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HARD-SPHERE FORCE-FREE MODEL

When the electron-nuclear dipolar interaction is modulated by translational diffusion, the

hard-sphere force-free model can be used to calculate the SDF associated with the dipole-

dipole interaction. In this case, the two molecules are approximated as rigid spheres with

the spin at center. The SDF is given by [1]:

JD(ω, τD) = 1 + 5z/8 + z2/8
1 + z + z2/2 + z3/6 + 4z4/81 + z5/81 + z6/648 (1)

with z is z =
√

2ωτD, where ω is the angular frequency of the spin at the given magnetic

field, and τD is the correlation time for the translational diffusion. The latter can be also

written as τD = r2
d/(Ds + Dr,s), where rd is the distance of minimum approach, Ds is the
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self-diffusion coefficient of the solvent and Dr,s is the diffusion coefficient of the radical in

the solvent.

The contribution of the dipolar interaction to the nuclear relaxation is given by: RD
1 =

kD · [7JD(ωe, τD) + 3JD(ωn, τD)] where the prefactor is:

kD = 32000π
405

(
µ0

4π

)2 NACγ
2
ng

2
eµ

2
BS(S + 1)

rd(Ds +Dr,s)
. (2)

The hard-sphere force-free model was used to describe the dipolar interaction in the case

of CHCl3 doped with TEMPONE radical [2, 3]. Because the C-O distance strongly depends

on the direction of approach of the CHCl3 molecule to the radical (via Cl atom, or via H

atom) [2], the SDF JD can be written as a sum of two components:

JCHCl3
D (ωe,n, τD) = 3

4J
(Cl)
D (ωe,n, τ

Cl
D ) + 1

4J
(H)
D (ωe,n, τ

H
D ) (3)

where τClD = 53 ps and τHD= 39 ps.[3] The prefactors 3/4 and 1/4 are weighting factors that

stem from the geometry of the CHCl3 molecule, with three Cl atoms and one H atom bonded

to the target C atom [2].

THE PULSE MODEL

The Pulse model, as described in the main text, can be written for an arbitrary shape

of the pulses, each representing a collision between the two spins. In agreement with previ-

ous literature [2–4], we chose a Lorentzian pulse, which, comepared with the Aiso(t) traces

obtained numerically, are a good approximation of the evolution Aiso(t) during a collision.

Figure S1 shows a comparison of the scalar SDF JSC,Pulse(ωe, τSC) calculated for different

pulse shapes but with the same correlation time τSC. The full analytical treatment can be

found in Ref. 5. Also, we considered a Lorentzian SDF, i.e. JSC(ωe, τSC) = τSC/(1 + ω2
eτ

2
SC).

BLOCH-REDFIELD-WANGSNESS (BRW) THEORY

All relaxation superoperators were computed using the numerical implementation [6,

7] of Bloch-Redfield-Wangsness (BRW) theory [8, 9] available in Spinach [10]. Separate

treatments were performed for the rotational and the scalar collisional mechanisms, with

the corresponding stochastic processes (rotational and translational diffusion) assumed to

be uncorrelated.
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FIG. S1. SDFs JSC,Pulse(ωe, τSC) as a function of the magnetic field calculated with the pulse model (solid

lines) for different shapes of the collision pulse. The pulse duration is τSC = 2 ps and the prefactor has been

arbitrarly chosen to rescale the SDFs to the same value at low fields. A Lorentzian SDF (dashed line) is

shown for comparison.

For a system containing a nuclear and an electron spin, the laboratory frame Hamiltonian

is:

Ĥ = ~̂N · ZN(t) · ~B + ~̂E · ZE(t) · ~B + Aiso(t) ~̂N · ~̂E + ~̂N ·Adip(t) · ~̂E (4)

where dots denote inner products, ~̂N =
[
N̂X, N̂Y, N̂Z

]
is a vector of Cartesian nuclear spin

operators, ~̂E =
[
ÊX, ÊY, ÊZ

]
is a vector of Cartesian electron spin operators, B̂ is the

magnetic induction, ZN is a 3x3 nuclear Zeeman interaction tensor (assumed rotationally

modulated), Aiso is the isotropic part of the hyperfine coupling (collisional modulation as-

sumed as described below), and Adip is a symmetric 3x3 matrix corresponding to the dipolar

part of the hyperfine coupling (assumed rotationally modulated).

For the rotational part of the relaxation theory, the Hamiltonian in Eq. 4 was cast, using

the functionality implemented in Spinach kernel, into the following form:

Ĥ(t) = Ĥiso +
2∑

m,k=−2
D

(2)
km(t)Q̂km (5)

where the isotropic part contains ensemble averages of Zeeman and hyperfine interactions,

D
(2)
km(t) are second rank WignerD functions of molecular orientation, and Q̂km are irreducible

spherical components of the anisotropic Hamiltonian [6]. The integrals in the relaxation

superoperator:

ˆ̂
R = −

∑
kmpq

∫ +∞

0
Gkmpq(τ) ˆ̂

Qkm exp(−i ˆ̂
H0τ) ˆ̂

Q†km exp(i ˆ̂
H0τ)dτ (6)

were then taken numerically using the auxiliary matrix formalism [7]. Isotropic rotational
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diffusion was assumed: in that case, the expression for the rotational correlation function is:

Gkmpq(τ) =
〈
D

(2)
km(0)D(2) ∗

pq (τ)
〉

= 1
5δkpδmq exp

(
− τ

τC

)
(7)

where angular brackets denote an ensemble average, and τC is the rotational correlation

time.

For the collisional part of the relaxation theory, isotropic averages of both Zeeman interac-

tions were used in the static part Ĥ0 of the Hamiltonian. The perturbation part contained

the centered (the average was subtracted and also placed into Ĥ0) stochastic part of the

isotropic hyperfine coupling:

Ĥ0 = ωEÊZ + ωNN̂Z + a0V̂ , Ĥ1(t) = a1(t)V̂ (8)

where

V̂ = ÊXN̂X + ÊYN̂Y + ÊZN̂Z , 〈a1(t)〉 = 0 . (9)

In this case, the standard BRW relaxation theory treatment yields [11]:

ˆ̂
R = −

∫ +∞

0
〈a1(t)a1(t− τ)〉 ˆ̂

V e−i
ˆ̂
H0τ ˆ̂

V e+i ˆ̂
H0τdτ . (10)

The autocorrelation function can be expressed as a linear combination of exponential decays

with weights wk and correlation times τk:

〈a1(t)a1(t− τ)〉 = ∆2
a
∑
k

wk exp
(
− τ
τk

)
(11)

where ∆a is the amplitude of the time modulation of Aiso (in rad/s). When this expression is

inserted into Eq. 10, it acquires the form that is amenable to the auxiliary matrix method for

the numerical calculation of the matrix exponential integrals [7]. The functionality enabling

the calculations described in this section is available in versions 2.7 and later of Spinach

library [10]; the calculations presented in this work are included with the example set.

COUPLING FACTOR FROM BRW FORMALISM

Consider a two-spin system (S for the electron, I for the nucleus) and the corresponding

four-level energy diagram (Figure 1 in the main text). The Solomon equations give the

evolution of the I magnetization 〈Iz〉 as:

d〈Iz〉
dt

= −(w0 + 2w1,I + w2)(〈Iz〉)− (w2 − w0)(〈Sz〉 − 〈Seq
z 〉) (12)
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Solving for the steady-state d〈Iz〉/dt=0, and adding the diamagnetic nuclear relaxation w0
1,I

leads to the Overhauser equation:

〈Iz〉 − 〈Ieqz 〉 = − w2 − w2

w0 + 2w1,I + w2
· w0 + 2w1,I + w2

w0 + 2w1,I + w0
1,I + w2

(〈Sz〉 − 〈Seq
z 〉) (13)

where the two fractions are the coupling factor ξ and the leakage factor f , respectively.

The same situation can be described using the Liouville-von Neumann equation and the

BRW formalism. In the Liouville space, the evolution of 〈Êz〉 and 〈Îz〉 is given by:

d

dt

〈Êz〉
〈N̂z〉

 =

−R1,E σ

σ −R1,N


〈Êz〉 − 〈Eeq

z 〉

〈N̂z〉 − 〈N eq
z 〉

 (14)

where R1,(i) is the electron (nuclear) longitudinal relaxation rate, σ is the cross relaxation

rate, and 〈Eeq
z 〉, 〈N eq

z 〉 are the electron and nuclear equilibrium states. Solving the equation

for the steady state, one gets:

(〈N̂z〉 − 〈N eq
z 〉) = σ

R1,N
(〈Êz〉 − 〈Eeq

z 〉) , (15)

which is the analogue in the Liouville space of the Overhauser equation Eq. 13. Comparing

Eq. 13 and Eq. 15 yields the following equivalence:

ξf = σ

R1,N

f∼1−−→ ξ ∼ σ

R1,N
. (16)

MOLECULAR DYNAMICS AND DFT

The dynamics of the interaction of the TEMPONE radical with CHCl3 were probed

by MD simulations using Gromacs 2018.4 [12]. For the radical, the force field parameters

(compatible with the Amber99* force field) were adopted from the literature [13]. Bond

and angle parameters for chloroform were chosen in agreement with the Amber force field

parameters, atomic charges were obtained by geometry optimization (Orca 4.0.1, HF/6-

31g*) and subsequent fitting using the RESP methodology [14] as implemented in Multiwfn

3.6 [15]. This approach, which has been reported before in detail for chloroform [16] was

found to yield excellent agreement with previous literature reports [17].

The MD system was prepared by constructing a box containing a TEMPONE radical

and a number of solvent molecules (1348 for CHCl3). The systems were equilibrated for

500 ps in the NVT and NPT ensembles, respectively. Following this, the MD trajectories
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used for analysis were recorded by saving the molecular coordinates in 0.2 ps intervals. The

total length of the trajectory was 10 ns for CHCl3. For the analysis of the time-dependence

of the hyperfine interaction, subsets of both trajectories were used. For chloroform, two

datasets were created, one covering the first 100 ps (dataset S, "short") and one covering the

range from 1000-2000 ps (dataset L, "long"). In order to obtain the hyperfine couplings, DFT

calculations were performed for the individual structures in the datasets, retaining only the

three solvent molecules closest to the radical. Since a large number of calculations is required

for this (5001 calculations for the dataset L), the creation of DFT input files and analysis of

DFT output files was automated by a Python script. For the computations, Orca 4.2.1 was

used employing the BLYP functional in conjunction with the EPR-II basis sets for C and H

atoms and the IGLO-II basis set for Cl atoms [18]. Single point calculations were carried out

using Tight SCF convergence criteria and the isotropic hyperfine interactions were calculated

for the C and H atoms in CHCl3. The traces of the hyperfine interactions were constructed

by taking the DFT-derived values for the C atoms in the molecules contained in the DFT

system (i.e. the closest three) and assuming a value of 0 for the remaining ones.

Aiso(t) TRACES AND AUTOCORRELATION FUNCTIONS

The Aiso(t) traces were used to numerically calculate the SDF for the scalar interaction.

The autocorrelation function for each trace Aiso,m(t) is

Km(t) = 4π2

N
〈Aiso,m(τ) · Aiso,m(τ + t)〉τ (17)

where 4π2 converts K(t) into angular frequency units and N is the number of target nuclei

per radical over the the volume. In the CHCl3 case, we had 1348 CHCl3 molecules in a

204.7 nm3 box. Numerically, the autocorrelation function can be computed with Matlab

(function xcorr.m). The Km(t) calculated for Aiso,m(t) traces for CHCl3 and TEMPONE

are shown in Figure S3, where only the positive part of the time axis (t > 0) is considered

(Km(t) is symmetric).

The sum of the autocorrelation functions K(t) = ∑
mKm(t) is shown Figure S3. The

SDF can be calculated from the autocorrelation K(t) as the one-sided Fourier transform,

i.e.:

JSC(ω) =
∫ +∞

0
K(t) exp(−iωt)dt (18)
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FIG. S2. Aiso,m(t) traces recorded in the time interval 1000-2000 ps (dataset L). Of the 1348 traces, 154

have Aiso 6= 0 for at least one time point in the selected time interval. Those are the one shown here (top

panel: overlapped traces; bottom panel: stacked traces).

NUMERICAL FOURIER TRANSFORM OF K(t)

Figure S3 shows JSC(ω) calculated numerically fromK(t). The frequency range [νmin, νmax]

is a function of the sampling time tsamp of the autocorrelation function K(t), which is, by

definition, equal to the time step used to record the trace Aiso(t). Therefore, one has:

νmin = 1
tsamp

1
n
; νmax = 1

2tsamp
(19)

where n is the number of points of K(t) (equal to the number of points of the trace Aiso(t).

In the case of CHCl3, Aiso(t) for dataset S was sampled in the range 0-100 ps with tsamp=

0.2 ps and n= 500 points: these lead to νmin= 10 GHz and νmax= 2500 GHz (Figure S3).
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FIG. S3. a) Autocorrelation functions Km(t) calculated for the traces Aiso,m(t) of dataset S. The color

code is the same used for the traces in the main text. b) Sum of the autocorrelation functions Km(t) from

dataset S. c) SDF calculated as one-sided Fourier transform of K(t).

A longer trace of 1 ns was recorded for dataset L, in the interval 1000-2000 ps: in this case,

the SDF covers the a larger frequency range 1–2500GHz.

The SDF JSC(ω) was calculated as the Fourier transform ofK(t) using the FFT algorithm

(the same results were obtained with Origin and Matlab).The same algorithm was used to

calculate the Fourier transform of the function Kfit(t) = c0 + ∑4
i=1 cie

−t/ti used to fit the

functionK(T ) (Figure S4). The latter was the calculated in the range 0–25000 ps with a time

step of 0.05 ps, much shorter than the time step used for sampling K(t). The fit parameters

are [c1 = 1.84 · 105, t1 = 19.1], [c2 = 9.97 · 104, t2 = 1.78], [c3 = 2.92 · 104, t3 = 124],

[c4 = 2.05 · 105, t4 = 0.108], where the decay times are given in ps. The numerical Fourier

transforms FFT(K(t)) and FFT(Kfit(t)) are compared in Figure S4. A larger sampling rate

leads to an overestimation of the SDF JSC(ω) in the high field region (B>10T).

To check the reproducibility of the results, the analysis of the traces Aiso(t) was performed

for five different datasets extracted from the MD run. In particular, we considered five time

ranges: A) 1000-2000 ps; B) 2000-3000 ps; C) 3000-4000 ps; D) 4000-5000 ps; E) 5000-6000 ps.

The autocorrelation functions K(t) were fitted with a sum of four exponential decays. The

components with larger weights wi have time constants ti in the range 0.1-25 ps (Figure S5a).

Despite small differences in the decay times ti, the SDFs extracted from each trace are in

excellent agreement (Figure S5b).
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FIG. S4. a) Autocorrelation function K(t) from the dataset L and fit performed with a sum of four

exponential decays, i.e. c0 +
∑4

i=1 cie
−t/ti , where ci and ti are fitted parameters. The inset shows the same

function in semi-logarithmic scale to highlight the region <1ps. b) Numerical Fourier transforms via FFT

of the function K(t) and of its fit function Kiso(t).

FIG. S5. a) Time constanst ti as a function of their corresponding weight wi extracted from the fit of

four correlation functions K(t) corresponding to different sections of the trace Aiso(t). b) SDFs obtained as

numerical Fourier transforms of the autocorrelation functions K(t).

NUCLEAR RELAXATION RATE R1,SC

Following the work of the Florence group [19–21], within the formalism of the relaxation

theory, the coupling factor can be written as:

ξ = 5kD · JD(ωe, τD)−R1,SC

R1,para
. (20)

where R1,SC = kSCJSC(ωe, τSC) is the nuclear relaxation that originates from the electron-

nuclear scalar interaction.
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FIG. S6. Traces Aiso,m(t) and corresponding autocorrelation functionsKm(t) for the three CHCl3 molecules

that are forming a longer transient complex with the TEMPONE radical (dataset S). The color code is the

same used in Figure S3 and in the traces shown in the main text.

The same equation can be rewritten in quantities that are computationally accessible,

i.e. the spectral densities. This approach, described in Ref. 22 and 23, leads to:

ξ = 5J (Num.)
D (ωe)− 6J (Num.)

SC (ωe)
3J (Num.)

D (ωn) + 7J (Num.)
D (ωe) + 6J (Num.)

SC (ωe)
, (21)

where J (Num.)
D (ωe) and J

(Num.)
SC (ωe) are the SDFs of the dipolar and scalar interactions, re-

spectively, calculated numerically from MD/DFT simulations. From Eq. 20 and Eq. 21 it

follows that R(Num.)
1,SC = 6J (Num.)

SC (ωe).

RADICAL/CHCl3 TRANSIENT COMPLEX

Some autocorrelation functions Km(t) from dataset S and dataset L (Figure S3) show

high amplitudes. When selecting the autocorrelation functions that satisfy the condition

Km(t∗) > 500 with t∗ = 0.2 ps, it becomes clear that the corresponding traces Aiso,m(t) are

those of the CHCl3 molecules that are in a transient complex with the radical (Figure S6).

The same can be done for the autocorrelation functions Km(t) from the dataset L: the traces

Aiso,m(t) corresponding to the largest Km(t) are shown in Figure S2.
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FIG. S7. Geometries of the complex CHCl3/nitroxide for some of the largest values of Aiso. The closest C

atom is color coded according to the traces in Figure S6 (atom color code: H white; C gray; N blue; O red;

Cl green).

SPINACH SIMULATIONS

The numerical simulations were performed using Spinach [10]. The set of parameters that

defines the two-spin system (electron-13C) used for the simulations of the coupling factor is

reported in Table I. To take into account the fast relaxation of the electron [24], we included

an additional relaxation term for both spins with the following values: for the electron T1,e=

500 ns, T2,e= 200 ns [24]; for the 13C nucleus T1,n= 4.0 s, T2,n= 0.3 s. The simulation with

Spinach was performed with the relaxation modules redfield, t1_t2, and SRFK; for the latter,

we used the labframe assumption set for both electrons and nuclei.
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