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Abstract Many safety-critical control systems use multiple redundant sensors to estimate
the same controlled signal. If the sensors were to operate perfectly, only a subset of them
would need to be used for the estimation. In practice, however, the sensors are subject to un-
certainty, minor or major faults and their operation may be nonlinear. It is thus important to
reliably estimate the controlled signal under these conditions, and also to assess the degree
of confidence with which each sensor should be treated. An example of such a control sys-
tem is the ground-steering control system of an aircraft nose landing gear. A virtual sensing
technique is commonly employed, which estimates the steering angle using the measure-
ments of multiple remote displacement sensors. The wheel position is then calculated as a
nonlinear function of these sensor outputs.

This paper describes how a digital twin of the ground-steering system, in which the
effects of uncertainties and faults can be systematically analysed and studied, is used to
assess the accuracy and integrity of the steering angle estimation for a number of different
estimation algorithms. Two of these algorithms are based on a least-squares approach, while
another is a soft-computing technique based on fuzzy logic. These methods are investigated
for several scenarios where model uncertainty, measurement noise and sensor faults are
included. It is shown that the soft-computing approach is more robust than the least squares
based methods under these conditions.
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1 Introduction

The ground-steering system is a part of the nose landing gear, which is fundamental to an
aircraft’s safety. A block diagram of the control loop for the ground-steering system is shown
in figure 1.

Fig. 1 Ground-steering system feedback control loop.

The nose wheels can be turned by the rudder pedal or by a bar in the cockpit, or by
a combination of both. A control law, usually a PID, is then applied on the error signal
between the desired steering angle and the actual steering angle. A power-assist system is
usually in place to help the pilot action using either electric or hydraulic actuators, which
will then turn the nose gear [1–3]. The wheel direction, or steering angle, is commonly not
measured directly, with an angular sensor, instead it is estimated using remote linear sensors.
Usually, an aircraft nose gear is equipped with a linkage mechanism consisting of multiple
linear variable displacement transducers (LVDTs) that are used for this purpose. This is fol-
lowed by an estimation algorithm that calculates the estimate of the wheel position based
on the LVDT outputs, using, in most cases, a majority voting approach. The estimate of the
actual steering angle is then fed back to the controller in figure 1 closing the loop.

If the sensors were to operate perfectly, only a subset of them would need to be used
for the estimation. However, the internal model of the virtual sensor arrangement might be
uncertain, the measurements might be affected by noise and the sensors might be subject to
potential faults. So, in practice, the redundant sensor outputs are different from each other.
Thus, the research question is how to reliably estimate the controlled signal under these
conditions? But also how to assess the integrity of the estimation, hence the trust in the final
estimate?

Preliminary work on this topic was presented by the authors in [4,5], where the non-
linear relationship between the steering angle and the sensor signals was first derived and
the propagation of both measurement and model uncertainties were investigated. However,
these studies lack the derivation of a closed-form solution to determine the possible steering
angle values given a sensor measurement, as well as clear and straightforward formulations
of the estimation algorithms, the detection of faults and the integrity index, which form the
novelty presented in this paper.
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This paper presents the development of an ”observational” digital twin [6] of an air-
craft’s ground-steering system sensing mechanism in which the unknown inputs such as
uncertainties and faults are included to systematically analyse and test virtual sensing algo-
rithms that are used to estimate the nose wheels direction. Three state estimation algorithms
are discussed and their performance in estimating the steering angle is tested under several
scenarios including model uncertainty, measurement noise and sensor faults.

The first two approaches are based on the least-squares (LS) method, which are often
used for overdetermined problems. Although LS estimators provide good accuracy in pres-
ence of uncertainty, it has been observed that they are more difficult to manage when both
uncertainties and potential faults are present [5]. The third approach is a soft-computing
(S-C) method that makes use of fuzzy logic, which reportedly has been shown to be robust
in overdetermined problems under these conditions [7,8]. The S-C method comprises two
parallel algorithms, or modules. The soft-voter module, which calculates the final estimate
at each time step; and the decision module, which calculates the overall level of trust in the
estimate and detects faulty sensors.

It is a difficult task to distinguish between uncertainties and faults, but the distinction
is important since faults, which are unauthorised deviations of at least one characteristic
property of the system from acceptable or standard conditions [9], should be flagged up
for maintenance. Various sources of uncertainty may disturb diagnosis accuracy, since the
model of the system is not a perfect reflection of reality. The existence of measurement
noise, model uncertainty, and un-modelled disturbances should be taken into account during
design of the virtual sensor. A fault is first flagged up using fault detection and isolation
(FDI) techniques, then the control law could be modified to try to compensate for the fault
occurrence using fault tolerant control (FTC) methods, a process also known as reconfigura-
tion. Fault diagnosis typically provide a Boolean decision on whether faults have occurred,
but an adequate tuning of an FDI procedure should lead to a satisfactory trade-off between
minimizing the rates of non-detection (missing a fault) and false-alarm (raising an alarm
in fault-free condition). Table 4 in [9] proposes a classification of FDI approaches accord-
ing to their aerospace applications, from a collection of more than 100 papers. Due to the
safety-critical condition of the application presented in this paper, it is important that the
FDI provides a high detection rate but that the virtual sensor still guarantees an accurate and
smooth steering angle estimate to feed back to the pilot.

The final target of this research is a ground-steering control system that guarantees both
the smoothness and predictability of the controlled signal that is fed back to the pilot as they
are steering the aircraft on the ground, while being aware on the level of trust they should
give to the estimated steering angle, hence the feedback signal.

The paper is organized as follows. The development of the digital twin of the ground-
steering system sensing mechanism is presented in section 2, where the nonlinear relation-
ship between the sensor outputs and the steering angle estimates is discussed. For briefness,
this will be called as the digital twin of the ground-steering system throughout the rest of
the paper.The least squares estimation methods are then introduced in section 3, whereas the
soft-computing method is described in section 4. The results of a comparison of the perfor-
mance of the estimation algorithms in terms of estimation accuracy and integrity when the
digital twin is affected by model uncertainty, sensor noise and potential sensor faults, are
presented in section 5. The conclusions are summarised in section 6.
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2 Problem formulation

In this application, four LVDT sensors are arranged to monitor the nose gear direction, which
is calculated based on the nonlinear geometry of the sensor alignment. If the sensors were
ideal, only a subset of them would need to be used for the estimation. In practice, however,
each sensor is subject to uncertainty, minor (short-term) and major (long-term) faults and
there is also ambiguity associated with the estimate of the steering angle because of the geo-
metric nonlinearity. The redundant sensor outputs are thus different from each other, and it is
important to not only reliably estimate the controlled signal under these conditions, but also
to assess the degree of confidence with which the estimate should be treated. This section
presents the development of an observational digital twin of the ground-steering system, in
which the effect of nonlinearities, uncertainties, disturbances and faults can be systemati-
cally analysed.

The process of estimation can be summarised by the block diagram in figure 2, where
α represents the true steering angle, α̂ is the estimate of the actual steering angle provided
by the estimation algorithm, together with an integrity level, and dL1, dL2, dR1, dR2 are the
outputs of the 4 LVDTs, which are affected by uncertainties and faults.

Fig. 2 The digital twin of the ground-steering system sensing mechanism can be used to analyse the effect of
uncertainties, disturbances and faults on both the steering angle estimate and the integrity of the estimation.

The estimation process shown in figure 2 is organised with the following elements,

1. α: true steering angle.
2. Digital twin: inputs = {Kinematics, α}, outputs = {dL1,dL2,dR1,dR2}. Additional (un-

known) inputs are:
Uncertainties: small deviations from true value in the model parameters (a, b, l,γ).
Disturbances: small deviations from true value in the sensor outputs (dL1, dL2, dR1, dR2).
Sensor faults: unauthorised deviations from nominal behaviour or complete fail-

ures. Common generic sensor faults include: bias, drift, scaling, signal loss and signal
lock.
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3. Estimator: inputs = {Kinematics, dL1,dL2,dR1,dR2}, outputs = {α̂, integrity}.

In an ideal case of multiple redundancy, majority voting could be used to estimate the
true steering angle and hence any sensor faults, but in practice this is not possible since
the sensor outputs are subject to uncertainty and hence the faults may not be obvious. In
this paper, three estimation algorithms are presented, two of which are based on a least
squares method while the other relies on a fuzzy logic approach.

4. α̂: Estimated steering angle; Integrity: level of trust in the estimation.

There are a number of requirements that have been set for the development of both the
digital twin and the virtual sensor:

– The estimation algorithm must work using the outputs from the current time step only.
This is usually referred as a snapshot scheme, which has the advantage over averaging or
filter schemes of not relying on questionable assumptions on how the estimator attained
its current state.

– The final estimate must remain smooth at all times, even when a sensor fails abruptly.

Also, it is assumed that a fault occurrence affects only one sensor at a time.
A model of the ground-steering system is shown in figure 3(a), where the coordinates of

the linkages have been selected according to the study in [10] and are given in table 1. The
two links that rotate around the central pivotal point are fixed in length, while the other links
are extensible and their positions are measured by the left and right LVDT sensors.

Table 1 Geometric model parameters for the ground-steering mechanism shown in figure 3, as used in the
simulations.

Parameter Value Units
e 200 mm
l 153 mm
η 44 [deg]
γ 26 [deg]

A kinematic analysis of position is carried out in order to understand the relationship
between the wheel direction and the displacement of the LVDT sensors. The formulation of
the forward problem, which determines (dLi,dRi) given a known steering angle α , has al-
ready been presented in [4] and is recalled here for the purpose of introducing the variables.
The kinematic analysis is solved by dividing the ground-steering system into elementary
triangles, as shown in figures 3(b), 3(c) and 3(d), where each vector zi has modulus zi and
direction θi, assuming that anticlockwise angles are positive starting from the x-axis.

The closure equation of the left arm shown in figure 3(b) is given by,

z1 + z2 + z3 = 0, (1)

which can be rewritten as,{
z1 cos(θ1)+ z2 cos(θ2)+ z3 cos(θ3) = 0

z1 sin(θ1)+ z2 sin(θ2)+ z3 sin(θ3) = 0
.

(2a)

(2b)
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(a)

(b) (c) (d)

Fig. 3 (a) Schematic of the ground-steering sensing mechanism, where α is the steering angle of the nose
gear, dL1, dL2, dR1, dR2 are the LVDT sensor measurements and e, l, η , γ are the geometric model parame-
ters. Kinematic diagrams of: (b) left arm; (c) centre arm; (d) right arm. (Source [4]).

Squaring and summing to each other equations (2a) and (2b) results in,

d2
Li(cos(θ1)

2 + sin(θ1)
2) = l2(cos(θ2)

2 + sin(θ2)
2)+a2 +b2−2lacos(θ2)−2lbsin(θ2),

(3)
where the substitutions z1 = dLi, z2 = l, z3 cos(θ3) = −a and z3 sin(θ3) = −b have been
made. Equation (3) can thus be rewritten as,

d2
Li = l2 +a2 +b2−2l [acos(θ2)+bsin(θ2))] . (4)

The centre arm is shown in figure 3(c). The direction of z2 can be expressed as,

θ2 = α + γ, (5)

where α is the angular position of the nose wheel and γ is the fixed angle given in table 1.
Similarly, the direction of z4 is given by,

θ4 = α− γ. (6)
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Fig. 4 Position of the left ( ) and right ( ) sensors versus the nose wheel steering angle.

The closure equation of the right arm shown in figure 3(d) is obtained as follow,

z4 + z6 + z7 = 0, (7)

which can be rewritten as,{
z4 cos(θ4)+ z6 cos(θ6)+ z7 cos(θ7) = 0

z4 sin(θ4)+ z6 sin(θ6)+ z7 sin(θ7) = 0
.

(8a)

(8b)

Squaring and summing equations (8a) and (8b) results in,

d2
Ri(cos(θ6)

2 + sin(θ6)
2) = l2(cos(θ4)

2 + sin(θ4)
2)+a2 +b2−2lacos(θ4)+2lbsin(θ4),

(9)
where the substitutions z6 = dRi, z4 = l, z7 cos(θ7) =−a and z7 sin(θ7) = b have been made.
Hence, equation (9) becomes

z2
6 = l2 +a2 +b2−2l [acos(θ4)−bsin(θ4))] . (10)

As a result, the forward kinematic problem is determined by combining equations (4),
(5), (6) and (10), which results in,{

d2
Li = l2 +a2 +b2−2l [acos(α + γ)+bsin(α + γ))]

d2
Ri = l2 +a2 +b2−2l [acos(α− γ)−bsin(α− γ))]

,
(11a)

(11b)

where the displacements of the left and right LVDTs (dLi,dRi) can be calculated given the
knowledge of the model parameters and the (known) true value of the steering angle α .

The nonlinear relationship between the LVDT displacements and the steering angle,
given by equation (11), is shown in figure 4, with the solid line for the left sensors dLi(α)
and with the dash-dotted line for the right sensors dRi(α). dLi(α) reaches a minimum at
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Fig. 5 (a) Variation of the steering angle with respect to the left and right sensor outputs. The true steering
angle is shown with the red solid line ( ) and its projection to the x-y plane with the black solid line
( ). (b) Admissible sets of right and sensor displacements (dRi,dLi); each set of right and left sensor
output correspond to a unique value of the steering angle α . (Source [5]).

α = 20◦ meaning that it is a non-injective function in the interval ]−180◦, 180◦[, hence not
invertible. The same applies to dRi(α), which has a minimum at α = −20◦. It is impor-
tant to notice, however, that even if the formulation has been derived for the full angular
range, practical values of the aircraft steering angle during taxi are considered in the interval
]−90◦, 90◦[.

As a consequence there is ambiguity associated with the steering angle estimate if only
sensors on one side were to be used. As shown in figure 4, each individual sensor displace-
ment could be generated by two distinct values of α , but only one of these two is the actual
steering angle. Both the left and right sensor measurements must be used to determine the
unique value of the actual steering angle.

Combining these sets of left and right sensor measurements with the actual steering an-
gle generates a 3D relationship among these entities, which is shown with the red solid line
in figure 5(a). This red line can be projected onto the x-y plane, which results in a manifold:
the black solid line shown in figure 5(b). Each point on this curve relates an ideally-measured
set of left and right sensor measurements to its unique steering angle value.

However, our interest is to solve the inverse kinematic problem, which requires the es-
timation of the actual steering angle α̂ given the measurements from two left and two right
sensors (dLi,dRi). To begin with we consider a deterministic scenario, in which the LVDT
measurements are not affected by noise or faults and the model parameters are known pre-
cisely. As shown in [4], the system of equations (11) can be rewritten as,


[acos(α + γ)+bsin(α + γ))] =

l2 +a2 +b2−d2
Li

2l

[acos(α− γ)−bsin(α− γ))] =
l2 +a2 +b2−d2

Ri
2l

,
(12a)

(12b)

which results in,
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sin(α) [bcos(γ)−asin(γ)]+ cos(α) [acos(γ)+bsin(γ)]− l2 +a2 +b2−d2

Li
2l

= 0

sin(α) [asin(γ)−bcos(γ)]+ cos(α) [acos(γ)+bsin(γ)]− l2 +a2 +b2−d2
Ri

2l
= 0

,

(13a)

(13b)

and given a set of (dLi,dRi), the steering angle could be found iteratively solving equa-
tions (13a) and (13b), using for example Newton-Raphson method [4]. However, the iter-
ative method described in [4] might require expensive and time consuming computations,
and hence a closed-form solution is sought in this paper.

The right-hand members of equations (12a) and (12b) can be defined as,

Li ,
l2 +a2 +b2−d2

Li
2l

, Ri ,
l2 +a2 +b2−d2

Ri
2l

. (14)

Substituting equations (14), (5) and (6) into equations (12a) and (12b) gives,{
acos(θ2)+bsin(θ2) = Li

acos(θ4)−bsin(θ4) = Ri
,

(15a)

(15b)

which can be solved independently. In solving equation (15a) we make use of the trigono-
metric identities

sin(θ2) = 2sin
(

θ2

2

)
cos
(

θ2

2

)
=

2tan
(

θ2
2

)
1+ tan2

(
θ2
2

) (16)

and

cos(θ2) = cos2
(

θ2

2

)
− sin2

(
θ2

2

)
= 1−2sin2

(
θ2

2

)
=

1− tan2
(

θ2
2

)
1+ tan2

(
θ2
2

) . (17)

Introducing a change of variable,

x , tan
(

θ2

2

)
; θ2 , 2arctan(x), (18)

the trigonometric identities of equations (16) and (17) become,

sin(θ2) =
2x

1+ x2 ; cos(θ2) =
1− x2

1+ x2 . (19)

Substituting equation (19) into equation (15a) gives,

a
(

1− x2

1+ x2

)
+b
(

2x
1+ x2

)
−Li = 0, (20)
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and results in the following second-order equation,

(Li +a)x2−2bx+(Li−a) = 0, (21)

which has two roots that can be calculated as,

x1,2 =
2b±

√
4b2−4(Li +a)(Li−a)

2(Li +a)
=

b±
√

a2 +b2−L2
i

Li +a
. (22)

Reapplying the change of variables of equation (18) to equation (22) gives the closed-form
solutions of the steering angle estimates based on the left LVDT outputs as,

αLi:1,2 = 2arctan

b±
√

a2 +b2−L2
i

Li +a

− γ. (23)

Applying the same procedure to equation (15b) gives the following solution for the right
LVDT outputs,

αRi:1,2 = 2arctan

−b±
√

a2 +b2−R2
i

Ri +a

+ γ. (24)

A majority voting approach could be used to determine the final estimate from the two
individual solutions of equations (23) and (24). In practice, however, the model parameters
are subject to uncertainties and the LVDT measurements are noisy and potentially faulty. So
alternative estimation algorithms have been considered, which are presented in the next two
sections.

3 Virtual sensing using least-squares based estimation methods

This estimation method is motivated by an analogy with another overdetermined problem;
the Global Positioning System (GPS). A GPS receiver obtains the transmitted signals from
several orbiting satellites and calculates its position on Earth, which is then pointed out on
a built-in map. The minimum number of satellites for the GPS receiver to calculate its posi-
tion is 4 (the three coordinates and the clock offset between receiver and satellites), however,
the receiver can usually track five or more satellites simultaneously. This means that there
are more measurements than unknown, i.e. an overdetermined problem. The approach that
is used in the GPS system to solve the overdetermined problem is a least-squares method
[11–17].

Following this approach for the ground-steering system case study, equation (13), with
the inclusion of uncertainties, can be expressed in a matrix form as [5],

Ax̂ = d− v̂, (25)

where A is the the design matrix, which contains the model parameters only, x̂ is the un-
known state vector, d is the measurement vector, and v̂ is the error vector, which represents
the measurement noise, model errors and any sensor faults. The complete formulation for
the Ordinary Least-Squares (OLS) estimator including the detailed description of each ma-
trix appearing in equation (25) can be found in [5], where this method was first introduced.
In this paper the OLS algorithm is briefly summarised as follows,



Virtual sensing of wheel direction from redundant sensors in aircraft ground-steering systems 11

– Calculate the design matrix A.
– Calculate the measurement vector d from the measured sensor signals.
– Compute the best estimate of α in the least-squares sense as,

x̂ =
(
AT A

)−1 AT d. (26)

– We define the consistency of the estimation as,

λ = 1−|x̂T x̂−1|. (27)

– A fault is detected and isolated if λ < 0.9 but excluding any of the sensors from the
estimation algorithm leads to a consistency index that is closer to 1.

A different technique for fault detection and isolation is the parity space approach [18–
20]. However, the parity space approach is based on the assumption that the error vector has
zero mean E(v) = 0 and E(vvT) = σI. In this particular case study, however, a Gaussian
distribution of the sensor outputs does not correspond to a Gaussian distribution of the ob-
servation vector d because of the nonlinearity. This can be a reason why the parity space
approach is not suited for fault detection and isolation in this application.

The OLS estimator is computationally inexpensive and provides accurate enough esti-
mates with noisy measurements. It is shown in section 5, however, that it lacks robustness
in the presence of larger deviations or faults in the sensors. This motivates least-squares es-
timation algorithms that are more robust against outliers. As presented in [5], M-estimators
have higher tolerance for outliers with respect to OLS estimators. The cost function in this
case is given by ∑

n
i=1 ρ(ei), where ρ(·) is some function of the error e between the true

and the estimated steering angles [21].The solution is found via an iterative approach called
iteratively reweighted least squares (IRLS), which is detailed in [5] and can be summarised
as follows:

– Select an initial estimate, which can be the median estimate for example;
– At each iteration calculate the error residuals ei and associate weights from the previous

iteration;
– Solve for the new weighted least-squares estimate,

α̂ =
(
HTWH

)−1 HTWα̂ (28)

where α̂ is a vector containing all candidate solutions, H ∈ℜ8×1 is a scaling vector, and
W is a diagonal matrix containing the weights;

– Repeat the previous two steps until convergence.

Different weighting functions can be used to determine matrix W used in equation (28).
In this paper the Huber objective function [21] is used, which results in,

w(ei) =

{
1 |ei| ≤ k
k/|ei| |ei| ≤ k

, (29)

where k is a tuning constant, which has been chosen to be twice the median absolute devi-
ation MAD = medi|αi−med jα j| in this study, where med jα j is the median of the obser-
vations. The smaller the value of k, the more the estimator is resistant to outliers. Although
efficient to detect outliers, the IRLS is not always able to deal with the presence of sensor
faults, as shown in section 5. A different approach for the estimation of the steering angle is
the soft-computing (S-C), or soft-voting, method, which is presented in the next section.
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Fig. 6 Soft-voting estimation algorithm that uses a monitoring scheme to exclude faulty sensors.

4 Virtual sensing using a soft-computing approach

The soft-computing (S-C) approach is a sensor management technique that is similar to the
majority voting approach, but in this case the observations are assigned weights that are
based on fuzzy membership functions and the final estimate is computed as a weighted av-
erage of all valid observations [8,7]. The fuzzy membership functions are also used to assign
an amount of trust to each valid observation. The soft-voting algorithm is implemented as
illustrated in figure 6:

– The steering angle estimation signals, calculated using equations (23) and (24), are used
simultaneously in two distinct modules, as introduced in section 1: the soft-voter mod-
ule, which is used for the calculation of the final consolidated estimate, and the decision
(or monitoring) module, which is used for the calculation of the integrity level and the
fault detection and isolation. If a fault in one of the sensors is declared by the decision
module, then the reconfiguration path switches off the corresponding sensor, as indicated
by the ON/OFF elements in figure 6.

– In the soft-voter module each valid signal is assigned a weight and the consolidated
estimated steering angle is the weighted average of the individual signals,

α̂ =
n

∑
i=1

wiα̂i, (30)

where wi denotes the weight assigned to the ith input signal α̂i and n denotes the number
of valid sensors. α̂i is given by equations (23, 24);

– The weight wi used here depends on the membership degree, which is calculated from
a membership function. There exists many types of membership functions, for exam-
ple: triangular, trapezoidal, Gaussian, two sided Gaussian plus a flat top, sigmoidal, and
polynomial. The one used here and represented in figure 7 is the product of two sig-
moidal membership functions that are expressed as,

µi(α̂, α̂i) =
1

1+ e−a1[(α̂−α̂i)−c1]
· 1

1+ e−a2[(α̂−α̂i)−c2]
, (31)

where the parameters a and c have been selected as a1 = 4, c1 =−2, a2 =−4 and c2 = 2.
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– The weight is calculated as,

wi =
µi

∑
n
j=1 µ j

, (32)

where 0≤ µi ≤ 1. The computation of the membership degree µi is illustrated in figure
7.

(a) (b)

(c) (d)

Fig. 7 Examples of soft-voting operation. The membership function is shown with the black solid line ( ),
the current value of each sensor signal is shown with the red dashed line ( ), whereas the remaining valid
sensor signals are shown with the blue dash-dotted line ( ). The current value of each sensor signal forms
the centre of its membership function. The membership degree of the current signal is determined by the
largest membership degree of the remaining valid signals.

– The current value of each signal forms the centre of its corresponding membership func-
tion. The membership degree for this signal is the largest membership degree of the
remaining valid signals according to this ”membership function”,

µi = max
i6= j

µi(α̂ j− α̂i). (33)

For example, the membership degree of signal two in figure 7(a) is 1 because the next
closest signal crosses its membership function on the top flat part. The membership
degree of signal four in figure 7(b) instead, is 0.5 because the next closest signal crosses
the membership function on its shoulder at that level. Similarly, the membership degrees
of all remaining valid signals can be obtained following the same procedure.
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(a) (b)

Fig. 8 Examples of monitoring operation. (a) Hard fault on sensor dL1 (locked); (b) Small constant bias on
sensor dR2. The monitoring count rates for the sensors dL1, dL2, dR1, dR2 are shown with the green ( ),
blue ( ), cyan( ) and magenta ( ) lines, respectively. Sensor faults are detected and corresponding
sensor signals are switched off once the count rate of the sensor crosses the threshold, which is shown with
the dashed red line ( ).

– In the decision module, the ”count rate” ξ of the ith signal is calculated at each iteration
according to its corresponding membership degree µi:

If µi = 1 then ξi =−1

If 0≤ µi ≤ 1 then ξi = 0

If µi = 0 then ξi =+2

,

(34a)

(34b)

(34c)

– If the count rate goes beyond a threshold, for example ξ̄ = 200 over a certain period of
time, the corresponding sensor is declared faulty and its contribution to the consolidated
estimate is switched off. For example, figure 8(a) shows the count rate, at 100Hz, of
the sensor condition during a test in which the nose gear is steering from −150◦ to
150◦ at a rate of 30◦ every 5 seconds and the sensor dL1 is subject to a hard fault. The
soft-computing algorithm quickly detects the anomaly with sensor dL1 (green line) and
when its count rate crosses the threshold (red dashed line) at around 2.5s the sensor is
declared invalid and taken out from future estimations. Similarly, figure 8(b) shows the
count rate of the sensor condition during the same test as before, but with sensor dR2
subject to a small bias fault instead of the hard fault on dL1. In this case the algorithms
take longer (around 37.5s) to declare the sensor invalid, as subtle faults are more difficult
to detect. In practical implementations, it is important to introduce a saturation limit on
the lower value of the count rates. This serves the purpose of avoiding that the count rate
of a sensor keeps decrementing indefinitely until it reaches very large negative values,
affecting the performance of the fault detection should a fault occur, since a large time
interval would be needed before the count rate increases to overtake the upper threshold.

– The count rate of the ith sensor signal becomes positive when the corresponding weight
in the voted signal is equal to zero (wi = 0), therefore no transients occur once the
failure is declared on the ith sensor and the corresponding signal is switched off. This
soft-voting approach is thus similar to a majority voting approach, but in the soft-voting
approach the contribution of a faulty signal is reduced instead of being ruled out.
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– The integrity of the estimate is calculated as the average level of trust of all sensors,

ψ =
∑max µdi

4
. (35)

where µdi is the ith membership degree for each sensor.

5 Simulation results

In this section the OLS and IRLS methods are compared with the S-C method for several
scenarios in which the digital twin of the ground-steering system is subject to model uncer-
tainties, measurement noise and sensor faults.

When these unknown inputs are considered, the eight steering angle estimates given by
equations (23) and (24) become,

α̂Li:1,2 = 2arctan

 b̃±
√

ã2 + b̃2− L̃2
i

L̃i + ã

− γ̃, (36)

and

α̂Ri:1,2 = 2arctan

−b̃±
√

ã2 + b̃2− R̃2
i

R̃i + ã

+ γ̃, (37)

where ã ∈ [a−∆ , a+∆ ], b̃ ∈ [b−∆ , b+∆ ], l̃ ∈ [l−∆ , l +∆ ] and γ̃ ∈
[
γ−∆γ , γ +∆γ

]
. ∆

and ∆γ are the model uncertainties, which describe the error bounds of the model parameters.
In this study ∆ has been set to 2mm and ∆γ set to 2◦. The variables L̃i and R̃i in equations
(36) and (37) are defined as,

L̃i ,
l̃2 + ã2 + b̃2− d̃2

Li

2l̃
, R̃i ,

l̃2 + ã2 + b̃2− d̃2
Ri

2l̃
, (38)

where
d̃Li = σs(1+ εs)d̃Lni +dL f , (39)

and
d̃Ri = σs(1+ εs)d̃Rni +dR f , (40)

in which σs and εs are variables that depend on the type of fault, and d̃Lni ∈ [dLi−∆d , dLi +∆d ]
and d̃Rni ∈ [dRi−∆d , dRi +∆d ], where ∆d , which is set to 2mm, is the measurement error.

Equations (39) and (40) model a sensor fault as a discrepancy between the actual output
of the system d̃Lni, d̃Rni and the sensor output d̃Li, d̃Ri. Four generic types of faults, common
to most sensors, are described: bias (offset), drift (linear or not), scaling (gain, linear, or
not), hard fault (loss or locking of signal). The value of fault parameters σs, εs, dL f and dR f
appearing in equations (39) and (40) for these different types of fault are indicated in table
2.

Severe faults, as for example the loss of signals, are generally easy to detect since a
built-in test is generally provided by sensor manufacturers. This is why small anomalies like
bias, small drift, etc. that are more difficult to recognise should be the focal point of a fault
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Table 2 Model parameters for sensor faults.

Bias Drift Scaling Hard fault No fault
εs 0 0 6=0 0 0
σs 1 1 1 0 1

dL f , dR f 6=0 (const.) 6=0 (time varying) 0 const. 0

(a) (b)

(c) (d)

Fig. 9 Simulation results for case A, in which there is no model uncertainty, measurement noise and sensor
faults. Black line ( ) for the true reference signal; red dash-dotted line ( ) for the OLS; solid green line
( ) for the IRLS and solid blue line ( ) for the S-C method. (a) Steering angle estimate; (b) Estimation
accuracy; (c) Integrity for the S-C method and consistency for the OLS method according to equations (35)
and (27); (d) Decision on fault detection and isolation.

detection and isolation module.

The true steering angle has been simulated as a ramp signal starting at -150◦ and in-
creasing by 30◦ every 5 seconds, reaching 150◦ at 50 seconds.

The OLS, IRLS and S-C algorithms have been tested for the following scenarios:

– Case A:

Ideal scenario: no measurement noise, no parameter uncertainty and no faults. The re-
sults are shown in terms of estimated steering angle, estimation accuracy, integrity and
fault detection and isolation in figure 9.
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(a) (b)

(c) (d)

Fig. 10 Simulation results for case B that includes model uncertainty and measurement noise, but doesn’t
include any sensor faults. Black line ( ) for the true reference signal; red dash-dotted line ( ) for
the OLS; solid green line ( ) for the IRLS and solid blue line ( ) for the S-C method. (a) Steering
angle estimate; (b) Estimation accuracy; (c) Integrity for the S-C method and consistency for the OLS method
according to equations (35) and (27); (d) Decision on fault detection and isolation.

All of the algorithms are able to accurately predict the steering angle in this ideal sce-
nario, as shown in figures 9(a) and 9(b). The small errors given by the S-C method
around −20◦ and 20◦ visible in figure 9(b) are due to the flat top region of the member-
ship function shown in figure 7. Both integrity and consistency are at maximum in this
scenario, as shown in figure 9(c) and the fault detection index given in figure 9(d) reports
no faults, as expected for the OLS and S-C. There is no obvious way of calculating the
integrity or fault detection index for the IRLS.

– Case B:

Figure 10 shows the results of a simulation without faults, but with parameter uncertainty
∆ set to 2mm and ∆γ set to 2◦ and with measurement noise ∆d set to 2mm.
The IRLS and S-C algorithms slightly outperform the OLS algorithm in terms of ac-
curacy in this case as shown in figure 10(b). Although the OLS methods give a high
consistency level (figure 10(c)) compared to the S-C method, it also detects a number of
false positives for the fault detection and isolation, as shown in figure 10(d), even though
none of the sensors is faulty .

– Case C:



18 Mattia Dal Borgo et al.

(a) (b)

(c) (d)

Fig. 11 Simulation results for case C that includes model uncertainty and measurement noise and a faulty
sensor: hard fault on dL1. Black line ( ) for the true reference signal; red dash-dotted line ( ) for
the OLS; solid green line ( ) for the IRLS and solid blue line ( ) for the S-C method. (a) Steering
angle estimate; (b) Estimation accuracy; (c) Integrity for the S-C method and consistency for the OLS method
according to equations (35) and (27); (d) Decision on fault detection and isolation.

Figure 11 shows the results of the simulation with parameter uncertainty ∆ set to 2mm
and ∆γ set to 2◦, measurement noise ∆d set to 2mm and a faulty sensor dL1 stuck at
150 mm, which is a hard fault.
This case of severe fault illustrates how the S-C is more robust than the LS based esti-
mators. As shown in figures 11(a) and 11(b), the error of the estimation given by the S-C
algorithm remains small, while the errors of the LS base estimators occasionally go out
of scale. In figure 11(c) the integrity of the OLS is very low some of the time, whereas
the integrity of the S-C approach is consistently to around 75%, indicating the loss of
a sensor. This is verified by figure 11(d), which shows how quickly the S-C method re-
alises that dL1 is faulty. It should be noted that also in this occasion the LS methods give
false positives as well as no detections indicating that they are less reliable in performing
FDI operations than the S-C approach.

– Case D:

Figure 12 shows the results of the simulation with parameter uncertainty ∆ set to 2mm
and ∆γ set to 2◦, measurement noise ∆d set to 2mm and a faulty sensor d̃R2 = d̃Rn2 +
15 mm, which is a bias fault.
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(a) (b)

(c) (d)

Fig. 12 Simulation results for case D that includes model uncertainty and measurement noise and a faulty
sensor: small bias on dR2. Black line ( ) for the true reference signal; red dash-dotted line ( ) for
the OLS; solid green line ( ) for the IRLS and solid blue line ( ) for the S-C method. (a) Steering
angle estimate; (b) Estimation accuracy; (c) Integrity for the S-C method and consistency for the OLS method
according to equations (35) and (27); (d) Decision on fault detection and isolation.

This case of milder fault is more difficult to detect when compared to the previous case
of a severe fault because the faults might be mistaken for uncertainties and vice-versa.
The S-C approach is still the most accurate and robust algorithm when compared with
the LS based estimators, as shown in figures 12(a) and 12(b). Figure 12(c) shows that the
integrity is initially estimated by the S-C algorithm to be around 100%, before dropping
to levels below 75% meaning that the S-C algorithm needed some time before declaring
one of the sensors as faulty as also shown in 12(d). This did not compromise the accuracy
of the estimation, however, and the fault detection was still slightly quicker than that of
the OLS.

6 Conclusions

In this paper the robust estimation of wheel direction in a ground-steering system for air-
craft has been presented when using remote and redundant LVDT measurements that are
subject to uncertainties and faults. This is used as an example of virtual sensing in a safety-
critical application. The observational digital twin of the ground-steering system consists
of a kinematic model of the sensing mechanism together with unknown inputs such as the
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model uncertainties, the measurement noise and the potential sensor faults. Because of these
effects, and also the nonlinear arrangement of the sensors, the angle estimates from each of
the sensors are different from each other, and it is important to not only reliably estimate
the controlled signal under these conditions, but also to assess the degree of confidence
with which the estimate should be treated. The forward kinematic problem, which was first
solved in [4], has been summarised in section 2, whereas the inverse kinematic problem has
been solved in closed-form in this paper. The resulting nonlinear relationship between the
steering angle and the sensor outputs was also investigated.

Three distinct estimation algorithms have been compared for the estimation of the wheel
direction in presence of model uncertainties, measurement noise and sensors faults. Two of
these algorithms, which were already presented in [5] are least-squares based approaches,
namely ordinary least squares (OLS) and iteratively reweighted least squares (IRLS). The
other approach, which was only introduced in [5], but formulated and described in detail in
this paper, is called soft-computing (S-C) and is based on fuzzy logic techniques. The three
methods have been compared in different scenarios where uncertainties, noise and different
types of sensor faults have been included. The algorithms have been tested not only in terms
of estimation accuracy, but also ability of detecting and isolating faults.

A metric for the estimation integrity has also been introduced as a measure of the amount
of trust with which the final estimate is credited. It is shown that the S-C estimation algo-
rithm is more robust than the LS based methods in the presence of uncertainties and sensor
faults. Overall, the S-C algorithm demonstrates a higher accuracy and better fault detection
and isolation decisions when compared to the LS methods.
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