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Abstract

Helmholtz resonators are commonly used as narrowband sound absorbers in room acoustics applications.

Previous research has shown that Helmholtz resonators can also be used to improve the sound transmission

loss of double walls. The focus of this paper is the broadband improvement of the transmission loss of double

walls in the low frequency region by tuning the Helmholtz resonators inside the cavity to frequencies lower

or higher than the mass-air-mass resonance frequency of the double wall. A new analytical model using the

effective material parameters (bulk modulus and density) of a fluid volume containing Helmholtz resonators is

developed to describe the vibro-acoustic behavior of double walls with Helmholtz resonators. Using this model

it can be shown that by tuning the Helmholtz resonators properly, the mass-air-mass resonance frequency

of the unmodified double wall can be shifted significantly, leading to an improvement of the transmission

loss of the double wall roughly between the mass-air-mass resonance frequency and the resonance frequency

of the resonators. This improvement, however, comes along with a decrease of the transmission loss at

high frequencies due to a decoupling of the Helmholtz resonators which is also covered by the proposed

analytical model. Parametric studies are performed to identify relevant design parameters to optimize the

transmission loss improvement by the Helmholtz resonators. Finally, experimental results of different double

wall designs with integrated Helmholtz resonators are presented to validate the proposed analytical model

and demonstrate the effectiveness under diffuse field incidence.

Keywords: resonance frequency, filling ratio, effective bulk modulus, effective density, analytical model,

sound intensity measurement

1. Introduction

Compared to a single wall with the same mass, double wall partitions exhibit a considerably improved

sound insulation performance for frequencies above the so-called mass-air-mass resonance frequency f0 [1]. At

lower frequencies, the sound transmission loss (STL) of a double wall is identical to that of a single wall with

the same mass and for frequencies close to f0 the STL can be greatly reduced due to the resonant behavior5

∗Corresponding author
Email address: Felix.Langfeldt@haw-hamburg.de (F. Langfeldt)

Post-print submitted to Journal of Sound and Vibration February 29, 2020

©2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.
http://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite as: Langfeldt, F., Hoppen, H., and W. Gleine. Broadband low-frequency sound transmission loss improvement of
double walls with Helmholtz resonators. Journal of Sound and Vibration 476 (2020): 115309.
https://doi.org/10.1016/j.jsv.2020.115309

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jsv.2020.115309


Acce
pte

d Man
usc

rip
t

of the system. In many practical applications in noise control it is therefore desirable to design double wall

partitions with a mass-air-mass resonance frequency that is below the frequency range of interest.

In the case of normal incidence, the mass-air-mass resonance frequency is given by [1]

f0 =
1

2π

√
K

H

(
1

m′′1
+

1

m′′2

)
, (1)

where K is the bulk modulus of the fluid between the walls, H is the wall spacing, and m′′1 and m′′2 are the

surface mass densities of the walls. From Eq. (1) it becomes clear that f0 can be reduced by increasing the10

wall spacing (thus reducing the stiffness of the air layer between the walls) or by increasing the wall masses.

Another possible (but less common) approach for this is to use a different fluid with a smaller bulk modulus

(e.g. low pressure air or a near vacuum) in the gap between the walls.

In some practical applications these design changes for reducing the mass-air-mass resonance frequency

of a double wall cannot be realized due to strict non-acoustic requirements. One particular example for this15

is the side wall of an aircraft cabin which is highly constrained in terms of mass and wall thickness, which is

reduced between the fuselage frames to maximize passenger space. Consequently, there is a high demand for

improving the STL of double walls at frequencies near or below f0 without significantly changing the mass,

wall spacing, and fluid between the walls.

A lot of research has been put into finding new technological solutions for this demand. For example,20

the STL of a double wall could be significantly improved at the mass-air-mass resonance by adding micro-

resonators to the walls with their resonance frequencies specifically tuned to f0 [2]. In Ref. [3], layers of

so-called membrane-type acoustic metamaterials were placed in between the walls of a double wall partition

to achieve considerably improved STL values at the anti-resonance frequencies of the metamaterials. By

adding Helmholtz resonators to the cavity of a double wall, significant STL enhancement can also be achieved25

around the resonance frequencies of the embedded resonators [4–6]. This particular concept has been studied

extensively and it has even been tested successfully inside the sidewall of a real aircraft structure [7]. Apart

from these purely passive approaches, a wide range of investigations on the active control of noise transmission

through double walls can be found in the literature (e.g. [8, 9]).

To the knowledge of the authors, all of the currently published studies of Helmholtz resonators inside a30

double wall focus on the more or less narrowband STL improvement at the Helmholtz resonance frequency.

However, as Mason and Fahy [4] pointed out, if the Helmholtz resonators are tuned slightly above the mass-

air-mass resonance frequency, the STL improvement can be quite broadband. So far, this phenomenon has

not been explained on a physical basis and it was not exploited to achieve broadband STL improvements

using Helmholtz resonators inside double walls. This paper aims at filling this gap. It will be shown that the35

mass-air-mass resonance frequency f0 can be reduced significantly by including acoustic resonators inside a

double wall. This way, the mass-air-mass resonance frequency f0 can be reduced even if all other parameters

of Eq. (1) like the wall spacing, wall masses (assuming that the Helmholtz resonators are an integral part of
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the walls), and the cavity fluid are not changed. This results in improvements of the double wall STL which

can be very large and broadband, if the resonators are designed properly.40

In the past, other efforts have been made to achieve improved broadband noise insulation compared to

conventional noise reduction techniques. For example, Helmholtz resonators were also successfully applied to

reduce the sound pressure level inside the payload fairing of launch vehicles. The broadband noise reduction

was achieved using a horn-like neck shape of the resonator to cause high absorption at low frequencies, while

at higher frequencies the absorption was generated by porous materials surrounding the resonators [10]. This45

approach differs mainly in two aspects from the double wall with integrated Helmholtz resonators studied

here: First, the Helmholtz resonators in the payload faring are designed to achieve high absorption in order

to dampen the sound pressure levels occurring inside the comparatively small volume inside the fairing. The

purpose of the double wall, on the other hand, is to reduce the transmission of sound by generating a high

impedance mismatch. Second, the horn-shaped Helmholtz resonators exhibit the best absorption coefficients50

at very large sound pressure levels (> 130 dB), owing to non-linear effects at the orifice [11]. The double wall

with Helmholtz resonators investigated in this paper, on the other hand, are applicable in the linear regime.

Another approach to achieve broadband noise reduction improvement is to use optimally tuned dynamic

vibration absorbers in order to reduce the vibrations of a structure over a broad frequency range [12, 13].

Estève and Johnson [14] investigated the effect of both optimally tuned dynamic vibration absorbers and55

Helmholtz resonators on the reduction of sound transmitted into a cylindrical shell. Their results show that

the dynamic vibration absorbers can be used to reduce the sound transmission at structural resonances, while

the Helmholtz resonators yield a more broadband effect due to the damping of acoustic resonances inside

the cavity (similar to the payload fairing). Recently, sandwich panels with embedded acoustic metamaterials

have been proposed to obtain broadband STL improvements compared to the mass-law sound transmission60

loss of a wall with the same surface mass density [15]. These type of metamaterial sandwich panels, however,

have only been demonstrated using small-scale samples inside the impedance tube. This arrangement is

strongly affected by the stiffness induced by the clamped boundaries, particularly at low frequencies, and the

performance of this metamaterial is expected to be greatly diminished in large-scale specimens [16].

The paper is structured as follows: An analytical model is derived in Section 2 which provides a simple65

expression for calculating the effective bulk modulus of a fluid volume with Helmholtz resonators. This

model is validated using impedance tube measurements and then applied to calculate the mass-air-mass

resonance frequency and STL of double walls with Helmholtz resonators between the walls. In Section 3,

parameter studies are performed to investigate how the shifting of the mass-air-mass resonance frequency

by using Helmholtz resonators can be exploited to achieve broadband improvement of the double wall STL.70

Based upon these results, laboratory-scale test samples of different double walls with Helmholtz resonators

are constructed and evaluated using sound intensity measurements in order to demonstrate the improved

STL over a broad frequency range. The results of the experimental study are presented in Section 4. Finally,

Section 5 provides a summary and the conclusions of this investigation.
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2. Analytical model75

This section will provide an analytical model to calculate the sound transmission loss of double walls

with Helmholtz resonators. First, a simple model for the effective bulk modulus of a confined fluid volume

containing Helmholtz resonators will be derived and validated using impedance tube measurements. Then,

this model is applied to calculate the resonance frequencies of a double wall containing Helmholtz resonators.

Finally, expressions to obtain the transmission loss of a double wall filled with Helmholtz resonators will be80

given.

In the following derivations, a time dependency of the form exp(iωt), with i =
√
−1, the angular frequency

ω = 2πf , and the time t, is implicitly assumed and therefore omitted.

2.1. Effective bulk modulus of a fluid volume with Helmholtz resonators

The effective bulk modulus Keff is defined here as the pressure amplitude p inside an air volume V85

resulting from a dynamic volume change ∆V :

Keff = −V p

∆V
. (2)

It should be noted that ∆V is defined positive if it leads to an increase of the original air volume V . In order

to obtain an analytical expression for Keff in the case of a fluid volume with embedded Helmholtz resonators,

the simplified model as shown in Fig. 1 is used: A piston imposes a dynamic volume change ∆V on a rigidly

bounded fluid volume V which encloses a Helmholtz resonator with a resonator volume VR. Assuming that90

all dimensions of the fluid volume are much smaller than the acoustic wavelength λ, the pressure amplitude

inside the fluid volume p (but outside of the Helmholtz resonator) can be obtained from the bulk modulus

K of the fluid inside the volume via

K = −(V − VR)
p

∆V −∆VR
, (3)

Neck fluid volume

uR

SR pR

Helmholtz resonator volume VR

Air volume V

Volume change
by piston ∆V

p
Dynamic piston

displacement

∆VR

Figure 1: Schematical drawing of the simplified model used to obtain an analytical expression of the effective bulk modulus Keff

of a fluid volume with Helmholtz resonators.
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where ∆VR is the volume change caused by the oscillating fluid inside the neck of the Helmholtz resonator.

∆VR is defined positive if it leads to an increase of the resonator volume VR, hence the negative sign inside95

the denominator of Eq. (3). Combining Eqs. (2) and (3) results in

Keff =
K

1− φR − K
V

∆VR

p

, (4)

where the volumetric filling ratio φR = VR/V of the resonator has been introduced.

The volume change by the resonator neck ∆VR is related to the average neck particle displacement uR

and the neck cross-sectional area SR via ∆VR = −uRSR. The equation of motion of the fluid volume inside

the neck is100

−ω2MRuR + iωBRuR = (p− pR)SR, (5)

where MR is the mass of the oscillating neck fluid volume, BR is the damping coefficient associated with

visco-thermal losses at the neck, and pR is the pressure inside the resonator. Similar to p, the resonator

volume pressure pR is related to the bulk modulus KR of the fluid inside the resonator through

KR = −VR
pR

∆VR
= VR

pR
uRSR

. (6)

For generality, the bulk moduliK andKR can be different, for example when Helmholtz resonators embedded

inside a porous matrix are considered. In the common case that both the Helmholtz resonators and the105

surrounding volume are filled with air, K = KR = ρ0c
2
0. Combining Eqs. (5) and (6) and introducing the

Helmholtz resonance frequency ωR =
√
KRS2

R/(VRMR) and damping ratio ζR = BR/(2MRωR) results in

MR

SR
(ω2
R + 2iζRωRω − ω2)uR = p. (7)

This can be inserted into Eq. (4) and after some algebraic manipulations the following expression for Keff

results:

Keff =
K

1− φR + K
KR

φR

1+2iζRΩR−Ω2
R

, (8)

with ΩR = ω/ωR. From Eq. (8) it becomes clear that the effective bulk modulus of a fluid volume with110

embedded Helmholtz resonator depends only on the bulk modulus K of the background fluid, volumetric

filling ratio φR, the Helmholtz resonance frequency ωR, the damping ratio ζR, and (if the fluid inside the

resonator is different from the background fluid) the bulk modulus KR of the fluid inside the resonator. In the

undamped case (ζR = 0) and for the same fluid properties inside and outside of the resonator (K/KR = 1),

Eq. (8) simplifies to115

Keff = K
1− Ω2

R

1− (1− φR) Ω2
R

. (9)

The same modeling approach can be followed if multiple Helmholtz resonators with different properties
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should be considered inside the volume V . In this case, the expression for Keff changes to

Keff =
K

1− φR +
N∑
i=1

K
KR,i

φR,i

1+2iζR,iΩR,i−Ω2
R,i

, (10)

where i is the index of each Helmholtz resonator in V , N is the number of resonators, and φR corresponds

to the volumetric filling ratio of all resonators together.

The analytical model for the effective bulk modulus of a Helmholtz resonator is verified using impedance120

tube measurements according to the 4-microphone-method (ASTM E2611-09) [17]. This measurement

method allows the experimental determination of the transfer matrix elements T11, T12, T21, and T22 of the test

specimen. These values can then be used to calculated the effective characteristic impedance Zeff =
√
T12/T21

and the effective wave number keff = (cos−1 T11)/a, with a being the specimen thickness. With keff and Zeff ,

the effective bulk modulusKeff = ωZeff/keff and the effective density ρeff = keffZeff/ω are calculated. Fig. 2(a)125

illustrates the general test setup. A Brüel & Kjær type 4206 impedance tube with a diameter of D = 100 mm

and four flush mounted type 4187 pressure microphones was employed. The measurement frequency range

of the impedance tube is specified as f = 50 . . . 1600 Hz. The fluid density and speed of sound during the

measurements were determined at ρ0 = 1.22 kg m−3 and c0 = 344 m s−1, respectively.

The investigated Helmholtz resonator consists of a spherical cavity with diameter DR = 38.3 mm and a130
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Figure 2: Impedance tube measurement of the effective bulk modulus Keff of a fluid volume with Helmholtz resonator. (a)
Schematic overview of the impedance tube measurement setup; (b) Detail of the Helmholtz resonator in the impedance tube
and definition of the reference volume V ; (c) Photograph of the measured Helmholtz resonator; (d) Comparison of experimental
(symbols) and analytical results (curves) for the complex effective bulk modulus; (e) Comparison of experimental (symbols) and
analytical results (curves) for the complex effective density.
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neck with a length of LR = 21 mm and circular open cross-section SR = 46.6 mm2 (radius RR = 3.85 mm).

The mass of the fluid volume inside the neckMR can be estimated asMR ≈ ρ0SR(LR+2 · 0.82RR) ≈ 1.55 mg

[18]. Thus, for this resonator geometry, the Helmholtz resonance frequency is given by approximately fR ≈

417 Hz. The resonator was mounted vertically inside the sample holder of the impedance tube, as shown in

Fig. 2(b), by fixing the bottom of the resonator to the impedance tube wall using putty. Fig. 2(c) shows a135

photograph of the Helmholtz resonator inside the sample holder. The sample thickness a, which is required

to obtain the effective material parameters in the measurements, can be specified somewhat arbitrarily. It

should, however, be within some physically reasonable bounds: The sample thickness cannot be smaller than

the sample itself and it should be much smaller than the acoustic wavelength λ. In order to obtain the

highest possible filling ratio, the resonator diameter DR was specified as the sample thickness, as illustrated140

in Fig. 2(b). The reference volume V which is used to obtained the volumetric filling ratio φR = VR/V for

the analytical model is then given by the extrusion of the impedance tube cross-section along the sample

thickness, i.e. V = 0.25πD2DR. From this it follows that the volumetric filling ratio for this test sample is

φR = (πD3
R/6)/(0.25πD2DR) = 2/3(DR/D)2 ≈ 9.8 %. Finally, the damping ratio ζR was estimated from

the measurement data as ζR ≈ 3 %.145

The obtained effective bulk modulus of the Helmholtz resonator (normalized by the bulk modulus K of

the background fluid) is shown in Fig. 2(d) between f = 200 and 600 Hz. The symbols represent the measured

data and the lines correspond to analytical results using Eq. (8). The blue circles/solid lines are the real part

of Keff , while the red squares/dashed lines are the imaginary part. Overall, a good agreement between the

experimental and analytical results can be observed. Some slight differences can be seen particularly for the150

real part of Keff at low frequencies. This most likely is a consequence of measurement inaccuracies in the 4-

microphone-method at low frequencies. For f → 0 Hz, the effective bulk modulus of the Helmholtz resonator

corresponds to that of the background fluid (Keff/K ≈ 1). For higher frequencies up to the Helmholtz

resonance frequency fR ≈ 417 Hz, Keff becomes smaller and reaches nearly zero close to fR. This means

that close to the Helmholtz resonance frequency, a fluid volume with Helmholtz resonator becomes very soft155

compared to the same fluid volume without resonator. Then, the effective bulk modulus increases quickly and

the magnitude of Keff reaches its maximum value at around fR/
√

1− φR ≈ 439 Hz (the so-called tonraum

resonance frequency [7]). After this frequency, the resonator becomes decoupled from the background fluid

volume and the effective bulk modulus asymptotically approaches Keff → K/(1 − φR), i.e. the fluid volume

becomes stiffer. Additionally, Fig. 2(e) shows the measured results for the effective density ρeff of the fluid160

volume with Helmholtz resonator, normalized by the ambient air density ρ. The measured effective density

is nearly constant over the considered frequency range, but approximately 30 % larger than that of the air.

This can be explained by the tortuosity of the impervious Helmholtz resonator which leads to an increase of

the apparent mass of the fluid volume containing the resonator [19]. The increased effective density can be
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estimated using the analytical formula by Berryman [20] for spherical inclusions165

ρeff ≈ ρ
2 + φR

2 (1− φR)
, (11)

where it is assumed that the density of the resonators is much larger than the air density. The effective

density resulting from Eq. (11) is compared to the measurement results in Fig. 2(e). The analytical results

slightly underestimate the experimental results. However, given the simplicity of the expression in Eq. (11)

this deviation can be acceptable.

The impact of the filling ratio φR on the effective parameters Keff and ρeff is illustrated in Fig. 3. The170

magnitude of the effective bulk modulus is shown in Fig. 3(a). It can be seen that below the Helmholtz

resonance frequency fR an increase of the filling ratio leads to a stronger reduction of the effective stiffness

of the fluid volume. On the other hand, at higher frequencies the maximum effective bulk modulus value

at the tonraum frequency increases and the tonraum frequency itself is increased, since it is proportional

to 1/
√

1− φR. After this frequency, the asymptotic value of the effective bulk modulus is larger for higher175

filling ratios. This can be explained by the larger volume occupied by the Helmholtz resonator essentially

constraining the compression of the background fluid. For the effective density shown in Fig. 3(b) it follows

that an increase of the filling ratio increases the tortuosity resulting from the resonators which therefore leads

to an increase of the resulting effective density.

2.2. Mass-air-mass resonance frequency of a double wall with Helmholtz resonators180

The analysis in the previous sub-section shows that the stiffness of a fluid volume can be significantly

modified at certain frequencies by inserting Helmholtz resonators into the volume. It is particularly interesting

that below the Helmholtz resonance frequency the effective bulk modulus of the fluid volume is smaller than

the bulk modulus of the background medium. Since, as evident from Eq. (1), the mass-air-mass resonance

frequency of a double wall can be reduced if the bulk modulus is decreased, this sub-section investigates the185

impact of Helmholtz resonators on the mass-air-mass resonance frequency.
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Figure 3: Magnitude of the effective material parameters for different volumetric filling ratios φR. (a) Effective bulk modulus;
(b) Effective density.
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In order to calculate the resonance frequencies of a double wall with Helmholtz resonators inside the air

gap, Eq. (9) for the undamped case of the effective bulk modulus of a fluid volume with Helmholtz resonators

can be inserted into Eq. (1) with ω → ω0 = 2πf0. This approach is equivalent to representing the double wall

as the mechanical oscillator shown in Fig. 4(a), where the walls are modelled as masses m′′1 and m′′2 and the190

fluid volume with Helmholtz resonator corresponds to a spring with frequency-dependent stiffness Keff(ω)/H.

Solving the resulting equation for the resonance frequency f0 yields after some algebraic manipulations

f2
0 =

1 +
f2
R

f2
DW
±
√(

1− f2
R

f2
DW

)2

+ 4φR
f2
R

f2
DW

2 (1− φR)
f2

DW, (12)

where fDW is the mass-air-mass resonance frequency of the double wall without Helmholtz resonators (but

otherwise equal surface mass densities and wall spacing). The result in Eq. (12) shows that the double wall

system now exhibits two resonance frequencies which both depend only on fDW, fR, and φR.195

Fig. 4(b) shows the variation of the two resonance frequencies given in Eq. (12) with the Helmholtz

resonance frequency fR varying between 0 and 2 times fDW for three different volumetric filling ratios

φR = 20 %, 50 %, and 80 %. It can be seen that if fR � fDW, the first resonance frequency f01 is nearly

independent of the filling ratio and goes to zero as fR → 0. The second resonance frequency f02, on the

other hand, exhibits a strong dependency on φR and approaches a constant value of fDW/
√

1− φR for very200

small Helmholtz resonance frequencies. As fR is increased, the first resonance frequency increases as well

and converges to fDW for fR � fDW. The volumetric filling ratio determines how quickly the first resonance

frequency approaches fDW: The smaller φR, the closer f01 will be to the original mass-air-mass resonance
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Figure 4: Resonance frequencies f0 of a double wall with Helmholtz resonators. (a) Mechanical model of the double wall
representing the walls by rigid bodies and the fluid volume with Helmholtz resonator by a frequency-dependent effective bulk
modulus according to Eq. (9); (b) Variation of the resonance frequencies with the Helmholtz resonance frequency fR; (c)
Variation of the resonance frequencies with the volumetric filling ratio φR.
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frequency for a given Helmholtz resonance frequency fR.

In Fig. 4(c) it is shown how the volumetric filling ratio φR affects the double wall resonance frequencies205

for the three different values of fR/fDW = 0.5 (i.e. Helmholtz resonator tuned lower than the original mass-

air-mass resonance frequency), 1 (tuned equal to fDW), and 1.5 (tuned higher than fDW). For φR = 0

(corresponding to no resonators between the walls), the resonance frequencies are equal to fR and fDW. This

means that the original behavior of the double wall without Helmholtz resonators is retained, because no

Helmholtz resonators are present inside the double wall and Eq. (12) yields the solutions of the two decoupled210

systems: the empty double wall and the Helmholtz resonators (which are not present inside the double wall).

When the filling ratio is increased, the first resonance frequency becomes lower, because, for frequencies below

fR, the stiffness of the air volume becomes smaller. In the limit φR → 1, the first resonance frequency goes

to f01 → fR/
√

1 + (fR/fDW)2. The second resonance frequency, on the other hand, increases with φR and

goes to infinity as the filling ratio approaches 100 %.215

The red dashed pair of curves in Fig. 4(c), which correspond to the special case where the Helmholtz

resonator is tuned exactly equal to the mass-air-mass resonance frequency, will now be discussed in more

detail, because this case has received more attention in the literature [4, 6, 21]: At φR = 0 (i.e. no Helmholtz

resonators), both curves start at f0/fDW = 1 which means that, naturally, the mass-air-mass resonance

frequency of the double wall is not changed. As the filling ratio of Helmholtz resonators is increased, both220

resonance frequency curves separate from each other, with one resonance frequency slowly decreasing while

the other frequency quickly increases. The first resonance frequency can be interpreted as the new mass-

air-mass resonance frequency of the double wall with embedded Helmholtz resonators. It is obvious from

Fig. 4(c) that the mass-air-mass resonance frequency can be reduced by introducing Helmholtz resonators.

However, the reduction cannot be arbitrarily large: For fR/fDW = 1, the lowest possible value of the225

mass-air-mass resonance frequency at φR = 1 is fDW/
√

2, that is approximately 70 % of the mass-air-mass

resonance frequency of the unmodified double wall. According to Eq. (1), this effectively corresponds to

a doubling of the wall spacing H or the wall masses m′′1 and m′′2 . If the Helmholtz resonator is tuned to

frequencies greater than fDW, the maximum possible mass-air-mass resonance frequency reduction is smaller.

For example, if fR = 2fDW, then the lowest possible value of the new mass-air-mass resonance frequency will230

be approximately 90 % of the value of fDW.

In the case that the Helmholtz resonance frequency is smaller than fDW, the change of the mass-air-mass

resonance frequency is different: It can be seen in Fig. 4(c) for fR/fDW = 0.5 that the original mass-air-mass

resonance frequency increases as the filling ratio is increased. This is because for frequencies f � fR the

effective bulk modulus of a fluid volume with Helmholtz resonators becomes greater than the bulk modulus235

of the background fluid. However, in the following sub-section it will be shown that this can also lead to a

significant improvement of the STL of the double wall.

2.3. Sound transmission loss of a double wall with Helmholtz resonators

Mason and Fahy [4] already provided an analytical model for calculating the sound transmission loss of
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double walls with Helmholtz resonators. In their derivation, the authors do not consider the volume of the240

Helmholtz resonators a part of the air cavity between the walls. For significant filling ratios (e.g. φR & 5 %),

however, the volume occupied by the resonators can be very important. Furthermore, the transmission

of obliquely incident sound waves or diffuse sound fields was not considered in Ref. [4]. Therefore, this

contribution provides an improved method for predicting the sound transmission properties of double walls

with Helmholtz resonators which is applicable even when the filling ratio of the resonators is quite large and245

oblique or diffuse incident sound fields are to be considered.

As shown in Sub-section 2.1, the fluid volume with Helmholtz resonators between the two walls can be

represented by an equivalent fluid with effective bulk modulus and density given by Eqs. (8) and (11), respec-

tively. Therefore, an analytical expression for the transmission coefficient τ can be obtained by considering

the transmission of plane acoustic waves through a double wall at an incidence angle of θ0 with different250

fluid properties inside and outside the double wall. Following the same steps as for a normal double wall

(see, for example, Ref. [1, pp. 314–316]), but taking into account the effective impedance Zeff =
√
Keffρeff ,

effective wave number keff = ω
√
ρeff/Keff , and angle of refraction θeff (which is related to θ0 via Snell’s law:

sin θeff = sin θ0

√
Keff/ρeff/c0), the following expression for the transmission coefficient can be obtained:

τ =

∣∣∣∣ 2Z sin(keffH cos θeff)

X1X2 sin2(keffH cos θeff) + Z2

∣∣∣∣2 , (13)

where Z = Zeff sec θeff/(Z0 sec θ0), X1/2 = X1/2 cos θ0 + 1− iZ cot(keffH cos θeff), and X1/2 = iωm′′1/2/Z0 are255

the normalized wall impedances of the two walls. The sound transmission loss is then given by TL = −10 lg τ .

For normal incidence and frequencies with sound wavelengths much larger than the wall spacing H, Eq. (13)

can be simplified to

τ =

∣∣∣∣ 2K
(X1 + 1 +K) (X2 + 1 +K)−K2

∣∣∣∣2 , (14)

with K = Keff/(iωHZ0).

Fig. 5 shows the calculated normal incidence transmission loss results for a double wall (m′′1 = m′′2 =260

1 kg m−2, H = 50 mm, fDW = 380 Hz) with Helmholtz resonators (baseline parameters φR = 50 %,

fR/fDW = 1.5, ζR = 5 %). In the bottom row of plots in Fig. 5, the insertion loss ∆TL is shown which is

defined as the transmission loss difference between the double wall with and without Helmholtz resonators.

The arrows in the plots indicate the resonance frequencies of the double wall calculated using Eq. (12).

The first column in Fig. 5 displays the results for fixed Helmholtz resonance frequency and varying265

filling ratio. The calculated resonance frequencies correspond well to the STL minima of the double wall.

While the lower resonance frequency (the original mass-air-mass resonance frequency) is slightly reduced with

increasing filling ratio, the second resonance frequency quickly grows from nearly 700 Hz to over 1.5 kHz. This

was already discussed with respect to the results in Fig. 4(c). This spreading of the resonance frequencies as

well as the strong STL improvement at the Helmholtz resonance frequency (in this case 570 Hz) leads to the270

emergence of a very broadband improvement of the transmission loss of the double wall. The insertion loss
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Figure 5: Normal incidence sound transmission loss TL and insertion loss ∆TL (with respect to the case without Helmholtz
resonators) of a double wall with Helmholtz resonators. Arrows indicate the resonance frequencies of the double wall obtained
from Eq. (12). (a) and (b) Transmission loss and insertion loss for different filling ratios; (c) and (d) Transmission loss and
insertion loss for different Helmholtz resonance frequencies fR > fDW; (e) and (f) Transmission loss and insertion loss for
different Helmholtz resonance frequencies fR ≤ fDW.

shown in Fig. 5(b) makes this particularly clear: A plateau of significant STL improvement appears between

the lowest resonance frequency of the double wall with Helmholtz resonators and the Helmholtz resonance

frequency. For φR = 20 %, the ∆TL is at least 6 dB over a frequency range of 160 Hz. At 50 % filling ratio

there is an improvement by more than 10 dB over an even broader frequency range of 240 Hz. This is further275

increased at φR = 80 %, where ∆TL values over 12 dB can be achieved over 275 Hz. Thus, it can be seen

that broadband STL improvement can be achieved by using Helmholtz resonators inside a double wall. It

should be emphasized that these results do not even take into account any added mass from the resonators

which would further improve the STL of the double wall.

Fig. 5(c) and (d) show the transmission and insertion loss for fixed filling ratio and varying Helmholtz280

resonance frequency fR. In these calculations, the Helmholtz resonators have been tuned at frequencies

higher than the mass-air-mass resonance frequency of the unmodified double wall. Again, a considerable

improvement of the double wall STL over a relatively wide frequency range can be observed. As in the results

for the filling ratio variation, this is a consequence of the resonance frequency spreading when Helmholtz

resonators are introduced. Fig. 5(d) shows that increasing the Helmholtz resonance frequency fR leads285
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to a broadening of the ∆TL-plateau. However, since also the mass-air-mass resonance frequency increases

with fR and asymptotically reaches the mass-air-mass resonance frequency of the unmodified double wall

(see Fig. 4(b)), the STL improvement at the plateau will be reduced: At fR/fDW = 2 there is over 5 dB

improvement for 470 Hz, while in the case of fR/fDW = 3 a much larger plateau width (915 Hz) but with

only ∆TL ≥ 2 dB can be achieved.290

Similar effects can be observed when the Helmholtz resonance frequency is tuned equal or below the

mass-air-mass resonance frequency of the unmodified double wall (see Fig. 5(e) and (f)). For fR = fDW, one

very large STL peak with ∆TL values of nearly 30 dB appears. When the Helmholtz resonance frequency

is reduced, the single peak in the insertion loss in Fig. 5(f) splits up into two peaks with the first peak

corresponding to fR and the second peak at fDW. As a result, a ∆TL-plateau forms between these two295

peaks. Like in the other case with fR > fDW, the height of the plateau becomes smaller as fR is shifted

further away from the mass-air-mass resonance frequency of the unmodified double wall.

So far, the discussion of the results shown in Fig. 5 has focused on the STL improvement due to the

Helmholtz resonators and how this improvement is affected by φR and fR. It should be emphasized, however,

that this improvement comes along with a decrease in sound insulation performance of the double wall at300

higher frequencies. The decrease of the STL is the largest at the second resonance frequency f02 and then the

insertion loss approaches a constant value of approximately ∆TL ≈ 20 lg(1 − φR) < 0. This high frequency

STL decrease is caused by the decoupling of the resonator fluid volume from the rest of the double wall cavity

which occurs at frequencies above fR. Thus, the wall spacing of the double wall H is effectively reduced at

higher frequencies, leading to the reduced STL compared to the double wall without resonators.305

To get a better impression of the high frequency effect of the Helmholtz resonators, Fig. 6 shows the

transmission loss and insertion loss of a double wall (m′′1 = m′′2 = 1 kg m−2, H = 50 mm, fDW = 380 Hz)

with Helmholtz resonators (φR = 50 %, fR/fDW = 1.5, ζR = 5 %) for up to f = 5 kHz. The results have
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Figure 6: Normal incidence sound transmission loss TL and insertion loss ∆TL (with respect to the case without Helmholtz
resonators) of a double wall with Helmholtz resonators for an extended frequency range up to 5 kHz. (a) Transmission loss TL;
(b) Insertion loss ∆TL.
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been calculated using Eq. (13). It should be noted that the homogenization approach to obtain Keff and ρeff

of the fluid volume with Helmholtz resonators is valid as long as the height of the fluid volume is smaller310

than the wavelength. Thus, a maximum frequency of 5 kHz has been chosen to ensure that H < λ. Fig. 6(a)

shows that above approximately 700 Hz the STL of the double wall with Helmholtz resonators is below the

transmission loss of the corresponding double wall without resonators over a wide range of frequencies. The

insertion loss shown in Fig. 6(b) clearly approaches the dashed line at 20 lg(1 − φR) ≈ −6 dB at around

2 kHz. In this frequency range the Helmholtz resonators are decoupled and the volume of the double wall315

cavity is effectively reduced by half. Between 3 and 4 kHz it can be also seen that the first λ/2-resonances

occur for both double wall configurations. For the double wall without Helmholtz resonators, this resonance

occurs at the frequency c0/(2H) ≈ 3.4 kHz. When the resonators are introduced, this resonance frequency

is slightly reduced. The reason for this is that the effective speed of sound of the fluid volume is given by

ceff =
√
Keff/ρeff and for frequencies f � fR it follows from Eqs. (9) and (11) that ceff will be smaller than320

c0 and approaches ceff/c0 ≈
√

2/(2 + φR). Thus, for the configuration shown in Fig. 6 the λ/2-resonance is

reduced to 3.04 kHz with included Helmholtz resonators.

In summary, the presented results for the sound transmission loss of a double wall with Helmholtz res-

onators reveal that it is possible to achieve broadband STL improvement at low frequencies compared to

a double wall without Helmholtz resonators. This approach is different from previous investigations of325

Helmholtz resonator double walls, where the primary target was to achieve STL improvements specifically at

the Helmholtz resonance frequency. At high frequencies, however, it has to be accepted that the transmission

loss of the double wall will be decreased due to the Helmholtz resonators. Thus, there is a certain trade-off

between an improved low-frequency STL over a broad frequency range and a decreased sound insulation at

high frequencies. The extent of this trade-off depends on the target noise control problem: If the noise source330

is dominated by low-frequency noise (for example a propeller-driven aircraft with changing rotational speeds

of the propellers), then an impact at higher frequencies can be accepted for the sake of improving the critical

low-frequency range. Also, at high frequencies most practical double wall constructions are dominated by the

structure-borne sound path along the structural connections between the walls [1], which is not considered

here. Thus, it can be expected that the air-borne path with the Helmholtz resonators will be negligible335

compared to the structure-borne path above a certain frequency and the STL values of the double walls with

and without resonators will become similar. Finally, the reduced STL at higher frequencies could also be

alleviated by introducing porous absorbers (such as glass wool or open-celled foams) which are more efficient

at absorbing sound at higher frequencies.

3. Parameter studies340

The STL calculation results in Fig. 5 indicate that a ∆TL plateau occurs roughly between the unmodified

mass-air-mass resonance frequency fDW and the Helmholtz resonance frequency fR. The purpose of the

parameter studies in this section is to investigate how the properties of this plateau are affected by the
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different design parameters of a double wall with Helmholtz resonators. First, it is shown how the insertion

loss plateau can be optimized to achieve broadband sound insulation by selecting suitable parameters for the345

Helmholtz resonators and the resulting high-frequency behavior is discussed. Then, Sub-section 3.2 explores

how the plateau is affected by the parameters of the double wall. All calculations in this section have been

performed for normal incidence using Eq. (14).

3.1. Insertion loss plateau optimization

The plateau can be characterized by the relative bandwidth B = (fu − fl)/
√
flfu, where fl and fu are350

the lower and upper limiting frequencies of the frequency band around fR for which ∆TL > 0. Since the

height of the plateau is also affected by the Helmholtz resonators, the average ∆TL of the plateau, which is

defined as

∆TL =
1

fu − fl

fu∫
fl

∆TL df , (15)

will be used to characterize the magnitude of the STL improvement.

In Fig. 7(a) it is shown how the bandwidth of the STL improvement plateau is affected by the resonator355

filling ratio φR and the Helmholtz resonance frequency fR (normalized by fDW). In general, it becomes clear

that higher bandwidths can be achieved by increasing the volumetric filling ratio of the resonators. The

results in Fig. 7(a) are quite symmetric with respect to the horizontal line at fR/fDW = 1. This indicates

that similar bandwidths can be achieved by tuning the resonators to either higher or to lower frequencies

than the mass-air-mass resonance frequency of the double wall by the same factor (e.g. twice or half the value360

of fDW). The lowest bandwidth values (for constant φR) occur when the resonators are tuned exactly to

fDW. As fR/fDW becomes larger or lower than unity, the bandwidth increases significantly. This is in line

with the results shown in Fig. 5(d) and (e) where it was observed that a larger gap between fR and fDW

leads to a higher spread between the resonance frequencies of the double wall with Helmholtz resonators.

This directly results in the broadening of the insertion loss plateau.365

Fig. 7(b) shows the effect of the same Helmholtz resonator parameters on the average ∆TL of the plateau.

Again, the results exhibit a symmetry about fR/fDW = 1 and the ∆TL values are larger for higher filling

ratios φR. However, contrary to the bandwidth in Fig. 7(a), the largest average STL improvement occurs

when the Helmholtz resonance frequency and the mass-air-mass resonance frequency are equal. When fR

is higher or smaller than fDW (for example in order to improve the bandwidth), the resulting ∆TL will be370

deteriorated.

This contrary behavior of optimizing B and ∆TL is further illustrated in Fig. 7(c) where both quantities

are shown for three different filling ratios and varying fR/fDW. The arrows indicate the direction in which the

parameter fR/fDW increases along the curves. The peaks of the curves correspond to the point fR/fDW = 1,

which is indicated in Fig. 7(c) by the circles. It can be clearly seen that the bandwidth and height of the375

insertion loss plateau form a pareto-like front with respect to fR/fDW: An improvement of the bandwidth
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Figure 7: Parametric study of the width and height of the insertion loss plateau. (a) Bandwidth B; (b) Average insertion loss
∆TL; (c) Bandwidth and average insertion loss for different filling ratios φR and varying Helmholtz resonance frequency (the
arrows indicate the direction in which fR/fDW increases and the circles correspond to the points for which fR/fDW = 1); (d)
High-frequency average insertion loss ∆TLhigh from 0 to 5 kHz.

cannot be achieved by changing the Helmholtz resonance frequency without deteriorating the average ∆TL,

and vice versa. The filling ratio, on the other hand, can be used to improve both values simultaneously.

Therefore, in order to design a Helmholtz resonator double wall with desired broadband improved STL, it is

recommended that first the filling ratio should be selected as large as possible. Then, the Helmholtz resonance380

frequency fR can be used to fine-tune the properties of the insertion loss plateau. It should be also noted

that the shape of the curves in Fig. 7(c) indicates that the results are not perfectly symmetric: If fR > fDW,

the width and average height of the plateau will be greater than when the Helmholtz resonance frequency is

smaller than fDW.

At the end of Section 2 it was discussed how the transmission loss of a double wall is reduced at high385

frequencies due to the Helmholtz resonators. This is not problematic in cases where most of the acoustic

energy of a noise source is concentrated inside the insertion loss plateau caused by the Helmholtz resonators

or when the high-frequency noise components are reduced by other means (e.g. porous absorbers). In some

applications, however, it is more appropriate to take into account a larger frequency range than just the

insertion loss plateau. For this purpose, Fig. 7(d) shows the variation of the high-frequency average insertion390

loss ∆TLhigh, which is defined similarly to Eq. (15), but with the integration limits fu = 0 Hz and fl = 5 kHz.
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It can be seen that, in general, ∆TLhigh will always be equal or less than zero when Helmholtz resonators are

added to a double wall. This was shown exemplarily in Fig. 6 and cannot be avoided due to the decoupling

of the Helmholtz resonator volume for frequencies much higher than fR. However, it can be seen in Fig. 7(d)

that certain resonator configurations have a higher impact on the high-frequency behavior than others: For395

example, it is in general better for ∆TLhigh to have a low filling ratio while the resonance frequency ratio

fR/fDW has nearly no effect. Only when φR is very high it can be seen that a large fR/fDW leads to a smaller

STL reduction at high frequencies than when fR/fDW is small. From the results shown in Fig. 5(d) this

becomes clear, since a large Helmholtz resonance frequency stretches out the insertion loss plateau and shifts

the STL decrease to even higher frequencies. However, from Fig. 7(b) it is also clear that a large fR/fDW400

reduces the STL improvement within the insertion loss plateau. These findings underline the compromise

that has to be made regarding the STL improvement at the insertion loss plateau and the overall behavior

of the double wall up to high frequencies, when Helmholtz resonators are integrated inside a double wall.

3.2. Effect of the double wall parameters

In order to survey how the parameters of the double wall affect the insertion loss plateau generated by the405

Helmholtz resonators, further calculations have been performed with a variation of the double wall spacing H

and fixed Helmholtz resonator parameters (fR/fDW = 1.5, φR = 50 %, ζR = 5 %). To keep the mass-air-mass

resonance frequency of the empty double wall in all cases at fDW = 380 Hz, the wall surface mass densities

m′′1 = m′′2 have been adjusted accordingly.
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Figure 8: Normal incidence sound transmission loss TL and insertion loss ∆TL (with respect to the case without Helmholtz
resonators) of double walls with different wall spacings H and fixed Helmholtz resonator parameters (fR = 1.5fDW, φR = 50 %,
ζR = 5 %). The wall masses m′′1 = m′′2 are adjusted to achieve the same mass-air-mass resonance frequency fDW = 380 Hz. (a)
H = 25 mm; (b) H = 50 mm; (c) H = 100 mm; (d) Insertion loss ∆TL.
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Fig. 8(a), (b), and (c) show the normal incidence sound transmission loss TL for three different wall410

spacings H = 25 mm, 50 mm, and 100 mm, respectively. The corresponding wall masses are given by

m′′1 = m′′2 = 2 kg m−2, 1 kg m−2, and 0.5 kg m−2, respectively. The black dotted curves in Fig. 8(a)–(c)

represent the transmission loss of the double walls without Helmholtz resonators. The qualitative shape of

the curves in Fig. 8(a)–(c) is similar in all three cases which indicates that the performance of the Helmholtz

resonators is at most lightly affected by the parameters of the double wall. In general, a shifting of the curves415

to higher TL values is observed when the wall spacing is reduced and the wall masses are increased. Since

this shifting is also present in the curves for the double walls without Helmholtz resonators, it is a direct

consequence of the increased wall masses and cannot be attributed to the Helmholtz resonators.

The small impact of the double wall parameters becomes more clearly visible in Fig. 8(d) where the

insertion loss curves are shown for the three different wall spacings. The curves are mostly identical, significant420

differences are present only around the mass-air-mass resonance frequency and at the second resonance

frequency of the double walls with Helmholtz resonators. When the wall spacing is increased, the first dip

and peak of the insertion loss plateau are smeared out, leading to a slightly larger bandwidth but also reduced

average ∆TL. This effect can be explained by the enhanced fluid damping for higher values of H with smaller

wall masses which means that the walls are more easily affected by the surrounding fluid. The fluid damping425

tends to lower the TL reduction at the resonance frequencies of the double walls and therefore flattens the

shape of the insertion loss plateau around fDW. The peak at the Helmholtz resonance fR = 570 Hz, on the

other hand, is not affected by the fluid damping and therefore is the same in all three cases.

In summary, it can be concluded that the insertion loss plateau is only slightly affected by the double wall

parameters. Only for very light double walls the fluid damping leads to a little broadening but also reduction430

of the insertion loss plateau.

4. Experiment

This section describes experiments that were conducted to validate the analytical model and investigate

the broadband improvement of double walls with Helmholtz resonators under diffuse field excitation. In the

first sub-section, the test specimens are described, followed by the description of the experimental setup. In435

the second sub-section, the measurement results are discussed.

4.1. Experimental setup

A Helmholtz resonator panel was designed and manufactured to conduct laboratory scale transmission

tests. The test panel has a size of 1 m by 1.2 m and consists of an array of 252 Helmholtz resonators.

The panel is made of a lightweight closed-cell polymethacrylimide foam (tradename Rohacell 31 HF). The440

resonator cavities as well as the necks were milled into the foam, as depicted in Fig. 9(a). The build-up of

a unit cell is shown in Fig. 9(b) and (c). The dimensions are listed in Table 1. The resulting volume of

each resonator is VR = 1.15× 105 mm3 and the neck cross-section area accounts for SR = 78.5 mm2. Thus,
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using the approximated air mass inside the resonator neck MR ≈ ρ0SR(LR + 2 · 0.82RR) ≈ 1.72 mg, the

resonance frequency is estimated to be fR ≈ 333 Hz. The back plate of the resonators is formed by a glass445

fiber reinforced plastic (GFRP) plate with a thickness of 1 mm and a surface mass density of 2 kg m−2. The

complete panel with the incorporated Helmholtz resonators has a thickness of HR = 35 mm and an overall

surface mass density of m′′1 = 2.9 kg m−2.

The setup of a double wall test specimen with the described Helmholtz resonator panel is shown in

Fig. 10(a). In this configuration a second wall with surface mass density m′′2 is mounted with a spacing450

H = 45 mm apart from the GFRP back plate with the Helmholtz resonators inside the cavity. The resulting

filling ratio is given by φR = VR/(lxlyH) = 56 %. Fig. 10(b) shows the corresponding reference configuration

of an empty double wall, where all Helmholtz resonator were made acoustically inactive by closing their necks

with a tape. To maintain the same wall spacing for this mass equivalent reference, wall 2 was shifted apart

to reobtain the preselected wall spacing H = 45 mm, now being measured between wall 2 and the closed455

Helmholtz resonator surface. This reference is used as a control sample to identify the effect of the Helmholtz

resonators in the double wall configurations with active resonators.

Three different double wall designs with Helmholtz resonators were measured to show the influence of

the ratio between the Helmholtz resonance frequency and the mass-air-mass resonance frequency (fR/fDW).

The ratio was varied by increasing the surface mass density of the second wall m′′2 , while the first wall, i.e.460

the Helmholtz resonator panel, remained unchanged. The distance between the walls H and accordingly the

filling ratio φR were kept constant. The mass-air-mass resonance frequency fDW decreases with increasing

surface mass density of the second wall m′′2 , while keeping all the other double wall parameters constant. The

parameters of the double wall designs as well as the calculated resonance frequencies are listed in Table 2.

The test samples were mounted in a stiff wooden frame into a test window between a reverberation465

room and a hemi-anechoic chamber. In the reverberation room, a diffuse sound field was excited by a

dodecahedron-loudspeaker with a total sound pressure level of 120 dB, which was measured by a 1/2 inch

diffuse field microphone on a rotating beam. In the receiving room, the sound intensity spectrum was

lxly

H
R

lx

L
R

2RR

tR

tR

t R
(a) (b) (c)

Figure 9: Design of the Helmholtz resonator panel used in the experiments. (a) Photograph of the backside of the resonator
panel; (b) Schematic drawing of one unit cell of the Helmholtz resonator; (c) Cropped cross-section of the Helmholtz resonator
array shown in (a).
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Table 1: Resonator dimensions of the Helmholtz resonator panel shown in Fig. 9.

Resonator length lx 65 mm
Resonator width ly 70 mm
Resonator height HR 35 mm
Neck radius RR 5 mm
Neck length LR 10 mm
Wall thickness tR 5 mm

GFRP
(2 kg m−2)

Rohacell
(0.9 kg m−2)

H
=

4
5
m
m

inactive resonators
closed by tape

wall 2 (m′′2 )

wall 1

wall 1

wall 2 (m′′2 )

H
=

45
m
m

(a) (b)

Figure 10: Structure of the double wall test samples. (a) Double wall with active Helmholtz resonators; (b) Double wall with
inactive Helmholtz resonators (reference).

measured in 12th-octave bands with a hand-held intensity probe.

The diffuse field transmission coefficient τdiff is obtained from the analytical model by integrating Eq. (13)470

over the incidence angle θ0 as follows:

τdiff =

θlim∫
0

τ(θ0) sin(θ0) cos(θ0) dθ0

θlim∫
0

sin(θ0) cos(θ0) dθ0

, (16)

where θlim is the limiting angle to which the integration is conducted in order to account for the smaller

presence of grazing incidence waves in laboratory representations of diffuse sound fields. It should be noted

that the investigated double wall test samples did not contain any sound absorbing material within the air

Table 2: Measured designs of the double wall with Helmholtz resonators. The mass-air-mass resonance frequencies fDW and
Helmholtz resonator double wall resonance frequencies f01 and f02 have been calculated for normal incidence using Eqs. (1) and
(12).

Design H m′′1 m′′2 fDW φR fR fR/fDW f01 f02

1 45 2.9 1 327 56 325 1 246 653
2 45 2.9 2 259 56 325 1.3 216 591
3 45 2.9 5.4 205 56 325 1.6 183 552

mm kg m−2 kg m−2 Hz % Hz - Hz Hz
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gap. In order to account for damping caused by mechanical losses in the individual leaves of the double475

wall as well as the sample mounting structure, artificial damping was introduced in the analytical model

by means of a power attenuation coefficient γ0 [22]. This leads to a complex speed of sound c̃0 given by

1/c̃0 = 1/c0− iγ0/(2ω) which is used in Eq. (13) instead of c0. The measurements of the double wall without

Helmholtz resonators were used to estimate both, the limiting angle θlim and attenuation coefficient γ0 for

the given experimental setup. Good agreement with the measured data could be achieved with the values480

θlim = 73◦ and γ0 = 0.75 m−1 which were used for all subsequent analytical calculations.

4.2. Measurement results

In the first place, measurements were conducted on the single wall, i.e. the Helmholtz resonator panel that

acts on its own and is not installed in a double wall. Two configurations were measured: firstly, the panel with

all the resonators active and secondly, the panel with all the necks closed by tape, such that the resonators485

were inactive. The measured transmission loss of the Helmholtz resonator panel was used to identify the

resonance frequency fR of the resonators and the corresponding damping ratio ζR. Fig. 11(a) shows the

measurement results (symbols) and compares them to the analytical results (curves) which were obtained by

setting m′′2 = 0 (i.e. no second wall). The frequency and damping ratio of the resonators were identified from

the STL maximum in the measurement results as fR = 325 Hz and ζR ≈ 4 %, respectively. The deviation from490

the previously estimated resonance frequency of 333 Hz can be attributed to the approximated end correction

of the effective resonator neck length. The transmission loss of the panel with the inactive resonators (black

dotted curve) was calculated using the mass law of a limp wall. The comparison of the measured and

calculated transmission loss TL in Fig. 11(a) shows a good agreement for the specified parameters. The

analytical model therefore can be regarded as suitable for the modelling of the Helmholtz resonator panel.495

The insertion loss ∆TL with respect to the Helmholtz resonator panel with closed resonators is depicted

in Fig. 11(b). The results show that the diffuse sound transmission loss is improved in a narrow frequency
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Figure 11: Comparison of experimental (symbols) and analytical results (curves) for the diffuse field sound transmission loss TL
and insertion loss ∆TL (with respect to the closed Helmholtz resonators) of the Helmholtz resonator panel (single wall). (a)
Transmission loss TL; (b) Insertion loss ∆TL.

21



Acce
pte

d Man
usc

rip
t

band at the Helmholtz resonance frequency fR by around 10 dB in the experimental data and 13 dB in the

analytical calculations. The calculated insertion loss shows a negative trend in the higher frequency region.

This effect is not visible in the experimental data and one possible explanation for this deviation could be500

the simple model in Eq. (11) for the effective density of the Helmholtz resonator. An improved model for the

effective density of air volumes with Helmholtz resonators could be subject for future work. However, the use

of Eq. (11) is adequate here since the focus of this paper is the frequency region around the mass-air-mass

resonance frequency fDW and the resonator resonance frequency fR and not the higher frequency region.

Fig. 12(a) to (c) show the transmission loss values of the three double wall designs that are specified in505

Table 2. Experimental data (symbols) are compared to the analytically calculated transmission loss (curves).

In all three plots, the black dotted curves and diamond symbols represent the corresponding results for the

reference configurations with the same wall masses and wall spacing, but inactive Helmholtz resonators. In

the analytical model, the reference configurations were calculated by setting φR = 0. The arrows indicate

the resonance frequencies of the double walls calculated for normal incidence using Eq. (12) (HR active) and510

Eq. (1) (HR inactive).
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Figure 12: Comparison of experimental (symbols) and analytical results (curves) for the diffuse field sound transmission loss
TL and insertion loss ∆TL of the different double wall designs with Helmholtz resonators. The arrows indicate the double
wall resonance frequencies calculated for normal incidence using Eq. (12) (HR active) and Eq. (1) (HR inactive). (a) Design 1:
m′′2 = 1 kg m−2, fR/fDW ≈ 1; (b) Design 2: m′′2 = 2 kg m−2, fR/fDW ≈ 1.3; (c) Design 3: m′′2 = 5.4 kg m−2, fR/fDW ≈ 1.6;
(d) Insertion loss ∆TL of the three double wall designs.
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Overall, the experimental and analytical data show a good agreement in all of the three cases over most

of the considered frequency range. This implies that, despite its simplicity, the proposed analytical model

is capable of providing accurate predictions for the STL of double walls with Helmholtz resonators under

diffuse incidence. The figures show that the double walls with Helmholtz resonators exhibit a broadband515

improvement (over one octave) of the sound transmission loss around the Helmholtz resonance frequency.

From the location of the arrows it can be seen that, even though the STL results in Fig. 12 have been obtained

for diffuse incidence, the normal incidence double wall resonances f01 and f02 calculated using Eq. (12) still

provide a reasonably good estimate of the frequency range for the improved double wall STL.

A comparison of the insertion loss ∆TL for all three double wall designs is plotted in Fig. 12(d). It is520

obvious that the sound transmission loss is improved for all three designs over more than one octave with a

maximum STL improvement of 25 to 30 dB (depending on the surface mass density m′′2). In contrast, the

insertion loss of the Helmholtz resonator panel was narrowband and had a measured maximum value of 10 dB

(see Fig. 11(b)). At this point it should be emphasized that the measured STL improvement of the double

wall is remarkably large and only originates from the Helmholtz resonators inside the cavity. By choosing525

the specific reference configuration with the closed and shifted Helmholtz resonator panel, any influence of

changed mass and/or cavity size on the double wall STL could be ruled out.

Fig. 12(d) shows clearly the influence of increasing the ratio of the resonance frequency to the mass-air-

mass resonance frequency fR/fDW: The resonance frequencies f01 and f02 are shifted to lower frequencies

with increasing fR/fDW. This also shifts the transmission loss improvement to lower frequencies. Calculation530

of the bandwidth (introduced in Section 3) reveals that the double wall design 3 with the highest value of

m′′2 exhibits the highest bandwidth with about B = 107 % in the measurements (analytical model: 101 %).

Design 1 with the lowest value of m′′2 , on the other hand, has a measured bandwidth of 98 % (analytical

model: 92 %). This is in line with the results from the parametric study in Section 3 where it was shown

that by increasing fR/fDW the bandwidth of the STL improvement can be improved.535

5. Conclusions

In this paper it was investigated how a more broadband improvement of the sound transmission loss of

a double wall using Helmholtz resonators inside the cavity can be achieved. A simple analytical model was

presented to describe the vibro-acoustic behavior of a double wall with Helmholtz resonators. Sound intensity

measurements of different double wall designs with integrated Helmholtz resonators have been employed to540

validate the model and demonstrate the broadband STL improvement under diffuse field incidence. The key

findings of this contribution can be summarized as follows:

• A fluid volume containing Helmholtz resonators (e.g. the cavity of a double wall with Helmholtz res-

onators) can be represented by a volume with equivalent fluid properties (effective bulk modulus and

density) given by Eqs. (8) and (11), respectively. This representation depends only on the background545

fluid properties, the volumetric filling ratio φR, Helmholtz resonance frequency fR, damping ratio ζR,
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and, if applicable, the properties of the fluid inside the resonator. The analytical model can be used

to calculate the resonance frequencies and sound transmission loss of a double wall with Helmholtz

resonators.

• The Helmholtz resonators change the effective bulk modulus of the air cavity between the walls such that550

the mass-air-mass resonance frequency fDW of the double wall can be significantly reduced compared

to a standard double wall with the same mass and wall spacing. This shifting of fDW depends only on

the filling ratio and the resonance frequency ratio fR/fDW.

• The reduction of the mass-air-mass resonance frequency leads to the emergence of a frequency band

with a significantly improved transmission loss. Parametric studies revealed that the bandwidth of the555

STL improvement can become very large for large filling ratios φR and fR much greater or smaller

than fDW. The average STL improvement in this frequency band, however, becomes smaller if the

Helmholtz resonance frequency and mass-air-mass frequency are too far apart.

• At higher frequencies the decoupling of the Helmholtz resonators from the rest of the double wall cavity

leads to a decrease in the double wall STL. This STL reduction becomes greater when the filling ratio560

of the resonators is increased. Thus, there is a certain trade-off between an enhanced low-frequency

STL over a wide frequency band and a reduced performance at higher frequency that needs to be taken

into account in the design of double walls with Helmholtz resonators for noise control.

• Using the sound intensity measurement results of three different double wall designs the proposed

analytical model could be validated. In addition to that, it could be shown that also under diffuse565

incidence the broadband STL improvement can be achieved with Helmholtz resonators. As in the

normal incidence results, the bandwidth could be increased by increasing fR/fDW.

Practical implications of the presented results are that it could be shown that broadband STL improvement

of double walls can be achieved using Helmholtz resonators. This provides a new perspective on the design of

double wall partitions with Helmholtz resonators compared to previous research on this topic which mainly570

focused on tonal improvements and tuning of the Helmholtz resonators to frequencies very close to the mass-

air-mass resonance frequency. It is, however, also important to consider the negative impact of the Helmholtz

resonators at higher frequencies. Although it can be expected that due to the dominance of structure-borne

sound bridges and porous absorption at higher frequencies this deterioration can be alleviated, the high

frequency behavior can be of significance depending on the noise source characteristics. Furthermore, the575

analytical model introduced in this work provides a generalized way to represent double walls containing

acoustic resonators. The model does not require geometrical details of the Helmholtz resonators and can

therefore be applied in early design stages to reduce the parameter space and optimize the sound insulation

of partitions.
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