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Abstract 

For several years machine learning methods have been proposed for risk 

classification. Whilst machine learning methods have also been used for failure 

diagnosis and condition monitoring, to the best of our knowledge, these methods 

have not been used for probabilistic risk assessment. Probabilistic risk 

assessment is a subjective process. The problem of how well machine learning 

methods can emulate expert judgements is challenging. Expert judgements are 

based on mental shortcuts, heuristics, which are susceptible to biases. This paper 

presents a process for developing natural language-based probabilistic risk 

assessment models, applying deep learning algorithms to emulate experts’ 

quantified risk estimates. This allows the risk analyst to obtain an apriori risk 

assessment when there is limited information in the form of text and numeric 

data. Universal Sentence Embedding (USE) with Gradient Boosting Regression 

(GBR) trees trained over limited structured data presented the most promising 

results. When we apply these models' outputs to generate survival distributions 

for autonomous systems’ likelihood of loss with distance, we observe that for 

open water and ice shelf operating environments, the differences between the 

survival distributions generated by the machine learning algorithm and those 

generated by the experts are not statistically significant.  



1. Introduction 

Substantial developments in machine learning techniques, enhancements in computer 

performance, and better data collection processes have led to an increased desire and ability 

to use machine learning methods for risk quantification (Paltrinieri et al., 2019). Machine 

learning algorithms have been used to support risk analysis in applications where there is a 

substantial amount of data. Areas of successful application are as diverse as, for example, 

engineering machine anomaly detection (Garcia, 2013, Hodge and Austin, 2004) and 

financial risk, e.g., credit risk and default risk (Lessmann et al., 2015). That said, some risk 

domains are still heavily dependent on expert judgements. 

To this date, machine learning methods have not been used for probability risk 

assessment. These probabilities include, for example, that of a nuclear reactor failure (van 

Steen, 1992) or major civil catastrophes (Bigün, 1995). This has not occurred for two 

reasons. First, probabilistic risk assessment is expert knowledge-dependent, as this is 

knowledge of the subject area and structured knowledge about the problem. One type of 

expert knowledge can be, for example, causal relations between factors (Aven, 2016). 

Second, the expert’s estimate of the likelihood of incident occurrence is subjective and 

susceptible to bias (Kahneman and Tversky, 1972, Morris, 1977, Tversky and Kahneman, 

1974). Machine learning algorithms can capture randomness well, but to the best of our 

knowledge, subjectivity has not been addressed in machine learning approaches for risk 

assessment. Approaches to mimic expert assessment in critical applications rely on 

knowledge-based systems that capture cause and effect phenomena using methods such as 

Bayesian Belief Networks (Hänninen and Kujala, 2012, Kabir et al., 2015, Sigurdsson et al., 

2001). One of the benefits of Bayesian belief networks is that they enable supervised learning 

as data become available (de Campos and Castellano, 2007). Our approach improves upon 

the use of this technique in several ways. First, Bayesian Networks require a dependency 



graph to be estimated for the causality paths to be established. In text-based models, this 

process can be prohibitively expensive computationally, or would require strong assumptions 

to be made about the distributions in the data. The models we use in this work go beyond 

these needs by not needing any assumptions over the dependency of the decision, instead 

leaving the discovery of the relevant parts of the evaluations (the “dependencies” on a text 

framework) to be automatically generated by the self-attention mechanisms of the neural 

network. This explicit vs implicit representation of the uncertainty in decision-making can be 

useful when there is limited (or no) knowledge of the potential dependency paths. A neural 

network model is then able to measure this uncertainty from past behaviours instead of “hard-

coding” them, as a Bayesian Network requires them. This is a more flexible approach, albeit 

one more uncertain. Second, an empirical model such as the one we present can be used to 

create future dependency graphs for potential Bayesian models, trading off the background 

knowledge necessary for the success of the Bayesian network with the necessity of a larger 

dataset where the empirical Neural Network model can operate. This trade-off is, of course, 

application specific, but it is expected in data-rich environments such as the ones we discuss 

in this work. 

Natural language machine learning methods have been proposed to give insight into 

sentiments presented in narratives. Initially developed in the 1970s, natural language 

techniques are now used in web applications for profiling. Sentiment analysis techniques 

used in natural language machine learning have been proposed to support risk analysis. 

However, to date, sentiment analysis has not been used for probabilistic risk assessment.  

For many years, researchers have investigated whether artificial intelligence (AI) systems 

can replace human reasoning. The answer to this question has consistently been that AI-based 

systems can outperform humans for certain specific applications, but for other applications, 

AI systems cannot achieve human-level performance. For example, for certain games such as 



chess, AI systems have achieved superhuman performance for more than a decade (AI 

Performance, 2020) while, in general, conversational AI systems (chatbots) run into severe 

issues when used for customer engagement (Adam et al., 2020). The use of machines to 

reciprocate expert assessments in the context of AUV has never been explored to the best of 

our knowledge. This paper proposes a methodology for developing sentiment analysis 

methods for conducting risk assessments otherwise carried out by experts. 

Our paper's contributions are three-fold: First, we present a general methodology to 

construct such models using the latest advances in deep learning methods combined with 

subjective statistical survival estimator. Second, we present a methodology to treat and 

prepare the data for such models, pooling the opinions of the experts. Finally, we perform a 

detailed analysis and validation of these models' outputs to prove their effectiveness and 

discuss their validity beyond statistical accuracy, including context learning.  

This paper is organised as follows. Section 2 presents related work in sentiment 

modelling methods for risk analysis. Section 3 presents the proposed methodology and the 

data used for testing. Section 4 presents the results. The discussions and conclusions are 

presented in sections 5 and 6, respectively. 

2. Related work 

Text mining and sentiment analysis are two different tasks under the umbrella of natural 

language processing. Text mining is a technique for knowledge retrieval of unstructured text. 

It is used in more visible ways for internet applications (Mohammad and Turney, 2010). 

Technologies in the text mining realm include information extraction, topic tracking, 

summarisation, categorisation clustering, concept linkage, information visualisation, and 

question answering (Fan et al., 2006).  

Text mining has been applied in many industry sectors. Holton (2009) applied text 

mining techniques to identify disgruntled employees by collecting data from Vault.com and 



Yahoo.com. The author used a total of 44 disgruntled reports and 44 non-disgruntled reports, 

plus 10 disgruntled. The author applied a Naïve Bayes (NB) model to classify disgruntled and 

non-disgruntled reports (Domingos and Pazzani, 1996). The NB model performance was 

satisfactory, with a recall of 90% for non-disgruntled and 87% for disgruntled. The method 

proposed by Holton (2009) is efficient as a tool to inform employers of potential disgruntling 

in the organisation. That said, disgruntling on its own does not present a fraud risk. In general 

terms, risk is defined by the triplet of hazard, likelihood and consequence (Kaplan and 

Garrick, 1981). Identifying whether or not someone is disgruntled presents a hazard; alone, 

however, it does not define the risk of fraud.  

In finance, Groth and Muntermann (2011) proposed a text mining approach to make 

predictions of asset volatility levels for the time period that immediately follows the 

publication of corporate disclosures. The authors explored 423 disclosure reports and 

volatility risks immediately after their submission. They tested Naïve Bayes, k-Nearest 

Neighbour (kNN), Neural Networks (NNet) and Support Vector Machine (SVM)( Vapnik, 

1995). In this and other research, the risk quantity is not a probability judgement provided by 

an expert. Instead, the risk is calculated using a set of rules. For example, in the case of Groth 

and Muntermann (2011), volatility is calculated using an established rule. In other 

applications of text mining, the risk calculation is usually a separate exercise. For example, 

Lee and Yi (2017) quantified risk as a factor of the project bid cost while Son and Lee (2019) 

defined risk as a factor of project delay. Text mining has also been used to identify risk 

events from accident reports (Sarkar et al., 2016).  

Sentiment analysis is a subset of text mining. Sentiment analysis attempts to measure the 

inclination of people’s opinions based on natural language processing. This technique alone 

cannot estimate probabilistic risk. Thus far, the application of sentiment analysis has been 



focused on predicting judgements in binary decisions (Medvedeva et al., 2019, Liu and Chen, 

2018) or the occurrence of discrete events (Yadav et al., 2019). 

Probabilistic risk assessment (PRA) is an approach first introduced in the 1970s to 

capture the uncertainty in mathematical models used for nuclear reactor risk analysis 

(Apostolakis, 1990). This method was later adopted in other sectors of the nuclear industry – 

e.g., nuclear waste risk estimation (Bonano et al., 1990). Nowadays, PRA is used for risk 

analysis of complex systems for which there is a modicum of data, which alone cannot be 

used to characterise the risk fully.  

As more data from PRA are made available it becomes possible to use machine learning 

and sentiment analysis to model the effect of context on the risk estimation. A framework 

based on these methods can be used to provide probabilistic risk assessments of future 

scenarios, not considered by the experts. The methodology for developing this framework is 

presented in the next section.  

3. Methodology 

Expert judgement elicitation is a process developed by mathematicians and social 

scientists to elicit judgements from experts with respect to uncertain quantities (Cooke and 

Goossens, 2004, O'Hagan et al., 2006, Otway and von Winterfeldt, 1992) that takes into 

consideration that experts are susceptible to motivational and subconscious bias (Merkhofer, 

1987, Tversky and Kahneman, 1974).  

In this section, we explain how expert judgements are elicited for autonomous systems 

risk assessment and the required assumptions to implement a text mining solution to mimic 

expert judgements. A flowchart of the methodology is presented in Figure 1. 

3.1 Expert judgement data 

The data used for the analysis were collected from two formal expert judgement 

elicitation processes. These were conducted for quantifying the risk of autonomous 



underwater vehicle (AUV) loss in extreme environments, open water, coastal waters, sea ice, 

and ice shelves. The experts were given information about the AUVs, the operating 

environment, and the fault description (Brito et al 2010). We present three samples of these 

fault descriptions below: 

Sample 1: 

Aborted after 4 minutes post dive, due to network failure. Logger data showed long gaps, 

up to 60s, across all data from all nodes, suggesting logger problem. 

Sample 2: 

Jack-in-the-box recovery float came out, wrapping its line around the propeller, jamming it, 

and stopping the mission. Caused severe problems in recovery, some damage to upper rudder 

frame, sub-frame and GPS antenna. Required boat to be launched. 

Sample 3: 

Pre-launch, potential short circuit in motor controller that could stop motor. 

The experts were asked to estimate the probability of fault leading to loss in each of the 

four environments P(L|F,E).  

The first expert judgement elicitation was conducted for building the risk model for the 

Autosub 3 AUV vehicle deployment in the Pine Island glacier in Antarctica (Brito et al., 

2008). This expert judgement was conducted using the Otway and Winterfeldt method 

(Otway and von Winterfeldt, 1992). Experts have provided individual estimates for the 

probability of AUV loss given a fault in a given environment P(L|F,E), as well as a weight wi 

(from 1-5) for capturing their confidence in the estimate (a weight of 1 if not confident and a 

weight of 5 if very confident). Eight experts took part in the expert judgement elicitation; 

these were AS, BF, CJ, CW, DY, MM, RM and TC. A total of 63 faults were assessed by the 

experts. Of the 2016 expected individual estimations, 1141 individual expert judgements 

were collected.  



The second source of data is from the expert judgement conducted for estimating the risk 

of Remus 100 loss (Griffiths et al., 2009). This expert judgement elicitation was conducted 

using the SHELF-R method (Garthwaite et al., 2005, O'Hagan et al., 2006). Five experts took 

part in this expert judgement elicitation –namely, AS, CW, RM, SM and TB. The experts 

were asked to estimate the probability density distribution of the probability of fault leading 

to loss in a given environment. The experts were provided with the lower bound, upper 

bound, median, lower quartile and upper quartile to describe the distribution. A total of 504 

estimates were obtained. Three of the experts took part in both expert judgements elicitation 

– namely, AS, RM and CW.  

For both expert judgement elicitations, the experts were independent of the organisation 

for which the probabilistic risk assessment was conducted, and had received adequate 

training prior to the elicitation. Also, for both elicitations, the expert judgements were 

aggregated using the linear weighted pool (Winkler, 1968).   

Following a review of expert judgements, the facilitator concluded that experts’ 

assessments had be grouped into optimists and pessimists. The concept of optimists and 

pessimists is different from that presented in Goodwin et al. (2019) where experts provided 

their optimists’ and pessimists’ forecasts. Here one expert is considered an optimist if she 

uses predominantly low probabilities, and the narrative suggests that the expert gives more 

weight to positive consequences of the hazard event than to negative consequences. One 

expert is considered a pessimist if she uses predominately high probability ranges, and the 

analysis of the narrative suggests that she gives more weight to negative consequences of the 

hazard event. The purpose of aggregating the judgments into these two models is to give to 

the decision maker two decision models to select from: one optimist and one pessimist. Upon 

analysis of the narratives provided by the experts and the judgments, the decision maker 

chooses which model is more aligned with her beliefs. 



In both elicitations the facilitator analysed the narrative provided by the experts to justify 

their likelihood estimation. The facilitators concluded that when estimating the likelihood of 

a fault leading to loss, all experts identified the same secondary risks but some experts would 

take an optimist’s or a pessimist’s view of the impact of these risks; for example, if a fault led 

the AUV to come to surface without power, unable to communicate and unable to navigate. 

One secondary risk that may emerge here is that the AUV may be dragged to the coast and 

crushed against the rocks. Whilst this was a possibility, some experts would consider that, 

following the same fault, the AUV would be dragged to a sandy beach and safely returned to 

the users (Brito et al., 2008, p.14). When this was the case, the probability for loss given a 

fault in a given environment (P(L|F,E)) of an optimist was significantly lower than that given 

by the pessimist. Linear weighted mathematical aggregation in this case would censor the 

estimation given by the optimist. In light of the large volume of assessments, the facilitators 

used cumulative plots to visualise the tendency for experts to use higher or lower probability 

values. For sea ice and ice shelf, in particular, the facilitators identified different shapes of the 

cumulative distributions, depending on whether the experts had the tendency to be optimists 

or pessimists (Brito et al., 2008, p. 21). The same process was followed to aggregate the 

judgments from the Remus 100 AUV expert judgement elicitation (Griffiths et al., 2009). 

Based on the narrative analysis and cumulative plot analysis, the facilitators identified groups 

of optimists and pessimists. For more detail we direct the reader to Brito et al. (2010) and 

Griffiths et al. (2009) who present the dataset and the results of the risk analysis conducted on 

the Autosub 3 and the Remus 100, respectively.  

Brito and Chang (2018) analysed the risk estimates provided by optimists and pessimists 

used to build the risk model for a Hybrid AUV, Neureus UI, owned and operated by Woods 

Hole Oceanographic Institute. Data collected during actual missions allowed the researchers 

to compare the expert risk predictions from optimists and pessimists to the actual mission 



data. The researchers concluded that the model developed based on the pessimists’ 

assessments was more accurate than the model created based on the optimists’ assessments.  

In this paper we do not attempt to evaluate the reliability of different groups of experts. 

Here we simply use the risk models developed based on the expert judgement elitations for 

Autosub 3 and Remus 100 to train the machine learning algorithm. 

3.2 Data preparation 

The raw dataset contained 252 faults (63 Autosub 3 and 183 Remus 100); however, the 

number of faults had to be significantly reduced due to acceptability criteria. The following 

criteria were applied: First, only faults for which all experts provided assessments were 

considered and, second, faults considered had to have a confidence weight of at least three. 

As a result of these assumptions, the number of single faults was reduced to 100. 

With 100 unique faults, four environments and two expert types (optimistic and 

pessimistic), the final dataset size is 100*4*2 = 800. Table 1 displays the features used in the 

machine learning models.  

Table 1. Features used in the machine learning models.  

Feature Classification Type Description 

Distance Structured 

Features 

(Core Data) 

Continuous The measure in metres that the fault 

occurred from the mission start point  

Condition Categorical One of Open Water, Coastal, Sea Ice or 

Shelf Ice 

AUV Model Binary AUV model type; Remus or Autosub3 

Expert Type Binary Reviewer classification; Optimistic or 

Pessimistic 

Text Description Text String Short description of the fault produced 

by mission crew 

For the structured features, a standard approach is applied. For the single continuous 

variable, ‘distance’, a Min/Max procedure rescales the variable between 0 and 1. This ensures 



that all input data for the machine learning algorithms are within the same scale, which is 

particularly pertinent for the GLM model. As the machine learning models cannot take text 

strings as input, the categorical data ‘Expert Type’, ‘AUV model’ and ‘Condition’ are One-

Hot encoded, producing an output binary vector, e.g., ‘Condition=Open Water’ is 

transformed to [1,0,0] while ‘Condition=Coastal’ becomes [0,1,0]. 

As with the categorical data, it is a requirement for the machine learning models that the 

text be represented as a numerical vector. Unlike the categorical representation, however, 

One-Hot encoding is not viable due to the text's extreme cardinality – i.e. the total number of 

words.  Instead, we obtain vectors representing the text using four methods that vary in 

complexity; LSA, USE, ELMO and BERT. 

The simplest representation applied is Latent Semantic Analysis (LSA; Landauer et al., 

1998). LSA might be considered an early approach to Natural Language Processing (NLP) 

although it is still widely used. The method derives ‘concept’ features using predefined 

statistical techniques and assumes word co-occurrence across texts that share meaning, 

independent of sentence structure. Although simple, it requires the heaviest pre-processing to 

reduce the variability of the text. Pre-processing includes the removal of stop words (e.g., it, 

there, was, so) and the stemming of words to remove suffixes (e.g., breaking -> break). There 

are two stages to vectorising the processed text. First, a term frequency-inverse document 

frequency (TF-IDF) matrix is derived, producing a vector the length of the entire corpus 

vocabulary for each text description. A Truncated Singular Value Decomposition (SVD) 

approach is then used to reduce the TF-IDF matrix's size and complexity. Fifty latent 

concepts are selected using the elbow method; the ‘elbow’ is the point at which n+1 

components contribute diminishing returns to the explained variance. This value was found to 

meet this criterion and also provide additional redundancy as there is a further process for 

screening redundant variables.  



The field of NLP has seen significant advances beyond approaches such as LSA from the 

field of Deep Learning (Goodfellow et al., 2016). Word-level embeddings obtained from a 

model trained on a universal language task, e.g., missing word prediction can be used on a 

downstream task (Goldberg and Levy, 2014). More recent Deep Learning approaches are 

capable of encoding entire text sequences; thus, they can also account for positional and 

contextual structures in the text. Three models which utilise such advances are used to obtain 

the embeddings: BERT (Devlin et al., 2018), ELMO (Peters et al., 2018) and USE (Cer et al., 

2018). The use of these embeddings has an added benefit over the LSA approach, which we 

leverage in this work — they utilise transfer learning. Transfer learning in the context of 

language modelling is an approach in which the Deep Learning models are pre-trained over 

an extremely large corpus of text, usually with an unsupervised task; i.e. not requiring labels. 

This pre-training allows the model to learn complex but general language structures reducing 

the requirement for further training and is particularly pertinent for our dataset, given the 

limited number of text fault descriptions.  

The Universal Sentence Encoder (USE) model, proposed by Cer et al. (2018), is  

distributed with several versions on which we use the Deep Averaging Network (DAN) 

implementation. The model operates by averaging word embeddings and word bi-gram 

embeddings, subsequently used as input to a Deep Neural Network (DNN). So that the model 

learns general representations from the text, it is trained in a multi-task setting to predict 

several supervised and unsupervised learning tasks. We then utilise the pre-trained model 

encodings with the fault description text, forming the vector inputs to our models. 

ELMO (Embeddings from Language Models), proposed by Peters et al. (2018), extends 

earlier work utilising word embeddings by producing ‘contextual’ word embeddings. These 

embeddings look at the fixed absolute representation of a word and its relation to surrounding 

words in a sentence or statement. The embeddings are produced by training a Bidirectional 



Long short-term memory (bi-LSTM), a specific type of Deep Learning model, to predict the 

next word in a sentence over a large text corpus. Once this unsupervised training has 

occurred, the hidden states of the bi-LSTM can be unrolled and aggregated to produce an 

average vector representation for a given text statement. 

Bidirectional Encoder Representations from Transformers, or  BERT (Devlin et al., 

2018), builds upon ELMO. Amongst the most notable differences are the use of a powerful 

Transformer model rather than a bi-LSTM encoder. Additionally, the model is trained using 

two unsupervised tasks, including masked (missing) word prediction and next sentence 

prediction. Like ELMO, from the pre-trained model, we extract the pooled representation for 

each text description. 

All three of the approaches require little pre-processing beyond tokenisation. It is usually 

desirable to undertake a further fine-tuning stage of the pre-trained models on the 

downstream task. However, given the small number of cases, the output of the models we 

propose here can be used as raw feature extractors with no further training. The final 

embeddings per case are sizes 512, 1024,1024 for the USE, ELMO, and BERT, respectively. 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 1: Methodology for developing machine learning algorithms for predicting expert 

estimations of the risk of losing an autonomous underwater vehicle. 

3.3 Regression task  

Two standard machine learning model types are applied to the data providing differing 

levels of complexity; the Generalised Linear Model (GLM) and the Gradient Boosting 

Regressor (GBR). Both models deviate slightly from their standard implementation as they 

are Beta-constrained to ensure predicted values between 0 and 1 (Ferrari and Cribari-Neto, 

2004). The GBR is the most complex of the models and capable of learning non-linear 

patterns and complex variable interactions. Conversely, the GLM provides a simpler model 

against which the GBR can be benchmarked. While there are many other supervised Machine 

Learning algorithms, these two implementations give a good range by which we can assess 

the viability of our ‘subjective machines’. 

In this section, the details of the model types and approach to hyperparameter 

optimisation are described. 

 



3.3.1 Model Training Strategy 

In total, there are 18 models covering the data subsets and model types. Although each 

model is independently trained, a common approach is applied to the implementation. 

Before training each of the models, an initial round of feature screening is applied. First, 

features with zero variance are removed. Following this, univariate feature screening is 

applied using the regression F-Score. Although both models are theoretically capable of 

screening redundant variables, given the relatively few number of faults and a large number 

of features, this ensures that the noise in the data is minimised. Based on the F-score, the 

kbest features are selected from the initial subset. The kbest parameter is optimised on the 

search space, ranging from 1 up to the given subset's total number of features.  

Bayesian cross-validation optimisation is applied to select the kbest parameter and the 

model-specific parameters (Head et al., 2018). With this approach, a generous search space is 

initially provided across the parameter space with 50 seed models tested across 10-folds of 

the data. The parameters are subsequently optimised over 50 iterations. Fifty iterations were 

selected to provide sufficient redundancy to converge performance on the most complex 

model/embedding condition. 

3.3.2 Generalised Linear Model (GLM) 

The Elastic Net variation of the GLM is applied to the dataset, providing a compromise 

between the Lasso (L1) and Ridge (L2) regularisation approaches (Zou and Hastie, 2005). 

With Elastic Net, the L1 Ratio parameter can be optimised, allowing the flexibility to select 

either L1 or L2 penalisation, or a mixture of both. This flexibility is particularly important as 

the number of features in the dataset varies significantly depending on the feature subset. 

Both the L1 Ratio and the alpha (the extent of the penalisation) are optimised using the 

Bayesian approach. 

 



3.3.3 Gradient Boosting Regressor (GBR) 

Gradient Boosting is a tree-based ensemble approach that iteratively builds weak learners 

that seek to minimise the residual, eventually developing a single strong learner (Friedman, 

2001). Gradient Boosting is both non-linear and efficient at feature selection; therefore, the 

model is expected to outperform the GLM. Bayesian optimisation is applied to the following 

parameters: learning rate, n estimators, min samples split, max depth and max features. 

3.4  Experimental design 

This paper seeks to assess both the machine learning models' predictive capabilities and 

the predictive capacity of the text embeddings. As such, the models are trained on the 

structured data only, on the text only, and on the combined structured and text inputs. Thus, 

the data subsets are as follows: 

1. Core Data (structured data only) 

2. LSA (with/without structured features) 

3. USE (with/without structured features) 

4. ELMO (with/without structured features) 

5. BERT (with/without structured features) 

Each unique fault in the dataset is represented by four conditions (Open Water, Coastal, 

Sea Ice, Shelf Ice) and two expert types (Optimist/Pessimist), producing eight cases per fault 

in total. 

It is standard procedure in machine learning to split the input data into a training set, 

which is used to train the model, and a test set used to evaluate performance. Since there are 

just 100 unique faults, a single hold-out sample would be unlikely to produce a robust model 

performance estimate. Accordingly, we apply cross-validation which uses multiple train/test 

sets splits, iteratively retraining the models and evaluating performance. Two types of cross-

validation are applied: Leave-One-Group-Out (LOGO) and Leave-One-Out (LOO). The 



LOGO approach iteratively tests a single fault, therefore removing eight cases per iteration. 

The LOO approach, on the other hand, removes just an individual case per iteration. LOGO 

validation is more challenging compared to LOO as all inputs are unseen by the model. The 

real-world performance is likely to fall somewhere between the two validation 

approaches.These valiadation strategies are presented in Figure 2. 

Furthermore, in operational terms, each represents a different scenario. LOGO is broadly 

equivalent to predicting an unseen fault with no prior expert assessment. LOO more closely 

represents performance given some known information about a fault that has occurred; for 

example, moderating a single expert's assessment. 

 

Figure 2: Leave-One-Group-Out (LOGO) and Leave-One-Out (LOO) performance 

evaluation strategies.  

3.5 Subjective Survival Estimator for mission Risk Analysis 

Survival modelling methods are a family of analytical models that provide inference 

about survival data. In conventional survival modelling the observation dataset x contains 

censored and non-censored data (Kaplan and Meier, 1958). Each element in the dataset is a 

time observation of when a fault has occurred (non-censored observation) or when a mission 

has been completed without a fault. If a mission was completed without a fault this 

observation is deemed censored. The subjective Kaplan Meier (K-M) survival estimator uses 

a similar type of data to conventional survival models. The subjective K-M survival estimator 



uses the same censored data as the conventional survival estimator. However, for the 

subjective K-M survival estimator, the non-censored data is the likelihood of a fault leading 

to AUV loss in a given environment. The likelihood of a given fault in a given environment 

leading to AUV loss is estimated by experts.  The subjective Kaplan Meier survival 

estimator, , for quantifying the probability of survival with distance x is presented in Eq. (1), 

below.  

     (1) 

A single AUV mission (either failed or successful) is considered as an event. All events 

are assigned the decreasing index  according to the mission distance at which it ended 

(regardless of the outcome). For each fault, , a group of experts is asked to agree on the 

probability of fault leading to AUV loss, given that it is operating in a target environment E. 

This is the probability of failure, it is a conditional probability, .  

4.  Results 

In this section we present the analysis of subjective machine risk prediction. The results 

obtained from the subjective machine risk prediction are compared to the pooled human 

experts' risk prediction.  

4.1 Error Analysis  

Figure 3 presents the predictive performance in terms of the root-mean-square error 

(RMSE) metric. Each column of grids is represented by the model (GLM & GBR), while 

each row of grids is the type of validation used (LOGO & LOO). Each grid consists of nine 

result tiles, with the columns reflecting the embedding type while rows reflect the data 

subset. Blank spaces are where the cross-section is mutually exclusive – i.e. there is no 

embedding when only the core structured data are used. Values in bold format represent the 

best performing model in each grid. 



 

Figure 3: Predictive performance (RMSE) 

Considering first the performance on the core data only, the results range between 0.10 

and 0. 38, with the GBR model markedly outperforming the GLM. Superior GBR results 

suggest a non-linearity in this data subset that is better captured by the GBR model. The 

RMSE scores also appear reasonable, suggesting that, even with some basic information 

about the mission, fair performance can be gained using machine learning approaches. 

When reviewing the text-only performance, across none of the data subsets, models or 

embeddings does the text demonstrate predictive performance. The best performing models 

produce an RMSE score of 0.23 – arguably noise. However, the combined models' results 

using both the text and core structured data tell a different story with substantial increases in 

performance over the core data models present. This is particularly true of the USE 

embedding which demonstrates high RMSE scores ranging between 0.10 and 0.17, except the 

GLM LOGO condition. The performance of the GBR with USE using LOGO validation is of 

particular significance. Under this condition, the combined model provides an uplift of 0.1 

(5.6%) over the core data subset. 

Performance with LOO validation only might suggest that the embedding provides 

enough noise to overfit to a particular fault. Therefore, the observed performance with LOGO 



– holding out an entire fault – instead suggests that the text does not contribute noise but 

valuable new information not included in the core data. The text information enriches 

structured data when it is used simultaneously. Performance increases over the core results 

are also present for the LSA, ELMO and BERT embeddings. However, this tends to be 

restricted to LOGO validation. 

Additionally, the GBR model notably outperforms the GLM for the combined input 

subset, which is somewhat expected as the GBR has a higher capacity to capture the non-

linearity and feature interactions in the data. Moreover, it might also explain why the text 

does not yield a positive result alone but, combined with the core data, a positive result is 

observed. It could be argued that the text simply presents too much noise, particularly so for a 

small dataset such as this one. However, the structured data allow the model to point to the 

embedding space's relevant areas, a task better suited to the GBR model. 

USE embeddings outperforming the more advanced BERT and ELMO models might be 

considered somewhat surprising. This could be explained by the fact that these approaches 

may perform better on larger datasets and that, with such datasets, the models will undergo 

further fine-tuning. Therefore, on our dataset, ELMO – and particularly BERT – are not as 

effective as raw feature extractors compared to USE for a small dataset such as this one. 

4.2 Model explanation  

Local surrogate models are interpretable models that are used to explain individual 

predictions of machine learning models. Local interpretable model-agnostic explanations 

(LIME) is an implementation of a local surrogate model (Ribeiro et al., 2016). We have 

chosen to use the LIME method to assess the impact of different words on the GBM model 

predictions. This is one of the most widely used techniques for this task. LIME enters 

variations in the data and measures the impact on the machine learning model. We have 

adopted a LIME library implemented in Python, which iteratively drops each word from 



single-fault descriptions and monitors the impact of each word's inclusion. The results of the 

LIME analysis are presented in Figure 4. These show the top 30 words for high-risk 

estimation and the top 30 words for low-risk estimation. On the x-axis is each word, while 

the y-axis is the mean impact of the word inclusion over all fault descriptions when it was 

included. For example, a positive impact score of 0.05 for a given word would indicate that 

the model produced a higher risk of loss prediction (by 0.05 or 5%). 

As shown in Figure 4 (top), the words science, pier, pinger, lock and leaking are the five 

most significant words in the high-risk estimation. In AUV risk, these words are significant; 

science is related to the science bay of the AUV. A leak in the science bay may lead to AUV 

loss. It may change the buoyancy of the AUV rendering it unable to come to surface or it may 

cause a significant electrical fault. The word pier concerns the operation of Remus 100. This 

vehicle operates near coastal areas. One of the key risks is a collision with a pier. The words 

pinger and lock are associated with the ability to locate the AUV. These are also associated 

with a high risk of loss. The word leaking is associated with high risk for the reasons 

mentioned earlier. The Autosub 2 AUV is thought to have been lost due to a leak (Strut, 

2006).  

Looking at Figure 4 (bottom), the top five most significant words that can explain low-

risk estimation are making, rpm, sound, sensors, and gain. These words are associated with 

concerns over navigation performance or science data-gathering. These words can explain 



low-risk estimation because they relate to mission performance optimisation and not to an 

  

Figure 4: Output from LIME analysis. Top: Most significant 30 words for high-risk estimation. 

Bottom: Most significant 30 words for low-risk estimation. 

 
 
 
 



4.3 Single failure analysis  

In subsection 4.1 we showed that the the GBR algorithm using the USE embendings provide 

the minimum RMSE and therefore it is the most suitable algorithm for this application. But 

what does this mean in terms of individual failure risk analysis? If we consider a single fault, 

for example fault 392_1_1, is one of the top five most critical faults in the Autosub3 failure 

analysis. The fault is described as follows: GPS antenna flooded. No fix at the end point of 

the mission. AUV ended up 700m North and 25m East of the expected position. The 

assessments from the optimisits and pessimist groups are presented in annex F of Brito et al 

(2008).  

For the open water, considering the experts aggregation using the linear pool, the 

probability of loss given fault 392_1_ 1 is 0.00305 and 0.0346, for the optimist and pessimist 

models respectively. For the ice shelf environment the probability of loss given fault 392_1_1 

is 0.105 and 0.222 for the optimist and pessimist models respectively.  

The GBR USE model considering the LOGO validation, for open water predicts the 

probability of loss given fault 382_1_1 as 0.00234 and 0.036, using the optimisitic and 

pessimisitic model respectively. The GBR with the USE embedings provide slightly lower 

risk estimate using the optimisitic model and slightly higher risk estimate using the 

pessimisitic model. Considering the same model, with the LOO validation,  the probability of 

loss given fault 392_1_1 is 0.0185 and 0.0427, for the optimist and pessimisit model 

respectively. Here both estimates are slightly higher than the experts aggregated judgment. 

As the results show the differences between the GBR model using USE embendings and the 

expert aggregated judgements are small and within the same order of magnitude.  

For ice shelf environment the probability of fault leading to loss considering the LOGO 

validation is 0.065 and 0.192 for the optimist and pessimist models respectively.The LOO 

validated model estimates the risk as 0.0185 and 0.4426, using the optimisit model and the 



pessimisit model respectively. Here the risk is lower for the optimisit model and higher for 

the pessimist model.   

This example, shows that regardless of the type of the validation used the GBR model 

with USE embebdings provides a good prediction of the experts estimations. Considering 

narrative, the word GPS is the only word which has a significant weight on the risk 

estimation. The LIME results in Figure 4 show that the word GPS has an impact on low risk 

estimates.    

4.4 Subjective Survival Analysis 

This section compares the survival distribution generated by this machine learning 

algorithm to the survival distributions generated using the optimist and pessimist judgements. 

The predictions for the P(L|F,E) provided by the Use GBR full model algorithm were used to 

generate the survival distributions. The two types of validation, LOGO and LOO, were 

considered. The survival distributions presented in Figure 5 were obtained using Eq. (1). 

Figure 5 presents the survival distributions for the ice shelf environment for the Autosub 3 

AUV.  

Visually, the survival plots show that there is a significant difference between the expert 

model and the GBR full optimist model for the optimist survival distribution for the ice shelf 

survival distribution. The difference between the survival distributions is smaller for the 

pessimist model. These observations are supported by X2 significance tests. The null 

hypotheses is that there is no difference between the machine learning risk profile and the 

expert risk profile. For open water, USE-GBR-Full model, for the optimist prediction, LOO 

and LOGO obtained a X2 = 0.009 and X2 = 0.0019, respectively. Given that there is 38 

degrees of freedom, the X2 critical is 53. Therefore, we cannot reject the null hypothesis. The 

differences between the survival model generated by the expert and that generated by the 

USE-GBR-Full model are not statistically significant. The same conclusion can be reached 



for the pessimist model for the open water. The LOO and LOGO obtained a X2 = 3.84 and X2 

= 3.11, respectively. 

For the ice shelf, USE-GBR-Full model, for the optimist, LOO and lOGO validation we 

have obtained a X2 = 0.130 and X2 = 0.920, respectively.  

For the ice shelf environment,  the results are better for the pessimist model when 

compared to the optimist model. The survival curves in Figure 5 show that the survival 

distribution of the USE-GBR-Full is very similar to the distribution obtained using experts’ 

judgements. When we tested the differences between the experts’ survival and the USE-

GBR-Full survival distribution, we obtained the X2 values of 0.0654 and 0.392 for the LOO 

and LOGO validations, respectively. These values are below the X2 critical of 53. The 

differences between the survival distributions generated using the machine learning 

algorithms and the distributions generated based on expert judgements are not statistically 

significant.  

Visually, from Figure 5, it is possible to see that for ice shelf environment the optimist 

performs worse than the pessimist. The explanation for this is that the variability in the 

aggregated probability estimations for the optimist model is higher than the variability for the 

aggregated pessimist model. For ice shelf, the aggregated optimist estimations for Autosub 3 

have a minimum value of 0.0005, a maximum value of 0.997, and a median of 0.005. The 

aggregated pessimist model, for ice shelf, has a minimum value of 0.104, a maximum value 

of 0.985, and a median of 0.542.  A similar but reverse observation can be made for the open 

water environment which explains why, for this environment, the optimist model performs 

better than the pessimist model. For the open water environment the aggregated optimist 

estimations have a low variability when compared to the variability of the estimations of the 

aggregated pessimist model.  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 

 

 

 

 

 

 

 

Figure 5: Subjective Kaplan Meier survival distribution for Experts, Use GBR Full model 

(LOGO validation) and Use GBR Full model (LOO validation). Top Left is Optimist and 

Open Water; Top ight is pessimist and open water. Bottom Left is optimist and ice shelf; 

Bottom Right is pessimist and ice shelf. 



5 Limitations  

To this date, probabilistic risk assessment relies on experts’ judgements (O'Hagan et al., 

2006). We have investigated whether machine learning algorithms can emulate the experts’ 

judgements based on contextual and environmental evidence. In this paper, we have shown 

that this is possible. However, there are several limitations in our approach, and we discuss 

these in this section. 

The accuracy of a machine learning algorithms presented in this paper is dependent on 

consistent data. Expert judgements are susceptible to biases such as the conjunction bias, base 

rate neglect, or others (Kynn, 2008). If not identified and corrected, biases  can lead to 

inconsistencies in the assessments provided by the experts. Formal expert judgment 

elicitation goal is to mitigate potential biases. A limitation of our approach is that the 

machine learning algorithm must be applied to judgements that have been elicited using 

formal judgement elicitation methods. This involves a formal process for expert selection, 

expert training and expert judgements’ aggregation (Keeney and Winterfeldt, 1991).  

We have applied machine learning algorithms to reproduce the aggregated expert 

judgements. The expert judgements were aggregated considering optimist and pessimist 

models. This worked in the favour of the machine learning algorithms because it has reduced 

the variability of the training data. In practical terms, the variability in the estimation is a 

limitation in mathematical aggregation. Considering linear weighted aggregation, if there are 

two experts, one assigns a probability of 0.0001 and another assigns a probability of 0.1 to 

the same event. If the experts are allocated the same weight, the aggregated probability of the 

event occurring is 0.05. If, on the other hand, one expert assigns a probability of 0.05 and the 

second expert assigns a probability of 0.1, the aggregated probability of the same conditions 

is 0.075. When the experts’ weights have the same weight, pessimist estimations can to some 

extent censor the optimist estimations. If one is considering weighted log aggregation, if one 



expert assigns a probability of 0 to an event, then the aggregated probability is 0; in this case 

an optimist estimation censors the pessimist estimation. Variability in the estimations is a 

problem in the aggregation. In our view the proposed machine learning algorithms fitted the 

aggregated expert assessments well because these were aggregated in optimists and 

pessimists.  

In this paper, we have not tested if the type of expert judgement aggregation affected the 

model's accuracy. We have used data from linear expert judgement aggregation and from 

behavioural expert judgement aggregation. Different types of expert judgement aggregation 

may introduce different problems. The linear and log pool aggregation is very sensitive to 

low- and high-probability judgements (Otway and von Winterfeldt, 1992) whilst behavioural 

expert judgement elicitation is susceptible to group polarisation(van Steen, 1992). Our data 

processes attempted to reduce potential errors by considering expert judgements where the 

weight provided by the expert was equal to or higher than 3. With respect to Remus 100 

elicitation data, we have used judgements provided for the 95 quantile. The judgements used 

in the model presented in this paper were of high confidence. However, there are some expert 

judgements’ elicitations where there is significant uncertainty in the judgement. From our 

study we cannot confirm that machine learning algorithms are suitable for judgements where 

there is a significant amount of uncertainty.   

Expert judgement reliability is an important problem in PRA and a source of much 

criticism (Bolger and Wright, 1994). Proposed solutions to this problem rely on the use of 

seed questions to assess the expert’s reliability based on accuracy and information scores 

(Hanea and Nane, 2019). Seed questions are questions for which the facilitator knows the 

answer, but for which the experts do not know the answers but are asked to give estimates. 

Expert’s performance with the seed questions can provide information about the expert’s 

confidence and accuracy. The Excalibur expert judgement elicitation method uses this score 



to calculate weights for each expert (Goossens et al., 2008). For the actual PRA the correct 

answer – the probability of an adverse event occurring – is unknown. Hence, there is an 

argument that seed questions are not an ideal indicator of how well an expert performs in the 

actual probabilistic risk estimation. The methodology presented in this paper does not address 

the problem of experts’ reliability but it can address the problem of consistency and inform 

new weighting schemes for expert judgement aggregation. The machine learning algorithm is 

trained to give risk estimations for a given type of platform, in a given environment, for a 

given fault description. For a new fault, predictions made by the machine learning algorithms 

can be compared to predictions made by individual experts. The difference between the two 

predictions can be used to estimate a weight for the expert. Observation data from actual 

AUV missions can be used to test the reliability of both the expert prediction and of the 

machine learning algorithm. 

The impact of risk mitigation on the risk profile can be captured using Bayesian models 

(Brito and Dawson, 2020). These models take as input the expert a priori estimate of the 

probability of a fault being mitigated. The probability of a fault being mitigated is not 

explored in this paper. Future research should explore whether or not it is possible to use 

narrative of the fault mitigation strategy to estimate the probability of a fault being mitigated 

by corrective action.  

We argue that text mining and sentiment analysis can be applied to measure the 

consistency of the experts’ assessments for a given problem. 

6 Conclusion 

Studies on expert judgement reliability have focused on comparing expert judgement 

estimates with actual observations. In our view, this presents two problems. First, it does not 

take into account the narrative associated with a given judgement. The narrative captures 

important information such as the context, which describes potential impacts and 



environmental conditions. The second problem with the current approaches is that one can 

only validate expert judgements when data become available. When one needs expert 

judgement elicitation, the actual data are not available. This makes it impossible to assess the 

reliability of the expert judgements. In this paper we address these two problems.  

When we attempted to model expert judgements using narrative information of the event 

description, we realised that we have developed a method for verifying the consistency of 

experts’ judgements. We show that machine learning algorithms can identify individual 

words and groups of words that affect expert judgement with respect to risk estimation. 

We have tested two machine learning algorithms and four text-embedding methods. The 

best performing algorithm, USE-GBR-Full, was then used to conduct a probabilistic risk 

assessment of a problem for which expert judgements are publicly available –  the risk 

assessment for Autosub 3 deployment in under the Pine Island Glacier in Antarctica.  

When we compared the survival distributions obtained using the USE-GBR-Full machine 

learning algorithms, the results showed that the differences between the survival distributions 

of these algorithms and those generated by the experts are not statistically significant.  

The machine learning algorithm was trained on the data of a Autosub 3 and a Remus 100. 

These are two autonomous underwater vehicles in different classes. While Autosub 3 is 

classed as a large AUV, over 3 metres in length and over 1000 Kgs in dry weight, Remus 100 

is a small AUV slightly over 1 metre in length and less than 40 Kgs in dry weight. Given that 

the machine learning algorithm was trained on small and large AUVs, the method can be 

used to develop a priori risk model for any other AUV given that a modicum of faults are 

collected and a full description of the fault and distance at which it has occurred is obtained. 

Machine learning algorithms for probabilistic risk estimation can be applied to other 

domains; for example, health statistics. When combined with the subjective statistical 

survival estimator this method can quantify the risk of a catastrophic event as a function of 



time. Narrative of the symptoms and health-related structural data (such as time under 

treatment, or other health complications) could be used to estimate the probability of a 

catastrophic event for a given individual under a given treatment. This would present a static 

risk model, trained on previous health experts’ assessments, and the probability of a given 

catastrophic event would be computed for each individual. The subjective statistical survival 

estimator would take as input the probabilities for all health patients to compute the 

probability of survival over time for a population under study. The methodology presented in 

this manuscript can be useful for subject areas where the narrative may add value to the risk 

prediction power. The process is presented in this manuscript so others can easily tailor it to 

their applications. 
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