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Abstract
Rationale Asthma phenotyping requires novel biomarker discovery.
Objectives To identify plasma biomarkers associated with asthma phenotypes by application of a new
proteomic panel to samples from two well-characterised cohorts of severe (SA) and mild-to-moderate
(MMA) asthmatics, COPD subjects and healthy controls (HCs).
Methods An antibody-based array targeting 177 proteins predominantly involved in pathways relevant to
inflammation, lipid metabolism, signal transduction and extracellular matrix was applied to plasma from
525 asthmatics and HCs in the U-BIOPRED cohort, and 142 subjects with asthma and COPD from the
validation cohort BIOAIR. Effects of oral corticosteroids (OCS) were determined by a 2-week, placebo-
controlled OCS trial in BIOAIR, and confirmed by relation to objective OCS measures in U-BIOPRED.
Results In U-BIOPRED, 110 proteins were significantly different, mostly elevated, in SA compared to
MMA and HCs. 10 proteins were elevated in SA versus MMA in both U-BIOPRED and BIOAIR (alpha-
1-antichymotrypsin, apolipoprotein-E, complement component 9, complement factor I, macrophage
inflammatory protein-3, interleukin-6, sphingomyelin phosphodiesterase 3, TNF receptor superfamily
member 11a, transforming growth factor-β and glutathione S-transferase). OCS treatment decreased most
proteins, yet differences between SA and MMA remained following correction for OCS use. Consensus
clustering of U-BIOPRED protein data yielded six clusters associated with asthma control, quality of life,
blood neutrophils, high-sensitivity C-reactive protein and body mass index, but not Type-2 inflammatory
biomarkers. The mast cell specific enzyme carboxypeptidase A3 was one major contributor to cluster
differentiation.
Conclusions The plasma proteomic panel revealed previously unexplored yet potentially useful Type-2-
independent biomarkers and validated several proteins with established involvement in the pathophysiology
of SA.

Introduction
Asthma is a prevalent chronic inflammatory disease with many different phenotypes sharing common
clinical manifestations of episodic breathlessness, wheezing, cough, airflow obstruction (usually reversible)
and airway hyperresponsiveness [1, 2]. The underpinning pathobiology may however be widely different.
As individuals respond differently to treatments targeting specific pathways, better predictive biomarkers
are required to improve patient selection, guide treatment and monitor responses. Currently available
Type-2 asthma biomarkers, such as blood eosinophils, total serum immunoglobulin E (IgE) or fraction of
exhaled nitric oxide (FeNO), do not adequately enable endotyping, which is required for personalised
treatment [1]. Another major clinical challenge is the identification of biomarkers reflecting non-Type-2
asthma, which is often more severe and lacking effective treatments [3, 4].

With the overall aim being biomarker discovery, the ChAMP (Centre for Allergy Research highlights
Asthma Markers of Phenotype) consortium developed an affinity proteomics panel focused on proteins
with potential involvement in airway or systemic inflammation. Protein selection was based on literature
reviews, database searches and recent research findings. The four main biological processes reflected by
the proteins were 1) immune response, 2) lipid mediator pathways (predominantly sphingolipids), 3) signal
transduction and 4) extracellular matrix (figure 1). The panel was enriched in non-Type-2-related proteins
to address the unmet clinical need in this particular subgroup. Specifically, our objective was to examine
plasma protein associations with asthma severity and oral corticosteroid (OCS) treatment. Furthermore, we
aimed to test the hypothesis that specific plasma protein profiles can identify unique molecular subgroups
of asthma patients.

Initially, subjects with mild-to-moderate (MMA) or severe (SA) asthma, and healthy controls (HCs) from
the multicentre investigation U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Disease
outcome) were screened [5]. The discoveries in U-BIOPRED were then validated in a second cohort,
BIOAIR (Longitudinal Assessment of Clinical Course and BIOmarkers in Severe Chronic AIRway
Disease) [6], where samples were obtained from subjects with MMA or SA or COPD, before and after a
placebo-controlled intervention with oral prednisolone. This permitted comparisons between the protein
profiles of subjects with SA and COPD, distinct respiratory disorders that may show certain overlapping
characteristics and, importantly, an assessment of the pharmacological effect of oral glucocorticosteroids on
the plasma proteins measured. The study design and main aims are shown in figure 1.
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Methods
Subjects
The discovery cohort included baseline EDTA plasma samples from U-BIOPRED, a prospective cohort
study of SA phenotypes (Clin.Trial.Gov NCT01976767) [5]. Of 525 included subjects, 263 were
non-smokers with SA (SAn), 95 current or ex-smokers with SA (SAs/ex), 76 non-smokers with MMA and
91 HCs (figure 1). Subject characteristics and data availability are summarised in table 1 and table S1.

The validation cohort included 142 subjects from the BIOAIR study (Clin.Trial.Gov NCT00555607) [6].
After a 4-week treatment optimisation period, subjects underwent a 2-week, double-blind
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FIGURE 1 Study overview. Two independent cohorts, U-BIOPRED and BIOAIR, were investigated in this study. In
a first screening, the U-BIOPRED cohort including 525 baseline plasma samples from 525 subjects was profiled
using antibody bead arrays detecting 177 proteins with 377 antibodies. In the validation stage, the same array
was used to profile the BIOAIR cohort comprising 351 plasma samples from 142 subjects. The BIOAIR cohort
included a double-blind placebo-controlled oral corticosteroid intervention trial where the placebo group
received additional open steroid treatment. These samples were used to study the influence of steroids on
plasma protein levels. Asthmatic subjects from the U-BIOPRED cohort were used to identify potential
phenotypes using consensus clustering of protein profiles. COPD: chronic obstructive pulmonary disease; HC:
healthy non-smoking controls; MMA: non-smokers with mild-to-moderate asthma; SAn: non-smokers with
severe asthma; SAs/ex: smokers or ex-smokers with severe asthma.
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TABLE 1 Demographic and clinical characteristics of study subjects

U-BIOPRED cohort

HC (n=91) MMA (n=76) SAn (n=263) SAs/ex (n=95) p value#

(incl. HC)
p value#

(excl. HC)

Age (years) 36 (27–49) 43 (29–51) 53 (44–62) 55 (48–61) <0.0001 <0.0001
Gender (% females) 37.4 48.7 66.2 51.6 <0.0001 0.004
BMI (kg·m−2) 24.7 (22.8–27.5) 24.8 (22.9–28.7) 27.5 (24.5–33.4) 29.0 (25.6–32.6) <0.0001 <0.0001
Age of onset or diagnosis (years) NA 15 (6–34) 20 (7–38) 38 (17–47) – <0.0001
FEV1 (% predicted) 103.1 (94.1–110.3) 91.7 (78.5–101.0) 65.8 (50.4–84.5) 68.6 (55.1–78.2) <0.0001 <0.0001
FEV1/FVC 79.9 (75.3–82.9) 73.3 (67.1–78.6) 64.4 (52.9–74.4) 62.8 (54.5–70.2) <0.0001 <0.0001
FeNO (ppb) 20.0 (13.4–29.2) 27.5 (19.0–56.0) 27.0 (16.0–47.0) 23.0 (12.0–44.0) 0.0006 0.1501
FEV1 (% predicted)¶ NA 91.4 (76.6–101.4) 64.2 (50.2–79.6) 67.8 (53.4–75.6) – <0.0001
FEV1/FVC

¶ NA 73.0 (66.0–77.5) 63.1 (53.2–72.7) 62.1 (53.4–69.5) – <0.0001
Reversibility (%) NA 9.6 (5.6–16.1) 13.3 (5.8–22.1) 14.6 (7.7–21.1) – 0.090
OCS dose (normalised to mg
prednisolone)

NA NA 10.0 (7.5–19.0) 13.8 (10.0–20.0) – 0.065

OCS users (n) NA NA 137 46 –
LTRA users (n) NA NA 114 41 –
Blood eosinophils (cells·µL−1) 100 (90–200) 200 (100–300) 220 (100–465) 225 (110–403) <0.0001 0.260
Blood neutrophils (cells·µL−1) 3100 (2550–4215) 3155 (2700–4425) 4720 (3600–6600) 4845 (3993–6728) <0.0001 <0.0001
Blood WBC (cells·µL−1) 5700 (4725–6905) 5700 (5100–7300) 7980 (6400–9963) 8450 (6735–10300) <0.0001 <0.0001
Serum periostin (ng·mL−1) 49.9 (43.9–57.8) 48.8 (41.6–54.7) 50.0 (42.0–60.5) 43.8 (36.2–59.6) 0.023 0.014
Serum total IgE (IU·mL−1) 23.4 (8.1–69.7) 94.7 (52.5–255.2) 120.0 (44.4–356.5) 119.4 (49.2–352.5) <0.0001 0.666
hsCRP (mg·L−1) 0.8 (0.4–1.5) 0.7 (0.4–1.8) 2.0 (0.9–4.9) 2.4 (1.1–4.8) <0.0001 <0.0001
Sputum eosinophils (%) 0.0 (0.0–0.2) 0.8 (0.2–3.4) 2.9 (0.6–21.5) 3.3 (0.7–13.3) <0.0001 0.017
Sputum neutrophils (%) 41 (21–62) 42 (25–63) 55 (35–79) 55 (36–65) 0.015 0.065
ACQ-7 0.0 (0.0–0.0) 0.7 (0.4–1.3) 2.3 (1.7–3.1) 2.3 (1.6–3.0) <0.0001 <0.0001
AQLQ 7.0 (7.0–7.0) 6.2 (5.4–6.5) 4.5 (3.6–5.4) 4.4 (3.5–5.2) <0.0001 <0.0001

BIOAIR cohort

MMA (n=48) SAn (n=58) COPD (n=36) p-value#

Age (years) 42 (32–53) 51 (42–58) 66 (55–70) <0.0001
Gender (% females) 66.7 60.3 36.1 0.015
BMI (kg·m−2) 24.6 (22.4–27.1) 27.4 (25.6–30.7) 25.9 (22.4–29.6) 0.0007
Age of diagnosis (years) 18 (4–33) 31 (20–42) 60 (49–66) <0.0001
FEV1 (% predicted)¶ 89.8 (79.3–100.9) 72.8 (56.2–88.4) 44.3 (36.9–57.4) <0.0001
FEV1/FVC (%)¶ 71.1 (61.9–76.2) 67.0 (57.3–76.2) 44.9 (40.8–54.0) <0.0001
FeNO (ppb) 34.0 (20.7–59.1) 35.1 (14.4–77.0) 10.8 (7.5–18.3) 0.0007
Reversibility (%) 9.5 (7.3–14.1) 8.9 (3.5–13.7) 4.4 (1.9–5.7) <0.0001
OCS users (n) 0 7 0 –
Blood eosinophils (cells·µL−1) 250 (160–380) 260 (100–480) 200 (100–280) 0.088
Blood neutrophils (cells·µL−1) 3700 (2610–4360) 4880 (3680–6880) 4920 (3760–5920) 0.0001
Blood WBC (cells·µL−1) 6330 (5400–7220) 7770 (6700–10300) 7500 (6560–9250) <0.0001
Serum periostin (ng·L−1) 86 (71–104) 78 (69.5–101) 74 (60–91) 0.089
Serum total IgE (IU·mL−1) 172 (43.1–320) 152 (50.1–326) 54.5 (29.3–146) 0.013
hsCRP (mg·L−1) 1.0 (0.38–2.5) 2.2 (0.72–5.3) 3.1 (1.8–6.6) 0.0004
Sputum eosinophils (%) 1.2 (0.4–8.8) 11 (2.4–30) 0.11 (0–0.63) <0.0001
Sputum neutrophils (%) 45 (17–69) 35 (25–63) 68 (50–77) 0.033
ACQ-7 0.86 (0.32–1.4) 1.7 (1.0–2.9) 2.0 (1.3–2.8) <0.0001
SGRQ 17 (11–39) 42 (31–61) 41 (32–59) <0.0001

Data are presented as median (interquartile range), unless otherwise stated. ACQ-7: Asthma Control Questionnaire–average of seven; AQLQ: Asthma
Quality of Life Questionnaire–average; BMI: body mass index; COPD: chronic obstructive pulmonary disease; FeNO: fraction of exhaled nitric oxide;
FEV1: forced expiratory volume in 1 s; FVC: forced vital capacity; HC: healthy non-smoking controls; hsCRP: high-sensitivity C-reactive protein;
IgE: immunoglobulin E; LTRA: leukotriene receptor antagonist; MMA: non-smokers with mild-to-moderate asthma; NA: not applicable; OCS: oral
corticosteroids; SAn: non-smokers with severe asthma; SAs/ex: smokers or ex-smokers with severe asthma; SGRQ: St. George’s Respiratory
Questionnaire score; WBC: white blood cells. #: Kruskal–Wallis, Wilcoxon rank-sum or Chi-squared test, unadjusted. ¶: pre-bronchodilator.
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placebo-controlled OCS intervention (0.5 mg·kg−1·day−1 prednisolone) added to regular treatment,
followed by an identical open OCS treatment of the placebo group only (figure 1). Heparin plasma
samples from 58 SAn, 48 MMA and 36 patients with COPD, before and after the intervention, were
analysed. Subject characteristics and data availability are shown in table 1 and table S1.

Further information regarding the study design of each cohort and diagnostic criteria for each subject group
are presented in the supplementary material. Both studies were approved by the ethics committees of each
participating clinical institution and participants provided written informed consent.

Panel design and suspension bead array protein profiling
Detailed information regarding the protein panel of 177 proteins (table S2) and the antibody bead array
methodology is provided in the supplementary material. Briefly, this in-house developed array-based
affinity proteomics method utilises antibodies coupled to magnetic colour-coded beads (MagPlex, Luminex
Corp., Austin, TX, USA) to create a multiplex analysis platform [7, 8]. Measurements were performed
using FlexMAP3D instruments (Luminex Corp.) and reported as relative fluorescent intensity values.

Statistical analysis
Statistical analysis and visualisation were performed in R [9, 10]. Non-parametric Kruskal–Wallis (multiple
groups), Wilcoxon rank-sum (pairwise group) and Wilcoxon signed-rank test (paired) tests were used for
comparisons of continuous variables. All reported p-values for the proteins were adjusted for multiple
testing using the Benjamini and Hochberg [11] method and controlling the false discovery rate (FDR) at 5%.

Unsupervised consensus cluster analysis was used to identify potential subgroups of asthma patients, a
process described in more detail in the supplementary material. Briefly, a reduced set of variables (n=139)
was selected for consensus cluster analysis of log2 transformed and z-scored intensity signals for each
antibody, performed using the “ConsensusClusterPlus” package in R [12, 13]. The Euclidean distance
measure was used to describe similarity between subjects and the partitioning around the medoids
algorithm was used for clustering. For model validation, clustering was repeated 1000 times, randomly
removing 10% of subjects at each iteration. The cluster stability of models with two to 10 clusters was
evaluated by the lowest proportion of ambiguously clustered subjects [14] and the lowest deviation of ideal
stability [15]. A six-cluster model had slightly lower stability compared to 10 (table S8), but demonstrated
greater consistency across all clusters (figure S2e) and is therefore presented.

To identify proteins important for classification of the six cluster groups, the Boruta algorithm (R package
“Boruta”) [16], a wrapper built around the random forest classification method, was used. For more details,
see the supplementary material.

Results
Screening for asthma-associated proteins in U-BIOPRED
Plasma profiling revealed 110 proteins (measured by 139 antibodies) that showed significantly different
levels between subject groups in the U-BIOPRED cohort (table S4). The top 21 proteins, all with p-values
lower than 10−10, are shown in table 2. The most significant differences were consistently identified
between SAn or SAs/ex, and MMA or HC (figure 2a). No proteins were different between the
non-smoking and smoking SA groups (SAn and SAs/ex), nor between MMA and HC (figure 2a). The
overlap of proteins showing significant differences in the pairwise group comparisons are shown in figure
S1a.

Validation of asthma severity-associated proteins in BIOAIR
In the validation cohort BIOAIR, between-group comparisons revealed significantly different plasma levels
in 23 proteins (25 antibodies), see table S5. Of these, 15 proteins were altered between MMA and COPD
(all elevated in COPD) and 13 between SAn and MMA (all elevated in SAn). No differences in protein
levels were found between SAn and COPD. As shown in figure S1b, the majority of the significantly
different proteins were unique to the SAn versus MMA, or the MMA versus COPD pairwise group
comparison.

Comparing the results of U-BIOPRED and BIOAIR, 10 proteins were confirmed to be significantly
different between SA and MMAin both cohorts (table 3). Alpha-1-antichymotrypsin (SERPINA3),
apolipoprotein E (APOE), complement component 9 (C9), macrophage inflammatory protein-3 (CCL23
(MIP-3)), complement factor I (CFI), interleukin-6 (IL-6), sphingomyelin phosphodiesterase 3 (SMPD3),
TNF receptor superfamily member 11a (TNFRSF11A (RANK)), transforming growth factor beta 1
(TGF-β1) and glutathione S-transferase P (GSTP1), were all elevated in SAn compared to MMA (figure 3).
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Influence of OCS on plasma protein levels
The highly significant differences in plasma protein levels observed between SA and MMA could be due
to differences in disease mechanisms, pharmacological treatments, or both. We therefore used the BIOAIR
cohort, where subjects underwent a 2-week controlled OCS trial with prednisolone, to examine the effect
of glucocorticoid treatment on plasma protein levels. The majority of proteins were found to be affected by
prednisolone, most of which were decreased (figure 4a and b). Among the 10 proteins that were elevated
in SA in both BIOAIR and U-BIOPRED (figure 3), APOE, C9, MIP-3 and SERPINA3 all showed a
significant change following oral steroid treatment. APOE and SERPINA3 were increased after OCS intake
(figure 4c), whereas C9 and MIP-3 were decreased.

Oral steroid-induced plasma protein changes found in BIOAIR were confirmed by combining prescription
data and the objective measurement of urinary prednisolone metabolites in U-BIOPRED. Comparing levels
between SAn reportedly taking and not taking OCS, as confirmed by urinary analysis, 20 proteins (21
antibodies) in U-BIOPRED were associated with oral steroid use (figure 2c and table S6). In line with
BIOAIR results, APOE and SERPINA3 showed profiles that were both severity- and steroid-dependent,
increasing from MMA to SAn not taking OCS, and further from SAn not taking OCS to SAn taking OCS
(figure 4c). No proteins were significantly different when comparing the smaller groups of SAs/ex that
used OCS and those who did not (figure 2c).

To take into account oral steroid effects, the multiple group comparison of SAn, SAs/ex, MMA and HC
was repeated, limited to subjects reporting no current OCS use and in whom no urinary prednisolone
metabolites were detected. Levels of 98 proteins (126 antibodies) remained significantly different between
U-BIOPRED subject groups (figure 2b). Pairwise comparisons of these groups revealed a similar pattern
as for the whole dataset, irrespective of OCS use (compare figure 2a with figure 2b). Again, there was no

TABLE 2 Plasma proteins significantly different between subject groups in the U-BIOPRED cohort

Protein Gene Antibody −log
p-value#

−log p-value¶

SAn versus
MMA

SAn versus
HC

SAs/ex versus
MMA

SAs/ex
versus HC

Alpha-1-antichymotrypsin (ACT) SERPINA3 HPA000893 22.01 10.82 14.52 7.08 9.05
Complement component 9 (C9) C9 HPA029577 14.55 7.51 9.77 5.11 6.10
Complement component 9 (C9) C9 HPA070709 14.03 7.36 9.51 5.00 6.10
Lung surfactant protein D (SPD) SFTPD HPA044582 13.72 7.36 9.00 5.21 5.92
Tumour necrosis factor alpha (TNFα) TNF HPA055037 13.04 7.51 8.39 5.21 5.03
SPARC-like protein 1 SPARCL1 HPA067641 12.70 7.36 8.60 4.72 5.01
Fractalkine CX3CL1 HPA056729 12.37 6.01 8.85 4.59 6.10
Interleukin-2 receptor subunit alpha (IL-2Rα) IL2RA HPA046738 12.19 7.21 7.74 4.96 5.24
Complement factor I (C1) CFI HPA024061 11.96 5.72 8.38 4.66 6.10
Complement component 8 gamma chain C8G HPA046269 11.96 6.62 8.05 4.66 5.19
Fibrinogen alpha chain FGA HPA064755 11.96 7.36 6.85 5.60 4.92
Complement factor I (C1) CFI HPA001143 11.77 6.01 7.77 4.85 5.85
Membrane-associated guanylate kinase
inverted 1 (MAGUK)

MAGI1 HPA031852 11.62 7.16 7.77 4.08 4.43

Macrophage inflammatory protein-3 (MIP-3) CCL23 HPA063758 11.30 6.92 6.92 4.85 4.85
Fibroleukin FGL2 HPA026682 11.29 6.17 7.96 4.08 5.01
Interleukin-1 receptor beta (IL-1Rβ) IL1R2 HPA027598 11.11 6.48 7.44 4.32 4.85
Cyclooxygenase-1 (COX-1) PTGS1 HPA002834 11.10 6.34 7.64 4.15 4.85
Ceramide synthase 4 (CerS4) CERS4 HPA023621 11.10 6.25 7.74 4.21 4.74
E-selectin SELE HPA057891 11.03 6.62 7.54 4.08 4.26
Uteroglobin SCGB1A1 HPA031828 10.96 6.48 7.00 4.66 4.74
Apolipoprotein E (Apo-E) APOE HPA068768 10.82 7.36 4.32 6.72 4.26
Leptin LEP HPA068565 10.80 5.46 8.96 1.77 3.57
Granulocyte-macrophage colony-stimulating
factor (GM-CSF)

CSF2 HPA071579 10.74 6.32 6.11 5.24 4.96

There were 21 proteins targeted by 23 antibodies with an adjusted Kruskal–Wallis p-value <10−10. All plasma proteins were found elevated in
non-smokers with severe asthma (SAn) and smokers or ex-smokers with severe asthma (SAs/ex) compared to non-smokers with mild-to-moderate
asthma (MMA) and healthy non-smoking controls (HC). Comparisons of SAn versus SAs/ex and MMA versus HC showed nonsignificant differences for
all proteins (data not shown). Table was sorted by the adjusted Kruskal–Wallis p-value, lowest on top. A list of all the 110 proteins that were
significantly different is shown in table E4. #: Kruskal–Wallis test, adjusted. ¶: Wilcoxon rank-sum test, adjusted.
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difference in levels between SAn and SAs/ex (data not shown). More importantly, the 10 replicated
proteins remained elevated in SA (significant after FDR-adjustment: APOE, C9, MIP-3, CFI, SERPINA3
and RANK). A summary of all proteins that were significantly changed using these two approaches,
including or excluding OCS users, is shown in table S7.

Identification of protein-driven subgroups of asthma
To identify subgroups or phenotypes of asthma, a protein-driven consensus clustering algorithm was
applied to U-BIOPRED asthmatics. We clustered subjects based on their plasma protein profiles alone,
restricted to the asthma-associated proteins identified in the univariate analysis (table S4). Evaluation of
cluster models identified six robust clusters with high stability (table S8, figure 5a) and that were defined
only by within-group similarities of included protein profiles. By applying a classification algorithm, it was
possible to identify 108 profiles (85 unique proteins) confirmed as important for classification of the six
clusters (figure S3). Although all proteins were relevant for classification, the three most contributing
proteins are shown in figure 5b.
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FIGURE 2 a) Volcano plots of pairwise group comparisons in U-BIOPRED highlight multiple proteins elevated in subjects with severe asthma, but
not in mild-to-moderate. Each dot represents a protein measured by the antibody array. Dashed lines represent adjusted p-values <0.05.
Highlighted in red are proteins significantly different in the respective pairwise group comparison as well as in the multiple group comparison (i.e.
any of the 110 proteins). If multiple antibodies for the same target protein were significant, they all needed to show the same sign of log2 fold
change. b) Group comparisons in U-BIOPRED when limited to subjects where oral corticosteroid (OCS) use was not reported and confirmed
negative by urinary analysis (non-smokers with severe asthma (SAn) n=103, smokers or ex-smokers with severe asthma (SAs/ex) n=42, non-smokers
with mild-to-moderate asthma (MMA) n=63, healthy control (HC) n=90). Highlighted in red are the proteins found to be significantly different in the
respective pairwise group comparison based on all subjects (i.e. proteins that were significantly different in the respective comparisons in figure
2a). The majority of the proteins were still significantly different, seen by enrichment of red circles above the p-value threshold. (c) Analysis of
steroid effect in U-BIOPRED. SAn and SAs/ex stratified by reported OCS use and OCS metabolite detection. OCS use defined as prescribed and
confirmed positive in urine (SAn n=51, SAs/ex n=21) and no OCS defined as not prescribed and confirmed negative in urine (SAn n=103, SAs/ex
n=42).
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A pattern was observed among the clusters when sorted by median plasma protein levels. Most commonly
(63% of 139 antibody profiles), the highest levels were found in cluster 1, followed in decreasing order by
clusters 6, 4, 3, 2 and 5. Decreasing protein plasma levels across the clusters were also associated with
signs of decreasing disease severity (table S9). Although subjects with SA and MMA were found in all
clusters, those with SA were relatively more prevalent in clusters 1, 4 and 6 (more than 90% per cluster)
and subjects with MMA were relatively more prevalent in clusters 2, 3 and 5 (21%–37% of subjects per
cluster) which contained 78% of all MMA subjects.

The clusters aggregated subjects with similar clinical outcomes (table S9). In cluster 1, subjects
experienced low lung function, the most uncontrolled asthma, the lowest quality of life and the most
frequent exacerbations. These subjects had the highest body mass index (BMI) (84% overweight, 60%
obese) and evidence of systemic inflammation reflected by the most elevated high-sensitivity CRP
(hsCRP) and highest blood neutrophils. They also showed signs of increased mast cell activation as
reflected by elevated urinary tetranor-prostan-1,20-dioic acid (tetranor-PGDM). Conversely, cluster 5
included the youngest subjects with the best lung function, best asthma control, earliest onset of asthma
and lowest BMI. These subjects also exhibited the lowest blood neutrophil numbers, lowest hsCRP and
near-normal urinary tetranor-PGDM concentration. A selection of clinical and biochemical variables
associated with the clusters is shown in figure 5b.

Parameters that were not different among the clusters included gender distribution and objective evidence
of OCS use. Indices of Type-2 inflammation, including blood and sputum eosinophils, FeNO, circulating
periostin, total serum IgE and prevalence of atopy, were also not significantly different (table S9).

Proteins associated with Type-2-high asthma
To examine whether proteins in the array were altered in subjects with Type-2-high compared to
Type-2-low inflammation, we examined the U-BIOPRED data in relation to two recently published
strategies for defining Type-2 asthma. Dividing asthma subjects according to a composite Type-2
biomarker score based on blood eosinophils, FeNO and serum periostin as described by the Refractory
Asthma Stratification Programme (RASP) [17], was not associated with any significant differences in
protein levels. In U-BIOPRED, we have recently published that high urinary leukotriene E4 (LTE4) levels
have a strong Type-2 association [18]. In the current investigation, only seven of the proteins in the panel
were associated with LTE4 levels (table S10). Taken together, this analysis confirms that the protein panel
is suitable for its purpose to identify Type-2-independent signals.

Discussion
Using a high-throughput, array-based protein profiling technique to simultaneously analyse 177 selected
plasma proteins in 667 subjects from two established European asthma cohorts, we identified both known
and previously unknown candidate proteins associated with asthma severity. Despite observed effects of
OCS on multiple proteins, associations with asthma severity remained for most proteins following
adjustment for OCS use, a confounding factor often overlooked in biomarker discovery efforts.

TABLE 3 Proteins successfully validated in both the U-BIOPRED and the BIOAIR cohort

Protein Gene Antibody −log p-value# SAn
versus MMA

U-BIOPRED BIOAIR

Alpha-1-antichymotrypsin (ACT) SERPINA3 HPA000893 10.82 2.22
Apolipoprotein E (Apo-E) APOE HPA068768 7.36 1.66
Complement component 9 (C9) C9 HPA070709 7.36 1.57
Macrophage inflammatory protein 3 (MIP-3) CCL23 HPA063758 6.92 1.55
Complement factor I (C1) CFI HPA024061 5.72 1.44
Interleukin-6 (IL-6) IL6 HPA044648 3.28 1.66
Sphingomyelin phosphodiesterase 3 SMPD3 HPA069383 3.14 1.72
Receptor activator of nuclear factor kappa B (RANK) TNFRSF11A HPA027728 2.72 1.66
Transforming growth factor beta-1 (TGF-β1) TGFB1 HPA047516 2.41 1.55
Glutathione S-transferase P (GSTP1-1) GSTP1 HPA019779 1.33 1.72

All proteins showed higher plasma levels in non-smokers with severe asthma (SAn) compared to non-smokers
with mild-to-moderate asthma (MMA). #Wilcoxon rank-sum test, adjusted.
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FIGURE 3 Proteins validated in two independent cohorts. Boxplots of the 10 proteins showing significantly different plasma levels between
non-smokers with severe asthma (SAn) and non-smokers with mild-to-moderate asthma (MMA) in both studied cohorts (adjusted p<0.05). The
screening cohort U-BIOPRED and the validation cohort BIOAIR are shown side by side for each protein. COPD: chronic obstructive pulmonary
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Furthermore, the patterns of protein profiles grouped asthmatics into clusters with clinically meaningful
differences that were independent of Type-2 inflammation.

Among the 110 proteins significantly altered in severe compared to milder disease, many were known to
be involved in regulation of immunological pathways. For example, the chitinases (CHI3L1 (YKL-40) and
CHIT1 (chitotriosidase)) were elevated in both SA groups irrespective of smoking status compared with
HC, in line with previous data [19]. Multiple inflammatory cytokines associated with the pathobiology of
SA were also differentially abundant, including IL-4, IL-6, IL-10, IL-13, IL-17A, IL-26 and tumour
necrosis factor-α [20, 21]. Severe asthmatics also showed increased levels of surfactant proteins, such as
surfactant protein D, a pattern-recognition molecule involved in innate immune responses with
antimicrobial activity [22]. Increased plasma levels are in line with previous findings [23], presumably
reflecting increased epithelial damage and permeability within the peripheral airways.

Of the lipid mediator pathways, our findings suggest involvement of sphingolipids in asthma pathogenesis
as multiple enzymes of sphingolipid metabolism were elevated in SA including ceramide synthases,
sphingosine kinases and sphingomyelin phosphodiesterases. Components of the sphingolipid pathways,
which have been shown to be involved in asthma and linked to disease severity [24, 25], represent
potential therapeutic targets [26]. Several genome-wide association studies have also linked polymorphisms
in the 17q21 locus where the orosomucoid 1-like 3 (ORMDL3) gene resides to both childhood and adult
asthma [27, 28]. ORMDL3 is a regulator of sphingolipid synthesis and genetic variants lead to increased
expression as well as decreased sphingolipid de novo synthesis in children with asthma [29]. Certain
eicosanoid pathway enzymes were also elevated in SA such as haematopoietic prostaglandin D synthase
and cyclooxygenase-1 which are involved in many processes, in particular mast cell activation [30].

Further proteins found to be increased in severe compared to mild asthma included members of the
complement and coagulation cascades, confirming recent reports [31–33], as well as metabolic factors such
as insulin and leptin. Proteins related to oxidative stress, including superoxide dismutase and GSTP1, were
also elevated. These proteins have previously been associated with air pollution and mild asthma [34], but
their pathobiological role in SA is largely unknown.

The follow-up investigation in the BIOAIR cohort replicated some of the findings with 10 proteins being
significantly increased in SA compared to MMA in both cohorts. Many more proteins also followed the
same trends as observed in U-BIOPRED, but did not reach statistical significance, possibly due to the
smaller size of BIOAIR. It is also possible that this number may have been greater if plasma had been
collected in exactly the same way in both studies (i.e. both heparin, or both EDTA plasma samples).
However, the studies were planned and conducted at different times by different consortia, and therefore
procedures were not identical. This study nevertheless demonstrates the complementary power of BIOAIR
and U-BIOPRED, despite minor differences in methodology.

Among replicated findings were proteins with known involvement in airway fibrosis and remodelling such
as TGF-β1 [35] and SERPINA3. The latter might be of particular relevance in COPD, where plasma levels
have been found to be elevated [36]. IL-6, which may play a role in the pathobiology of a specific,
exacerbation-prone, asthma sub-phenotype [37], was also increased in SA patients. Interestingly, plasma
MIP-3 was elevated, consistent with a strong association of the gene encoding for MIP-3 with suboptimal
asthma control [38]. Indeed, in the cluster analysis, MIP-3 showed the highest levels in the cluster with the
worst Asthma Control Questionnaire and Asthma Quality of Life Questionnaire scores, and was among the
most significant proteins differentiating between clusters. In the context of asthma, APOE has received
attention due to its ability to suppress airway inflammation, and one may speculate that the increased levels
observed in SA represent a protective function [39]. However, apolipoproteins may also be affected by
statin therapy and for this reason we investigated whether APOE differed between MMA and SA following
removal of patients with cardiovascular comorbidities. In both U-BIOPRED and BIOAIR, APOE remained
significantly greater in SA than MMA, data not shown.

One particularly novel aspect of this study was the exploration of plasma protein profiles for the clustering
of asthmatics into consensus groups beyond their clinical diagnosis. This yielded six clusters of subjects

disease; HC: healthy non-smoking control; MMA: non-smokers with mild-to-moderate asthma; SAn: non-smokers with severe asthma; SERPINA3:
alpha-1-antichymotrypsin; APOE: apolipoprotein E; C9: complement component 9; CCL23: macrophage inflammatory protein 3; CFI: complement
factor I; IL6: interleukin-6, SMPD3: sphingomyelin phosphodiesterase 3; TNFRSF11A: receptor activator of nuclear factor kappa B (RANK); TGF-β1:
transforming growth factor beta-1; GSTP1: glutathione S-transferase P.
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FIGURE 4 Influence of oral corticosteroids. a) Volcano plots of comparisons in BIOAIR show that multiple proteins were affected by the steroid
treatment, with the majority being decreased. Each dot represents a protein measured by the antibody array, with significantly changing proteins
highlighted in red (above the dashed lines representing adjusted p-values <0.05). The two most significant proteins on the decreasing and
increasing side are labelled. Fold change calculated as log2 of the median of individual ratios (post/pre). b) List of proteins where the signal of at
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with differences in clinical and biochemical parameters. Clusters sorted by decreasing median plasma
levels of the studied proteins were associated with phenotypes of decreasing severity. In summary, we
observed associations between the cluster groups and age, age of asthma onset, BMI, forced expiratory
volume in 1 s, exacerbations, blood neutrophils, serum hsCRP, asthma control and quality of life.
However, no significant differences across clusters were observed in measures associated with Type-2
inflammation, including blood and sputum eosinophils, FeNO, total serum IgE, serum periostin, RASP
Type-2 score or atopy. Along with the relative lack of differences in protein levels observed when dividing
asthmatics into Type-2-high and Type-2-low subgroups, these findings confirm that the protein panel was
fit for the purpose of identifying Type-2-independent signals. Furthermore, the proportion of subjects with
detectable urinary levels of prednisolone metabolites was similar among the clusters, suggesting that OCS
use was not a factor driving the observed cluster differences.

Plasma proteins that were particularly important for cluster classification included carboxypeptidase A3
(CPA3, a mast cell specific carboxypeptidase stored in secretory granules), tripartite motif containing
protein 33 and TRAF3 interacting protein 2. In fact, the cluster-driven increase in CPA3 was mimicked by
elevated urinary tetranor-PGDM, the major urinary metabolite of the main mast cell prostanoid
prostaglandin D2 (PGD2). Collectively, this evidence suggests a pivotal role for mast cell activation in
Type-2-independent SA. Interestingly, and in contrast to these findings, we previously showed that PGD2

is associated with Type-2 inflammation [18]. Thus, taken together our findings indicate that mast cells are
diametric immune cells with a wide-spread involvement in both Type-2 and non-Type-2 inflammation.

Several new biological treatments have been approved for insufficiently controlled Type-2 asthma,
although what currently represents a major unmet medical need is improved therapy for the subgroup of
asthmatics with little or no Type-2 inflammation [1, 2, 40]. Interestingly, the most striking differences in
clinical characteristics between clusters included the high BMI observed in cluster 1, a group which also
had the highest blood neutrophils, highest serum CRP, worst quality of life and most exacerbations,
possibly reflecting a non-Type-2 asthma group. Serum CRP has been suggested as a biomarker for
neutrophilic asthma [41] and, accordingly, a neutrophilic inflammatory phenotype of asthma was
associated with increased systemic inflammation, as reflected by elevated serum CRP levels compared with
non-neutrophilic asthma [42]. Our findings may therefore provide a set of new, potential
Type-2-independent biomarkers.

A major strength of the current investigation is the use of two cohorts of well-characterised asthmatic
subjects, enabling validation of findings in an independent population and providing a comparison with
COPD. Incidentally, SA and COPD could not be differentiated based on levels of the measured proteins in
plasma, providing support for “the Dutch hypothesis” [43] and common molecular features in severe
obstructive inflammatory airway diseases. One may speculate that the lack of difference between SA and
COPD in BIOAIR could be due to the presence of patients with asthma/COPD overlap in either of these
groups. This is, however, unlikely as the inclusion/exclusion criteria of the BIOAIR study were designed to
reduce possible overlap between diagnoses. An exclusion factor for SA was current smoking (>10
cigarettes per day) and a history of greater than five pack years. In fact, the median number of pack years
in the BIOAIR SA group was 0, and reversibility was also significantly higher, as expected, in SA
compared to COPD [44]. An exclusion factor for COPD was diagnosed asthma or allergy and,
furthermore, COPD patients were required to be current or ex-smokers with a history of >15 pack years.

The two study designs were also complementary with U-BIOPRED providing data from a larger,
observational, cross-sectional study. BIOAIR, on the other hand, although smaller, included two
interventions: first 4 weeks of standardised treatment, which reduced biological variability due to
differences in therapy, and then a placebo-controlled OCS trial. A further strength was the design of the
array by the ChAMP consortium, based on multiple hypotheses concerning signalling pathways of
relevance to asthma, airway inflammation and immune-mediated diseases. The outcome was successful as

least one of the multiple antibodies targeting that protein in the array was affected by oral corticosteroid (OCS). Decreasing levels indicated by no
mark and increasing levels marked with (+). Mixed directions provided by multiple antibodies are marked with (*) and mixed directions of effect in
different subject groups are marked with (−,+). c) The plasma levels of apolipoprotein E (APOE) and alpha 1-antichymotrypsin (SERPINA3)
increased after OCS in BIOAIR subject groups. In U-BIOPRED, APOE and SERPINA3 were associated with the severity of asthma as well as with the
use of OCS among the severe asthmatics. Adjusted Wilcoxon signed-rank (BIOAIR) and rank-sum test (U-BIOPRED) p-values: *: p<0.05, **: p<0.01,
***: p<0.001. COPD: chronic obstructive pulmonary disease; HC: healthy non-smoking control; MMA: non-smokers with mild-to-moderate asthma;
SAn: non-smokers with severe asthma. Full definitions of each protein name are listed in table S2.
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the majority of proteins indeed displayed differential levels between disease severity and treatment groups.
Finally, a methodological advantage of the assay itself was that, for several analytes, multiple antibodies
targeting the same protein were used, often showing supporting profiles (figure S4).

A further advantage of the current investigation is that the analysis was based on the readily available
plasma matrix, supporting future development of less invasive tools for molecular asthma phenotyping at
the point of care. The detection of elevated airway proteins, such as surfactant proteins, in plasma from
subjects with SA and COPD, suggesting increased leakage in severe disease, also confirms that disease
processes in the lung tissue may be reflected in plasma. Generally, the findings suggest a greater systemic
impact of SA compared to MMA as protein levels were similar in mild asthma and HCs.

Possible effects of therapy are often overlooked in biomarker discovery efforts, but the BIOAIR oral
prednisolone intervention enabled a thorough assessment of the effect of OCS therapy on plasma protein
profiles. Results showed that levels of most proteins were reduced by OCS treatment. Interestingly, when
U-BIOPRED subjects taking OCS were removed from analyses (figure 2b), the differences between MMA
and SA were maintained for most proteins, although not for all, suggesting that plasma levels were affected
both by disease severity and OCS treatment. Moreover, proteins that were altered by OCS in the
non-smoking SA group did not change with OCS use in the smoking SA group where, in fact, no proteins
changed (figure 2c). This may reflect the known decreased responsiveness to corticosteroids and
differences in inflammatory biomarkers among smoking asthmatics [45, 46] and/or be a power issue. The
SA groups in both U-BIOPRED and BIOAIR were taking higher doses of inhaled corticosteroids than the
MMA groups, as per inclusion criteria, and it is important to note that inhaled corticosteroids could
potentially also affect protein expression. Unfortunately, a limitation of the current investigation is that we
were not able to examine this possibility as rigorously as for OCS.

In conclusion, the antibody array we developed identified multiple plasma proteins associated with asthma
severity, both confirming the involvement of known proteins such as inflammatory cytokines, growth
factors and chitinases, as well as suggesting novel targets for further investigation. For example, our
findings advocate components of the sphingolipid pathway and complement cascades as well as mast cell
related proteins as being worthy of more detailed future examinations. These discoveries were found to be
independent of effects potentially related to OCS therapy. Furthermore, we showed that protein profiles,
driven by amongst others a mast cell-specific carboxypeptidase, could be used to group asthmatic subjects
into six clinically distinct clusters. Taken together, we present a platform that is able to suggest novel
biomarker candidates for molecular phenotyping, particularly relevant to non-Type-2 asthma. The panel
may also aid discovery of future pharmacotherapeutic targets by exposing previously unexplored pathways.
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