
UNIVERSITY OF SOUTHAMPTON
Faculty of Engineering and the Environment

Electro-Mechanical Research Group

A thesis submitted in partial fulfillment for the
degree of Doctor of Philosophy

Supervisor: Dr Zhan Shu

Examiner: Dr Xinggang Yan, Dr Andrew J Chipperfield

Optimal Control of Networked Systems Using
Reinforcement Learning

by Xiaoru Sun

August 2019

http://www.soton.ac.uk
http://www.southampton.ac.uk/engineering
http://www.southampton.ac.uk/engineering
mailto:xs1a12@soton.ac.uk

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND THE ENVIRONMENT

Electro-Mechanical Research Group

Doctor of Philosophy

by Xiaoru Sun

The trend of using wireless communication channel in network control system increases a lot,

because of its flexibility and mobility. Improving system performance with simple devices,

such as low storage capacity sensors and low transmission power channel, is very important to

ensure long life time. Hence, there is interest in system communication and controller design to

optimize the information used by devices, so as to maintain overall system performance. This

thesis explores an approach to co-design of communication and control.

First of all, the design of encoder and controller pair for feedback control systems over binary

symmetric channels is concerned. An iterative design method based on Q-learning is proposed

to obtain a pair of encoder and controller that can optimize a finite-horizon linear quadratic

cost function. Three encoder strategies, memoryless encoder, memory encoder and predictive

encoder, are considered. The proposed design can be implemented online, and has the potential

to provide better performance. Compared with traditional control optimization method, the

proposed design method is model-free, only data measured along with the system trajectories

is utilized. Simulations are provided to show the effectiveness and the merits of the proposed

method.

Only finite channel inputs and finite outputs is considered in previous work, while there are

some infinite channel output models in practical. Hence, we studies how the generalization to

infinite-output channels affected the optimization of the encoder-controller, theoretically and

practically, by studying one special type of infinite output channels, namely, Gaussian channel.

Since the infinite-channel outputs mainly affect the controller design, we devote to controller

design, which are soft controller design, hard controller design and the combination.

From above considerations, all the research works are based on iterative design method, which

means the encoder is optimized with fixed controller and the controller is optimized with fixed

encoder. However, only local optimal solutions can be got by iterative design. Therefore, dis-

tributed encoder and controller design is proposed. Both encoder and controller learn indepen-

dently with their own local information, and both of them can be optimized simultaneously.

Obviously, the system performance is better than iterative design. In addition, distributed Q-

learning can be applied into complex networked control systems.

http://www.soton.ac.uk
http://www.southampton.ac.uk/engineering
http://www.southampton.ac.uk/engineering
mailto:xs1a12@soton.ac.uk

Contents

Acknowledgements xv

1 Introduction 1
1.1 Background . 1
1.2 Contributions . 2
1.3 Organization . 4

2 Literature Review 7
2.1 Networked Control Systems . 7

2.1.1 Introduction . 7
2.1.2 Research Issues of Networked Control Systems 8

2.2 Elements of Channel Coding . 9
2.2.1 Source Coding . 9
2.2.2 Communication Channels . 10
2.2.3 Hadamard-Based Soft Decoding . 11

2.3 Reinforcement Learning Review . 12
2.3.1 Basic Knowledge of Reinforcement Learning 13
2.3.2 Markov Decision Processes . 14

2.4 Three Optimal Control Design Methods . 14
2.4.1 Dynamic Programming . 15
2.4.2 Policy Iteration . 16
2.4.3 Value Iteration . 17

2.5 Q-Learning Method . 18
2.5.1 Q-Function . 18
2.5.2 Q-Learning Algorithm . 19

2.6 Discrete-Time LQR Optimization By Q-Learning 21
2.6.1 Model-Based . 22
2.6.2 Model-Free . 23

2.7 Co-Design Encoder and Controller Problem 24

3 Co-Design of Encoder and Controller for Feedback Control Systems Over Binary
Symmetric Channels Using Q-Learning 27
3.1 Introduction . 27
3.2 Preliminaries . 28

3.2.1 System Model . 28
3.2.2 Problem Statement . 30

3.3 Encoder Design by Q-Learning . 30

v

vi CONTENTS

3.3.1 Q-Value Updating Rule . 30
3.3.2 Memoryless Encoder Design . 33
3.3.3 Memory Encoder Design . 34
3.3.4 Predictive Encoder Design . 34
3.3.5 Theoretical Aanlysis . 35

3.4 Controller Design by Q-Learning . 37
3.4.1 Q-Learning for Optimal Control . 38
3.4.2 Theoretical Analysis . 39
3.4.3 Q-Learning Design Process . 49

3.5 Iterative Encoder-Controller Design . 51
3.6 Convergence Analysis . 52
3.7 Numerical Results . 53

3.7.1 Encoder Design . 53
3.7.2 Controller Design . 55
3.7.3 Iterative Design . 56

3.8 Conclusions . 59

4 Co-Design of Encoder and Controller for Feedback Control Systems Over Gaus-
sian Channels Using Q-Learning 61
4.1 Introduction . 61
4.2 Preliminaries . 62

4.2.1 System Model . 62
4.2.2 Problem Statement . 64

4.3 Controller Design . 64
4.3.1 Controller Design by Q-Learning . 65
4.3.2 Soft-Information Based Controller Design 66
4.3.3 Hard-Information Based Controller Design 71
4.3.4 Combined Soft-Hard Controller Design 72

4.4 Iterative Encoder-Controller Design . 73
4.5 Numerical Results . 74

4.5.1 Controller Design . 75
4.5.2 Iterative Design . 77

4.6 Conclusions . 78

5 Distributed Encoder and Controller Design for Feedback Control Systems Over
BSC Using Q-Learning 81
5.1 Introduction . 81
5.2 Distributed Q-Learning . 84

5.2.1 Assumption . 84
5.2.1.1 Measurability and Moments 84
5.2.1.2 Link Failures . 85
5.2.1.3 Independence . 85
5.2.1.4 Finite Stopping Time . 86

5.2.2 Updating Equation of QD-Learning 86
5.2.2.1 The Algorithm of QD-Learning 87
5.2.2.2 Restriction of Convergence 88

5.3 Examples about QD-Learning . 89

CONTENTS vii

5.3.1 Parameters Setting . 89
5.3.2 Simulations . 91

5.4 Distributed Encoder-Controller Design . 92
5.5 Numerical Results . 95
5.6 Conclusions . 98

6 Conclusions and Future Research 101
6.1 Conclusions . 101
6.2 Future Research . 102

Bibliography 105

List of Figures

2.1 A common diagram of a digital communication channel system. 9
2.2 Binary symmetric channel (BSC) model . 10
2.3 Quantization over Gaussian channel. 11
2.4 The agent and environment interaction in reinforcement learning. 14

3.1 A general feedback control system over communication channel. 28
3.2 Binary symmetric channel model . 29
3.3 Basic framework of Q-learning. 31
3.4 The flow chart of memoryless encoder design by Q-learning (model-free and

online learning method) . 33
3.5 Closed-loop control system with open-loop encoder and side information from

controller to encoder. 45
3.6 The controller design process by Q-learning method 51
3.7 The flow chart of iterative encoder and controller design by Q-learning 52
3.8 The optimized encoder regions with the crossover probability p = 0.02 over

time interval from t = 1 to t = 6. 54
3.9 The optimized encoder regions of open-loop encoder system with the crossover

probability p = 0.02 at t = 1. 55
3.10 Randomly choose one state action pair (yt , it) from 16 encoder regions and plot

its Q-value evolutions at t = 1 with the crossover probability p= 0.02(memoryless
encoder). 56

3.11 The evolution of control gain with crossover probability p = 0.02 57
3.12 The evolution of weight sequence W with crossover probability p = 0.02 . . . 57
3.13 Performance Comparison . 58
3.14 The closed loop trajectories of system state x(t) obtained by Q-learning method

with memoryless encoder strategy. 58

4.1 A general feedback control system over Gaussian channels (GC). 63
4.2 Soft information based controller . 66
4.3 Separation of the soft controller design decoding procedure 70
4.4 Hard controller ut = ktE{xt | jt} . 71
4.5 Combined soft and hard controller ut = ktE{xt |ht , jt−1

0 } 72
4.6 The flow chart of iterative memoryless/memory encoder and controller design

by Q-learning (model-free and online learning method) 73
4.7 The evolution of control gain for soft controller design at different system times

with σ2
w = 1 . 76

4.8 The evolution of control gain for hard controller design at different system times
with σ2

w = 1 . 76

ix

x LIST OF FIGURES

4.9 The evolution of control gain for combined soft and hard controller design at
different system times with σ2

w = 1 . 77
4.10 Performance Comparison with Et = 1 . 78
4.11 Performance Comparison with Et = 4 . 78

5.1 The multi-agent learning framework . 82
5.2 State-action framework . 89
5.3 The set of agent network . 90
5.4 Centralised Q-learning (dotted lines) and distributed Q-learning (solid lines) . . 91
5.5 Consensus among distributed Q-factors . 92
5.6 Changing the learning-rate αi,u(t) . 93
5.7 Changing the learning-rate αi,u(t) . 93
5.8 Changing the consensus-rate βi,u(t) . 94
5.9 The variance of one agent over episode . 94
5.10 The flowchart of distributed encoder and controller design 96
5.11 The evolution of encoder region with it = 4 over time interval from t = 1 to

t = 10 and its corresponding binary code is [0 0 1 1]. 97
5.12 Randomly choose one state action pair (yt , it) from 16 encoder regions and plot

its Q-value evolutions at t = 0. 97
5.13 Performance Comparison . 98

List of Algorithms

1 Policy iteration . 17

2 Value iteration . 18

3 General Q-learning algorithm . 20

4 Discrete-Time LQR Optimization By Q-Learning 24

5 QD-learning . 88

xi

List of Tables

3.1 Q-Learning table at time t = 0 of states by actions that is initialized to zero. . . 31
3.2 Q-matrix updating after the initialization in TABLE 3.1. 32

xiii

Acknowledgements

Foremost, I would like to express my sincere gratitude to my supervisor Dr Zhan Shu for his

patience, motivation, enthusiasm, and immense knowledge. His guidances helped me in every

aspect of my research study. I appreciate very much for introducing me to this joint field of

control and communication, and for freedom to explore different research ideas. Your passion

for science and research work has always been inspiring to me.

Further thanks to my colleagues : Shangcheng Chen, Shenglong Zhou, Xingda Yan, Mu Li,

Thabiso M. Maupong, Ahmad Takiyuddin, Boriboon Deeka. My student life would be more

difficult without the friendships.

My heartiest gratitude goes to my family for their continuous love, emotional and moral support.

xv

Chapter 1

Introduction

1.1 Background

With the rapid development of communication technology, an increasing number of control

systems use communication channels or networks to transmit data. Application areas include

industrial automation, aerospace and medical systems, as well as consumer electronics such as

home electronics and mobile phones. Although using communication networks/channels has

many advantages such as lower cost, less system wiring, and more flexibility, it has also raised

many issues and challenges to design, e.g. , time delay, packet loss, data rate limitation, and

incomplete information pattern [Antsaklis and Baillieul, 2007, Ploplys et al., 2004, Delchamps,

1990, Zhang et al., 2014, Fagnani and Zampieri, 2003, Shu and Middleton, 2011]. How to find

efficient ways of processing available information at each distributed node, as well as exchang-

ing useful information among the nodes play a very important role.

There are two areas involved for networked embedded control systems, which are information

theory and control theory. For traditional communication theory, most efforts make on optimal

protocol for transmitting information, while traditional control theory provides methodologies

for designing controllers to interact with the environment Cover and Thomas [2012], El Gamal

and Kim [2011]. Most the research work in these two disciplines have largely been carried

out separately. A traditional control system is based on an underlying assumption of perfect

communication links between the plant and the controller Lee and Markus [1967], Doyle et al.

[2013]. While the controller is assumed to have perfect access to the sensor observations, and

the decision of the controller is available directly at the input of the actuator. Under these ideal

assumptions, there is no limitation on how much data it is possible to transmit at each time

instant, and there are neither delays nor transmission errors in the links between the plant and

the controller [Aoki, 1967, Bertsekas et al., 1995]. Advanced mathematical tools are developed

to govern the interplay among the plant, sensor, and controller under these ideal assumptions.

Until recently, the research work about control system by using wireless communication chan-

nels is considered [Ploplys et al., 2004, Mazo and Tabuada, 2011, Pajic et al., 2011]. In such

1

2 Chapter 1 Introduction

networks, the sensor observations are typically quantized and transmitted over noisy links. Chal-

lenges, such as data delays and data drops, are encountered. Concerning control over non-ideal

communication links, relatively little work has been performed so far. To develop methods and

tools for the analysis and synthesis of feedback control over imperfect communication links is

therefore of great importance.

The constraints imposed by the imperfect communication links are complex [Niu et al., 2009,

Fu and Xie, 2009, Nair and Evans, 2000]. As discussed above, quantization and transmission

errors are examples of crucial obstacles . The quantization deteriorates the signals transmitted

between the plant and the controller. This can potentially degrade the overall system perfor-

mance substantially. Although quantization in feedback control systems was studied since the

dawn of control engineering, the results have mainly been restricted to treating quantization

errors as additive white noise. Moreover, in almost all applications, simple quantizers, such

as uniform quantizers, are employed because of practical reasons. However, for applications

with extremely low data rate requirements and high communication costs, it is natural to study

closer-to-optimal solutions.

Transmission errors are unavoidable in communications over unreliable media, for example

in wireless networks. Therefore, robustness to transmission errors is one of the fundamental

requirements of all modern communication systems [Li et al., 2009, Braslavsky et al., 2007,

Tatikonda et al., 2004]. Concerning control applications, relatively little has been done to take

into account imperfect communications in the overall system design. However, due to the delay

sensitivity, it is not suitable to use long block codes to reduce the uncertainties, as commonly

done in traditional communication systems. When facing the constraint on the codeword length,

a joint design which combines the source compression and the channel protection is expected to

achieve satisfactory performance. One of the main objectives of this thesis is to study the joint

design of coding and control for an efficient use of the limited communication resources.

1.2 Contributions

In this thesis, we mainly consider about network control system optimization, in which the

encoder and controller need to be designed to minimize the system performance. Q-learning

is utilized in the design process, because it is an online learning method, and it is much more

implementable compared with dynamic programming method. In addition, Q-learning is model-

free learning method, only data measured along the system trajectories are utilized in system

design process.

1. Co-design of encoder and controller for feedback control systems over binary sym-
metric channels (BSC)
An iterative design based on Q-learning has been proposed to obtain a pair of encoder

and controller that can optimize a finite-horizon cost function. Three encoder strategies,

xiaoru
高亮

xiaoru
高亮

xiaoru
高亮

Chapter 1 Introduction 3

memory encoder, memoryless encoder and predictive encoder have been considered in

this component, and simulation results have shown the merits of the proposed method.

With memory and memoryless encoder strategies, the design process is model free, while

model is needed to predict estimation in predictive encoder design.

Current approaches to network control system design all require a plant model and in-

volve offline computation. Many are SISO (single-input and single-output) and need side-

information. In basic setup, the optimal control policy was obtained by solving Bellman

equation (discrete-time optimization problems) or Hamilton-Jacobi-Bellman (HJB) equa-

tion (continuous-time optimization problems). However, it is difficult to get solutions for

non-linearity and non-convexity system. Motivated by Lei et al. [2011], we address the

issue of joint design of encoder and control for multi-input and multi-output high order

system. Heuristic and numerical methods needed to deal with intractabilities. Reinforce-

ment learning is well studied to this problem and has lots of success in other applications.

Therefore, it is now proposed so particular. It has advantages of being online learning

and model-free. It will be applied to multi-input and multi-out case, without requiring

side-information.

2. Co-design of encoder and controller for feedback control systems over Gaussian
channel
For BSC, the inputs and outputs of channel are finite. In practical, there are some system

with continuous channel outputs. Gaussian channel is selected since it is the most impor-

tant continuous alphabet channel, modelling a wide range of communication channels.

The challenge is that the trained encoder-controller can no longer be implemented as a

simple look-up table. Since the infinite-channel outputs mainly affect the controller de-

sign, three types of controller are considered, in which soft-information based controller

design, hard-information based controller design and the combination of soft-hard infor-

mation based controller design are studied.

For soft-information based controller, the infinite channel outputs can be fully exploited.

While this process is too complex to implement in practical. The hard-information-based

controller is practically implementable because of the low complexity, while it has not

taken into consideration all information carried by channel outputs, such a solution is ex-

pected to cause a degradation in system performance. Here, we propose a low-complexity

controller which can take advantage of both the soft and hard information of channel

outputs, named the combination of soft-hard information based controller. The proposed

scheme has good performance.

3. Distributed design of encoder and controller
For iterative design, the encoder is optimized with fixed controller and the controller is

optimized with fixed encoder. However, only local optimal solutions can be got by it-

erative design. Therefore, distributed encoder and controller design is proposed. Both

encoder and controller learn independently with their own local information. Therefore,

xiaoru
高亮

xiaoru
高亮

4 Chapter 1 Introduction

both of them can be optimized simultaneously. Obviously, the system performance is bet-

ter than iterative design. However, global optimal cant be guaranteed. In addition, the

computation decreases a lot, since only partial information is used in the design process.

1.3 Organization

• Chapter 2

First of all, this chapter presents the basic knowledge of network control systems and

some research issues are given to help understanding. Since communication channel is

a very important link of network control system, how to encode the real-valued vectors

to discrete symbols is introduced. For the convenience of research, two communication

channel model are given, named binary symmetric channel and Gaussian channel. These

two channels are the most widely studied channel in coding theory and information theory

because there are simple noise channel to analyze. Many problems in communication

theory can be reduced to a binary symmetric channel or Gaussian channel. The difference

between binary symmetric channel and Gaussian channel is the channel outputs, which

are finite channel outputs of binary symmetric channel and infinite channel outputs of

Gaussian channel.

After that, basic background about reinforcement learning is given. Since Q-learning is

very important for our work, it is one of reinforcement learning method. Three optimal

controller design method are described, which are dynamic programming, policy itera-

tion and value iteration. For dynamic programming, it is a very fundamental optimization

method in control theory. However, there are some drawbacks, which are model-based,

back-forward learning method and it is difficult to get solutions on non-linear or non-

convexity systems. Two model-free learning methods are presented, which are policy

iteration and value iteration method. For policy iteration method, the computation is a bit

complexity and there is constraint on initial condition. While value iteration process is rel-

atively simple since the best action is selected on each learning stage. Furthermore, no re-

quirement is needed for initial condition. One specific value iteration method, Q-learning,

is introduced to get the optimal control policy. By using model-based and model-free

learning methods, the optimal control policy of linear quadratic case is given. Because

the design objective of this thesis is to minimize the system linear quadratic cost. Finally,

research works on co-design about encoder and controller are reviewed. Based on these

works, motivation of the research works is also described.

• Chapter 3

This Chapter is concerned with the design of encoder and controller pair for feedback

control systems over binary symmetric channels. An iterative design method based on

Q-learning is proposed to obtain a pair of encoder and controller that can optimize a

finite-horizon linear quadratic cost function.Three encoder strategies, memoryless en-

coder, memory encoder and predictive encoder, are considered. The proposed design can

Chapter 1 Introduction 5

be implemented online, and has the potential to provide better performance. Compared

with traditional control optimization method, the proposed design method in this chapter

is model-free, only data measured along the system trajectories is utilized. Simulations

are provided to show the effectiveness and the merits of the proposed method.

• Chapter 4

Compared with Chapter 3, the problem of infinite channel outputs is considered over the

co-design process. How the generalization to infinite-output channels affected the opti-

mization of the encoder-controller is studied. Here, Gaussian channel has all these proper-

ties and it is easy to analysis and computer. Therefore, co-design of encoder and controller

pair for feedback control systems over Gaussian channels generates. Since the encoder de-

sign has no affects by infinite channel outputs, we make more efforts on controller design.

Based on the information utilized by controller design, three controller design processes

are given, which are soft-information based controller design, hard-information based

controller design and the combination of soft-hard information controller design. For

soft-information based controller design, all the real-valued channel outputs are utilized

to the design. While this process is too complex to implement in practical. To simplify

the design process, hard-information controller design is proposed, which is simplified

to finite channel outputs. Actually, the design process of binary symmetric channel can

be utilized directly. However, only partial information of channel outputs take part in

the controller design, which might deteriorate the system performance. To balance these

problems, the combination of soft-hard information controller design is given, which takes

these two essentials.

• Chapter 5

As mentioned before, only local optimal solutions are obtained by iterative design method

in Chapter 3 and Chapter 4. Therefore, distributed design is proposed to improve the sys-

tem performance. First of all, distributed Q-learning is introduced, where the multi-agents

are cooperative and non-competitive with the global objective. All the agents try to learn

and evaluate the optimal stationary control strategy to minimize the one stage cost. By

distributed design, the optimized encoder and controller can be obtained simultaneously.

Obviously, the system performance is better than iterative design. In the future, it is bet-

ter to expand the system to complex networked control system, such as multi-sensors,

multi-controllers or even multi-communication-channels.

• Chapter 6

This chapter covers some conclusions and outline future plans of the research.

Chapter 2

Literature Review

2.1 Networked Control Systems

2.1.1 Introduction

Feedback control system is very important in many domains, e.g. industrial application, aerospace,

automation engineering. The functional of feedback controller is adjusting the output of the sys-

tem to satisfy the ideal system performance. State-space function or frequency domain theories

are utilized to solve most linear or non-linear feedback control system [Brogan, 1991, Bub-

nicki and Bubnicki, 2005, Bellman and Kalaba, 1965]. These techniques have been proven and

applied by multiple fields, e.g. control systems of power plant, control systems of flight and

space shuttle controllers. With the development of the ages, the systems and environment are

much more complexity which constraints the application of feedback control system. However,

with the system uncertainty and the unknown environment, the requirement of operation speed

and accuracy is improved, which is a big challenge of modern feedback control system . Now

the intelligent controller, adaptive and learning capabilities, is proposed to meet the require-

ment [Lewis et al., 1998, Lin and Lee, 1991]. In complexity system, the intelligent controller

should be learned and updated adaptively to resistant the interference, model dynamics and even

without model structure. In addition, some applications of feedback control systems come out

multi-layers nonlinearities.

The intelligent control system endow the human cognitive abilities and learning abilities, so that

it can adaptive the variable environment. Hence, the intelligent control system could improve the

system performance with the complex environment. Neural networks, machine learning tech-

niques, fuzzy logic, and so on, are proposed to utilized on intelligent control systems. While

we discuss the problem based on feedback control system with communication channel , named

networked control systems. Because of the communication channel, the system becomes dy-

namical system and even generates unexpected behaviours. In general, it is difficult to analysis

7

8 Chapter 2 Literature Review

or design networked control systems by traditional control theory. Further more, the research

issues on networked control systems has received considerable attention.

2.1.2 Research Issues of Networked Control Systems

Networked control systems is a feedback control system with information exchanging via com-

munication channels. It is composed with sensors, networks, controllers, plants. Network and

control system are two main researches about information theory and control theory. With the

growing trends, there has been considerable interest in implementing network and control sys-

tem together (Antsaklis and Baillieul [2004], Wang et al. [2018], Park et al. [2018], Sahoo et al.

[2016], Hespanha et al. [2007], Yang [2006], Zhang et al. [2001]). Generally speaking, there

are two research areas about networked control systems, which are control of communication

networks and control over networks (networked control systems). The main research on con-

trol of communication networks is about communication and networks so that the quality of

service can be improved. It is widely used in congestion areas, routing control, updating data

from different points, the efficient of data transmission, networking protocol, etc.. The usage of

bandwidth in (Zuberi and Shin [2000], Cena and Valenzano [2002]) have different priority for

different data. This kind of control strategy focuses on ensuring the boundedness of network

delay and the improvement of bandwidth resource utilization rate. The system performance

is simply represented by information transmission time and reliability. However, there is no

research on the impact of network control system performance.

Control over network system is also named networked control systems, which is a closed loop

control system over a communication network. The task of communication network (wire or

wireless) is to exchange information and control signals between sensors and controllers. Com-

pared with traditional point-to-point wiring based control, the advantages of networked control

systems are low cost, reduced the system complexity, simple installation and maintenance, high

reliability. In addition, it is easy to make an intelligent decision with sharing data efficiently. In

addition, the system with wireless communication channel is much more mobility and flexibility.

Because of these advantages, networked control systems is widely used by telemedicine system,

intelligent transportation system, aircraft and manufacturing etc.. However, the communication

channel is not a reliable medium, which has an adverse effect on system performance, e.g. time

delay, packet loss, data rate limitation and incomplete information pattern. These problems can

be either damaged the plant, system devices or degraded the system performance. Stability

is very important in feedback control system, which has the high priority. Networked control

system is same as feedback control system. Due to the instinct of communication channel,

e.g. bandwidth limited, data loss, stability of networked control system is even harder to main-

tain.Walsh et al. [2002] introduce a novel method, named try-once-discard (TOD), to analysis

the stability of networked control system and proves the stability of new protocol and common

protocols. Azimi-Sadjadi [2003] emphasizes the stability analysis from packet losses, in which

Chapter 2 Literature Review 9

uncertainty threshold principle is utilized. Cloosterman et al. [2009] discusses the system in-

stability caused by time delay. Most of researches focus on finding control strategies or control

system design to make sure the system stability. Furthermore, there are some other researches

are system optimization in which the system cost is minimized to improve the system perfor-

mance [Shakkottai et al., 2008, Sofge and White, 1990].

2.2 Elements of Channel Coding

In networked control systems, the information after sensor (real value) should be encoded to

code form that the communication channel can be accepted and transmitted. Thereafter, the

channel output should be converted to real value and utilized as controller input, which can

be regarded as inverse process of encoder. Fig. 2.1 is the common structure about channel

coding process in communication systems. Source coding is presented in Section 2.2.1 and

Section 2.2.2 introduces the communication channel utilized in this thesis. The remain is the

introduction about soft decoding process.

Source
encoder 𝑓 Decoder 𝐷

DecoderSource
encoder

C
hannel

Source data

Received data

𝑥 𝑖 𝑑

FIGURE 2.1: A common diagram of a digital communication channel system.

2.2.1 Source Coding

Source coding [Rochkind, 1975, Glasser, 1978, Kuo and Morgan, 1996] is the process that

converts the information from one form to another form and the process is irreversible. Based

on Fig. 2.1, source encoder encodes the source data to discrete index. In Fig. 2.1, the encoder

mapping f represents the mapping of a sequence of source samples x into an integer index

i ∈ I = {0,1,2,3, · · · , I}, named i = f (x). ρ is the transmission rate. While the encoder and

controller share the same I in this thesis, if there is no special stated. In this thesis, the encoder

maps arrange of values into a region and each region is represented by a unique codeword

[Gallager, 1968, Gray, 2012].

10 Chapter 2 Literature Review

The encoder region Si(x) can be defined as

Si(x), {x| f (x) = i} (2.1)

where i ∈I . Si(x) contains all source symbol x assigned the index value i. While the decoder

D converts i to the estimation of x, named d. The formulation is

d = D(i) (2.2)

where the set of all d compose to codebook.

2.2.2 Communication Channels

There are many types of communication channels [Ryan and Lin, 2009, El Gamal and Kim,

2011], such as BSC, Gaussian channel, fading channel and so on. In this thesis, BSC and

Gaussian channel are applied in the analysis. For discrete memoryless channel, BSC is the most

widely studied channel in coding theory and information theory because it is one of the simplest

noisy channel to analyze. Many problems in communication theory can be reduced to a BSC.

BSC has a binary input and binary output (0 or 1) with the crossover probability p [MacKay and

Mac Kay, 2003].

The transmission scheme is depicted in Fig. 3.2. The crossover probability that a character

is transmitted with error is labeled p. The probability without error is 1− p, where p(0|0) =
p(1|1) = 1− p, p(0|1) = p(0|1) = p.

0

1

0

1

1 − 𝑝

𝑝

𝑝

1 − 𝑝

Transmitted
signals

Received
signals

Transition Probabilities

FIGURE 2.2: Binary symmetric channel (BSC) model

The Gaussian channel is the most important continuous alphabet channel, modelling a wide

range of communication channels [Zaidi et al., 2014, Tatikonda et al., 2004, Tatikonda and

Mitter, 2004, Freudenberg et al., 2010]. In general, a real-valued channel outputs are defined as

a soft channel output [Cover and Thomas, 2012, Skoglund, 1999] and an integer-valued channel

outputs are referred to as a hard channel output. In general, Gaussian channel is a very common

channel and can be applied in many areas where the binary code word is added with Gaussian

Chapter 2 Literature Review 11

noise. We choose Gaussian channel, because it provides structural and functional insights into

the solution through instructive and relatively simple calculations.

For hard channel output, the design process is similar to BSC. While it is bit complex about

channel output since the decoder process should be defined for real-valued channel output. The

basic idea is to imitate the encoder and decoder process based on the information before the

communication so that the real-valued channel output can be decoded to integer values. In this

thesis, Hadamard transform [Pratt et al., 1969] is utilized to build the real-valued channel output

decoding process. The following section illustrates more details about Hadamard-based soft

decoding.

2.2.3 Hadamard-Based Soft Decoding

For soft channel output, how to decode the real-value to integer value is the key point. Hadamard-

based decoding techniques is utilized to transform the real-valued channel output to source sym-

bol and has been shown that the real-value can be mapped into integer values [Knagenhjelm and

Agrell, 1996, Skoglund, 1999, Bao and Skoglund, 2010]. In Fig. 2.3, P(r|i) is the channel error

Encoder 𝑓
𝑥 𝑖 Channel

𝑃(𝑟|𝑖)
𝑟 Decoder

𝐷
𝑑

FIGURE 2.3: Quantization over Gaussian channel.

probability. The input of channel it is integer index i ∈I = {0,1,2,3, · · · ,2ρ −1} and output r

is real value. The corresponding binary codeword can be represented by[
b1(l) b2(l) · · · bk(l) · · · bR(l)

]
where bk(l),k ∈ {1,2, · · ·ρ} denotes the kth bits of the binary codeword b(l). Note that the

channel input alphabet is different with the channel output alphabet in Gaussian communication

system.

The following is the Hadamard-based decoding process. First, Hadamard matrix should be

introduces, assumed Hn. The matrix size is 2n ∗ 2n and it is composed by the binary elements

{−1,1}. The formulation is

Hn = H1⊗Hn−1, Hn =

[
1 1

1 −1

]
(2.3)

where ⊗ is Kronecker product. The lth column of Hadamard matrix is denoted by h(l). After

that, the formulation of h(l) is

h(l) =

[
1

bR(l)

]
⊗

[
1

bR−1(l)

]
⊗·· ·⊗

[
1

b1(l)

]
(2.4)

12 Chapter 2 Literature Review

For the decoded information d, it can be expressed as

d = D(r) = E{x|r}= ∑P(i = l|r)E{x|i = l} (2.5)

Based on Hadamard decoder process, D(r) can be rewritten as

D(r) = T̄ ĥ(r) (2.6)

which is a product of two matrixes. First of all, T̄ can be calculated by[
E{x|i = 0} E{x|i = 1} · · · E{x|i = 2n−1}

]
= T̄ H (2.7)

where E{x|i = l}, l ∈ {1,2, · · · ,2R−1} is the conditional mean estimate and can be calculated.

H is Hadamard matrix.

Then, based on [Knagenhjelm and Agrell, 1996, Skoglund, 1999], ĥ(r) can be given as

ĥ(r) =
RhhP̂(r)
mT

h P̂(r)
(2.8)

where (·)T is the transposition. Furthermore, Rhh and mT
h can be defined as

Rhh ,
2n−1

∑
l=0

P(i = l)h(l)hT (l)

mh ,
2n−1

∑
l=0

P(i = l)h(l)

(2.9)

where h(l) is the lth column of the Hadamard matrix H. Note that Rhh and mh is no related with

the channel output r. P̂(r) is the only term which is affected by the channel output r, and can be

given as

P̂(r), E{h|r,P(i) = 1
2n } (2.10)

Combined with equation (2.7), (2.32), (2.33) and (2.34), d = D(r) can be obtained. It is worth

to remind that T̄ is actually the source decoding in particular and ĥ(r) is the channel decoding.

2.3 Reinforcement Learning Review

In general case, solving Hamilton-Jacobi-Bellman (HJB) equations is the main method to get

optimal controllers [Bertsekas et al., 1995, Bardi and Capuzzo-Dolcetta, 2008, Crespo and Sun,

2003, Bellman and Kalaba, 1964]. The most common method is to solve the Riccati equation,

where the system model is necessary. In finite time horizon case, Riccati equation should be

solved by backward method that is non-implementable in practical. For non-linear system,

it is very difficult or even impossible to obtain the optimal controllers by solving nonlinear

Chapter 2 Literature Review 13

HJB equation. In order to make the control system design more suitable to the development

requirements, the concept of adaptive controller is introduced, which can optimize controller by

using data measured on line and then updating control policy alternatively [Lewis et al., 2012a,

Li and Krstić, 1997]. However, the optimal solution can’t be guaranteed with adaptive controller.

To some extent, only local optimal solution can be obtained.

Because the optimal controller designed by reinforcement learning can learn online and update

adaptively, reinforcement learning [Sutton and Barto, 1998, Watkins and Dayan, 1992, Lewis

and Liu, 2013] has been widely used in optimal control area. Reinforcement learning refers to

the problem of a goal-directed agent interacting with an uncertain environment. The goal of

an reinforcement agent is to maximize or minimize a long-term scalar reward by sensing state

of environment and taking actions which affects state of environment. At each time step, re-

inforcement learning system receives evaluative feedback about the performance of its action,

allowing it to improve the performance of subsequent actions. Several reinforcement learning

methods have been developed and successfully applied in machine learning to learn optimal

policies for finite-state finite-action discrete-time Markov Decision Processes (MDPs) [Mona-

han, 1982]. There are many reinforcement learning methods, which are dynamic programming,

Monte Carlo method and temper difference learning method.

2.3.1 Basic Knowledge of Reinforcement Learning

The idea that learning by interacting with environment is the first respond of human, i.e. a baby

can learn without being taught, such as waving arms and playing. Another example is that a stu-

dent studies or plays computer games, he/she actually has a judgement about responding to their

actions, and considers the influence of corresponding consequence caused by their behaviour.

Parameters of environment can be detected directly over learning process and those parame-

ters have an influence on action selections to reach learning goals. Hence, interaction among

environment and action is precondition of reinforcement learning. In addition, reinforcement

learning is a goal-directed learning method aiming to solve decision making problem, [Sutton

and Barto, 1998, Kaelbling et al., 1996, Sutton et al., 2000, Dayan and Balleine, 2002]. The

mapping from situation to actions , named learning policy, determines system performance.

More specifically, it is learning from experience to maximize or minimize the total amount of

reward received over time.

Figure 2.4 is the basic framework of reinforcement learning, which is divided two components,

agent and environment. The agent, who is a learner, has responsibility to make a decision for

action selection according to accumulative reward. All the other components of system can

be regarded as environment. Current situation of environment might be affected by action and

changes to new state. While all information will be feedback to agent, which is a closed system.

More specifically, interaction happens to agent and environment at each direct time step t with

t = 1,2,3, . . . , named one episode. At each time step t, the agent takes an action a, a ∈ A(a),

where A(a) is the action set and then the environment state will be changed from current state

14 Chapter 2 Literature Review

FIGURE 2.4: The agent and environment interaction in reinforcement learning.

to next-state (st → st+1, (st ,st+1) ∈ S), where S is a set of all possible states. Reward, which is a

function or a scalar, will be generated over each time step learning process. New action should

be chosen based current state and accumulated reward from beginning. This learning process

will be repeating until optimal policy obtained.

2.3.2 Markov Decision Processes

Because MDPs is the fundamental formalism of reinforcement learning, it is important to discuss

MDPs, Sutton and Barto [1998], Bertsekas and Tsitsiklis [1996]. First of all, let’s define four

sets (X ,U,P,R), where X is state set and U is action set. P represents the transition probability

and R is the expected immediate reward Ru
x,x′ . For each state x ∈ X , the next state x′ can be

determined by action u ∈U , which can be expressed as Pu
x,x′ = Pr{x′|x,u}, Pu

x,x′ ∈ [0,1]. Note

that the Markov property means that the transition probability Pu
x,x′ is only determined by current

state.

How to find the mapping from state to action is the most important problem of MDPs, named

π(x,u) = Pr{u|x}, which can be interpreted as the action u choosing probability with current

state x. In control optimization problem, such a mapping can be regarded as a feedback control

gain. Therefore, a control policy determining problem can be solved by reinforcement learning.

In addition, finite MDPs refers to the process with finite states and actions.

2.4 Three Optimal Control Design Methods

Dynamic programming [Bellman, 1966, Bertsekas et al., 1995, Bertsekas and Tsitsiklis, 1996]

is a fundamental method of solving optimal control problem, which is a backward recursion

method. Hence, it is an offline method, which can not be applied online and forward-in-time.

For dynamic programming, the solution can be obtained by solving Bellman equation, which

Chapter 2 Literature Review 15

will be described in next subsection. This thesis solves the problem with online and forward-

in-time, policy iteration [Lagoudakis and Parr, 2003, Bradtke et al., 1994, Liu and Wei, 2013,

Bertsekas, 2011] and value iteration [Smith and Simmons, 2004, Tamar et al., 2016, Wei et al.,

2015], which are the basic method of reinforcement learning, are introduced in the following

subsection.

2.4.1 Dynamic Programming

Optimal control is an extension of calculus of variations, so that how to find optimal conditions

and methods for control systems design is very important. In general, finding control policies

to minimiaize the system perfirmance is the key of optimal control. First of all, let’s define the

system state space function is

x(t +1) = f (x(t),u(t), t) (2.11)

where x(t) ∈Rn and u(t) ∈Rm are state vector and control vector, f is vector of function, which

is continuous and differentiable.

For optimal control problem, system performance is consisted by cost at each time step, rt =

rt(xt ,ut ,xt+1). Obviously, Ru
x,x′ = E{rt |xt = x,ut = u,xt+1 = x′}, where E{·} represents the

expected value operator. The cost-to-go can be defined as

Jt,T =
T

∑
τ=t

γ
τrτ (2.12)

where γ ∈ [0,1] is discount factor, and determines the weight of cost appearing in the future. For

a control policy π , the value function can be determined as

V π
t (x) = Eπ{Jt,T |xt = t}= Eπ{

T

∑
τ=t

γ
τrτ |xt = x} (2.13)

where Eπ{·} represents the expected value of the given policy π(x,u). Based on Markov prop-

erty, the value function of policy π(x,u) can be written as

V π
t (x) = Eπ{rt + γ

T

∑
τ=t+1

γ
τ+1rτ |xt = x}

= ∑
u

π(x,u)∑
x′

Pu
x,x′ [R

u
x,x′+ γEπ{

T

∑
τ=t+1

γ
τ+1rτ |xt+1 = x′}]

= ∑
u

π(x,u)∑
x′

Pu
x,x′ [R

u
x,x′+ γV π

t+1(x
′)]

(2.14)

Note that this equation should be solved by a backward recursion, since the value function on

time t should be calculated by the value function on t +1. Based on the optimality principle, the

16 Chapter 2 Literature Review

optimal cost can be written as

V ∗t (x) = min
π

V π
t (x)

= min
π

∑
u

π(x,u)∑
x′

Pu
x,x′ [R

u
x,x′+ γV π

t+1(x
′)]

(2.15)

Based on Bellman [1966], the control policies from t +1 to T are already optimized which has

not affected by previous or current control policy. Therefore, equation (2.15) can be written as

V ∗t (x) = min
π

∑
u

π(x,u)∑
x′

Pu
x,x′ [R

u
x,x′+ γV ∗t+1(x

′)] (2.16)

The optimal control policy is

π
∗(x,u) = argmin

π
∑
u

π(x,u)∑
x′

Pu
x,x′ [R

u
x,x′+ γV ∗t+1(x

′)] (2.17)

2.4.2 Policy Iteration

The above shows that dynamic programming can be solved by backward recursion, which is an

off-line methods. Furthermore, the complete knowledge of system dynamic should be given.

Hence, there are still lots limitations about dynamic programming. While the optimal control

policy obtained by reinforcement learning method is an online learning method and the policy

can be improved by data measured along the system trajectories. Both of these method are based

o Bellman equation [Sutton and Barto, 1998, Lewis and Liu, 2013, Bertsekas and Tsitsiklis,

1996, Bertsekas et al., 1995, Barto et al., 1983].

In general, there are two important steps of reinforcement learning technique, which are policy

evaluation and policy improvement. For policy evaluation, the value function (2.14) can be

updated with the given current policy π(x,u). While the policy can be obtained based on the

updated value, which might be better or at least no worse. This step is policy improvement. In

reinforcement learning algorithm, these two processes are alternatively updated until the optimal

policy got.

The following in this section discusses one of reinforcement learning method, named policy

iteration. In policy iteration process, the value function can be determined with current policy,

while the policy is improved based on the updated value function. This process is continued

until the value or the policy is stable.

Once the policy π has been improved, the new policy π ′ will be given, which is better than or

equal to π . Then the new policy can be used to compute V π ′ , which yield the new update policy

π ′′. It can be expressed as

π0
E−→V π

0
I−→ π1

E−→V π
1

I−→ π2
E−→V π

2
I−→ ·· · I−→ π

∗ E−→V ∗ (2.18)

Chapter 2 Literature Review 17

where E represents policy evaluation, I represents policy improvement. π∗ and V ∗ are optimal

policy and value.

The algorithm about policy iteration is given in Algorithm 1. δ is the error between current

value and estimated value. When the error δ is sufficiently small, the policy evaluation part is

completed and move to policy improvement part. It is clearly to see that this process is forward-

in-time, so as to other algorithms of reinforcement learning.

Algorithm 1 Policy iteration
Intilization Arbitrary choose initial policy π(x,u)
Policy Evaluation
repeat

δ ← 0
loop

For each x ∈ X :
v←V (x)
V (x)← ∑x′ Pu

x,x′ [R
u
x,x′+ γV ∗(x′)]

δ ←max(δ , |v−V (x)|)
end loop

until δ < θ (a small positive number)
Policy Improvement
policy-stable← true
loop

for each x ∈ X :
b← π(x,u)
π(x,u)← argminu ∑x′ Pu

x,x′ [R
u
x,x′+ γV ∗(x′)]

if b 6= π(x,u) then
policy stable← false

end if
if policy stable, then stop then

go to policy evaluation
end if

end loop

2.4.3 Value Iteration

It is known that policy evaluation is an iterative computation process, where the convergence

speed decreases a lot. If policy evaluation has been done, the convergence exactly to V π would

be very fast. There is an important special case that policy evaluation is stopped after just one

sweep (one backup of each state) which is known as value iteration. More specifically, value

iteration combines the policy improvement and truncate policy evaluation steps:

Vk+1(x) = min
u

E{rt+1 + γVk(xt+1)|xt = x,ut = u}

= min
u ∑

x′
Pu

x,x′ [R
u
x,x′+ γVk(x′)]

(2.19)

xiaoru
高亮

18 Chapter 2 Literature Review

where x ∈ X . k is value iteration step index.

The algorithm of Value iteration is shown in Algorithm 2. The value updating equation (2.19)

is a simple one-step recursion equation, not like policy evaluation of policy iteration algorithm.

Compared with policy iteration, which converges with a conditions in a finite number of steps,

value iteration has no constraints [Sutton and Barto, 1998, Bertsekas and Tsitsiklis, 1996].

Algorithm 2 Value iteration
Intialisation Choose V0 arbitrary
repeat

δ → 0
loop

For each s ∈ S :
v→V (x)
V (x)→minu ∑x′ Pu

x,x′ [R
u
x,x′+ γV (x′)]

δ →max(δ , |v−V (x)|)
end loop

until δ < θ , θ is efficiently small positive number.
Output a deterministic policy π , such that
π(x,u) = argminu ∑x′ Pu

x,x′ [R
u
x,x′+ γV (x′)]

Both policy iteration and value iteration are widely used, and it is not clear which one is better.

While both of them usually converge faster than their theoretical case, especially when a good

initial value function or policy is given.

2.5 Q-Learning Method

2.5.1 Q-Function

Q-function can be interpreted as quality function, also named state-action value function [Watkins,

1989, Watkins and Dayan, 1992]. Based on value function (2.15), optimal Q-function can be

written as

Q∗ =
x′

∑
x

Pu
x,x′ [R

u
x,x′+ γV ∗(x′)]

= Eπ{rt + γV ∗(x′)|xt = x,ut = u}
(2.20)

where x′ is next state and x is current state.

Obviously, Q-function is a function about current state xt and action ut , which equals to the ex-

pected returns for choosing an action u on the fixed state x and policy π . The Bellman optimality

equation can be simplified as

V ∗(x) = min
u

Q∗(x,u) (2.21)

u∗t (x) = argmin
u

Q∗(x,u) (2.22)

xiaoru
高亮

xiaoru
高亮

Chapter 2 Literature Review 19

Since V π(x) = Qπ(x,π(x,u)), Q-function can be rewritten as

Qπ(x,u) =
x′

∑
x

Pu
x,x′ [R

u
x,x′+ γQπ(x′,π(x′,u′))] (2.23)

Compared with value function, Q-function is a function about current state and action. Hence,

Q-function can be viewed as a matrix with state column and action row in finite MDPs, which

means Q-matrix is a lookup table for each state-action pair. It has beed discussed that the

optimal policy obtained by dynamic programming (2.15) should use the system dynamics (sys-

tem model). While the minimization in (2.21) and (2.22) only utilize the information from

Q-function.

Each value of Q-matrix correspond to one state-action pair, where the best control action can be

selected with a fixed state by using (2.22). Furthermore, Q-function can be estimated online with

data measured along the system trajectories, in which the system dynamic, named the transition

probabilities, is no need. Algorithms of policy iteration and value iteration with Q-function

are similar to algorithm 1 and 2. These algorithms can be applied on control optimization

problem, which means that the control policies obtained by policy iteration and value iteration

can converge to optimal solutions.

2.5.2 Q-Learning Algorithm

Temporal Difference (TD) learning is one of very important reinforcement learning method,

which is a combination of Monte Carlo method and dynamic programming [Sutton and Barto,

1998]. Both Monte Carlo method and TD method learn from experience without a exact model

of their environment. Whereas, in terms of dynamic programming, both of them update esti-

mates rely partly on an existing estimate, that is, updating every time-step without waiting until

the end of the episode. TD method only needs to wait until the next time step to determine the

increment for current estimated value function V (xt). At time t +1, it immediately generates a

target and makes an updating based on the reward rt+1 and the estimate V (xt+1). The simplest

TD method, known as TD(0), is

V (xt)←V (xt)+α[rt+1 + γV (xt+1)−V (xt)] (2.24)

where the target for the TD update is rt+1 + γVt(xt+1). α is learning rate and γ is discount

factor. This idea is the basis of the important development in the field of reinforcement learning,

which minimizes the error between the estimation value and current value. With the temporal

difference error rt+1 + γV (xt+1)−V (xt) = 0, the policy obtained can converge.

There are two important algorithms of TD learning method, which are state-action-reward-state-

action (SARSA) [Sutton, 1996, Sprague and Ballard, 2003] and Q-learning. Since all our work

are based on Q-learning, the following illustrates Q-learning algorithm. Q-Learning is defined

xiaoru
高亮

xiaoru
高亮

20 Chapter 2 Literature Review

as an off-policy TD control algorithm, which is one of the most important breakthrough in

reinforcement learning [Watkins and Dayan, 1992]. During each interaction between the agent

and the environment, the agent choose an action u based on the current state x. After that,

the state of the environment will change to a new state xt+1, and the agent will get a feedback

(reward) from the environment simultaneously. Thereafter, the action value function Q(x,u) will

be updated. The agent chooses actions based on the maximum Q-value in the current state.

The core of the Q-learning algorithm is value iteration update of value function. The Q-value for

each state-action pair is initially chosen by the agent. The general form of temporal difference

equation is

NewEstimate = OldEstimate+StepSize[Target−OldEstimate].

Then, it is updated each time, an action is issued and a reward is observed, based on the following

expression:

Q(xt ,ut)← Q(xt ,ut)+α[rt+1 + γ min
u

Q(xt+1,u)−Q(xt ,ut)] (2.25)

where α is the learning rate, named step-size parameter, which is used in the incremental method

to describe changes during time step shift. Normally, α ∈ [0,1], and satisfies the condition:

∑
∞
t αt = ∞, ∑

∞
t a2

t < ∞, while rt+1 is the reward given at time t +1.

γ is a parameter, named discount rate (γ ∈ (0,1)), which determines the present value of future

rewards. If γ < 1, the infinite sum has a finite value as long as the reward sequence is bounded.

If γ = 0, the objective is to learn how to choose action ut to minimize the immediate reward rt .

As a model-free learning algorithm, it is not necessary for the agent to have any prior information

about the system, such as the transition probability from one state to the next. Thus, it is a highly

adaptive and flexible algorithm. The algorithm about general Q-learning method is illustrated

by algorithm 3.

Algorithm 3 General Q-learning algorithm
Initialised — Q(s,a) arbitrary
for n = 1 : N do

Initialise s
for t = 1 : T (for each time step of episode) do

Choose ut from xt using policy derived from Q, ut = argminut Q(xt ,ut).
Take action ut , and then observe the reward rt , the next state xt+1
Q(xt ,ut)← Q(xt ,ut)+α[rt + γ minu Q(xt+1,u)−Q(xt ,ut)]
xt ← xt+1

end for
end for

where n represents one episode, that is the learning iteration times. t here is each time step

of one episode. While Q-value updating function in optimal control can be written as error =

r(xt ,ut)+ γ minu Q(xt+1,u)−Q(xt ,ut). In general, TD method updating the estimated value by

minimizing the TD error.

xiaoru
高亮

Chapter 2 Literature Review 21

Control optimization problem can also be obtained by Q-learning algorithm. Hence, the Bellman

equation can be replaced by

V (xt) = r(xt)+ γV π(xk+1) (2.26)

which satisfies for each observed data set (xt ,ut ,xt+1). xt is current state, ut is current action and

next state is xt+1.

To applied Q-learning into policy iteration algorithm, the policy evaluation updating equation is

Vk+1(xt) = r(xt ,πk(xt))+ γVk+1(xt+1) (2.27)

The policy improvement function is

πk+1(xt) = argmin
π(·)

(r(xt ,π(xt))+ γVk+1(xt+1)) (2.28)

This algorithm should be selected admissible control policy π0(xt). Since k is the iteration times,

the algorithm starts with k = 0 and iterates on k until convergence.

For value iteration using TD learning method, the policy improvement process is similar with

policy iteration algorithm. While the policy evaluation procedure is

Vk+1(xt) = r(xt ,πk(xt))+ γVk(xt+1) (2.29)

Because this is a recursive equation, there is no requirement on initial condition. While policy

evaluation (2.27) of policy iteration is a fixed point equation, the initial condition should be

required to ensure the solution.

2.6 Discrete-Time LQR Optimization By Q-Learning

Consider the discrete-time linear quadratic regulator (LQR) problem, where the MDPs is deter-

ministic and satisfies the state space function is

xt+1 = Axt +But (2.30)

where the time index is t. xt ∈ X = Rn and ut ∈ Rm. The system performance with LQ cost is

Jt =
1
2

T

∑
τ=t

rτ =
1
2

T

∑
τ=t

(xT
τ Dxτ +uT

τ Euτ) (2.31)

where T is time horizon. D matrix is the weight matrix of state xt , which differs from value

function V (·). Similarly E is the constraints of ut . Both D matrix and E matrix are positive

definite. The associated value function is

V (xt) =
1
2
(xT

t Dxt +uT
t Eut)+V (xt+1) (2.32)

xiaoru
高亮

22 Chapter 2 Literature Review

where V (0) = 0. This equation can be viewed as Bellman equation for LQR.

For LQR, the value is considered as quadratic, which can be formulated as

Vt(xt) =
1
2

xT
t Ptxt (2.33)

Combining equation (2.32) and equation (2.33),

2V (xt) = xT
t+1Pt+1xt+1 + xT

t Dxt +uT
t Eut

= xT
t Dxt +uT

t Eut +(Axt +But)
T Pt+1(Axt +But)

(2.34)

For LQR case, the control policy can be assumed as constant value. That is ut = µ(xt) =−Kxt .

Hence, equation 2.34 can be written as

2V (xt) = xT
t Ptxt

= xT
t Dxt + xT

t KT EKxt + xT
t (A−BK)T Pt+1(A−BK)xt

= xT
t (D+KT EK +(A−BK)T Pt+1(A−BK))xt

(2.35)

Obviously, it holds

(D+KT EK +(A−BK)T Pt+1(A−BK))−Pt = 0 (2.36)

which is a Lyapunov equation. In general, optimal control design by the Lyapunov equation is

the standard procedure in control systems theory.

2.6.1 Model-Based

Q-function has been defined in Section 2.5.1. For discrete-time LQR case, the Q-function is

Q(xt ,ut) =
1
2
(xT

t Dxt +uT
t Eut)+Vt+1(xt+1) (2.37)

Since the control policy ut = µ(xt) =−Kxt , Q-function can be written as

Q(xt ,ut) = xT
t Dxt +uT

t Eut +(Axt +But)
T Pt+1(Axt +But) (2.38)

where Pt+1 is the Riccati solution in finite time horizon. Q-function can be formulated by matrix,

which is

Q(xt ,ut) =
1
2

[
xt

ut

]T [
AT Pt+1A+D BT Pt+1A

AT Pt+1B BT Pt+1B+E

][
xt

ut

]
(2.39)

Applying ∂Q(xt ,ut)
∂ut

= 0, the optimal control is

ut =−(BT Pt+1B+E)−1BT Pt+1Axt (2.40)

Chapter 2 Literature Review 23

This method need to know the system dynamics to obtain the optimal control policy.

2.6.2 Model-Free

This section describes the optimal control policy obtained without system model. First of all,

Define the Q-value function as

Q(xt ,ut) =
1
2

[
xt

ut

]T

G

[
xt

ut

]

=
1
2

[
xt

ut

]T [
Gxx Gxu

Gux Guu

][
xt

ut

] (2.41)

where G is kernel matrix. The optimal control policy is

ut =−G−1
uu Guxxt (2.42)

Obviously, the optimal control policy can only be obtained by kernel matrix G, which can be

utilized online with using data measured along the system trajectories. The following discusses

how to get kernel matrix G. Based on the Weierstrass higher order approximation theorem, there

is a dense basis set φ(xt ,ut) such that

Q(xt ,ut) = Q(zt)

=
1
2

zT
t Gzt

=W T
φ(zt)

(2.43)

where zt =

[
xt

ut

]T

. W is the vector of the elements of matrix G. The basis vector φ(zt) is

composed with quadratic terms of zt . Since the size of G matrix is (n+m)× (n+m), the vector

W is the upper triangle of G. Hence, there are (n+m)(n+m+1)
2 elements of W .

Q-learning Bellman equation of value iteration can be written as

W T
k+1φ(zt) = xT

t Dxt +uT
t Eut +W T

k φ(zt+1) (2.44)

This is a recursive equation and the only unknown term is Wk+1. It can be solved online using

methods from adaptive control such as least square method, gradient method or recursive least

square method (RLS). Therefore, Q-learning is implemented by algorithm 4.

The termination condition is no further updating Q-function or control policy at each step k. This

algorithm can be applied to adaptive control problems. Note that this algorithm is model-free,

that is to say only data measured along the system trajectories can be utilized online learning

process. Persistence of excitation is considered during applying RLS to equation 2.44.

xiaoru
高亮

24 Chapter 2 Literature Review

Algorithm 4 Discrete-Time LQR Optimization By Q-Learning
Initialized
Arbitrary choose an initial control policy ut =−K0xt

Arbitrary choose W0 and the iteration index k = 0
loop

Get the data set (xt ,ut ,xt+1,ut+1) with ut = Kkxt , ut+1 =−Kkxt+1.
Calculate the basis vector φ(zt) and φ(zt+1).
One step update vector W by applying RLS to equation 2.44.
Repeat updating vector W until RLS converges.
Reduction the kernel matrix G with Wj+1,
Update the control policy ut =−G−1

uu Guxxt

k = k+1
end loop

Many researches on controller design by reinforcement learning comes out recently. Bradtke

et al. [1994], Lewis and Vrabie [2009], Lewis et al. [2012b] shows that the optimal control

gain can be obtained by Q-learning in infinite time horizon case, in which the optimized control

gain can converge to the solution obtained by algebra Riccati equation (ARE) and has been

proved. Furthermore, Luo et al. [2014] discusses Q-learning for optimal control of continuous-

time systems. Zhao et al. [2015, 2014] illustrates control gain obtained by Q-learning with finite

time horizon case. The key difference is the time dependent basis function. However, it is very

difficult to decide the time-dependent basis function, which is decided by trail and error. To

overcome this problem, the controller design in this paper combines the finite time horizon Q-

learning technique and infinite time horizon technique. More specifically, there is a separately

Q-learning process on each time step of finite time horizon. With the system running, Q-value

matrix is updated separately on each time step. The optimized control policy can be obtained on

each time step after value iteration and they are close to the solution obtained by ARE. Note the

basis function is different on each time step.

2.7 Co-Design Encoder and Controller Problem

Over the decades, a lot of effort has been devoted to stabilization and optimal control design

over communication channels and networks (Delchamps [1990], Zhang et al. [2014], Fagnani

and Zampieri [2003], Shu and Middleton [2011]). However, due to distributed architecture and

incomplete information pattern, analytic design is extremely difficult, and this motivates the

research on heuristic and numerical methods. In Lei et al. [2011], an iterative design method

was proposed to find encoder and controller mapping that can optimize a finite-horizon lin-

ear quadratic cost function. The basic idea is to design optimal encoder for a fixed controller

and then design optimal controller for a fixed encoder. Different system models are given,

which are full side-information system model, partial side-information system model and no

Chapter 2 Literature Review 25

side-information system model. For full side-information system model, a certainty equiva-

lence controller is given, and all other system models utilize this optimized certainty equiv-

alence controller. For the encoder design component, it is easy to get solution on full side-

information model, and most results shown in the paper are obtained from full side-information.

It is unimplementable in practical since it is an ideal model. While the computation of par-

tial side-information and no side-information system growth exponential with time horizon. It

should be emphasised that the design method in this paper is model-based and off-line train-

ing method. Furthermore, only scalar case is considered in Lei et al. [2011]. The design of an

encoder-controller pair for control performance optimization has been considered in Freuden-

berg and Middleton [2009], Middleton et al. [2009]. Fagnani and Zampieri [2003] is an analysis

paper about linear scalar systems with a stabilizing quantized feedback control. For the recent

works, separated design of encoder and controller was proposed in Rabi et al. [2016], because

of dual effect between two agents, controls-forgetting encoders or certainty equivalence controls

were assumed. However, these papers only showed on scalar case, which means single-input

and single-output are discussed.

Similar idea together with the approximate dynamic programming (ADP) was employed to de-

sign vector quantizer in Bao et al. [2010], in which controller design is same with Lei et al.

[2011] and ADP-based encoder design was given. It is clearly shown that the system parameters

were utilized in the ADP-based encoder design in Bao et al. [2010]. Thereafter,Shirazinia et al.

[2015] studies a joint source-channel vector quantization problem, the optimality is defined as

minimizing the end-to-end mean square error. Iterative design method is also utilized to find

encoder-controller pairs. While system information is necessary. Similar case appeared on Shi-

razinia et al. [2014], which is another application on compressed sensing. However, it is very

rare to know the system parameters in practical.

Motivated by some earlier works, we address the issue of joint design of encoder and controller

for multi-input and multi-output case by using Q-learning method in this thesis. A significant

advantage of Q-learning is that no model information is required, and it has the potential to

provide better performance than existing methods, as will be shown later. Since the encoder and

controller is optimized based on the data grabbed during system running, the design complexity

decreases a lot compared with current research about co-design encoder and controller. In addi-

tion, the method of encoder and controller design in this paper is considered as online learning

method, which is more implementable. Note that, this thesis emphasize the control over low-

rate noise channel, the effects of delay is neglected. Last but not least, system model considered

in this thesis don’t need the help by side-information.

Chapter 3

Co-Design of Encoder and Controller
for Feedback Control Systems Over
Binary Symmetric Channels Using
Q-Learning

This Chapter is concerned with the design of encoder and controller pair for feedback control

systems over binary symmetric channels. An iterative design method based on Q-learning is

proposed to obtain a pair of encoder and controller that can optimize a finite-horizon linear

quadratic cost function. Three encoder strategies, memoryless encoder, memory encoder and

predictive encoder, are considered. The proposed design can be implemented online, and has the

potential to provide better performance. Compared with traditional control optimization method,

the proposed design method is model-free, only data measured along the system trajectories is

utilized. Simulations are provided to show the effectiveness and the merits of the proposed

method.

3.1 Introduction

With the rapid development of communication technology, an increasing number of control sys-

tems use communication channels or networks to transmit data. Although using communication

networks/channels has many advantages such as lower cost, less system wiring, and more flexi-

bility, it has also raised many issues and challenges to design, e.g. time delay, packet loss, data

rate limitation, and incomplete information pattern [Antsaklis and Baillieul, 2007, Ploplys et al.,

2004, Delchamps, 1990, Zhang et al., 2014, Shu and Middleton, 2011].

Due to distributed architecture and incomplete information pattern, analytic design is extremely

difficult, and this motivates the research on heuristic and numerical methods. Most of research

27

28 Chapter 3 Co-Design of Encoder and Controller Over Binary Symmetric Channels

work about co-design encoder and controller system focus on system stability, such as Fagnani

and Zampieri [2003], Montestruque and Antsaklis [2004], Delchamps [1990]. Not too much

work make efforts on feedback control system optimization with wireless communication chan-

nel, where model is necessary in these design process and even only scalar case is considered.

Motivated by some earlier works, we address the issue of joint design of encoder and controller

for multi-input and multi-output case by using Q-learning method in this Chapter. A significant

advantage of Q-learning is that no model information is required, and it has the potential to

provide better performance than existing methods, as will be shown later. Since the encoder and

controller is optimized based on the data grabbed during system running, the design complex-

ity decreases a lot compared with current research about co-design encoder and controller. In

addition, the method of encoder and controller design is considered as online learning method,

which is more implementable. Note that, this design problem emphasize the control over low-

rate noise channel, the effects of delay is neglected. Last but not least, there is no constraint on

side-information, which is the information send back from controller to encoder.

3.2 Preliminaries

In this section, we first introduce a general feedback control system with encoder and controller

over communication channel in Section 3.2.1. In Section 3.2.2, the design problem is formu-

lated.

3.2.1 System Model

Consider a feedback control system shown in Fig. 3.1. The system state-space equation is

xt+1 = Axt +But + vt

yt =Cxt + et

(3.1)

Plant Sensor Encoder

Controller

𝑥" 𝑦" 𝑖"

𝑗"𝑢"

Channel

𝑣" 𝑒"

FIGURE 3.1: A general feedback control system over communication channel.

Chapter 3 Co-Design of Encoder and Controller Over Binary Symmetric Channels 29

where x ∈ Rn, u ∈ Rm, y ∈ Rp are the state, the control and the measurement, respectively. The

matrix (A,B) is controllable and (A,C) is observable. vt and et are process noise and measure-

ment noise, which are independent and identically distributed. Furthermore, the initial state x0,

vt and et are assumed as Gaussian distribution with mean zero.

The encoder is a mapping from the various measurement values yt to a discrete set of sym-

bols. The index of each symbol is represented by it and assumed to take values in the set

I = {1, · · · , I}, where Li is determined by the transmission rate ρ as ρ = log2 I. The encoder

mapping ft is expressed as

it = ft(yt
0) (3.2)

where yt
0 is y0,y1, · · · ,yt .

The symbol is transmitted through the channel, and then picked up by the controller. Due to the

noise or other factors, the picked symbol may not be the same as the original one, and this is

described by the following channel mapping function.

The discrete index it is then encoded to binary codes that contains digital 0 and 1 only. The

binary codes are sent over the channel and then decoded to jt ∈J = {1, · · · ,J}. The channel

mapping can be described as function:

jt = p(it) (3.3)

where jt has the same code book as it . The transition probability function p(jt |it) is used to

characterize the channel.

0

1

0

1

1 − 𝑝

𝑝

𝑝

1 − 𝑝

Transmitted
signals

Received
signals

Transition Probabilities

FIGURE 3.2: Binary symmetric channel model

For discrete memoryless channel, binary symmetric channel (BSC) is the most widely studied

channel in coding theory and information theory because it is one of the simplest noisy channel

to analyze. Many problems in communication theory can be reduced to a BSC. BSC has a binary

input and binary output (0 or 1) with the crossover probability p [MacKay and Mac Kay, 2003].

The transmission scheme is depicted in Fig. 3.2. The crossover probability that a character

is transmitted with error is labeled p. Hence, the probability without error is 1− p, where

p(0|0) = p(1|1) = 1− p, p(0|1) = p(0|1) = p.

30 Chapter 3 Co-Design of Encoder and Controller Over Binary Symmetric Channels

The controller picks up the channel output jt , and then generates control signal ut , namely

ut = gt(jt) (3.4)

3.2.2 Problem Statement

The design objective is to find a pair of encoder mapping set f ∗0 , f ∗1 , · · · , f ∗T−1 and controller

mapping g∗0, g∗1, · · · , g∗T−1 that can optimize the following cost function

E{Jtot}, E{
T−1

∑
t=0

(xT
t+1Dxt+1 +uT

t Eut)} (3.5)

where matrix D and E are weight sequence of state and control, which are symmetric and posi-

tive definite.

3.3 Encoder Design by Q-Learning

The objective of this section is to find encoder mappings at each time step with fixed controller

so as to minimizing the expected overall linear quadratic cost (3.5). More specifically, the

optimized encoder mapping set f ∗0 , f ∗1 , · · · , f ∗T−1 can be obtained by the Q-learning method.

3.3.1 Q-Value Updating Rule

Q-learning method [Watkins, 1989, Sutton and Barto, 1998] is one of reinforcement learning

thechnique, with which the agent tries an action at one specific state, and do evaluation based on

the reward or penalty it received. By trying all actions in all states repeatedly, the optimal policy

can be got by long-term discounted reward.

Under the framework of Q-learning, encoder is modelled as the agent, all the other components

are viewed as the environment (see Fig. 3.3). The input of encoder yt is agent state during Q-

learning process and the discrete index it ∈I represents the agent action. The encoder mapping

from yt to it can be regarded as a look-up table. More specifically, each yt can be encoded to an

index it and the index is chosen that can minimize the system performance.

Q-matrix, to be the brain of agent, representing the memory of what agent has learned through

experience. Each Q-value in the Q-matrix is the accumulative reward of the corresponding state

yt and action it . The rows of matrix Q are states of agent, and the columns represent the possible

actions. Since the problem proposed is finite-time horizon case, the encoder mapping is different

at different time t. Hence, the purpose is to find an optimized encoder mappings over the interval

t = 0 to T − 1, named f ∗0 , f ∗1 , · · · , f ∗T−1. The Q-matrix also can be expressed as Q0, Q1, · · · ,
QT−1, which means Q-matrix is updated independently at each time t and each encoder mapping

xiaoru
高亮

Chapter 3 Co-Design of Encoder and Controller Over Binary Symmetric Channels 31

PlantSensor

Encoder

Controller𝑥"

𝑦" 𝑖"

𝑗"𝑢"

𝑣"𝑒"

BSC

Environment

Agent

State Action

FIGURE 3.3: Basic framework of Q-learning.

ft can be derived based on its corresponding Q-matrix Qt . Therefore, Q-matrix is viewed as 3-

dimensional matrix, the three dimensions are composed by state yt , action it and system time t,

named Q(yt , it , t).

Q-table
Actions i0

1 2 3 · · · 2ρn

States

1 y(1)0 0 0 0 · · · 0
2 y(2)0 0 0 0 · · · 0
...

...
...

...
...

...
...

l y(l)0 0 0 0 · · · 0
...

...
...

...
...

...
...

L y(L)0 0 0 0 · · · 0

TABLE 3.1: Q-Learning table at time t = 0 of states by actions that is initialized to zero.

The following is how to build the Q-matrix on time t = 0 and its updating process. First of all,

x0 follows Gaussian distribution with mean 0, it is easy to generate a sample set X0 of x0, so as

to sample set Y0 of y0 . Each element of the sample set is regarded as an agent state, which is one

row of Q-matrix. The sample size is the number of Q-matrix row. Then, all options of encoder

index it are columns of Q-matrix. The number of Q-matrix columns are determined by system

dimensions n and channel transmission rate ρ , which is 2ρn.

Since the agent starts out knowing nothing, the matrix Q is initialized to zero (see TABLE 3.1).

l represents the index of sample Y0 with size L and y(l)0 is the lth element of Y0. Obviously,

the sample set of Yt at each time step has same sample size. In basic Q-learning framework, l

represents each step of one episode. η is defined as the iteration times.

32 Chapter 3 Co-Design of Encoder and Controller Over Binary Symmetric Channels

Each cell is updated through training. The updating equation at time t is

Q(y(l)t , i(l)t , t)← Q(y(l)t , i(l)t , t)+α[r(l)t + γ min
i

Q(y(l+1)
t , i, t)−Q(y(l)t , i(l)t , t)] (3.6)

where γ is discount factor with γ ∈ [0,1]. α is the learning rate, named step-size parameter,

which is used in the incremental method to describe changes during time step shift. Normally,

α ∈ [0,1], and satisfies the condition: ∑
∞
t αt = ∞, ∑

∞
t a2

t < ∞.

With lth sample value of Yt and action it , the corresponding Q-value of Q-matrix on time t is

Q(y(l)t , i(l)t , t). While mini Q(y(l+1)
t , i, t) is the minimal Q-value with fixed state y(l+1)

t and the

corresponding action is i.

Since the inside loop is from y(1)t to y(L)t , the rule of next state calculation is simply moving one

by one, such as from y(l)t to y(l+1)
t . While the reward r(l)t is different among different encoder

designs and it will specified in the following sections.

The rule of it selection is based on the minimal Q-value in Q-matrix, which can be formulated

as

i(l)t = argmin
i

Q(y(l)t , i, t) (3.7)

where the corresponding column index of minimal Q-value mini Q(y(l)t , i, t) on fixed state y(l)t is

chosen as action. Obviously, the updated Q-value in Q-matrix is Q(y(l)t , it , t).

Q-table
Actions i0

1 2 3 · · · 2ρn

States

1 y(1)0 Q(y(1)0 ,1,0) 0 0 · · · 0
2 y(2)0 mini Q(y(2)0 , i,0)
...

...
...

...
...

...
...

l y(l)0 0 0 0 · · · 0
...

...
...

...
...

...
...

L y(L)0 0 0 0 · · · 0

TABLE 3.2: Q-matrix updating after the initialization in TABLE 3.1.

There is an example at t = 0. The initial Q-matrix at t = 0 has been given in TABLE 3.1. After

that, the inside loop starts from y(1)0 . Based on the action section equation (3.7), we choose

i(1)0 = 1 as i0 on y(1)0 of Q-matrix at t = 0. Note that multiple values are same in same row and all

of them are the minimal value, the action it is selected by the first value. The updated Q-value is

Q(y(1)0 ,1,0) in this step. While the next state is y(2)0 . Hence, the estimation value mini Q(y(2)0 , i,0)

is decided by the second row, which means the minimal Q-value is chosen on the next state y(2)0 .

In TABLE 3.2, the updated Q-value Q(y(1)0 ,1,0) and the estimated mini Q(y(2)0 , i,0) are marked

by red text.

In TABLE 3.2, the updating equation is Q(y(1)0 , i(1)0 ,0)←Q(y(1)0 , i(1)0 ,0)+α[r(1)0 +γ mini Q(y2
0, i,0)−

Q(y(1)0 , i(1)0 ,0)]. To realize online learning, the next updating should follow on the system state

Chapter 3 Co-Design of Encoder and Controller Over Binary Symmetric Channels 33

t = t, in which the Q-value can be expressed as Q(y(l)t , i(l)t , t). The learning process with system

time step continue forward until t = T −1.

By that analogy, the learning starts from t = 0 again and the updating Q-value is Q(y(2)0 , i(2)0 ,0)

until one episode end that is l = L. Thereafter, the encoder learns more through further episodes,

it will finally reach convergence values for Q-matrix on each time step t.

The convergence of Q-learning has been proven by Watkins and Dayan [1992], Watkins [1989],

Sutton and Barto [1998]. Once these Q-matrixes get close enough to a state of convergence,

the encoder can make the optimal decision to choose an it for Yt . The encoder mapping can be

got by Q-matrix on each time t. In the remainder of this section, we propose three encoding

strategies according to different rewards.

3.3.2 Memoryless Encoder Design

For memoryless encoder, only data measured along system trajectory at time t are utilized in the

design process, which can be regarded as model free. The encoder policy can be described as

i∗t = argmin
i∈I

E{(xT
t+1Dxt+1 +uT

t Eut)|yt , it = i} (3.8)

The reward rt in Q-learning process is defined as xT
t+1Dxt+1 + uT

t Eut , since the selection of it
affects ut and xt+1. Note that the data utilized in the design process are xt , ut and xt+1.

Inisalize 𝑄 and 	𝑋$

Observe data	𝑢(𝑎𝑛𝑑	𝑥(-.	, 𝑢𝑝𝑑𝑎𝑡𝑒	𝑟 = 𝑥(-.5 𝐷	𝑥(-. + 𝑢(5𝐸𝑢(

Updating Q-value function

𝑄 𝑦(
(I(()) , 𝑖(

(I(())	, 𝑡 = 𝑄 𝑦(
(I(()), 𝑖(

(I(()) , 𝑡 + 	𝛼 𝑟 + γmin 𝑄 𝑦(
IP , : , 𝑡 − 𝑄 𝑦(

I (, 𝑖(
(I(()), 𝑡

∥ min 𝑄TU. : − min 𝑄T : ∥	< ℇ

Optimal Encoder Mapping 𝑖(∗ = min𝑄(: , : , 𝑡)

𝜂 = 	𝜂 + 1

𝑡 = 𝑡 + 1

State 𝑙 = 𝑜𝑛𝑒𝑠(𝑇, 1)

𝑦$ = 𝑌$(: , 𝑙(1))

Choose action 𝑖(
(I(()) = min(𝑄(𝑦(

(I(()) , : , 𝑡))

Observe next state 𝑙` = 𝑙(𝑡) + 1

𝑙	 = 𝑙 + 1

Yes

No

FIGURE 3.4: The flow chart of memoryless encoder design by Q-learning (model-free and
online learning method)

xiaoru
高亮

34 Chapter 3 Co-Design of Encoder and Controller Over Binary Symmetric Channels

The design process is shown in Fig. 3.4. The sample set Yt can be obtained by online data.

Because of the feedback system, with initial Y0, it is easy to get Y1, Y2, · · · , YT−1. l is an index

vector Yt in Q-learning with size T ∗ 1. Next state calculation in Q-learning simply plus one

on current state. For inside loop, it follows system time t, where Q-value function is updated

separately on each time t. Hence, it is an online learning process. Thereafter, the outside two

loops are standard Q-learning framework.

The algorithm will be terminated with a small enough error ε between current Q-value and

previous Q-value. In Q-value matrix, the optimized encoder mapping likes a looking-up table,

which means the output of encoder it is chosen based on the corresponding minimal Q-value

on Yt . Hence, the encoder mapping is from sample set Yt to the optimized encoder index set

obtained from minimal Q-value matrix.

3.3.3 Memory Encoder Design

Memory encoder, which memorizes the previous information, is considered. At time t, the data

used by encoder design is xt
0 and ut

0, where xt
0 and ut

0 means the system state x and control action

u record over the time interval from 0 to t.

The encoder policy updating equation is

i∗t = argmin
i∈I

E{
t

∑
τ=0

(xT
τ+1Dxτ+1 +uT

τ Euτ)|yt , it = i} (3.9)

The reward rt is defined as ∑
t
τ=0 xT

τ+1Dxτ+1 + uT
τ Euτ , which considers the previous data mea-

sured along the system trajectories. The Q-value updating equation is same with memoryless

encoder design, named equation (3.6). The design process is still model free, and similar to the

procedures presented in section 3.3.2.

3.3.4 Predictive Encoder Design

Predictive encoder means the future estimated information can be utilized in the encoder design.

Different from previous two strategies, system model is needed to estimate the system state in

the future, making the design model-based. The encoder policy can be described as

i∗t = argmin
i∈I

E{
T−1

∑
τ=t

(xT
τ+1Dxτ+1 +uT

τ Euτ)|yt , it = i} (3.10)

According to the design objective equation (3.10), the reward involves future information, and

thus can be defined as ∑
T−1
τ=t (x

T
τ+1Dxτ+1 + uT

τ Euτ). Obviously, this is an off-line learning pro-

cess. The Q-value updating equation is same with memoryless encoder design, named equa-

tion (3.6). Because of the future estimation, the encoder should be updated with fixed controller

xiaoru
高亮

xiaoru
高亮

xiaoru
高亮

Chapter 3 Co-Design of Encoder and Controller Over Binary Symmetric Channels 35

and fixed encoder f0, f1, · · · , ft−1, ft+1, ft+2, · · · , fT−1. While all the other design procedure is

similar to the procedures presented in section 3.3.2.

3.3.5 Theoretical Aanlysis

In this section, we presents the theoretical analysis about encoder design. The following proof

is based on the system assumption and the optimal design criterion.

Theorem 1. Given the system (3.1) and the memoryless channel (3.3). To minimize the LQ

cost (3.5),

1. With fixed controller, the encoder mapping ft of memoryless encoder can be obtained by

equation (3.8);

2. With fixed controller, the encoder mapping ft of memory encoder can be obtained by

equation (3.9);

3. With fixed controller and fixed encoder components f0, f1, · · · , ft−1, ft+1, ft+2, · · · , fT−1,

the encoder mapping ft of predictive encoder can be obtained by equation (3.10);

Proof. 1) The encoder mapping ft has an influence on the cost function (3.5) by producing it
with yt . More specifically, the system states and control commands dependent on it . Based

on the principle of dynamic programming, the overall cost is minimized with the minimization

immediate cost at each time step t.

Let Si(yt) denotes all corresponding yt of set Yt such that it = i, named encoder regions. Hence,

the optimal encoder mapping is equivalent to specifying the set of Si(yt) such that E{(xT
t+1Dxt+1+

uT
t Eut)|yt , it = i} can be minimized over i ∈I with given yt . The encoder regions of memory-

less encode can be given as

Si(yt) = {y ∈ Yt |E{(xT
t+1Dxt+1 +uT

t Eut)|y, it = i∗}= E{(xT
t+1Dxt+1 +uT

t Eut)|yt , it = i∗}}

= {y ∈ Yt |E{(xT
t+1Dxt+1 +uT

t Eut)|y, it = i∗} ≤ E{(xT
t+1Dxt+1 +uT

t Eut)|yt , it = i}}
(3.11)

where ∀i ∈I .

Let F = [f0, f1, · · · , fT−1]. Based on system performance equation (3.5),

argmin
F

E{
T−1

∑
t=0

(xT
t+1Dxt+1 +uT

t Eut)}= argmin
F

T−1

∑
t=0

E{(xT
t+1Dxt+1 +uT

t Eut)}

= argmin
F

T−1

∑
t=0

E{E{(xT
t+1Dxt+1 +uT

t Eut)|yt , it}}

=
T−1

∑
t=0

E{argmin
i∈I

E{(xT
t+1Dxt+1 +uT

t Eut)|yt , it = i}}

(3.12)

xiaoru
高亮

36 Chapter 3 Co-Design of Encoder and Controller Over Binary Symmetric Channels

Based on equation (3.11) and (3.12), the encoder mapping can be given as

i∗t = argmin
i∈I

E{(xT
t+1Dxt+1 +uT

t Eut)|yt , it = i}

For memoryless encoder design, encoder regions Si(yt) can also be divided by it . The proof

about part 1) of Theorem (1) is completed.

2) Since it only affects the current time step decision or the future terms,

E{
t−1

∑
τ=0

(xT
τ+1Dxτ+1 +uT

τ Euτ)|yt , it = i∗t }= E{
t−1

∑
τ=0

(xT
τ+1Dxτ+1 +uT

τ Euτ)|yt , it = i} (3.13)

where ∀i ∈I .

Adding equation (3.13) and equation (3.11) together,

E{
t

∑
τ=0

(xT
τ+1Dxτ+1 +uT

τ Euτ)|yt , it = i∗t }

=E{
t−1

∑
τ=0

(xT
τ+1Dxτ+1 +uT

τ Euτ)|yt , it = i∗t }+E{(xT
t+1Dxt+1 +uT

t Eut)|yt , it = i∗t }

≤E{
t−1

∑
τ=0

(xT
τ+1Dxτ+1 +uT

τ Euτ)|yt , it = i}+E{(xT
t+1Dxt+1 +uT

t Eut)|yt , it = i}

=E{
t

∑
τ=0

(xT
τ+1Dxτ+1 +uT

τ Euτ)|yt , it = i}

(3.14)

where i ∈I .

The encoder regions of memory encode can be given as

Si(yt) ={y ∈ Yt |E{
t

∑
τ=0

(xT
τ+1Dxτ+1 +uT

τ Euτ)|y, it = i∗}

=E{
t

∑
τ=0

(xT
τ+1Dxτ+1 +uT

τ Euτ)|yt , it = i∗}}
(3.15)

i∗t = argmin
i∈I

E{
t

∑
τ=0

(xT
τ+1Dxτ+1 +uT

τ Euτ)|yt , it = i}

The proof about part 2) of Theorem (1) is completed.

3) E{Jtot} can be written as E{Jtot}= E{E{Jtot|yt ,it=i}},

E{Jtot}= E{E{
T−1

∑
t=0

(xT
t+1Dxt+1 +uT

t Eut)|yt , it}} (3.16)

xiaoru
高亮

xiaoru
高亮

xiaoru
高亮

xiaoru
高亮

Chapter 3 Co-Design of Encoder and Controller Over Binary Symmetric Channels 37

E{
T−1

∑
t=0

(xT
t+1Dxt+1 +uT

t Eut)|yt , it}

=E{
t−1

∑
τ=0

(xT
τ+1Dxτ+1 +uT

τ Euτ)|yt , it}+E{(xT
t+1Dxt+1 +uT

t Eut)|yt , it}

+E{
T−1

∑
τ=t+1

(xT
τ+1Dxτ+1 +uT

τ Euτ)|yt , it}

(3.17)

Since f0, f1, · · · , ft−1 is given, subtracting equation (3.13) from equation (3.16) ,

E{
T−1

∑
τ=t+1

(xT
τ Dxτ +uT

τ−1Euτ−1)|yt , i∗t }

=E{(xT
t+1Dxt+1 +uT

t Eut)|yt , i∗t }+E{
T−1

∑
τ=t+1

(xT
τ+1Dxτ+1 +uT

τ Euτ)|yt , i∗t }

≤E{(xT
t+1Dxt+1 +uT

t Eut)|yt , it = i}+E{
T−1

∑
τ=t+1

(xT
τ+1Dxτ+1 +uT

τ Euτ)|yt , it = i}

(3.18)

where ∀i ∈I .

The encoder regions of predictive encode can be given as

Si(y) = {y|E{
T−1

∑
τ=t

(xT
τ+1Dxτ+1 +uT

τ Euτ)|y, i∗t } ≤ E{
T−1

∑
τ=t

(xT
τ+1Dxτ+1 +uT

τ Euτ)|yt , i∗t }} (3.19)

The proof about part 3) of Theorem (1) is completed.

In general, the encoder regions Si(yt) represents intervals in scalar systems and regions in second

order system and so on.

3.4 Controller Design by Q-Learning

This section presents the results on controller design using Q-learning. Generally, Hamilton-

Jacobi-Bellman (HJB) equations, such as Riccati equation for linear systems, are essential to

optimal control design. However, it is difficult to obtain a solution of HJB equation when there

is information loss in the system. Based on the techniques presented in Lewis and Vrabie [2009],

Lewis et al. [2012b], Bradtke et al. [1994], the controller in the proposed system can be opti-

mized without solving the HJB equation.

Noting that the mathematical system model (3.1) is unknown. Q-learning method learns to the

optimal control policy from real system data directly. It is important to point out that there is no

requirement on initial stabilizing control gain.

xiaoru
高亮

xiaoru
高亮

xiaoru
高亮

38 Chapter 3 Co-Design of Encoder and Controller Over Binary Symmetric Channels

3.4.1 Q-Learning for Optimal Control

Let the system state xt ∈Xt and control command gt(xt), the system is stabilizable on Xt . The

design objective of optimal control is to find controller mapping set g∗0, g∗1, · · · , g∗T−1, such that

the closed control system asymptotically stable. The linear quadratic cost-to-go function can be

written as

Vgt (xt) =
T−1

∑
τ=t

(xT
τ Dxτ +uT

τ Euτ) (3.20)

Since the process of controller mapping g0 need to use the information of x0 and there is no need

to optimize gT , value function is reformulated by xt and ut .

The optimal control policy g∗t can be defined as

g∗t (xt), argmin
gt

Vgt (xt) (3.21)

Note that the optimal control policy is different with different time t.

Definition 3.4.1 (Admissible Control). For a given system (3.1) with xt ∈Xt , a control policy

gt(xt) is said to be admissible with respect to cost function (3.5) on Xt , denote to gt(xt) ∈
U (Xt), if ut is continuous on Xt and Vgt (xt)< ∞, ∀xt ∈Xt .

For any admissible control policy gt(xt) ∈U (Xt), its cost-to-go function is

Vgt (xt) =
T−1

∑
t
(xT

t Dxt +uT
t Eut)

= xT
t Dxt +uT

t Eut +
T−1

∑
τ=t+1

(xT
τ Dxτ +uT

τ Euτ)

= R(xt ,ut)+Vgt (xt+1)

(3.22)

where R(xt ,ut) = xT
t Dxt +uT

t Eut represents instant reward. After that, it is important to define

the Hamilton function of system (3.1) as

H(xt ,ht ,V) =V (xt+1)−V (xt)+R(xt ,ht) (3.23)

where ht represents control command. Based on equation (3.22) and (3.23), the Hamilton func-

tion of the admissible control command gt(xt) ∈U (Xt) and its cost function Vgt is

H(xt ,ut ,V) =Vgt (xt+1)−Vgt (xt)+R(xt ,ut)

= 0
(3.24)

Let V ∗t ,V ∗gt
(xt) be the optimal cost function, obviously H(xt ,ut ,V ∗t) = 0. Hence, the controller

mapping (3.21) can be rewritten as

g∗t (xt), argmin
gt

H(xt ,ut ,V ∗t) (3.25)

xiaoru
高亮

xiaoru
高亮

Chapter 3 Co-Design of Encoder and Controller Over Binary Symmetric Channels 39

In general, the optimal control policy g∗t is obtained by solving HJB equations with V ∗t . While

the system model is necessary to solve HJB equations and it is difficult or impossible to get HJB

solution for nonlinear system. Hence, it is implementable in practical. To get the optimal control

policy gt of the proposed system, a model-free learning method, named Q-learning method, is

introduced. It is important to introduce Q-function of Q-learning method, which is an action-

state value function. For ∀gt(xt) ∈U (Xt), Q-function is

Qgt (xt ,µ), R(xt ,µ)+
T−1

∑
t+1

R(xt ,u)

= R(xt ,µ)+Qgt (xt+1,u)

(3.26)

where (xt ,µ) ∈Xt ×U (Xt). In addition, Qgt (xt ,gt(xt)) =Vgt (xt). Hence, equation (3.26) can

be rewritten as

Qgt (xt ,µ) = R(xt ,µ)+Vgt (xt+1) (3.27)

Based on the optimal controller mapping (3.21) and (3.25), the optimal controller mapping can

be rewritten as

g∗t (xt) = argmin
gt

Vgt (xt) = argmin
gt

Qgt (xt ,gt(xt)) (3.28)

In general Q-learning algorithm,the Q-matrix starts from zero matrix. The policy is updated by

policy evaluation and policy improvement. For policy evaluation, the updating equation is

Qη+1(xt ,µ) = R(xt ,µ)+Qη(xt+1,uη) (3.29)

where Qη = Qgt η .

For policy improvement component, gt can be solved by

gη+1
t (xt) = argmin

µ
Qη+1(xt ,µ) (3.30)

Let η = η +1 and iterate these two learning processes.

3.4.2 Theoretical Analysis

The convergence is proved by demonstrating that the sequence {Qη

t } and {gη

t } generated by pol-

icy evaluation and policy improvement can converge to the optimal Q-value Q∗t and the optimal

control policy g∗t , respectively.

Theorem 2. Let gη+1
t be given by policy improvement in algorithm, then

gη+1
t = argmin

µ
H(xt ,µ,V η) (3.31)

Proof. Based on equation (3.27) and (3.29),

Qη(xt ,µ) = R(xt ,µ)+V η(xt+1) (3.32)

xiaoru
高亮

xiaoru
高亮

xiaoru
高亮

40 Chapter 3 Co-Design of Encoder and Controller Over Binary Symmetric Channels

where V η(xt+1) = Qη

gη

t
(xt+1,g

η

t (xt+1)). Subtracting V η(xt) on both side of equation (3.32),

Qη(xt ,µ)−V η(xt) = R(xt ,µ)+V η(xt+1)−V η(xt)

= H(xt ,µ,V η)

Let µ represents gη+1
t ,

min
µ

(Qη(xt ,µ)−V η(xt)) = min
µ

(H(xt ,µ,V η))

min
µ

(Qη(xt ,µ))−V η(xt) = min
µ

(H(xt ,µ,V η))

argmin
µ

(Qη(xt ,µ)) = argmin
µ

(H(xt ,µ,V η))

Based on policy improvement (3.30) in algorithm,

gη+1
t = argmin

µ
(Qη(xt ,µ)) = argmin

µ
(H(xt ,µ,V η)) (3.33)

This proof is completed.

Theorem 2 shows the control policy gη+1
t in equation (3.30) is generated not only by minimizing

Q-value function but also by minimizing the Hamilton equation.

Theorem 3. Let g0
t (xt) ∈ U (X). The sequence {gη

t (xt)} is generated by policy improve-

ment (3.30), then gη

t (xt) ∈U (X) for ∀η = 1,2,3, · · · .

Proof. Firstly, Theorem (3) holds for η = 0, g0
t (xt) ∈U (X). Then, assume that Theorem (3)

holds for η = a, that is ga
t (xt) ∈ U (X). The Hamilton equation of the cost function V a(xt)

associated with ga
t (xt) is

H(xt ,ua
t ,V

a) = 0 (3.34)

After that, we should prove the Theorem (3) holds for η = a+1.

Selecting the value function V a(xt) as the Lyapunov function and the difference of V a(xt) is

OV =V a(xt+1)−V a(xt)

=V a(xt+1)−V a(xt)+R(xt ,ua+1)−R(xt ,ua+1)

= H(xt ,ua+1,V a)−R(xt ,ua+1)

(3.35)

Based on Theorem (2), ua+1 is admissible controller,

H(xt ,ua+1,V a) = min
µ

H(xt ,µ,V a)

≤ H(xt ,µ,V a)

= 0

(3.36)

Chapter 3 Co-Design of Encoder and Controller Over Binary Symmetric Channels 41

Combined with equation (3.35) and (3.36),

OV ≤−R(xt ,ua+1)≤ 0

It shows that the closed loop system with xt+1 = Axt + Bua+1 + vt is asymptotically stable.

Hence, ga+1
t ∈ U (X) is admissible controller. In addition, Theorem (3) holds for η = a+ 1.

This proof is completed.

Theorem 4. ∀(xt ,ut) ∈Xt ∗U (Xt), the sequence {Qη(xt ,µ)} and {gη

t (xt)} are generated by

policy evaluation (3.29) and policy improvement (3.30).

1. Qη(xt ,µ)≥ Qη+1(xt ,µ)≥ Q∗(xt ,µ).

2. Qη(xt ,µ)→ Q∗(xt ,µ) and gη

t (xt)→ g∗t (xt), η → ∞.

Proof. 1) Assume that Q0(xt ,µ) is a Q-value function of a stable control policy h(xt), then

Q0(xt ,µ) = Qh(xt ,µ)

= R(xt ,µ)+Q0(xt+1,h(xt+1))
(3.37)

Based on policy evaluation (3.29) and equation (3.37),

Q1(xt ,µ) = R(xt ,µ)+Q0(xt+1,h(xt+1))

= R(xt ,µ)+min
µ

Q0(xt+1,µ)

≤ R(xt ,µ)+Q0(xt+1,µ)

= Q0(xt ,µ)

(3.38)

Assume that Qη(xt ,µ)≥Qη+1(xt ,µ) and it holds for η = 0. Furthermore, assume that Qη(xt ,µ)≥
Qη+1(xt ,µ) holds for η = a−1, so that Qa−1(xt ,µ)≥ Qa(xt ,µ).

According to the policy improvement (3.28),

Qa(xt ,ua) = min
µ

Qa(xt ,µ)≤ Qa(xt ,µ) (3.39)

For ∀xt ,µ ,
Qa+1(xt ,µ) = R(xt ,µ)+Qa(xt+1,ua+1)

= R(xt ,µ)+min
µ

Qa(xt+1,µ)

≤ R(xt ,µ)+Qa(xt+1,ua)

≤ R(xt ,µ)+Qa−1(xt+1,ua)

= Qa(xt ,µ)

(3.40)

xiaoru
高亮

42 Chapter 3 Co-Design of Encoder and Controller Over Binary Symmetric Channels

Hence, Qη(xt ,µ) ≥ Qη+1(xt ,µ) holds for η = a. After that Qη(xt ,µ) ≥ Q∗(xt ,µ) should be

proved. Since Qη−1(xt ,µ)≥ Qη(xt ,µ), ∀(xt ,µ) ∈X ∗U ,

Qη−1(xt+1,uη)≥ Qη(xt ,uη) (3.41)

Based on equation (3.41) and policy evaluation (3.29),

Qη(xt ,µ) = R(xt ,µ)+Qη−1(xt+1,uη)

≥ R(xt ,µ)+Qη(xt+1,uη)

= R(xt ,µ)+V η(xt+1)

≥ R(xt ,µ)+V ∗(xt+1)

= Q∗(xt ,µ)

(3.42)

Hence, Qη(xt ,µ) ≥ Qη+1(xt ,µ) ≥ Q∗(xt ,µ). The proof about part 1) of Theorem (4) is com-

pleted.

2) According to part 1) of Theorem (4), {Qη(xt ,µ)} is a non-increasing sequence and bounded

with Q∗(xt ,µ). For a non-increasing sequence, there exists a limitation, which can be presented

as Q∞(xt ,µ) , limη→∞ Qη(xt ,µ). The corresponding controller is g∞
t (xt) , limη→∞ Q∞(xt ,µ).

Moreover, {V η(xt)} is also a non-increasing sequence and the boundary is V ∗(xt). Let V ∞(xt),

limη→∞V η(xt).

Based on Theorem (2),
g∞

t (xt) = argmin
µ

Q∞(xt ,µ)

= argmin
µ

H(xt ,µ,V ∞)
(3.43)

Because g∞
t (xt) ∈U (X), H(xt ,µ,V ∞) = 0 (based on equation (3.24)). It clearly shows that the

value function V ∞ satisfies the HJB equations (3.23). Because of the unique solution of HJB

equations, V ∞ =V ∗. Based on policy evaluation (3.29),

Q∞(xt ,µ), lim
η→∞

Qη(xt ,µ)

= lim
η→∞

R(xt ,µ)+ lim
η→∞

Qη−1(xt+1,uη)

= R(xt ,µ)+Q∞(xt ,u∞)

= R(xt ,µ)+V ∞(xt+1)

= R(xt ,µ)+V ∗(xt+1)

= Q∗(xt ,µ)

(3.44)

Obviously, substitution of (3.44) into (3.43),

g∞
t (xt) = argmin

µ
Q∗(xt ,µ) = argmin

µ
H(xt ,µ,V ∗) = g∗t (xt)

The proof of part 2) is completed.

Chapter 3 Co-Design of Encoder and Controller Over Binary Symmetric Channels 43

Theorem (4) proves the convergence of proposed Q-learning algorithm. The Q-value function

is a non-increasing sequence and has the boundary Q∗. Similarity, the control policy can also

converge to g∗t .

The following is how to fix the optimal control g∗t . In general finite time horizon system, the

optimal control policies can be obtained by dynamic programming with the backward induction.

While it is impractical in application. Based on the optimality principle, the optimal control g∗t
can be expressed by Theorem 5

Theorem 5. With the fixed encoder, linear plant (3.1), memoryless noise channel (3.3), the

controller mapping (3.4), which can minimize the system performance (3.5), can be obtained by

the following recursive equation:

u∗t−1 = argmin
ut−1

Vt

Vt = E{(xT
t Dxt +uT

t−1Eut−1)| jt−1}+E{V ∗t+1| jt−1}
(3.45)

where t = 1,2, · · · ,T . Vt is the cost-to-go that summarised the instantly cost from t to T , and it

can be initialized as VT+1 = 0.

Proof. Based on equation (3.21), the optimal control policy is that minimizes the sum of future

cost can be formulated as

u∗t = argmin
ut−1

E{
T

∑
τ=t+1

(xT
τ Dxτ +uT

τ−1Euτ−1)| jt} (3.46)

let’s start from the terminal time step t = T , u∗T−1 can be formulated as

u∗T−1 = argmin
uT−1

E{(xT
T DxT +uT

T−1EuT−1)| jT−1} (3.47)

u∗T−1 can be rewritten as

u∗T−1 = argmin
uT−1

VT

VT = E{(xT
T DxT +uT

T−1EuT−1)| jT−1}+E{V ∗T+1| jT−1}
(3.48)

Since the cost-to-go VT+1 = 0,

VT =E{(xT
T DxT +uT

T−1EuT−1)| jT−1}

=E{(AxT−1 +BuT−1 + vT−1)
T D(AxT−1 +BuT−1 + vT−1)+uT

T−1EuT−1|JT−1}
(3.49)

The process noise vT−1 follows Gaussian distribution with mean 0. Hence, E{vT−1| jT−1} =
0. In addition, the co-variance of process noise can be represented as ΨT−1 = Tr(vT−1vT

T−1),

which is straightforward to expand to Ψt = Tr(vtvT
t). Obviously, it is independent with other

parameters of the system.

44 Chapter 3 Co-Design of Encoder and Controller Over Binary Symmetric Channels

The cost-to-go VT can be rewritten as

VT =E{xT
T−1AT DAxT−1 +2uT

T1
BT DAxT−1 +uT

T−1(E +BT DB)uT−1 +Tr(DΨT−1)| jT−1}

=E{xT
T−1AT DAxT−1 +2uT

T1
BT DAxT−1 +uT

T−1(E +BT DB)uT−1| jT−1}+Tr(DΨT−1)
(3.50)

Applied ∂VT
∂uT−1

= 0, u∗T−1 is

u∗T−1 =−(BT DB+E)−1BT DAE{xT−1| jT−1}

=−(BT DB+E)−1BT DAx̂T−1
(3.51)

where x̂T−1 = E{xT−1| jT−1} is the estimation of xT−1. Then, substituting u∗T−1 to VT , the opti-

mal cost-to-go V ∗T is

V ∗T =Tr(DΨT−1)+E{xT
T−1AT DAxT−1−2x̂T

T−1AT DB(BT DB+E)−1BT DAxT−1

+ x̂T
T−1AT DB(BT DB+E)−1BT DAx̂T−1| jT−1}

=Tr(DΨT−1)+E{xT
T−1(A

T DA−AT DB(BT DB+E)−1BT DA)xT−1| jT−1}

+E{x̃T
T−1AT DB(BT DB+E)−1BT DAx̃T−1| jT−1}

(3.52)

where x̃T−1 = xT−1− x̂T−1 = xT−1−E{xt | jt}.

Note that (BT DB+E)−1 can be calculated by pseudo-inverse. The optimal cost-to-go VT can be

rewritten as
V ∗T = E{xT

T−1I1xT−1 +ϖ1| jT−1}

I1 , AT DA−π1

π1 , AT DB(E +BT DB)−1BT DA

ϖ1 , Tr(DΨT−1)+E{x̃T
T−1π1x̃T−1| jT−1}

(3.53)

Similarly, we can obtain the optimal control u∗T−2 at time t = T −1 is

u∗T−2 = argmin
uT−2

VT−1

= argmin
uT−2

E{xT
T−1DxT−1 +uT

T−2EuT−2| jT−2}+E{V ∗T | jT−2}
(3.54)

Hence, it can be expended to general case that u∗t−1 is

u∗t−1 = argmin
ut−1

Vt

= argmin
ut−1

E{xT
t Dxt +uT

t−1Eut−1| jt−1}+E{V ∗t+1| jt−1}
(3.55)

Note that the cost-to-go at t = 0 is V1 = E{Jtot}. This proof is completed.

It is worth to point out that the optimal control in Theorem (5) can’t be solved efficiently, because

of huge computation. To given an efficiently analysis, a virtual help-system is built, which is

Chapter 3 Co-Design of Encoder and Controller Over Binary Symmetric Channels 45

named open-loop encoder system (Tatikonda et al. [2004], Nair et al. [2007], Aoki [1967], Lei

et al. [2011]).

Plant Sensor
Open-loop
Encoder
y𝑓#̅ (𝑦#& , 𝑧#)

𝑥# 𝑦# 𝑖#

𝑗#
𝑢#

Channel

𝑣# 𝑒#

𝜆#(𝑢1#23)

Controller
𝑔#(𝑗#)

−

𝑦#&

𝑧# = 𝑗1#23

FIGURE 3.5: Closed-loop control system with open-loop encoder and side information from
controller to encoder.

In open-loop encoder system, the input of the encoder is part of the measurement value yt , where

all effects of control commands are removed. Base on Fig 3.5,

ȳt = yt −λt(ut−1
0) (3.56)

where ut−1
0 is the previous control command set, such as ut−1

0 = [u0,u1, · · · ,ut−1]. λt(ut−1
0) is

the information of controller, which can be defined as

ȳt = yt −
t−1

∑
τ=0

CAt−1−τBuτ

=Cxt + et −
t−1

∑
τ=0

CAt−1−τBuτ

=C(Axt−1 +But−1 + vt−1)+ et −
t−1

∑
τ=0

CAt−1−τBuτ

=CAtx0 +
t−1

∑
τ=0

CAt−1−τvτ + et

(3.57)

It is clearly shown that ȳt is only affected by x0, [v0,v1, · · · ,vt−1], et , which is independent with

control commands. In addition, side information from controller to encoder is given, where

zt = jt−1
0 = [j0, j1, · · · , jt−1]. The open-loop encoder mapping f̄t is

it = f̄t(ȳt ,zt) (3.58)

where i0 = f̄0(ȳ0).

In the open-loop encoder system, the open-loop encoder mapping f̄t and same controller map-

ping ut = gt(jt) with system in Fig. 3.1, t = 1,2, · · · ,T −1, can be determined with same system

46 Chapter 3 Co-Design of Encoder and Controller Over Binary Symmetric Channels

performance in Fig. 3.1. With same controller mappings and same design purpose, the open-

loop encoder mapping f̄t(ȳt ,zt) is same with the encoder mapping ft(yt) in Fig. 3.1, which can

be formulated as

ft(yt) = f̄t(ȳt ,zt) (3.59)

The formula is established because the property of iterative design. With fixed controller, the

information constructed by ȳt ,zt equals to yt . Hence, the open-loop encoder system is very

helpful to analysis the proposed system optimization in this Chapter.

Theorem 6. With the optimized solution of the proposed system { f ∗t (yt),g∗t } from time t = 0 to

T−1, the open-loop encoder system can also be specified by the proposed optimization solution,

named f̄t(ȳt ,zt) = f ∗t (yt).

Proof. Based on proofs by contradiction, we assume that { f ∗t (yt),g∗t }, t = 0,1, · · · ,T −1 is not

a solution of open-loop encoder system. Hence, there are other encoder controller mappings

that can minimize the system performance. That is to say ∃{ f̄t(ȳt ,zt),g∗t }, t = 0,1, · · · ,T −1,

min
{ f̄t(ȳt ,zt),g∗t }

E{Jtot} ≤ min
{ f ∗t (yt),g∗t }

E{Jtot} (3.60)

However, it is given that { f ∗t (yt),g∗t } from time t = 0 to T −1 is the optimal solutions, and the

minimal system cost E{Jtot} can be obtained. Since the proposed system have same system

performance criteria E{Jtot}, the assumption is false. Obviously,

f̄t(ȳt ,zt) = f ∗t (yt) (3.61)

The proof is completed.

Similarly, if { f̄t
∗
(ȳt ,zt),g∗t (jt)}, t = 0,1, · · · ,T −1 is the optimal solution of open-loop encoder

system, the optimal solution of proposed system is the same controller g∗t (jt), t = 0,1, · · · ,T −1

and f ∗t (yt), t = 0,1, · · · ,T −1. Based on Theorem 6, f̄t
∗
(ȳt ,zt) = ft(yt).

Theorem 6 indicates that the solution of proposed system can be specified by the open-loop

encoder system and vice versa. It is relatively easy to analysis the open-loop encoder system.

Furthermore, the output of the encoder it , with fixed controller, is independent with the control

commands.

it = f̄t(ȳt , j0, j1, · · · , jt−1)

where ȳt is independent with ut and jt is only determined by it .

Theorem 7. The open-loop encoder system is considered in Fig. 3.5. Assuming the open-loop

encoder f̄t(ȳt ,zt), t = 0,1, · · · ,T −1 is fixed. Given the linear plant (3.1), the memoryless chan-

nel (3.3), the controller ut = gt(jt) that can minimize the system performance (3.5) is given

by

ut = kt x̂t (3.62)

Chapter 3 Co-Design of Encoder and Controller Over Binary Symmetric Channels 47

where x̂t = E{xt | jt}.

kt =−(E +BT (D+ IT−t−1)B)−1BT (D+ IT−t−1)A

IT−t−1 , AT (D+ IT−t−2)A−πT−t−1

πT−t−1 , AT (D+ IT−t−2)B(E +BT (D+ IT−t−2)B)−1BT (D+ IT−t−2)A

(3.63)

where the initial condition I1 = AT DA−AT DB(E +BT DB)−1BT DA.

The optimal cost-to-go Vt+1 is

V ∗t+1 = E{xT
t IT−txt +ϖT−t | jt}

IT−t , AT (D+ IT−t−1)A−πT−t

πT−t , AT (D+ IT−t−1)B(E +BT (D+ IT−t−1)B)−1BT (D+ IT−t−1)A

ϖT−t , ϖT−t−1 +Tr{(D+ IT−t−1)Ψt}+E{x̃T
t πT−t x̃t | jt}

(3.64)

Proof. With the fixed open-loop encoder mappings f̄t(ȳt ,zt), t = 0,1, · · · ,T − 1, it can be de-

duced that the state error x̃t is independent with the control commands ut , t = 0,1, · · · ,T − 1,

which can be derived by

x̃t = xt − x̂t

= Atx0 +
t−1

∑
τ=0

At−1−τvτ −E{Atx0 +
t−1

∑
τ=0

At−1−τvτ | jt}
(3.65)

It is clearly shown that x̃t is only affected by {x0,vτ , jt}. In addition, jt is determined by it , it
can be obtained by f̄t(ȳt ,zt), which has no relation with ut . Hence, the conclusion is that the

estimation error x̃t with fixed open-loop encoder mapping is independent with ut . This process

can considerably simplify the optimal controller derivation.

Based on the proof of Theorem 5, we have already given uT−1. Obviously, x̃T−1 is independent

with uT−2, which means ∂ϖ1
∂uT−2

= 0. Based on equation (3.53) and (3.54) in Theorem 5,

VT−1 = E{xT
T−1DxT−1 +uT

T−2EuT−2| jT−2}+E{V ∗T | jT−2} (3.66)

The optimal controller u∗T−2 = argminuT−2 VT−1 can be obtained by ∂VT−1
∂uT−2

= 0,

u∗T−2 = kT−2x̂T−2

kT−2 =−(E +BT (D+ I1)B)−1BT (D+ I1)A
(3.67)

48 Chapter 3 Co-Design of Encoder and Controller Over Binary Symmetric Channels

Substituting the optimal control u∗T−2 to equation (3.66), V ∗T−1 is

V ∗T−1 = E{xT
T−2I2xT−2 +ϖ2| jT−2}

I2 , AT (D+ I1)A−π2

π2 , AT (D+ I1)B(E +BT (D+ I1)B)−1BT (D+ I1)A

ϖ2 , ϖ1 +Tr{(D+ I1)ΨT−2}+E{x̃T
T−2π2x̃T−2| jT−2}

(3.68)

where I1, π1, ϖ1 has already been given in Theorem 5.

For general case, let’s proof u∗t . First of all, assuming u∗t+1 satisfied. Furthermore, u∗T−1 and

u∗T−2 have already been proven. Based on Theorem 5,

u∗t = argmin
ut

E{xT
t+1DxT+1 +uT

t Eut +V ∗t+2| jt} (3.69)

Based on equation (3.68), the optimal cost-to-go E{V ∗t+2| jt+1} can be written as

V ∗t+2 = E{xT
t+1IT−t−1xt+1 +ϖT−t−1| jt+1}

IT−t−1 , AT (D+ IT−t−2)A−πT−t−1

πT−t−1 , AT (D+ IT−t−2)B(E +BT (D+ IT−t−2)B)−1BT (D+ IT−t−2)A

ϖT−t−1 , ϖT−t−2 +Tr{(D+ IT−t−2)Ψt+1}+E{x̃T
t+1πT−t−1x̃t+1| jt+1}

(3.70)

It has been proven that the E{x̃T
t+1πT−t−1x̃t+1| jt+1} is not a function of ut . Hence, ut can be

expressed as

u∗t = argmin
ut

E{xT
t+1Dxt+1 +uT

t Eut + xT
t+1IT−t−1xt+1| jt} (3.71)

Based on the optimality principle, the optimal control u∗t is

ut = kt x̂t

kt =−(E +BT (D+ IT−t−1)B)−1BT (D+ IT−t−1)A
(3.72)

Substituting u∗t to Vt+1, the optimal cost-to-go V ∗t+1 is

V ∗t+1 = E{xT
t IT−txt +ϖT−t | jt}

IT−t , AT (D+ IT−t−1)A−πT−t

πT−t , AT (D+ IT−t−1)B(E +BT (D+ IT−t−1)B)−1BT (D+ IT−t−1)A

ϖT−t , ϖT−t−1 +Tr{(D+ IT−t−1)Ψt}+E{x̃T
t πT−t x̃t | jt}

(3.73)

The proof is completed.

Chapter 3 Co-Design of Encoder and Controller Over Binary Symmetric Channels 49

The optimal cost-to-go V1 at t = 0 equals to the system performance E{Jtot}. Based on Theo-

rem 7,
E{Jtot}=V1

= xT
0 IT x0 +

T−1

∑
t=0

Tr{(D+ IT−t)Ψt}+
T−1

∑
t=0

E{x̃T
t πT−t x̃t | jt}

(3.74)

It is worth to point out that the solution of equation (3.74) can be calculated, which can be

the criteria of the encoder and controller design by Q-learning. Furthermore, it is clearly from

equation (3.73) that it only have an influence on the term E{x̃T
t πT−t x̃t | jt} in the cost-to-go Vt+1.

Hence, the conclusion is that the open-loop encoder mapping f̄t can be obtained by

it = argmin
i
E{x̃T

t πT−t x̃t | jt} (3.75)

where ut = kt x̂t is the fixed controller mapping.

3.4.3 Q-Learning Design Process

For linear quadratic regulator (LQR) problem of system (3.1) with cost function (3.5), the opti-

mal Q-function can be given by

Q∗(x̂t ,u) =

[
x̂t

u

]T

G

[
x̂t

u

]

=

[
x̂t

u

]T [
Gxx Gxu

Gux Guu

][
x̂t

u

] (3.76)

where Q∗ represents the optimal value, x̂t is the estimate of xt obtained by decoding jt to x̂t .

G≤ 0 can be viewed as a kernel matrix.

Applying ∂Q(x̂t ,u)
∂ut

= 0 to equation (3.76) yields

ut =−G−1
uu Guxx̂t (3.77)

In standard LQR problem, the kernel matrix G can be calculated by system parameters. How-

ever, if the kernel matrix G can be estimated online without knowing system parameters, the op-

timal control policy can obtained straightforward. Specifically, Q-value function can be rewrit-

ten as

Q(x̂t ,ut) =W T
φ(x̂t ,ut) (3.78)

where W is a vector and it collects the upper triangle or lower triangle of symmetric matrix G.

Hence, W has the (n+m)∗ (n+m+1)/2 elements with x̂t ∈ Rn, u ∈ Rm. φ is the dense basis

set and composed by quadratic terms of x̂t and ut . Similarly, there are (n+m) ∗ (n+m+ 1)/2

50 Chapter 3 Co-Design of Encoder and Controller Over Binary Symmetric Channels

independent elements in the dense basis. The basis function matrix is

x̂2
1 x̂1x̂2 · · · x̂1u1 · · · x̂1um

x̂2x̂1 x̂2
2 · · · x̂2u1 · · · x̂2um

...
...

. . .
...

. . .
...

x̂nx̂1 · · · x̂2
n x̂nu1 · · · x̂num

u1x̂1 u1x̂2 · · · u2
1 · · · u1um

...
...

. . .
...

. . .
...

umx̂1 umx̂2 · · · x̂num · · · u2
m


(3.79)

Letting the basis function is

φ(x̂t ,ut) = [x̂2
1 x̂1x̂2 · · · x̂1u1 · · · x̂1um

x̂2
2 · · · x̂2u1 · · · u2

m]
′

(3.80)

and weight sequence W is

Wη = [Gη

1,1 Gη

1,2 Gη

1,3 · · · Gη

1,n+m Gη

2,2

· · · Gη

2,n+m · · · Gη

n+m,n+m]
′

(3.81)

where Gη

1,1 is the element (1,1) of matrix G with on η th iteration.

Based on policy evaluation (3.29) , the updating equation for W is

W T
(η+1,t)φ(x̂t ,ut , t) = r+W T

(η ,t)φ(x̂t+1,ut+1, t) (3.82)

where r = xT
t Dtxt +uT

t Etut is the reward, η is the iterative number; W(η ,t) represents the weight

vector in the η th iteration. Note that ut = kt ∗ x̂t and ut+1 = kt ∗ x̂t+1.

Obviously, the updating equation (3.82) is a recursive equation, where W(η+1,t) is the only un-

known parameter in the η th iteration at time t. Recursive least squares (RLS) method can be

used to obtain W(η+1,t), and then the Riccati matrix G can be derived from the weight sequence

W . Once the Riccati matrix is available, the optimized control policy can be obtained simply.

The controller design process with memoryless, memory encoder and predictive encoder are

same and is given by in Fig. 3.6. There are three loops in this design process, the dense basis

vector is defined as a three dimensional matrix, namely, φ(x̂t ,ut , t). This loop is for data col-

lecting with t = t + 1. Dense basis vector can be calculated for all time step. The middle loop

l = l+1, W(η+1,t) is updated by RLS method, which can be regarded as online learning process.

In finite time horizon case, the optimal control policy from t = 0 to T −1 is optimized separately

and repeat to run the system. Hence, the weight sequence W updates independently at each time

t with the iteration. Finally, the optimized control policy k0,k1, · · · ,kT−1 can be got and each of

xiaoru
高亮

Chapter 3 Co-Design of Encoder and Controller Over Binary Symmetric Channels 51

Initialize 𝑤"

Based on optimized encoder mapping
collect data 𝑥4, 𝑥64,𝑢4, 𝑥489, 𝑥6489,𝑢489

Calculate basic vector 𝜑(𝑥64,𝑢4, 𝑡),
𝜑(𝑥6489,𝑢489, 𝑡 + 1), 𝑟4 = 	𝑥4B𝐷4𝑥4 + 𝑢4B𝐸4𝑢4

Update𝑤",𝑤9,⋯ ,𝑤BG9
by using equation (3.82)

End

𝑡 = 𝑡 + 1

𝑥" =𝑋"(: , 𝑙)
𝑙 = 𝑙 + 1

Update control policy
𝑘", 𝑘9,⋯ , 𝑘BG9

𝜂 = 𝜂 + 1

No

Yes

|| ∑ ((𝑘4)W	−(𝑘4)WG9)BG9
4Y" || < 𝜖

FIGURE 3.6: The controller design process by Q-learning method

them are close to the optimal controller calculated with open-loop encoder system (Theorem 7).

Compared with Zhao et al. [2015, 2014] using time-dependent basis function, the design com-

plexity of the proposed controller optimization decreases a lot. Because time-dependent factor

is very difficult to determine, trail-error method is utilized in Zhao et al. [2015, 2014].

3.5 Iterative Encoder-Controller Design

Based on the results presented in Section 3.3 and Section 3.4, an iterative training algorithm is

introduced in this section to obtain a pair of optimized encoder and controller that can minimize

the expected overall cost. Both memoryless and memory encoder design are utilized online and

model-free learning method to optimize, while the method used in predictive encoder design is

offline and model-based.

These three encoder design methods are similar with the only different about reward calcula-

tion. The iterative design process is also similar and is given by Fig 3.7. First of all, all the

encoder mappings f0, f1, · · · , fT−1 are optimized with fixed controller mappings g0, g1, · · · ,
gT−1. Then, the controller mapping is calculated based on these optimized encoder mappings.

52 Chapter 3 Co-Design of Encoder and Controller Over Binary Symmetric Channels

𝜂 = 1

Update encodermapping vector
𝑓3 ,𝑓5 ,⋯⋯ , 𝑓785 	by	using	the	flow

	chart	shown	in	Fig.3.4

Update controller mapping vector
𝑔3, 𝑔5,⋯⋯ ,𝑔785 	by	using	the	optimal	

encoder	mapping	vector	and	the	controller	
design	method	introduced	in Fig. 3.6

Computer 𝐸I{𝐽LML}

∥ 𝐸I{𝐽LML} − 𝐸I85{𝐽LML} ∥	< ℇ

End
Yes

𝜂 = 𝜂 + 1

Inisalize	𝑋3 and all controller mappings

No

FIGURE 3.7: The flow chart of iterative encoder and controller design by Q-learning

Finally, the expected overall cost are calculated by the optimized encoder mappings and con-

troller mappings. Note that the encoder mapping ft of predictive encoder should be determined

with future information, which mean the encoder mapping ft+1, ft+2, · · · , fT−1 need to be fixed

in advanced.

The expected overall cost is Eη{Jtot = ∑
T−1
t=0 xT

t+1Vtxt+1 + uT
t Rtut}, which can be calculated by

Montecarlo method with the optimized encoder-controller mappings. The algorithm is termi-

nated when the error between Eη{Jtot} and Eη−1{Jtot} is small enough, that is there is no

improvement in the system performance.

3.6 Convergence Analysis

For open-loop encoder system, the iterative design is convergence, because the controller is

always optimal with any open-loop encoder mapping f̄t . More specifically, the optimal con-

troller mapping can be obtained in open-loop control system, the system performance should be

improved or stable with an updated encoder. So that the design of open-loop encoder system

Chapter 3 Co-Design of Encoder and Controller Over Binary Symmetric Channels 53

trends to converge. It has been proven that the open-loop encoder system with side-information

is equivalent to the proposed system. Hence, the design by Q-learning can converge.

The optimal controller can converge to the optimal controller obtained in open-loop encoder

system and the minimized system performance by Q-learning technique are very close to the

minimal system cost calculated by open-loop encoder system. While it is the common conver-

gence analysis about vector quantization or related problems based on iterative design, where

the system is divided and one component is update, others are fixed Gersho and Gray [2012],

Farvardin [1990], Sabin and Gray [1986]. However, only local optimal result can be reached. It

is difficult to say global optimal Sabin and Gray [1986].

3.7 Numerical Results

The system parameters for simulation are A =

[
0.99 0.3

0.8 −0.7

]
, B = I2 and C = I2. The weighting

matrices in JT are E = 0.1I2 and D = 4I2. The initial state x0, process noiseet and measure-

ment noise et follow Gaussian distribution with mean 0 and variance

[
10

10

]
,

[
1e−5

1e−5

]
,

[
1e−5

1e−5

]
,

respectively.

Because of low rate noisy channel, the transmission rate used for simulation is ρ = 2. The

number of binary codeword is 2ρ = 4, which are
[
0 0

]
,
[
0 1

]
,
[
1 0

]
and

[
1 1

]
. For

second order system, there are 2ρn = 16 encoder indexes and the corresponding binary codeword

matrix b is

b =


0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1


Hence, there are 16 encoder regions Si(yt) for all set of yt and each region has its corresponding

binary codeword which are the column of matrix b.

For all simulation, the sample size L is 3000 and the algorithm stop accuracy is set as ε = 10−5.

The size of Q(yt , it , t) is L∗ (2ρn)∗T , named 3000∗16∗T , T is the finite time horizon.

3.7.1 Encoder Design

The optimized encoder mappings by memoryless encoder design, memory encoder design and

predictive encoder design are similar. The analysis of memoryless encoder design is given and

the other two are omitted. Since the encoder is specified by the encoder regions.

Fig. 3.8 shows the optimized encoder mappings from t = 1 to t = 6. Each region of each figure

corresponds to one column of binary codeword matrix b, such as b(:,1) =
[
0 0 0 0

]T
. It

54 Chapter 3 Co-Design of Encoder and Controller Over Binary Symmetric Channels

is clearly to show that the boundary of each region is similar from t = 3 to t = 6. Since yt is

two dimensional vector yt =
[
y1 y2

]T
, these two axises are y1 and y2. For horizon axis y1 and

vertical axis y2 means two elements of yt .

-10 0 10

t = 1

-10

-5

0

5

10

-10 0 10

t = 2

-10

-5

0

5

10

-10 0 10

t = 3

-10

-5

0

5

10

-10 0 10

t = 4

-10

-5

0

5

10

-10 0 10

t = 5

-10

-5

0

5

10

-10 0 10

t = 6

-10

-5

0

5

10

y
1

y
2

FIGURE 3.8: The optimized encoder regions with the crossover probability p = 0.02 over time
interval from t = 1 to t = 6.

Fig. 3.9 shows the encoder regions of open-loop encoder system, which is the optimized encoder

regions with the crossover probability p = 0.02 at t = 1. It is clearly shown that this encoder re-

gion bounds are quite similar with Fig. 3.8. In open-loop encoder system, the encoder mappings

can be viewed as optimal result, since the controller mapping is already optimal. Hence, the

achieved open-loop encoder mapping can be as a criterion for encoder optimization component

by Q-learning.

Fig. 3.10 illustrates the evolution of Q-value with randomly choosing one state-action pair (yt , it)

from each encoder region at t = 1. Because of 16 encoder regions, the evolution of 16 state-

action pairs (yt , it) are plotted in this figure. The horizon axis is episode η and the vertical axis

is Q-value. For each state-action pair, the Q-value tends to stable and converges to a fixed value.

Other pairs have a similar convergence.

Chapter 3 Co-Design of Encoder and Controller Over Binary Symmetric Channels 55

-10 -5 0 5 10

Y
1

-10

-8

-6

-4

-2

0

2

4

6

8

10

Y
2

Encoder region S
1

Encoder region S
2

Encoder region S
3

Encoder region S
4

Encoder region S
5

Encoder region S
6

Encoder region S
7

Encoder region S
8

Encoder region S
9

Encoder region S
10

Encoder region S
11

Encoder region S
12

Encoder region S
13

Encoder region S
14

Encoder region S
15

Encoder region S
16

FIGURE 3.9: The optimized encoder regions of open-loop encoder system with the crossover
probability p = 0.02 at t = 1.

3.7.2 Controller Design

In controller design, the basis function is

φ(x̂,u) = [x̂2
1 x̂1 ∗ x̂2 x̂1 ∗u1 x̂1 ∗u2 x̂2

2 x̂2 ∗u1

x̂2 ∗u2 u2
1 u1 ∗u2 u2

2]

The optimal controller design is conducted based on the obtained optimal encoder mapping. The

optimized control gain can be obtained by Q-learning method. In this simulation, K is a 2 ∗ 2

matrix, which are

Kt =

[
Kt(1,1) Kt(1,2)

Kt(2,1) Kt(2,2)

]
In Fig. 3.11, there are three figures, which represent the evolution of control gain with different

system time t. The optimized control gain obtained by Q-learning are close to the result Kt =[
−0.9666 −0.2931

−0.7806 0.1832

]
calculated with open-loop encoder system.

Fig. 3.12 illustrates the weight sequence W . Based on the system utilized in the simulation, the

size of weight sequence W is 10∗1 at each time step, which is

Wt = [Wt(1) Wt(2) Wt(3) Wt(4) Wt(5) Wt(6) Wt(7)

Wt(8) Wt(9) Wt(10)]′

xiaoru
高亮

56 Chapter 3 Co-Design of Encoder and Controller Over Binary Symmetric Channels

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

200

250
Q

-V
a
lu

e
Q([-0.2 0.76] , 1)

Q([-3.1 -1.6] , 2)

Q([-4.4 -5.7] , 3)

Q([-5.1 2.8] , 4)

Q([0.5 2.7] , 5)

Q([-0.3 0.6] , 6)

Q([-1.9 -2.9] , 7)

Q([-0.4 5.1] , 8)

Q([1.7 0.5] , 9)

Q([1.8 2.9] , 10)

Q([0.6 -0.7] , 11)

Q([0.5 1.7] , 12)

Q([4.5 3.4] , 13)

Q([2.4 -2.9] , 14)

Q([1.6 -4.3] , 15)

Q([2.8 3.4] , 16)

FIGURE 3.10: Randomly choose one state action pair (yt , it) from 16 encoder regions and plot
its Q-value evolutions at t = 1 with the crossover probability p = 0.02(memoryless encoder).

Fig. 3.12 plots 10 elements evolution with system iteration. These three figures mean that the

finite time horizon T = 3. From Fig. 3.11, the elements of weight sequence can converge to the

solution of open-loop encoder system.

3.7.3 Iterative Design

For iterative design component, the evolution of the expected overall cost with different cross

over probability p for various encoder policies are shown in Fig. 3.13. It is assumed that the

crossover probability 0 ≤ p ≤ 0.5. If p > 0.5, then the receiver can swap the output (interpret

1 when it sees 0, and vice versa) and obtain an equivalent channel with crossover probability

1− p≤ 0.5.

The expected overall cost E(Jtot) is calculated based on the optimized encoder and controller

mappings after the iteration loop, and the comparison results are depicted in Fig 3.13. In this

figure, the horizon axis is crossover probability p of communication channel, and the vertical

axis is the expected overall cost E{Jtot}. The system performance has an rising trend with

xiaoru
高亮

Chapter 3 Co-Design of Encoder and Controller Over Binary Symmetric Channels 57

0 500 1000 1500
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

C
o

n
tr

o
l

G
a

in
 K

K
1
(1,1)

K
1
(1,2)

K
1
(2,1)

K
1
(2,2)

0 500 1000 1500
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

K
2
(1,1)

K
2
(1,2)

K
2
(2,1)

K
2
(2,2)

0 500 1000 1500
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

K
3
(1,1)

K
3
(1,2)

K
3
(2,1)

K
3
(2,2)

FIGURE 3.11: The evolution of control gain with crossover probability p = 0.02

0 1000 2000
-2

0

2

4

6

8

10

W
e

ig
h

t
S

e
q

u
e

n
c

e
 W

W
1
(1)

W
1
(2)

W
1
(3)

W
1
(4)

W
1
(5)

W
1
(6)

W
1
(7)

W
1
(8)

W
1
(9)

W
1
(10)

0 1000 2000
-2

0

2

4

6

8

10
W

2
(1)

W
2
(2)

W
2
(3)

W
2
(4)

W
2
(5)

W
2
(6)

W
2
(7)

W
2
(8)

W
2
(9)

W
2
(10)

0 1000 2000
-2

0

2

4

6

8

10
W

3
(1)

W
3
(2)

W
3
(3)

W
3
(4)

W
3
(5)

W
3
(6)

W
3
(7)

W
3
(8)

W
3
(9)

W
3
(10)

FIGURE 3.12: The evolution of weight sequence W with crossover probability p = 0.02

58 Chapter 3 Co-Design of Encoder and Controller Over Binary Symmetric Channels

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Crossover Probability P

50

100

150

200

250

300

350

400

450

500

550
E

{J
to

t}

Co-design with predictive encoder

Co-design with memoryless encoder

Co-design with memory encoder

Co-design by [7]

Co-design with open-loop encoder system

FIGURE 3.13: Performance Comparison

0 5 10 15 20 25 30

Time (t)

-1

-0.5

0

0.5

X

X
1

X
2

FIGURE 3.14: The closed loop trajectories of system state x(t) obtained by Q-learning method
with memoryless encoder strategy.

Chapter 3 Co-Design of Encoder and Controller Over Binary Symmetric Channels 59

the crossover probability increasing. Obviously, the system performance of the proposed co-

design (solid line) is better than that of Lei et al. [2011](dash line). However, the orange dash

line with triangle in the figure represents the overall expected cost of open-loop encoder sys-

tem, which is calculated by equation (3.74). Undoubtedly, this is the best result. Because the

crossover probability has a very little impaction about these terms of equation (3.74), xT
0 IT x0 and

∑
T−1
t=0 Tr{(D+ IT−t)Ψt}. Furthermore, the ∑

T−1
t=0 E{x̃T

t πT−t x̃t | jt} which determines the encoder

optimization, is also little affected by crossover probability, because πT−t is determined by sys-

tem parameters. Hence, model-based method has advantages when the crossover probability

increases large.

While the system performance obtained by these three encoder strategies are very close. In

particular, the expected overall cost with predictive encoder is better than others, since model

information is utilized. To sum up, memoryless encoder design method is the better than two

others, since model-free and computation reduction.

Fig. 3.14 shows the closed-loop trajectories of system state and control signal with memoryless

encoder strategy. It can be seen that both the system states finally converge to zero.

3.8 Conclusions

In this chapter, the co-design problem of encoder and controller for feedback control systems

over BSC has been considered. An iterative design based on Q-learning has been proposed to

obtain a pair of encoder and controller that can optimize a finite-horizon cost function. Three

encoder strategies have been considered in this chapter, and theoretical analysis and simulation

results have shown the merits of the proposed method.

Chapter 4

Co-Design of Encoder and Controller
for Feedback Control Systems Over
Gaussian Channels Using Q-Learning

This chapter illustrates encoder and controller design problem with infinite communication

channel outputs, which is the main difference with Chapter 3. The challenge is that the trained

encoder-controller can no longer be implemented as a simple look-up table. Since the infinite-

channel outputs mainly affect the controller design, three types of controller are considered.

Hence, soft-information based controller design, hard-information based controller design and

the combination of soft-hard information based controller design are studied.

4.1 Introduction

In Chapter 3, co-design encoder and controller over BSC is introduced, where the channels have

finite input and output. Finite input and output means the alphabet is finite. There are some in-

finite channels output in practical, which can be regarded as continuous channel output. Hence,

we investigate how to design encoder and controller system with infinite channel output. More

specifically, we study a problem about the optimization of encoder and controller mappings

affected by infinite channel output. The system model is same with Chapter 3.

Gaussian channel is a typical representative, which has the continuous channel output. In com-

munication theory, Gaussian channel is a very common channel model, such as adding additive

Gaussian noise on digital signals. Furthermore, it can provide structural and functional insights

of the solution, by means of instructive and relatively simple calculation.

The rest of this chapter is organized as follows. Section 4.2 describes the extended system

model, where the Gaussian channel is utilized in the system to generate the infinite output chan-

nels. Then, three controller design methods are given in Section 4.3, which are soft-controller

61

62 Chapter 4 Co-Design of Encoder and Controller Over Gaussian Channels

design, hard-controller design and combined soft-hard controller design. In this chapter, soft

channel output is viewed as a real-valued channel output. While a hard channel output to an

integer-valued channel output, which is similar to BSC. After that, there is a brief introduction

about encoder design, since encoder design is similar as Chapter 3. Section 4.4 presents the iter-

ative design of encoder and controller. Finally, simulations are given to demonstrate the system

performance with three controller strategies.

4.2 Preliminaries

In this section, we first introduce a general feedback control system with encoder and controller

over Gaussian channels in Section 4.2.1, which is an extended version of the control system

described in Chapter 3. The main difference is infinite-output channels considered in this chap-

ter. It is worth to point out that infinite-output channels can be viewed as a special case of

finite-output channels where the output alphabet is infinite, or even uncountable. Other system

components are same with the system introduced in Chapter 3 where more descriptions can be

found. In Section 4.2.2, the design problem is formulated. The design purpose is to find the

optimal encoder and controller policies so as to minimize the expected system performance.

4.2.1 System Model

In the most general case, we consider a control system with a communication channel as de-

picted in Fig 4.1. Consider a multi-variable linear plant (same as the linear plant in Fig 3.1).

The system state-space equation is

xt+1 = Axt +But + vt

yt =Cxt + et

(4.1)

where x ∈ Rn, u ∈ Rm, y ∈ Rp are the state, the control and the measurement, respectively. The

matrix (A,B) is controllable and (A,C) is observable. vt and et are process noise and measure-

ment noise, which are independent and identically distributed. Furthermore, the initial state x0,

vt and et are assumed as Gaussian distribution with mean zero.

The encoder is a mapping from the various measurement values yt to a discrete set of symbols.

The index of each symbol is represented by it , it ∈I = {1,2, · · · , I}, I ∈ N, where I is a integer

index. It has already given that I is determined by the transmission rate ρ as ρ = log2 I. The

encoder mapping ft is expressed as

it = ft(yt) (4.2)

These discrete symbols are transmitted through channels, and then picked up by the controller.

Due to the noise or other factors, the picked symbol may not be the same as the original one,

and this is described by the following channel mapping function.

Chapter 4 Co-Design of Encoder and Controller Over Gaussian Channels 63

Plant Sensor Encoder

Controller

𝑥" 𝑦" 𝑖"

𝑗"𝑢"

GC

𝑣" 𝑒"

FIGURE 4.1: A general feedback control system over Gaussian channels (GC).

The discrete index it is then mapped into codewords bt with ρ bits.

[b[ρ]t (it),b
[ρ−1]
t (it), · · · ,b[κ]t (it), · · · ,b[1]t (it)] (4.3)

where b[κ]t (it),κ ∈ {1,2, · · · ,ρ}, represents one codeword.The subscript t represents that the

codeword vector b is time-varying. The superscript κ in the square bracket indicates that the

bit is the κ th element of the vector bt . In the round bracket, it describes that the codeword bt

depends on it .

The codewords bt are sent over the channel to the real-valued vector ht , defined as

ht = Gt(bt) (4.4)

where Gt is a random memoryless mapping. Since ht is obtained from bt , this mapping is

independent with past events. The main difference with Chapter 3 is the real-valued channel

output of Gaussian channel, ht is a real-valued vector with ht ∈ Rρ .

After Gaussian channel, a real-valued output vector ht is produced. The κ th element of ht is

defined as

h[κ]t = b[κ]t +w[κ]
t (4.5)

The additive noise w[κ]
t is independent and identically distributed, with zero mean Gaussian.

The variance is time-invariant σ2
w. Obviously, the channel has finite channel input and infinite

channel output.

After these processes, the channel output ht are coded to ĥt , which is a decoder process. The

codewords ĥt is mapped into a so-called received index jt ∈J = {1,2, · · · ,J},J ∈N, which has

the same finite alphabet with it . The channel is characterized by the additive noise, and output

of channel is affected by Gaussian channel variance σ2
w.

The Gaussian channel is the most important continuous alphabet channel, modelling a wide

range of communication channels. In general, a real-valued channel outputs are defined as a soft

channel output [Knagenhjelm and Agrell, 1996, Skoglund, 1999] and an integer-valued channel

xiaoru
高亮

64 Chapter 4 Co-Design of Encoder and Controller Over Gaussian Channels

outputs are referred to as a hard channel output. Hence, the soft controller refers to the controller

designed with real-valued channel outputs and obviously the hard controller utilizes the integer-

valued channel outputs. In addition, a combined soft-hard channel outputs are also considered

by the controller design, which means hard information is utilized to decode real-valued ht to

codeword ĥt and the Hadamard matrix decodes ĥt to jt .

The controller picks up the channel output jt , and then generates control signal ut , namely

ut = gt(jt) (4.6)

Note that the control command ut is completely determined by the channel outputs.

4.2.2 Problem Statement

The design objective is to find a pair of encoder mapping f ?t and controller mapping g?t that can

optimize the following cost function,

E{Jtot}, E{
T−1

∑
t=0

(xT
t+1Dxt+1 +uT

t Eut)} (4.7)

where matrix D and E are weight sequence of state and control and are symmetric and positive

definite.

4.3 Controller Design

In the proposed system, the controller can only utilize the information after wireless communi-

cation channel, in which the information loss happens. The information loss process is invertible

and affects the system performance. How to design the controller to minimize the system ex-

pected cost is considered in this section. What’s more, low transmission rate is considered to

overcome time delay. The objective of this section is to find controller mappings with optimized

encoder such that expected overall linear quadratic cost can be minimized. More specifically, the

optimized controller mappings [g∗0,g
∗
1,g
∗
2, · · · ,g∗T−1] can be obtained by the Q-learning method.

Theoretically, the optimal encoder-controller of open-loop encoder system in Chapter 3 has no

constraints on channel input and output. Hence, the optimal controller of open-loop encoder

system in Chapter 3 can be utilized in finite-input infinite-output channels.

Theorem 8. In open-loop encoder system, the encoder component is fixed with f̄0, f̄1, · · · , f̄T−1.

Given the linear plant (4.1) and the Gaussian channel (4.4), the controller ut = gt(jt) that can

xiaoru
高亮

Chapter 4 Co-Design of Encoder and Controller Over Gaussian Channels 65

minimizes the system performance (4.7) is given by

ut = kt x̂t

kt =−(E +BT (D+ IT−t−1)B)−1BT (D+ IT−t−1)A

IT−t , AT (D+ IT−t−1)A−πT−t

πT−t , AT (D+ IT−t−1)B(E +BT (D+ IT−t−1)B)−1BT (D+ IT−t−1)A

(4.8)

where kt can be calculated by Theorem 7. The initial condition I1 = AT DA− AT DB(E +

BT DB)−1BT DA.

The proof is same as Theorem 7 in Chapter 3. However, it is very difficult to calculate the control

policy kt in Theorem 8 in practice. There are several reasons. First of all, there is no analysis

solution of E{xt | jt}. Secondly, curse dimensionality is unavoidable. Last but not least, there is

side-information in open-loop encoder system, which means the information from controller get

back to the encoder. While it is unrealistic to transfer real-valued channel outputs to encoder.

Because it is a certain local optimal solution, it can be a reference of the proposed design.

4.3.1 Controller Design by Q-Learning

Generally, Hamilton-Jacobi-Bellman (HJB) equations, such as Riccati equation for linear sys-

tems, are essential to optimal control design. However, it is difficult to obtain a solution of HJB

equation when there is information loss between the encoder and the controller. Based on the

techniques presented in Lewis and Vrabie [2009], Lewis et al. [2012b], Bradtke et al. [1994],

the controller in the proposed system can be optimized without solving the HJB equation.

The nonlinear Q-value function can be written by dense basis function [Lewis and Vrabie, 2009,

Lewis et al., 2012b, Bradtke et al., 1994],

Q(x̂t ,ut) =W T
φ(x̂t ,ut) (4.9)

where x̂t is the estimate of xt obtained by decoding jt to x̂t and x̂t =E{xt | jt}. The main different

of soft controller design, hard controller design and combined soft-hard controller design is how

to calculate the estimate value x̂t .

It is stressed that the decoding process depends on the used encoder, and therefore encoder needs

to be fixed first. Based on the introduction of Chapter 3, φ is the dense basis set and composed

by quadratic terms of x̂t and ut . The weighting vector W is generated by the elements of Riccati

matrix, which is symmetric and has the size (n+m)×(n+m). Similarly, there are (n+m)∗(n+m+1)
2

independent elements in the dense basis φ(x̂t ,ut) =
[
x̂2

t x̂tut u2
t

]T
.

Based on the Q-learning updating principle, the updating equation for control policy is

W T
η+1φ(x̂t ,ut) = rt +W T

η φ(x̂t+1,ut+1) (4.10)

xiaoru
高亮

66 Chapter 4 Co-Design of Encoder and Controller Over Gaussian Channels

where rt = x̂T
t Dx̂t + uT

t Eut is the reward; η is the iterative number; Wη represents the weight

vector in the η th iteration. Note that ut and ut+1 can be estimated by control gain kt , that is

ut = kt x̂t and ut+1 = kt x̂t+1.

Obviously, the updating equation (4.10) is a recursive equation, where Wη+1 is the only unknown

parameter in the η th iteration. Least square method or recursive least square method can be used

to calculate Wη+1, and then the Riccati matrix can be derived from Wη . Once the Riccati matrix

is available, the optimized controller policy can be obtained immediately. The controller design

process is similar as Fig. 3.6 in Chapter 3.

In the remainder of this section, we propose three estimator-based controllers according to dif-

ferent decoder strategies of Gaussian channel, which are soft controller design, hard controller

design and combined soft-hard controller design.

4.3.2 Soft-Information Based Controller Design

Infinite channel output is impossible to be decoded like a look-up table which is utilized in

finite-output channel. The estimate value x̂t = E{xt |ht}, which means the controller can only

use the information ht (see Fig. 4.2). In Fig. 4.2, all elements of it are coded to codeword bt . wt

is the adding Gaussian noise. ht is the real-valued vector and then sent to controller.

How to decode the real-value to integer value is the key point.Hadamard-based decoding tech-

niques is utilized to transform the real-valued channel output to source symbol and has been

shown that the real-value can be mapped into integer values [Knagenhjelm and Agrell, 1996,

Skoglund, 1999, Bao and Skoglund, 2010].

Code word
mapping

Gaussian
Channel Controller

𝑖" 𝑏" ℎ" 𝑢"

𝑤"

FIGURE 4.2: Soft information based controller

Baes on Skoglund [1999], the following decibels the soft controller design with Hadamard ma-

trix decoding. First of all, we formulate E{xt |ht
0}, ht

0 is a fixed sequence of channel outputs,

which is very useful in the controller design. Like dynamic programming structure, we rewrite

E{xt |ht
0} to a recursive formulation according to the system model and Bayes’ rule.

Chapter 4 Co-Design of Encoder and Controller Over Gaussian Channels 67

E{xt |ht
0}=

I−1

∑
c=0

P(it = c|ht
0)E{xt |it = c,ht−1

0 }

=
∑

I−1
c=0 P(it = c|ht−1

0)p(ht |it = c,ht−1
0)E{xt |it = c,ht−1

0 }
∑

I−1
d=0 P(it = d|ht−1

0)p(ht |it = d,ht−1
0)

=
∑

I−1
c=0 p(ht |it = c)P(it = c|ht−1

0)E{xt |it = c,ht−1
0 }

∑
I−1
d=0 p(ht |it = d)P(it = d|ht−1

0)

(4.11)

where P is probability mass function and p is the probability density function. p(ht |it) can be

computed since ht follows on Gaussian distribution. ht
0 is a fixed sequence of channel output

from t = 0 to t.

Because we emphasis that the channel is memoryless, ht is independent with ht−1
0 . In equa-

tion (4.11), the calculation of E{xt |it ,ht−1
0 }, P(it = c|ht−1

0) is very difficult and even need huge

space for storage. While p(ht |it = c) is easy to compute since ht is adding an additive noise

on it , which is a Gaussian pdf. The following describes the calculation of p(xt |ht
0) with given

p(xt−1|ht−1
0).

According to equation (4.11), P(it |ht−1
0) can be obtained by the encoder mapping and p(xt |ht−1

0),

which means p(xt−1|ht−1
0) is utilized. p(xt−1|ht−1

0) can be written as

p(xt |ht−1
0) = p(Axt−1 +But−1 + vt−1|ht−1

0) (4.12)

where this computation is straightforward,, since ut−1 can be got by rt−1
0 . vt−1 is process noise,

which follows Gaussian distribution and independent with others. Therefore, E{xt |it = c,ht−1
0 }

can be calculated based on p(xt |it ,ht−1
0), which can be formulated as

p(xt |it ,ht−1
0) =

p(xt |ht−1
0)P(it = c|xt ,rt−1

0)∫
xt

p(xt |ht−1
0)P(it = c|xt ,rt−1

0)dxt
(4.13)

where all elements can be calculated in this equation based on the previous analysis.

However, it is very difficult to calculate p(xt |ht−1
0) with high dimension, to some extent impos-

sible. Furthermore, the storage problem is still here because of curse dimensionality. Obviously,

this is not a good method to solve the proposed problem. While Knagenhjelm and Agrell [1996],

Skoglund [1999] have shown that the estimation value E{xt |ht
0} is reconstructed by Hadamard

matrix. The idea is that the encoder process can be imitated based on the known information.

The reversion process can be utilized as decoding process, which can decode the real-valued

vector to discrete integer values.

To solve the problem, we first need to obtain the encoding matrix. The matrix C̄t(ht−1
0) is

constructed which carries a priori information about ht . It can be viewed as the cth column of

C̄t(ht−1
0) and defined as

c̄t(c,ht−1
0) = E{xt |it = c,ht−1

0 },c ∈I (4.14)

68 Chapter 4 Co-Design of Encoder and Controller Over Gaussian Channels

The matrix C̄t(ht−1
0) also can decomposed as two matrices, which is

C̄t(ht−1
0) = T̄t(ht−1

0)Ht(ht−1
0) (4.15)

where Ht(ht−1
0) is Hadamard matrix, and the cth column of Ht(ht−1

0), named h̄t(c,ht−1
0) c ∈I ,

is composed by the codeword[
b[ρ]t (it = c,ht−1

0),b[ρ−1]
t (it = c,ht−1

0), · · · ,b[1]t (it = c,ht−1
0)

]
where bt is known and can be obtained by it .

The column of h̄t(c,ht−1
0) cab be expressed as math equation.

h̄t(c,ht−1
0) =

[
1

b[ρ]t (it = c,ht−1
0)

]
⊗

[
1

b[ρ−1]
t (it = c,ht−1

0)

]
⊗·· ·⊗

[
1

b[1]t (it = c,ht−1
0)

]

where the symbol⊗ is the Kronecker product. If C̄t(ht−1
0) and Ht(ht−1

0) are known, it is straight-

forward to get the matrix T̄t(ht−1
0) by equation 4.15. Because T̄t(ht−1

0) is the relation between

channel input it and the priori information of ht , named C̄t(ht−1
0), it can be regarded as the

encoding matrix. Obviously, T̄t(ht−1
0) is unique for each ht−1

0 .

Since the encoder process is same as decoder process in this paper, T̄t(ht−1
0) can be utilized as

the decoding matrix, which is a reverse of channel encoding process. Hence, equation 4.11 can

be rewritten as

E{xt |ht
0}= x̂t

= T̄t(ht−1
0)

∑
I−1
c=0 p(ht |it = c)P(it = c|ht−1

0)h̄t(c,ht−1
0)

∑
I−1
d=0 p(ht |it = d)P(it = d|ht−1

0)

= T̄t(ht−1
0)ĥt(ht

0)

(4.16)

Obviously, only ĥt(ht
0) contains ht and encoding matrix T̄t(ht−1

0) is non-changeable with differ-

ent ht . Following Theorem 1 in Knagenhjelm and Agrell [1996], Skoglund [1999], Bao and

Skoglund [2010], the lemma is

Lemma 1. ĥt(ht
0) can be calculated by

ĥt(ht
0) = [(mh̄(h

t−1
0))T P̂t(ht

0)]
−1Rh̄t h̄t

(ht−1
0)P̂t(ht

0) (4.17)

where m′h̄(h
t−1
0), P̂t(ht

0) and Rh̄t h̄t
(ht−1

0) is

Rh̄t h̄t
(ht−1

0),
I−1

∑
c=0

P(it = c|ht−1
0)h̄t(c,ht−1

0)(h̄t(c,ht−1
0))T

m′h̄(h
t−1
0),

I−1

∑
c=0

P(it = c|ht−1
0)h̄t(c,ht−1

0)

P̂t(ht
0), E{h̄t(c,ht−1

0)|ht ,P(it = c|ht−1
0) =

1
I
,∀c}

(4.18)

Chapter 4 Co-Design of Encoder and Controller Over Gaussian Channels 69

Proof.

ĥt(ht
0) =

∑
I−1
c=0 p(ht |it = c)P(it = c|ht−1

0)h̄t(c,ht−1
0)

∑
I−1
d=0 p(ht |it = d)P(it = d|ht−1

0)
(4.19)

It can also be written as

ĥt(ht
0) =

∑
I−1
c=0 P(it = c|ht−1

0)h̄t(c,ht−1
0)(h̄t(c,ht−1

0))T 1
I ∑

I−1
a=0 h̄t(a,ht−1

0)p(ht |it = a)

∑
I−1
d=0 P(it = d|ht−1

0)(h̄t(c,ht−1
0))T 1

I ∑
I−1
b=0 h̄t(b,ht−1

0)p(ht |it = b)
(4.20)

For the numerator of equation (4.18),

I−1

∑
c=0

P(it = c|ht−1
0)h̄t(c,ht−1

0)(h̄t(c,ht−1
0))T 1

I

I−1

∑
a=0

h̄t(a,ht−1
0)p(ht |it = a)

=
I−1

∑
c=0

I−1

∑
a=0

1
I
(P(it = c|ht−1

0)h̄t(c,ht−1
0))((h̄t(c,ht−1

0))T h̄t(a,ht−1
0))p(ht |it = a)

=
I−1

∑
c=0

I−1

∑
a=0

1
I
(P(it = c|ht−1

0)h̄t(c,ht−1
0))Iδc,a p(ht |it = a)

=
I−1

∑
c=0

(P(it = c|ht−1
0)h̄t(c,ht−1

0))p(ht |it = c)

(4.21)

where δc,a is delta function and can be defined as

δc,a ,

{
1, c = a

0, c 6= a
(4.22)

Here, we have used the special property of the Hadamard matrix, which has been given by

Skoglund [1999],

(h̄t(c,ht−1
0))T h̄t(a,ht−1

0) =

{
I, c = a

0, c 6= a
(4.23)

For denominator of equation (4.20),

I−1

∑
d=0

P(it = d|ht−1
0)(h̄t(c,ht−1

0))T 1
I

I−1

∑
b=0

h̄t(b,ht−1
0)p(ht |it = b)

=
I−1

∑
d=0

I−1

∑
b=0

1
I

P(it = d|ht−1
0)((h̄t(c,ht−1

0))T h̄t(b,ht−1
0))p(ht |it = b)

=
I−1

∑
d=0

I−1

∑
b=0

1
I

P(it = d|ht−1
0)Iδd,b p(ht |it = b)

=
I−1

∑
d=0

P(it = d|ht−1
0)p(ht |it = d)

(4.24)

70 Chapter 4 Co-Design of Encoder and Controller Over Gaussian Channels

Combine both numerator and denominator together to equation (4.20) and yields to

ĥt(ht
0) =

∑
I−1
c=0 P(it = c|ht−1

0)h̄t(c,ht−1
0)(h̄t(c,ht−1

0))T

∑
I−1
d=0 P(it = d|ht−1

0)(h̄t(d,ht−1
0))T

×
1
I ∑

I−1
a=0 h̄t(a,ht−1

0)p(ht |it = a)
1
I ∑

I−1
a=0 p(ht |it = a)

×
1
I ∑

I−1
b=0 h̄t(b,ht−1

0)p(ht |it = b)
1
I ∑

I−1
a=0 p(ht |it = a)

(4.25)

Now we can easily identify the equation (4.17) and (4.18). The proof is completed.

ℎ" 𝑚$
% & 𝑃("(ℎ*")

,-
𝑅$/$/

Channel Decoding

𝑃("(ℎ*") 𝑇1"

Source DecodingDemodulation

𝜃3"(𝑟) 𝑥6"

FIGURE 4.3: Separation of the soft controller design decoding procedure

The decoding process shows clearly in Fig. 4.3. It is easy to calculate Rh̄t h̄t
(ht−1

0) and m′h̄(h
t−1
0).

P̂t(ht
0) is affected by rt and is a posteriori expectation of h̄t(ht−1

0). Because the probability of

P(it = c|ht−1
0) = 1

I ,∀c ∈I are equal for each it , the codeword b[κ]t (ht−1
0),κ ∈ {1,2, · · · ,ρ} are

independent.

P̂t(ht
0) can be written as

P̂t(ht
0), E{h̄t(c,ht−1

0)|ht ,P(it = c|ht−1
0) =

1
I
,∀c}

=
1
I ∑

I−1
d=0 h̄t(d,ht−1

0)p(ht |it = d))
1
I ∑

I−1
b=0 p(ht |it = b)

Since P̂t(ht
0) is the only item affected by ht , and all the codeword bits b[κ]t (ht−1

0 ,ht) are indepen-

dent, together with the assumption of memoryless channel and encoder, the decoding process is

similar with encoding process. Similarity, P̂t(ht
0) can be calculated as

P̂t(ht
0) =

[
1

b̂[ρ]t (ht−1
0 ,h[ρ]t)

]
⊗·· ·⊗

[
1

b̂[1]t (ht−1
0 ,h[1]t)

]

where b̂[κ]t is the estimate value of bκ
t . If the codeword utilized in this paper is 1, −1. b̂[κ]t can be

defined as

b̂[κ]t (ht−1
0 ,h[κ]t) = E{b[κ]t |ht−1

0 ,h[κ]t ,P(b[κ]t =−1) = P(b[κ]t = 1) =
1
2
} (4.26)

where −1 and 1 represents the code of channel, which is similar 0 and 1 in BSC. Note that the

code can be used any label to replace, which doesn’t affect the solution.

Chapter 4 Co-Design of Encoder and Controller Over Gaussian Channels 71

Since the current codeword transmission process is independent with all past, b̂[κ]t (ht−1
0 ,h[κ]t) =

b̂[κ]t (h[κ]t). It is straightforward to calculate b̂[κ]t (h[κ]t),

b̂[κ]t (h[κ]t) = E{b[κ]t |ht−1
0 ,h[κ]t ,P(b[κ]t =−1) = P(b[κ]t = 1) =

1
2
}

=
e

h[κ]t
σ2w − e

− h[κ]t
σ2w

e
h[κ]t
σ2w + e

− h[κ]t
σ2w

= tanh(
h[κ]t

σ2
w
)

where time-invariant σ2
w is the variance of Gaussian channel.

That’s the process of how to use Hadamard framework to obtain the estimate value x̂t =E{xt |ht}.
While it is quiet complex to calculate and need huge storage space, especially in high dimen-

sional system or high transmission rate ρ . The following section introduce to hard controller

design, which is used very common in practical.

4.3.3 Hard-Information Based Controller Design

In hard controller design, the formulation of the estimate value is x̂t = E{xt | jt} (see Fig. 4.4).

Compared with soft controller decoder process via Hadamard matrix, hard controller design is

utilized binary decision making to decode the real-valued channel output to codeword, which is

quiet simple and easy to use. In particular, hard controller design is much more implementable.

What’s more, the design process is same with controller design with binary symmetric channel.

While the drawback is that only partial information of channel output is considered and may

deteriorate the system performance.

Code word
mapping

Gaussian
Channel Decoder Controller

𝑖" 𝑏" ℎ" 𝑗" 𝑢"

𝑤"

Code word
mapping

ℎ("

FIGURE 4.4: Hard controller ut = ktE{xt | jt}

The integer-valued channel output rt are coded to r̂t . The code decision r̂t can be obtained by the

real-valued channel. rt can be viewed as a normal distribution with mean 1 or -1, variance σ2
w,

because bt is composed with 1 or -1. The probability of h[k]t , p(h[k]t), can be calculated straight-

forward based on probability density function. The value of P is a channel error probability,

which affects the information loss. The principle is

ĥt
[κ]

=

 b[κ]t , P(h[κ]t)≥ τ

−b[κ]t , P(h[κ]t)< τ

(4.27)

xiaoru
高亮

72 Chapter 4 Co-Design of Encoder and Controller Over Gaussian Channels

where τ ∈ [0,1]. The code ĥt is then mapped in to the received index jt ∈J , which is same as

encoder process.

4.3.4 Combined Soft-Hard Controller Design

Based on the previous two sections illustration, it is quite complex even impossible to compute

E{xt | jt0} in soft controller design. For hard controller design, only partial information of channel

output is utilized which may deteriorated the system performance with channel error increasing.

Combined these two designs together may avoid these design imperfection, which means hard

information is utilized to get ĥt and the Hadamard matrix decodes ĥt to jt . The estimation value

of x̂t is E{xt |ht , jt−1
0 } (see Fig. 4.5). The following shows how to use the Hadamard matrix to

design.

Code word
mapping

Gaussian
Channel

Controller𝑖" 𝑏"
ℎ" 𝑢"𝑤"

Code
Decision

𝑗"

ℎ"
𝑗(")*

FIGURE 4.5: Combined soft and hard controller ut = ktE{xt |ht , jt−1
0 }

The controller mapping is
ut = kt ∗E{xt |ht , jt−1

0 }

= kt ∗ T̂ (jt−1
0)E{h̄t(jt−1

0)|ht}
(4.28)

where kt is control gain, the encoding matrix T̂ (jt−1
0) can be obtained by Ĉ(jt−1

0)= T̂ (jt−1
0)Ht(jt−1

0).

The column of matrix Ĉ(jt−1
0) can be computed by E{xt |it , jt−1

0 }. In addition, the column of

Hadamard matrix Ht(jt−1
0) is specified by encoder bit bt(it , jt−1

0).

Based on Hadamard framework, E{h̄t(jt−1
0)|ht} is defined as

E{h̄t(jt−1
0)|ht}= [m′h̄t

(jt−1
0)P̂t(ht , jt−1

0)]−1Rh̄t h̄t
(jt−1

0)P̂t(ht , jt−1
0)

where

Rh̄t h̄t
(jt−1

0),
I−1

∑
c=0

P(it = c| jt−1
0)h̄t(c, jt−1

0)(h̄t(c, jt−1
0))T

(mh̄(jt−1
0))T ,

I−1

∑
c=0

P(it = c| jt−1
0)h̄t(c, jt−1

0)

P̂t(ht
0), E{h̄t(c, jt−1

0)|ht ,P(it = c| jt−1
0) =

1
I
,∀c ∈I }

=

[
1

b̂[ρ]t (jt−1
0 ,h[ρ]t)

]
⊗·· ·⊗

[
1

b̂[1]t (jt−1
0 ,h[1]t)

]

Chapter 4 Co-Design of Encoder and Controller Over Gaussian Channels 73

Note that b̂[κ]t (jt−1
0 ,r[ρ]t) = tanh jt

σ2
w
,κ ∈ {1,2, · · · ,ρ}.

4.4 Iterative Encoder-Controller Design

For the controller component, the mainly design methods are described in Section 3.3, in which

three controller strategies are given and utilized in the iterative encoder-controller design. While

encoder design method is already discussed in Chapter 3, and memoryless encoder is considered

in this chapter. While it is impractical to apply soft information to design encoder, because of the

complexity limitation and bandwidth requirement. Obviously, there are three design processes

with three controller strategies.

The iterative training algorithm is introduced in this section to obtain a pair of optimized encoder

and controller that can minimize the expected overall cost. The encoder is optimized based on

hard information, and then the controller is optimized with soft information, hard information,

combined hard-soft information, respectively. For each time iterative learning process, the opti-

mized encoder and controller are obtained and updated and utilized for next time iteration. The

flow chart of iterative design shows as

𝜂 = 1

Update encodermapping vector
𝑓3 ,𝑓5 ,⋯⋯ , 𝑓785 	by	using	the	flow

	chart	shown	in	Fig.3.4

Update controller mapping vector
𝑔3, 𝑔5,⋯⋯ ,𝑔785 	by	using	the	optimal	

encoder	mapping	vector	and	the	controller	
design	method	introduced	in Fig. 3.6

Computer 𝐸I{𝐽LML}

∥ 𝐸I{𝐽LML} − 𝐸I85{𝐽LML} ∥	< ℇ

End
Yes

𝜂 = 𝜂 + 1

Inisalize	𝑋3 and all controller mappings

No

FIGURE 4.6: The flow chart of iterative memoryless/memory encoder and controller design by
Q-learning (model-free and online learning method)

74 Chapter 4 Co-Design of Encoder and Controller Over Gaussian Channels

First of all, all the encoder mappings f T−1
0 , named f0, f1, · · · , fT−1, over the time interval from

t = 0 to T −1 are optimized with fixed controller mappings gT−1
0 (g0, g1, · · · , gT−1). Then, the

controller mapping is calculated based on the previous optimized encoder mappings. Finally, the

expected overall cost are calculated based the optimized encoder mappings f T−1
0 and controller

mappings gT−1
0 .

The expected overall cost is En{Jtot = ∑
T−1
t=0 xT

t+1Dxt+1 + uT
t Eut}. It can be easily calculated

with the optimized encoder-controller mappings. The algorithm is terminated when the error

between Eη{Jtot} and Eη−1{Jtot} is small enough, which means there is no improvement in the

system performance.

4.5 Numerical Results

The system parameters for simulation are A =

[
0.99 0.3

0.8 −0.7

]
, B =

[
1

1

]
and C = I2. The time

horizon is T = 3 and the weighting matrices in objective function are E = 0.1I1 and D = 4I2.

The initial state x0, process noise vt and measurement noise et follow Gaussian distribution with

mean 0 and variance

[
10

10

]
,

[
1e−5

1e−5

]
,

[
1e−5

1e−5

]
, respectively.

Because of low transmission rate used during system design, ρ = 2 is utilized in this simulation,

and the number of binary codeword is 2ρ = 4, which are

[
−1

−1

]
,

[
−1

1

]
,

[
1

−1

]
, and

[
1

1

]
. Con-

sequently, the number of encoder regions for the second order system is 16. The corresponding

binary codeword matrix is
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1



For all simulation, the sample size L is 3000 and the algorithm stop accuracy is set as ε = 10−5.

The size of Q(yt , it , t) is L∗ (2ρn)∗T , named 3000∗16∗T , T is the finite time horizon.

The following results are control gain obtained by these three design methods, and then the

system performances obtained with optimized encoder and controller are given.

Chapter 4 Co-Design of Encoder and Controller Over Gaussian Channels 75

4.5.1 Controller Design

In this section, we mainly introduce numerical results of three controller design methods and all

results are based on the optimized encoder. First of all, The basis function matrix is

x̂2
1 x̂1x̂2 · · · x̂1u1 · · · x̂1um

x̂2x̂1 x̂2
2 · · · x̂2u1 · · · x̂2um

...
...

. . .
...

. . .
...

x̂nx̂1 · · · x̂2
n x̂nu1 · · · x̂num

u1x̂1 u1x̂2 · · · u2
1 · · · u1um

...
...

. . .
...

. . .
...

umx̂1 umx̂2 · · · x̂num · · · u2
m


(4.29)

Letting the basis function is

φ(x̂t ,ut) = [x̂2
1 x̂1x̂2 · · · x̂1u1 · · · x̂1um

x̂2
2 · · · x̂2u1 · · · u2

m]
′

(4.30)

and weight sequence W is

Wη = [Gη

1,1 Gη

1,2 Gη

1,3 · · · Gη

1,n+m Gη

2,2

· · · Gη

2,n+m · · · Gη

n+m,n+m]
′

(4.31)

where Gη

1,1 is the element (1,1) of matrix G with on η th iteration.

Thereafter, the impact of soft and hard information on the overall system performance is inves-

tigated. For soft controller design, the decoder process is finished with Hadamard framework,

in which the encoding matrix should be calculated and play an very important role. While the

optimized control gains can be got and are close to the result K = [−0.8692 0.2929] obtained

by open-loop encoder system in Theorem 8.

The following Fig. 4.7, 4.8, 4.9 are the evolution of control gain with σ2
w = 1 for soft controller

design, hard controller design and combined soft-hard controller design, respectively. The hori-

zon axis is iteration learning time η and the vertical axis is control gain k. There are three figures

in each figure, which represent the control gain evolution at the system time step t = 1, t = 2

and t = 3. Note that the system time step is different with iteration learning time η . While

kt = [kt(1) kt(2)] means the control gain at system time t.

76 Chapter 4 Co-Design of Encoder and Controller Over Gaussian Channels

0 100 200
-1.5

-1

-0.5

0

0.5

1

1.5

C
o

n
tr

o
l
G

a
in

 K

K
1
(1)

K
1
(2)

0 100 200
-1.5

-1

-0.5

0

0.5

1

1.5

K
2
(1)

K
2
(2)

0 100 200
-1.5

-1

-0.5

0

0.5

1

1.5

K
3
(1)

K
3
(2)

FIGURE 4.7: The evolution of control gain for soft controller design at different system times
with σ2

w = 1

0 100 200
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

C
o

n
tr

o
l
G

a
in

 K

K
1
(1)

K
1
(2)

0 100 200
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
K

2
(1)

K
2
(2)

0 100 200
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

K
3
(1)

K
3
(2)

FIGURE 4.8: The evolution of control gain for hard controller design at different system times
with σ2

w = 1

Chapter 4 Co-Design of Encoder and Controller Over Gaussian Channels 77

0 100 200
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

C
o

n
tr

o
l
G

a
in

 K

K
1
(1)

K
1
(2)

0 100 200
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
K

2
(1)

K
2
(2)

0 100 200
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
K

3
(1)

K
3
(2)

FIGURE 4.9: The evolution of control gain for combined soft and hard controller design at
different system times with σ2

w = 1

4.5.2 Iterative Design

This section presents the simulation results about system performance of iterative encoder-

controller design with three controller strategies. The encoder here we utilized is memoryless

encoder and time varying. Note that three controller strategies are obtained with same encoder

strategies. Fig. 4.10 and Fig. 4.11 describe the system performance evolution with different

channel noise σ2
w with for two different Rt matrix values. Because the matrix Rt constraints the

system control input, which has an affect on system performance. The system performance is

larger with Rt = 4 than Rt = 1. The expected overall cost E(Jtot) is calculated based on the

optimal encoder and controller mappings after the iteration loop, and the comparison results are

depicted in the following two figures.

The encoder and controller utilized for comparison are listed as,

1. Co-design with soft controller ut = Kt ∗E{xt |ht}.

2. Co-design with hard controller ut = Kt ∗E{xt | jt}.

3. Co-design with combined soft-hard controller ut = Kt ∗E{xt |ht , jt−1
0 }.

The expected overall cost of co-design with combined soft-hard controller is lower than the two

others at lower channel error variance σ2
w, because this method combines the advantages of soft

controller and hard controller design. While the information changes a lot with large channel

error variance, the system performance is not good as soft controller design and hard controller

design. The difference of soft controller design and hard controller design is very small with

low-level channel variance. On the other hand, the expected overall cost of soft controller design

xiaoru
高亮

xiaoru
高亮

78 Chapter 4 Co-Design of Encoder and Controller Over Gaussian Channels

is lower since the channel output rt is directly decodes to E{xt |rt}, because the Hadamard matrix

of decoding process is same with encoding process and the accuracy is higher than look-up table

decoding.

0 0.5 1 1.5 2 2.5 3

Channel noise variance
w
2

0

50

100

150

200

E
{J

to
t}

u
t
 = K

t
 E{x

t
 | r

t
}

u
t
 = K

t
 E{x

t
 | j

t
}

u
t
 = K

t
 E{x

t
 | r

t
, j

0
t-1}

FIGURE 4.10: Performance Comparison with Et = 1

0 0.5 1 1.5 2 2.5 3

Channel noise variance
w
2

50

100

150

200

250

E
{J

to
t}

u
t
 = K

t
 E{x

t
 | r

t
}

u
t
 = K

t
 E{x

t
 | j

t
}

u
t
 = K

t
 E{x

t
 | r

t
, j

0
t-1}

FIGURE 4.11: Performance Comparison with Et = 4

4.6 Conclusions

In this chapter, the co-design problem of encoder and controller for feedback control systems

over Gaussian channel has been considered. An iterative design based on Q-learning has been

Chapter 4 Co-Design of Encoder and Controller Over Gaussian Channels 79

proposed to obtain a pair of encoder and controller that can optimize a finite-horizon cost func-

tion. The main difference with Chapter 3 is the infinite channel outputs. Therefore, how the

generalization to infinite-output channels affected the optimization of the encoder and controller

theoretically and practically is studied in this chapter. From a practical point of view, the impact

appeared not only in the training stage, but also in how to implement the trained encoder and

controller pair. The challenge is that the trained encoder and controller can no longer be imple-

mented as a simple look-up table. To get more insight to the optimal controller, the Hadamard-

based soft controller is introduced, where fully exploited the channel outputs can be used over

controller design process. However, we can not implement the soft-information-based controller

in practice due to the complexity and memory demands. Based on this difficulty, a combined

encoder and controller which exploited both the hard and soft information of the channel outputs

were proposed. Simulations showed that the proposed scheme has good performance compared

to the controllers which only used hard-information or ignored the information carried in the

memory.

Chapter 5

Distributed Encoder and Controller
Design for Feedback Control Systems
Over BSC Using Q-Learning

Both Chapter 3 and Chapter 4 discuss the co-design encoder and controller by iterative design

method, which means the encoder is optimized with fixed controller and the controller is opti-

mized with fixed encoder. However, only local optimal solutions can be got by iterative design.

Therefore, distributed encoder and controller design is proposed. Both encoder and controller

learn independently with their own local information, while both of the agents can be optimized

simultaneously. Obviously, the system performance is better than iterative design. However,

global optimal can’t be guaranteed. Distributed Q-learning (QD-learning) can be applied into

complex networked control systems with multi-encoders or multi-controllers design.

5.1 Introduction

Reinforcement learning has been discussed in the literature review. A single agent learns what

to do and find a policy (a mapping from state to action) that minimize or optimize the dis-

counted infinite horizon in a stochastic environment. Since the framework of multiple agents

(Figure 5.1), which is the same idea of the single agent, are needed in reality, there are many

agents choosing actions over the environment [Sycara, 1998, Weiss, 1999, Durfee, 2001, Vlas-

sis, 2003]. The biggest difference is that each agent has an influence on the environment, and

all actions can have different effects depending on the communication between the agents. The

objective of multi-agent reinforcement learning is to find the optimal stationary control policy

to maximise or minimise the averaged one stage cost function.

81

xiaoru
高亮

82 Chapter 5 Distributed Encoder and Controller Design

The existence of multiple operating agents makes it possible to solve inherently distributed

problems, but also allows one to decompose large problems, which are too complex or too

expensive to be solved by a single agent, into smaller subproblems.

Agent 1 Agent 2 Agent n

Environment

Action 1

State 1

Action 2 Action n

State 2 State n

FIGURE 5.1: The multi-agent learning framework

Multi-agent reinforcement learning developed considerably in recent years, mainly because of

the parallel computation and experience sharing which can help agents with similar tasks to

learn faster and better. For instance,

• Agents can exchange information by communication, and skilled agents may serve as

teachers for the learner, or the learner may watch and imitate the skilled agents.

• If one or more agents fail in a multi-agent system, the remaining agents could take over

some of their tasks. This implies that multi-agent reinforcement learning is inherently

robust.

• Most multi-agent systems also allow easy insertions of new agents into the system, leading

to a high degree of scalability.

However, there are some challenges of multi-agent reinforcement learning

• the curse of dimensionality

The curse of dimensionality is the exponential growth of the discrete state-action space

with the number of state and action variables (dimensions).

• the goal of multi-agent reinforcement learning

A suitable goal for multi-agent reinforcement learning in the general stochastic case is

a difficult challenge, as the agents share information with each other, which means it is

difficult to reach the optimal asymptotically.

xiaoru
高亮

Chapter 5 Distributed Encoder and Controller Design 83

There are three types of multi-agent reinforcement learning, which are competitive dy-

namic stochastic games [Littman], fully cooperative formulation [Shoham et al., 2003]

and the combination of these two. In this chapter, only fully cooperative formulation will

be considered.

• Nonlinear systems and online trade-off

Non-stationarity of the multi-agent learning problem arises since all the agents in the

system are learning simultaneously. Each agent is, therefore, facing with a moving-target

learning problem: the best policy changes as the other agents policies change.

In multi-agent networked systems, the classical reinforcement learning can be used to set the

problem within the location probability and a statistic environment. It requires the centralised

controller to receive the data of one stage costs from all the agent continuously[Melo and Veloso,

2011]. Since the one-stage cost can only be generated on local process, all agents should forward

their one-stage cost to the centralised controller, which is the main case of the unfeasible systems

which increases the computation capacity.

To solve these problem, QD-learning has been introduced by Kar et al. [2013]. It is a fully dis-

tributed method, where all agents learn autonomous from local process and communication over

a sparse possibly time-varying to minimise the network averaged infinite horizon discounted cost

to find the optimal stationary control policy.

This chapter mainly discuss distributed reinforcement learning, which consists of multi-agents

(actions) and the corresponding environment (state). Assumed that the environment is dynamic

and uncertain, the actions of agents and the resulting states which follows on MDPs, have an

influence on the statistical distribution of the random one-stage cost. The objective of the agent

is to find an stationary control policy to minimise the networked-averaged infinite horizon dis-

counted cost.

QD-learning tries to optimise global cost (the network averaged one stage cost) which is not

directly observed by each agent. More specifically, at a given time instant, each agent is aware

of only its local instantaneous parameters but the network averaged. Whilst as a fully cooperative

formulation, QD-learning assumes that the global one-stage cost (network-average of the local

instantaneous one-stage cost) is available for the agents at all times.

Compared to distributed Q-learning from existing literature review, the fully distributed setting

in the network is considered, where the agents are only aware of local parameters and sense the

local cost through their neighbourhood via communication over the control networks. However,

QD-learning, as a fully cooperative formulation, does not emphasise the two issues, which are

partial state observation and decentralised actuation. More specifically, we consider that each

agent can observe the global state perfectly and the agents are set up with the local decentralised

actuation.

84 Chapter 5 Distributed Encoder and Controller Design

5.2 Distributed Q-Learning

We describe QD-learning in this section, which is a distributed scheme for multi-agent Q-

learning. The QD-learning method is similar to the Q-learning method, both of them are based

on state-action trajectories. In general, the state-action trajectories are sample paths of stochas-

tic processes {xt} and {ut} taking values in X and U , respectively. We randomly generate the

action ut and state xt for the corresponding agents. Furthermore, QD-learning method also need

to use the local one-stage cost cn(xt ,ut) for each agent n. The goal of QD-learning is to ensure

that each agent eventually learns the value function V ∗ based on the stochastic processes {xt}
and {ut}, and the one-stage cost processes cn(xt ,ut).

This section is the main component of this chapter, which concerns the assumption about the

constrains of QD-learning, the theorem of QD-learning and the algorithm of QD-learning.

5.2.1 Assumption

Formalising the distributed agent learning requires characterising the locally accessible agent

information over time for decision-making.

5.2.1.1 Measurability and Moments

Assuming that there exists a complete probability space (Ω,F ,P) with a filtration {Ft} (Ft

denotes the global network information at each time instant t), such that the state and control

processes,{xt} and {ut}, respectively, are adapted to Ft . The conditional probability law gov-

erning the controlled transitions of {xt} satisfies

P(xt+1 = j|Ft) = put
xt, j

(5.1)

For each agent n

E[cn(xt ,ut)|Ft] = E[cn(xt ,ut)|xt ,ut] (5.2)

which means E[cn(i,u)] on the event {xt = i,ut = u}, such as both of the current state-action

pair, the one-stage random costs are independent from Ft .

The random cost cn(xt ,ut) belongs to Ft+1 for each t. In addition, the equation 5.1 and 5.2

use the state-action trajectories online and the corresponding costs are used to learn the value

function, which satisfy the controlled Markov transitions in accordance with the MDP. Then Ft

consists of all the state action pairs and the one stage cost function before time t. The function

is

Ft = σ({xs,us}s≤t ,{cn(xs,us)}n∈N,s<t) (5.3)

where σ represents the smallest σ −algebra, that is, combines all the sets.

Chapter 5 Distributed Encoder and Controller Design 85

Fn(t) is the local information available at each agent n at each time t. The local information

Fn(t) at agent n that the agent n senses the one-stage cost and the messages or information it

obtained from its neighbours over time, such as the instantaneous state and action. The local

information Fn(t) at agent n at time t is

Fn(t) = σ({xs,us,{mn,l(s)}l∈Ωn(s)}s≤t ,{cn(xs,us)}n∈N,s<t) (5.4)

However, the difference between local information Fn(t) and global information Ft is the re-

ward information. Local information consists of only the locally sensed cost, which consists of

n elements, whereas the global information involves the sum-total network reward information

from all agents at all times, which averaged all the agents one-stage cost.

Ft =
N∨

n=1

Fn(t) (5.5)

where
∨

denotes the joint of σ −algebras.

Furthermore, assumed mn,l(t) (mn,l(t) ∈Fn(t)) can be the message that agent n obtained from

other agents l, l ∈Ωn(t) at time t, where Ωn(t) denotes the communication over the neighbour-

hood of agent n on the time-varying (possibly stochastic) environment at time t.

The one-stage costs cn(i,u) is considered as a super-quadratic moments, there exists a constant

ε1 (choose randomly and sufficient small), while ε1 > 0, such that

E[c2+ε1
n (i,u)]< ∞, ∀n, i,u (5.6)

where i represents one sample of xt .

5.2.1.2 Link Failures

Link failure, which can be regarded as spatially dependent, is a common failure mode in network

systems. In fact, it is possible to have all these instantiations to be disconnected. Here, it only

requires that the graph stays connected on average. This weak connectivity requirement enables

us to capture a broad class of asynchronous communication models. Assumed that the inter-

agent communication is noise-free and un-quantised.

5.2.1.3 Independence

The purpose of QD-learning is to learn the real value function V ∗ from communications among

agents. There is a sequence of random times {Ti,u(k)}, in which Ti,u(k) denotes the (k+ 1)th

xiaoru
高亮

xiaoru
高亮

86 Chapter 5 Distributed Encoder and Controller Design

sampling instant of the state-action pair (i,u), such that

Ti,u(k) = inf{t ≥ 0|
t

∑
s=0

Λ(xt ,ut)=(i,u) = k+1} (5.7)

Assuming that the random time Ti,u(k) is a stopping time for each k and pair (i,u). Thus, for

each k, the state-action pairs (xt ,ut) , Ti,u(k), qualifies as a stopping time following with the local

filtrations Fn(t).

5.2.1.4 Finite Stopping Time

For each state-action pair (i,u) and each k ≥ 0, the stopping time Ti,u(k) is finite, which equals

to P(Ti,u(k) < ∞) = 1. The value function can only be updated until the current state action

pair was chosen again assuming that this condition is also required by centralised Q-learning in

application or simulation.

5.2.2 Updating Equation of QD-Learning

In QD-learning, each network agent n maintains a value sequence {Qn
t } (Q matrices) with the

components Qn
i,u(t) for each possible state-action pair (i,u). The distributed equation likes

Qn
i,u(t +1) = Qn

i,u(t)−βi,u(t) ∑
l∈Ωn(t)

(Qn
i,u(t)−Ql

i,u(t))+

+αi,u(t)
(

cn(xt ,ut)+ γ min
u∈U

Qn
xt+1,u(t)−Qn

i,u(t)
)

(5.8)

where the weight sequence {βi,u(t)} and {αi,u(t)} belong to Fn(t), which adapted the stochastic

process for each pair (i,u):

βi,u(t) =

 b
(k+1)τ2 if t = Ti,u(k) for some k ≥ 0

0 otherwise
(5.9)

αi,u(t) =

 a
(k+1)τ1 if t = Ti,u(k) for some k ≥ 0

0 otherwise
(5.10)

where a and b are positive constants. The constants τ1,τ2 satisfies τ1 ∈ (1/2,1] and τ2 ∈ (0,τ1−
1/(2+ ε1)), which need to be sufficiently small.

For each agent n, the random Ti,u(k) is stopping times, which is a local information Fn(t). In

addition, Ql
t is the exchange information of agent n communicating with its neighbourhood.

Letting

mn,l(t) = Ql
t , l ∈Ωn(t) (5.11)

xiaoru
高亮

xiaoru
高亮

xiaoru
高亮

xiaoru
高亮

Chapter 5 Distributed Encoder and Controller Design 87

Based on equation 5.8, we can know that Qn
i,u(t) is updated at the instant time t for each agent n

if and only if the current state-action (xt ,ut) was chosen again, otherwise it stays constant.

The problem is Q-value updating. In previous work, Qn
i,u(t) will be updated at the instant time

t for each agent n, if and only if the current state-action (xt ,ut) is sampled again, which means

the updating only happens when the current state-action pair equals to the next state-action pair

(st ,at) = (st+1,at+1). Otherwise it stays constant. Then the convergence rate is very slow.

However, based on the basic idea of Q-learning, Q-value should be updated on every itera-

tion. More specifically, every time the state-action pair is sampled, the corresponding weight

sequence αi,u(t) and βi,u(t) will be updated, then Q-value would be updated using the corre-

sponding weight sequence, there is no updating condition (current state-action pair equal to next

state-action pair ((st ,at) = (st+1,at+1)).

Furthermore, each agent n owns the value process {V n
t }, which converges to the optimal value

function V ∗. The ith component of {V n
t }, V n

i (t) defined as

V n
i (t) = min

u∈U
Qn

i,u(t), i = 1,2,3, · · · ,M (5.12)

For each agent n, {Qn
t } is adapted to the local filtration {Fn(t)}. The update rule in equation 5.9

and 5.10 is the form of consensus + innovation, in which consensus represents all the agent can

reach convergence at the same time stage. A local innovation potential is local sensing of the

instantaneous cost.

5.2.2.1 The Algorithm of QD-Learning

In this section, we mainly discuss the algorithm of QD-learning based on the assumption and the

theorem. In the initialisation part, we choose the initial Q value arbitrary, then use the episode

as the repeat time step, the initialisation s and a should be randomly chosen in this step. There

is another loop for each agent which embedded on the episode loop. For each agent, the next

state and the reward should be observed. After that, the next action should be chosen based on

the next state which correspond to the minimum Q value plus ε−greedy to explore to guarantee

that the global optimal can be obtained. Finally, the update part uses the equation 5.8. One

should be aware of that the weight sequence can only be updated until the current state action

pair was chosen again.

88 Chapter 5 Distributed Encoder and Controller Design

Then, the algorithm of QD-learning is:

Algorithm 5 QD-learning
Initialise Q(s,a) arbitrary
for t = 1 : E pisode (Each time step) do

Initial s and a
for n = 1 : N (Each agent) do

Observe one-stage cost function
while 1 do

Observe the next state s′

Choose a′ form s′ (e.g. using ε−greedy to explore)
if (s′, a′) equal to (s,a) then

k = k+1 update the weight sequence αn
i,u and β n

i,u
end if
Qn

i,u(t) ← Qn
i,u(t) − βi,u(t)∑l∈Ωn(t)(Q

n
i,u(t) − Ql

i,u(t)) + αi,u(t)(cn(xt ,ut) +
γ minu∈U Qn

xt+1,u(t)−Qn
i,u(t))

end while
end for

end for

This procedure of this algorithm is similar to single agent Q-learning, while the difference is that

there are n agents in QD-learning, each agent should be repeated on one time step. Meanwhile

in the updating part, there is a communication component. This algorithm will be terminated

until there is no updating on Q-value.

5.2.2.2 Restriction of Convergence

The parameter of weight sequence τ1andτ2 has been given. However, the stochastic sequence

{αi,u(t)} and {βi,u(t)} should satisfy the conditions, like

∑
t≤0

αi,u(t)→ ∞ ∑
t≤0

βi,u(t)→ ∞ (5.13)

which can guarantee that the steps are large enough to eventually overcome any initial conditions

or random fluctuations. This condition is a standard requirement in stochastic approximation

type algorithms to drive the updates to the desired limit from arbitrary initial conditions. There

is a further condition that the innovation weight sequences are square summable, such as

∑
t≤0

α
2
i,u(t)< ∞ (5.14)

For each state-action pair, the consensus potential dominates the innovation potential eventually.

Whereas the asymptotic domination of the consensus potential over the local innovations ensures

the right information mixing, as shown below, leading to optimal convergence.

βi,u(t)
αi,u(t)

→ ∞, t→ ∞ (5.15)

Chapter 5 Distributed Encoder and Controller Design 89

In terms of the constant value a and b, it should be arbitrary positive constants. We further

assume that the constants are small enough, such that, for each time instant t and state-action

pair (i,u), the matrix IN − βi,u(t)Lt −αi,u(t)IN is non-negative. The largest eigenvalue of the

Laplacian Lt , at an instant t, is upper-bounded by N (the number of network agents). The above

condition is ensured by requiring a and b to satisfy :

a+Nb≤ 1 (5.16)

However, this condition is not necessary, which can considerably reduce the analytical overhead.

5.3 Examples about QD-Learning

5.3.1 Parameters Setting

The network has 40 agents (N = 40) with binary-valued state and action spaces, while in this

simulation, we consider that the basis of the state-action space X ×U is 4, that is, we have

two states X = {x1,x2} and two actions U = {u1,u2}. Hence, there are 8 controlled transition

parameters pu
i, j, where i, j∈X and u∈U . The transition probability were chosen independently

at random in the interval [0,1], which means the other 4 transition probability are fixed since we

just have two choices based on one state.

State1 State2𝑃"""

𝑃"#" 𝑃"##

𝑃#"" 𝑃#"#
𝑃""#

	𝑃##"
𝑃###

FIGURE 5.2: State-action framework

Figure 5.2 consists of two states (state 1 and state 2) and two actions (action 1 and action 2).

• P1
11 and P2

11→ the transition probability from state 1 to state 1 based on the action 1 and

action 2, respectively;

• P1
12 and P2

12→ the transition probability from state 1 to state 2 based on the action 1 and

action 2;

• P1
21 and P2

21→ the transition probability from state 2 to state 1 based on the action 1 and

action 2;

• P1
22 and P2

22→ the transition probability from state 2 to state 2 based on the action 1 and

action 2;

90 Chapter 5 Distributed Encoder and Controller Design

Furthermore, the state-action trajectory was generated independently and uniformly sampling

control actions from U over time. Whereas, the state trajectory {xt} instantiation was generated

by sampling independently x from the probability distribution put
xt

of the past at each time t.

In terms of the cost function cn(i,u), it is assumed that it consists of two parts which are the

one-stage cost part (expected one-stage cost value) and the noise part. As for the noisy part,

it follows a Gaussian Distribution with variance 40, and another random sample of follows the

uniform distribution on [0,400], which is generated independently for each agent n and each

state-action pair (i,u).

The discounting factor γ is 0.7. The inter-communication only happens between the 2-nearest

neighbour, with the link-failure probability 0.5. In addition, we also assume that in the network,

the N = 40 agents are placed on a circle symmetrically (see Figure 5.3), so that the agent can

communicate with its neighbourhood on one side.

FIGURE 5.3: The set of agent network

The purpose of this simulation is to show the convergence of QD-learning. The centralised Q-

learning is also simulated, which is similar to single agent Q-learning. The centralise Q-function

Qn
i,u(t) is

Qc
i,u(t +1) = Qc

i,u(t)+αi,u(t)(
1
N

N

∑
n=1

cn(xt ,ut)+ γ min
u∈U

Qc
xt+1,u(t)−Qc

i,u(t)) (5.17)

where the exponent τ2 which is the consensus weight sequence {βi,u(t)} (in QD-learning) was

set to 0.2, while the innovation weight sequence {αi,u(t)} (for both distributed Q-learning and

centralised Q-learning) exponent τ1 was set to 1.

Here we use the algorithm 5 to solve it. At the beginning, the one stage cost function follows

Gaussian distribution, with a uniform distribution disturb. The expected part of one stage cost

function should be generated. In addition, the transition probability which used to choose next

state, is generated randomly. The purpose is to fix the onstage cost function and the transition

probability once it is generated. It should be noticed that the weight sequence can only be

updated until the current state action pair is chosen again.

xiaoru
高亮

Chapter 5 Distributed Encoder and Controller Design 91

5.3.2 Simulations

There are some simulation results, the figure plotted here is about the Q-factors (Q value) of the

four state action pairs, which are (1,1),(1,2),(2,1),(2,2), changing with episodes, respectively.

The purpose is to show the convergence rate of each agent on each episode and the comparison

of the centralised Q-learning algorithm and QD-learning method.

Figure 5.4 illustrates that the convergence rate of distributed Q-learning is reasonably close to

centralised Q-learning.

0 2000 4000 6000 8000 10000 12000 14000 16000
250

300

350

400

450

500

550

600

650

700

Episode

Q
−

fa
c
to

rs

Plot of Q−value over episode

QD(1,1)

QD(1,2)

QD(2,2)

QD(2,1)

QC(1,1)

QC(1,2)

QC(2,2)

QC(2,1)

FIGURE 5.4: Centralised Q-learning (dotted lines) and distributed Q-learning (solid lines)

Figure 5.5 describes that the evolution of the Q-factors at 10 randomly (uniformly) selected

network agents (for the distributed QD), verifying that they reach consensus on each state-action

pair (i,u).

Figure 5.6 and 5.7 show that the learning-rate αi,u(t) is changed, the convergence rate is differ-

ent. In Figure 5.6, the convergence rate changes when the parameter of learning rate a changed

(a = 0.6,0.3 respectively). Figure 5.7 shows more result about the changing of convergence

rate, in which a = 0.25,0.5 and 0.75, respectively.

Figure 5.8 shows the consensus rate βi,u(t) has no influence in the convergence rate. More

specifically, in Figure 5.8, the parameter of consensus rate is changed, which are b = 0.001,0.01

and 0.2, respectively, while the convergence rate remains the same.

92 Chapter 5 Distributed Encoder and Controller Design

0 2000 4000 6000 8000 10000 12000 14000 16000
250

300

350

400

450

500

550

600

650

700

Episode

Q
−

fa
c
to

rs
Plot of Q−value over episode

FIGURE 5.5: Consensus among distributed Q-factors

βi,u(t) is the consensus rate, which describes level of consistency of different agents in collabo-

ration. It affects the convergence rate of each agent, which means the convergence rate of each

agent becomes more consistent with the increase of βi,u(t).

In Figure 5.8, the red and blue lines represent the convergence of Q-factor for all the agents in

one state-action pair (1,1). The βi,u(t) of the red line is larger than the blue line. The figure

shows that the convergence rates of the agents represented by the red lines are less diverse than

those of blue lines.

Figure 5.9 presents the trend of one agent’s variance over episode. It shows that if the parameter

of consensus rate b increases, the fluctuation will decrease.

5.4 Distributed Encoder-Controller Design

Our study of quantized control systems is motivated by the challenges of control over wireless

networked systems, given limited communication resources. Clearly, besides the problem of op-

timizing the performance for each individual plant, another major challenge is to coordinate all

distributed control nodes to provide a satisfactory overall performance. In a networked system,

it can happen that several plants are communicating simultaneously which may give congestion

Chapter 5 Distributed Encoder and Controller Design 93

0 2000 4000 6000 8000 10000 12000 14000 16000
250

300

350

400

450

500

550

600

650

700

Episode

Q
−

fa
c
to

rs

Plot of Q−value over episode

(1,1)(a=0.6)

(1,2)(a=0.6)

(2,2)(a=0.6)

(2,1)(a=0.6)

(1,1)(a=0.3)

(1,2)(a=0.3)

(2,2)(a=0.3)

(2,1)(a=0.3)

FIGURE 5.6: Changing the learning-rate αi,u(t)

0 2000 4000 6000 8000 10000 12000 14000 16000
250

300

350

400

450

500

550

600

650

700
Plot of Q−value over episode

Episode

Q
−

fa
c
to

rs

(1,2)(a=0.25)

(2,1)(a=0.25)

(2,1)(a=0.5)

(1,2)(a=0.5)

(1,2)(a=0.75)

(2,1)(a=0.75)

FIGURE 5.7: Changing the learning-rate αi,u(t)

94 Chapter 5 Distributed Encoder and Controller Design

0 2000 4000 6000 8000 10000 12000 14000 16000
200

250

300

350

400

450

500

550

600

650

700

Episode

Q
−

fa
c
to

rs

Plot of Q−value over episode

(1,1)(b=0.01)

(1,2)(b=0.01)

(2,2)(b=0.01)

(2,1)(b=0.01)

(1,1)(b=0.001)

(1,2)(b=0.001)

(2,2)(b=0.001)

(2,1)(b=0.001)

(1,1)(b=0.2)

(1,2)(b=0.2)

(2,2)(b=0.2)

(2,1)(b=0.2)

FIGURE 5.8: Changing the consensus-rate βi,u(t)

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

x 10
4

Episode

V
a

ri
a

n
c
e

/a
g

e
n

t

Plot of one agent’s variance over episode

b=0.5

b=0.01

b=0.2

FIGURE 5.9: The variance of one agent over episode

and interference. How to design encoder and controller pairs that the system performance can

be minimized, so that the system performance is better than the design by iterative method.

Chapter 5 Distributed Encoder and Controller Design 95

My research is on network control system design. The main purpose is to minimize the system

performance which can be interpreted as minimizing the state variance for all time instances

with a power constraint on the control input. Traditional control optimization methods are

model-based and implementable in complex network control systems (nonlinearity and non-

convexity). Adaptive dynamic programming, combining dynamic programming, reinforcement

learning and functional approximation, makes use of data that is measured along the system

trajectories to optimize the controller. However, encoder strategies in network control system

have a significant effect on system performance. Hence, Q-learning, a reinforcement learning

method, is introduced to find encoder strategies. Iterative design method updates each iterate by

optimizing the encoder with fixed controller and optimizing the controller with fixed encoder

alternatingly. However, only local optimal result can be guaranteed. To compensate for this,

distributed learning method is proposed to optimize encoder and controller simultaneously, with

achieving a better performance.

In distributed design, encoder and controller are two agents in the network control system. Each

agent only accepts local information and utilizes the local information to make decisions. While

the design objective is minimizing the system performance, which is E{∑T−1
t=0 xT

t+1Vtxt+1 +

uT
t Rtut}, matrix Vt and Rt are symmetric and positive definite. The reward of these two agents

are same, which is xT
t+1Vtxt+1 +uT

t Rtut . Fig. 5.10 shows the design process. Both encoder and

controller update their Q-value matrix separately and utilize same reward. In distributed design,

Q-value matrix of encoder is updated for each time running l. while the Q-value of controller

is not updated for each l, because least square method is used to update control gain kt . More

specifically, control gain is updated over a time slot.

In Fig. 5.10, η is the episode, l is each time step of one episode and t is system time step. Based

on the optimized encoder and controller, the expected overall cost can be calculated straightfor-

wardly.

5.5 Numerical Results

The system parameters for simulation are A =

(
0.99 0.3

0.8 −0.7

)
, B =

(
1

1

)
and C = I2. The time

horizon is T = 3 and the weighting matrices in JT are E = 0.1I1 and D = 4I2. The initial state

x0, process noiseet and measurement noise et follow Gaussian distribution with mean 0 and

variance

(
10

10

)
,

(
1e−5

1e−5

)
,

(
1e−5

1e−5

)
, respectively.

The transmission rate used for simulation is ρ = 2, and the number of binary codeword is 2ρ = 4,

which are

(
0

0

)
,

(
0

1

)
,

(
1

0

)
, and

(
1

1

)
. Consequently, the number of encoder regions for the

second order system 16.

xiaoru
高亮

96 Chapter 5 Distributed Encoder and Controller Design

Inisalize 𝑄 and 	𝑋$

Observe and save data	𝑢(𝑎𝑛𝑑	𝑥(-.	
Update	encoder	strategy	𝑏𝑦		𝑄 𝑠 𝑡 ,	𝑖(, 𝑡

𝑡 = 𝑡 + 1

𝜂 = 	𝜂 + 1

𝑥$ = 𝑋$(: , 𝑙)
𝑙 = 𝑙 + 1

Update control gain k by Q-learning based ondata
obtained online, while controller is not updated for
every time running 𝑙, because of least squaremethod.

Based on optimized encoder and controller,
calculate expected overall cost 𝐸Y{𝐽(\(}

	𝑡 = 𝑇

∥ 𝐸Y{𝐽(\(} − 𝐸Ya.{𝐽(\(} ∥	< ℇ

End
Yes

No

𝑡 = 0

FIGURE 5.10: The flowchart of distributed encoder and controller design

Fig. 5.11 shows the encoder region evolution for one specific code it = 4 from time t = 1 to

t = 10. These 10 figures have same horizon axis, named xt(1) and same vertical axis xt(2).

All the points in the figure correspond to the same it = 4 and its corresponding binary code is

[0 0 1 1]. It is clearly that the shape of encoder regions from t = 6 to t = 10 are quite

similar, and it can be regarded as convergence.

Fig. 5.12 illustrates the evolution of Q-value with 16 encoder regions at t = 0. The horizon axis

is episode η and the vertical axis is Q-value. We randomly choose one state-action pair (yt , it)

of each encoder region. For each state-action pair, the Q-value evolution converges to a fixed

value. Other pairs have a similar convergence.

The expected overall cost E(Jtot) is calculated based on the optimized encoder and controller

mappings, and the comparison results are depicted in Fig 5.13.

Obviously, the system performance of distributed design is better than iterative design with low

crossover probability. However, the indeterminacy of encoder and controller increase simulta-

neously with high crossover probability, the system performance is deteriorated, and even worse

than iterative design. Because encoder is optimized with fixed controller in iterative, which can

decrease the uncertainty.

Chapter 5 Distributed Encoder and Controller Design 97

-30 -20 -10 0

t = 1

-15

-10

-5

0

5

10

-30 -20 -10 0

t = 2

-15

-10

-5

0

5

10

-30 -20 -10 0

t = 3

-15

-10

-5

0

5

10

-30 -20 -10 0

t = 4

-15

-10

-5

0

5

10

-30 -20 -10 0

t = 5

-15

-10

-5

0

5

10

-40 -20 0

t = 6

-15

-10

-5

0

5

10

-40 -20 0
t = 7

-15

-10

-5

0

5

10

-30 -20 -10 0

t = 8

-15

-10

-5

0

5

10

-30 -20 -10 0

t = 9

-15

-10

-5

0

5

10

-30 -20 -10 0

t = 10

-15

-10

-5

0

5

X
t
(1)

X
t
(2)

FIGURE 5.11: The evolution of encoder region with it = 4 over time interval from t = 1 to
t = 10 and its corresponding binary code is [0 0 1 1].

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

200

250

Q
-V

a
lu

e

Q([-0.2 0.76] , 1)

Q([-3.1 -1.6] , 2)

Q([-4.4 -5.7] , 3)

Q([-5.1 2.8] , 4)

Q([0.5 2.7] , 5)

Q([-0.3 0.6] , 6)

Q([-1.9 -2.9] , 7)

Q([-0.4 5.1] , 8)

Q([1.7 0.5] , 9)

Q([1.8 2.9] , 10)

Q([0.6 -0.7] , 11)

Q([0.5 1.7] , 12)

Q([4.5 3.4] , 13)

Q([2.4 -2.9] , 14)

Q([1.6 -4.3] , 15)

Q([2.8 3.4] , 16)

FIGURE 5.12: Randomly choose one state action pair (yt , it) from 16 encoder regions and plot
its Q-value evolutions at t = 0.

98 Chapter 5 Distributed Encoder and Controller Design

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Crossover Probability

50

100

150

200

250

300

350

400

450
E

(J
to

t)

Iterative Design by Baolei

Iterative Design by Q-learning

Distributed Design by Q-learning

FIGURE 5.13: Performance Comparison

5.6 Conclusions

This Chapter illustrates a distributed multi-agent Q-learning learning setup in a networked envi-

ronment, where the multi-agent are cooperative and non-competitive with the global objective.

More specifically, compare with a centralised solution methodology requires each network agent

to forward its instantaneous one-stage cost to a remote centralised controller at all times. All

the agents try to learn and evaluate the optimal stationary control strategy to minimises the

network-average in finite horizon discounted one-stage costs, that is, the network agents engage

in network processing (learning) by mean of local communication and computation.

The result of distributed Q-learning shows that all the agents can achieve optimal learning per-

formance asymptotically, which means the network agents reach consensus on the desired value

function and the corresponding optimal control strategy, under minimal connectivity assump-

tions on the underlying communication graph. We have given an example on section 5.3, which

proves that the convergence rate of the proposed distributed QD-learning is reasonably close to

the centralised Q-learning. However, it is on low dimensional environment. It was argued that

the convergence rate of the distributed Q-learning should asymptotically approach that of the

centralised in more general scenarios (higher dimensional setups) due to the asymptotic domi-

nation of the consensus potential over the innovations, which is an important future direction. It

may consist of analytically characterising the convergence rate of QD-learning under further as-

sumptions on the state-action generation, for instance, by imposing specific statistical structure

on the simulated state-action pairs.

Chapter 5 Distributed Encoder and Controller Design 99

After that, we formulated a distributed design problem to optimist the encoder and controller

asymptotically. The based system is closed-loop control of a linear plant with a low-rate feed-

back link over a memoryless noisy channel. Compared with iterative design method, fixed

encoder or controller is no need in distributed design method, which means encoder and con-

troller learn online and update its corresponding policy. Based on the simulation results, the

system performance of distributed design method is better than iterative design method. While

this is only two agents, the system can be expand to multi-sensors, which is the trend of complex

network control system.

Chapter 6

Conclusions and Future Research

6.1 Conclusions

In this thesis, we have discussed some fundamental knowledge about optimal control of net-

worked systems using reinforcement learning. Many studies move to feedback control system

by using measurement feedback over wireless communication channels. Because of the im-

portance and popularity of industrial wireless networking, research on designing closed-loop

systems for control using measurement feedback over imperfect communication channels has

received increasing attention. It can be claimed, however, that the research area is still in its

infancy and it evolves rapidly.

As explained in the introduction chapter, considerable efforts have been devoted to various sta-

bility issues for quantized control systems. This thesis, on the other hand, focuses mainly on

the optimization of the overall system performance. In particular, a stochastic control problem

was formulated and several aspects of the design and analysis of encoder-controllers for control

over low-rate noisy channels were studied. To deal with one of the most fundamental problems

in control systems, namely how to make the best use of the feedback information for the future

evolution, the encoder and controller are required to perform efficient estimation and control

using a few bits per sensor measurement. Because of the complex relation to all past and future

events, optimal estimation and control are difficult tasks.

In the main component, we studied the problem of optimizing the encoder-controller jointly, by

using an iterative training approach. The basic principle is to alternate between the optimization

of the encoder mappings and the controller mappings. Q-learning technique is utilized over the

design process, which means the encoder and controller mapping are produced by Q-learning

method. It is worth to point out that Q-learning method is model free, only data measured along

the system trajectories are utilized. It is a big improvement of co-design encoder-controller.

Compared with classic dynamic programming method, the design process in this thesis is online,

which means the updating process of encoder and controller design follows on system running.

101

102 Chapter 6 Conclusions and Future Research

Furthermore, multi-input and multi-out system is selected to show the results, while most of the

current research works about encoder and controller design can only be applied into scalar case.

For the co-design with BSC, three encoder strategies are given, which are memoryless encoder

design, memory encoder design and predictive encoder design. The previous two can use online

learning method, while system model is necessary into predictive encoder design. By simulation

experience, the system performance generated by predictive encoder design is a little bit better

than the other two. For the controller design component, we first show that the control policy

gt and Q-value Qt could converge to g∗t and Q∗t , respectively. What’s more, the optimal control

policy which is obtained by a virtual system, named open-loop encoder system, is given to help

theoretical analysis.

For the co-design with Gaussian channel, the main challenge is that the channel output is real-

valued vector. It is difficult or even impossible to get solutions by using method with BSC

design, because the trained encoder-controller can no longer be implemented as a simple look-

up table. Hadamard matrix is utilized to help to imitate the encoder process, invert this process

and then the real-valued vector channel output can be decoded to discrete symbols. This pro-

cess is soft controller design. While it is a bit complex to apply into practical, hard controller

is proposed. Hard controller design is same with controller design with BSC. Only partial in-

formation is utilized for system optimization. Hence, a combination of soft-hard controller is

proposed. Three controller design process are given in this chapter, which are soft-information

based controller, hard-information based controller and combined soft-hard information based

controller.

In the previous two chapter, iteration encoder and controller design is applied in both co-design

with BSC and Gaussian channel, while only local optimal results are obtained. Distributed

encoder and controller design is proposed to realize global optimal, while we can’t guarantee

global optimal solution. Clearly, the system performance of distributed design is better than

iterative design. In addition, QD-learning is introduced and simulations are given. All agents

learn independently and have communication with others. It means only partial information is

used to estimate. By the example, distributed Q-learning can converge to centralised Q-learning.

This is a big progress of multi-agent system, which can be applied in the system with multi-

sensors, multi-encoders and multi-controllers. Finally, simulation results are given for system

with BSC. Comparing results from simulations, distributed encoder and controller design is

better than iteration co-design.

6.2 Future Research

The upcoming research includes the following:

1. Finish Distributed Encoder-Controller Design

In Chapter 5, only distributed encoder and controller with BSC is given, that’s not enough.

xiaoru
高亮

Chapter 6 Conclusions and Future Research 103

So that different system model will be given. Also, the theoretical analysis is necessary

and can make sure the system performance of distributed design is better than iterative

design.

Furthermore, it is interesting to explore complexity networked control system with multi-

sensors, multi-encoders and multi-controllers. QD-learning is given already and can be

applied into multi-encoders optimization.

2. High-Order System Design

In high order system, the biggest challenge is how to design encoder to overcome the curse

of dimensional. The shunting idea is proposed, which means that the encoder can be splite

into shunting encoder. Each splitting encoder component can be viewed as one agent.

All agents learns independently by their own information and communication is allowed

among agents. Obviously, QD-learning method complies with the design requirement.

3. Application

After all these simulation test, it is better to find an area to apply the research works pro-

posed in this thesis. For example, wireless communication and control is very important

for UAV(unmanned aerial vehicle). How to improving system performance with simple

devices, such as low storage capacity sensors and low transmission power channel, is

very important to ensure long lifetime. Distributed design can be used into complexity

environment. Also, we can utilize our research on man-machine design.

Bibliography

P. Antsaklis and J. Baillieul. Guest editorial special issue on networked control systems. IEEE

Transactions on Automatic Control, 49(9):1421–1423, 2004.

P. Antsaklis and J. Baillieul. Special issue on technology of networked control systems. Pro-

ceedings of the IEEE, 95(1):5–8, 2007.

M. Aoki. Optimization of stochastic systems: topics in discrete-time systems, volume 32. Aca-

demic Press, 1967.

B. Azimi-Sadjadi. Stability of networked control systems in the presence of packet losses. In

42nd IEEE International Conference on Decision and Control (IEEE Cat. No. 03CH37475),

volume 1, pages 676–681. IEEE, 2003.

L. Bao and M. Skoglund. Encoder-controller design for control over the binary-input gaussian

channel. In Spread Spectrum Techniques and Applications (ISITA), 2010 IEEE 11th Interna-

tional Symposium on, pages 23–28. IEEE, 2010.

L. Bao, A. Shirazinia, and M. Skoglund. Iterative encoder-controller design based on approx-

imate dynamic programming. In Signal Processing Advances in Wireless Communications

(SPAWC), 2010 IEEE Eleventh International Workshop on, pages 1–5. IEEE, 2010.

M. Bardi and I. Capuzzo-Dolcetta. Optimal control and viscosity solutions of Hamilton-Jacobi-

Bellman equations. Springer Science & Business Media, 2008.

A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike adaptive elements that can solve

difficult learning control problems. IEEE transactions on systems, man, and cybernetics, (5):

834–846, 1983.

R. Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.

R. Bellman and R. E. Kalaba. Dynamic programming and modern control theory, volume 81.

Citeseer, 1965.

R. E. Bellman and R. E. Kalaba. Selected papers on mathematical trends in control theory.

Dover Publications, 1964.

D. P. Bertsekas. Approximate policy iteration: A survey and some new methods. Journal of

Control Theory and Applications, 9(3):310–335, 2011.

105

106 Chapter 6 Conclusions and Future Research

D. P. Bertsekas and J. N. Tsitsiklis. Neuro-dynamic programming, volume 5. Athena Scientific

Belmont, MA, 1996.

D. P. Bertsekas, D. P. Bertsekas, D. P. Bertsekas, and D. P. Bertsekas. Dynamic programming

and optimal control, volume 1. Athena scientific Belmont, MA, 1995.

S. J. Bradtke, B. E. Ydstie, and A. G. Barto. Adaptive linear quadratic control using policy

iteration. In American Control Conference, 1994, volume 3, pages 3475–3479. IEEE, 1994.

J. H. Braslavsky, R. H. Middleton, and J. S. Freudenberg. Feedback stabilization over signal-to-

noise ratio constrained channels. IEEE Transactions on Automatic Control, 52(8):1391–1403,

2007.

W. L. Brogan. Modern control theory. Pearson education india, 1991.

Z. Bubnicki and Z. Bubnicki. Modern control theory, volume 2005925392. Springer, 2005.

G. Cena and A. Valenzano. Achieving round-robin access in controller area networks. IEEE

Transactions on Industrial Electronics, 49(6):1202–1213, 2002.

M. B. Cloosterman, N. Van de Wouw, W. Heemels, and H. Nijmeijer. Stability of networked

control systems with uncertain time-varying delays. IEEE Transactions on Automatic Control,

54(7):1575–1580, 2009.

T. M. Cover and J. A. Thomas. Elements of information theory. John Wiley & Sons, 2012.

L. G. Crespo and J.-Q. Sun. Stochastic optimal control via bellman’s principle. Automatica, 39

(12):2109–2114, 2003.

P. Dayan and B. W. Balleine. Reward, motivation, and reinforcement learning. Neuron, 36(2):

285–298, 2002.

D. F. Delchamps. Stabilizing a linear system with quantized state feedback. IEEE transactions

on automatic control, 35(8):916–924, 1990.

J. C. Doyle, B. A. Francis, and A. R. Tannenbaum. Feedback control theory. Courier Corpora-

tion, 2013.

E. H. Durfee. Distributed problem solving and planning. In Multi-agent systems and applica-

tions, pages 118–149. Springer, 2001.

A. El Gamal and Y.-H. Kim. Network information theory. Cambridge university press, 2011.

F. Fagnani and S. Zampieri. Stability analysis and synthesis for scalar linear systems with a

quantized feedback. IEEE Transactions on automatic control, 48(9):1569–1584, 2003.

N. Farvardin. A study of vector quantization for noisy channels. IEEE Transactions on Infor-

mation Theory, 36(4):799–809, 1990.

Chapter 6 Conclusions and Future Research 107

J. Freudenberg and R. Middleton. Stabilization and performance over a gaussian communication

channel for a plant with time delay. In 2009 American Control Conference, pages 2148–2153.

IEEE, 2009.

J. S. Freudenberg, R. H. Middleton, and V. Solo. Stabilization and disturbance attenuation over a

gaussian communication channel. IEEE Transactions on Automatic Control, 55(3):795–799,

2010.

M. Fu and L. Xie. Finite-level quantized feedback control for linear systems. IEEE Transactions

on Automatic Control, 54(5):1165–1170, 2009.

R. G. Gallager. Information theory and reliable communication, volume 588. Springer, 1968.

A. Gersho and R. M. Gray. Vector quantization and signal compression, volume 159. Springer

Science & Business Media, 2012.

A. L. Glasser. The evolution of a source code control system. ACM SIGSOFT Software Engi-

neering Notes, 3(5):122–125, 1978.

R. M. Gray. Source coding theory, volume 83. Springer Science & Business Media, 2012.

J. P. Hespanha, P. Naghshtabrizi, and Y. Xu. A survey of recent results in networked control

systems. Proceedings of the IEEE, 95(1):138–162, 2007.

L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey. Journal

of artificial intelligence research, 4:237–285, 1996.

S. Kar, J. M. Moura, and H. V. Poor. Qd-learning: A collaborative distributed strategy for multi-

agent reinforcement learning through consensus+ innovations. IEEE Transactions on Signal

Processing, 61(7):1848–1862, 2013.

P. Knagenhjelm and E. Agrell. The hadamard transform-a tool for index assignment. IEEE

Transactions on Information Theory, 42(4):1139–1151, 1996.

S. M. Kuo and D. R. Morgan. Active noise control systems, volume 4. Wiley, New York, 1996.

M. G. Lagoudakis and R. Parr. Least-squares policy iteration. Journal of machine learning

research, 4(Dec):1107–1149, 2003.

E. B. Lee and L. Markus. Foundations of optimal control theory. Technical report, Minnesota

Univ Minneapolis Center For Control Sciences, 1967.

B. Lei, M. Skoglund, and K. H. Johansson. Iterative encoder-controller design for feedback

control over noisy channels. IEEE Transactions on Automatic Control, 56(2):265–278, 2011.

F. Lewis, S. Jagannathan, and A. Yesildirak. Neural network control of robot manipulators and

non-linear systems. CRC Press, 1998.

108 Chapter 6 Conclusions and Future Research

F. L. Lewis and D. Liu. Reinforcement learning and approximate dynamic programming for

feedback control, volume 17. John Wiley & Sons, 2013.

F. L. Lewis and D. Vrabie. Reinforcement learning and adaptive dynamic programming for

feedback control. IEEE circuits and systems magazine, 9(3), 2009.

F. L. Lewis, D. Vrabie, and V. L. Syrmos. Optimal control. John Wiley & Sons, 2012a.

F. L. Lewis, D. Vrabie, and K. G. Vamvoudakis. Reinforcement learning and feedback control:

Using natural decision methods to design optimal adaptive controllers. IEEE Control Systems,

32(6):76–105, 2012b.

Y. Li, E. Tuncel, and J. Chen. Optimal tracking over an additive white noise feedback channel.

In 2009 7th Asian Control Conference, pages 501–506. IEEE, 2009.

Z.-H. Li and M. Krstić. Optimal design of adaptive tracking controllers for non-linear systems.

Automatica, 33(8):1459–1473, 1997.

C.-T. Lin and C. S. G. Lee. Neural-network-based fuzzy logic control and decision system.

IEEE Transactions on computers, 40(12):1320–1336, 1991.

M. L. Littman. Markov games as a framework for multi-agent reinforcement learning. In ICML,

volume 94.

D. Liu and Q. Wei. Policy iteration adaptive dynamic programming algorithm for discrete-time

nonlinear systems. IEEE Transactions on Neural Networks and Learning Systems, 25(3):

621–634, 2013.

B. Luo, D. Liu, and T. Huang. Q-learning for optimal control of continuous-time systems. arXiv

preprint arXiv:1410.2954, 2014.

D. J. MacKay and D. J. Mac Kay. Information theory, inference and learning algorithms. Cam-

bridge university press, 2003.

M. Mazo and P. Tabuada. Decentralized event-triggered control over wireless sensor/actuator

networks. IEEE Transactions on Automatic Control, 56(10):2456–2461, 2011.

F. S. Melo and M. Veloso. Decentralized mdps with sparse interactions. Artificial Intelligence,

175(11):1757–1789, 2011.

R. H. Middleton, A. J. Rojas, J. S. Freudenberg, and J. H. Braslavsky. Feedback stabilization

over a first order moving average gaussian noise channel. IEEE Transactions on automatic

control, 54(1):163–167, 2009.

G. E. Monahan. State of the arta survey of partially observable markov decision processes:

theory, models, and algorithms. Management Science, 28(1):1–16, 1982.

Chapter 6 Conclusions and Future Research 109

L. A. Montestruque and P. Antsaklis. Stability of model-based networked control systems with

time-varying transmission times. IEEE Transactions on Automatic Control, 49(9):1562–1572,

2004.

G. N. Nair and R. J. Evans. Stabilization with data-rate-limited feedback: Tightest attainable

bounds. Systems & Control Letters, 41(1):49–56, 2000.

G. N. Nair, F. Fagnani, S. Zampieri, and R. J. Evans. Feedback control under data rate con-

straints: An overview. Proceedings of the IEEE, 95(1):108–137, 2007.

Y. Niu, T. Jia, X. Wang, and F. Yang. Output-feedback control design for ncss subject to quan-

tization and dropout. Information Sciences, 179(21):3804–3813, 2009.

M. Pajic, S. Sundaram, G. J. Pappas, and R. Mangharam. The wireless control network: A

new approach for control over networks. IEEE Transactions on Automatic Control, 56(10):

2305–2318, 2011.

P. Park, S. C. Ergen, C. Fischione, C. Lu, and K. H. Johansson. Wireless network design for

control systems: A survey. IEEE Communications Surveys & Tutorials, 20(2):978–1013,

2018.

N. J. Ploplys, P. A. Kawka, and A. G. Alleyne. Closed-loop control over wireless networks.

IEEE control systems, 24(3):58–71, 2004.

W. K. Pratt, J. Kane, and H. C. Andrews. Hadamard transform image coding. Proceedings of

the IEEE, 57(1):58–68, 1969.

M. Rabi, C. Ramesh, and K. H. Johansson. Separated design of encoder and controller for

networked linear quadratic optimal control. SIAM Journal on Control and Optimization, 54

(2):662–689, 2016.

M. J. Rochkind. The source code control system. IEEE transactions on Software Engineering,

(4):364–370, 1975.

W. Ryan and S. Lin. Channel codes: classical and modern. Cambridge university press, 2009.

M. Sabin and R. Gray. Global convergence and empirical consistency of the generalized lloyd

algorithm. IEEE Transactions on information theory, 32(2):148–155, 1986.

A. Sahoo, H. Xu, and S. Jagannathan. Neural network-based event-triggered state feedback

control of nonlinear continuous-time systems. IEEE Transactions on Neural Networks and

Learning Systems, 27(3):497–509, 2016.

S. Shakkottai, R. Srikant, et al. Network optimization and control. Foundations and Trends R©
in Networking, 2(3):271–379, 2008.

A. Shirazinia, S. Chatterjee, and M. Skoglund. Joint source-channel vector quantization for

compressed sensing. IEEE Transactions on Signal Processing, 62(14):3667–3681, 2014.

110 Chapter 6 Conclusions and Future Research

A. Shirazinia, A. A. Zaidi, L. Bao, and M. Skoglund. Dynamic source–channel coding for

estimation and control over binary symmetric channels. IET Control Theory & Applications,

9(9):1444–1454, 2015.

Y. Shoham, R. Powers, and T. Grenager. Multi-agent reinforcement learning: a critical survey.

Web manuscript, 2003.

Z. Shu and R. H. Middleton. Stabilization over power-constrained parallel gaussian channels.

IEEE Transactions on Automatic Control, 56(7):1718–1724, 2011.

M. Skoglund. Soft decoding for vector quantization over noisy channels with memory. IEEE

Transactions on Information Theory, 45(4):1293–1307, 1999.

T. Smith and R. Simmons. Heuristic search value iteration for pomdps. In Proceedings of the

20th conference on Uncertainty in artificial intelligence, pages 520–527. AUAI Press, 2004.

D. A. Sofge and D. A. White. Neural network based process optimization and control. In 29th

IEEE Conference on Decision and Control, pages 3270–3276. IEEE, 1990.

N. Sprague and D. Ballard. Multiple-goal reinforcement learning with modular sarsa (0). 2003.

R. S. Sutton. Generalization in reinforcement learning: Successful examples using sparse coarse

coding. In Advances in neural information processing systems, pages 1038–1044, 1996.

R. S. Sutton and A. G. Barto. Introduction to reinforcement learning, volume 135. MIT Press

Cambridge, 1998.

R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour. Policy gradient methods for

reinforcement learning with function approximation. In Advances in neural information pro-

cessing systems, pages 1057–1063, 2000.

K. P. Sycara. Multi-agent systems. AI magazine, 19(2):79, 1998.

A. Tamar, Y. Wu, G. Thomas, S. Levine, and P. Abbeel. Value iteration networks. In Advances

in Neural Information Processing Systems, pages 2154–2162, 2016.

S. Tatikonda and S. Mitter. Control over noisy channels. IEEE transactions on Automatic

Control, 49(7):1196–1201, 2004.

S. Tatikonda, A. Sahai, and S. Mitter. Stochastic linear control over a communication channel.

IEEE transactions on Automatic Control, 49(9):1549–1561, 2004.

N. Vlassis. A concise introduction to multi-agent systems and distributed AI. 2003.

G. C. Walsh, H. Ye, and L. G. Bushnell. Stability analysis of networked control systems. IEEE

transactions on control systems technology, 10(3):438–446, 2002.

F. Wang, B. Chen, C. Lin, J. Zhang, and X. Meng. Adaptive neural network finite-time output

feedback control of quantized nonlinear systems. IEEE Transactions on Cybernetics, 48(6):

1839–1848, 2018.

Chapter 6 Conclusions and Future Research 111

C. J. Watkins and P. Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

C. J. C. H. Watkins. Learning from delayed rewards. PhD thesis, University of Cambridge

England, 1989.

Q. Wei, D. Liu, and H. Lin. Value iteration adaptive dynamic programming for optimal control

of discrete-time nonlinear systems. IEEE Transactions on cybernetics, 46(3):840–853, 2015.

G. Weiss. Multi-agent systems: a Modern approach to distributed artificial intelligence. MIT

press, 1999.

T. C. Yang. Networked control system: a brief survey. IEE Proceedings-Control Theory and

Applications, 153(4):403–412, 2006.

A. A. Zaidi, T. J. Oechtering, S. Yüksel, and M. Skoglund. Stabilization of linear systems over

gaussian networks. IEEE Transactions on Automatic Control, 59(9):2369–2384, 2014.

L. Zhang, M. Z. Chen, C. Li, and Z. Shu. Event-triggered control over noisy feedback channels.

IFAC Proceedings Volumes, 47(3):10493–10498, 2014.

W. Zhang, M. S. Branicky, and S. M. Phillips. Stability of networked control systems. IEEE

control systems magazine, 21(1):84–99, 2001.

Q. Zhao, H. Xu, and S. Jagannathan. Near optimal output feedback control of nonlinear discrete-

time systems based on reinforcement neural network learning. IEEE/CAA Journal of Auto-

matica Sinica, 1(4):372–384, 2014.

Q. Zhao, H. Xu, and J. Sarangapani. Finite-horizon near optimal adaptive control of uncertain

linear discrete-time systems. Optimal Control Applications and Methods, 36(6):853–872,

2015.

K. M. Zuberi and K. G. Shin. Design and implementation of efficient message scheduling for

controller area network. IEEE transactions on computers, 49(2):182–188, 2000.

	Acknowledgements
	1 Introduction
	1.1 Background
	1.2 Contributions
	1.3 Organization

	2 Literature Review
	2.1 Networked Control Systems
	2.1.1 Introduction
	2.1.2 Research Issues of Networked Control Systems

	2.2 Elements of Channel Coding
	2.2.1 Source Coding
	2.2.2 Communication Channels
	2.2.3 Hadamard-Based Soft Decoding

	2.3 Reinforcement Learning Review
	2.3.1 Basic Knowledge of Reinforcement Learning
	2.3.2 Markov Decision Processes

	2.4 Three Optimal Control Design Methods
	2.4.1 Dynamic Programming
	2.4.2 Policy Iteration
	2.4.3 Value Iteration

	2.5 Q-Learning Method
	2.5.1 Q-Function
	2.5.2 Q-Learning Algorithm

	2.6 Discrete-Time LQR Optimization By Q-Learning
	2.6.1 Model-Based
	2.6.2 Model-Free

	2.7 Co-Design Encoder and Controller Problem

	3 Co-Design of Encoder and Controller for Feedback Control Systems Over Binary Symmetric Channels Using Q-Learning
	3.1 Introduction
	3.2 Preliminaries
	3.2.1 System Model
	3.2.2 Problem Statement

	3.3 Encoder Design by Q-Learning
	3.3.1 Q-Value Updating Rule
	3.3.2 Memoryless Encoder Design
	3.3.3 Memory Encoder Design
	3.3.4 Predictive Encoder Design
	3.3.5 Theoretical Aanlysis

	3.4 Controller Design by Q-Learning
	3.4.1 Q-Learning for Optimal Control
	3.4.2 Theoretical Analysis
	3.4.3 Q-Learning Design Process

	3.5 Iterative Encoder-Controller Design
	3.6 Convergence Analysis
	3.7 Numerical Results
	3.7.1 Encoder Design
	3.7.2 Controller Design
	3.7.3 Iterative Design

	3.8 Conclusions

	4 Co-Design of Encoder and Controller for Feedback Control Systems Over Gaussian Channels Using Q-Learning
	4.1 Introduction
	4.2 Preliminaries
	4.2.1 System Model
	4.2.2 Problem Statement

	4.3 Controller Design
	4.3.1 Controller Design by Q-Learning
	4.3.2 Soft-Information Based Controller Design
	4.3.3 Hard-Information Based Controller Design
	4.3.4 Combined Soft-Hard Controller Design

	4.4 Iterative Encoder-Controller Design
	4.5 Numerical Results
	4.5.1 Controller Design
	4.5.2 Iterative Design

	4.6 Conclusions

	5 Distributed Encoder and Controller Design for Feedback Control Systems Over BSC Using Q-Learning
	5.1 Introduction
	5.2 Distributed Q-Learning
	5.2.1 Assumption
	5.2.1.1 Measurability and Moments
	5.2.1.2 Link Failures
	5.2.1.3 Independence
	5.2.1.4 Finite Stopping Time

	5.2.2 Updating Equation of QD-Learning
	5.2.2.1 The Algorithm of QD-Learning
	5.2.2.2 Restriction of Convergence

	5.3 Examples about QD-Learning
	5.3.1 Parameters Setting
	5.3.2 Simulations

	5.4 Distributed Encoder-Controller Design
	5.5 Numerical Results
	5.6 Conclusions

	6 Conclusions and Future Research
	6.1 Conclusions
	6.2 Future Research

	Bibliography

