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A B S T R A C T   

Dynamic nuclear polarization in the liquid state via Overhauser effect is enabled by the fluctuations of the electron-nuclear hyperfine interaction. Fermi contact (or 
scalar) hyperfine coupling can be modulated by molecular collisions on timescales of a few picoseconds and shorter, enabling an effective polarization transfer even 
at high magnetic fields. However, only a few studies have presented a theoretical analysis of the scalar mechanism. Here we report the current understanding of the 
scalar relaxation in liquid-state DNP and present different modeling strategies based on analytical relaxation theory and numerical calculations from molecular 
dynamics simulations. These approaches give consistent results in identifying the timescale of the fluctuations of the scalar interaction that drives 13C-DNP in the 
model system of CHCl3 doped with nitroxide radical. Subpicosecond fluctuations arise not only from random molecular collisions but are also present when target 
molecule and polarizing agent form a transient complex that persists for tens of picoseconds. We expect that these kind of interactions, possibly based on hydrogen 
bond-like complexations, might be present in a large variety of compounds.   

1. Introduction 

Since the early developments, NMR spectroscopy has been hampered 
by its low sensitivity caused by the small energy gap between the nuclear 
Zeeman levels in a magnetic field. The small nuclear polarization often 
prevents NMR experiments on low gamma nuclei, low abundant iso
topes, low concentration samples, or samples that are scarce or available 
in small amount. The sensitivity issue was tackled by developing hy
perpolarization methods that increase NMR signals by orders of 
magnitude [1,2]. Among those, dynamic nuclear polarization (DNP) is 
currently one of the most popular: it relies on the transfer of polarization 
from unpaired electrons spins to the nuclei enabled by microwave 
irradiation. 

In solids, DNP is extremely effective. Three different physical 
mechanisms (solid effect, cross effect, and Overhauser effect), which 
require different matching conditions, are active [3,4]. DNP allows the 
polarization to be transferred from a polarizing agent (usually a radical 
or a metal ions) via microwave irradiation to a target molecule. Even
tually, NMR signals are enhanced by more than 100-fold [5]. The 
ongoing optimization of hardware, polarizing agents, and detection 
schemes has made DNP-NMR in the solid-state a unique tool to save 
experimental time and enable new science [5,6]. 

The situation is different in the liquid-state, where DNP is not yet a 
mature methodology to be broadly applied to high-resolution NMR 
spectroscopy. The reason is twofold. On the one hand, there are tech
nical challenges when designing double resonance probes where 

efficient microwave irradiation, large sample volumes, and state-of-the- 
art NMR resolution coexist [7]. New developments in this direction 
showed that it is possible to mitigate sample heating [8,9], or use large 
samples volumes [10,11], or keep a good NMR resolution[12,13], but it 
has not been proven yet that these solutions can be implemented all at 
once in a single probehead. 

On the other hand, the physical mechanism that governs the polar
ization transfer is in many cases strongly field dependent [14]. This is 
often the case if 1H is chosen as the target nucleus for DNP: enhance
ments ϵ are usually negative, and the highest values obtained in H2O 
doped with nitroxide radicals are ∼ − 160 at 3.4 T [15] and ∼ − 80 at 9.4 
T [16], both recorded close to the water boiling point. For a liquid at 
room temperature and ambient pressure, it has been shown experi
mentally and theoretically that at magnetic fields up to 1 T the 
maximum 1H enhancement is ϵ ∼ − 102, but it drops to ∼ − 10 at 9.4 T 
[7,14,17]. This makes DNP unattractive at magnetic fields that are 
interesting for high-resolution NMR spectroscopy. 

However, this limitation does not hold if other target nuclei, such as 
13C, 19F, 31P, are chosen. In those cases, the enhancements in liquids at 
ambient temperature and pressure are positive—indicating a different 
mechanism—and still sizable at magnetic fields >3 T: +20-fold on 19F at 
5 T [18], +600-fold on 13C at 9.4 T [13], +160-fold on 31P at 14.1 T [11] 
are, among others [10,12,19,20], some of the largest values reported so 
far. 

These differences between 1H-DNP and DNP to other nuclei are 

* Corresponding author. 
E-mail address: tomas.orlando@mpinat.mpg.de (T. Orlando).  

Contents lists available at ScienceDirect 

Journal of Magnetic Resonance Open 

journal homepage: www.sciencedirect.com/journal/journal-of-magnetic-resonance-open 

https://doi.org/10.1016/j.jmro.2022.100040 
Received 30 November 2021; Received in revised form 25 January 2022; Accepted 29 January 2022   

mailto:tomas.orlando@mpinat.mpg.de
www.sciencedirect.com/science/journal/26664410
https://www.sciencedirect.com/journal/journal-of-magnetic-resonance-open
https://doi.org/10.1016/j.jmro.2022.100040
https://doi.org/10.1016/j.jmro.2022.100040
https://doi.org/10.1016/j.jmro.2022.100040
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmro.2022.100040&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Journal of Magnetic Resonance Open 10–11 (2022) 100040

2

related to the physical processes responsible for the polarization transfer 
[21]. The Overhauser effect is the sole active mechanism in DNP in the 
liquid state when using organic monoradicals as polarizing agents, 
although recently new mechanisms have been theoretically investigated 
for biradicals in solutions [22,23]. The Overhauser effect is based on 
electron-nuclear cross-relaxation that originates from the fluctuations of 
both the dipole-dipole and the scalar (Fermi contact) hyperfine 
coupling. The cross-relaxation, and ultimately the electron-nuclear po
larization transfer, has a maximum efficiency when such fluctuations are 
modulated close to the electron Larmor frequency (ωeτ ∼ 1, where τ is 
the correlation time of such fluctuations). If the Overhauser effect 
originates exclusively from electron-nuclear magnetic dipole-dipole in
teractions, a process modulated by molecular diffusion (translational or 
rotational) and active on a timescale of tens of picoseconds, the polari
zation transfer efficiency decreases rapidly with the magnetic field. 

On the contrary, the scalar coupling is modulated by molecular 
collisions and can happen on a much faster timescale: this means that, in 
standard solvents, this process has τ < 10 ps and, in the most favorable 
cases, even ≲1 ps [13,20,24]. Importantly, the two mechanism are 
counteractive, and only if the scalar coupling dominates over the dipolar 
one the DNP can be efficient at high magnetic field (if τ ∼ 1 ps, ωeτ ∼ 1 
for B ∼ 4 T). While the dipolar interaction is ubiquitous and often 
dominates the electron-nuclear hyperfine coupling (as in the case of 
1H-DNP), large electron-nuclear scalar couplings, which require a 
delocalization of the electron spin density to the target nucleus position 
[25], are less common. 

Earlier studies suggest that enhancements driven predominantly by 
scalar interaction are common for 19F [18,26], although this strongly 
depends on the organic radical chosen as a polarising agent [19,26]. 31P 
shows large scalar enhancements at high magnetic fields, but it has been 
tested only in its trivalent form [10,11]. For 13C, scalar enhancements 
are more frequently observed in the presence of halogens [27,28], and 
compounds like 13CHCl3 and 13CCl4 are very favorable cases [20,29,30]. 
At low fields, a weakly acidic complexation interaction between target 
molecule and nitroxides can also favor the scalar interaction [30]. Sur
prisingly, enhancements ϵ > 15 have been observed at high magnetic 
fields (9.4 T) in non-halogenated molecules such as diethyl malonate, 
ethyl acetoacetate, pyruvic acid [13,20], and phenylacetylene [12] and, 
more recently, in amino acids dissolved in water, where an hydrogen 
bond complexation with the radical is present [31]. The variety of these 
results obtained over four decades and the scarcity of studies at high 
magnetic fields conveyed the idea that a scalar interaction capable of 
driving large enhancements occurs only in exceptional cases [23]. This 
conclusion was further strengthened by the lack of a reliable strategy to 
predict the scalar enhancements that could be expected for different 
polarizing agents and different solvents. 

In this contribution, we report a description of the current under
standing of the electron-nuclear scalar interaction that is relevant for 
DNP in the liquid state. We compare a phenomenological description 
based on semi-classical nuclear relaxation theory, calculations per
formed with Bloch-Redfield-Wangsness (BRW) relaxation theory [32, 
33], and a numerical treatment based on molecular dynamics (MD) 
simulations. The methods are reviewed for the case of 13C-DNP in 
CHCl3, which has been extensively studied experimentally in the last 
few years. Our results suggest that a sub-picoseconds modulation of the 
scalar interaction can exist even in the presence of a transient 
complexation between the radical and the target molecule possibly 
enabled by hydrogen-bond like interactions. We show that the three 
modeling methods can describe the collisional nature of this dynamics 
and can identify the characteristic timescales of the fluctuations of the 
scalar interaction. 

2. Theory 

The conventional description of the Overhauser effect starts with a 

two-spin system (S = 1/2 for the electron, and I = 1/2 for the nucleus) 
interacting via hyperfine coupling (Fig. 1a) [34]. The evolution of the 
populations of the four energy level is governed by Solomon equations 
[35]. When solved for the steady state corresponding to a CW irradiation 
on resonance with the ΔmS = ±1 transition, they yield the well-known 
Overhauser equation for the NMR enhancement ϵ [36]: 

ϵ =
〈Iz〉
〈
Ieq

z
〉 = 1 − ξ⋅s⋅f ⋅

|γe|

γn
(1)  

where γe and γn are the gyromagnetic ratios of electron and nucleus, 
respectively; s is the saturation factor, representing the deviation of the 
electron spin polarization from the equilibrium, i.e. s = (〈Sz〉 −

〈Seq
0 〉)/〈Seq

0 〉; the leakage factor f = R1,para/(R1,para +R1,dia) quantifies 
the amount of paramagnetic relaxation relative to the total nuclear 
relaxation. These two terms are f ≈ 1 and s ≈ 1 when the radical con
centration is larger than a few mM, and when the electron spins are fully 
saturated with high-power microwave irradiation. Then, the achievable 
enhancements depend on the coupling factor ξ, which is a function of the 
cross-relaxation rates w0 (zero-quantum) and w2 (double-quantum) 
(Fig. 1): 

ξ =
w2 − w0

w2 + 2w1,I + w0
(2)  

The cross-relaxation rates are determined by the fluctuations of the 
anisotropic (dipolar) and isotropic (scalar) hyperfine coupling between 
the electron and the nuclear spins that are modulated at frequencies 
close to the electron Larmor frequency ωe/2π. Following Solomon’s 
treatment [35], the transition rates are functions of the spectral density 
functions (SDFs) associated with such fluctuations: 

w0 = kD⋅JD(ωe, τD) + kSC⋅JSC(ωe, τSC) (3)  

w2 = 6kD⋅JD(ωe, τD) (4)  

where the subscripts ‘D’ and ‘SC’ indicate the dipolar and the scalar part, 
respectively. In particular, JD(ωe, τD) is the SDF for dipolar coupling 
fluctuation with correlation time τD, and JSC(ωe, τSC) is the SDF for the 
scalar part with correlation time τSC. The constant kD is model depen
dent (Supplementary Information), while kSC = 2S(S+1)/3 [37]. 

It is important to note that the fluctuations of the scalar hyperfine 
coupling drive only the zero-quantum transition w0 (Eq. 3), while the 

Fig. 1. a) Energy level diagram for two spins 1/2 interacting via hyperfine 
coupling. The states are indicated as |mS mI〉. b) Coupling factor as a function of 
the magnetic field calculated for 13C using a dipolar contribution with trans
lational correlation time τD = 30 ps, and using the same dipolar contribution 
plus a scalar one with τSC = 1 ps. 
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dipolar part drives both w0 and w2. In other words, the scalar interaction 
and the dipolar one are counteracting terms and contribute with oppo
site signs to the DNP efficiency (Fig. 1b). This becomes clearer when 
rewriting Eq. 2 using Eqs. 3 and 4; the coupling factor ξ as a function of 
the SDFs is then: 

ξ =
5kD⋅JD(ωe, τD) − kSC⋅JSC(ωe, τSC)

R1,para
. (5)  

The paramagnetic relaxation term R1,para in the denominator can also be 
written as a function of the SDFs [37] 

R1,para = 7kDJD(ωe, τD) + 3kDJD(ωn, τSC)+

+ kSCJSC(ωe, τSC) .
(6)  

Therefore, the coupling factor ξ can be calculated when the SDFs are 
known. 

In the context of DNP in the liquid state, the electron-nuclear dipolar 
interaction has been extensively investigated, because it is the dominant 
mechanism in 1H-DNP. The SDF JD(ω, τD) has been calculated both 
analytically (based on semi-classical nuclear relaxation theory) [37–39] 
and numerically, with molecular dynamics (MD) [40–42]. The two ap
proaches are consistent in describing the diffusional dynamics govern
ing the dipole-dipole interaction, as demonstrated by 1H-DNP studies in 
water [40] and toluene [41] doped with nitroxide radicals. 

On the other hand, the scalar interaction is less well understood. The 
SDF for the scalar interaction JSC(ωe, τSC) has been modeled from DNP 
data at low fields (< 0.34 T) using a phenomenological approach [26]. 
The same analytical model has been recently extended up to 9.4 T [13, 
20] and used to analyze the efficiency of different polarizing agents in 
13C-DNP [24,25]. In parallel, Sezer and coauthors extended the 
MD-based numerical approach to calculate JSC(ωe, τSC) [43]. In the 
following, we describe three methods for obtaining the SDF for the 
scalar interaction. 

Semi-classical relaxation theory: the pulse model 

The semi-classical formulation of the electron-nuclear scalar inter
action assumes τSC≪T1,e, where T1,e is the longitudinal relaxation time 
of the electron. This condition defines the scalar relaxation of the first 
kind and is satisfied for most organic radicals in solution state (T1,e ∼

500 ns for nitroxides in organic solvents) [44,45]. In the semi-classical 
treatment [46], the stochastic nature of the fluctuations of Aiso(t) is 
represented by Lorentzian SDF for the scalar interaction, i.e. JSC(ωe,τSC)

= τSC/(1 + ω2
e τ2

SC), which assumes an autocorrelation function consist
ing of a mono exponential decay [32]. 

This can be improved to better describe the evolution of Aiso when an 
electron spin, localized on an organic radical molecule, interacts with a 
nuclear spin of a diamagnetic target molecule. In the context of the early 
application of DNP for studying liquid dynamics, Müller-Warmuth and 
coauthors introduced the ”pulse model” to describe the electron-nuclear 
scalar interaction modulated by random molecular collisions [29,47]. In 
this framework, the time dependence of the isotropic hyperfine coupling 
is represented by a series of ”pulses”, each one of them corresponding to 
a collision between the molecules (Fig. 2). For each collision, Aiso ∕= 0, 
meaning that the electron spin density is partly delocalized to the nu
cleus position, while Aiso = 0 when the two molecules are apart. The 
fluctuations of Aiso is 

Aiso(t) =
∑∞

n=1
An⋅s(t − tn) (7)  

where s(t − tn) is the shape of the pulse, tn is the time point of the nth 

collision, and An is the hyperfine coupling of the nth collision. Eq. 7 can 
be further extended when more than one type i of pulses are present at 
the same time, representing, for instance, different geometries of the 
collision between radical and target molecule: Aiso(t) =

∑
iA

(i)
iso(t). Fig. 2 

shows a schematic representation of the pulse model with two types of 
pulses (collisions), the first with Lorentzian shape and width 2τ1 and the 
second also with Lorentzian shape but a longer pulse duration 2τ2. 

For the pulse model, the SDF for the scalar interaction is obtained by 
Fourier transforming of the autocorrelation function K(t) =

〈Aiso(τ)⋅Aiso(τ + t)〉τ. In the case of pulses with Lorentzian shape and 
correlation time τi, i.e. s(t) = τi/(1 + t− 2τ2

i ), the SDF is 

JSC,Pulse(ωe, τi) =
∑

i
JSC,Pulse

(i)(ωe, τi) =

=
∑

i

4π2〈Ai〉
2

τp,i
[τi⋅exp( − ωeτi)]

2
(8)  

Here, ωe is the electron Larmor frequency, τi is the half-width of the 
collision i, 〈Ai〉 is the average amplitude (in Hz), and 1/τp,i is the fre
quency of the collisions of type i. The concentration of the radical is not 
explicitly included as a prefactor [48]. An example of an SDF calculated 
with Eq. 8 is shown in Fig. 2b, where two types of Lorentzian collisions 
are considered, with correlation times 2τ1 = 1 ps and 2τ2 = 20 ps, 
respectively. The SDF with shorter correlation time gives a significant 
contribution to the total SDF at electron Larmor frequencies ωe/2π>100 
GHz. 

The SDF JSC,Pulse(ωe, τi) changes when the pulse shape s(t − tn) in Eq. 
7 is chosen differently. A few examples of JSC,Pulse(ωe, τi) calculated for 

Fig. 2. a) Representation of the time fluctua
tion of the hyperfine coupling Aiso(t), according 
to the pulse model for molecular collisions. Two 
types of collisions are shown, both having a 
Lorentzian pulse shape, but different collision 
duration, 2τ1 and 2τ2, respectively. b) SDFs 
calculated with the pulse model using two 
contributions: JSC,Pulse(ωe, τ1) [〈Aiso〉= 1.6 MHz, 
τp,1= 10 ps, τ1= 0.5 ps] in red; and 
JSC,Pulse(ωe, τ2) [〈Aiso〉= 0.8 MHz, τp,1= 50 ps, 
τ1= 10 ps] in gray. The sum of the two is shown 
as a dashed line. c) Example of Aiso(t) obtained 
from numerical simulations (MD and DFT) for 
CHCl3 molecule diffusing around TEMPONE 
radical (time resolution 0.2 ps). d) SDF 
computed from Aiso(t) of the kind shown in 
panel c, extended for the range 0–1000 ps. (For 
interpretation of the references to colour in this 
figure legend, the reader is referred to the web 
version of this article.)   
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different shapes of the collision pulse (Lorentzian, Gaussian, and square) 
are shown in the Supplementary Information. 

Finally, the contribution of the scalar relaxation to the nuclear 
relaxation can be calculated as [37] 

R(Pulse)
1,SC =

2
3

S(S+ 1)JSC,Pulse(ωe, τi) , (9)  

where S is the electron spin quantum number. 

BRW relaxation theory: scalar relaxation of the first kind 

The cross-relaxation process can be treated using the Bloch-Redfield- 
Wangsness (BRW) relaxation theory [32,33]. In this framework, we 
consider a system containing an electron and a nuclear spin coulped via 
dipole-dipole and scalar interaction. The stochastic processes that 
modulate them (rotational diffusion and collisional dynamics) were 
assumed to be uncorrelated. 

The dipole-dipole relaxation via rotational diffusion has been treated 
as described in the Supplementary Information. For the scalar coupling 
between the two spins, we consider collisional dynamics that modulate 
the hyperfine coupling and induces cross-relaxation via the scalar 
relaxation of the first kind [46]. In this case, the stochastic part of the 
hamiltonian can be written as [49]: 

Ĥ1(t) = a1(t)V̂ (10)  

where V̂ = ÊX N̂X + ÊY N̂Y + ÊZ N̂Z (with Ê and N̂ being the spin opera
tors of electron and nuclei, respectively), and a1(t) is the time dependent 
part of the hyperfine coupling. The standard BRW relaxation theory 
treatment yields the relaxation superoperator [49]: 

̂̂R = −

∫ ∞

0
〈a1(t)a1(t − τ)〉 ̂̂V e− i

̂
Ĥ 0τ ̂̂V e+i

̂
Ĥ 0τdτ . (11)  

where Ĥ0 is the static part of the Hamiltonian and 〈a1(t)a1(t − τ)〉 is the 
autocorrelation function for the scalar interaction. The autocorrelation 
function can be expressed as a linear combination of exponential decays 
with weights wk and correlation times τSC,k 

〈a1(t)a1(t − τ)〉 = Δ2
a

∑

k
wkexp

(

−
τ

τSC,k

)

(12)  

where Δa is the modulation depth of the hyperfine coupling (in rad/s). 
With this expression, the cross-relaxation rate in presence of the sole 
scalar relaxation becomes [49,50]: 

σE,N =
〈N̂ z|

̂̂R |Êz〉
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

〈N̂ z|N̂ z〉

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

〈Êz|Êz〉

√ =

=
Δ2

a

2
∑

k
wk

τk

1 + τ2
SC,k(ωe − ωn)

2 ≈

≈
2
3

S(S + 1)JSC,BRW
(
ωe, τSC,k

)
,

where the last equality is analogous to Eq. 9 and considers (ωe − ωn) ≈ ωe 

[46,51]. The Lorentzian SDF JSC,BRW(ωe, τSC,k) is compatible with 
random fluctuation of the hyperfine coupling arising from a molecular 
complex formation [29]; in the following, we show that this can also 
describe collisional processes in liquids. 

Numerical Simulations of Aiso(t)

The fluctuations of the isotropic hyperfine coupling Aiso(t) depend on 
the molecular motions. Specifically, Aiso is not zero when the two mole
cules are close enough to have an orbital overlap, i.e. a non-negligible 
electron spin density to the position of the target nucleus. As previously 

reported [43], this process can be investigated numerically. Molecular 
dynamics (MD) simulation is used to compute the diffusion of one (or 
more) radical molecule(s) surrounded by solvent molecules, which usually 
carry the target nuclei of the DNP experiment. This allows to track the 
position of each solvent molecule diffusing around the radical molecule. 

The electron-nuclear hyperfine coupling can then be estimated at 
each time point with density functional theory (DFT). In this way, one 
obtains the electron-nuclear hyperfine coupling as a function of time 
Aiso,m(t) for each m-th target nucleus. As shown in Fig. 2c, Aiso,m is the 
numerical counterpart of the analytical expression given by the pulse 
model in Eq. 7. 

From the hyperfine traces Aiso,m(t), one can derive the SDF [43,52]. 
The total autocorrelation function is defined as 

K(t) =
∑

m
Km(t) =

=
4π2

N

∑

m

〈
Aiso,m(τ)⋅Aiso,m(τ + t)

〉

τ,

(16)  

where N is the number of target nuclei per radical in the unit of volume 
(Supplementary Information) [43]. The SDF for the scalar interaction is 
then obtained numerically as the one-sided Fourier transform of K(t): 

JSC,Num.(ωe) = Re
{∫ +∞

0
K(t)exp( − iωet)dt

}

. (17)  

Both Eq. 16 and Eq. 17 can be calculated numerically from the traces 
Aiso,m(t). An example of an SDF calculated with this procedure is shown 
in Fig. 2d. Within this formalism, the nuclear relaxation via scalar 
interaction is R(Num.)

1,SC = 6⋅JSC,Num.(ωe). The demonstration is not obvious 
and has been reported previously in Ref. [40] and [43], and reviewed in 
the Supplementary Information. 

3. The case of CHCl3 

Chloroform (CHCl3) is extensively used as a target molecule for 13C- 
DNP experiments at both low and high magnetic fields [13,20,25,53,54]. 
CHCl3 doped with nitroxide radicals is characterized by large scalar en
hancements (i.e. positive) in the field range 0.32-14.1 T: notably, we recall 
a factor of 320-fold measured at 9.4 T [13], and a factor of 70-fold 
measured at 14.1 T [12]. Besides the enhacements, the coupling factor 
ξCHCl3 has been reported for the system CHCl3/TEMPONE over a 10 T field 
range [13,20,30]. This large data availability makes CHCl3 an optimal 
model system for analyzing the details of the scalar interaction that drives 
13C-DNP. 

To better understand the molecular origin of the fluctuations of the 
scalar interaction, we simulated the dynamics of TEMPONE radical in 
CHCl3 and reconstructed the SDF JSC(ωe) from the traces Aiso(t). The 
dynamics of the TEMPONE radical in CHCl3 were probed by MD simu
lations using GROMACS 2018.4 [55] and a set of previously reported 
parameters for nitroxide radicals [56]. The MD run was recorded for 10 
ns with a resolution of 0.2 ps (Supplementary Information). For each 
snapshot, the hyperfine coupling Aiso to the chloroform C atoms was 
calculated with DFT using Orca 4.2.1 [57,58] with BLYP as functional, 
EPR-II basis set for H, C, N, O atoms, and IGLO-II basis set for Cl [52]. 
Because the Fermi contact interaction is effective at short range (<10 Å), 
we included in the DFT calculations for each snapshot only the three 
CHCl3 molecules closest to the radical, while Aiso was set to 0 for the 
other molecules. As a result, we obtained one trace Aiso,m(t) for each m 
molecule of CHCl3 in the simulation box. 

We analyzed the Aiso,m(t) traces calculated in the intervals 0–100 ps 
and 1000–2000 ps, and the same conclusions can be drawn from both 
datasets. Of the 1348 Aiso,m(t) traces recorded, only a fraction have 
Aiso ∕= 0 for at least one time point, i.e. 26 in the time interval 0–100 ps 
(Fig. 3a-b) and 154 in the longer interval 100–2000 ps. The values of Aiso 
are mostly positive, with maxima ∼ 20 MHz, while the negative ones are 
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≲2 MHz, in absolute value (Fig. 3a-b). 
The traces show a fast modulation of Aiso, recognizable by the sharp 

peaks (Fig. 3). About 12% of the molecules with Aiso ∕= 0 show a longer 
interaction (20 ps or more) and, on average, larger Aiso values, and larger 
Km(t) (Fig. 3 and Supplementary Information). The rest of the CHCl3 
molecules have sporadic interactions with the radical, meaning that the 
elapsed time between the first and the last contact is not longer than 10 ps, 
and after that the molecule diffuses away from the radical (Aiso = 0). 

This situation is reflected in the total autocorrelation function K(t)
(Fig. 4a): K(t) has a maximum at t<1 ps, then non-negligible components 
in the interval t = 1–50 ps, and finally K(t) ∼ 0 for t> 100 ps, meaning 
that the Aiso does not fluctuate on such long timescales. The function K(t)
can be fitted with a sum of four exponential decays 

∑4
i=1xiexp( − t /ti). By 

performing the same analysis on five different portions of the MD trace, 
each 1 ns long, we found that the contributions that have larger weights wi 
have time constants ti= 0.1–25 ps, while a longest one (ti > 100 ps) has a 
weight that is almost one order of magnitude smaller than the others 
(Supplementary Information). Therefore, we can conclude that the hy
perfine coupling Aiso fluctuates mostly on the timescales 0.1–25 ps. The 
scalar SDF JSC,Num.(ωe) is computed numerically with Eq. 17 from the 
autocorrelation function K(t) or from its fit function, the results are similar 
for all the portions of the traces that were analyzed (Supplementary In
formation). The results in Fig. 4b show a large discrepancy between the two 
curves in the region B > 10 T. This is a consequence of the sampling rate of 
the autocorrelation function, which is 0.2 ps for the numerical K(t), and 
0.05 ps for its analytical fit. 

The geometry of CHCl3/TEMPONE at three time points is shown in 
Fig. 5. The molecule that has the longer interaction with the radical 
(>20 ps) is in a hydrogen bond-like complex [59]. This interaction also 
leads to the largest Aiso values recorded for the C atom. The other two 
closest molecules included in the calculation are more likely to interact 
with the radical via the Cl atom, leading to short and sporadic spikes in 
the Aiso(t) traces (Fig. 5). 

Previous 13C-DNP studies on CHCl3 and CCl4 suggested that the 
hydrogen bond-like interaction between CHCl3 and radical may reduce the 
probability of short timescale modulation of Aiso, which is more effective in 
driving the polarization transfer at high magnetic fields [13,20]. This was 
supported by the observation of larger 13C enhancements on CCl4 than on 
CHCl3 at magnetic fields > 3 T [13,20]. However, here we note that, even 
during the formation of the transient complex, Aiso(t) is still modulated on a 
≲1 ps time scale (Fig. 3 and 5 a). This means that the presence of a transient 
interaction between radical and target molecule does not prevent fast 
fluctuations of Aiso. A similar mechanism has been proposed very recently 
for interpreting scalar enhancements at high fields [31]. 

This numerical analysis can be compared with what has been pre
viously obtained analytically with semi-classical nuclear relaxation 
theory [13,20]. In particular, the coupling factor data ξCHCl3 in the range 
0.34–9.4 T has been simulated with Eq. 5, using the scalar SDF given by 
the pulse model (Eq. 8) [13]. The latter was assumed to be a sum of two 
components (i.e. two types of collision): 

JCHCl3
SC,Pulse(ωe) = J(1)

SC (ωe, τ1) + J(2)
SC (ωe, τ2) =

=
4π2〈A1〉

2

τp,1
[τ1exp( − τ1ωe)]

2
+

+
4π2〈A2〉

2

τp,2
[τ2exp( − τ2ωe)]

2
.

(18)  

The experimental ξCHCl3 has been simulated with Eq. 5 and the param
eters in Table 1 obtained from a previous analysis [13]. Here we 
considered values of collisional correlation times in the ranges 2τ1=

0.8-1.7 ps and 2τ2= 16–40 ps (Fig. 6a). Supported by a comparative 
analysis of ξ in CCl4 [13,20], the collision characterized by the long τ2 
was previously attributed to an hydrongen bond-like interaction be
tween the radical and the CHCl3 molecule. On the contrary, the faster 
collisions (2τ1 ∼ 1 ps) were associated to random elastic collisions, 

possibly favored by the halogen (Cl). Notably, this description of the 
electron-nuclear scalar interaction based on phenomenological argu
ments agrees very well with the dynamical features identified here with 
MD/DFT simulations. The correlation times 2τ1= 0.8-1.7 ps and 2τ2=

16–40 ps are close to the time constants extracted from the traces 
calculated numerically (Fig. 3 and 4), i.e. ti ∼ 0.1–20 ps. 

A quantitative comparison between the two models is shown in Fig. 6b, 
which displays the scalar terms kSCJSC(ωe, τSC) and the dipolar terms 
5kDJD(ωe,τD), whose difference gives the coupling factor (Eq. 5). While the 
ratio between scalar and dipolar is found to be model independent, the 
curves have been rescaled to maximum overlap to account for the con
centration of the radical, which is taken into account differently in the 
different models. The scalar SDF JCHCl3

SC,Pulse(ωe) calculated with the 
phenomenological pulse model (Eq. 18) and the numerically calculated 
JSC,Num.(ωe) agree very well in the field range 0.3–10 T. The high field 
region (B>10 T) is more problematic: on the one hand, the pulse model 
(Eq. 18) does not have a third component τ3≪1 ps, because it is not 
necessary to explain the data up to 9.4 T; on the other hand, the numerical 
simulations performed with a resolution of 0.2 ps could not provide suffi
cient insight into the higher frequency regime. For the dipolar part, we 
compared the hard-sphere force free model that describes the dipole-dipole 
coupling arising from the translational diffusion (Supplementary Informa
tion) with JD(ωe) calculated by Sezer and coworkers from MD simulations 
[52]. In this case too, the two models give comparable results. 

A similar analysis of the coupling factor ξCHCl3 and the underlying 
scalar interaction can be performed using the BRW relaxation theory. To 

this aim, we computed numerically the relaxation superoperator ̂̂R with 
Spinach [60] for an electron-13C spin pair interacting via dipole-dipole 
coupling (rotational dynamics) and scalar relaxation of the first kind 
(collisional dynamics). One can demonstrate that the coupling factor ξ in 
the Liouville space formalism is (Supplementary Information): 

ξ ∼
σ

R1,n
=

〈N̂ z|
̂̂R |Êz〉

〈N̂ z|
̂̂R |N̂ z〉

(19)  

where σ is the cross-relaxation rate between the electron and nuclear spins, 
and R1,n is the longitudinal nuclear relaxation rate. The field dependence of 
ξCHCl3 was simulated numerically with Eq. 19 and the set of parameters in 
Table 1. As shown in Fig. 6a, the data are well reproduced when the scalar 
contribution is parametrized with two contributions with correlation times 
τ1= 0.8 ps and τ1= 30 ps, respectively. These results are consistent with the 
analysis presented above. The comparison of the scalar SDFs (Fig. 6b) 
shows that the use of a sum of exponential decays as autocorrelation 
function is a good approximation of the phenomenological pulse model, 
which better represents the collisional dynamics of the radical/target 
molecule pair. The dipolar SDF calculated with the BRW theory uses a 
dipole-dipole coupling arising from isotropic rotational diffusion, and 
therefore deviates from the translational diffusion computed by the 
phenomenological model. This does not affect significantly the predictions 
of the coupling factor, but can be improved by taking into account the 
coupling between rotational and translational diffusion. 

4. Conclusions and outlook 

In summary, we have presented three models (phenomenological 
relaxation theory, numerical BRW treatment, and MD/DFT simulations) 
to describe the electron-nuclear scalar cross-relaxation that drives the 
polarization transfer in the liquid state. These three approaches give 
consistent results when analyzing 13C-DNP data obtained in the model 
system CHCl3 and TEMPONE radical, and can describe the same com
plex collisional dynamics. Although the numerical MD/DFT simulation 
offers greater insight into the details of molecular interactions, modeling 
the experimental data with relaxation theory leads to a correct estimate 
of the timescale at which the electron-nuclear hyperfine coupling is 
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modulated. Concerning the molecular origin of these fluctuations, the 
existence of transient radical/target molecule complex (persisting for 
20–40 ps) does not exclude the presence of additional faster dynamics 

(≲1 ps), which can be effective for scalar relaxation at high magnetic 
field. A similar type of dynamics has been recently proposed in a 
comprehensive study at 9.4 T [31] and can be responsible for 
scalar-dominated 13C-DNP enhancements that have been observed at 
high field in non-halogenated compounds [12,13,20]. We expect that 
13C-DNP in the liquid state driven by the scalar mechanism could be 
effective for a large variety of compounds, broadening the scope of the 
method. In this context, both models based on relaxation theory and 
numerical MD/DFT calculation offer robust tools to quantitatively 
investigate the details of the scalar cross-relaxation mechanisms. 
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Table 1 
Parameters used for the simulations of ξCHCl3 as a function of the magnetic field with the phenomenological relaxation model and with the BRW numerical simulation. 
(1)The Pulse model (Eq. 18) requires the collision frequencies 1/τp,i in the prefactors, and those are τp,1 = τp,2 = 50ps.   

Phenom. relaxation model  WRB theory  

〈A1〉 (MHz)(1) 2τ1 (ps)  〈A2〉 (MHz)(1) 2τ2 (ps)   Δa (MHz)  w1  τ1 (ps)  w2  τ2 (ps)  

Scalar interaction 0.67 0.8-1.4 0.19 16–40  3.6 0.38 0.5-1.7 0.62 18–38  
rH
d (Å)  τH

D (ps)  rCl
d (Å)  τCl

D (ps)   r (Å)  τ (ps)     

Dipolar interaction 3.4 39 4.0 53  3.1 30     

Fig. 3. a) Time dependence Aiso,m(t) of the hyperfine coupling between the 13C of CHCl3 and the unpaired electron of the nitroxide radical calculated from MD/DFT 
simulations (time resolution 0.2 ps). The traces were recorded in the time interval 0–100 ps: of the total 1348 traces here we show the 26 traces that have Aiso(t) ∕= 0 
for at least one time point. b) Same Aiso,m(t) traces displayed in a stacked plot. The dashed lines mark the time points when the H-bond-like complex jumps from one 
CHCl3 molecule to the other. The traces of the molecules that form a long (>20 ps) transient complex with the nitroxide radical are highlighted in colors. 

Fig. 4. a) Autocorrelation function K(t) =
∑

mKm(t) calculated for the traces 
Aiso,m(t) in the time interval 1000–2000 ps with a sampling of 0.2 ps. The fit of 
K(t)) was performed with a sum of four exponential decays with a sampling of 
0.05 ps. b) Numerical Fourier transform of the autocorrelation function K(t)
(gray) and of its multi-exponential fit (black). 
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