
1.  Introduction
Extreme hydrological events, such as droughts and floods have a large societal impact if mitigation and adap-
tation measures are not developed and implemented (Kundzewicz & Kaczmarek,  2000). This is particularly 
the case in many developing regions where there is high dependency of livelihoods and economies on rain-fed 
agriculture and limitations to adaptive capacity (Niang et al., 2014); for example, in Africa, more than 80% of 
the population depends on agriculture for their livelihood (FAO, 2014). Early warning systems that combine 
forecasts of climate and hydrology with risk reduction measures can reduce the social and economic impacts 
of extreme climate and hydrological events (Wanders & Wood, 2016), and particularly so in at-risk developing 
countries (Hansen et al., 2011; Pozzi et al., 2013; Sheffield et al., 2014). For example, seasonal forecasts of low 
precipitation or higher risk of extreme events could enable farmers to make adaptive choices on types of crops, 
technology investment, and labor usage to minimize the impacts (Hansen et al., 2011).

During the last few years, several national, regional, and global operational and experimental hydrological fore-
casting systems, which combine short-term to seasonal forecasts of meteorological variables with hydrological 
models, have been developed to provide risk information and alerts to help reduce the impacts of floods and 
droughts. Some examples of continental to global and national systems are the Global Flood Awareness System 
(Alfieri et al., 2013), the African Flood and Drought Monitor (Sheffield et al., 2014), the European Flood Alert 
System (Thielen et al., 2009), the pre-operational Pan-European Multimodel Seasonal Hydrological Forecasting 
System (Samaniego et al., 2019; Wanders et al., 2019), and World-wide HYPE (Arheimer et al., 2020).

The utility of such systems relies on the accuracy and appropriateness of the hydrological models used to provide 
the risk indicators such as drought and flood indices but fundamentally on the quality and availability of oper-
ational meteorological forecasts to drive these models (Wanders & Wood,  2016). There has been continued 
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drought events at lead 1-month is modest. All models represent the monthly variation in the length of wet and 
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provides the highest performance compared to individual models and the un-weighted multi-model mean.
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development and production of climate forecasts from national and international agencies at ever higher resolu-
tion and with incremental improvements in skill (Kirtman et al., 2013; Wanders et al., 2019). Of note is the push 
for extended skill at sub-seasonal time scales (beyond 2 weeks but less than seasonal) (Lang et al., 2020) that has 
important implications for a range of applications, including disaster risk reduction and for different economic 
sectors (Morss et al., 2008). Criteria for choosing a set of seasonal climate models are based on their resolution 
(space and time), availability of hindcasts (historic forecasts) to evaluate their skill, the skill of the models for the 
particular application, and availability of forecasts operationally. Ideally, a climate model will provide data for 
precipitation and temperature at daily resolution at the least to capture extreme meteorological events and to drive 
hydrological models, have several decades of hindcast data to allow the skill to be evaluated over a reasonable 
number of years and to capture some extreme events, and crucially be available operationally to allow the devel-
opment of early warning in practice. Higher spatial resolution does not necessarily guarantee better forecast skill, 
but can potentially better resolve some scale-dependent processes (e.g., orographic effects on precipitation) that 
are important locally. Higher resolution also reduces the need for spatial and temporal downscaling for input into 
hydrological models that can be used to provide local-scale and more relevant hydrological information for water 
management and other water-dependent sectors (Samaniego et al., 2017). This may further reduce the uncertain-
ties in the forecasts (Thober et al., 2015; Wanders et al., 2019; Yuan et al., 2015).

Currently, there are several international initiatives that provide multi-model seasonal forecasts at a different 
spatial and temporal resolution that can be utilized for early warning. The availability of multiple models allows 
for model inter-comparison and account of the model structural uncertainties that are inherent in forecasting. 
These initiatives include the North American Multi-Model Ensemble (NMME, Kirtman et  al.,  2013; https://
www.cpc.ncep.noaa.gov/products/NMME/) and the Copernicus Climate Change Service (C3S) multi-system 
seasonal forecast (https://cds.climate.copernicus.eu/). The first phase of the NMME provides monthly data, and 
so is less suitable for forecasts of sub-seasonal metrics (e.g., probability of dry spells, the start of the rainy 
season) and for hydrological forecasting as hydrological models generally require daily or finer climate data. The 
latest Phase 2 provides sub-daily information that can resolve the key intra-seasonal events and be used to drive 
hydrological models without any downscaling but currently does not do so operationally. On the other hand, the 
European C3S provides sub-daily information for a hindcast period (1993–2016) and operational forecasts out to 
180–215 days depending on the model. Other initiatives such as the Subseasonal-to-Seasonal prediction project 
(F. Vitart et al., 2017; Frédéric Vitart & Robertson, 2018) provide access to forecasts from a range of climate 
models, but currently do not provide a consistent set of operational forecasts.

The objective of this study is to evaluate the performance of the C3S seasonal forecast models over Africa for a 
range of climate indices and to understand their potential for driving seasonal hydrological forecasts. We used 
daily precipitation and evaluated these against a high-resolution observational data product. The C3S models 
evaluated are the European Centre for Medium-Range Weather Forecasts (ECMWF: version 5), UK Met Office 
(UK-Met: version 14), Météo France (Meteo-France: version 6), Deutscher Wetterdienst (DWD: version 2), and 
Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC: version 3). The evaluation was done on multiple 
time scales and different lead times, with a focus on differences between the wet and dry seasons, and at different 
spatial scales, from the pixel level for the whole continent to regional scales. We evaluated monthly and weekly 
averages as well as a set of climate extreme indices using daily totals, which provides a novel and holistic view 
of the performance of the models across time scales. In addition, we evaluated the ensemble mean of individual 
models, the un-weighted multi-model mean, and the weighted mean of all models using different weighting 
schemes. Finally, the most skillful models are identified and a weighted average of all models developed with 
potential for driving hydrological models for early warning purposes and for analysis of meteorological droughts.

2.  Material and Methods
2.1.  Reference Datasets

To evaluate the skill of the seasonal forecast models, we used an observation-based gridded reference data set: 
the Multi-Source Weighted-Ensemble Precipitation (MSWEP). MSWEP (version 2.2) is a high-resolution global 
precipitation data developed by merging multiple datasets based on gauge, reanalysis, and satellite estimates 
(Beck et al., 2019; Beck, van Dijk et al., 2017). The second version of MSWEP (http://www.gloh2o.org/mswep/) 
is a unique precipitation data set in terms of its spatial (0.1°) and temporal resolution (3-hourly), and the inclusion 
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of multiple datasets; station data such as from Global Historical Climatology Network-Daily, WorldClim, Global 
Precipitation Climatology Centre (GPCC), and Global Summary of the Day; satellite-based products including 
the Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis (3B42RT), Climate Prediction 
Center morphing technique, Gridded Satellite, Global Satellite Mapping of Precipitation; and reanalysis data 
of the European Centre for Medium-Range Weather Forecasts interim reanalysis (ECMWF ERA-Interim) and 
Japanese 55-year Reanalysis. In addition to the inclusion of more than 77,000 daily observations from field-based 
meteorological stations, MSWEP also applies different bias correction techniques to improve the frequency of 
precipitation and uses river discharge observations (from about 14,000 stations globally) to bias correct terrestrial 
precipitation, which makes it unique compared with other precipitation products (Beck et al., 2019). MSWEP 
has been widely used in global and regional scale hydroclimate studies such as the analysis of water resources, 
rainfall variability, lake dynamics, soil moisture and evaporation, and ecohydrological modeling (Chen & 
Dirmeyer, 2016; Chen et al., 2017; Liu et al., 2016; Martens et al., 2017; Schellekens et al., 2017). In a recent 
study (Beck, Vergopolan, et al., 2017) comparing 22 global and semi-global precipitation products against station 
data, MSWEP was found to be one of the best performing datasets. . For Africa, Awange et al. (2019) show that 
MSWEP has better performance for water storage flux, climate impacts, and river discharge assessment compared 
to other precipitation products such as GPCC and shows a similar skill for other aspects such as extremes.

2.2.  Seasonal Forecast Models

The five seasonal forecast models (Table 1) were evaluated for the hindcast period of 1993–2016 using data 
downloaded from the C3S website (https://cds.climate.copernicus.eu/cdsapp#!/dataset/seasonal-original-sin-
gle-levels?tab=form). All models provide global, seasonal (180–215 days; 6–7 months) forecasts of precipitation 
on a daily time scale, at a spatial resolution of 1.0°, and initialized on the first day of the month. The native spatial 
resolution of some of the models is higher (e.g., Meteo-France is 0.5°), but the publicly available data provided 
by the CDS is on a reduced, but consistent, 1.0-degree grid. To evaluate the skill of the models on a grid-scale, 
the climate model data are bilinearly interpolated to match the resolution of the reference data set (MSWEP, 0.1°).

2.3.  Evaluation Metrics

The models were evaluated for precipitation at the grid cell level and summarized at regional and at multiple time 
scales (daily to climatology). We evaluated model performance for the ensemble mean for weekly, monthly and 
seasonal means to provide an overview of model performance for mean precipitation. For the drought and daily 
extremes, we evaluated the ensemble of forecasts to provide a probabilistic assessment and avoid smoothing of 
the extreme values from ensemble averaging. The models were evaluated for different lead-times (months and 
weeks since initialization), different target months, and separately for the wet and dry seasons, because of the 
strong seasonality over the continent. First, the mean monthly seasonal cycle (climatology) was computed for 
each model to assess the overall forecast bias at different lead times. Second, how well the forecasts follow the 
observed weekly and monthly variability in terms of the absolute and anomaly (after subtraction of the seasonal 
climatology) values was quantified.

Model
Time 
(days) Forecast initial condition Hindcast initial condition

Forecast 
ensemble size

Hindcast 
ensemble size

Hindcast 
period Spatial resolution

ECMWF 215 1st of month 1st of month 51 25 1981–2016 TCO319/L91 (∼0.32°–0.72°)

UK-Met 215 Each day of month 1st, 9th, 17th, 25th 2 7 1993–2016 N216/L85 0.83° × 0.56°

Meteo-France 215 1st of month 1st of month 25 24 1993–2016 TL359/L91 (∼0.5°)

DWD 180 1st of month 1st of month 50 30 1993–2017 T127 (∼100 km) 

CMCC 180 1st of month 1st of month 50 40 1993–2016 ∼1°

Table 1 
Description of the Copernicus Climate Change Service (C3S) Seasonal Forecast Models and Their Attributes

https://cds.climate.copernicus.eu/cdsapp#!/dataset/seasonal-original-single-levels?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/seasonal-original-single-levels?tab=form
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This was complemented by an analysis of the performance of the models in predicting meteorological drought 
and pluvial events at the monthly scale based on the Standardised Precipitation Index (SPI). The SPI (McKee 
et al., 1993) is a transformation of the monthly precipitation time series into a standardized form that is often 
used to identify relatively wet or dry meteorological conditions. Finally, the performance of the models for a set 
of daily precipitation metrics was evaluated based on the Expert Team on Climate Change Detection and Indices 
(ETCCDI) climate change indices (Karl et al., 1999): length of dry spell (CDD; numbers of consecutive days 
with daily precipitation <1.0 mm) and wet spell (CWD; numbers of consecutive days with daily precipitation 
>1.0 mm) days and numbers of heavy (>10 mm) and very heavy (>20 mm) precipitation days. The ETCCDI 
indices were chosen as they are a standardized set, which allows direct comparison spatially and with other 
studies, with the trade-off that the specific thresholds (e.g., for heavy precipitation days) may not be as relevant 
for very dry or very wet regions. The extreme indices are computed for each ensemble instead of the ensemble 
mean as averaging will tend to smooth out the extremes. These indices are aggregated to a monthly time scale for 
the evaluation, given the difficulty in predicting individual extreme events at time scales beyond a few days, but 
assuming that there is some potential to forecast the probability of occurrence of extremes.

To assess the agreement of individual models with the reference data, we used different statistical methods: such 
as the Pearson correlation coefficient (CC), bias, and Root Mean Square Error (RMSE) for the monthly and 
weekly absolute and anomaly time-series and the daily extremes.
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Figure 1.  Climatological mean (1993–2016) of precipitation (mm/month) for December-February (DJF) (a) and June-
August (JJA) (b) seasons from Multi-Source Weighted-Ensemble Precipitation (MSWEP). For precipitation from European 
Centre for Medium-Range Weather Forecasts (ECMWF), UK Met Office (UK-Met), Meteo-France (Meteo-F), Centro 
Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), and Deutscher Wetterdienst (DWD), the absolute difference of the 
lead-1 month forecast from MSWEP is displayed. The blue, green, red, orange, and dark polygons (a) represent the East, 
Central, West, North, and Southern Africa, respectively.
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To assess the skill of individual models in forecasting meteorological droughts computed using the SPI, we used 
the Probability Of Detection (POD, Equation 4), False Alarm Ratio (FAR, Equation 5) and Brier Score (BS, 
Equation 6).

POD =
Hits

Hits + Misses
� (4)

FAR =
False Alarms

Hits + False Alarms
� (5)
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where O is the observation, M is the model and N is the number of data pairs (e.g., months). Hits are the number 
of drought events that are correctly identified by the model. Misses are the number of drought events that were 
observed but not forecast by the model. False Alarms are the number of drought events that are forecast but were 
not observed.

We also assessed the unweighted and weighted multi-model means. The weighted multi-model mean (WMMM) 
is computed based on the performance of individual models, where performance is represented by either CC 
(Equation 1) or partial correlation (PC), at each grid cell. PC accounts for the correlation between models and 
therefore the shared or redundant information that is otherwise over-emphasized (Glowienka-Hense et al., 2020). 
As the results using the CC and PC to weight the models are very similar (except in East Africa, where the PC 
based results are better), we only show the WMMM results based on the PC. The PC is computed using the ppcor 
package in R (Kim, 2015).

Figure 2.  Mean seasonal cycle of precipitation from Multi-Source Weighted-Ensemble Precipitation (MSWEP) (REF) and the lead-1 forecasts of the five models 
averaged over (a) East, (b) Central, (c) West, (d) North, and (e) Southern Africa.
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3.  Results
3.1.  Seasonal Climatology of Precipitation

Figure 1 shows maps of observed mean seasonal precipitation and the lead-1 forecasts for December-February 
(DJF) and June-August (JJA). Figure 1a also shows the broad regions that are referred below and are used to 
summarize the results spatially. In East Africa, the lead-1 forecast from Meteo-France, DWD, and CMCC show 
a positive bias (up to 160 mm/month) during the DJF season in large parts of Tanzania and southwest parts of 
Kenya. On the other hand, the climatological precipitation of the southern and south-eastern parts of Tanzania is 
underestimated (up to 150 mm/month) by all models. In Ethiopia, Sudan, Eritrea, and Somalia all models except 
Meteo-France are within about 50 mm/month of the observed climatology, which is expected as DJF is the dry 
season of these relatively dry countries.

Figure 3.  Temporal correlation of monthly precipitation between Multi-Source Weighted-Ensemble Precipitation and (a) 
lead-1, (b) lead-2, and (c) lead-3 month forecasts for the five climate models.
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During JJA, ECMWF, UK-Met, and Meteo-France overestimate (up to 240 mm/month) and DWD and CMCC 
underestimate (up to 130 mm/month) the monthly average precipitation in the west part of Ethiopia, where JJA is 
one of the most important seasons in terms of water resources. All models except DWD show an overestimation 
of up to 160 mm/month in the southern part of the South-Sudan but are close to the observations in a large part 
of Kenya and Tanzania and the eastern part of Ethiopia.

Across most of West Africa, the seasonal precipitation is well represented (within 50 mm/month) by all models 
during DJF, except for underestimation (up to 80 mm/month) by UK-Met, Meteo-France, and DWD in Côte 
D’Ivoire and Ghana. During JJA, the precipitation climatology in West Africa is well represented by ECMWF, 
UK-Met, and CMCC but Meteo-France and DWD show higher biases (up to 210 mm/month), particularly in 
Nigeria and Guinea. In Central Africa, ECMWF, Meteo-France, and CMMC overestimate the DJF precipitation 

Figure 4.  Temporal correlation of monthly precipitation anomalies between Multi-Source Weighted-Ensemble Precipitation 
and (a) lead-1, (b) lead-2, and (c) lead-3 month forecasts for the five climate models.
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in Gabon and Congo, whilst UK-Met and DWD underestimate. However, 
the climatology is well represented by all models in Cameroon, Chad, and 
the Central African Republic. ECMWF, UK-Met, Meteo-France, and CMCC 
overestimate the JJA precipitation in parts of southern Chad and northern 
parts of the Central Africa Republic and North-eastern Congo. Meteo-France 
shows an overestimation in Cameron and Gabon up to 235 mm/month.

In Southern Africa, all models show biases of more than 50  mm/month 
precipitation during the DJF wet season. For example, all models under-
estimate (up to 220 mm/month) the monthly precipitation in Mozambique 
and overestimate in the eastern part of South Africa (around KwaZulu-Natal 
provinces). They also overestimate precipitation during JJA in this region. 
Unlike DJF, all models, except DWD, show a JJA overestimation up to 
60 mm/month in large parts of Mozambique. In general, in Southern Africa, 
ECMWF, and DWD show a better representation of the climatology with a 
lower bias and Meteo-France is the least performing model with high bias up 
to 60 mm/month. Compared to the other regions, the North African climatol-
ogy is very well represented by all models during both seasons, again partly 
because the climatology is relatively dry. However, DWD and CMCC, and 
UK-Met show an overestimation up to 40 mm/month in Morocco (DJF) and 
Southern Algeria (JJA), respectively.

Regional averages of the observation and model lead-1 climatologies are 
shown in Figure 2, with regions defined as East, Central, West, North, and 
Southern Africa (Figure 1a). All models have a good representation of the 
seasonal cycle of precipitation with biases generally low in East, Central, and 
West Africa compared to North and Southern Africa (Figure 2). In East and 
Central Africa, all models tend to overestimate the monthly precipitation, but 
their performance is mixed in West Africa, reflecting the variable biases at 
national scales as noted previously. In East Africa, DWD and UK-Met show 
the least bias (0.6–9  mm) in May-November, and January, February and 
December, respectively. CMCC shows the highest bias (11–41 mm) across all 

Figure 5.  Regional summary of correlation of monthly (a) and monthly anomaly (b) precipitation for lead-1 to lead-6 months 
forecasts for the five models.

Figure 6.  Monthly correlation coefficient difference between weighted multi-
model mean and individual models for (a) lead-1, (b) lead-2, and (c) lead-3.
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months. In Central Africa, August-December and March-June precipitation 
is well represented by DWD and UK-Met, respectively, and the other models 
show a higher monthly bias up to 31 mm. ECMWF is the least biased model 
in West Africa with a bias from 0.2 to 9 mm, and DWD and CMCC show 
a high positive bias (up to 30 mm). Unlike the other regions, CMCC shows 
the lowest bias in North Africa during January, March, May, and September 
followed by ECMWF and UK-Met, with DWD and Meteo-France having the 
highest biases. Similar to East and Central Africa, in Southern Africa, DWD 
represents the monthly climatology, except in February and April, very well. 
Meteo-France shows a higher bias (8–10 mm) during May-October.

3.2.  Monthly and Monthly Anomaly Precipitation

The performance of the individual models is first evaluated on a grid cell 
basis and then summarized over regions. Monthly and monthly anomaly 
correlation values for 1–3  month lead-times are summarized in Figure  3 
and Figure  4, respectively. For each model, anomalies were computed as 
the departure from the seasonal climatological mean. The performance of 
all models is highest for lead-1 and decreases with increasing lead time 
for monthly (Figure  3) and monthly anomalies (Figure  4). This decrease 
is significantly more pronounced when considering the anomaly correla-
tions. The lead-1 monthly correlation of all models is higher in the drier 
tropics, particularly in the semi-arid regions where there is strong season-
ality (Figure 3), and lower in arid and semi-arid regions. In East Africa, the 
monthly precipitation is well represented (CC up to 0.95) by the lead-1 fore-
cast from ECMWF and UK-Met, and in comparison to the other models. The 
other models show lower correlation across the Horn of Africa, especially in 
Kenya and southeast Ethiopia. Similar to the monthly correlation, ECMWF 
and UK-Met show the highest anomaly correlation (Figure 4) in East Africa 
(lead-1 CC up to 0.65) compared to the other models, which show lower 
correlation, especially in countries such as in Tanzania and Sudan. In West 
Africa, ECMWF and UK-Met again show the highest monthly correlations 
and anomaly correlations overall. However, the anomaly correlations for all 
models are generally lower in this region compared to East Africa.

In central Africa, particularly in the Central Africa Republic, Cameron, and Western parts of Chad and Congo, 
the monthly variability is well represented by all models with a correlation between 0.8 and 0.96. All models 
have lower correlation in the wet tropical regions of the Congo and out to the Atlantic coast. Again, ECMWF and 
UK-Met are, in general, the best performing models. In this region, the anomaly correlation values are relatively 
lower compared to other regions, although ECMWF and UK-Met show smaller areas of higher correlation (e.g., 
up to 0.52 in Chad). In Southern Africa, all models show a monthly correlation between 0.8 and 0.95, but the 
anomaly correlation is again low when compared to East Africa. The monthly correlation of all models is low 
in much of South Africa and southern Botswana and Namibia. Again, ECMWF and UK-Met show the highest 
monthly correlations and anomaly correlations regionally. In North Africa, the monthly and monthly anomaly 
correlations of all models are overall quite low. ECMWF and UK-Met show slightly higher values than the other 
models, but the differences are small and spatially variable. The highest anomaly correlations (CC up to 0.65) are 
in Libya and Northern Morocco for ECMWF.

The monthly and monthly anomaly correlations for East, Central, West, North, and Southern Africa are summa-
rized in Figure 5. This highlights the higher correlations in predominantly semi-arid regions which have distinct 
seasonality (West and Southern Africa) that is somewhat easier to predict, versus regions that are predominantly 
arid (North Africa) with sporadic rainfall, regions that are relatively wet (Central Africa) or those with more 
complex seasonality (e.g., two rainy season peaks such as in East Africa). The area average correlation is highest 
at lead-1 and drops with increasing lead time, particularly the anomaly correlation, which falls to around zero 

Figure 7.  Monthly anomaly correlation coefficient difference between 
weighted multi-model mean and individual models for (a) lead-1, (b) lead-2, 
and (c) lead-3.
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by lead-3 to 4 for all regions. The performance of all models is generally similar across lead times in West and 
North Africa, and more diverse in Central, East and Southern Africa. ECMWF and UK-Met outperform the other 
models for almost all regions at lead-1 and generally for longer lead times.

Compared to the individual models, however, the weighted multi-model mean (WMMM) generally show higher 
monthly (Figure 6) and anomaly correlations (Figure 7). The WMMM shows an improved correlation (up to 0.6), 
particularly compared to CMCC, DWD and Meteo-France, for leads 1–3 (Figure 6). The skill difference between 
WMMM and ECMWF and UK-Met is lower in Central and Northern Africa. However, the WMMM does show 
a significant improvement in parts of East (e.g., Tanzania), West (e.g., Mauritania and Niger) and Southern 
(e.g., South Africa, Namibia and Botswana) Africa. Similarly, the MMM shows a higher correlation compared 
to CMCC, DWD and Meteo-France for lead-1 but did not improve on the skill at lead-2 and lead-3 months 
(Figure S1 in Supporting Information S1). In general, WMMM outperforms the individual models in large parts 
of the continent and outperforms the MMM in North and East Africa (Figure S2 in Supporting Information S1).

The anomaly correlation also shows a clear improvement when using the WMMM compared to the individual 
models (Figure 7). In addition, the WMMM outperforms the MMM in the East region (e.g., lead-3) and other 
smaller parts of the continent at leads 1, 2 and 3, respectively (Figure S3 in Supporting Information S1). However, 
the MMM shows a higher correlation, particularly at lead-1, compared to the individual models (Figure S4 in 
Supporting Information S1). Overall, the WMMM significantly improves the lead-1 monthly anomaly correlation 
but the skill is still low, except in East Africa which shows a clear improvement (CC up to 0.4), for leads 2 and 
3 months. In East, Central, West, North, and Southern Africa, the regional average monthly and monthly anomaly 
CC of the WMMM is higher than the individual models and the MMM (Figure 8). The WMMM also shows a 

Figure 8.  Regional lead-1 (a) monthly and (b) anomaly CC, and (c) monthly and (d) anomaly Root Mean Square Error (RMSE) for all models, multi-model mean 
(MMM) and weighted multi-model mean (WMMM) averaged over Central, East, North, Southern and West Africa.
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reduced RMSE compared to the individual models and MMM. In East Africa, however, the monthly RMSE from 
the WMMM is much higher than UK-Met, DWD and the MMM. Compared to Central, North, Southern, and 
West Africa, the monthly CC difference between WMMM and MMM is about 0.4 and CMCC shows the highest 
RMSE (5–14 mm), compared to the other models and the MMM and WMMM, in East Africa.

3.3.  Weekly and Weekly Anomaly Precipitation

We further analyze the lead-1 results at weekly time scale to understand how the skill evolves within the first 
month for weekly values and weekly anomalies (Figures 9 and 10). For all models, the weekly correlations are 
highest for week-1 and these persist through weeks 2–4 in the seasonally wet regions of the west and South 
African monsoonal regions, but drop rapidly in drier regions (Figure 9). Again, ECMWF and UK-Met tend to 
outperform the other models at lead-1 week, and longer leads for some regions such as the Horn of Africa. The 
anomaly correlation values generally follow the same pattern of highest values at lead-1 week and a rapid drop 
through weeks 2–4, although the spatial patterns differ substantially (Figure 10). The highest correlation values 
are in the east from the Horn of Africa down to southern Africa with highest skill for ECMWF, UK-Met and 
Meteo-France. There is some persistence of skill in the Horn of Africa for ECMWF and UK-Met, but otherwise, 
anomaly correlation values drop to below about 0.3 and close to zero by week 2 for much of the continent.

Figure 9.  Temporal correlation of weekly (7-days) precipitation between Multi-Source Weighted-Ensemble Precipitation and 
(a) week-1, (b) week-2, (c) week-3, and (d) week-4 forecast from all models.
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The WMMM weekly precipitation shows a better performance in large parts of the continent (Figure  11), 
compared to the individual models and is similar to the monthly evaluation. The WMMM improves the corre-
lation in all weeks, particularly compared to Meteo-France, and less so for DWD and CMCC. The difference 
between WMMM and ECMWF and UK-Met is very small in Central (e.g., Congo) and East (Ethiopia and 
Tanzania) Africa with slight improvements elsewhere. Similar to the WMMM, the MMM also shows a higher CC 
compared to Meteo-France, CMCC, and DWD for most regions for all weeks (Figure S5 in Supporting Informa-
tion S1). However, compared to the MMM, the WMMM provide better performance (CC up to 0.4) in all weeks, 
particularly in North and West (Mali and Mauritania) Africa (Figure S6 in Supporting Information S1).

The WMMM also shows a higher performance for the weekly anomaly compared to all models, particularly 
Meteo-France, DWD, and CMCC (Figure 12). The CC of ECMWF and UK-Met is lower in parts of North and 
Southern Africa in weeks 1 and 2 compared to WMMM but the difference, particularly with ECMWF, is lower in 
East, West and Central Africa. In general, the WMMM shows a higher CC in large parts of the region in week-1 
and week-2 and some parts of East and Southern Africa in week-2 and week-4 compared to Meteo-France, 
CMCC and DWD. Similarly, the MMM shows a higher performance compared to individual models particularly 
in week-1 and week-2 (Figure  S7 in Supporting Information  S1). Overall, the performance of the WMMM, 
compared to MMM is higher (CC up to 0.4) in smaller parts of North, East, West, and Southern Africa (Figure S8 
in Supporting Information S1).

Figure 10.  Temporal correlation of weekly anomaly (7-days) precipitation between Multi-Source Weighted-Ensemble 
Precipitation and (a) week-1, (b) week-2, (c) week-3, and (d) week-4 forecast from all models.
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3.4.  Daily Precipitation Indices

All models show a good performance in representing the monthly variations in CDD and CWD at lead-1 but the 
skill is very low for heavy and very heavy precipitation days (Figure 13). In East Africa, UK-Met and Meteo-
France in Ethiopia, Kenya, and Tanzania show a higher CC compared to ECMWF, which showed a higher CC 
in Sudan, and DWD is the least performing model for CDD. In large parts of Central Africa, ECMWF followed 
by Meteo-France shows a higher CC whereas UK-Met and CMCC appeared to be the best models in Southern 
Africa. For CWD, in general, ECMWF in East and West Africa, Meteo-France in Central Africa, and UK-Met in 
Southern Africa are the best performing models (CC up to 0.8).

All models, however, are very poor in forecasting heavy and very heavy precipitation days compared to CDD and 
CWD. In East Africa, UK-Met in Kenya and Ethiopia, and ECMWF in Tanzania show a higher CC (up to 0.78) 
for heavy precipitation compared to DWD, CMCC, and Meteo-France. Similarly, in Central Africa, ECMWF is 
the best model and DWD and CMCC are the least performing models. However, ECMWF, except in Malawi and 
Mozambique, is one of the least performing models in Southern Africa and UK-Met shows the highest CC for 
heavy precipitation days. Compared to the other parts of Africa, all models show a higher CC for heavy precipita-
tion days in West Africa. In comparison to UK-Met, DWD, and CMCC, Meteo-France and ECMWF are the best 
models with the highest CC for heavy precipitation days.

Figure 11.  Temporal correlation difference between weighted multi-model mean and individual models for (a) week-1, (b) 
week-2, (c) week-3, and (d) week-4.
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3.5.  Application to Seasonal Forecasting of Meteorological Droughts

The monthly precipitation forecasts are used to compute the SPI drought index at each grid cell. Given the rapid 
drop in skill for monthly precipitation at lead-2, we focus on the lead-1 forecast of the 1-month SPI (SPI-1). 
Figure 14 shows the FAR, POD, and BS for SPI-1 averaged over the five regions for all models and the MMM and 
WMMM values. For the individual models, the SPI-1 is computed for each ensemble member, and the ensemble 
average FAR and POD is used for analysis. Overall, the POD ranges from about 0.25 to 0.6 with a mean of about 
0.4 across models and regions of East, Central, West, North and Southern Africa, and the FAR from about 0.4 to 
0.8, with a mean of 0.66. This indicates that the probability of detecting drought events is modest with a likeli-
hood of false detection. No model stands out as having the highest POD or lowest FAR scores across all regions, 
although the range across models can be quite large (e.g., West and Central Africa). This contrasts with the results 
from the monthly analysis which highlighted the ECMWF and UK-Met models as the best performing models 
across almost all sets of results. The ensemble means show better values than the individual models overall, with 
a few exceptions, and distinctly better values for some regions (e.g., Southern and East for POD). Interestingly, 
the MMM tends to have slightly better values than the WMMM.

Figure 12.  Temporal anomaly correlation difference between weighted multi-model mean and individual models for (a) 
week-1, (b) week-2, (c) week-3, and (d) week.
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4.  Summary and Discussion
Providing timely and reliable climate information is essential to monitor extreme events and develop risk reduc-
tion strategies, which is highly dependent on the skill of the seasonal forecast models. Here, we evaluated the skill 
of five state-of-the-art European seasonal forecast models, as well as their unweighted and weighted multi-model 
means for their hindcast period (1993–2016) over Africa. The models considered here are selected based on the 
availability on daily or higher temporal resolution and for both hindcast and real-time data for potentially driving 
hydrological forecasts at regional and basin scales. We focused on the ensemble mean of models to assess the 
skill on weekly, monthly and seasonal time scales, and the full ensemble was assessed for daily extremes and 
meteorological droughts.

The ensemble mean of all models show relatively high skill at lead-1 with the highest correlations over East 
Africa, particularly for ECMWF and UK-Met. However, the skill drops with an increase in lead-time, which is in 
agreement with other studies that have focused on the same models but other regions (e.g., Nobakht et al., 2021; 
Wang et al., 2019) or on other seasonal forecast models (e.g., Barnston et al., 2011; King et al., 2020; Wanders & 
Wood, 2016). The limitation of skill to a few weeks is expected and due to the chaotic nature of the atmosphere (e.g., 
Lavers et al., 2009; Yuan et al., 2011). In large parts of Africa, the ECMWF and UK-Met models show a higher 
performance compared to Meteo-France, DWD, and CMCC for monthly and monthly anomaly precipitation. 

Figure 13.  Correlation of monthly (a) consecutive dry days, (b) consecutive wet days, (c) heavy precipitation days, and (d) very heavy precipitation days between 
Multi-Source Weighted-Ensemble Precipitation and lead-1 forecast from European Centre for Medium-Range Weather Forecasts (ECMWF), UK Met Office (UK-Met), 
Meteo-France, Deutscher Wetterdienst (DWD), and Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC).
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However, there are areas where the latter three models show relatively higher performance across the range of 
indices and time scales. Hence, we developed a weighted average based on the correlation values of individual 
models on a grid cell basis. Weighting models based on their skill improved the skill compare to averaging all 
models, as less skilful models can strongly degrade the performance (Casanova & Ahrens, 2009; Xu et al., 2020).

The unweighted (MMM) and weighted (WMMM) multi-model mean improved the overall skill in large parts 
of the region for monthly and anomaly correlation and forecasting droughts. Compared to the MMM, WMMM 
improves the monthly and anomaly correlation and reduces model errors. In agreement with our findings, 
many studies (e.g., Batté & DéQué, 2011; Casanova & Ahrens, 2009; Dash et al., 2019; Pan et al., 2016; Pepler 
et al., 2015; Rozante et al., 2014; Wanders & Wood, 2016; Weigel et al., 2008) have concluded that the MMM 
is consistently better than individual models for seasonal mean climate. Furthermore, the agreement of the 
weighted multi-model mean with the observational data is higher than the individual models and the MMM, 
and provides improved performance for other climate variables and extreme events (Casanova & Ahrens, 2009; 
Ratnam et al., 2019; Wanders & Wood, 2016), although it might underestimate short-term peak values because 
of model averaging.

Concerning daily extremes, taking all ensembles of the lead-1 forecast, all models represent the monthly vari-
ation in the length of dry (CDD) and wet (CWD) spell days and heavy precipitation days well, particularly in 
the tropics. However, the correlation is weak for very heavy precipitation days and this agrees with the findings 
of Pepler et al. (2015) and King et al. (2020), which highlight the low skill of climate models for prediction of 
extreme precipitation indices. Forecasting precipitation and its extremes using climate models is challenging due 
to the complex and intermittent nature of precipitation (Han et al., 2019; Pepler et al., 2015), and is relatively 
more difficult compared to forecasting temperature. In general, ECMWF and UK-Met followed by Meteo-France 
provide a higher correlation for CDD, CWD, and heavy and very heavy precipitation days at lead-1.

Application of the lead-1 forecast for drought monitoring shows modest skill, but improvements when using the 
MMM or WMMM. In East, Central, West, North and Southern Africa up to 44% (ECMWF), 46% (UK-Met), 
58% (CMCC), 47% (UK-Met), 39% (Meteo-France), and 38% (UK-Met) of droughts events are forecasted by 
the models, respectively. Similar to our findings, in Latin America, ECMWF showed a POD of 30% for drought 
events with FAR less than 70% (Carrão et al., 2018). The drought forecast performance is improved when using 
the MMM and WMMM. For example, in East Africa, the POD of the MMM and WMMM is 0.59 and 0.46, 
respectively and the FAR and BS is lower than individual models. According to Hao et  al.  (2018), applying 
unequal weights to multi-model ensembles improves the prediction skill for droughts, particularly in tropical and 

Figure 14.  Probability of Detection (POD), False Alarm Ratio (FAR) and Brier Score (BS) values of 1-month SPI (SPI-1) 
for the lead-1 forecast for (a) European Centre for Medium-Range Weather Forecasts, (b) UK Met Office, (c) Meteo-France, 
(d) Deutscher Wetterdienst, (e) Centro Euro-Mediterraneo sui Cambiamenti Climatici, (f) multi-model mean, and (g) 
weighted multi-model mean averaged over East, Central, West, North, and Southern Africa.
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subtropical regions. The higher prediction skill for precipitation and droughts in these regions is due to the strong 
teleconnection with El Niño–Southern Oscillation (Hao et al., 2018; Pozzi et al., 2013). Overall, the performance 
of the weighted multi-model mean forecasts is promising compared to individual models and could provide the 
most accurate information on regional and basin levels than individual models. However, improving the skill for 
leads beyond 1 month remains a challenge.

Data Availability Statement
All seasonal forecast data used in this work can be found at the following sites: The Copernicus Climate Change 
Service (C3S) (months) forecasts of precipitation) and the Multi-Source Weighted-Ensemble Precipitation Can 
be found at GloH2O (http://www.gloh2o.org/mswep/).
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