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Abstract
Firefighters, emergency paramedics, and airplane pilots are able to make correct judgments

and choices in challenging situations of scarce information and time pressure. Experts often

attribute such successes to intuition and report that they avoid analysis. Similarly, laypeople

can effortlessly perform tasks that confuse machine algorithms. OR should ideally respect

human intuition while supporting and improving it with analytical modeling. We utilize

research on intuitive decision making from psychology to build a model of mixing intuition

and analysis over a set of interrelated tasks, where the choice of intuition or analysis in one

task affects the choice in other tasks. In this model, people may use any analytical method,

such as multi-attribute utility, or a single-cue heuristic, such as availability or recognition.

The article makes two contributions. First, we study the model and derive a necessary and

sufficient condition for the optimality of using a positive proportion of intuition (i.e., for some

tasks): Intuition is more frequently accurate than analysis to a larger extent than analysis is

more frequently accurate than guessing. Second, we apply the model to synthetic data and

also natural data from a forecasting competition for a Wimbledon tennis tournament and

a King’s Fund study on how patients choose a London hospital: The optimal proportion of

intuition is estimated to range from 25% to 53%. The accuracy benefit of using the optimal

mix over analysis alone is estimated between 3% and 27%. Such improvements would be

impactful over large numbers of choices as in public health.
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1 Introduction

Albert Einstein is quoted as saying that intuitive thinking is a sacred gift and rational

analysis a faithful servant, and protesting that society honors the servant and forgets the

gift. Firefighters, emergency paramedics, and airplane pilots are often able to make correct

judgments and choices in challenging situations with scarce information and under extreme

time pressure. In doing so, such experts cite their intuition as the source of success and

report that they avoid analysis (Klein, 1998), as illustrated in the case of the “miracle on

the Hudson”.

On January 15, 2009, US Airways Flight 1549 captain Sullenberger and co-pilot Skiles

had to decide whether their plane, with both of its engines disabled, could land safely back

at La Guardia airport or they should attempt an emergency landing on the Hudson river.

They went for the latter option, based on a thinking process articulated by Skiles (2009):

“It’s no so much a mathematical calculation as visual in that... a point you can’t reach

will actually rise in your windshield. A point that you are going to overfly will descend in

your windshield”. Applying this rule of thumb the plane landed safely and there were no

casualties. As simulations showed subsequently, this was the right decision. Making the

right decision here is enabled by people’s innate capacity of visually tracking moving objects

(Gigerenzer, 2007). In general, people can seemingly effortlessly perform tasks which confuse

machine algorithms, such as recognizing visual patterns and inferring the hidden meanings

of utterances (Gigerenzer, in press).

Of course, if experts and laypeople always made great decisions based on their intuitions,

there would not have been much need for the analyses offered by disciplines such as OR.

But this is not the case as work in behavioral operational research (Kunc, Malpass, and

White, 2016), and behavioral operations management (Donohue, Katok, and Leider, 2018)

has demonstrated. For example, inventory controllers do not place orders that maximize

the theoretically expected profit, even when instructed to do so and all variables needed for

performing the calculation are provided (Schweitzer and Cachon, 2000). In fact, experienced

procurement managers do not perform better than university students (Bolton, Ockenfels,

and Thonemann 2012). As another example, Kefalidou (2011) has reviewed experimental ev-

idence which shows that people can solve vehicle routing problems and perform satisfactorily,

but do not achieve the theoretical optimal.

Ideally, OR should respect human intuition while also supporting and improving it with

analytical modeling. Liebowitz (2015) suggests that “practitioners use informed intuition,

founded upon years in business and inspired by trends in big data, to navigate the future
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of business”. This view echoes Aneesh Chopra’s (2014; as cited by Keiger)–the first chief

technology officer in the US–who proposes that major decisions should be made by marrying

gut feelings and careful data analysis. As Hämäläinen, Luoma, and Saarinen (2013) put it

in their behavioural OR manifesto, OR tools and processes should be augmented by taking

into account people’s behaviour and cognition. To heed one of the founding fathers of OR,

”analysis is necessary but not sufficient” (Koopman, 1977, p. 202).

To the best of our knowledge, there are yet no precise answers on how to integrate analysis

and intuition. The present work aims to provide some answers by using mathematical

modeling. We take the approach of building a simple model, aiming to derive clear and

testable insights (Robinson et al., 2014; Katsikopoulos, Durbach, and Stewart, 2018; Tako,

Tsioptsias, and Robinson, 2020; Currie et al., 2020). The model is rich, drawing heavily

from theories of intuition in psychology (Klein, 1998; Gigerenzer, 2007; Kahneman, 2011),

and we employ it to pose and answer new prescriptive questions in the realm of how to

integrate intuition with analysis. We do not study the conditions under which intuition

outperforms analysis, or vice versa, on a single task (for answers see Klein, 1998; Hogarth,

2001; Gigerenzer, 2007; Kahneman and Klein, 2009). Our model addresses decision making

over a set of tasks.

To explain, a brief background is needed. Overarching frameworks of human decision

making, such as the “adaptive decision maker”(Payne, Bettman, and Johnson, 1993) and

the “adaptive toolbox”(Gigerenzer and Selten, 2002), show that, depending on the task,

decision makers switch between intuitive and analytical modes of thinking. The intuitive

mode is said to be fast and automatic, whereas the controlled mode is postulated to be slow

and analytical (Schneider and Shiffrin, 1977; Evans, 2008; Kahneman, 2011–more precise

definitions of intuition are discussed in Section 2). People match intuitive or analytical

methods to tasks so that they satisfy criteria such as accuracy, effort, and transparency,

sometimes balancing these criteria (Payne et al., 1993), and other times achieving all of

them at once (Katsikopoulos et al., 2020).

Individuals, groups, and organizations often face a set of interrelated decision tasks, where

the choice of intuition or analysis in one task affects the choice in other tasks. For example,

in product development methods (Pugh, 1990; Katsikopoulos, 2009; Saaty, 2014), decision

makers would first compare product designs A and B and then would compare designs B

and C. If the first comparison was made by analyzing both designs A and B, it is hard to see

how this analysis can be forgotten and the assessment of B be made intuitively in the second

comparison between B and C. The reverse process is more plausible, meaning that assessing
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intuitively A and B might not preclude analyzing both B and C at a later moment. As in

the old saying “you never get a second chance to make a good first impression”, the choice

of intuition or analysis in one task affects the choice in other tasks. The same issues can be

expected to arise when people are asked to make paired comparisons in other operational

contexts, as in preference-based multi-objective optimization (Fowler et al., 2010), and more

broadly in systems engineering (Clausing and Katsikopoulos, 2008). We investigate how such

interrelated choices should be made in order to maximize, or at least improve, accuracy.

More specifically, in Section 2, we utilize research on intuition from psychology to build

a model, which can be analyzed by OR tools, for mixing intuition and analysis over a set

of interrelated decision tasks. We study the model and mathematically derive answers to

questions such as: How does one theoretically determine in which tasks to use intuition

and in which to use analysis, in order to maximize overall decision accuracy? Are there

interesting conditions under which it is theoretically best to exclusively use one of analysis

or intuition? In Section 3, we apply the model to synthetic and natural data and empirically

answer questions such as: What are the estimated optimal proportions of using each of

intuition and analysis? What is the estimated accuracy benefit of using the optimal mix

over analysis or intuition alone? Section 4 concludes by discussing the contributions of this

work, acknowledging its limitations, and considering future research and implementation

challenges, as well as sketching responses to such challenges.

2 Theory: Optimal mix of intuition and analysis

This section is structured as follows. First, we review research on intuitive decision making

in psychology, with an eye towards employing this knowledge to formally model intuition.

Then, we build two versions of a mathematical model for mixing intuition and analysis,

and study those to derive necessary and sufficient conditions for a positive (conversely zero)

proportion of intuition to be maximizing accuracy. We also relate this work to less-is-more

effects in psychology and business.

2.1 Psychology knowledge for modeling intuition, and our mod-

eling plan

There are three main views of intuition in cognitive psychology and judgment and decision

making research (Klein, 2015). These views emanate from the naturalistic decision making

paradigm (Klein, Orasanu, Calderwood, and Zsambok, 1993; Zsambok and Klein, 1997), the
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heuristics-and-biases program (Kahneman, Slovic, and Tversky, 1982; Gilovich, Griffin, and

Kahneman, 20002), and the fast-and-frugal-heuristics program (Gigerenzer, Todd, and the

ABC research group, 1999; Gigerenzer, Hertwig, and Pachur, 2011).

The naturalistic decision making paradigm has studied extensively the decision making of

expert practitioners, as it occurs in the field/the wild, that is, outside the scientific laboratory.

In this view, intuition is “an expression of experience as people build up patterns that enable

them to rapidly size up situations and make rapid decisions without having to compare

options”(Klein, 2015, p. 164). For example, experienced firefighters are able to swiftly

recognize an effective course of action, mentally simulate its effects, and execute it, all

without considering inferior alternatives (Klein and Calderwood, 1991).

The heuristics-and-biases program initially focused on the investigation of the decision

making of laypeople in the laboratory, and later tested some of its findings in real-world

arenas such as the financial market. Kahneman and Klein (2009, p. 519) jointly contrast the

views of intuition in their respective research programs: “Intuitive judgments that arise from

experience and manifest skill are the province of naturalistic decision making... In contrast,

heuristics-and-biases researchers have been mainly concerned with intuitive judgments that

arise from simplifying heuristics, not from specific experience. These intuitive judgments are

less likely to be accurate and are prone to systematic biases”.

A critique of both of these approaches to intuition, which is relevant to our modeling

purposes here, is that they have not generated formal models of people’s heuristics (Gigeren-

zer et al., 1999; Katsikopoulos et al., 2020). This issue has been addressed by the fast-

and-frugal-heuristics program, which has developed mathematical and computer models of

the heuristics of laypeople and experts, for broadly-construed decision tasks such as multi-

attribute choice, classification, and forecasting (Todd, 2007; Katsikopoulos et al., 2018).

These models include unit-weight linear regression as well as lexicographic heuristics such

as deterministic elimination by aspects (Hogarth and Karelaia, 2005; Baucells, Carasco, and

Hogarth, 2008; Katsikopoulos, 2013) and fast-and-frugal decision trees (Martignon, Kat-

sikopoulos, and Woike, 2008; Luan, Schooler, and Gigerenzer, 2011). Such models offer

precise explications of how practitioners can make decisions rapidly and accurately as found

in the naturalistic decision making paradigm, and also of how people’s decisions can be in-

ferior as found in the heuristics-and-biases program. In behavioural OR, these models have

been proposed as prescriptive models of decision making, under some conditions (Keller and

Katsikopoulos, 2016; Pande, Papamichail, and Kawalek, 2021).

Because intuition is automatic (Kahneman, 2011; Kruglanski and Gigerenzer, 2011),
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as candidates for models of intuition, one should consider those models of fast-and-frugal

heuristics that are especially fast and frugal, so that their output would come to the hu-

man mind quickly and seemingly effortlessly. An obvious option is models that use only a

single cue–the psychological term for attribute–(Kanheman and Frederick, 2002; Hogarth

and Karelaia, 2005; Slovic et al., 2007; Şimşek and Buckmann, 2015; Katsikopoulos et al.,

2021). Interestingly, the idea of single-cue decision making is shared by the three views of

intuition discussed here. The cue can be binary as the recognition or not of a decision op-

tion, see Klein and Calderwood (1991) and Goldstein and Gigerenzer (2002); or continuous

as the availability of instances of an event in memory, see Tversky and Kahneman (1974)

and Schooler and Hertwig (2005).

Based on the above knowledge, we can now outline our modeling plan. We will use a

binary-cue heuristic to model intuition. Note that it makes little sense to model intuition as

a single continuous variable. For example, consider the availability heuristic for judging an

event’s frequency, where availability is defined as the “ease by which instances or occurrences

of the event can be brought to mind” (Tversky and Kahneman, 1974, p. 1127). Schooler and

Hertwig (2005) proposed measuring “ease” by the speed of retrieval from memory, experi-

mentally or via a cognitive architecture such as ACT-R. The issue is that such a continuous

cue would always discriminate between two options (i.e., one option would have an, ever so

slightly, smaller retrieval speed than the other), and analysis would never be used for choos-

ing one of two options. This prediction is too extreme. And it would reduce the research

problem to a comparison of the accuracy of a single cue with that of an analytical method

when the two are not mixed, which has been studied elsewhere (Hogarth and Karelaia, 2005;

Şimşek and Buckmann, 2015).

In what follows, we will consider a decision maker who has in their repertoire one single-

cue heuristic and one analytical method (possible extensions to multiple heuristics and ana-

lytical methods will be outlined in Section 4, together with alternative approaches to model-

ing intuition). The model applies to any analytical method, and to two main cases of using

single-cue heuristics to capture intuition. It will be clear how the model can be formulated

for any single-cue heuristic. The decision maker employs a method selection strategy wherein

s/he first attempts to use the heuristic, and only if this cannot lead to a choice, then s/he

employs analysis. This strategy reflects the primacy of intuition over analysis, which is

postulated in Kahneman’s (2011) System 1/System 2 metaphor.

To fix ideas, in the next Subsection 2.2 we assume that intuition is captured by the

recognition heuristic (Goldstein and Gigerenzer, 2002). This heuristic is one of the most
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studied single-cue heuristics that are also formally specified. Other well-known heuristics,

such as the affect heuristic (Slovic et al., 2007), can also be viewed as being based on a

single cue (e.g., the affective evaluation of an option), but are not mathematically specified.

The recognition heuristic holds that a recognized option is chosen over an unrecognized one.

If both options are recognized, then presumably some attribute values of the options are

known too, and the decision maker applies a method such as multi-attribute utility analysis.

If options are not recognized, then presumably no attribute values are known, and an option

is chosen by random guessing. This version of the model is applied to synthetic data and

a natural dataset from a forecasting competition for a Wimbledon tennis tournament in

Section 3.

Subsection 3.3 formulates the model for the more general case where intuition is captured

by a single-cue heuristic where the cue is not special in the sense that recognition is. That is,

the cue in the heuristic does not constrain the decision maker’s other attribute information

about the options. For example, if the decision maker is trying to choose between two

medical treatments, and intuitively would go for the treatment after which most people

reported a health improvement but cannot establish which treatment this is, other attribute

values such as the treatment cost and the distance to the hospital can be known and be used.

The mathematical treatment of this case is similar to the one for the recognition heuristic

case–except that there is no need for guessing–and is presented more quickly. In Section 3,

this version of the model is also applied to the same synthetic data, and to another natural

dataset from a King’s Fund study on choosing a London hospital.

2.2 Model version 1: Intuition as recognition heuristic

The decision maker makes a choice for every pair of decision options sampled out of a

population of N options. Let {1, 2, . . . , N} denote the options in decreasing order of “utility”.

That is, choosing i over j is accurate if and only if i < j. For each option i = 1, 2, . . . ., N ,

Xi is a binary variable denoting whether the decision maker recognizes the option (Xi = 1)

or not (Xi = 0). Note that Xi can be viewed as a variable controlled by the decision

maker, as when a consumer chooses to learn about products by attending to adverts or by

actively seeking information. Alternatively, Xi can be viewed as exogenously determined.

The corresponding choice vector is X = (X1, X2, . . . , XN). We are interested in determining

the value(s) of X that theoretically optimize (maximize) accuracy, which is the proportion

of accurate choices. A decision maker who optimizes accuracy is called optimal.

For each pair of sampled options i and j and their associated realizations xi and xj, the
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heuristic states: “If xi = 1 and xj = 0, then choose i”. The heuristic defines a partial order

over the set of options as it does not apply to pairs with xi = xj. If n =
∑N

i=1 xi, then the

proportion of choices made intuitively equals 2n(N−n)
N(N−1)

, which can also be written as

PI(x)=
2
∑N

i=1 xi
∑N

i=1(1− xi)
N(N − 1)

,

where x = (x1, x2, ..., xN) .

The accuracy of intuition is

α(x) =

∑N−1
i=1

∑N
j=i+1 xi(1− xj)∑N

i=1 xi
∑N

i=1(1− xi)
,

because, if i < j, among all pairs with {xi = 1 and xj = 0} or {xi = 0 and xj = 1}, the

heuristic makes an accurate choice only in the former case.

The analytical method M is defined in a general way, by a complete order over the set

of options. M = (Mi,j) is an N ×N matrix, and Mi,j equals 1 when the analytical method

chooses i over j and 0 otherwise. So, Mi,j +Mj,i = 1 for all i 6= j.

The analytical method M applies only to pairs with xi = xj = 1. Thus, the proportion

of choices made analytically equals n(n−1)
N(N−1)

, which can also be written as

PM(x) =

∑N
i=1 xi

(∑N
i=1 xi − 1

)
N(N − 1)

or as
2
∑N−1

i=1

∑N
j=i+1 xixj

N(N − 1)
.

Based on a similar logic as in the expression for α(x), the accuracy of analysis equals

β(x,M) =

∑N−1
i=1

∑N
j=i+1 xixjMi,j∑N−1

i=1

∑N
j=i+1 xixj

.

If x = (1, 1, . . . , 1) = 1, then PM(1) = 1 and the decision maker exclusively uses analysis.

In contrast, it is not possible in our binary-cue model for the decision maker to exclusively

use intuition because there does not exist an x such that PI(x) = 1; in fact, PI(x) is capped

a bit under or over 0.5 (depending on whether N is even or odd; for very small N , the cap

can be up to 0.67).

Finally, the decision maker has to guess in a proportion of choices (N−n)(N−n−1)
N(N−1)

, which

can be written as

PG(x) =

∑N
i=1(1− xi)

(∑N
i=1(1− xi)− 1

)
N(N − 1)
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or as
2
∑N−1

i=1

∑N
j=i+1(1− xi)(1− xj)
N(N − 1)

.

Both PM(x) and PG(x) can range from 0 to 1, subject to the constraint that PI(x) +

PM(x)+PG(x) = 1. If the decision maker is viewed as deciding how to set their n, then s/he

is effectively setting the mix of intuition, analysis, and guessing. The accuracy of guessing

equals 1/2.

The decision maker’s accuracy equals

f1(x,M) = α(x)PI(x) + β(x,M)PM(x) + (1/2)PG(x). (1)

which, based on the above, reduces to

f1(x,M) =

∑N−1
i=1

∑N
j=i+1 [2xi(1− xj) + 2xixjMi,j + (1− xi)(1− xj)]

N(N − 1)
. (2)

Equation (2) can be used to derive a necessary and sufficient condition for a positive pro-

portion of intuition (i.e., for some choices between two options) to lead to optimal accuracy,

as shown below.

A positive proportion of intuition is optimal if and only if there exists an x 6= 1 such

that, for an arbitrary but fixed M,

f1(x,M) > f1(1,M). (3)

Note that

f1(1,M) =

∑N−1
i=1

∑N
j=i+1 2Mi,j

N(N − 1)

and hence from Equation (2), the condition (3) can be written as follows:

N−1∑
i=1

N∑
j=i+1

[2xi(1− xj) + 2xixjMi,j + (1− xi)(1− xj)] >
N−1∑
i=1

N∑
j=i+1

Mi,j.

By expanding this inequality using

xi(1− xj) = xi(1− xj)(Mi,j +Mj,i)

in the left-hand side and

Mi,j = Mi,j[xixj + xi(1− xj) + (1− xi)xj + (1− xi)(1− xj)]

in the right-hand side, and by rearranging terms, the following result is obtained.
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Proposition 2.1. A positive proportion of intuition is optimal if and only if there exists

x 6= 1 such that, for an arbitrary but fixed M,∑N−1
i=1

∑N
j=i+1 xi(1− xj)Mj,i −

∑N−1
i=1

∑N
j=i+1(1− xi)xjMi,j >∑N−1

i=1

∑N
j=i+1(1− xi)(1− xj)Mi,j − 1

2

∑N−1
i=1

∑N
j=i+1(1− xi)(1− xj).

As a numerical example, take x = (1, 1, . . . 1, 0) and M such that MN,i = 1 for all i < N .

The condition of Proposition 2.1 holds because (N − 1) − 0 > 0 − 0. Additionally, from

Equation (2),

f1(x,M) =
2(N − 1) +

∑N−1
i=1

∑N
j=i+1 2Mi,j

N(N − 1)
,

which is indeed larger than ∑N−1
i=1

∑N
j=i+1 2Mi,j

N(N − 1)
= f1(1,M).

It is important to note that the terms in Proposition 2.1 have clear interpretations:

N−1∑
i=1

N∑
j=i+1

xi(1− xj)Mj,i

counts the number of pairs in which intuition is correct when intuition and analysis disagree;

N−1∑
i=1

N∑
j=i+1

(1− xi)xjMi,j

counts the number of pairs in which analysis is correct when intuition and analysis disagree;

1

2

N−1∑
i=1

N∑
j=i+1

(1− xi)(1− xj)

counts the number of pairs in which guessing applies and it is correct and

N−1∑
i=1

N∑
j=i+1

(1− xi)(1− xj)Mi,j

counts the number of pairs in which guessing applies and analysis would have been correct

(if analysis, rather than guessing, were applied, which is a counterfactual quantity given the

method selection strategy assumed, but may be computed).

Putting all this together shows that, the reason for an optimal decision maker to switch

from analysis to intuition is not because intuition is more accurate than analysis as one
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might expect at a first glance and has also been claimed (see the comments in the next

paragraph on less-is-more effects). Rather, Proposition 2.1 says that the reason for it being

optimal to use some intuition is that intuition is more frequently accurate than analysis to

a larger extent than analysis is more frequently accurate than guessing (conditional on the

pairs where the two methods, in each comparison, are applied). In this sense, for an optimal

decision maker to use some intuition, it has to be the case that intuition picks up the slack

created by guessing compared to analysis.

This result connects with the theory of less-is-more effects (Goldstein and Gigerenzer,

2002), which has been applied to forecasting (Pachur and Biele, 2007; Scheibehenne and

Bröder, 2007), financial investment (Ortmann et al, 2008), consumer choice (Hilbig, 2014),

and marketing (Hauser, 2014). The differences are that Goldstein and Gigerenzer (2002) (i)

modelled recognition by n and (ii) the accuracy of the heuristic and analysis, respectively α

and β, were assumed constant. Our model for the recognition-heuristic case moves from the

summary statistic n to the level of individual observations xi and does not assume constant

α and β, an assumption challenged theoretically (Smithson, 2010; Egozcue et al, 2017) and

empirically (Lee, 2015). The variable n is the amount of information the decision maker

has. If n = N , the decision maker has maximum information. When maximum accuracy is

obtained for n∗ < N , a less-is-more effect occurs. A less-is-more effect maps to the optimality

of a positive proportion of intuition. The necessary and sufficient condition for a less-is-more

effect is α > β (Goldstein and Gigerenzer, 2002). This condition says that the reason

for the less-is-more effect is that intuition is more accurate than analysis. Katsikopoulos

(2010) labelled this the “accurate-heuristics explanation” and showed that it does not work

when memory is imperfect (Pleskac, 2007); additionally, Smithson (2010) showed that the

explanation fails if α and β are not constant, even if memory were perfect. A subtler

explanation is needed, and this is provided by Proposition 2.1. The proposition implies

Smithson’s (2010) result that the accurate-heuristics explanation is a necessary condition for

the less-is-more effect if it is assumed that analysis is more accurate than guessing.

2.3 Model version 2: Intuition as other (non-recognition) single-

cue heuristics

Here we also use the set-up and notation of Subsection 2.2. But in this more general case

of single-cue heuristics, if the single cue X used by intuition is such that xi = xj = 0 for

two decision options i and j, other attribute values can be known, and thus analysis can be

used. There is no other difference with version 1 of the model. Thus, Equation (1) is now
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substituted by

f2(x,M) = α(x)PI(x) + β(x,M)[PM(x) + PG(x)], (4)

which reduces to

f2(x,M) =

∑N−1
i=1

∑N
j=i+1 2[xi(1− xj) + [xixj + (1− xi)(1− xj)]Mi,j]

N(N − 1)
. (5)

As in the recognition-heuristic case, the decision maker cannot exclusively use intuition.

Unlike the recognition-heuristic case, now the decision maker exclusively uses analysis if

PM(x) + PG(x) = 1, which occurs for x = (1, 1, . . . , 1) = 1 or x = (0, 0, . . . , 0) = 0.

Accuracy is equal for these two vectors, that is

f2(1,M) = f2(0,M) =

∑N−1
i=1

∑N
j=i+1 2Mi,j

N(N − 1)
.

The necessary and sufficient condition for a positive proportion of intuition to be optimal is

now that there exists an x 6= 1,0 such that, for an arbitrary but fixed M,

f2(x,M) > f2(1,M) = f2(0,M). (6)

Using Equation (5), and performing essentially the same (as in Subsection 2.2) algebra

on the condition (6), the following result is derived.

Proposition 2.2. A positive proportion of intuition is optimal if and only if there exists an

x 6= 1,0 such that, for an arbitrary but fixed M,

∑N−1
i=1

∑N
j=i+1 xi(1− xj)Mj,i >

∑N−1
i=1

∑N
j=i+1(1− xi)xjMi,j.

This result is very similar to the result in version 1 of the model for the recognition

heuristic. The same numerical example works, and the terms in Proposition 2.2 can be

interpreted in the same way as in Proposition 2.1. The only difference is that the condition

for the optimality of a positive proportion of intuition is simpler for the more general case of

other (non-recognition) single-cue heuristics capturing intuition. More specifically, Proposi-

tion 2.2 says that the reason for it being optimal to use some intuition is that intuition is

more frequently accurate than analysis (conditional on the pairs where the two methods are

applied).

12



In 2009 Daniel Kahneman was awarded an honorary doctorate from Erasmus University

Rotterdam. In his introduction, decision theorist Peter Wakker referred to Kahneman’s

work as a rational theory of irrationality. Prospect theory (Kahneman and Tversky, 1979)

is a mathematically simple revision of expected utility theory aiming to fit human decision

making, and which has served as an inspiration for modeling behavioral operations (Donohue

et al., 2018). The work presented in Section 2 is inspired by Gerd Gigerenzer and colleagues’

work on modeling bounded rationality (Gigerenzer et al., 1999; Katsikopoulos et al., 2020).

Paraphrasing Peter Wakker, our mathematically simple model can be said to be a first step

towards an analytical theory of intuition. How might the model be utilized to improve human

decision making? Section 3 provides answers.

3 Data: Estimation of optimal proportion of intuition

and its accuracy benefit

Propositions 2.1 and 2.2 establish the optimality of a positive proportion of intuition under

some conditions but do not specify what the value of this optimal proportion actually is.

What is the optimal x∗ which determines the optimal value of n∗ =
∑N

i=1 x
∗
i , and in turn

the optimal proportion of tasks (choices between pairs of options) 2n∗(N−n∗)
N(N−1)

that intuition

should be used on? And what is the accuracy benefit of using the optimal mix of intuition and

analysis over analysis alone? We apply our model to different types of data and empirically

estimate these quantities.

3.1 Synthetic data: Intuition as recognition and as other single-

cue heuristics

Synthetic data can provide exact answers because x and M are discrete parameters and their

spaces can in principle be fully enumerated—there are 2N possible x and N ! possible M. For

N from 3 to 9 we exhaustively enumerated all combinations of x and M. For N from 10 to

15 we randomly sampled 10, 000 combinations of x and M. In all cases we considered only

those M with accuracy greater or equal to 1/2. We repeated this analysis for both versions

of the model.

For version 1 of the model, Table 1 displays, for all N from 3 to 9, the prevalence of

an optimal positive proportion of intuition, which is the proportion of all M for each N

such that x∗ 6= 1 (note that guessing is never optimal because it always holds that x∗ 6= 0).

13



The table also includes the mean optimal proportion of intuition, measured by the mean

proportion of tasks 2n∗(N−n∗)
N(N−1)

that intuition should be used on as well as the range of this

proportion, both calculated across all M for each N . The calculation of the mean includes

cases where a zero proportion of intuition is optimal whereas the calculation of the range

does not include such cases because if it did the range would have started from zero for all

N 6= 9. Table 1 also provides the mean accuracy benefit of using the optimal mix of intuition

and analysis over analysis alone, which is the value of f1(x
∗,M)− f1(1,M) averaged across

all M for each N . In all cases, ties in x∗ and n∗ were broken randomly. The results are given

in percentage points.

Number of

decision

options

(N)

Prevalence of an

optimal positive

proportion of

intuition (%)

Range of

optimal

positive proportion

of intuition (%)

Mean

optimal

proportion of

intuition (%)

Mean

accuracy benefit of

optimal mix over

analysis alone (%)

3 67 67− 67 67 25

4 78 50− 67 58 19

5 92 40− 60 55 19

6 97 33− 60 53 21

7 99 28− 57 52 21

8 99 25− 57 51 21

9 100 22− 55 51 21

Table 1. Synthetic data, with N from 3 to 9 and exhaustive enumeration of all combina-

tions of x and M (with accuracy greater or equal to 1/2). For model version 1 (Subsection

2.2), we estimated statistical measures characterizing the proportion of intuition in the op-

timal mix of intuition and analysis, and the accuracy benefit of the mix over analysis alone.

Table 1 shows that it is from very likely to certain that the optimal mix of intuition and

analysis includes some intuition, especially for N from 5 to 9. The optimal proportion of

intuition can have a considerable range but it includes its maximum possible value (e.g., 67%

for N = 3). Consistently, the mean optimal proportion of tasks where intuition should be

used is more than 50% for all N . The mean accuracy benefit of including intuition optimally

over using analysis alone is estimated as typically more than 20%.

The same analysis was repeated for version 2 of the model, and Table 2 displays the

results. The range of the optimal proportion of intuition and its mean are almost the same
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as those in Table 1. Here analysis has taken the place of random guessing and the mean

accuracy benefit of including intuition optimally over using analysis alone is, for all N , at

least 5% higher than in Table 1, rising as high as 33%.

Number of

decision

options

(N)

Prevalence of an

optimal positive

proportion of

intuition (%)

Range of

optimal

positive proportion

of intuition (%)

Mean

optimal

proportion of

intuition (%)

Mean

accuracy benefit of

optimal mix over

analysis alone (%)

3 67 67− 67 67 33

4 89 50− 67 57 25

5 98 40− 60 52 25

6 100 33− 60 51 27

7 100 28− 57 51 27

8 100 25− 57 50 26

9 100 22− 55 50 26

Table 2. Same as in Table 1, but for model version 2 (Subsection 2.3).

Tables 3 and 4 display, for all N from 10 to 15, the estimates for the same measures as

in Tables 1 and 2, respectively for the two model versions. The only difference is that the

estimates in Tables 3 and 4 were calculated by using 10, 000 randomly sampled combinations

of x and M (with accuracy greater or equal to 1/2) for each N . The results are similar to

those in Tables 1 and 2. In Table 3, the optimal mix should always include some intuition.

The mean optimal proportion of intuition is close to the maximum possible value for each

N , which is a bit over 50%. The mean accuracy benefit of including intuition optimally over

using analysis alone is 22% for all N . In Table 4, the optimal mix should also always include

some intuition. The mean optimal proportion of intuition is slightly smaller than in Table

3, at 50% for all N . The mean accuracy benefit of including intuition optimally over using
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analysis alone is higher by 5% from the benefit in Table 3.

Number of

decision

options

(N)

Prevalence of an

optimal positive

proportion of

intuition (%)

Range

of optimal

positive proportion

of intuition (%)

Mean

optimal

proportion of

intuition (%)

Mean

accuracy benefit of

optimal mix over

analysis alone (%)

10 100 20− 55 52 22

11 100 18− 54 51 22

12 100 16− 54 51 22

13 100 15− 53 51 22

14 100 14− 53 51 22

15 100 13− 53 51 22

Table 3. Same as in Table 1, but with N from 10 to 15, and estimates being calculated

by using 10, 000 randomly sampled combinations of x and M.

Number of

decision

options

(N)

Prevalence of an

optimal positive

proportion of

intuition (%)

Range

of optimal

positive proportion

of intuition (%)

Mean

optimal

proportion of

intuition (%)

Mean

accuracy benefit of

optimal mix over

analysis alone (%)

10 100 20− 55 50 27

11 100 18− 54 50 27

12 100 16− 54 50 27

13 100 15− 55 50 27

14 100 14− 55 50 27

15 100 13− 55 50 27

Table 4. Same as in Table 2, but with N from 10 to 15, and estimates being calculated

by using 10, 000 randomly sampled combinations of x and M.

Our synthetic data simulations implicitly assume that all x and M are equally likely,

which cannot be expected to hold in all real decision problems. To address this issue, we also

run simulations using natural data. We used two different datasets, one in which intuition

is captured by the recognition heuristic (Subsection 3.2), and another in which intuition is

captured by more general single-cue heuristics (Subsection 3.3).
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3.2 Natural data: Intuition as recognition heuristic

We used data from a forecasting competition for a tennis tournament. Scheibehenne and

Bröder (2007) polled 93 tennis amateurs—enthusiasts who, for example, played regularly in

local clubs—and 117 laypeople about whether or not they recognized each one of the N = 128

male players who took part in the 2005 Wimbledon singles competition. The probability that

each player is recognized is estimated by the proportion of Scheibehenne and Bröder’s (2007)

participants who recognized the player (see supplement S1). We estimated three recognition

probability distributions, one from the 93 tennis amateurs, one from the 117 laypeople, and

one from the combined group of 210 participants. In each of three simulations, 1, 000 different

x were realized by randomly sampling the corresponding recognition distribution 1, 000 times

(values of 50 to 500 samples were also tested and results differed by 1-2%) and this process was

repeated for 500 runs. In all simulations, there was one M, the Champions-Race ranking

produced by the Association for Tennis Professionals ahead of the 2005 competition (see

supplement S1). This was the analytical method in Scheibehenne and Bröder (2007) that

achieved the highest forecasting accuracy of 70%.

As it is often the case when ”hard” OR models are applied to the messy real world

(Mingers, 2011), applying our model required some extra resourcefulness here (the appli-

cation of the model in the King’s Fund data, as we shall see in Subsection 3.3, was more

straightforward). More specifically, the model needs a complete “true” order of all options,

but Wimbledon tournaments do not produce an official ranking of all competing players. The

finalists are officially ranked—in 2005, Roger Federer was first and Andy Roddick second—

but not the other players. We produced an order (see supplement S1) based on the results

of the matches played (see https://www.wimbledon.com/en GB/draws archive/index.html),

by employing a lexicographic rule, as detailed below. Lexicographic rules are routinely used

to rank competitors in sports events such as the World Cups in soccer or basketball, using

attributes such as the number of rounds passed, matches won, and goals scored (Bennis et

al., 2012). We adapted this approach here and used the following rule:

(i) Players who reached a round closer to the final are ranked higher than the players

who reached rounds further away from the final (e.g., all players who reached a semi-final

are ranked higher than all players who reached a quarter-final);

(ii) Players who reached the same round are ranked according to the number of sets they

won in this round;

(iii) Ties are broken according to the number of games won in this round;

(iv) Remaining ties are broken according to the number of sets won by the opponent in
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the previous round;

(v) Remaining ties are broken according to the number of games won by the opponent

in the previous round;

(vi) Remaining ties are broken according to the following rankings: first Champions-

Race, then Wimbledon official seeds, and finally the Entry ranking of the Association for

Tennis Professionals (for details see Scheibehenne and Bröder, 2007).

For all three groups (tennis amateurs, laypeople, and combined), the prevalence of an op-

timal positive proportion of intuition is 100%. Table 5 displays the mean optimal proportion

of tasks 2n∗(N−n∗)
N(N−1)

that intuition should be used on as well as the range of this proportion

across the 500 runs for each group. The table also includes, for each group, the mean ac-

curacy of the optimal mix of intuition and analysis, and of analysis alone. We additionally

computed the accuracy of a wisdom-of-crowds (Surowiecki, 2005) heuristic for each group,

proposed by Scheibehenne and Bröder (2007) which ranks players by the probability that

the player is recognized in the group (see supplement S1). We do not replicate the accuracies

computed by Scheibehenne and Bröder (2007) because those referred only to the matches

played, not all possible matches as is the case here. Note that the wisdom-of-crowd heuristic

is distinct from the recognition heuristic that enters the optimal mix of analysis and intuition

because the former uses probabilities and the latter uses samples.

Group

Range of

optimal

positive

proportion of

intuition (%)

Mean

optimal

proportion of

intuition (%)

Mean

accuracy of

optimal mix (%)

Mean

accuracy of

analysis (%)

Mean

accuracy of

wisdom-

of-crowds

heuristic (%)

Tennis amateurs 44− 50 49 64 59 60

Laypeople 13− 29 22 59 59 58

Combined 29− 45 38 61 59 60

Table 5. Natural data, with N = 128, one analysis method M (Champions-Race rank-

ing), and 1, 000 x sampled in each of 500 runs, utilizing data from a forecasting competi-

tion (Scheibehenne and Bröder, 2007) for the 2005 Wimbledon men’s singles tournament.

For model version 1 (Subsection 2.2), we estimated statistical measures characterizing the

amount of intuition in the optimal mix of intuition and analysis and its accuracy benefit

over using analysis alone and wisdom-of-crowds heuristics.
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Table 5 shows that that the optimal mix of intuition and analysis includes a very high

amount of intuition for the tennis amateurs, with a mean of 49% (maximum possible value

for N = 128 is 50%), as was the case for synthetic data in the recognition-heuristic case

(Tables 1 and 3). For the laypeople, the mean optimal proportion of intuition is about half

of that of the amateurs, 22%. The optimal mix’s accuracy is also highest for the tennis

amateurs, at 64%. This yields a benefit of 5% over the 59% accuracy of using analysis alone.

The wisdom-of-crowds heuristics performed competitively with the theoretically optimal mix,

lagging by 2% on the average, and the heuristics also performed slightly better than analysis,

60% versus 59% on the average.

These results are consistent with those obtained in the study by Scheibehenne and Bröder

(2007), where there was an accuracy of 70% for analysis and 68% for heuristics in the

amateurs’ group, 67% in the laypeople group, and 70% in the combined group. Note that

our values are lower than Scheibehenne and Bröder’s (2007). This might be so because we

used the complete lexicographic order of all players, not the partial order produced by the

matches played. The lexicographic order of all players is influenced by early upsets such as

No. 4 seed Rafael Nadal’s loss in the second round to unseeded Gilles Müller.

3.3 Natural data: Intuition as other (non-recognition) single-cue

heuristics

For the application of version 2 of the model where intuition is captured by single-cue

heuristics other than the recognition heuristic (Subsection 2.3), we used data from a King’s

Fund study on how patients choose a high-quality hospital (Boyce et al., 2010; Fasolo et al.,

2010). This study aimed at informing the UK government’s efforts to support patients make

better use of information for choosing a hospital for a serious, non-urgent operation, such as

a knee or cataract operation. To do so, the researchers investigated hospital choices based

on an easier-to-understand version of the information available at the NHS Choices website

(Boyce et al., 2010). Briefly, 5 real, anonymized London hospitals, and their actual values on

9 attributes, were presented to 744 participants in an online experiment, in order to study

hospital choice processes under different behavioural interventions (Boyce et al., 2010). The

”true” order of the 5 hospitals was provided by a group of NHS experts (Boyce et al., 2010).

The 9 attributes were those that were suggested as most important for hospital choice by

44 participants in a series of focus group meetings (Fasolo et al., 2010), and they were the

following (in decreasing order of the number of times that each attribute was mentioned, in

the focus group, as an important consideration for choosing a hospital):
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(i) Number of MRSA blood infections for patients (MRSA is a group of bacteria respon-

sible for difficult-to-treat infections);

(ii) Standardized mortality rate at the hospital;

(iii) Score of cleanliness of treatment areas;

(iv) Number of people developing a wound infection after an operation;

(v) Risk of having to return to the hospital urgently within one month after an operation;

(vi) Number of people who reported an improvement in their health after treated at the

hospital;

(vii) Score of dignity and respect shown to patients;

(viii) Score of patient involvement in decision making about treatment;

(ix) Distance of hospital from patient’s home.

These 9 attributes were numerically valued in the King’s Fund study. To apply the

model, we binarized the attributes (see supplement S2) by using a median split over the

values of each attribute on the 5 hospitals. A value of 1 is preferable to a value of 0.

Each attribute can be employed as a single-cue heuristic, and leads directly to the intuitive

choice of a hospital, or necessitates the use of analysis as per the model (Subsection 2.3).

For example, if a patient employs the would-infection attribute (iv), then x = (1, 1, 0, 0, 0),

and intuition is used for 6 pairs (i = 1, 2 crossed with j = 3, 4, 5) and analysis for 4 pairs

(i = 1, j = 2; i = 3, j = 4; i = 3, j = 5; i = 4, j = 5). We estimated the probability that a

patient would select a particular attribute (see supplement S2) as the proportion of times

that this attribute was mentioned in the focus group as an important consideration for

choosing a hospital (in the initial stage of the focus group meetings, see Fasolo et al., 2010).

Selecting each one of the 9 possible attributes leads to 9 possible x, of which 7 are distinct

(see supplement S2 and Table 6). Each x corresponds to a positive proportion of intuition

since all x are different from 1 and 0. We refer to these 7 distinct x as the intuition vectors.

For all possible analysis methods M (with accuracy greater or equal to 1/2), we compared

the accuracy of using the mix of intuition and analysis associated with each of the intuition

vectors with the accuracy based on M alone. If an intuition vector led to greater or equal

accuracy than an M, this comparison was counted as an instance of an optimal positive

proportion of intuition; otherwise it was counted as an instance of optimal zero proportion

of intuition.

Table 6 displays, for all intuition vectors x, the prevalence of an optimal positive propor-

tion of intuition, which, for each x is the proportion of all M such that f2(x,M) > f2(1,M);

if so, then x∗ = x, and otherwise x∗ = 1. The table also includes, again for each intuition
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vector x, the mean optimal proportion of intuition as measured by the mean proportion of

tasks 2n∗(N−n∗)
N(N−1)

, where n∗ =
∑N

i=1 x
∗
i , that intuition should be used on. Table 6 also provides

the mean absolute accuracy benefit of using the optimal mix of intuition and analysis over

analysis alone, which is the value of f2(x
∗,M) − f2(1,M), averaged across all M for each

intuition vector x. All of these values are given in percentage points. The table also includes,

for each intuition vector, the probability that the vector would be selected by a patient. The

bottom row of Table 6 provides the grand means with respect to this probability distribu-

tion, for the prevalence of optimal positive proportion of intuition, the optimal proportion

of intuition, and the accuracy benefit of the optimal mix over analysis alone.

Intuition

vector x

Prevalence of an

optimal positive

proportion of

intuition (%)

Mean

optimal

proportion

of intuition (%)

Mean

accuracy benefit

of optimal mix over

analysis alone(%)

Probability

of selecting

intuition

vector x

(1, 1, 0, 0, 0) 89 53 20 0.18

(1, 0, 0, 0, 0) 80 53 13 0.12

(1, 0, 1, 0, 0) 73 44 12 0.16

(0, 1, 0, 0, 0) 59 24 6 0.10

(1, 0, 0, 0, 1) 15 9 1 0.18

(0, 1, 0, 1, 0) 15 9 1 0.10

(0, 0, 0, 0, 1) 0 0 0 0.16

48 25 8

Table 6. Natural data, withN = 5, all analysis methods M with accuracy greater or equal

to 1/2, and 7 intuition vectors x based on data from a King’s Fund study on hospital choice

(Boyce et al., 2010; Fasolo et al., 2010). For model version 2 (Subsection 2.3), we estimated,

across M, statistical measures characterizing the amount of intuition in the optimal mix

of intuition and analysis and its accuracy benefit over using analysis alone. The bottom

row provides the grand means of prevalence, optimal proportion of intuition, and accuracy

benefit across x, M, and the selection probability distribution in the right-most column.

Table 6 shows that the performance of intuition varies greatly across the intuition vectors.

The prevalence of an optimal positive proportion of intuition ranges from 0% to 89% and

the mean optimal proportion of intuition from 0% to 53%. That is, some of the attributes

suggested by patients in the King’s Fund study are not very accurate single-cue heuristics,
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as the MRSA attribute which has accuracy 50% and the cleanliness attribute which has

accuracy 0% (see supplement S2 for all cue accuracies). Consistently, the grand mean of

prevalence is about half of the values in the other simulations (Tables 1-5). On the other

hand, because some of the suggested attributes are perfectly accurate single-cue heuristics,

as the wound-infection and the return-risk attributes which both have accuracy 100%, the

grand mean of the optimal proportion of intuition equals 25%, which is comparable to the

values in other simulations (Tables 4 and 5). In fact, the grand mean accuracy benefit of

the optimal mix over analysis alone, 8%, is higher than in the Wimbledon study (3%).

This relatively high benefit of the optimal mix might decrease if the analysis methods

were more accurate. To illustrate this, we computed the benefit over two analysis meth-

ods suggested in the multi-attribute choice literature when attribute weights have not been

elicited (Hogarth and Karelaia, 2005; Baucells et al., 2008; Katsikopoulos, 2013), as in the

King’s Fund study. The methods are the lexicographic rule (see also Subsection 3.2) where

attributes are ordered by their accuracy (ties are broken by selection probability), and a

linear utility model with unit attribute weights (ties are broken randomly). Their respective

accuracies are 90% and 70%, and the mean accuracy benefit of the optimal mix is 3%.

Table 7 summarizes the main results of the two synthetic and two natural empirical

studies. All values are grand means computed across all variables, N,M,x, in each study.

We also include key–and in some cases limiting–assumptions of each study.

Simulation study

and its key assumptions

Prevalence

of optimal

positive proportion

of intuition (%)

Optimal proportion

of intuition (%)

Accuracy benefit

of optimal mix

over

analysis alone (%)

Synthetic, uniformly distr. data;

intuition is recognition heuristic
95 53 21

Synthetic, uniformly distr. data;

intuition is not recognition heuristic
95 52 27

Wimbledon (natural) data;

true order had to be estimated
100 36 3

King’s Fund (natural) data;

few intuition vectors tested
48 25 8

Table 7. Summary of the main results of the four empirical studies, also including each

study’s key assumptions. All values are grand means across all variables, N,M,x, in each

study (in the Wimbledon study, results were averaged across amateur and laypeople groups).
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4 Discussion

4.1 Contributions

Throughout the life of OR, it has been pointed out that formal models of optimization do not

necessarily mesh with human decision making (Kimball, 1958; Ackoff, 1979; Mingers, 2011).

As mentioned earlier, management students and procurement professionals place inventory

orders that deviate from analytically derived orders; as another example, practitioners adjust

the output of forecasting software (Goodwin, Moritz, and Siemsen, 2018), and so on as the

fields of behavioural operations demonstrate (Kunc et al., 2016; Donohue et al., 2018). Why

do such discrepancies occur? First, people’s intuitions might just be systematically inferior

to analysis. A second possibility is that people rightly distrust that a model can capture

well a particular decision making situation, as when the probability distribution of demand

is assumed to be known in inventory control models (Ward, Champman, and Klein, 1991).

In some situations, both factors can play a role, and then it would be reasonable to rely

on both intuition and analysis (Syntetos, Kholidasari, and Naim, 2016). Ward et al. (1991)

strongly argue that inventory control is such a situation. These authors try to make the

standard OR model of the newsvendor problem more intuitive to decision makers by replacing

the demand distribution with a small number of concrete scenarios, and by employing a

process for working through the computations with the decision makers. Similar approaches

have been followed in other contexts where there are both harms and benefits to using human

intuition, as when solving traveling salesperson problems (Kefalidou, 2011). For instance,

Kefalidou (2017) explores how human interaction with a visual computer interface can help

improve upon intuitive solutions to capacitated vehicle routing tasks.

Approaches such as the above aim at integrating intuition and analysis by making the

modeling more palatable to decision makers, and in some sense also less formal. The present

article takes a complementary approach. It presents the first, to our knowledge, mathemat-

ical model of mixing intuition and analysis. A novelty of the present approach is that we

considered in depth how knowledge from the psychology of intuitive decision making can be

modeled. The models were analyzed and led to closed-form expressions, and then they were

applied computationally to laboratory and field data. The results suggest that including

intuition optimally in a mix can provide substantial benefits over using analysis alone.

In sum, the present approach combines concepts from behavioural science with stan-

dard OR methodologies. Of course, as the first stage in an innovative program, there are

limitations to our approach, which in turn introduce challenges for future work.
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4.2 Limitations and challenges

We opted for developing a simple model, in order to get clear and testable first insights

(Katsikopoulos et al., 2018; Tako et al., 2020). Now, to the extent that human intuition

might be a complex phenomenon (Sinclair, 2011), playing a complex part in decision making,

more complex models of integrating intuition and analysis might be needed down the line.

This hypothesis seems to resonate with Koopman’s views (1977), who, unlike Klein (2015)

and Gigerenzer (2007), sees intuition as transcending pattern recognition and gut feeling,

even though it has to be noted that Koopman primarily considered mathematical intuition.

In this subsection, we discuss building further, possibly more complex, models for meeting

research and implementation challenges yet unmet by our approach. Research challenges

refer to developing rich theoretical models, and implementation challenges refer to applying

these models usefully in processes of decision analysis and support in the field.

More complex models could employ rich formal structures for capturing intuitive decision

making, including neural networks (Glöckner and Betsch, 2008) and cognitive architectures

(Marewski and Melhorn, 2011), also taking into account group and organizational contexts

(Hoffrage and Marewski, 2015). A possibility is to train neural networks by generating big

(synthetic) data from psychological models of human decision making, and building ensem-

bles of such networks and other machine learning models (Bourgin et al., 2019). This route is

worth exploring, but care should be taken to ensure transparency–for example, many psycho-

logical models are in fact black boxes and thus may hinder discussion in sensitive contexts

such as law, health, and wealth (Katsikopoulos and Canellas, in press), and additionally,

ensemble models can confuse practitioners (Lessmann et al., 2015).

More specific research challenges relate to the assumptions that the toolbox of the decision

maker consists of one heuristic, one analytical method, and one method-selection strategy.

These assumptions often do not hold, neither for relatively straightforward decisions (Payne

et al., 1993; Gigerenzer and Selten, 2002; Katsikopoulos et al., 2020), nor for more involved

ones, with multiple attributes, criteria, or objectives (French, Maule, and Papamichail, 2009;

Fowler et al., 2010; Durbach and Stewart, 2012). The set-up of the interrelated decision tasks

might also be made richer, including sequential or strategic aspects. In general, there is a

need of scaling up the mathematical model of mixing intuition and analysis. This would also

allow testing the robustness of the empirical findings (Table 7).

Consider next challenges of implementation. Even though the present model may be

considered simple and transparent by academic standards, this definitely does not need to

be the case from the point of view of practitioners and the decision analysts or facilitators
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who work with them (Franco and Montibeller, 2010). This is crucial because if people do

not understand a model, even if it is meant to celebrate and support their intuition, they are

likely to resist or ignore it. Furthermore, experts might feel threatened by attempts to model

their intuition formally; for some professionals, a mystique surrounding their processes and

tools is a valuable asset that they could choose to keep inaccessible, at least to a good extent

(Goodwin, in press). On the other hand, there have been projects where researchers were

able to work together with practitioners and develop successful and intuitive, and at the same

time formal, models of fast-and-frugal heuristics, in areas such as predicting impending heart

attacks, decreasing civilian casualties in peace keeping operations, forecasting the incidence

of influenza, or financially regulating investment banks (Katsikopoulos et al., 2020).

In other words, considering implementation, making models more complex might make

the interaction with practitioners more challenging. Thus, a trade-off might exist between

meeting both research and implementation challenges with regards to choosing the right level

of model complexity.

Ultimately, integrative models such as the one presented here might be more acceptable

and also effective in situations where analysts and practitioners agree that conditions for

intuitive expertise are met partially, but not fully. Such conditions include opportunities to

learn the statistical regularities of the decision environment (Hogarth, 2001; Todd, Gigerenzer

and the ABC research group, 2012), and meta-cognitive abilities of people to know what they

know and what they do not know (Kahneman and Klein, 2009).

In conclusion, we can return to Albert Einstein and Aneesh Chopra. The marriage of

intuition and analysis might at times be trying, but it can be a great one, where partners

help each other improve and are mutually valued. In pursuing such aims, interdisciplinary

formal modeling can help and provide good counsel.
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