chance of

identifying the best cluster decreases. Indeed, if in a crowdsourcing project, we choose

10 clusters, with the average values of other quantities (i.e., the number of parameters

is 2, the group size of about 30, and the average payment for a user is £1.00) and two

sampled incentives in each parameter of a cluster, the cost for initial estimates is about

£1,200. Also, the overall budget should be large enough so that the algorithms can use

the remaining budget to exploit the best incentive explored. Based on the insights from

Subsection 4.3.4, the overall budget should be at least about 10 (ideally 20) times the

cost of initial estimates. Based on this, the budget for this project should be at least

about £10,200 (ideally £20,400). These amounts of money are large for a crowdsourcing

project. Hence, we keep 10 clusters as the maximum in the simulations.

Regarding the amount of prize money for the best user, we choose £25 as the maximum

value. In the simulations, every user participating in a contest will be paid a certain

amount of money (£0.50) as the base payment. So, we have to pay £25 for a group of

50 users (the maximum value of the group size). Also, we want to keep the total spend

on the contests always less than or equal to that of individual-based incentive methods

(such as paying for performance or bonuses), which is about £1 for each user. Thus, the

maximum amount of prize money is £25.

5.3.2.2 Values of the Predefined Parameters of the Algorithms

We run the algorithms with different values of the predefined parameters and then choose

appropriate values for the parameters. For example, with ε of ε-first, we first run this

algorithm with different values (such as 0.05, 0.10, 0.20, 0.30, and 0.40). Then we choose
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Table 5.2: Values of the Algorithms’ Predefined Parameters in the Simulations.

Algorithm Parameter Value Description

BOIS

ε1 0.10 Budget limit for sampling.

ε2 0.50 Budget for stepped exploitation (calculated based on
the residual budget).

U1 20 Target number of sampled users to obtain after the
first (sampling) period.

Dmin 40 The minimum utility which help eliminates unac-
ceptable incentives (whose effectiveness is below this
value).

Z 1.96 Critical value corresponding to the confidence level
in eliminating ineffective incentives (i.e., to calculate
confidence intervals of the incentives’ estimates).

HAIS

ε1 0.10 Budget limit for exploration.

ε2 0.50 Budget for stepped exploitation (calculated based on
the residual budget).

U1 20 Target number of sampled users to obtain after the
first (sampling) period.

Le 90% Confidence level to calculate confidence intervals of
the incentives’ estimatesfor eliminate ineffective in-
centives.

Lh 50% Confidence level to stop exploring.

Ls 90% Confidence level to stop stepped exploiting.

Ns 5 Maximum number of consecutive periods that an in-
centive is applied in the stepped exploitation step.

ε-first
ε1 0.10 Budget for exploration.

U1 20 Target number of sampled users to obtain after the
first (sampling) period.

ε-BOIS
ε1 0.10 Budget for exploration.

ε2 0.50 Budget for stepped exploitation (calculated based on
the residual budget).

U1 20 Target number of sampled users to obtain after the
first (sampling) period.

one value that helps ε-first perform well in different settings. A similar process is used

for the other predefined parameters such as ε1 and ε2 of BOIS. As changing these values

slightly does not result in a significant difference (i.e., the trends of the algorithms’

performance are broadly the same), in Subsection 5.3.3 we only present the results

on the simulations with the following values of the algorithms’ predefined parameters

as described in Table 5.2. Regarding the predefined parameters of BOIS and ε2 of ε-

BOIS, as most of them are self-explanatory and some of them are already discussed in

Subsection 5.2.1, we do not explain them here.

For each value of the independent variables, we run 1,000 simulations to achieve stat-

istically significant results at the 95% confidence level. Error bars of the line graphs in
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Figures 5.3–5.6 represent the confidence intervals.

5.3.3 Results

In general, BOIS performs the best in most cases except when the number of clusters is

larger than 50 (Figures 5.2–5.4). This is acceptable, as in a real crowdsourcing project,

the number of incentive methods (i.e., clusters) to be learned is not often that high. In

general, the performance of BOIS is up to 92% of the optimal solution and up to 48%

better than state-of-the-art benchmarks. The reason that BOIS’ high performance is

that (1) it makes use of the periods before the deadline to gradually determine the best

incentive (by using BO), and (2) it has a good sampling method (miniMax space-filling

design). In the next subsections, we will discuss these two issues.

However, as the purpose running HAIS as a benchmark is to see how an algorithm

designed for the uncorrelated ISP to be applied into the correlated ISP compared to

BOIS. With this purpose, we focus more on the comparison between BOIS and HAIS than

the other algorithms. So, we discuss the performance of BOIS before other algorithms.

In general, HAIS does not perform well and its performance is worse that that of BOIS in

most cases. This is because HAIS does not make use of the possible correlations between

incentives in a cluster to quickly and effectively learn the best incentive of the cluster.

These results say that it is better to use BOIS instead of HAIS to deal with the correlated

ISP (the ISP2).

5.3.3.1 Taking Advantage of the Time Budget

Figure 5.2 shows that with a larger time budget, the algorithm performs better, espe-

cially when T is larger than about 15. Specifically, after the sampling step conducted in

the first period, the performance of BOIS increases significantly from a utility of about

70 per £ at the end of the first period up to about 80 per £ when T = 15. This indicates

that Bayesian optimisation can quickly approach a global optimum (i.e., the real best

incentive). Figure 5.3 presents a clearer view of the effectiveness of the stepped exploita-

tion step. Concretely, when the budget becomes larger but still small (less than about

£3,000), the performance of both ε-first and ε-BOIS improves significantly. However,

when the budget is larger than £3,000, ε-first performs slightly better as it has more

budget for exploration, whereas ε-BOIS continues improving its performance clearly. This

shows the fact that ε-BOIS makes use of the budget to continue exploring the incentives

by conducting stepped exploitation. The reason ε-first does not perform well with

larger budgets is that the way it explores is inflexible (i.e., always ε1B). Indeed, when

B is small, the budget for exploration is not enough, so that the Gaussian process re-

gression conducted in the second period does not have enough samples to identify one

of the best incentives. Figure 5.3 also suggests that the larger the budget the better.
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Figure 5.2: Performance of Algorithms for Different Time Budget Values
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Figure 5.3: Performance of Algorithms for Different Financial Budget Sizes
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Figure 5.4: Performance of Algorithms for Different Numbers of Clusters
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Figure 5.5: Performance of Algorithms for Different Values of the Standard Deviation
of the Incentives’ Utilities



98 Chapter 5 The ISP with Correlated Candidate Incentives (ISP2)

This is due to the stepped exploitation as it helps spread the budget across the periods

effectively to identify the best incentive.

With a similar trend, ε-greedy also performs better with larger T , as it has more time

to explore. Yet, its performance is far below that of BOIS and ε-BOIS. This is because it

does not have a good exploration strategy. Actually, conducting exploration by randomly

selecting an incentive does not make use of existing estimates of the incentives so far as

in the stepped exploitation step.

5.3.3.2 Effective Sampling

Figure 5.2 shows that BOIS’ sampling step is effective. Indeed, when t = 2 (i.e., no

stepped exploitation executed), BOIS enjoys much higher utility than ε-BOIS (about a

utility of 70 compared to just about 60 per £). However, in order for the miniMax space-

filling design to be effective, the financial budget should be large enough to sample all 2Ki

candidate incentives ∀i = 1, . . . , C. This is why BOIS’ performance increases significantly

when the budget is in the range from £500 to about £4,000 in Figure 5.3. We can also

see this in Figure 5.4. More specifically, the performance of BOIS drops significantly

when the number of clusters becomes larger. This is because with a fixed budget (B)

and a larger number clusters, ε1B is not enough to sample all the candidate incentives

in all clusters.

Similar to Figure 5.4, regarding the number of parameters, as the algorithm does not

scale well to settings with large values of Ki, we only run with Ki = 2, 3. Their results

have a similar trend as in Figure 5.4, that BOIS performs well when Ki = 2 (a utility

of about 80 per £), but then its performance gradually drops down to about 74 when

Ki = 3 and 65 when Ki = 4. Also, when Ki = 4, the time to run the algorithm

is less than 2 minutes, which is likely to be acceptable in most practical applications..

Additionally, increasing the number of parameters (e.g., from 3 to 4) results in increasing

the number of incentives exponentially. Therefore, in real crowdsourcing projects, it is

not effective to have more than 4 parameters as it requires an extremely large budget

to sample the incentives in each cluster.

5.3.4 Practical Usage of the BOIS Algorithm

The above-mentioned results suggest several guidelines for using this algorithm effec-

tively in practice. Most of them are similar to the ones related to the usage of HAIS.

Hence, we just name or briefly described the ones which are already discussed in Sub-

section 4.3.4.

First, the larger the budget the better (Figure 5.3). This figure also suggests that the

budget should be large enough (e.g., at least £2, 000 as in the simulations) for BOIS
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Figure 5.6: Performance of BOIS for Different Budget Ratios. Budget ratio is
B/round cost.

to achieve a good performance. BOIS needs enough budget not only to sample all the

incentives according to the miniMax space-filling design, but also to conduct stepped

exploitation and then purely exploiting the best incentive explored. Second, the time

budget should be large enough (e.g., 10 periods), but does not need to be very large (e.g.,

50 periods) so that BO has enough time to determine the best incentive (Figure 5.2).

Third, the fewer clusters and parameters the better (Figure 5.4). In order to help

identify a reasonable number of clusters, we run other simulations to investigate BOIS’

performance with different ratios of the financial budget compared to the round cost.

The result is shown in Figure 5.6. This figure is consistent with Figure 5.3b, that the

larger the budget is the better BOIS performs. It can be seen from this figure that, the

performance of BOIS increases significantly when the budget ratio is from 1 to about

20. After that, it still improves, but slowly. This suggests that, the round cost should

be at least 20. Based on this, with a given financial budget, we can easily determine

an appropriate maximum number of clusters. If there are many (e.g., 15) candidate

clusters to choose from and the budget is not large enough (e.g., just about 5 times the

round cost), it is better to continue using related studies from psychology, sociology,

or computer science to filter out clusters which are not actually promising. A similar

process should be done with the other parameters.

5.3.5 When to use HAIS and BOIS Algorithms to deal with the ISP

We have built two algorithms to deal with two variants of the ISP. They are HAIS

(Chapter 4) for the uncorrelated ISP (the ISP1) and BOIS(this chapter) for the correlated

ISP (the ISP2). We have also run experiments of both algorithms for both variants (the

ISP1 and ISP2) to see how the two algorithms perform in each variant of the ISP. The

results (Subsections 4.3.3 and 5.3.3) show that it is better to use each algorithm for the
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variant that it is designed for. This is because each algorithm can take more advantage of

the characteristics of the corresponding variant to efficiently solve the ISP. Specifically,

HAIS is better for the uncorrelated ISP, while BOIS is better for the correlated ISP. With

the ISP1, HAIS takes advantage of the characteristic that the number incentives is usually

not large (compared to that of the correlated ISP) and the incentives are uncorrelated

to simultaneously explore highly effective incentives in the Hoeffding step (right in the

second period). Exploring like this when dealing with the ISP2 is not effective as the

number of incentives is usually large. It might spend a significant amount of the budget

for exploration. Thus, the residual budget is not enough to effectively exploit the best

incentives explored. Similarly, with the ISP2, BOIS makes use of the possible correlations

between the incentives in each cluster to quickly identify the best incentive in each

cluster. Because of this, BOIS can find the best incentive among clusters more quickly

and efficiently than HAIS.

Regarding the mixed-correlated ISP (the ISP3), as discussed in Section 3.2.3, we can

solve this problem directly by building an algorithm for this variant or indirectly by

using designed algorithms for the other two variants. The direct way is left for future

work. So, we can use either HAIS or BOIS to deal with the ISP3 by considering the

budget ratio, which is the ratio of the budget of a crowdsourcing project to the round

cost. As discussed earlier in Section 5.3.4, as when the budget ratio is from 1 to 20

the performance of BOIS increases significantly. After that the algorithm still improves

but much more slowly. That means when the budget for a project is large enough

(i.e., larger than 20 times the round cost), we can apply BOIS for this project. Note

that when applying BOIS for a mixed-correlated project, each uncorrelated incentive is

considered as the only incentive in a cluster. When the budget is less than 20 times the

round cost, before using BOISwe should continue choosing candidate incentives in some

clusters so that the budget ratio is at least 20. In cases we did this with all clusters but

the ratio is still less than 20, we should consider using HAIS as this time we do not have

any correlated clusters. As discussed earlier, BOIS does not perform well (compared to

HAIS) in these cases.

5.4 Summary

In this chapter, we presented the ISP2 (or correlated ISP), a variant of the ISP where

the candidate incentives are correlated. We then developed BOIS, an adaptive algorithm,

to solve the ISP2 effectively. The ISP2 is a combination of the learning (the optimal

cluster) and tuning (the corresponding parameters) problems. So, the BOIS algorithm

combines two different techniques in a sequential decision process to deal with the two

problems at the same time. Actually, to deal with the learning problem, in a period, it

uses a MAB approach, which simply selects the most promising incentive in the most
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promising cluster. To tackle the tuning problem, the algorithm uses Bayesian optimisa-

tion together with Gaussian process regression, which makes use of possible correlations

between the incentives in a cluster to determine the most promising incentive effec-

tively. The performance of the algorithm was then evaluated by a series of simulations.

Specifically, we run the simulations with different financial budget sizes, different time

budget values, and different numbers of clusters. The results of the simulations show

that BOIS performs the best in most cases. Throughout this chapter, we obtain the

first three contributions as presented in Section 1.3. Specifically, the model (i.e., the

formal presentation of the ISP2 presented in Section 5.1) is Contribution 4, the BOIS al-

gorithm (detailed in Section 5.2) is Contribution 5, and the evaluation of the algorithm’s

performance (Section 5.3) is Contribution 6.

Similar to HAIS, BOIS helps us achieve the first three objectives of the research as men-

tioned in Section 1.2, as it is efficient (RO1), autonomous (RO2), and adaptive (RO3).

Moreover, together with HAIS, BOIS helps us attain the last research objective (RO4),

in which the solution is complete (i.e., can be applied to any crowdsourcing project).

Indeed, with these two algorithms, we can solve the ISP in crowdsourcing projects where

the candidate incentives are uncorrelated or correlated. As discussed in Subsection 3.2.3,

we can apply HAIS or BOIS to the projects with mixed-correlated incentives, i.e., projects

where the incentives in some clusters are correlated while the incentives in the other

clusters are uncorrelated). Depending on how much prior knowledge we have about the

performance of users in the projects and how large the financial budget is, we can choose

to go with HAIS or BOIS. More specifically, we can consider using HAIS if the budget is

not large compared to the chosen candidate incentives. We can consult Subsection 4.3.4

to have a good decision on how large of the budget is enough compared to the candidate

incentives. And, we can consider using BOIS if the budget is large (compared to the

chosen candidate incentives) and we have no or very little prior knowledge about user

performance. We can consult Subsection 5.3.4 to have a good decision on how large of

the budget is enough compared to the incentives in the chosen incentive methods.





Chapter 6

Conclusions and Future Work

This final chapter summarises our solution to the incentive problem and outlines oppor-

tunities for future work. Specifically, in Section 6.1, we summarise the main body and

results of this thesis while, in Section 6.2, we discuss several ways that can advance our

work.

6.1 Summary

Microtask crowdsourcing is an efficient tool to complete small tasks which are difficult

or impossible for computers but easy for humans. To run a crowdsourcing project, the

requester has to not only attract enough users (i.e., contributors) to the project, but also

have a good way to encourage users to participate in the project and to perform tasks

with a high quality. There are extensive studies of motivation and incentives from many

fields of study, such as psychology, sociology, organisational behaviour, marketing, and

computer science, under various perspectives, such as human in general, workers in firms,

customers of brands, members social in groups or online communities, and contributors

in crowdsourcing systems. These studies suggest a variety of candidate incentive meth-

ods that can be offered in specific crowdsourcing projects. In detail, incentive methods

might have different sets of parameters with different ranges of the parameters. An

incentive corresponds to specific values of the parameters. However, the effectiveness

of these incentives are usually unknown in advance due to specific characteristics of

those projects. Furthermore, many crowdsourcing platforms, such as Amazon Mechani-

cal Turk, Clickworker, and Figure Eight, provide APIs for the requesters to manage the

tasks and the submissions in an autonomous manner. This makes it possible to build

autonomous agents to monitor and adaptively switch incentives when appropriate.

Against this background, instead of investigating a particular incentive, in this thesis, we

focus on a more practical way to solve the incentive problem, which we call the incentive

103
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selection problem (ISP). Concretely, we find an appropriate way for an autonomous

agent to select an effective incentive (among the candidate incentives) in a microtask

crowdsourcing project. In more detail, after choosing some candidate incentive methods

(i.e., clusters) by using existing studies and prior knowledge about user performance in

the project, the requester (or the agent) has to identify the best values of the parameters

in each incentive method. The ISP has several characteristics which have not been

investigated all together in the literature. They are batched pulling, budget constraints

(on both finance and time), and especially the group-based nature of the incentives (or

arms). In order to solve the ISP effectively, we proposed two algorithms for two variants

of the problem that applied in different crowdsourcing projects, the ISP1 (or uncorrelated

ISP) and the ISP2 (or correlated ISP). The first variant, the ISP1, is when the requester

has prior knowledge about the performance of users or when the financial budget is

small in comparison to the chosen candidate incentives. In this variant, the requester

has to (or are able to) choose several incentives in each cluster before asking the agents

to select the best one. The second variant, the ISP2, is when the requester has a large

financial budget and no (or very little) prior knowledge about the user performance.

So, they are not confident to identify highly effective incentives in a cluster, and thus,

the agent have to face both the selecting (the best cluster) and tuning (the parameter

values) problems.

Regarding the ISP1, we proposed HAIS (Chapter 4), an algorithm to help the agents

efficiently select the best incentive among several candidate incentives. HAIS splits the

selection process into four steps: sampling, Hoeffding, stepped exploitation, and pure

exploitation. The sampling step happens in the first period, where the algorithm ap-

plies each incentive several times to have initial estimates of the incentives’ effectiveness.

At the end of this step, based on the confidence bounds of the estimates, HAIS elimi-

nates clearly ineffective incentives. In the second step, the algorithm uses Hoeffding’s

inequality to adaptively determine how much exploration is sufficient in identifying the

best incentive with a certain level of confidence. Then, in the next periods (except the

last one), it conducts stepped exploitation by spreading the remaining budget over the

periods and applying the current best incentive with the given budget following by an

update to the incentive’s estimate. Finally, in the last period, it simply applies the best

incentives with the residual budget. Through extensive simulations, HAIS is shown to

outperform state-of-the-art approaches such as Exp3, ε-first, fKUBE, and SOAAv. In

more detail, we run simulations in seven different settings, where the independent vari-

ables are financial budget, time budget, number of incentives, standard deviation of the

incentives’ utilities, and maximum group size. We also run other simulations to better

understand the behaviour of each approach. Based on the results of the simulations, we

extracted several points which are useful when applying HAIS in practice, such as the

more budget the better (at least about 20 times the round cost), the looser deadline the

better (but not necessarily too loose), and the less candidate incentives the better.
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Regarding the ISP2, we proposed BOIS (Chapter 5), an algorithm to help agents effec-

tively select the best cluster and also identify appropriate values of the parameters. BOIS

uses Bayesian Optimisation (BO) with Gaussian process prior to solve the tuning prob-

lem. Additionally, it considers the selecting problem as a MAB problem. By combining

MAB and BO approaches, the algorithm solves the two problems in a single process. In

detail, BOIS spends the first period to obtain initial estimates of the small number of

incentives in each cluster. Then, in each of the following periods (excluding the last one),

the algorithm offers the incentive which has the largest upper confidence bound (i.e.,

the value of the acquisition function). After having the user performance of the offered

incentive, it updates the probabilistic (i.e., surrogate) model of the utility function to

repeat the same process in the next period. In the last period, it simply applies the

best incentive identified. Results from our simulations show that BOIS performs better

than state-of-the-art approaches such as ε-first and ε-greedy. More specifically, we

run simulations in four different settings, where the independent variables are financial

budget, time budget, number of clusters, and standard deviation of the incentives’ util-

ities. The guidelines extracted from the simulations are consistent with those in HAIS.

In more detail, the more budget the better (at least about 50 times the round cost), the

looser deadline the better, and the less clusters the better.

When taken together, HAIS and BOIS help us achieve all the objectives of the research

described in Section 1.2. Firstly, the two algorithms are shown to be efficient (RO1)

as they perform better than other benchmarks in most cases. Secondly, both HAIS

and BOIS are totally autonomous (RO2). The requesters just give them the candidate

incentives and tell them the financial and time budgets. The algorithms will apply

appropriate incentives in each period so as to maximise the total utility. Thirdly, the

proposed algorithms are adaptive (RO3). Indeed, although the algorithms have a num-

ber of predefined parameters (as shown in Tables 4.2 and 5.2), these parameters are

self-explanatory. In particular, the requesters do not need to tune them when applying

the algorithms to specific crowdsourcing projects. One exception is the predefined para-

meter Dmin of BOIS. However, as discussed in Section 5.2.3, it is not difficult to identify

an appropriate value for Dmin. Fourthly, as each algorithm deals with a variant of the

ISP, the two algorithms together help us solve the ISP completely, i.e., can be applied

in any crowdsourcing projects (RO4). Regarding this research objective, as discussed

in Section 5.2.1, the two algorithms can be applied in projects with mixed-correlated

incentives, i.e., projects where the incentives in some clusters are correlated while the

incentives in the other clusters are not correlated. Depending on how much prior knowl-

edge we have about the performance of users in the projects and how large the financial

budget is, we can choose to go with HAIS or BOIS. More specifically, we can consider

using HAIS if the budget is not large compared to the chosen candidate incentives. And,

we can consider using BOIS if the budget is large (compared to the chosen candidate in-

centives) and we have no or very little prior knowledge about user performance. We can

consult Subsections 4.3.4 and 5.3.4 to have a good decision on how large of the budget
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is enough compared to the candidate incentives. That means, with the two proposed

algorithms, we can deal with all crowdsourcing projects.

6.2 Future Work

The work in this thesis is an initial attempt towards solving the ISP and a number of

challenges remain.

First, we have two algorithms to deal with the two variants of the ISP where the can-

didate incentives are uncorrelated or correlated. And, as discussed in Section 5.2.1,

in crowdsourcing projects where some clusters are uncorrelated and other clusters are

correlated, we can use either use HAIS or BOIS. Yet, we have not yet evaluated the per-

formance of the two algorithms in these projects. However, we can argue that, when

HAIS is used, with correlated clusters (clusters where the incentives are correlated), if

we continue choosing some incentives (randomly or with a low confidence that they are

good), we might miss highly effective incentives. Similarly, when BOIS is used, its simple

exploration mechanism might not efficient to explore incentives in uncorrelated clusters,

whereas HAIS might do better. Therefore, in these projects, a mixed strategy that

considers both types of clusters (uncorrelated and correlated) might be more efficient.

Second, our current models (the ISP1 and ISP2) assume that time periods are homoge-

neous and a new incentive can be started only when all previous ones have completed.

However in some real world settings, the durations of the incentives (e.g., the time to

run a contest) might be heterogeneous and variable. The difference in the durations

might be large when some incentives are individual-based (e.g., paying for performance)

and others are contests with large group sizes (e.g., 20 users). So, within a given pe-

riod, groups that finished early will have to wait until all other groups in the period are

finished so that the algorithm can move to the next period. Thus, addressing this limi-

tation would shorten waiting times and thereby the total time used by the algorithms.

Additionally, this could improve the overall performance, as the algorithms have more

time to conduct stepped exploitation, especially when the time budget is limited.

Third, the models assume that the cost of pulling an arm is the same at all times.

This may be limiting in more general settings. For example, some incentive methods

are inherently designed with variable payment such as paying for performance (Mason

and Watts, 2010) or using bonuses (Yin and Chen, 2015). In paying for performance,

the more tasks a user completes the more money they earn. And in using bonuses,

the bonuses provided depend on the algorithms used and might be different at different

times. We have a workaround to use these methods as fixed incentives as described

in Section 4.1. However, this might not take full advantage of the effectiveness of the

methods. Therefore, expanding the model to cover the case of variable costs of pulling
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an arm will provide requesters with more options in choosing incentives to be used in

the ISP.

Fourth, currently the performance of a group is assumed to be linearly proportional to

the group size as described in Section 4.3.2.3. This is due to the fact that very few

studies investigate the group performance in microtask crowdsourcing. In reality, this

might be more complicated. A better understanding on how people perform in groups

with different sizes could help designing more realistic algorithms to solve the ISP. To do

this, we need to run experiments on real microtask crowdsourcing projects. We can run

this on existing platforms with a large pool of workers such as Amazon Mechanical Turk,

Clickworker, or Figure Eight. We can also build our own systems and then deploy the

projects as in Ramchurn et al. (2013). The former might be easier as we do not need to

build the whole system, we only need to build the tasks. Also, it might be quicker since

we do not need to recruit users. On the other hand, the latter seems to take more time

for preparation and deployment. However, it is more flexible as we are not restricted to

the provided APIs from a crowdsourcing platform. That means, we have more control

on running controlled experiments so that we can better understand the performance of

users in groups in a crowdsourcing project.





Appendix A

User Motivation Theories

There are many established theories in different fields of study (such as psychology,

social psychology, sociology, economics, and organisational behaviour) related to this

research. Actually, many studies have used these theories to deal with problems related

to user motivation and incentives. As presented in Section 1.1, in this thesis, we do not

directly solve the incentive problem. Instead, we solve the incentive selection problem.

In order to do this effectively, requesters in crowdsourcing projects need a means to

easily choose good candidate incentives. Yet, as there are numerous incentives studied

in the literature and also used in practice, in a specific crowdsourcing project, it is not

easy for the requester to choose good candidates. For this reason, we built the literature

map so as to help the requesters in this task. Established theories about user motivation

and incentives play an important role in building the map. This appendix presents these

studies.

For a better presentation, the theories are presented in four groups corresponding to

four aspects related to user motivation: the crowd, the tasks, the requester, and the

user himself. Figure A.1 shows the positions of these theories in relation to the groups.

These theories help us identify important design objectives (i.e., performance rewarding

or task autonomy), useful incentives to enhance some motivational aspects (e.g., using

quota/bonus rewarding or providing users with freedom to switch tasks rather than only

do tasks provided), and causal relationships between incentives and design objectives.

They also help us identify the relationships between aspects of user motivation and user

behaviours. These theories are mentioned separately in some other places of the thesis,

thus we present them in this appendix.

In terms of the user, self-determination theory (SDT) and flow theory are two well-

established studies in psychology about general motivations of humans for choosing and

carrying out some activities. They focus on how to have an optimal experience when

conducting these activities (flow theory) and on the classification of motivations (SDT).

Another well-established theory is goal-setting theory. It explains factors connected to
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User

Self-Determination Theory
Flow Theory

Goal-Setting Theory

Crowd

Social Comparison Theory
Common Identity/Bond Theory

Legitimate Peripheral Participation
Collective Effort Model

Tasks

Job Characteristic Model
Information Gap Theory

Feedback Intervention Theory

Requester

Principal-Agent Model
Motivation Crowding Theory

Figure A.1: User Motivation Theories used in building the Incentive Map. User is a
member of the crowd.

goals that have strong influence on humans. Thus, we can motivate people by setting

or helping them to set appropriate goals. In terms of the tasks, the job characteristic

model (JCM) is also a theory that is widely used in organisational behaviour. It helps

design tasks that not only improve user performance but also enhance user motivation

with the job.

In terms of the crowd, there are many theories about the motivation related to the rela-

tionships or interaction among users. A dominant motivation of people in participating

in a group is to compare themselves with others and then improve themselves based on

this comparison (explained in social comparison theory). Two other theories, common

identity theory and common bond theory, describe the attachments of users as members

of a group. They can attach to the group as a whole (common identity) or to some indi-

viduals of the group (common bond). Besides that, legitimate peripheral participation

(LPP) is a theory about how to move from initial to experienced members in the com-

munity. Another aspect related to the crowd in collaborative working environments is

individual effort in the group. The collective effort model (CEM) provides a framework

to explain this issue.

Finally, in terms of the requester, in many cases, they have to consider using tangible

rewards to encourage their users. The principal-agent theory is an efficient tool to design

these kinds of incentives. However, providing rewards can diminish intrinsic motivations

of recipients, hence motivation crowding theory can be used to deal with this. The

following sections present more details of the above-mentioned theories.

Collective Effort Model (CEM)

CEM is a “model of individual effort on collective tasks”. This theory can be used to

explain the phenomenon that people tend to make less effort when working collectively

than working individually1 (Karau and Williams, 1993).

1This phenomenon is called social loafing or free riding.
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Common Bond Theory, Common Identity Theory

These two theories are about attachment of a member in a group. They can be used to

predict the causes and consequences of members’ attachment to the group as a whole

(common identity) or to group members individually (common bond) (Prentice et al.,

2006; Ren et al., 2007).

Feedback Intervention Theory (FIT)

This theory concerns the effects of feedback intervention. According to FIT, after receiv-

ing feedback, people can direct their attention towards the task itself, other irrelevant

tasks, or the recipients themselves. As a result of this, recipients can be motivated to

stay with the system (if the attention is themselves) or to perform other tasks (if the

attention is other irrelevant tasks), or they can understand more about the task that

is related to the feedback (if the attention is the task itself).This theory can be used

to maximise the effectiveness of feedback on performance results and user motivations

(Kluger and DeNisi, 1996).

Flow Theory

Flow theory studies the causes of flow, a mental status where people are completely

immersed in an activity and the activity itself is the reward regardless of its outcomes.

Being in this status, people are intrinsically motivated by the activity (Nakamura and

Csikszentmihalyi, 2002). This theory can be used to identify factors that can boost

intrinsic motivation of users in crowdsourcing projects when undertaking activities in

the systems.

Goal-Setting Theory

This is a theory which can be used to develop action plans that motivate and guide people

towards their goals. The premise of this theory is that conscious goals affect action. In

order to have motivational goals, the following five factors are needed to consider: goal

specificity, goal difficulty, goal commitment, feedback, and task complexity (Locke et al.,

1981; Locke and Latham, 2002).
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Information Gap Theory

This theory postulates that people will be curious when there is a gap between the

information that they already know and the information they want to know. This theory

can be used to stimulate the curiosity of users in a crowdsourcing project while they are

performing tasks or participating in other activities, hence retaining them longer with

the project (Law et al., 2016) or encouraging them come back to the project on a regular

basis.

Principal-Agent Model

The principal-agent model analyses the problem of how to set payments when an em-

ployer or a manager (called principal) hires an employee (called agent) to perform tasks.

In many cases, the principal cannot monitor actions of the agent strictly and also cannot

infer the agent’s action based on the outcomes of the tasks. In these cases, the principal

can affect the agent’s action by providing incentives (in the form of a contract) based

on observable signals that are correlated with the action (Laffont and Martimort, 2002).

This model can be used to design appropriate incentives to improve user performance

in crowdsourcing systems.

Job Characteristic Model (JCM)

JCM is a model that posits the effects of five core job characteristics (i.e., skill variety,

task identity, task significance, autonomy and direct feedback from the job) on work

outcomes (work motivation, job satisfaction, work effectiveness, etc.) through three

critical psychological states (i.e., experienced meaningfulness of the work, experienced

responsibility for outcomes of the work and knowledge of the actual results of the work

activities) (Hackman and Oldham, 1980). in this thesis, JCM is used to identify task-

related design objectives that affect user motivations.

Legitimate Peripheral Participation (LPP)

LPP is a theory that seeks to understand the move from newcomers to established

members and then core members in a community of practice or collaboration (Lave and

Wenger, 1991; Jackson et al., 2015). This theory can be used in choosing appropriate

approaches to support the move from initial to sustained participation.
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Motivation Crowding Theory

Motivation crowding studies the effects of external interventions on intrinsic motivation.

Rewards diminish (or enhance) intrinsic motivation when people are perceived to be

controlling (or supporting) (Frey and Jegen, 2001). This theory can be used when

considering to deliver rewards or punishments in order to have optimal effects on user

motivation.

Self-Determination Theory

SDT is a theory of motivation. SDT identifies three innate psychological needs that are

considered to exist in every person: competence (the need to master and understand

the environment, for example, how to perform tasks), relatedness (the need for a sense

of attachment and belonging to other people), and autonomy (the need to control their

own behaviours). The theory differentiates two types of motivation: extrinsic motiva-

tion (motivated by external rewards such as money, recognition or power) and intrinsic

motivation (motivated by the task itself such as interest or enjoyment) (Ryan and Deci,

2000). This theory can be used in understanding user motivation in a crowdsourcing

project or encouraging user participation by moving gradually from extrinsic motivations

to intrinsic ones, which is called internalisation.

Social Comparison Theory

This theory explains the tendency of people to compare themselves with individuals

around them. According to Festinger (1954), humans have a drive to evaluate their

opinions and abilities. In many cases, people’ tendency is to compare with others who

have some similarities in order to evaluate themselves, and then they are motivated to

improve their abilities towards the level of performance of the ones they compare to2.

In the crowdsourcing context, each user takes part in activities that can interact with

others in the community of the project or system. Thus, social comparison theory can

be used to find proper approaches that can encourage participation and performance

of users by providing an environment for them to conpare with others and continually

improve themselves.

2In social comparison theory, this phenomenon is call unidirectional drive upward.
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