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Abstract

In Reconfigurable intelligent surface (RIS)-assisted systems the acquisition of channel state in-

formation (CSI) and the optimization of the reflecting coefficients constitute a pair of salient design

issues. In this paper, a novel channel training protocol is proposed, which is capable of achieving a

flexible performance vs. signalling and pilot overhead as well as implementation complexity trade-off.

More specifically, first of all, we conceive a holistic channel estimation protocol, which integrates the

existing channel estimation techniques and passive beamforming design. Secondly, we propose a new

channel training framework. In contrast to the conventional channel estimation arrangements, our new

framework divides the training phase into several periods, where the superimposed end-to-end channel

is estimated instead of separately estimating the direct BS-user channel and cascaded reflected BS-RIS-

user channels. As a result, the reflecting coefficients of the RIS are optimized by comparing the objective

function values over multiple training periods. Moreover, the theoretical performance of our channel

training protocol is analyzed and compared to that under the optimal reflecting coefficients. In addition,
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the potential benefits of our channel training protocol in reducing the complexity, pilot overhead as

well as signalling overhead are also detailed. Thirdly, we derive the theoretical performance of channel

estimation protocols and our channel training protocol in the presence of noise for a single-input-single-

output (SISO) scenario, which provides useful insights into the impact of the noise on the overall RIS

performance. Finally, our numerical simulations characterize the performance of the proposed protocols

and verify our theoretical analysis. In particular, the simulation results demonstrate that our channel

training protocol is more competitive than the channel estimation protocol at low signal-to-noise ratios.

Index Terms

Reconfigurable intelligent surface (RIS), intelligent reflecting surface (IRS), channel estimation,

channel training, passive beamforming, multiuser downlink beamforming.

I. INTRODUCTION

Reconfigurable intelligent surface (RIS) and its various variants are capable of beneficially

ameliorating the wireless propagation environment [1]–[5]. More specifically, they are constituted

by a large number of reconfigurable passive reflecting elements, which are configured by a

smart controller. As a result, each RIS component is configured to impose the required phase

shift onto the incident signals, so that the received signals can be constructively enhanced at

the intended user [6]–[8], while simultaneously being nulled at the unintended user [5], [9].

In contrast to conventional amplify/decode-and-forward cooperative communications, the RIS

elements passively perform signal reflection without employing active radio frequency (RF)

chains, hence eliminating the inevitable power consumption and delay of conventional delays

[1], [10]. As a result, the RIS is capable of operating in a full-duplex mode without encountering

the self-interference problem of complex relays [7], [11]. Therefore, the RIS is considered to

be a promising candidate for creating favourable propagation environments for next-generation

mobile communications [12]–[14].

Nonetheless, some new challenges have arisen in RIS-assisted wireless systems. One of the

major difficulties is the acquisition of the channel state information (CSI), which is particularly

challenging in RIS-assisted systems due to the lack of any baseband signal processing capability

at the RIS [17], [19], [23]–[25]. More explicitly, the downlink (DL) channels of the base station

(BS)-RIS link and the RIS-user link cannot be estimated separately as in the conventional

pilot-based approach. In order to solve this problem, sophisticated channel estimation methods
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TABLE I

CONTRASTING OUR CONTRIBUTION TO THE STATE-OF-THE-ART.

Channel Estimation Phase Joint Active and Passive Beamforming

Reflected

Channels

Direct

Channel

RIS

Optimization

MIMO

Setup

Optimization

Criteria

MIMO

Setup
Methods

Channel

Estimation

Errors

[15] ON/OFF method × MISO
Maximizing

the received power
MISO

Closed-form

solution
×

[16] DFT-based method X MISO — — — —

[17] Grouped Blocked × MISO — — — —

[18] Sparsity Ignored X MU-MIMO — — — —

[19] Commonality ON/OFF × MU-MIMO — — — —

[20] — — — —
Maximizing

the channel capacity

point-to-point

MIMO
AO ×

[21] — — — —
Maximizing

the sum rate
MU-MIMO AO ×

[22] — — — —
Maximizing

the secrecy rate

MISO with

an eavesdropper
AO ×

[9] — — — —
Minimizing

the transmit power
MU-MIMO SDR, AO ×

∗ DFT-based method X MU-MIMO
Minimizing

the transmit power
MU-MIMO SDR, AO X

Channel Training Phase Conventional Multi-user Downlink Beamforming

⋆ Superimposed X MU-MIMO
Minimizing

the transmit power
MU-MIMO SDR X

have been proposed for estimating the cascaded BS-RIS and RIS-user channels [15], [16], [19].

Specifically, in [15], a simple ON/OFF method is proposed, where only a single RIS element

is switched on at each time slot (TS) and thus the corresponding reflected BS-RIS-user channel

can be estimated without interference. Furthermore, the discrete Fourier transformation (DFT)

matrix is applied in [16] for optimizing the reflecting coefficients (RCs) at the RIS during the

channel estimation phase, which is capable of minimizing the mean square error (MSE) of the

channel estimates. However, the method of either [15] or [16] requires the same number of

pilot symbols as that of the reflecting elements. To overcome this limitation, Wang et al. [19]

reduced the number of pilot symbols required for estimating the cascaded BS-RIS-user channels

by exploiting the commonality of the BS-RIS link between multiple users [19]. More explicitly,
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a specific user’s cascaded BS-RIS-user channel is first estimated, while muting all other users.

Following this, the estimation of the reflected BS-RIS-user channels of other users is simplified

by estimating the scaling factors relative to the specific user. Inspired by [19], the authors of

[18] exploited the spatial sparsity of the BS-RIS link, so that the pilot overhead required for the

specific user is further reduced. Moreover, the RIS elements are arranged into groups by You et

al. [17], where the combined reflected links are estimated by a reduced number of pilots at the

cost of moderate channel estimation accuracy erosion. The reader might like to refer to [17],

[19], [24] and the references therein for comprehensive surveys on the state-of-the-art channel

estimation techniques designed for RIS-assisted systems.

On the other hand, the optimization of the RIS phase shifts is another major challenge in

practical RIS-assisted systems [20], [21], [24], [26]–[32]. Recently, the RIS configuration of

point-to-point multiple-input-multiple-output (MIMO) systems has been optimized in [20] in

terms of maximizing the channel capacity. More specifically, in [20] the optimization of the

RC and the transmit covariance matrix are performed alternately, where the optimal closed-

form solution of each objective is derived under the condition that the other is determined.

Furthermore, [21] extends the contribution of [20] to the multiuser scenario by maximizing

the sum rate of multiple users, where practical reflecting elements having discrete phase shifts

are considered. In [9], [33], Wu et al. studied joint passive beamforming at the RIS and active

transmit beamforming at the BS in multi-user MIMO scenarios, where the optimization objective

is to minimize the total transmit power, subject to the independent signal-to-interference-plus-

noise ratio (SINR) constraints for all users. The alternating optimization (AO) method based on

semidefinite relaxation (SDR) is applied in order to obtain accurate approximate solutions for

the RCs at the RIS and for the transmit beamforming vectors of multiple users. Additionally,

the square law of the average received power vs. the number of reflecting elements is also

summarized in [9]. As a further advance, the same authors extended the work of [9], [33] to

the scenario of finite-precision phase shifts at the RIS [34], [35]. More recently, RISs have also

been integrated with other existing technologies, such as physical-layer security [22], [36]–[38],

unmanned aerial vehicles (UAV) [39], non-orthogonal multiple access (NOMA) [40], [41], index

modulation (IM) [42], simultaneous wireless information and power transfer (SWIPT) [43]–[46]

and mobile edge computing (MEC) [47].

At the time of writing, substantial research efforts are invested into the conception of channel

estimation techniques and phase shift optimization. However, the existing methods require a
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high pilot overhead and impose high estimation complexity. For example, the number of pilot

symbols required for estimating the reflected BS-RIS-user channels is proportional to the number

of reflecting elements [17], [19]. The RC optimization of the RIS requires the joint consideration

of the transmit beamforming at the BS and the passive beamforming at the RIS [20], [34]. These

issues have to be addressed for the practical deployment of RISs. Moreover, there is a paucity of

literature on the effect of channel estimation errors on the performance of the RIS. Against this

background, in this paper, we propose a novel channel training protocol for RIS-assisted multi-

user communications, which strikes a flexible trade-off between the performance attained, the

implementation complexity imposed and the pilot overhead. In Table I, we boldly and explicitly

contrast our contributions to the existing solutions, where ∗ and ⋆ represent our proposed channel

estimation protocol and channel training protocol, respectively1. More specifically, the novel

contributions of this paper are summarized as follows:

• First of all, we conceive a holistic channel estimation protocol, which intrinsically integrates

the channel estimation methods of [15], [16] and the passive beamforming design of [9],

[33]. More specifically, we extend the DFT-based channel estimation method of [16] to

multiuser scenarios, which was originally developed for single-user multiple-input-single-

output (MISO) scenarios. Furthermore, we demonstrate the performance advantages of the

DFT-based channel estimation method, especially for slow-fading channels having a long

coherence time.

• Secondly, we propose a novel channel training protocol. The proposed arrangement divides

the training phase into several periods, where the superimposed end-to-end channel is

estimated instead of separately estimating the direct BS-user and reflected BS-RIS-user

channels. During each training period, the RCs of the RIS are configured through the

proposed configuration method. As a result, the RIS phase shifts are optimized by comparing

the objective function values over multiple training periods. Moreover, we introduce a pair

of new RC configuration methods.

• Thirdly, the theoretical performance of the proposed channel training protocol is derived in

terms of the average received power for a single-input-single-output (SISO) scenario, which

is compared to that of the optimal RC. Both our theoretical analysis and simulation results

1The channel estimation protocol is constituted by an amalgam of classic channel estimation schemes and RIS configuration

methods, while our new channel training protocol will be detailed in Section IV.
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demonstrate that our channel training protocol strikes an attractive performance vs. pilot

overhead trade-off.

• Finally, the theoretical analysis of our channel estimation and channel training protocols is

derived in the presence of noise and verified by numerical simulations.

The rest of this paper is structured as follows. Section II introduces the system model of

our RIS-assisted wireless network. In Section III and IV, we introduce our channel estimation

and channel training protocols, respectively. Furthermore, the configuration of RC and the

corresponding theoretical analysis of our channel training protocol are also addressed in Section

IV. In Section V, the effects of noise on both the channel estimation protocol and on the channel

training protocol are analysed, while Section VI provides numerical simulations of the proposed

protocols. Finally, Section VII offers our conclusions.

Notations: We use upper (lower) bold face letters for representing matrices (column vectors);

Scalars are denoted by italic letters; (·)T , (·)H and (·)∗ represent transpose, Hermitian transpose

and conjugate, respectively; diag (v) denotes a diagonal matrix with each diagonal element

being the corresponding element in v; ‖·‖ is the Frobenius norm of a complex vector, while |·|
denotes the magnitude of a complex number; E {·} stands for the expected value; ⊗ represents

the Kronecker product; We denote the N ×N identity matrix as IN ; 0 and 1 denote an all-zero

vector and an all-one vector, respectively, with appropriate dimensions. Furthermore, ⌊·⌋ and

⌈·⌉ represent the floor and ceiling operation, respectively; The log (·) represents the logarithmic

function; ℜ (z) and ℑ (z) denote the real and imaginary part of a complex number z, respectively;

Ma:b,c:d represents the elements of the a ∼ bth rows and c ∼ dth columns extracted from the

matrix M; S−1 denotes the inverse of the square matrix S; The distribution of a circularly

symmetric complex Gaussian random vector with mean vector v and covariance matrix Σ is

denoted by ∼ CN (v,Σ), where ∼ stands for “distributed as”; ∼ U (a, b) denotes the uniform

distribution in the interval (a, b); Cx×y denotes the space of x× y complex-valued matrices; ∠z

denotes the phase of a complex number; a! denotes the factorial of the non-negative integer a.

II. SYSTEM MODEL

Let us consider RIS-assisted multiuser communications in a single cell as shown in Fig. 1,

where a RIS is deployed to enhance the DL communications between a multi-antenna BS and K

single-antenna users. The number of transmit antennas (TAs) at the BS and that of the reflecting

elements at the RIS are denoted by M and N , respectively. The RIS is equipped with a smart
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controller that is capable of adjusting the RCs according to the real-time CSI [6]. Additionally,

the quasi-static flat-fading channel model is adopted for all links. In this paper, we consider a

time-division duplexing (TDD) protocol for uplink (UL) as well as DL transmissions and assume

the channel’s reciprocity for the CSI acquisition in the DL based on the UL training.

The baseband equivalent DL channels spanning from the BS to RIS, from the RIS to user

k, and from the BS to user k are denoted by U ∈ C
N×M , vH

k ∈ C
1×N , and hH

d,k ∈ C
1×M ,

respectively, with k = 1, 2, · · · , K. Let ϕ = [ϕ1, ϕ2, · · · , ϕN ]
T

and define a diagonal matrix

Φ = diag (ϕ1, ϕ2, · · · , ϕN) as the RC matrix of the RIS, where ϕn denotes the RC of the nth

element of the RIS, following |ϕn| = 1 for n = 1, 2, · · · , N . In this paper, we assume that

the phase shifts of ϕn can be continuously varied in [0, 2π), while in practice they are usually

selected from several discrete values from 0 to 2π for the sake of realistic implementation. The

cascaded BS-RIS-user link is thus modelled as a concatenation of three components, namely, the

BS-RIS links, RIS reflection with phase shifts, and RIS-user links. More specifically, we denote

the reflected BS-RIS-user channel as hH
r,k =

∑N
n=1 h

H
r,k,nϕn, where hH

r,k,n = vH
k,nUn,: denotes the

reflected BS-RIS-user channel from the BS to user k via the nth RIS element and vH
k,n denotes

the nth entry of vH
k .

We first consider the channel estimation in the UL phase. Regardless of the specific TS, the

baseband signal y received at the BS is the sum of that via the direct BS-user link and reflected

BS-RIS-user links, which can be expressed as

y =

K
∑

k=1

(

UHΦHvk + hd,k

)√
αxk + z =

K
∑

k=1

Hkϕ
′√αxk + z, (1)

where xk denotes the pilot symbol transmitted from user k with zero mean and unit variance,

α is the average power of the pilot symbols, which is assumed to be identical for all users.

Furthermore, z ∼ CN (0, σ2
zIM) denotes the additive white Gaussian noise (AWGN) at the BS,

ϕ
′ =

[

1 ϕ
H

]T

incorporates the phase shifts of the direct BS-user channel and reflected

BS-RIS-user channels and Hk = [hd,k,hr,k,1,hr,k,2, · · · ,hr,k,N ] incorporates the direct BS-user

channel and reflected BS-RIS-user channels from the BS to user k, k = 1, 2, · · · , K.

In the DL phase of data transmission, we use the linear transmit precoding (TPC) at the BS,

where each user is assigned a dedicated beamforming vector. As a result, the complex baseband

signal transmitted by the BS can be expressed as
∑K

k=1wksk, where sk denotes the transmitted

information symbol of user k and wk is the corresponding beamforming vector. It is assumed

that sk, k = 1, 2, · · · , K are independent random variables with zero mean and unit variance.
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BS

Control Link

RIS Controller

RIS

User 1

...
User 2

User K

Uplink

Downlink

Fig. 1. A RIS-assisted multiuser communication system.

Therefore, the DL signal received by user k from both the direct and reflected BS-RIS-user

channels is then expressed as

rk =
(

vH
k ΦU+ hH

d,k

)

K
∑

j=1

wjsj + nk, k = 1, 2, · · · , K, (2)

where nk denotes the AWGN at the kth user’s receiver. Without loss of generality, we assume

the same noise floor level for all users, i.e., nk ∼ CN (0, σ2
n) , k = 1, 2, · · · , K.

III. THE INTEGRATION OF CHANNEL ESTIMATION AND PASSIVE BEAMFORMING

In this section, we will introduce the existing RIS-assisted multiuser communication protocol

relying on channel estimation. Specifically, the channel estimation methods of direct and reflected

BS-RIS-user channels are introduced in Section III-A, while the optimization of the RCs at the

RIS based on the estimated CSI is presented in Section III-B.

A. Channel Estimation for RIS-assisted Multiuser Communication Systems

Let us first consider two different channel estimation methods for RIS-assisted systems: the

three-phase approach and the DFT-based approach. The three-phase method is proposed in [19],

while the DFT-based method is an extension of [16], which was originally developed for the

MISO scenario.

June 1, 2021 DRAFT
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n,1

Uplink Channel Estimation Downlink Data Transmission

n,2 ... n,T n,1 n,2 ... n,T n,1 n,2 ... n,T

xk,1 xk,1 ... xk,1 xk,2 xk,2 ... xk,2 xk,P xk,P ... xk,P

IRS n

User k

T symbols T symbols T symbols

PT symbols

Fig. 2. The frame structure of the channel estimation protocol.

1) Three-phase method: The simplest CSI acquisition method of RIS-assisted communication

systems is the ON/OFF method, which is based on turning each element of the RIS on and

off, followed by estimating the direct BS-user channel and the reflected BS-RIS-user channels

in sequence [15]. Following a similar philosophy, the authors of [19] proposed a three-phase

pilot-based channel estimation framework for multiuser scenarios. More specifically, in the first

phase, all the reflecting elements are switched off for estimating the direct BS-user channel,

i.e., hd,k, k = 1, 2, · · · , K. In the second phase, all the RIS reflecting elements are switched on,

and merely one of the typical users, assumed to be user 1, transmits non-zero pilot symbols

to the BS. By leveraging the results of the first phase, the reflected BS-RIS-user channels of

the specified user, i.e., hr,1,n, n = 1, 2, · · · , N , can be estimated. Finally, in the third phase,

merely user 2 to user K transmit their non-zero pilot symbols in the UL to the BS. In particular,

since the reflected BS-RIS-user channels of K users share the same BS-RIS link, the similar

characteristics of the reflected BS-RIS-user channels between multiple users makes it possible

to reduce the number of pilot symbols from (K − 1)N to max (K − 1, ⌈(K − 1)N/M⌉). The

detailed procedures are given in [19], which are omitted here for reasons of space-economy.

In [19], the authors verified that max (K − 1, ⌈(K − 1)N/M⌉) pilot symbols provide sufficient

degrees of freedom for estimating the reflected BS-RIS-user channels of users 2 to K, i.e.,

hr,k,n, k = 2, 3, · · · , K, n = 1, 2, · · · , N .

2) DFT-based method: It may be readily seen that owing to reducing the number of pilot

symbols, the three-phase method suffers from error propagation. To overcome this disadvantage,

we conceive a generalised DFT-based channel estimation method, which is the extension of [16]

initially designed for MISO scenarios. It is verified in [16] that the DFT-based RC optimization

achieves the Cramér–Rao lower bound (CRLB) of the MSE of the channel estimation error.

The specific channel estimation protocol and its frame structure are shown in Fig. 2, where the

June 1, 2021 DRAFT



10

PT pilot symbols are divided into P groups. In each group, the same pilot vector is transmitted

for T TSs. The reflecting elements are always switched on throughout the channel estimation

phase. More specifically, we have P ≥ K and T ≥ N+1 for estimating N reflected BS-RIS-user

channels and 1 direct BS-user channel for K users. In this paper, we use the minimum number

of pilot symbols, i.e., P = K, T = N +1. Therefore, for the pth pilot vector, i.e. the pth group,

the UL received signal of the tth TS at the BS can be expressed as

yp,t =

K
∑

k=1

HkF
H
:,t

√
αxk,p + zp,t, p = 1, 2, · · · , P, t = 1, 2, · · · , T, (3)

where FH
2:N+1,t denotes the RIS RC at the tth slot, and F ∈ C(N+1)×(N+1) is the discrete Fourier

transformation matrix.

Let Yp = [yp,1,yp,2, · · · ,yp,N+1], Zp = [zp,1, zp,2, · · · , zp,N+1] and H = [H1,H2, · · · ,HK ].

Upon collecting (N + 1) TSs corresponding to the pth pilot vector, we arrive at:

Yp = H
(

IK ⊗ FH
) (√

αxp ⊗ 1N+1,N+1

)

+ Zp, (4)

where xp = [x1,p, x2,p, · · · , xK,p]
T

is the pth pilot vector.

Furthermore, let Y = [Y1,Y2, · · · ,YP ] and Z = [Z1,Z2, · · · ,ZP ]. After applying (4) to all

P pilot vectors and simplifying, the result we get

Y = HG+ Z, (5)

where G =
(

IK ⊗ FH
)

(
√
αX⊗ 1N+1,N+1) includes the effect of the RC at the RIS and of the

pilot symbols transmitted in the UL by the users. The pilot design of X follows that of the

conventional MIMO channel estimation [48].

According to (5), the LS estimates of Ĥ can be readily obtained by

Ĥ = YGH
(

GGH
)−1

. (6)

We note that the DFT-based channel estimation method requires at least (N + 1)K pilot

symbols, which is the same as that of the ON/OFF method. Nevertheless, the DFT-based channel

estimation has a lower CSI estimation MSE than both the ON/OFF method and the three-phase

method, which is crucial for the optimization of the RIS RC. We will demonstrate in Section V

that in terms of achievable rate, the DFT-based channel estimation method remains the optimal

option for slow-fading channels.

June 1, 2021 DRAFT



11

B. Joint Transmit Beamforming and RIS Configuration

Upon obtaining the channel estimates of the direct and cascaded reflected BS-RIS-user links,

the BS performs the multi-user TPC and the RIS carries out phase-shift configuration accordingly.

Firstly, based on (2), the SINR of user k is given by

SINRk =

∣

∣

(

vH
k ΦU + hH

d,k

)

wk

∣

∣

2

∑K
j 6=k

∣

∣

(

vH
k ΦU+ hH

d,k

)

wj

∣

∣

2
+ σ2

n

, k = 1, 2, · · · , K. (7)

Depending on the specific quality of service (QoS) requirements, the optimization criteria

may differ, such as aiming for the maximized sum rate [21], minimized transmit power [9], and

maximized minimum SINR. In this paper, we opt for using the same optimization criteria as in

[9], which endeavours to minimize the total transmit power at the BS by jointly optimizing the

TPC at the BS and RC at the RIS, subject to individual SINR constraints at all users. Therefore,

the optimization problem can be formulated as

min
W,ϕ

K
∑

k=1

‖wk‖2

s.t.
|(vH

k
ΦU+hH

d,k)wk|2
∑K

j 6=k |(vH
k
ΦU+hH

d,k)wj|2+σ2
n

≥ γk, k = 1, 2, · · · , K,

0 ≤ ϕn < 2π, n = 1, 2, · · · , N,

(8)

where γk > 0 is the minimum SINR requirement of user k. Solving (8) is not trivial because of

the non-convex constraints, since the optimization of the TPC and RC are coupled. In [9], Wu

et al. discussed this problem in detail and proposed an alternating optimization algorithm based

on SDR to obtain an accurate approximate solution.

In summary, we integrate the channel estimation technique with multi-user beamforming since

there is a paucity of literature on the impact of channel estimation errors on the optimization

of the RIS RC, this will be addressed in Section V. Moreover, the channel estimation protocol

conceived in this section constitutes the baseline of our energy-efficient channel training-aided

transmission protocol of Section IV.

IV. THE PROPOSED CHANNEL TRAINING FRAMEWORK

In this section, we outline the proposed channel training scheme. Firstly, our channel training

protocol is introduced in Section IV-A. Furthermore, the specific training methods of the RIS

RC are proposed in Section IV-B, where the theoretical performance of our channel training

framework is also analyzed in terms of the average received power at the users. Finally, Section
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n,1

Uplink Channel Training Downlink Data Transmission

n,1 ... n,1 n,2 n,2 ... n,2 ... n,Q n,Q ... n,Q

xk,1 xk,2 ... xk,L xk,1 xk,2 ... xk,L ... xk,1 xk,2 ... xk,L

IRS n

User k

L symbols L symbols L symbols

QL symbols

Superimposed

Channel Estimation

Superimposed

Channel Estimation

Superimposed

Channel Estimation

Transmit

Beamforming

Transmit

Beamforming

Transmit

Beamforming

Decision Center

...

...

Fig. 3. The channel training protocol and frame structure.

IV-C details the potential benefits of our channel training protocol over the existing channel

estimation protocols in our RIS-enhanced wireless network.

A. Channel Training Protocol

We first introduce our channel training protocol of Fig. 3, which consists of two phases: the

UL channel training and the DL data transmission, where Q training periods of length L are

used for CSI acquisition and RIS configuration. In contrast to the existing channel estimation

protocol of Section III, we suggest directly estimating the superimposed channel in each training

period2. We adjust the RCs at the RIS over different training periods and repeat the superimposed

channel estimation as well as the DL transmit beamforming design based on the instantaneous

estimates of the current superimposed channel. Upon comparing the objective function values

over multiple training periods, the optimal channel is selected from Q candidates by the decision

centre to assist in the DL data transmission. As a result, the phase shifts of the RIS reflecting

elements and the corresponding DL TPC are also determined.

More specifically, we assume that the RC matrix of the qth training period is Φq, q =

1, 2, · · · , Q. Hence, the received signal of the lth TS of the qth training period can be expressed

2Note that we still have to perform channel estimation in our channel training protocol, but estimate the superimposed end-

to-end channel (the amalgam of the direct BS-user channel and all reflected BS-RIS-user channels via the RIS) instead of a

large number of reflected BS-RIS-user channels. The real meaning of ‘training’ represents the training of RCs at the RIS by

comparing the objective function values over multiple training periods.
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as

yq,l =

K
∑

k=1

(

UHΦH
q vk + hd,k

)√
αxk,l + zq,l =

K
∑

k=1

hq,k

√
αxk,l + zq,l =

√
αHqxl + zq,l, (9)

where hq,k = UHΦH
q vk + hd,k denotes the superimposed channel spanning from the kth user

to the BS in the qth training period, xk,l is the pilot symbol transmitted from user k in TS l,

which is the same for all Q training periods, while Hq = [hq,1,hq,2, · · · ,hq,K] denotes the UL

superimposed channel combining a single direct BS-user channel and N reflected BS-RIS-user

channels in the qth training period.

Upon collecting the signals of L TSs in the qth training period, the UL signals received by

the BS in the qth training period can be expressed as

Yq = [yq,1,yq,2, · · · ,yq,L] =
√
αHqX+ Zq, (10)

where X = [x1,x2, · · · ,xL] is the pilot matrix used for estimating the superimposed channel

impinging from the K users to the BS, which is identical for Q training periods, while Zq =

[zq,1, zq,2, · · · , zq,L] denotes the noise matrix at the BS during the qth training period.

As a result, the estimation problem of the superimposed channel in the qth training period

is equivalent to the conventional MIMO channel estimation, which has been widely studied

for nearly three decades [48], [49]. In this paper, we harness the orthogonal pilot design of

conventional MIMO channel estimation [48], where we have L = K. Following [48], the LS

estimate of the superimposed channel Hq of the qth training period is given by

Ĥq,LS =
1

K
√
α
YqX

H . (11)

After obtaining the estimates of the superimposed channel in the qth training period, the

optimization problem of (8) is reduced to

min
Wq

K
∑

k=1

‖wq,k‖2

s.t.
|hH

q,k
wq,k|2

∑K
j 6=k |hH

q,k
wq,j|2+σ2

n

≥ γk, ∀k,
(12)

where Wq = [wq,1,wq,2, · · · ,wq,K] denotes the DL TPC matrix at the BS of the qth training

period.

Note that (12) represents the conventional power minimization problem of the multiuser DL

MIMO channel. In [50], the general formula of the optimal TPC vectors is given by

ŵq,k =
√
pk

(

IM +
∑K

j=1
λj

σ2
n
hq,jh

H
q,j

)−1

hq,k
∥

∥

∥

∥

(

IM +
∑K

j=1
λj

σ2
n
hq,jh

H
q,j

)−1

hq,k

∥

∥

∥

∥

, (13)
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where pk denotes the TPC power for user k while λj ≥ 0 is the Lagrange multiplier associated

with the kth SINR constraint [50]. The K unknown TPC powers can be obtained by solving the

following linear equations:

[p1, p2, · · · , pK ] = σ2
n11×KM

−1, (14)

where the (i, j)th element of the matrix M ∈ RK×K is given by

[M]i,j =







1
γi

∣

∣hH
q,iw̃q,i

∣

∣

2
, i = j,

−
∣

∣hH
q,jw̃q,i

∣

∣

2
, i 6= j,

(15)

and w̃q,k = 1√
pk
ŵq,k is the TPC direction of user k. In addition, the Lagrange multipliers can

be computed either by convex optimization [51] or by the fixed-point iteration-based equations

of [52], [53].

By carrying out the superimposed channel estimation in (11) and the DL TPC in (13) for all

Q training periods, we obtain Q candidate channels and their corresponding TPC matrix. Next,

we proceed to select the optimal channel to assist the DL data transmission by continuing to

adopt the criteria of minimizing the transmit power. More specifically, this optimization problem

can be expressed as

min
q

K
∑

k=1

‖ŵq,k‖2

s.t. 1 ≤ q ≤ Q.

(16)

Once the index q̂ of the optimal training period is obtained, the corresponding RC matrix,

superimposed channel, and TPC matrix are determined accordingly by Φ̂ = Φq̂, Ĥ = Ĥq̂,

Ŵ = Ŵq̂.

B. Configuration of RC at the RIS

In this section, we consider a pair of training methods for the configuration of the RIS RC

over Q training periods, which provides useful insight into the performance characteristics of

our channel training protocol.

1) Random configuration: Let us first consider the simple random configuration, namely,

where the phase shifts of the RIS reflecting elements are randomly generated from a uniform

distribution in each training period, which can be expressed as

∠ϕq,n ∼ U [0, 2π) , q = 1, 2, · · · , Q, n = 1, 2, · · · , N. (17)
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Next, we will analyze the scaling law of the average received power at the user for charac-

terizing the performance of our channel training protocol relying on a random configuration.

For the sake of simplicity, we assume that M = 1 and K = 1 to gain essential insights.

Let us first consider the case where the number of RIS reflecting elements is 1, which will

provide theoretical support for the more general scenario of N elements. When the number of

RIS reflecting elements is 1, the average received power Pu at the user employing our channel

training protocol with random configuration is given by

Pu = PE
{

|h∗|2
}

= PE

{

max
q=1,2,··· ,Q

{|ϕqh
∗
r + h∗

d|}
}

, (18)

where P is the transmit power at the BS, h∗
r = uv∗ denotes the cascaded reflected BS-RIS-user

channel via the RIS without considering the phase shift, while u and v represent the degradation

of U and vk, respectively. Since the BS and RIS are often on a tower or tall buildings, typically

line-of-sight (LoS) propagation associated with only a few scatterers are observed. Hence the

channel between the BS and RIS generally has a longer coherence time and a higher Rician

factor than both the BS-user channel and the RIS-user channel. Therefore, it is reasonable to

assume that hr ∼ CN (0, ρ2r), where ρ2r is the path loss of the reflected BS-RIS-user channel

via the RIS. Based on this assumption, the average received power of the user employing our

channel training protocol with random configuration for the SISO scenario is summarized in

Proposition 1.

Proposition 1: Upon assuming hr ∼ CN (0, ρ2r) and hd ∼ CN (0, ρ2d), we have:

Pu = P
(

ρ2r + ρ2d +
π

2
ρrρdg (Q)

)

, (19)

where we have

g (Q) =
Q!

πQ

⌈(Q−1)/2⌉
∑

i=1

(−1)i+1
f (Q− 2i)πQ−2i, (20)

with f (a) = 2 for a = 0 and f (a) = 1/a! for a > 0.

Proof: Please refer to Appendix A.

Next, let us consider the more general case of N ≥ 2. The average received signal power can

be expressed as

Pu = PE

{

max
q=1,2,··· ,Q

{

∣

∣hH
∣

∣

2
}

}

= PE







max
q=1,2,··· ,Q







∣

∣

∣

∣

∣

N
∑

n=1

ϕq,nh
H
r,n + hH

d

∣

∣

∣

∣

∣

2












. (21)
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Since it is not as tractable to find the explicit solution of (21) as in the case of N = 1,

for N ≥ 2, we provide an upper bound for characterizing its theoretical performance. More

specifically, the upper bound of (21) is summarized in Proposition 2.

Proposition 2: Upon assuming that hr,n ∼ CN (0, ρ2r) , n = 1, 2, · · · , N and hd ∼ CN (0, ρ2d),

we have:

Pu ≤ P
(

Nρ2r + ρ2d +
π

2
Nρrρdg (Q) +

π

4
N (N − 1) ρ2rg

2 (Q)
)

. (22)

Proof: Please refer to Appendix B.

Propositions 1 ∼ 2 characterize the performance of a randomly configured channel training

protocol for SISO scenarios, which offers the following useful observations. Firstly, let us

gain some insight into the nature of the upper bound of (22). The RHS of (22) holds, when

N reflected BS-RIS-user channels are highly correlated. For example, considering a localized

RIS-assisted scenario having a moderate number of tightly-placed reflecting elements (e.g., the

antenna spacing is less than half wavelength), the upper bound of (22) is achievable. On the

other hand, assuming that all reflecting elements are independent of each other, if we do not

limit the number of training periods, it takes at most NQ training periods to approach the upper

bound of (22). One of the feasible ways is to switch on only a single reflecting element at a

time and mute all the others for Q training periods. The upper bound can also be achieved by

doing so for N RIS elements. It is not hard to see that the RHS of (22) is also the lower bound

for NQ training periods.

Additionally, some asymptotic behavior can also be observed from Propositions 1 ∼ 2. For

example, when Q = 1, we have Pu,random = P (Nρ2r + ρ2d), which is consistent with the conclu-

sion drawn for a single random configuration in [9]. Upon increasing Q, Pu will be gradually im-

proved. In particular, as Q → ∞, we have Pu,optimal = P
(

Nρ2r + ρ2d +
π
2
Nρrρd +

π
4
N (N − 1) ρ2r

)

,

which matches the average received power with optimal Φ [9]. More generally, we summarize

the relationship between the average received power using our channel training protocol relying

on a random configuration and the theoretical optimal received power as Corollary 2-1.

Corollary 2-1: Let us assume that hr,n ∼ CN (0, ρ2r) , n = 1, 2, · · · , N and hd ∼ CN (0, ρ2d).

As N → ∞, we have:
Pu

Pu,optimal
→ g2 (Q) , (23)

where Pu → π
4
N2ρ2rg

2 (Q) and Pu,optimal → π
4
N2ρ2r characterize the asymptotic values of Pu

and Pu,optimal, respectively, as N → ∞.
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(a) Q=3 (b) Q=4

1

2

3

1

2

3

4

Fig. 4. The equi-partition based configuration for Q = 3 and Q = 4, where we assume that N = 1.

It can be seen from Corollary 2-1 that, compared to the average received power associated

with the optimal Φ, the randomly configured channel training protocol has a modest power loss

of [1− g2 (Q)], which can be compensated by increasing the number of training periods. On the

other hand, Corollary 2-1 assumes the ideal case in the absence of channel estimation errors.

When considering practical communication systems in the presence of channel estimation errors,

our channel training protocol will become more competitive, which will be verified in Section

VI.

2) Equi-partition configuration: In our channel training protocol, we want to find the best

channel within a limited number of Q training periods. It is clear that the random configuration

does not utilize the Q training periods effectively. Therefore, we propose a more sophisticated

technique for the configuration of the phase shifts, which is based on the following philosophy:

The more different RCs exist, the more different channels can be generated, thus leading to Q

candidate sets associated with more significant differences. In this paper, we use the Euclidean

distance between the RC to quantify this difference. Therefore, the optimization problem of RC

sets can be expressed as

max
ϕ1,ϕ2,··· ,ϕQ

Q
∑

q=1

Q
∑

q′=1,q′ 6=q

∥

∥ϕq − ϕq′

∥

∥

2
. (24)

For an arbitrary one of the reflecting elements, the problem of (24) is reduced to

[ϕ1,n, ϕ2,n, · · · , ϕQ,n] = max
ϕ1,n,ϕ2,n,··· ,ϕQ,n

Q
∑

q=1

Q
∑

q′=1,q′ 6=q

N
∑

n=1

|ϕq,n − ϕq′,n|2

= max
ϕ1,n,ϕ2,n,··· ,ϕQ,n

Q
∑

q=1

Q
∑

q′=1,q′ 6=q

|ϕq,n − ϕq′,n|2.
(25)
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Furthermore, finding the maximum value of (25) is equivalent to the constraint of zero on its

partial derivative, which can be expressed as

Q
∑

q′=1

ℑ
(

ϕq′,nϕ
∗
q,n

)

= 0, q = 1, 2, · · · , Q. (26)

It is not difficult to verify that the configuration of the phase shifts satisfying (26) forms a

regular Q-polygon, and one of the possible solutions can be expressed as

ϕq,n = ϕne
j 2(q−1)π

Q , q = 1, 2, · · · , Q, (27)

where ϕn ∼ U [0, 2π) denotes the random initial phase. Fig. 4 gives examples for Q = 3 and

Q = 4, where we assume N = 1 for the sake of illustration.

Following a similar line of the proof followed for Propositions 1 ∼ 2, the average received

power of our channel training protocol associated with our equi-partition configuration is sum-

marized in Proposition 3.

Proposition 3: Upon assuming hr,n ∼ CN (0, ρ2r) , n = 1, 2, · · · , N and hd ∼ CN (0, ρ2d), we

have:

Pu ≤ P

(

Nρ2r + ρ2d +
π

2
Nρrρd

sin (π/Q)

(π/Q)
+

π

4
N (N − 1) ρ2r

sin2 (π/Q)

(π/Q)2

)

. (28)

Proof: When the equi-partition configuration scheme of Fig. 4 is adopted, E

{

max
q=1,2,··· ,Q

{cos θq}
}

can be calculated as

E

{

max
q=1,2,··· ,Q

{cos θq}
}

=
Q

2π

π/Q
∫

−π/Q

cos θ1dθ1 =
sin (π/Q)

(π/Q)
. (29)

Upon substituting (59) into (21) and following the same considerations as Appendix B, we

complete the proof. �

It can be seen from Proposition 3 that the average received power of our channel training

protocol using our equi-partition configuration has the same trend as that of the random configu-

ration, but suffers from a smaller power loss of
(

1− sin2(π/Q)

(π/Q)2

)

than the random configuration3.

Nevertheless, the equi-partition configuration has some limitations in practical implementations,

which will be detailed in Section VI.

3Here we directly use the conclusion
sin(π/Q)
(π/Q)

≥ g (Q) without proof, which will be verified by our simulations.
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TABLE II

CONTRASTING OUR CHANNEL TRAINING PROTOCOL TO THE EXISTING CHANNEL ESTIMATION PROTOCOLS

Type Existing channel estimation protocols [15]–

[24]

Our channel training protocol

System design Complex Simple

Pilot overhead Large, (N + 1)K Small, QK

Error propagation Severe Mild

Signalling overhead Large, N log2B Small, ⌈log2Q⌉

Channel model Dependent Independent

Performance Better Slight performance penalty

Optimization problems

Channel estimation protocol

Joint pilot design and RIS configuration

Joint active and passive beamforming

Channel training protocol

C. Benefits of Channel Training Protocol

In this subsection, we will elaborate on the benefits of our superimposed channel training

scheme compared to its existing separate channel estimation counterparts, based on the following

five aspects:

1) Simplified system design: In contrast to the existing channel estimation protocols [15]–

[24], the proposed channel training scheme simplifies the complex signal processing of the

existing solutions. More specifically, the channel estimation of the RIS-assisted systems has to

consider the joint design of the pilot symbols transmitted in the UL from the users and RC of the

RIS, as well as the specific estimation protocol employed. Furthermore, in the data transmission

phase, the RC and TPC have also to be optimized jointly, which is complex to implement.

For example, in [19], the authors considered a three-phase channel estimation protocol, which

estimates the direct BS-user channel link, the reflected BS-RIS-user channels of a specific user

via the RIS, and other users in the three phases. Moreover, Wu et al. [9], [33] considered the

joint design of the RC and the TPC, and solved the problem by the SDR convex optimization

algorithm and alternate optimization. By contrast, the proposed channel training protocol is more

concise. During each training period, we only have to estimate the superimposed MIMO channel

and perform TPC without considering the influence of the RIS, which have been richly studied

in conventional systems, leading to a lot of sophisticated algorithms [48], [49]. The configuration

of the RC is completed over multiple training periods by a pre-established selection criterion,
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which effectively avoids the aforementioned problems and significantly simplifies the system

design.

2) Flexible pilot overhead: Compared to the existing channel estimation protocols [15]–

[24], the pilot overhead of our channel training protocol is more moderate, striking a flexible

performance vs. overhead trade-off. More specifically, for the channel estimation protocol of

[15], the pilot overhead of the simplest ON/OFF method mentioned is (N + 1)K. Although

some estimation strategies have been designed for reducing the pilot overhead, they often

introduce severe error propagation or sacrifice the performance. For example, [19] reduces the

pilot overhead to K +N +max (K − 1, ⌈(K − 1)N/M⌉) by taking advantage of the similarity

of the BS-RIS link of the reflected BS-RIS-user channels between multiple users. On the other

hand, [17] reduces the pilot overhead to (D + 1)K by dividing the RIS reflecting elements into

D groups, but suffers from a performance penalty. Nevertheless, the pilot overhead of channel

estimation is still dependent on the number of reflecting elements N . By contrast, our channel

training protocol avoids this pilot overhead of QK, thus striking a flexible performance vs.

overhead trade-off.

3) Mitigated error propagation: Several channel estimation methods attempted to reduce the

pilot overhead of the channel estimation [15], [17], [19]. However, these methods were designed

for the sole purpose of reducing the pilot overhead, while ignoring the error propagation effects

during the channel estimation phase. For example, in order to exploit the similarities of the

reflected BS-RIS-user channels, an ON/OFF estimation strategy is used in [19]. Specifically,

the RIS reflecting elements are muted first for estimating the direct BS-user channel, and then

the direct BS-user channel is used for estimating the reflected BS-RIS-user channel. Since the

estimated direct BS-user channel is inaccurate, it exacerbates the estimation error of the reflected

BS-RIS-user channels. Additionally, [19] first estimates the reflected BS-RIS-user channels of

a specific user, and then estimates that of all other users, which also precipitates the error

propagation between different users. Moreover, the channel estimation errors can also affect

the RC, thereby eroding the expected performance improvements attained by the RIS. By

contrast, in the proposed channel training protocol, the channel estimation errors only affect

the index of the training period deemed to be the best. Compared to channel estimation, the

error propagation within our channel training protocol is significantly reduced. We will show in

our subsequent numerical simulations and theoretical analysis that in the presence of channel

estimation errors, bespoke channel training can even mitigate the performance gap imposed by
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the channel estimation protocol, despite its reduced system complexity and frugal pilot overhead.

4) Reduced signalling overhead: In the channel estimation protocol of [15]–[24], the RCs

are optimized by the controller centre and then they have to be transmitted through the control

link to the RIS, which requires the extra signalling of N log2B bits to the RIS. Note that here

we consider the practical implementation of the reflecting elements using finite-precision phase

shifts, where B represents the number of quantization order. The total number of bits required

for control signalling is linearly proportional to the number of RIS elements and logarithmically

to B. Fortunately, for our channel training protocol, the RIS configuration can be completed

by only feeding back the index of the optimal training period to the RIS, hence the number

of control signalling bits is ⌈log2Q⌉. Hence, it is apparent that our channel training protocol

significantly reduces the signalling overhead and thus also the transmission delay between the

control centre and the RIS compared to the channel estimation protocol of [15]–[24].

5) Model independent: Compared to the channel estimation protocol of [15]–[24], our chan-

nel training method does not depend on the specific channel model via the RIS. At each training

period, only the RCs have to be configured and the BS will perform the estimation of the

superimposed channel. By contrast, in the existing schemes, the cascaded reflected BS-RIS-user

channels are estimated, and the channel estimation algorithms generally have to consider, for

example, the correlation between reflecting elements [17], or the similarity of the BS-RIS link

between multiple users [19] or alternatively the sparsity of the BS-RIS link [18]. By contrast,

our channel training method reduces the dependence on the specifics of the channel model and

thus has a wider range of applications than the channel estimation protocol of [15]–[24].

In conclusion, our channel training scheme and the channel estimation protocols of [15]–[24]

are boldly contrasted in Table II.

V. THE EFFECT OF CHANNEL ESTIMATION ERRORS

In this section, we evaluate the robustness of the channel estimation protocols of [15]–[24]

and our channel training protocol in the face of channel estimation errors. Following the same

considerations as in Section IV-B, we continue to use the average received power to characterize

the effect of channel estimation errors. In this context, we consider the SISO scenario, where

only a single user is served by a BS having a single TA.
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A. Theoretical Analysis of the Channel Estimation Protocol [15]–[24]

First, let us consider the channel estimation protocol of Section III. We assume that the

estimated reflected BS-RIS-user channel coefficients and direct BS-user channel coefficients are

ĥd = hd + εd, ĥr,n = hr,n + εr,n, n = 1, 2, · · · , N, (30)

respectively, where εd ∼ CN (0, σ2
d) and εr,n ∼ CN (0, σ2

r) , n = 1, 2, · · · , N represent the

estimation error of the direct BS-user channel and reflected BS-RIS-user channels via the nth

RIS element, respectively.

Based on [33], the RIS RC based on the channel estimates can be expressed as

ϕ̂n =
ĥ∗
r,nĥd

∣

∣

∣
ĥ∗
r,nĥd

∣

∣

∣

, n = 1, 2, · · · , N. (31)

Due to the influence of channel estimation errors, the rotated reflected BS-RIS-user channels

cannot be perfectly coherently-superimposed on the direct BS-user channel at the receiver, which

will result in some power loss. More specifically, the average power received in the presence of

channel estimation errors is summarized in Proposition 4.

Proposition 4: Upon assuming hr,n ∼ CN (0, ρ2r) , n = 1, 2, · · · , N , hd ∼ CN (0, ρ2d), εd ∼
CN (0, σ2

d) and εr,n ∼ CN (0, σ2
r) , n = 1, 2, · · · , N , we have:

Pu = P

(

Nρ2r + ρ2d +
πNρ2rρ

2
d

2
√

(ρ2r + σ2
r ) (ρ

2
d + σ2

d)
+

πN (N − 1) ρ4r
4 (ρ2r + σ2

r)

)

. (32)

Proof: Please refer to Appendix C.

Proposition 4 quantifies the influence of channel estimation errors on the average received

power of the user. It can be seen that when the channel estimation errors are severe, we have

Pu = P (Nρ2r + ρ2d), which is consistent with the conclusion of single random configuration.

Moreover, Pu is equivalent to the optimal received power when there is no channel estimation

error. Additionally, as N increases, the asymptotic behaviour of average received power in the

face of channel estimation errors is described in Corollary 4-1.

Corollary 4-1: Upon assuming εd ∼ CN (0, σ2
d) and εr,n ∼ CN (0, σ2

r) , n = 1, 2, · · · , N . As

N → ∞, we have
Pu

Pu,optimal

→ ρ2r
ρ2r + σ2

r

. (33)

Corollary 4-1 shows that with the increase of N , the average received power is determined

by the path loss and by the estimation error of the reflected BS-RIS-user channels. This also
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TABLE III

THE COMPARISON OF THREE CHANNEL ESTIMATION METHODS

Pilot overhead Estimation accuracy Applicable scenario Achievable rate

ON/OFF method [15] Large Low Slow fading channel Low

Three-phase method [19] Middle Middle Fast fading channel Middle

DFT-based method [16] Small High Slow fading channel High

implies that accurately estimating the reflected BS-RIS-user channels is beneficial for improving

the performance of RIS equipped with numerous reflecting elements.

Next, we will evaluate the performance of three channel estimation algorithms in terms of

their achievable rate under their respective channel estimates. The ergodic achievable rate in

terms of bits per second per Hertz (b/s/Hz) is approximately given by

R =
τco − τ

τco
log2









1 +

PE

{

∣

∣

∣

∑N
n=1 ϕ̂nh

H
r,n + hH

d

∣

∣

∣

2
}

σ2









, (34)

where τ is the number of symbols required for performing channel estimation, while τco is the

number of symbols within the coherence time.

1) The ON/OFF method: We first consider the simplest ON/OFF method described in [15],

where the reflecting elements are activated one by one to estimate the direct BS-user channel

and the reflected BS-RIS-user channel. As demonstrated in [15], the minimum number of pilot

symbols required for estimating N reflected BS-RIS-user channels plus a direct BS-user channel

and the MSE of the channel estimates are

τ
∣

∣

ON/OFF = N + 1, σ2
d

∣

∣

ON/OFF = σ2, σ2
r,n

∣

∣

ON/OFF = 2σ2, n = 1, 2, · · · , N, (35)

respectively, where we have σ2 = σ2
z/α.

2) The three-phase method: When considering a single user, the direct BS-user channel

estimation of the three-phase method of [19] degenerates into the ON/OFF estimation strategy of

[15]. First, all the reflecting elements are switched off for estimating the direct BS-user channel.

Then all the reflecting elements are switched on to complete the estimation of the remaining

reflected BS-RIS-user channels and the RCs are optimized by the DFT matrix. As described in

[19], the required number of pilot symbols and the MSE of channel estimates are given by

τ |three−phase = N + 1, σ2
d |three−phase = σ2, σ2

r,n |three−phase =
2σ2

N
, n = 1, 2, · · · , N. (36)
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3) The DFT-based method: Finally, let us consider the optimal channel estimation scheme,

i.e. the DFT-based method of [16]. The reflecting elements are always active, and the RC vectors

of different TSs are orthogonal to each other. In [16], the authors provided a method to design

the RC by the DFT matrix, which not only satisfies the established constraints, but also reaches

the CRLB of the channel estimates. As stated in [16], the minimum number of pilots required

for estimating N reflected BS-RIS-user channels plus a direct BS-user channel and the MSE of

channel estimates are respectively given by

τ |DFT = N + 1, σ2
d |DFT =

σ2

N + 1
, σ2

r,n |DFT =
σ2

N + 1
, n = 1, 2, · · · , N. (37)

As a result, the corresponding ergodic achievable rate for these three channel estimation schemes

can be obtained by substituting (35) ∼ (37) into (34), which is omitted here for brevity.

In summary, although several channel estimation algorithms attempted to reduce the pilot

overhead, they tend to exhibit a poorer channel estimation accuracy, as well as achievable

rate than our method, especially in slowing time-varying channels having longer coherence

time. However, in the context of rapidly time-varying channels of UAV-assisted or vehicle-to-

everything (V2X) systems, it is particularly desirable to reduce the pilot overhead, because it is

doubled whenever the Doppler frequency is doubled. On the other hand, from an information-

theoretic perspective, having continuously open reflecting elements can provide more observation

information about the direct BS-user channel, which generally translates into improved estimation

accuracy. In that sense, the ON/OFF strategy of the RIS elements not only fails to take advantage

of this benefit, but also has to rely on inaccurate direct BS-user link estimates for estimating the

reflected BS-RIS-user channels, which precipitates error propagation. Nevertheless, the specific

characteristics of reflected BS-RIS-user channels have been exploited by these existing channel

estimation strategies. For example, the sparsity of the BS-RIS channel [18], the correlation of

the reflected BS-RIS-user channels [17] and the similarity of reflected BS-RIS-user channels of

multiple users [19], have been capitalized on, but the direct BS-user channel either has been

ignored or a crude ON/OFF method has been adopted. In summary, although the recent channel

estimation methods have succeeded in reducing the pilot overhead, it is still an open problem,

as to whether techniques may be found, which can rely on always-on reflecting elements. This

question is set aside for our future research.
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B. The Theoretical Analysis of Our Channel Training Protocol

Next, we consider the effect of channel estimation errors on our channel training protocol.

First, we assume that the channel estimate in the qth training period is

ĥq = hq + εq, q = 1, 2, · · · , Q, (38)

where εq ∼ CN
(

0, σ2
Q

)

denotes the estimation error of the superimposed channel in the qth

training period.

Therefore, the average received power of our channel training protocol can be expressed as

Pu = PE
{

|ϕq̂hr + hd|2
}

= PE
{

|hr|2 + |hd|2 + 2ℜ
(

ϕ∗
q̂h

∗
rhd

)}

, (39)

where

q̂ = arg max
q=1,2,··· ,Q

{

|ϕqhr + hd + εq|2
}

, (40)

represents the optimal training period index selected from Q candidates based on the estimated

superimposed channel.

We note that evaluating the third term of (39) is not trivial even for a RIS having only a

single reflecting element. Hence, in this paper, we derive an upper bound for characterizing our

channel training protocol in the presence of noise. For the sake of brevity, we only consider

our channel training protocol relying on random configuration in this part. More specifically, the

third term of (39) is upper bounded by

E

(

ℜ
(

ϕ∗
q̂h

∗
rhd

)

∣

∣

∣

∣

ϕq̂ = arg max
ϕq ,q=1,2,··· ,Q

{

|ϕqhr + hd + εq|2
}

)

≤ E

(

max
q=1,2,··· ,Q

{

ℜ
((

ϕ∗
qh

∗
r + ε∗q

∣

∣ϕ∗
qh

∗
r + ε∗q

∣

∣

ϕqhr

)∗

hd

)})

≤ E

(∣

∣

∣

∣

∣

h∗
r + ε∗q

/

ϕ∗
q

|h∗
r + ε∗r/ϕ

∗
r|
hr

∣

∣

∣

∣

∣

)

E (|hd|)E
(

max
q=1,2,··· ,Q

{

cos θ′q
}

)

(b)
=

π

4
ρd

ρ2r
√

ρ2r + σ2
g (Q) ,

(41)

where we have

cos θ′q = ℜ
((

h∗
r + ε∗q

/

ϕ∗
q

|h∗
r + ε∗r/ϕ

∗
r|
ϕqhr

)∗

hd

)/∣

∣

∣

∣

∣

(

h∗
r + ε∗q

/

ϕ∗
q

|h∗
r + ε∗r/ϕ

∗
r|
ϕqhr

)∗

hd

∣

∣

∣

∣

∣

, (42)

following θ′q ∼ U [0, 2π) and εq/ϕq ∼ CN
(

0, σ2
Q

)

, while (b) holds as the results of Appendix

C.

Furthermore, analogously to the proof of Proposition 3, we directly summarize the average

received power of our channel training protocol in the face of noise in Proposition 5.
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d0BS IRS

dv

User
d

Fig. 5. The position schematic of the single-user scenario (top view).

Proposition 5: Upon assuming hr,n ∼ CN (0, ρ2r) , n = 1, 2, · · · , N , hd ∼ CN (0, ρ2d) and

εq ∼ CN
(

0, σ2
Q

)

, we have:

Pu ≤ P



Nρ2r + ρ2d +
π

2
N

ρ2r
√

ρ2r + σ2
Q

ρdg (Q) +
π

4
N (N − 1)

ρ4r
ρ2r + σ2

Q

g2 (Q)



 . (43)

By comparing Proposition 4 and Proposition 5, one can see that although our channel training

protocol suffers from some loss of power, it is more robust with respect to the estimation errors

than the channel estimation protocol, which is consistent with our intuition. More specifically,

in the channel estimation protocol of [15]–[24], both the estimated direct BS-user channel and

the estimated reflected BS-RIS-user channel are inaccurate, which has a severe impact on the

optimization of the RIS RC. By contrast, in our channel training protocol, the estimation error

has a reduced influence on the overall performance. On the other hand, although the average

received power of our channel training protocol is upper-bounded, the following simulations will

show that Proposition 5 represents a rather tight upper bound at low SNRs and confirms the

robustness of our channel training protocol.

VI. SIMULATION RESULTS

In this section, numerical simulations are provided for characterizing the proposed protocols.

In our simulations, we consider a three-dimensional (3D) coordinate system where a uniform

linear array (ULA) is used at the BS and a uniform rectangular array (URA) is employed at

the RIS, which are located in the x-axis and x − z plane, respectively. The antenna spacing

is half a wavelength and the center of the antennas at the BS and RIS is located at (0, 0, 0)

and (0, d0, 0), respectively, where d0 is set to d0 = 50 meter (m) denoting the distance between

the BS and the RIS. For the number of RIS elements, we set N = NxNz, where Nx and Nz

denote the numbers of reflecting elements along the x-axis and z-axis, respectively, where we
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Fig. 6. The achievable rate versus the transmit power at the BS for the different channel estimation methods of Section III,

where the average power of pilot symbols is −30 dBm.

fix Nx = 10. Furthermore, we assume a Rician fading channel model for all channels involved.

More specifically, the BS-RIS channel U is given by [9]

U =
√

C0dBI
−αBI

(
√

βBI

βBI + 1
ULoS +

√

1

βBI + 1
UNLoS

)

, (44)

where C0 is set to C0 = −20 dB, denoting the path loss at the reference distance of 1 m, dBI = d0

denotes the link length between the BS and RIS, and αBI denotes the corresponding path loss

exponent, βBI is the Rician factor, and ULoS and UNLoS represent the deterministic LoS and

Rayleigh fading components, respectively. In particular, the above model is reduced to the LoS

channel when βBI → ∞ or to the Rayleigh fading channel, when βBI = 0. The BS-user and

RIS-user channels are also generated by following a similar procedure to that of (44). The path

loss exponents of the BS-user and RIS-user links are denoted by αBU and αIU , respectively, and

the Rician factors of the two links are denoted by βBU and βIU , respectively. Due to the relatively

large distance and random scattering of the BS-user channel, we set αBU = 3.5 and βBU = 0,

unless specified otherwise, while their counterparts for the BS-RIS and RIS-user channels will

be specified later to study their effects on the system performance. In our simulations, we assume

that all users have the same SINR target, i.e., γk = γ, k = 1, 2, · · · , K. The number of random

vectors used for the Gaussian randomization in the SDR algorithm is set to 1000 and the stopping

threshold for the alternating optimization algorithms is set to ε = 10−4. The noise power at the

receiver is set as σ2
n = −70 dBm for k = 1, 2, · · · , K.
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Fig. 7. The achievable rate versus the transmit power at the BS for the different channel estimation methods of Section III,

where the average power of pilot symbols is 10 dBm.

A. SISO Scenario

First, let us consider the SISO scenario for verifying the theoretical analysis in this paper,

where a single user is served by the BS with a single TA. As shown in Fig. 5, the user lies on a

horizontal line that is in parallel to the BS-RIS link, where the vertical distance between these

two lines is set to dv = 3 m, and the horizontal length between the BS and the user is denoted by

d m. Accordingly, the lengths of the BS-user and RIS-user links are given by dBU =
√

d2 + d2v

and dIU =
√

(d0 − d)2 + d2v, respectively. The path loss exponents and Rician factors are set to

αBI = 2, αIU = 2.8, βBI = ∞, and βIU = 0, respectively, which results in U having a rank

of one, i.e. an LoS channel between the BS and the RIS. The noise power at the BS is set to

σ2
z = −70 dBm.

1) Achievable rate of the channel estimation protocol considering noise at the BS: In Figs.

6 ∼ 7, we first study the achievable rate of the channel estimation protocol considering realistic

channel estimation errors at the BS, where the three different channel estimation methods

described in Section III are considered. In Fig. 6, the average power of the pilot symbols used

for estimating the channels is set to α = −30 dBm. Observe from Fig. 6 that the channel

estimation methods have a significant influence on the achievable DL rate. The DFT-based

channel estimation method has the most accurate estimator, and accordingly its achievable rate

is also the highest. The three-phase and ON/OFF methods exhibit a power loss of 1.5 dB and

8.5 dB, respectively, when N = 500 reflecting elements are installed at the RIS, which is

consistent with our theoretical analysis. Nevertheless, for a small number of RIS elements, the
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Fig. 8. The average received power of our channel training protocol versus the number of training periods in the absence of

noise, where the number of reflecting elements is set to N = 1.

difference in the achievable rates between the three estimators is not significant, because only a

limited performance improvement is achieved by the RIS. As the number of reflecting elements

increases, the rate loss becomes more pronounced. For a large number of RIS elements, the

ON/OFF method has a severe estimation error, which results in a rate loss compared to the

optimal DFT-based estimation method.

In Fig. 7, we increase the power of the pilot symbols used for estimating the channels to

α = 10 dBm, which results in more accurate channel estimates. It can be seen from Fig. 7 that

the three-phase method behaves almost as well as the DFT-based method, which also verifies

our Corollary 4. Explicitly, the achievable rate, i.e., the average received power, is determined by

the estimation accuracy of the reflected BS-RIS-user channels when a large number of reflecting

elements is installed. This also explains why the ON/OFF method still suffers from a rate loss

of around 8 dB. Additionally, we can observe by comparing Figs. 6 and 7 that with the increase

of the pilot symbol power, the achievable DL rate is also improved accordingly. Therefore,

how to reduce rate loss by balancing the power between the pilot symbols and the information

symbols is crucial for the channel estimation protocol, especially for a large number of reflecting

elements.

2) Average received power of our channel training protocol without noise at the BS: Figs.

8 and 9 verify the efficiency of our channel training protocol for the SISO scenario in terms

of the average received power versus the number of training periods. In Fig. 8, we consider

only a single reflecting element in order to verify Proposition 2. As seen from Fig. 8, upon
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Fig. 9. The average received power of our channel training protocol versus the number of training periods in the absence of

noise, where the number of reflecting elements is set to N = 5.

increasing the number of training periods, the performance of our channel training protocol

will gradually approach the performance of the optimal RIS configuration. On the other hand,

the equi-partition configuration has a faster convergence than the random configuration method.

More specifically, let us consider the fair comparison condition of Q = 2, which is said to be fair,

because at least two pilot symbols are required for completing the CSI acquisition for the channel

estimation protocol of [15]–[24]. In particular, Q = 1 represents the case of a single random

configuration. It can be seen from Fig. 8 that, compared to the single random configuration,

channel training relying on the random configuration and on the equi-partition configuration

is capable of increasing the average received power by 22% and 35%, respectively, while the

optimal configuration increase the average received power by 55%. Although our channel training

scheme has a substantial performance improvement over the single random configuration, it still

has a certain amount of power loss compared to the optimal configuration. However, it should be

noted that Fig. 8 does not take into account the impact of channel estimation errors, which have

a more grave impact on the channel estimation protocol of [15]–[24]. In the later simulations,

we will see the competitiveness of our channel training protocol in a noisy wireless environment.

In Fig. 9, we consider the general case of having N number of reflecting elements, where we

set N = 5. Observe from Fig. 9 that the situation is slightly different from that in Fig. 8. First

of all, compared to the theoretical derivation, the training protocol suffers from a severe power

loss, which is caused by the scaling in (22). Furthermore, the equi-partition configuration also

exhibits a significant performance loss. This is because compared to the random configuration,
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Fig. 10. The average received power of our channel training protocol versus the number of training periods in the face of noise,

where the number of reflecting elements is set to N = 1.

the equi-partition configuration has a degree of freedom of 1. Specifically, if the initial phase shift

vector is not a good choice, the training protocol using the equi-partition configuration fails to

improve the performance effectively, while the random configuration has the opportunity to avoid

this suboptimality in the following (Q− 1) training periods4. Following the same comparison

principle in Fig. 8, the random configuration increases the average received power by 105%,

but fails to approach the 316% improvement of the optimal configuration. On the other hand,

the upper bound is achievable if we do not consider the limitations of the training periods. For

example, considering the configuration of only a single reflecting element at a given time in

all Q training periods, with all other reflecting elements turned off, the upper bound becomes

achievable, when doing so for N elements. Therefore, reaching the upper bound requires at most

NQ training periods. This also verifies that the upper bound is tight for N = 1, as shown in

Proposition 1 and Fig. 8. Nevertheless, how to design a good training method requiring a limited

number of training periods for effectively improving the performance of the RIS is still an open

subject, which will be set aside for our future research.

3) Average received power of our channel training protocol in the presence of noise at the BS:

Figs. 10 and 11 compare the performance of the channel estimation protocol of [15]–[24] and our

channel training protocol in the face of noise. Similarly, the average received power is adopted as

4Although the simulation results demonstrate that the performance improvement of the equi-partition configuration scheme

is only non-negligible for a small value of N , it is worth noting that we are considering the case of independent reflected BS-

RIS-user channels. When reflected BS-RIS-user channels associated with high correlation, e.g., ultra-dense reflecting elements,

are considered, the equi-partition configuration still works effectively.
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Fig. 11. The average received power of our channel training protocol versus the number of training periods in the face of noise,

where the number of reflecting elements is set to be N = 5.

the evaluation criterion in order to compare our theoretical analysis and the DFT-based method

as well as the ON/OFF method. The average power of the pilot symbols used for estimating the

channel is set to α = 15 dBm and α = 30 dBm, respectively, corresponding to the labels of low

SNR and high SNR in Figs. 10 and 11. It can be seen from Fig. 10 that all the performance

curves have similar trends to those in Fig. 8. Upon increasing the number of training periods, the

performance of our channel training protocol will be improved. Additionally, the performance

of the ON/OFF channel estimation method suffers from a higher power loss than that of the

DFT-based method. In particular, it is worth noting that our channel training protocol is most

competitive under low SNRs. More specifically, considering the same comparison strategy as

described for Fig. 8, when Q = 2 and low SNR are considered, our channel training based on

the equi-partition configuration outperforms the channel estimation protocol of [15] based on

the ON/OFF method. Even compared to the DFT-based channel estimation method of [16], our

equi-partition based channel training protocol suffers from a smaller power loss than that shown

in Fig. 8.

In Fig. 11, we increase the number of reflecting elements to N = 5 and continue to study

the effects of noise, while other simulation conditions are consistent with Fig. 10. Due to the

deficiency of the equi-partition configuration in the case of a large number of reflecting elements,

we only consider the random configuration in Fig. 11. The theoretical upper bound of our channel

training protocol in Fig. 11 comes from our derivation in Section V. One can observe from Fig.

11 that, in the low-SNR region, our channel training protocol is quite competitive compared to its
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Fig. 12. The transmit power at the BS versus the number of reflecting elements, where we have d = 50 m.
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Fig. 13. The transmit power at the BS versus the number of reflecting elements, where we have d = 40 m.

ON/OFF channel estimation counterpart. In addition, an implicit phenomenon can be observed in

Fig. 11, namely that compared to the channel estimation protocol, our channel training protocol

is more robust to the estimation error, which is consistent with our previous theoretical analysis.

B. MISO Scenario

1) Transmit power versus the number of reflecting elements: Next, let us consider the case

where the BS is equipped with M = 4 TAs. The relative positions of the BS, RIS and the user

is still shown in Fig. 5. The target SINR is set to γ = 10 dB. In Figs. 12 and 13, we compare

the transmit power of our channel training protocol and the channel estimation protocol of [15]–

[24]. For the channel estimation protocol, the ON/OFF estimation method and the DFT-based

estimation method are adopted, and the SDR algorithm is used for optimizing the RCs [9]. For

our channel training protocol, we consider the random configuration training method. For the
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Fig. 14. The transmit power at the BS versus the horizontal length of the BS-user link.

sake of fairness, we set the number of training periods as Q = N + 1, which is the minimum

number of pilot symbols required for the CSI acquisition in the channel estimation protocol [16],

[17], [19]. In addition, the performance of the single random configuration is plotted both in

Fig. 12 and 13 for comparison. In Fig. 12, we consider d = 50 m, which corresponds to the case

where the user is closest to the RIS. Observe from Fig. 12 that, upon increasing the number of

reflecting elements, the BS achieves the expected SINR target at a reduced transmit power. In

particular, the relationship of the square law under the optimal configuration is also shown in Fig.

12. For example, without considering the noise at the BS, the transmit power decreases from −7

dBm to −13 dBm when increasing the number of RIS elements from N = 30 to N = 60, gaining

about 6dB. Fig. 12 demonstrate that in the ideal case without noise, our channel training protocol

suffers about 7dB loss compared to the channel estimation protocol, when we have N = 30.

However, the situation is slightly different in the presence of noise. When considering realistic

estimation errors, the performance of all protocols will be eroded. Comparatively speaking,

our channel training protocol is most robust to estimation errors. This is because even if the

index of the selected objective value at the decision centre is not optimal, it is still near that

of the optimal value. More specifically, our channel training protocol outperforms the ON/OFF

channel estimation method at low SNRs. Even compared to the DFT-based estimation method,

our channel training protocol only suffers from a power penalty of about 3dB at N = 20, despite

it’s reduced system complexity and pilot overhead.

In Fig. 13, we consider the case of d = 40 m, while all other simulation setups are the same

as in Fig. 12. Upon comparing Figs. 12 and 13, it can be seen that as the user moves away
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from the RIS, more transmit power is required to achieve the same SNR target. Additionally,

observe from Fig. 13 that even the most robust DFT-based estimation method will suffer severe

power loss at low SNRs, because as the user moves away from the RIS, more accurate channel

estimates are required to facilitate coherent superposition of the direct and reflected signals. At

low SNRs, the performance improvement of the RIS has degraded significantly, and our channel

training protocol performs almost as well as the channel estimation protocol of [15]–[24].

2) Transmit power versus RIS-User distance: In Fig. 14, we compare of transmit power

required by different protocols versus the BS-user link length, d, in the face of noise. For the

sake of illustration, we consider the ON/OFF channel estimation method in Fig. 14. One can see

that, in the vicinity of the RIS, there is a significant reduction of the transmit power. Furthermore,

it can be observed from Fig. 14 that, in the ideal case without noise, our channel training protocol

suffers from some performance loss compared to channel estimation protocol of [15]–[24]. For

example, for the same transmit power of 9 dBm, the coverage range of the channel estimation

protocol is about 59 m, while the range of our channel training protocol is reduced to 55 m.

Nevertheless, in the presence of estimation errors the situation is quite different. Our channel

training protocol outperforms the channel estimation protocol at the same level of errors. For

example, in the case of d = 50 m, the transmit power of 7dBm is adequate when considering low

SNRs, while 10dB is required by the channel estimation protocol, which once again confirms

the robustness of our channel training protocol under estimation errors, especially at low SNRs.

C. MIMO Scenario

Next, let us consider a multi-user system supporting six users. The positions of users relative

to the BS and RIS are shown in Fig. 15, where users 1, 2, and 3 lie on a semicircle with BS as

the centre, and the radius is set to d = 15 m. Users 4, 5, 6 lie on a semicircle centred on the

RIS with radius of d2 = 3 m. Since user 1, 2, 3 are far away from the RIS, we set αIU = 3.5 for

users 1 ∼ 3 and αIU = 2.8 for users 4 ∼ 6, respectively. Following the same consideration, we

set αBU = 2.8 for users 1 ∼ 3 and αBU = 3.5 for users 4 ∼ 6, respectively. Since the RIS-BS

channel is a LoS link, we set βBI = 5 dB. Both the three-phase method and the DFT-based

method are considered. For the three-phase method, we consider the user 1 as the specific user.

The problem (8) of joint multi-user TPC and RC is solved by the alternate optimization algorithm

of [9]. More specifically, the multi-user TPC problem is solved by using the fixed-point iterative

algorithms of [52], while the optimization of the RC is solved by using the SDR algorithm of [9].
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In [9], the convergence of alternating optimization algorithms has been theoretically analyzed

and verified. Similarly, in our channel training protocol, we use the algorithm of [52] for solving

the multi-user TPC during each training period. The average pilot power is set to 15 dBm and

30 dBm, corresponding to the case of low and high SNRs, respectively.

1) Transmit power versus the number of reflecting elements: First, the transmit power versus

the number of RIS elements is shown in Fig. 16, where the gain of the RIS is much lower

than that of the single-user scenario. For example, the power gain is only about 3dB upon

increasing the number of RIS elements from N = 20 to N = 80, compared to the theoretical

12dB observed from Fig. 16 for a single user. This is because the RIS only has to align the

reflected BS-RIS-user channel with the direct BS-user channel in a single-user scenario, while

in a multi-user scenario, the RIS additionally has to eliminate the multi-user interference. On the

other hand, the users that are far away from the RIS are less likely to benefit from it. Therefore,

more distributed RISs should be used for serving multiple users in a cell. More significantly,

our channel training protocol outperforms the channel estimation protocol of [15]–[24], when

the estimation errors are severe for multiple users. For example, when considering the average

pilot power of 15 dBm, 3dB power gain is attained by our channel training protocol over the

DFT-based channel estimation protocol. Additionally, although the three-phase method has the

advantage of reducing the pilot overhead, it suffers from a severe performance loss compared

to both the optimal RCs and to our channel training protocol due to the severe estimation error

propagation between the channel estimates of different users.

2) Transmit power versus user SINR target: Fig. 17 shows the variation of transmit power

at the BS versus the target SINR of users. The number of RIS reflecting element is set to

N = 20. Observe that, as the SINR target increases, more transmit power is required at the BS.

Additionally, the same conclusions can be drawn by comparing different protocols. For example,

our channel training protocol has advantages over all channel estimation algorithms at low SNRs.

Given the improvement of the channel estimates, the channel estimation protocol of [15]–[24]

still has a performance advantage of about 2dB.

VII. CONCLUSIONS

In this paper, we proposed a novel channel training protocol for RIS-assisted multi-user

communications. In contrast to the existing channel estimation protocols of [15]–[24], our

channel training protocol avoids the estimation of the cascaded channels and instead estimates

June 1, 2021 DRAFT



37

d0

BS IRS

User 1

d2

d1

User 2

User 3

User 4

User 5

User 6

Fig. 15. The position schematic of the multiuser scenario (top view).
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Fig. 17. The transmit power at the BS versus the SINR target of K = 6 users.

the superimposed channels including the direct BS-user channel and the reflected BS-RIS-user
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channels. The phase configuration of the RCs is accomplished by comparing the objective values

over multiple training periods. Moreover, we proposed a pair of configuration strategies for

our channel training protocol and discussed the corresponding theoretical performance of these

methods. Additionally, we also analysed the theoretical performance of the channel estimation

protocols of [15]–[24] and of our channel training protocol in the face of estimation errors.

Finally, the simulation results verified our conclusions. Specifically, when realistic practical

estimation errors are considered, our channel training protocol shows clear performance vs.

implementation complexity, pilot overhead and signalling overhead advantages.

Nevertheless, there is a range of open topics that deserve further research. For example, in

practical systems, the phase shift of RIS elements is of finite precision, and the performance of

our channel training protocols using finite-precision RIS elements has to be verified. Additionally,

it is also interesting to see, whether there are better training methods, perhaps relying on

deep learning. Furthermore, please recall that we conceive a selection mechanism that gleans

information from Q training periods. It may be beneficial to design an information fusion center

for combining the information of Q training periods and thus improve the training performance.

APPENDIX A

PROOF OF Proposition 1

First, the average channel gain in (18) can be expanded as

E

{

max
q=1,2,··· ,Q

{

|ϕqh
∗
r + h∗

d|2
}

}

= E

{

max
q=1,2,··· ,Q

{

|h∗
r|2 + 2ℜ

{

ϕ∗
qhrh

∗
d

}

+ |h∗
d|2
}

}

= E

{

|h∗
r|2 + max

q=1,2,··· ,Q
{2 |hr| |h∗

d| cos θq}+ |h∗
d|2
}

(a)
= E

{

|h∗
r|2
}

+ E
{

|h∗
d|2
}

+ 2E {|hr|}E {|h∗
d|}E

{

max
q=1,2,··· ,Q

{cos θq}
}

,

(45)

where (a) holds because ϕq, hr and hd are independent of each other, while cos θq =
ℜ(ϕ∗

qhrh∗
d)

|hr|·|h∗
d|

denotes the cosine of the angle between ϕ∗
qhr and h∗

d. It is straightforward to see that θq ∼
U [0, 2π).

Note that the challenge in (45) is to evaluate the mean of the maximum cosine function’s

maximum when having multiple uniformly distributed phases. Without loss of generality, let us

consider one of the possible cases, which is

max
q=1,2,··· ,Q

{cos θq} = cos θ1 ≥ cos θ2 ≥ · · · ≥ cos θQ = min
q=1,2,··· ,Q

{cos θq} . (46)
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Furthermore, due to the symmetry of the cosine function with respect to the real axis, when

only considering the phase interval of [0,π], the condition satisfying (46) can be simplified by

0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θQ ≤ π. (47)

Therefore, E

{

max
q=1,2,··· ,Q

{cos θq}
}

in (45) can be expanded as

E

{

max
q=1,2,··· ,Q

{cos θq}
}

=
Q!

πQ

π
∫

0



· · ·
θ3
∫

0





θ2
∫

0

cos θ1dθ1



 dθ2 · · ·



 dθQ. (48)

Next, we will use the mathematical induction to find the general form of (48). First of all,

the integral results of (48) for Q = 1, 2, · · · , 6 are listed as follows

Q = 1 :

π
∫

0

cos θ1dθ1 = 0

Q = 2 :

π
∫

0

θ2
∫

0

cos θ1dθ1dθ2 = 2

Q = 3 :

π
∫

0

θ3
∫

0

θ2
∫

0

cos θ1dθ1dθ2dθ3 = π

Q = 4 :

π
∫

0

θ4
∫

0

θ3
∫

0

θ2
∫

0

cos θ1dθ1dθ2dθ3dθ4 =
1

2
π2 − 2

Q = 5 :

π
∫

0

θ5
∫

0

θ4
∫

0

θ3
∫

0

θ2
∫

0

cos θ1dθ1dθ2dθ3dθ4dθ5 =
1

3!
π3 − π

Q = 6 :

π
∫

0

θ6
∫

0

θ5
∫

0

θ4
∫

0

θ3
∫

0

θ2
∫

0

cos θ1dθ1dθ2dθ3dθ4dθ5dθ6 =
1

4!
π4 − 1

2
π2 + 2.

(49)

Based on (49), we can express (48) as follows

π
∫

0







⌈(Q−2)/2⌉
∑

i=1

(−1)i+1
θ
Q−1−2i
Q

(Q− 1− 2i)!
+ cos

(

θQ − (Q− 1) π

2

)







dθQ

=

⌈(Q−2)/2⌉
∑

i=1

(−1)i+1
πQ−2i

(Q− 2i)!
+ 2 sin

(

(Q− 1) π

2

)

=

⌈(Q−1)/2⌉
∑

i=1

(−1)i+1
f (Q− 2i)πQ−2i,

(50)

where the integrand is also summarized from (49).
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Furthermore, it can be readily shown that (50) is also true for (Q+ 1) training periods. More

specifically, we have

π
∫

0

θQ+1
∫

0







⌈(Q−2)/2⌉
∑

i=1

(−1)i+1
θ
Q−1−2i
Q

(Q− 1− 2i)!
+ cos

(

θQ − (Q− 1) π

2

)







dθQdθQ+1

=

π
∫

0







⌈(Q−2)/2⌉
∑

i=1

(−1)i+1
θ
Q−2i
Q+1

(Q− 2i)!
+ sin

(

θQ+1 −
(Q− 1) π

2

)

+ sin

(

(Q− 1) π

2

)







dθQ+1

=

⌈Q/2⌉
∑

i=1

(−1)i+1
f (Q+ 1− 2i)πQ+1−2i.

(51)

As a result, the general formula of E

{

max
q=1,2,··· ,Q

{cos θq}
}

can be simplified to

E

{

max
q=1,2,··· ,Q

{cos θq}
}

=
Q!

πQ

⌈(Q−1)/2⌉
∑

i=1

(−1)i+1
f (Q− 2i) πQ−2i. (52)

On the other hand, considering that both hr and hd obey complex Gaussian distributions, we

can show that

E
{

|hr|2
}

= ρ2r , E
{

|hd|2
}

= ρ2d,E {|hr|} =

√
π

2
ρr, E {|hd|} =

√
π

2
ρd. (53)

Upon substituting (52) and (53) into (45), the proof is completed. �

APPENDIX B

PROOF OF Proposition 2

Firstly, the channel gain in (21) is upper bounded by

E







max
q=1,2,··· ,Q







∣

∣

∣

∣

∣

N
∑

n=1

ϕq,nh
H
r,n + hH

d

∣

∣

∣

∣

∣

2












≤ E







∣

∣

∣

∣

∣

N
∑

n=1

ϕ̂q,nh
H
r,n + hH

d

∣

∣

∣

∣

∣

2






, (54)

where ϕ̂q,n represents the optimal configuration of ϕq,n for Q training periods, when only the

nth reflecting element is turned on, while all others are muted, which can be expressed as

ϕ̂q,n = arg max
ϕq,n,q=1,2,··· ,Q

{

∣

∣ϕq,nh
H
r,n + hH

d

∣

∣

2
}

. (55)

Furthermore, the right-hand-side (RHS) of (55) can be expanded as

E







∣

∣

∣

∣

∣

N
∑

n=1

ϕ̂q,nh
H
r,n + hH

d

∣

∣

∣

∣

∣

2






=
N
∑

n=1

E

{

∣

∣hH
r,n

∣

∣

2
}

+ E

{

∣

∣hH
d

∣

∣

2
}

+
π

2
N

N
∑

n=1

E
{∣

∣hH
r,n

∣

∣

}

E
{∣

∣hH
d

∣

∣

}

E

{

cos θ̂n

}

+
π

4

N
∑

n=1

N
∑

n′=1,n′ 6=n

E
{∣

∣hH
r,n

∣

∣

}

E
{∣

∣hH
r,n′

∣

∣

}

E

{

cos
(

θ̂n − θ̂n′

)}

,

(56)

June 1, 2021 DRAFT



41

where θ̂n = arg max
θq,n,q=1,2,··· ,Q

{cos θq,n} is the one associated with the largest cosine of θq,n =

arccos
ℜ(ϕ∗

q,nhr,nhH
d )

|hr,n|·|hH
d | , q = 1, 2, · · · , Q.

Following the same philosophy as in (52), we have

E

{

cos θ̂n

}

= g (Q) , n = 1, 2, · · · , N, (57)

while E

{

cos
(

θ̂n − θ̂n′

)}

can be expressed as

E

{

cos
(

θ̂n − θ̂n′

)}

= E

{

cos θ̂n cos θ̂n′ + sin θ̂n sin θ̂n′

}

= E

{

max
q=1,2,··· ,Q

{cos θq,n}
}

E

{

max
q=1,2,··· ,Q

{cos θq,n′}
}

= g2 (Q) ,
(58)

where we have E

{

sin θ̂n

}

= 0 for n = 1, 2, · · · , N due to the anti-symmetric nature of the sine

function with respect to the real axis.

Upon substituting (57) and (58) into (56), we complete the proof. �

APPENDIX C

PROOF OF Proposition 3

When the equi-partition configuration scheme of Fig. 4 is adopted, E

{

max
q=1,2,··· ,Q

{cos θq}
}

of

(45) can be calculated as

E

{

max
q=1,2,··· ,Q

{cos θq}
}

=
Q

2π

π/Q
∫

−π/Q

cos θ1dθ1 =
sin (π/Q)

(π/Q)
. (59)

Upon substituting (59) into (56) and following the same considerations as for (57) and (58),

we complete the proof. �
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APPENDIX D

PROOF OF Proposition 4

According to (31), the average channel gain of (56) in the presence of channel estimation

errors can be expressed as

E







∣

∣

∣

∣

∣

N
∑

n=1

ϕ̂nhr,n + hd

∣

∣

∣

∣

∣

2






= E







∣

∣

∣

∣

∣

∣

N
∑

n=1

ĥ∗
r,nĥd

∣

∣

∣
ĥ∗
r,nĥd

∣

∣

∣

hr,n + hd

∣

∣

∣

∣

∣

∣

2





= E







∣

∣

∣

∣

∣

N
∑

n=1

(

h∗
r,n + ε∗r,n

)

∣

∣

(

h∗
r,n + ε∗r,n

)∣

∣

hr,n +
(h∗

d + ε∗d)

|(h∗
d + ε∗d)|

hd

∣

∣

∣

∣

∣

2






= E

{

N
∑

n=1

|hr,n|2
}

+ E
{

|hd|2
}

+ E

{

2
N
∑

n=1

ℜ
((

(

h∗
r,n + ε∗r,n

)

∣

∣

(

h∗
r,n + ε∗r,n

)∣

∣

hr,n

)∗
(h∗

d + ε∗d)

|(h∗
d + ε∗d)|

hd

)}

+ E

{

2
N−1
∑

n=1

N
∑

n′=n+1

ℜ
((

(

h∗
r,n + ε∗r,n

)

∣

∣

(

h∗
r,n + ε∗r,n

)∣

∣

hr,n

)∗( (

h∗
r,n′ + ε∗r,n′

)

∣

∣

(

h∗
r,n′ + ε∗r,n′

)∣

∣

hr,n′

))}

.

(60)

Furthermore, the nth entry of the second part of the RHS of (60) can be expanded as

E

{

ℜ
((

(

h∗
r,n + ε∗r,n

)

∣

∣

(

h∗
r,n + ε∗r,n

)∣

∣

hr,n

)∗
(h∗

d + ε∗d)

|(h∗
d + ε∗d)|

hd

)}

= E

{

ℜ
((

(

h∗
r,n + ε∗r,n

)

∣

∣

(

h∗
r,n + ε∗r,n

)∣

∣

hr,k

)∗)

ℜ
(

(h∗
d + ε∗d)

|(h∗
d + ε∗d)|

hd

)

}

− E

{

ℑ
((

(

h∗
r,n + ε∗r,n

)

∣

∣

(

h∗
r,n + ε∗r,n

)∣

∣

hr,k

)∗)

ℑ
(

(h∗
d + ε∗d)

|(h∗
d + ε∗d)|

hd

)

}

.

(61)

Owing to the assumptions of hr,n ∼ CN (0, ρ2r) , n = 1, 2, · · · , N , hd ∼ CN (0, ρ2d), εd ∼
CN (0, σ2

d) and εr,n ∼ CN (0, σ2
r) , n = 1, 2, · · · , N , we have

E

{

ℜ
((

(

h∗
r,n + ε∗r,n

)

∣

∣

(

h∗
r,n + ε∗r,n

)∣

∣

hr,k

)∗)}

=

√
πρ2r,n

2
√

ρ2r,n + σ2
r,n

, (62)

E

{

ℜ
((

(h∗
d + ε∗d)

|(h∗
d + ε∗d)|

hd

)∗)}

=

√
πρ2d

2
√

ρ2d + σ2
d

, (63)

E

{

ℑ
((

(

h∗
r,n + ε∗r,n

)

∣

∣

(

h∗
r,n + ε∗r,n

)∣

∣

hr,k

)∗)}

= 0, (64)
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E

{

ℑ
((

(h∗
d + ε∗d)

|(h∗
d + ε∗d)|

hd

)∗)}

= 0. (65)

Following the derivatives of (62) ∼ (65) for the last term in (61), we arrive at:

E





∣

∣

∣

∣

∣

N
∑

n=1

ϕ̂nhr,n + hd

∣

∣

∣

∣

∣

2


 = Nρ2r + ρ2d +
πNρ2rρ

2
d

2
√

(ρ2r + σ2
r) (ρ

2
d + σ2

d)
+

πN (N − 1) ρ4r
4 (ρ2r + σ2

r )
. (66)

Substituting (66) into (21), we complete the proof. �
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