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Abstract

The unsteady, non-uniform inflow to marine propellers causes a time dependent load

and response of the propeller blades. Although techniques exist to model the fluid

structure interaction of marine propellers operating behind a hull wake, these are

often computationally expensive. The ability to predict the response of the propeller

blades at the design phase is desirable as it will enable a propeller designer to obtain a

more optimal design with a smaller time investment. This Thesis aims to develop a

computationally efficient and validated numeric tool for computing the vibration

characteristics of marine propeller designs. This can be achieved by use of a

numerically efficient hydrodynamic model and coupling it to a reduced degree of

freedom structural model.

The hydrodynamic model used to obtain the performance of the propeller and load

distributions along and across the blades is Blade Element Momentum Theory. This

includes a database of 2D foil CFD simulations to calculate pressure on each blade

section. This hydrodynamic model is validated using high fidelity CFD simulations

and found to agree well.

To obtain an unsteady, non-uniform inflow to the propeller CFD has been utilized to

obtain the flow field at the propeller plane of the KVLCC2 hull form. This has been

validated against experimental data available. To obtain the structural characteristics

of the propeller blades a plate model has been implemented. This is shown to give

reasonably good accuracy compared to a full 3-D model but at an order of magnitude

computationally cheaper.

An algorithm has been developed to couple the hydrodynamic and structural models.

This is compared to a high-fidelity CFD-FEA coupled simulation. The

computationally efficient model compares reasonably well to the high fidelity model.

However the Plate-BEMT model achieves the deflection in a fraction of the time of the

high fidelity model. The method developed can assist the propeller designer generate

geometries which have optimal vibration properties for the given hull form and can

perform well in manoeuvring configurations.
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Chapter 1

Introduction

1.1 Motivation

The requirement to reduce marine vehicle noise has been relevant for military

applications for years Carlton (2012), however there is a growing concern to reduce

the environmental impact of merchant shipping. Maritime noise can take the form of

vibration of the drive train however, the main sources of noise and vibration originate

from the propeller Merz et al. (2009). The vibration can be caused by flow features

exciting the vibration modes of the marine propeller or by cavitation, where low

pressures on the blade surface causes the water to boil and bubble. Although

cavitation has a more prominent influence on noise, the modelling of this phenomena

will not be performed in this thesis.

To design a propeller with low vibration properties, traditionally, a geometry would

be developed to fulfil the design parameters. The operating conditions, noise

requirements, thrust and torque requirements and the inflow conditions, characterised

by the geometry of the hull form and appendages, will be considered. Using previous

expertise and propeller geometries a designer can obtain a distribution of chord, pitch,

thickness, camber, skew and rake. A prototype can then be created and tested in a

physical experiment. This is an expensive procedure and will not yield effective

results in an efficient manner. This is particularly prevalent in the design stage as

changes to the hull form can occur in a short time frame which will require changes in

the propeller design rapidly.

If a propeller geometry designed for a previous case is used then this will provide sub

optimal performance for the design parameters. To decrease the cost in generating a

geometry with desired characteristics computational techniques have been developed

to analyse the performance of the propeller.
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Propeller performance characteristics can be obtained using: experimental techniques,

high fidelity simulations or low fidelity modelling. High fidelity simulations capture

small details of the system which make up the output whereas modelling generates an

output using simplified physics.

High fidelity solutions such as Computational Fluid Dynamics (CFD) can be used to

obtain fluid loading on the propeller blades. To obtain accurate results using CFD a

good quality mesh must be created. The mesh consists of a domain which

encompasses the flow, the domain is then split into small grid cells therefore allowing

the small details of the domain to be captured. To simulate a propeller design using

CFD requires a significant computational cost where several hours on a high

performance computing module are required to obtain characteristics of a single

design.

A 3D Finite Element Analysis model can be used to obtain the structural properties of

the propeller. The structural model will also require a mesh on the geometry itself as

opposed to the surrounding domain. These simulations can be coupled to obtain a

Fluid-Structure interaction model. This is where the fluid causes a force to act on the

model which causes the structure to deform, this deformation causes the geometry to

change therefore the fluid loading will change. These high fidelity simulations become

especially computationally demanding when mesh motion is applied which is the

case for fluid-structure interaction simulations.

The use of these high fidelity simulation techniques has grown due to the increase in

computational power available in the form of High Performance Computing (HPC)

Hawkes (2017) where many compute nodes are used in parallel to increase turn

around time for large scale simulations. The use of HPC requires access to a cluster of

compute nodes which can have a significant cost to maintain and operate. Although

the cost for high fidelity simulation is reducing and HPC becoming more readily

available this still requires a substantial overhead and expertise to use obtain accurate

results.

Due to the high computational cost of fluid structure interaction simulations, it is

impractical to use CFD-FEA coupling for the early design stages of a propeller. It is

therefore desirable to obtain a fluid structure interaction model of an arbitrary

propeller geometry using accurate models.

These approximations have been utilised in the wind turbine and tidal turbine

environments Otero and Ponta (2010) , Otero and Ponta (2015) , Harrison and Batten

(2010). These models uses a body-force model to generate the hydrodynamic forces

and a 1 dimensional FEA model to model the structures. Although body-force models

have been used to model the hydrodynamics of marine propellers Phillips (2009),

Badoe (2015) there is little literature in coupling a body-force model to an FEA model
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for marine propellers. This technique will capture the FSI properties of the marine

propeller rapidly but will miss some details the high fidelity simulations can achieve.

1.2 Background

The design of propellers is often a balance of compromise of characteristics. A more

efficient propeller can be generated by using a shorter chord distribution, this will

cause cavitation inception, where the pressure falls and water turns to vapour, to

occur more readily. Furthermore, a propeller blade with higher loading towards the

tip will produce greater efficiency but this causes stronger tip vortex structures which

increases noise. Additionally, to obtain weight saving a thin blade can be designed

however this will cause structural fatigue issues. Therefore, to obtain an optimal

solution the different demands must be considered and prioritised.

Noise can originate from many aspects of the propeller. The sources of noise are

shown in Figure 1.1. This demonstrates that at low frequencies the inflow turbulence

and displacement of the propeller blade dominates. The excitation of the displacement

frequencies is known as propeller ’swathing’. The trailing edge noise occurring at

high frequencies are due to vortices shedding from the trailing edge of the propeller

blade. The frequency of the vortex shedding can ’lock-on’ to the natural frequency of

the blade causing a phenomena called ’singing’ Ausoni (2009) Zobeiri (2012).

FIGURE 1.1: Marine Propeller Noise Sources, adapted from Lloyd (2013)

The inflow turbulence arises from the boundary layer of the ship which will be fully

turbulent at the propeller plane. This causes high frequency changes in velocity which
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cause changes rapid changes in fluid loading on the blade which will change the

frequency of blade deformation.

Due to different appendages of the hull and operating conditions the wake inflow to

the propeller plane and the flow conditions to the propeller can vary. The time

dependent change in inflow conditions can excite vibration modes of the propeller

blades. Changing the material or geometry of the propeller blade will cause the

vibration modes to change. The blade material properties and geometry can then be

tuned to minimize the vibration of the blades given the inflow they experience.

The use of high fidelity simulation techniques such as CFD can be used to obtain the

performance and noise characteristics of the propeller design however, these are

computationally expensive and take significant time to complete. The use of CFD-FEA

coupling is particularly complex and expensive when the propeller is operating

behind a hull. This requires a large time commitment both in human cost of setting up

a complex computation and when running the simulation. This is impractical for use

at the design stage of the propeller due to commercial and industrial demands on

time. Hence, it is desirable to obtain the vibration properties of the propeller blades

using an computationally efficient tool which retains a high level of accuracy. In this

context, the efficiency of the methods are described by the ease of use for the propeller

designer and the time taken for useful data to be generated in the computational

environment.

Increased use of machine learning and optimization for marine propellers He et al.

(2012) require accurate, low computational cost modelling. A parameter used in the

optimization computation could be to reduce the blade deformation. Therefore a

computational tool to efficiently calculate the deformation of an arbitrary propeller

blade design would be used for these purposes.

Therefore, the development of a numeric tool to determine the vibration properties of

a propeller blade with a non-uniform and transient velocity inlet is required. This tool

is to be verified with respect to higher fidelity models whilst keeping the

computational cost low.

1.3 Aim and objectives

The aim of the research is to develop a computationally efficient and validated

numeric tool for computing the vibration characteristics of marine propeller designs

due to ship manoeuvring.

This is achieved by fulfilling the following objectives:
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1. Develop an accurate and time efficient hydrodynamic model to obtain the load

distribution caused by the pressure on the propeller blades. This will be

achieved for an unsteady and non-uniform inflow. The model should be

computationally efficient enough to be run thousands of times without use of a

HPC and the model must distinguish the blade position relative to the hull.

2. Using an easily modifiable description of propeller rake, skew, pitch, camber,

chord, thickness and diameter be able to mesh an arbitrary blade geometry for

use in FEA.

3. Develop and verify an FEA model for the structural properties of the propeller

blade and be able to obtain the dynamic response from an external load. This

model, must be efficient in using computational resources and time and

accurately represent the propeller blade.

4. Produce unsteady, non-uniform flow at the propeller plane of a ship. This will

be done using high fidelity CFD simulations of the KVLCC2 hull form and

include efficient modelling of the turbulent flow features.

5. Establish techniques to accurately describe the physical properties of propeller

blades and performance characteristics of marine propellers using high fidelity

modelling techniques.

6. Verify the computationally efficient FEA model with high fidelity commercial

FEA codes and compare the hydrodynamic model with high fidelity propeller

CFD simulations to ensure the hydrodynamic model captures the load

distribution accurately.

1.4 Novelty and contributions

Numerous studies of fluid structure interactions have taken place over the past 40

years. In recent years the use of high fidelity CFD-FEA coupling has been utilized due

to their accurate results however these simulations require a large HPC cluster and a

significant time commitment.

The use of low fidelity computational tools for marine propeller fluid structure

interaction mainly consist of potential flow boundary element methods. These

methods, however, do not account for Reynolds number effects.

Therefore the contribution this thesis provides is the use of a Blade Element

Momentum theory code which includes: Reynolds number effect, hysteresis and

accounts for the turbulence at the propeller plane of a ship, coupled with a reduced

FEA model. The applicability of the code is discussed and compared with a high

fidelity model.
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Finally, due to the extremely high computational cost of Large Eddy Simulations

coupled with FEA, little work has been done in analysing the blade deflection due to

the turbulent fluctuations in the inflow to the propeller.

1.4.1 Papers

1. McCaw N, Turnock S.R, Batten,W.M.J The coupling of blade element momentum

theory and a transient Timoshenko beam model to predict propeller blade

vibration response Proceedings of the Sixth International Symposium on Marine

Propulsors: smp’19 26 - 30 May 2019, Rome, Italy.

2. McCaw, N, Turnock, S R. Batten, W. M. J. The use of BEMT and a transient

Timoshenko beam to obtain vibration properties of propeller blades under

manoeuvring conditions Numerical Towing Tank Symposium 2019

3. McCaw, N, Turnock, S R. Batten, W. M. J An investigation of the vortex shedding

frequency and natural frequency of a ship propeller Numerical Towing Tank

Symposium 2018

1.5 NGCM/Industry Sponsor

The work undertaken is an Engineering Doctorate (EngD) with the industry sponsor

QinetiQ and the Next Generation Computational Modelling Group (NGCM) at the

University of Southampton.

QinetiQ are a large technology company working with the Ministry of Defence and

other private companies. They have many sites across the UK and other countries

each specialising in different areas of defence technology such as radar, control,

marine and air.

The site at Haslar specialises in marine technologies with capabilities in model testing,

simulations and propeller design and analysis. QinetiQ have a drive to increase their

capability to design propellers and therefore require a design tool to assess the

vibration properties of the blades to add to their propeller design suite under

development.

The NGCM is a centre of doctoral training at the University of Southampton. The aim

of the NGCM is to provide training for post-graduate students to:

• be trained in state-of-the-art best practice for computational modelling

• be exposed to industrial and real-world problems

• become cross-disciplinary communicators
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• become cross-disciplinary computational problem solvers

1.6 Thesis Structure

Figure 1.2 outlines the structure of the thesis. All Chapters leading up to Chapter 7

form the necessary building blocks which are then brought together in Chapter 7. For

instance Chapter 3 is used as the hydrodynamic model for the FSI model and is

compared with high fidelity modelling of the propeller hydrodynamics described in

Chapter 4. Also, the data generated in Chapter 5 used as the inflow to the propeller in

Chapter 7 and Chapter 6 describes the structural modelling for the propeller.

Chapter 7:Com-

putationally

Efficient FSI

Chapter 5:Wake

Generation

Using CFD

on Ship Hull

Chapter 3:Blade

Element Mo-

mentum Theory

Chapter 6:Struc-

tural Modelling

Chapter 8:High

Fidelity FSI

Chapter 4:High

Fidelity Pro-

peller Modelling

FIGURE 1.2: Flow Chart of Thesis

Chapter 2 outlines the relevant physics and modelling techniques relating to propeller

vibration. A discussion of the pertinent literature is also included here, discussing

current propeller modelling techniques. The advantages and disadvantages of

different propeller performance modelling techniques is presented. In this chapter the

principals of vibration and structural modelling are presented with state of the art

techniques discussed. The methods for coupling the fluids and structures for

simulations are also discussed.
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Following Chapter 2, Chapter 3 introduces the propeller fluid loading modelling

techniques and how it is improved for advanced computational efficiency and

accuracy. Chapter 4 then discusses high fidelity modelling of marine propellers by

using computational fluid dynamics to obtain the pressure loading along the propeller

blade. The solutions from the high fidelity and computationally efficient methods are

compared with advantages of the method from Chapter 3 outlined.

The hydrodynamic model described in Chapter 3 is capable of operating within a

non-uniform and unsteady regime. Chapter 5 discusses the use of computational fluid

dynamics to obtain the unsteady and non-uniform wakes of the KVLCC2 hull form at

several drift angles. The non-uniform inlet at these drift angles will cause the propeller

to vibrate. In addition, the turbulence contribution to the flow field is investigated by

comparing the flow field of a large eddy simulation with a synthetic turbulence model.

Chapter 6 discusses the development of the structural model used to describe the

motion of the propeller blades. This chapter investigates the modelling techniques

used for optimal computational performance whilst maintaining good accuracy.

With each aspect of the numeric tool discussed Chapter 7 describes the algorithm used

to provide vibration properties of the propeller blade using one-Way and two-Way

coupling techniques. These results are then compared to a high fidelity one-way

coupling computation using CFD-FEA coupling which is described in Chapter 8.
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Chapter 2

Propeller Fluid Structure Interaction

2.1 Introduction

This chapter discusses marine propeller geometry definitions and design

considerations. The techniques used to model propeller performance are then

discussed, this includes a wide range of techniques with a brief description each

method and its associated computational cost.

The structures and vibration properties of marine propellers are then discussed

followed by the techniques for modelling Fluid-Structure interaction, not only for

marine propeller applications but in the wider context of numeric modelling

Finally, the literature surrounding ship manoeuvring in the context of obtaining

validated data for fluid velocity fields at the propeller plane is examined.

2.2 Propeller Design Process

Propellers predominantly operate in a behind condition in the wake of a ship hull.

This causes the fluid velocity to be non-uniform at the position of the propeller

operation. As the propeller blade rotates they experience a varying load due to the

non-uniformity of the inflow which causes time varying blade deformation and hence

vibration.

The propeller designer must therefore take the hull wake into consideration when

designing a propeller geometry. This section discusses these aspects in more detail.
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2.2.1 Geometry and Design considerations

Propellers can have many different configurations with many variables to be altered to

change the performance. The design of the propeller is a trade off between all

geometric variables. For example a larger propeller diameter will give greater thrust

however, structural and weight considerations must be made.

Moreover, the inflow characteristics must be considered to design the propeller to

operate in conditions of maximum efficiency. The ratio between the velocity inflow

and the rotational speed is established such that the propeller can operate at

maximum efficiency.

2.2.1.1 Geometry

Propellers are effectively rotating foils with changing chord, twist, thickness, rake and

skew from the blade root to the blade tip. The pitch, skew and rake definitions are

shown in Figure 2.1. The pitch is the distance the propeller would move after a full

rotation due to the angle of the blade relative to the normal of the propeller hub. The

skew is the angle the propeller bends when looking normal to the blade surface. The

rake is the angle of the blade from normal to the shaft centreline. These geometry

definitions have been standardized by the ITTC committee in 1978 Carlton (2012).

FIGURE 2.1: Propeller geometry definition Carlton (2012)

A propeller works by rotating about its centre with an inflow velocity. The

combination of inflow velocity and rotational speed causes each section of the blade to

experience an angle of attack. The pressure difference of the foil produces a lift and

drag force, which are components of thrust and torque forces. Changing the geometry

of the propeller and blade section will alter the local pressure distribution. For

example, the blades section can have greater camber which will increase lift and

therefore thrust however this promotes the onset of stall.
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Changing the geometric properties of the propeller causes different performance

characteristics. Allowing a greater skew angle causes the point at which cavitation is

onset to change. Increasing pitch allows for greater power output at faster speeds but

the propeller will perform poorly at low speeds Newman (2002). Rake has little effect

on performance but can alter the pressure distribution on the blade Gorji et al. (2017).

The effective design of a propeller depends on many considerations such as: the

operating condition, is the onset of cavitation a priority, is high efficiency a priority,

structural considerations and weight. There is often a balance between these design

consideration as one often counter acts another. A propeller designer therefore

requires effective tools and experience to manage the contradicting characteristics.

2.2.1.2 Inflow Conditions

The inflow conditions in which the propeller is operating is a key aspect of propeller

design. A propeller is designed to operate within the wake of a hull so the maximum

efficiency occurs at the design condition. The propeller is often located at the rear of

the ship and a complex wake develops due to change in flow field due to appendages

on the hull, therefore the flow will be non-uniform and unsteady at the propeller.

The velocity profile of the wake at the propeller plane has been studied in detail with

Hoekstra (1977) giving the circumferential wake field for a NSMB ship model No.

4984. The axial and tangential wakes are shown in Figure 2.2.

FIGURE 2.2: Wake field of NSMB ship model by Hoekstra (1977)

From Figure 2.2 it can be seen that the axial flow field is almost uniform with a large

decrease in velocity at the 180o position. The tangential wake follows a sinusoidal

curve pattern.

It is noted that the flow velocity in the wake is slower than the ship velocity. This is

due to the energy lost in the flow because of the presence of the ship. The ratio

between the velocity of the fluid in the wake to the ship velocity is called the wake

fraction as described in equation 2.1

wT =
(Vs − Va)

Vs
(2.1)
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Where Vs is the velocity of the ship and Va is the local velocity at the propeller plane.

The wake consists of 3 component in the x, y and z directions. To relate this to the

propeller these are written as polar velocities as axial, radial and tangential velocity

components. Different hulls will form different wakes therefore designing a propeller

to account for the wake field is imperative.

2.2.1.3 Advance ratio

To compare propellers operating at different operating conditions a non-dimensional

coefficient has been established known as advance ratio. This is the ratio between the

axial inflow velocity Va to the rotational velocity n shown in equation 2.2.

J =
Va

nD
(2.2)

Where Va is the inflow velocity in m/s, n is the rotational velocity in rotations per

second and D is the propeller diameter in meters. The advance ratio is useful as it

non-dimensionalises the performance curves of the propeller. So, if Va and n are

changed together in such away that the advance ratio remains constant then the

efficiency, thrust and torque coefficients will remain constant. Also, propellers of

different size and geometry can easily be compared. A graph of thrust, torque and

efficiency against advance ratio can be made for each propeller design as shown in

Figure 2.3 Young (2008).
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FIGURE 2.3: Example of Kt, Kq,η against advance ratio for the NSRDC 4381 propeller.
Note the efficiency rises to a peak value before rapidly droppingYoung (2008) .

As seen from Figure 2.3 as the advance ratio increases the thrust and torque

coefficients decrease however the efficiency increases to an optimal value then

decreases rapidly. The efficiency is defined as:

η =
JKt

2πKQ
(2.3)

Where KQ is the propeller torque coefficient, Kt is the propeller thrust coefficient. The

thrust and torque coefficients are non-dimensional coefficients described in equation

2.4. The propeller is normally operated at the position of maximum efficiency.

KT =
T

ρn2D4

KQ =
Q

ρn2D5
.

(2.4)
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Where T and Q are the propeller thrust [N] and torque [Nm] respectively and ρ is the

fluid density. Thrust and torque coefficients are useful as a comparison between

different propeller performance and for scaling between model scale and full scale.

2.2.2 Optimization

In recent years the use of optimization and machine learning have become prominent.

The use of optimization can lead to a great reduction in time spent by the propeller

designer in trialling and testing designs. However, to effectively use optimization

computational tools must be efficient enough to be able to run 100s of design cases in

an efficient manner. As the presented work offers a novel method for obtaining the

dynamic structural response of a propeller blade, it can be used within an

optimization framework in future developments.

Optimization may be defined as a search for an input or set of inputs that minimize

the output given the constraints Keane and Nair (2005). So, for propeller vibration

reduction the inputs will be the propeller geometry and material with constraints

being the operating wake and conditions and the output will be maximum

deformation. The goal of the optimizer would be to minimize the unsteady

deformation.

Although optimization techniques can be achieved using high fidelity simulations

such as in the work by He et al. (2012) it is more practical to obtain an optimized

solution using computationally cheaper tools such as the work by Jiang et al. (2018).

Without the use of an efficient and accurate method for obtaining vibration properties

it is impractical to use optimization techniques in a commercial setting.

2.3 Modelling Propeller Performance

This sections describes techniques to predict marine propeller performance for specific

designs. The computational methods range from high fidelity simulations to quick

models which are 1000s times less computationally demanding.

2.3.1 Blade Element Momentum Method

Blade element momentum theory is a method to model the performance of a propeller

design. This method combines momentum theory, where the propeller is modelled as

an infinitely thin annulus with a momentum change, and blade element theory where

the propeller blades are modelled as a 2D lifting surface. This method is

computationally cheap and has proven to be reasonably accurate Molland et al. (2016).

Initially developed for high aspect ratio blades for aircraft this method was inaccurate
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for marine propellers due to their low aspect ratio. Lerbs (1952) released a paper using

an extension to previous corrections to ensure an accurate model for marine propellers

can be used. This method is still used to this day for early design developments.

Blade Element momentum theory has been used extensively in literature both as an

initial design tool and to verify larger CFD simulation results Badoe (2015), Winden

(2014), Phillips (2009). Lee et al. (2017a) performed a CFD simulation of a wind turbine

and a one-way structural coupling was produced, this was done by mapping the CFD

pressures to a FEA model using the Arbitrary Lagrangian Eulerian (ALE) method.

The CFD simulations were validated by using blade element momentum theory with

5 elements and 16 elements. 7 wind speeds were tested and the main finding was that

the wind speed increasing did not cause greater deformation. The greater deformation

is due to the blade foil aerodynamics causing greater pressure at the tips at stall on set.

The thrust force was the dominant factor in deformation not the torque coefficient.

The use of blade element momentum theory for use in modelling the propeller

performance characteristics dates back to Saunders (1961) where the theory is outlined

and introducing the early corrections by Prandtl (1921) and Goldstein (1929). In the

use of blade element momentum theory has been used for many applications

including: rotorcraft Newman (2002), wind turbines Blackwell et al. (1977), tidal

turbines Harrison and Batten (2010) and marine propellers Turnock (1993).

In recent years BEMT has been used to model the effect of the propeller on the flow

field to study other aspects on the ship. For example Badoe (2015) used BEMT to

study the flow features of the rudder- propeller interaction and the rudder propeller

skeg interaction. In addition, Phillips (2009) used BEMT with computational fluid

dynamics to determine the wake of a self propeller autonomous underwater vehicle.

Although the original BEMT model could not account for a non-uniform wake inflow

Phillips (2009) extended the code to allow for a non-uniform inflow by splitting the

annulus into radial and circumferential sections as shown in Figure 2.4.

This can add accuracy to the performance characteristics and the loading on the blade

can be extracted for each blade azimuthal section giving the designer a more detailed

picture of the loading distribution. This can also be extended to an unsteady

RANS-BEMT simulation which was achieved in Turnock et al. (2011) where a tidal

turbine arrays were studied. The RANS-BEMT coupling was used to study the

changes in turbine positioning without the need to simulate the propeller thus

reducing computational expense.

2.3.2 Panel methods

Panel methods were first introduced by Hess and A.M (1964) who used the surface

source method in 1964. Since this early development panel methods have been
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FIGURE 2.4: Circumferential division of BEMT from Phillips (2009)

adapted to model aircraft wings and propellers as well as marine propellers by

including various corrections. The adaptability of these methods for many

applications have made them a popular choice amongst engineers. The basic principle

of panel methods is where the propeller is modelled by a mesh of panels whose source

strength varies over the body surface Carlton (2012). This is a potential flow based

solver and can give performance characteristics of a propeller design with good

confidence Molland et al. (2011). Due to the potential flow nature of panel methods

viscosity is accounted for by empirical corrections. Also, the wake of the propeller

must also be modelled. This requires a mesh with accurate wake contraction which is

not know prior to the simulation.

Despite the disadvantages panel methods they give accurate results at a reasonably

low computational cost. They have also become very popular within literature due to

the good accuracy and relative simplicity of the simulations. Brizzolara (2008) did a

systematic study on the comparison between RANS and Panel methods. The author

found the panel methods performed relatively poorly for low-advance ratios and

off-design conditions where the dependence on Reynolds number was high. The use

of empirical corrections used for viscous effects in panel methods were found to be too

inaccurate to represent the propeller at off-design conditions. The paper found that

using RANS to inform the cause of inaccuracies of Panel methods was a useful

exercise.
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Moulijn (2015) compared panel methods to a full CFD simulation and found the

agreement in pressure distributions for an open water ducted propeller was excellent.

Chen (2019) developed a method of improving the panel method by the inclusion of

B-spline interpolation. This was shown to improve the hydrodynamic performance

prediction of the propeller.

2.3.3 High Fidelity Flow Simulations Techniques

2.3.3.1 General Overview

A summary of the methods for modelling/simulating propeller performance are

shown in Table 2.1.

A widely used method to model fluid flow is computational fluid dynamics.

Computational Fluid Dynamics (CFD) is the study of fluid flow using numerical

simulations. There are many levels of simulation involved in CFD from simple 2D

laminar flow modelling to large scale 3D direct numerical simulations. Methods of

computational fluid dynamics include modelling laminar flow, Reynolds Averaged

Navier Stokes (RANS) Turnock et al. (2011), detached eddy simulations (DES) Squires

(2003), large eddy simulations (LES) Abbas and Kornev (2016) and direct numerical

simulations (DNS) Chang et al. (2002).

To effectively model the fluid flow a domain is firstly established, this is the region in

which the fluid being studied will pass through. The domain contains the geometry of

the object being studied and will need to be broken into several subdomains. Each

subdomain contains cells which are used to discretize the domain such that a solution

can be found. For computational fluid dynamics there are several numerical schemes

to compute the solution of the partial differential equation.

To simplify a complex 3D problem a 2D solution is often considered first. This is

useful as the grid size is greatly reduced thus reducing computational expense. Also,

2D grids are far easier to set up resulting in less human effort. The disadvantage with

2D simulations is they don’t account for the inherent 3D effects of fluids and therefore

are not accurate for higher fidelity simulations such as large eddy simulations Lloyd

et al. (2014).

Turbulence is a phenomena which occurs in nature and engineering far more often

than laminar flow, therefore great efforts have been made to model turbulence in

computational fluid dynamics. A method for this is using Reynolds Averaged Navier

Stokes equations (RANS). RANS modelling takes each variable and writes it in the

form of the sum of a time averaged value and a fluctuating value.

φ = φ̄(xi) + φ′(xi,t) (2.5)
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TABLE 2.1: Summary of propeller modelling techniques from Molland and Turnock
(2007)

Method Description Computational Cost
Blade Element Momen-
tum Theory

Combination of blade ele-
ment theory and momentum
theory to compute the thrust
and torque coefficients and
load distribution from blade
root to tip

1

Vortex Lattice Method
(Surface panel/lifting
line/ lifting surface)

The propeller is split into
many panels and the induced
velocity is computed using
the circulation and the Biot-
Savart law

∼ 103

RANS Time averaged Navier stokes
equations are solved using a
finite volume method. An ap-
propriate turbulence closure
model is used to model the
Reynolds stresses and, if ap-
plicable, the near wall func-
tions.

∼ 106

LES Computes the Navier Stokes
equations by filtering out
the smaller turbulent struc-
tures and a sub-grid model is
used to compute the veloci-
ties caused by the small ed-
dies.

∼ 108

DNS Navier-Stokes equations are
numerically solved. All spa-
tial and temporial scales must
be solved which causes small
time steps and large grid size.

∼ 1011

Where φ̄(xi) is the time averaged value and φ′(xi,t) is the fluctuating value. This is

applied to the Navier Stokes equations to give the Reynolds averaged Navier Stokes

equations as shown in index notation in equation 2.6.

ρūj
∂ūi

∂xj
= ρ f̄i +

∂

∂xj
[− p̄δij + µ(

∂ūi

∂xj
+

∂ūj

∂xi
)− ρu′

iu
′
j] (2.6)

It is noted that equation 2.6 is not closed, meaning there are more unknowns than

equations. This is caused by the presence of the Reynolds Stress term u′
iu

′
j. To

overcome this issue turbulence closure models have been developed such as the

Spalart-Alamaras model, k − ω and k − ϵ models.
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The Spalart-Alamaras turbulence model was developed by Spalart and Alamaras in

1992 Spalart and Allmaras (1992). This is a one-equation transport equation for the

turbulent viscosity. The equation includes a non-viscous destruction term that

depends on the distance from the wall. The model is local so it does not depend on the

solution at other points. The study found that the model performs well in the near

wake region.

The k − ϵ turbulence model is a two equation model solving the transport equation for

turbulent kinetic energy k and turbulence dissipation rate ϵ. This model is the most

widely used model for industry applications performing well in a variety of

simulations however it performs poorly in flows of strong separation and pressure

gradients Wilcox (1993). The turbulent kinetic energy is described by equation 2.7 and

the turbulence dissipation rate is described in equation 2.8.

k = u′
iu

′
i/2 (2.7)

ϵ = ν
∂u′

i

∂xj
(

∂u′
i

∂xj
+

∂u′
j

∂xi
) (2.8)

The k − ϵ model contains terms which cannot be calculated at the wall. Therefore wall

functions must be introduced. Wall functions are used to describe the flow near the

wall. For turbulent flow this is described in three layers; the viscous sub-layer, the

logarithmic layer and the wake layer.

To effectively describe the turbulent boundary layer wall units must first be defined.

Wall units, y+ are the non-dimensional distance from the wall used to describe the law

of the wall. The equation for wall units are shown in equation 2.9

y+ =
u∗y

ν
(2.9)

Where u∗ is the non-dimensional friction velocity u∗ =
√

τw
ρ , ν is the kinematic

viscosity, y is the distance from the wall, τw is the wall shear stress and ρ is the fluid

density. Using the non-dimensional functions the law of the wall can be established.

The law of the wall is a universal law that describes all turbulent boundary layers. The

first layer is the viscous sub-layer. In this region there is a linear relationship between

y+ and u∗ which occurs at y+ = 0 − 5. The next region is the logarithmic region, in

this region the relationship between friction velocity and wall units is shown in

equation 2.10.
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u∗ =
1

κ
ln(y+) + B (2.10)

Where κ is the Von-Karman constant and B is an empirical constant dependent on the

surface. The final region is the wake layer, in this region the flow no longer follows

equation 2.10 as it reaches the free stream velocity. A standard graph of a turbulent

boundary layer is shown in Figure 2.5.

FIGURE 2.5: Law of the wall example

A turbulence model which does not require wall functions is the k − ω model. This is

because all terms are defined at the wall Fluent (2006). This is a two equation model

which accounts for turbulent kinetic energy and specific dissipation rate ω = ϵ
k . A

popular variety of the k − ω model is the shear stress transport k − ωSST. This model

has a blending function such that the standard k − ω model is used in the near wall

region and the model changes to the k − ϵ model as the distance from the wall

increases to the outer portion of the boundary layer Wilcox (1993). The k − ωSST

model has grown in popularity and has been used in many RANS based studies

Lidtke et al. (2015), Shen and Korpus (2015),Viitanen et al. (2017).

Large Eddy Simulations (LES) is a more computationally expensive way of modelling

turbulent flow. A key characteristic of turbulent flow is that has a variety of length

and time scales in the fluctuations. There are both large vortical structures as well as

small eddy vortices. The large scale vortices are far more effective at transportation of

conserved properties, such as momentum. Therefore it is key to simulate the large

scale turbulent structures over the small scale properties. LES is fully 3D and time

dependent, it is more computationally expensive than RANS simulations but less

expensive than full Direct Numerical Simulation (DNS). However, DNS is usually
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preferred over LES unless the flow is of high Reynolds number or the geometry is

complex Ferziger and Peric (2002).

LES works by firstly defining the quantities to be computed. The velocity field is

filtered to only include the large scale components. The function for this in 1D is:

ūi(x) =
∫

G(x, x′)ui(x′)dx′ (2.11)

G(x, x′) is the filter function. This filtering can then be used to filter the incompressible

Navier-Stokes equations resulting in equation 2.12

∂ρūi

∂t
+

∂(ρuiuj)

∂xj
= −

∂ p̄

∂xi
+

∂

∂xj
[µ(

∂ūi

∂xj
+

∂ūj

∂xi
)] (2.12)

The difficulty arises with the uiuj term as uiuj ̸= ūiūj. This results in an additional

term to equate these terms which results in further modelling.

The most accurate method of simulating turbulent flow is to use Direct Numerical

Simulations (DNS). This method does not use any modelling or approximations but

only numerically discretises the Navier Stokes equations. The considerations required

for a DNS simulation is for the simulation domain to be large enough to capture the

largest scale fluid structures and long enough to capture the lowest frequency

simulations. The grid within the simulation domain must be fine enough to capture

the smallest vortical structures. This is where the large numeric expense occurs with

DNS as often the grid must be very fine resulting in high memory and processor time

requirements. The benefit of DNS is that it produces large amounts of detailed data. It

is therefore used as a research tool as opposed to a design tool.

2.3.3.2 Synthetic Turbulence Models

Synthetic turbulence models are used to generate a fluctuating velocity field from

turbulence information. The can provide a fast and numerically efficient method of

simulating random fields. Patruno and Ricci (2018) describes the methods used for

generating synthetic turbulence models for spectral methods. The focus of the paper is

to describe methods of determining the inflow conditions for Large Eddy Simulations

in CFD.

Lloyd (2013) used synthetic turbulence models as an initial condition for large eddy

simulation to simulate tidal turbines. Backaert et al. (2015) uses synthetic turbulence

models to develop a efficient pre-computed turbulent flow field in the context of

aerospace applications.
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2.3.3.3 OpenFOAM

OpenFOAM (OPEN source Field Operation And Manipulation) is an open source

simulation software which is used as a general numeric solver. The software is C++

orientated and has the benefit of being open source meaning the source code can be

added to and changed to suit the user. The solver can be used in a wide variety of

applications such as: fire modelling, turbulence, acoustics, solid mechanics and

electromagnetism. The adaptability and low cost gives OpenFOAM and advantage

over commercial codes .However, commercial codes have the advantage of official

support and an easier to learn user interface.

OpenFOAM has been used in many engineering studies in both academia and

industry, with good documentation and online support making it a useful open source

option.

An OpenFOAM simulation is built using several files with a specific file structure. The

case study must be stored in its own directory and consist of an initial conditions

folder where the initial pressures and velocities are stored as well as boundary

conditions. A system directory must also exist with meshing files, solution procedures

and writing controls defined. The final directory required is the constant directory.

This contains the geometry files of the case and the files defining the turbulence

properties.

The OpenFoam CFD portion can simulate laminar, RANS,URANS, DES, LES and DNS

Greenshields (2016). To simulate a steady flow simpleFoam is often used. This is using

the SIMPLE algorithm which stands for Semi-Implicit Method for Pressure-Linked

Equations. This works by:

1. Set the boundary conditions of the problem

2. Compute the pressure and velocity gradients

3. Solve the discretized momentum equation to compute the intermediate velocity

field.

4. Compute the uncorrected mass fluxes at the faces

5. Solve the pressure correction equation to obtain the pressure field.

6. Update the pressure field using the relaxation factor.

7. Using the pressure field and the mass equation compute the velocity field.

The resulting velocity field is then fed back to the velocity gradients and boundary

conditions and the process is repeated until convergence is reached.
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To simulate unsteady flow the PIMPLE algorithm is often used, this is an extension of

the SIMPLE algorithm where the SIMPLE algorithm is employed until convergence is

achieved with several ’corrector loops’ then the simulation moves to the next time

step. It has been shown that the PIMPLE algorithm has good stability characteristics

even when the Courant number is above unity Newman (2002). Where the Courant

number is defined as the ratio between the distance the fluid particle will travel over

the size of the cell.

2.4 Structural analysis of marine propellers

2.4.1 Vibration

Vibration is an important issue in fluid-structure interaction as small oscillatory

motions can occur on the structure due to unsteady loading Carlton (1994). It is

important to study as excessive vibration can effect the fluid flow field and therefore

the performance. Furthermore, vibration can cause noise issues, fatigue, discomfort

and potentially instabilities such as flutter or divergence which is catastrophic to the

structure.

The vibration properties of a marine propeller depends the geometry of the blades

and the material which the propeller is made from. Propellers made from more than

one material, i.e composite materials, can have significantly different vibration

properties compared to fully metallic propellers.

To model the vibration of a structure it can be simplified as a mass-spring damper

system as shown in Figure 2.6.

Here the system has mass m, stiffness coefficient k, damping coefficient c and force F.

The stiffness coefficient is the resistance to the force the system experiences defined as:

k =
F

x
(2.13)

Where x is the extension of the spring, moreover the damping coefficient is the rate in

which the damper dissipates the energy. The force produced by the damper is given

by:

Fd = cẋ (2.14)

Given Newtons 2nd law ∑ F = ma and applying the spring and damper for a system

under free vibration, this results in the equation of motion:
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FIGURE 2.6: An example of a mass spring damper system

mẍ + cẋ + kx = 0 (2.15)

When dividing by mass it becomes:

ẍ + 2ζωnẋ + ω2
nx = 0 (2.16)

Where ωn is the natural frequency and ζ is the viscous damping factor.

The natural frequency of the system will determine the period of the oscillation

whereas the damping coefficient changes the rate of decay of the oscillation. A more

applicable vibration system is when the system is forced. The force on the system can

be a pulse force or a force with a frequency. The equation of motion then becomes:

ẍ + 2ζωnẋ + ω2
nx = F(t) (2.17)

Where F(t) is a time dependent force input. If the frequency of the input force

matches the natural frequency of the system the amplitude of the oscillation will be

large, this is called resonance. When modelling a system with multiple degrees of

freedom the equation of motion is represented by a system of equations such that:

M ẍ + C ẋ + K x = F (2.18)
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Where M is the mass matrix, C is the damping matrix, K is the stiffness matrix. The

displacement vector x and its derivatives will have terms for each of the degrees of

freedom and there will be as many natural frequencies and mode shapes as degrees of

freedom. Mode shapes are the shapes of the oscillations which the mass will vibrate at

when excited at the corresponding natural frequency. The mode shapes are

determined by considering a single mode as:

[K − ω2M]φ = 0 (2.19)

Where φ is the mode shape. The system shown in eq 2.19 is an eigen-value problem

and can be solved to determine the modal amplitudes at each degree of freedom to

then determine the mode frequencies and shapes.

Propellers have natural frequencies ωn which can be excited through normal rotation

or by the vibration from the shaft or engine. As the propeller is producing a force and

it is immersed in a fluid, additional sources of vibration are present known as flow

induced vibration. A key aspect of flow induced vibration is vortex induced vibration

where vortices shedding from the trailing edge of the propeller blades cause

oscillating pressure on the trailing edge on the blade. The frequency of the oscillations

can match with the natural frequency of the blade causing a phenomena called

singing.

2.4.2 Modelling Propeller structures using Finite Element Analysis

The classic theories to determine the structural properties of solids have been well

established Timoshenko (1930). The theories developed can be used to analytically

determine the properties of a simple structure. However, as the structure becomes

more complex efficient numeric techniques are required. For this reason Finite

Element Analysis (FEA) has been established by Turner (1956) with a comprehensive

overview of the finite element method found in Zienkiewicz (1977).

To obtain the Mass, Stiffness and Damping matrices of a system finite element analysis

is often used. The matrices of each element can be easily approximated and collated to

give an accurate solution for the whole structure. Several element types can be used

for the mesh each with there own advantages and disadvantages depending on the

application. The element types can range from a 1D beam element which models the

structure as a series of nodes in one direction. The number of dimensions can be

increased to a 2D plate model or a full 3D model.

Tannous et al. (2014) presents a method which enables the switch between a beam and

a 3D model. The 3D model is better for local and non-linear effects, the simplified

beam model is more suited for linear phenomena occurring for a long period of time.
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The author uses explicit schemes for non-linear regions and for small time steps.

Implicit schemes are unconditionally stable therefore larger time steps are used. The

3D portion is restricted in time and space and decomposition methods are used to deal

with different subdomains, such methods are finite element particles or harmonic

particles. With respect to restriction in time the model starts as a beam model then

switches to a 3D model before a non-linearity occurs then switches back. A good way

of checking the validity of the solution is to ensure the energy in the system remains

constant. Two switch methods are presented: numerical damping to filter possible

oscillations in accelerations and velocities, the second called triple static switch

procedure which doesnt require numeric damping. The switch is shown to work for

both static and dynamic cases and the solution to the 3D switch case is very close to

the fully 3D reference model with no energy inserted or removed from the system.

Further exploration of numerical methods for FEA was undertaken by Noels et al.

(2002) where the desire to study implicit and explicit algorithms was identified due to

implicit algorithms being more suited to slower dynamics problems and explicit

algorithms being more suited to fast dynamics. Three methods allow a combination:

First integrates in time some forces with an implicit method and others with explicit

one. The second method separates the mesh into subdomains with different

integration techniques and time steps and the third integrates over some time

intervals with an implicit method and others with an explicit. The scheme presented

integrates some time intervals with an implicit scheme and others with an explicit.

Automatic criteria that decide the shift is developed which is based on integration

error ratio between CPU time of both schemes with stable initial conditions have also

been presented.

The modelling of the forces on the propeller shaft caused by the propeller has been

studied by Lee et al. (2017b) which presents the results of the estimation on the

propeller shaft forces and their effects on the bearing loads during a straight run and a

manoeuvre. Single and contra-rotating propellers are selected as the target vessels and

the hydrodynamic loads and moments are computed using the RANS CFD technique.

Bearing loads were investigated with the elastic alignment calculation. It was found

that the propeller hydrodynamic forces do not affect the loads of the bearings

supporting the shafts of the contra-rotating gearbox. Extreme loads occur at the early

stages of turning which can cause greater amplitude of vibration making

manoeuvring conditions a key aspect to the vibration analysis of the EngD.

Different load conditions are established when studying the structural response of a

propeller. Lelong et al. (2016) developed an experimental procedure to analyse the FSI

of a flexible foils operating in heavy fluid and cavitating flow. In non-cavitating case

the foil experienced mainly bending and very little twist. Mode shapes were clearly

seen in both air and water with a net decrease in modal frequencies in water

compared to air. A large vibration peak occurred near the twisting mode frequency for
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low angle of attack at high Reynolds number. This is believed to be caused by

coupling of the structure and a laminar separation bubble inducing transition. In

partial cavitating flow the mean value of the strains and stresses tended to slightly

decrease in the early stages of cavity development. As the cavitation index increased

the strains increased as well as the pressure fluctuations and the vibration frequencies

spread to a large bandwidth and the global level of vibration increased. The author

believed this was due to added mass and water vapour around the foil.

Different methods of finite element modal analysis are described in Vysoký (2017). The

three cases discussed were the classic approach, cyclic symmetry modelling and the

component mode synthesis. It was found the accuracy of all methods were equivalent,

the only difference was the speed of computation with the Cyclic symmetry method

being quickest whereas the component mode synthesis method was the slowest.

There have been many studies with the aim to assess the vibration properties of

propellers and propeller blades. Lee et al. (2014) studied the free vibration of a

composite propeller blade and assumed to be cantilever rigidly attached.This was an

iterative procedure to calculate new blade geometry and then to compute the loading.

It was found that there was an abundance of literature for computing vibration modes

in air and a vacuum but not in water, therefore added mass is calculated from the

surface pressure induced by the flow. It was found that the Manganese Aluminium

Bronze blade had significantly lower natural frequencies in water compared to air. An

analysis was performed for a composite blade. The effect of added mass is more

significant in composite blades and mode shapes are very similar in air and in water.

It was found in this study that the effects of rotational can be ignored as the rotation

rate is not high enough in propellers.

Chen et al. (2019) studied the vibration of a marine propeller-shaft-hull system. Here

the different subsystems are modelled using different techniques with the shaft

modelled as beam elements, the propeller by cyclic elements and the hull by 3D

elements. This was shown to be a numerically efficient method of obtaining the

vibration characteristics of the whole system. The benefit of using this method as

opposed to using full 3D FEA for the whole system is savings in computational cost.

However, no figures outlining the benefit are provided in this paper.

2.5 Ship Manoeuvring

As the propeller is operating in a behind configuration the inflow to the propeller

must be obtained. The wake causes a non-uniform, unsteady load to the propeller

blade which causes a dynamic response. Studies involving the wakes formed by ships

has been reviewed in literature. The early literature studied the wake fraction of a ship



28 Chapter 2. Propeller Fluid Structure Interaction

operating under a steady condition whereas the later studies performed unsteady

non-prescribed manoeuvring.

Schetz and Favin (1977) was one of the earliest papers on modelling the flow from a

body with the influence of a propeller with the flow modelled as RANS and the

propeller modelled using an actuator zone. Stern et al. (1986) developed a method to

predict the propeller-hull interaction using RANS and a body force model. The

developed numerics agreed well with the experimental data however the unsteady

flow regime was identified as an area of required improvement.

Taylor et al. (1998) describes the computational capability for predicting the unsteady

flow field around a manoeuvring submarine with a propulsor using URANS. The

results of several manoeuvring conditions are discussed. Venkatesan and Clark (2007)

used URANS and dynamic meshing to predict the flow field of a manoeuvring

submarine with appendages and a propeller. The results were compared to

experimental measurements and agree well. Subramanian (2010) coupled a vortex

lattice method with a RANS solver, the vortex lattice method produces the propeller

forces and the RANS solves the wider flow field.

Badoe (2015) produced a comprehensive CFD design method for studying the flow

behind a ship with hull propeller interaction and included the interaction with a skeg

also. Phillips (2009) described the use of computational fluid dynamics to obtain the

manoeuvring conditions of an autonomous underwater vehicle. Here the use of

BEMT to model the propeller within the RANS environment was established. Winden

(2014) studied the operation of a self propeller ship in waves and outlines the numeric

procedures to obtain this.

The use of LES for numerical simulation of ship hulls has become more prominent in

recent years with increased computational power available. Abbas and Kornev (2016)

validated the use of URANS and LES simulations on the KVLCC2 hull form.

The SIMMAN conferences have been created in an effort to improve methods for

simulating ship manoeuvring. For this reason three test case geometries have been

established; the KVLCC2 tanker, the KCS container ship and the DTMB 5415 frigate

hull forms. This has generated strong experimental data Abbas and Kornev (2016)

which can be used as validation data. Xing et al. (2012) used DES to determine the

vortical and unsteady features of the KVLCC2 at a drift angle of 30o, this paper

showed several main features emerged; a shear-layer vortex, a ’Karman-like’ vortex

and three helical modes are observed. Abdel-Maksoud et al. (2015) verified the results

using experimental and numerical techniques. The underside of the ship form with

vortical structures can be seen in Figure 2.7.
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FIGURE 2.7: Vortical Structures from KVLCC2 Abdel-Maksoud et al. (2015)

FIGURE 2.8: Isometric view of the KVLCC2 ship hull form

The highly unsteady nature of the flow field around the KVLCC2 in manoeuvring

makes it an ideal candidate to study the vibration properties of the propeller blades.

2.6 Numeric Modelling of Fluid Structure Interaction of Pro-

pellers

With the increase use computational power fluid-structure interaction has been more

readily studied in recent years. This section discusses the previous use of fluid

structure interaction for both high fidelity simulations and design tool applications.

As Panel methods compute the pressures on the blade using a well defined mesh it is

often used in Propeller FSI design algorithms. The application of FSI to propeller

analysis was conducted by Young (2008) who uses BEM and FEM to explore the

advantages of composite propellers. The aim of the study was to exploit the

bend-twist coupling of composites. Previous studies suggest use of composites

reduced vibration by 25% Ashkenazi et al. (1974). The focus of paper is to improve the

understanding of hydroelastic behaviour of flexible composite propellers in sub
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cavitating and cavitating flow. An interest in different propeller geometries have also

been investigated with Ghassemi et al. (2012) investigating the effect of skew angle on

the performance of a flexible marine propeller. This study uses boundary element

method coupled with finite element method. As the skew angle increases the

maximum blade deflection increases and the thrust coefficient and torque coefficient

decrease. For all skew angles as the advance ratio increases the thrust and torque

coefficients decrease as does the maximum deflection. As the skew angle decreases the

maximum efficiency advance ratio increases.

Different wake inflows has been studied by He et al. (2012) where the aim of the paper

is to optimise the hydroelastic performance of a composite marine propeller to reduce

vibration and dynamic stress. FEA coupled with CFD for a propeller in a non-uniform

wake is employed and the objective is to minimise the vibratory hub loads. Vibratory

loads are decreased by nearly 49.6% by changing the blade composite blade stacking.

The use of FSI analysis has also been extended to the optimization of flexible

propellers. Blasques et al. (2010) studied the design and optimization of a flexible

composite marine propeller with the aim to tailor the laminate to control the deformed

shape of the blade. The laminate layup which minimizes the fuel consumption for the

cruising and maximum speed is determined with a reduction of 1.25% in fuel

consumption achieved with no failure under normal operating conditions after

calculation of Tsai-Wu failure criteria.

FSI has been used to optimize the design of composite propellers. Composite

materials have deformation coupling, this means that as the material bends it can also

twist. Engineers have attempted to utilise this property by changing the geometry or

laminate design such that, with the load applied, the material deforms to produce a

more efficient shape for that loading condition.

In Akcabay and Young (2019) a study was performed to compute the static flutter

characteristics of a composite plate in water and air. The change in fluid caused the

natural frequency to lower and damping coefficients to increase. However, the main

objective of the study was to understand the effects of laminate orientation on the

plate loading.

Tian et al. (2017) performed an in depth study of the vibration response of marine

propellers operating in cyclic flow, particularly at the propellers fundamental

frequency. The vibration amplitude and frequencies were compared between

experimental and numerical techniques. A wake screen was used to create a cyclic

inflow with several advance ratios tested. Several mesh qualities were used for both

CFD and FEA to act as a mesh sensitivity analysis. It was found that the fundamental

frequencies computed and the experimental results matched closely. It was also found

that the pressure fluctuates 7 times per revolution due to the cyclic inflow with larger

fluctuations occurring at the leading edge compared to the trailing edge. The high



2.6. Numeric Modelling of Fluid Structure Interaction of Propellers 31

frequency peak occurs at 7APF (axial passing frequency) which is caused by the cyclic

inflow. Experiments were carried out at J = 0 to obtain the basic vibration

characteristics of the propeller. Finally the amplitude of the deflection of the prop was

determined against the excitation frequency. The amplitude greatly increased as the

excitation frequency approached the fundamental frequency of the prop.

Chen et al. (2017) numerically investigated the influence of elasticity of blades on the

transmission of unsteady thrust. The aim is to establish an accurate method to

describe characteristics of thrust transmission in the presence of elastic blades. Various

flow conditions where analysed and the power spectra density of the thrust was

produced with peaks occurring at the number of blades multiplied by the rotational

velocity in hertz. The modal shapes were analysed and it was found that each mode

consisted of 10 frequencies very close to each other (i.e the number of blades) so the

modes where grouped. The main findings of this study are: both the bending and the

torsional modes of the propeller blades are responsive to the random loads induced

by the inflow turbulence, but only the bending modes (especially the first order)

amplifies the transmitted unsteady thrust. The frequency coincidence between the

first bending mode of the propeller blades and the longitudinal vibration mode of the

shafting should be avoided strictly, otherwise resonant responses will be developed. A

propeller with lower blade frequency can enhance the hydrodynamic damping at the

first blade bending frequency but will experience more intense excitation as the

turbulent energy is more concentrated at lower frequencies, especially when the

turbulence integral scale is large. There are two methods of two way fluid structure

interaction coupling. The first method is the monolithic approach. In this method the

two simulations are run using the same spatial discretization and with using the same

purpose designed code. The second is the partitioned approach treats both parts of the

system as separate. This means the fluid simulation is dealt with by a specialized CFD

or fluid modelling software and the structure is simulated using a dedicated FEA

solver. This offers some flexibility when simulating however difficulties can arise

when coupling. Different coupling software will need to be considered when

developing a coupled simulation. As the simulations are run separately and data is

transferred between the two, considerations therefore have to be made to ensure that

the grids and mesh for each simulation line up or there is appropriate interpolation

between data. Finally the convergence between the FEA and the CFD can differ

causing large differences in step size.

Furthermore, different coupling techniques exist within partitioned coupling. The two

techniques are weak and strong coupling. In weak coupling the fluid is computed

until convergence is reached, the forces are then transferred to the structure. The

structural simulation is then computed until convergence is reached, the displacement

is then transferred to the fluid simulation and the grid is moved. Strong coupling

differs from weak coupling by adding an extra iteration loop. In strong coupling the
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fluid is computed and the loads transferred to the structure which is then computed.

The geometry is then changed and the fluid mesh is updated. This process is repeated

until convergence is reached. When convergence is reached the next time step is

computed using the same procedure.

Fluid structure interaction has been studied in some depth in literature. Habchi et al.

(2013) outlined the development of an OpenFOAM solver for fluid-structure

interaction. It described the algorithm of the solver and defined three validation cases.

The case involved a time dependent flow over a cavity with a flexible bottom. The

displacement of the centre of the bottom was recorded and validated against other

studies. The 2nd validation case was flow over a square bluff body with a flexible

cantilever beam. The final validation case was two elastic flaps immersed in pulsatile

flow. The flaps elastic modulus were changed and the tip displacement was recorded.

Fully coupled simulations are computationally expensive with most of the expense

coming from large CFD simulations. For this reason attempts have been made to

reduce the computational expense by firstly reducing the complexity of the fluid

model or by improving the numerical methods. Friedmann (1980) produced a

comprehensive review of the techniques available to model aeroelastic problems.

Skaar and Carlsen (1980) described the use of FEA for ship vibration analysis. Here 1D

beam elements are used to model the vibration of a ship hull, whilst degree of freedom

reduction was discussed. Ramberg and Levy (1938) developed a method to determine

the natural frequencies and stresses of an aircraft propeller using Rayleigh’s method.

Li et al. (2017) produces a 3D panel method in the frequency domain with a finite

element method for structural analysis. The effect of excitation frequency, inflow

velocity and material parameters are investigated as is the effect of advance ratio on

added mass and damping. It was found that the added damping due to the fluid can

significantly affect unsteady performance. It was also found that stationary flow is

sufficient for analysing the wet modes of vibration. Seng et al. (2014) and Lee (2015)

have performed similar studies with Seng et al. (2014) studying a flexible barge and

Lee (2015) studying a composite marine propeller.

Computationally cheaper methods have been implemented to inform design decisions

but can also be used as an optimization tool. Jiang et al. (2018) used a panel method

along with the finite element method to optimize the design of a propeller used on a

bulk freighter. Recently, Maljaars (2018) presented work based on the boundary

element methods with FEA to produce a FSI model. Here added mass and added

damping were modelled using closed expressions. It was also shown here that a

reasonable levels of error from modelling the added mass and damping does not

effect the FSI results significantly since the propeller blades are stiffness dominated.

The modelling of these terms can greatly reduce the computational time.
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Blade element momentum theory has been used with FEA to determine the

performance of tidal turbines by Suzuki and Mahfuz (2018). This paper cited the use

of BEMT-FEA coupled modelled for use in wind turbine applications as being

fundamentally different when compared to applications in water due to changes in

density ratios. This holds true for tidal turbine applications as well as for marine

propellers. The significant difference between marine propellers and tidal turbines

and marine propellers is geometry. Tidal turbines often have high aspect ratio blades

which are modelled as beam elements LiuX et al. (2014). However marine propeller

blades require different structural modelling due to high aspect ratio.

Despite the abundance of literature on the fluid structure interaction of propeller

blades little work has been complete using Blade element momentum theory to

determine the hydrodynamic loading. The vast majority of papers focus on panel

methods coupled with FEA particularly using a steady state or URANS based

approach for the inflow to the propeller.

In addition, due to the incredibly high computational cost of LES very little work has

been presented in studying the blade fluid structure interaction when operating in a

highly turbulent flow field. Feymark (2013) described the challenges of using high

fidelity LES simulations in the context of fluid structure interaction. Here it is

described that a main challenge is the scalability of a robust FSI algorithm required to

run on a high performance computer.

The literature surrounding FSI of marine propellers clearly outlines a lack of

knowledge when using Reynolds dependent hydrodynamic models for propellers

operating in off-design conditions. The lack of highly fluctuating inflow to the

propeller being studied is also apparent. This Thesis aims to full fill this gap.

2.7 Chapter Summary

This chapter firstly discusses the theory associated with propeller fluid-structures

interaction. The numerical techniques used for high fidelity methods have been

discussed as well as the historic and state-of the art computationally efficient models.

The literature surrounding marine propeller fluid structure analysis is predominately

focused on the use of computationally expensive CFD-FEA coupling for detailed

analysis of a marine propeller. However, panel methods tend to be used when

obtaining the fluid-structural response of a marine propeller. These methods have the

distinct limitation of not including viscous effects in the calculation. The viscous

effects can make a significant difference in propeller performance and blade loading.

This can be overcome by the use of blade element momentum theory which is a highly
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computationally efficient method which can include viscous effects via a 2D section

database.

Despite advances in finite element analysis capabilities the computational cost of a

dynamic simulation can be high. The use of 1-D beam elements have been used for

wind turbine applications to reduce the computational cost. However, the aspect ratio

is far lower for propeller blades and a 1-D beam equation will not be applicable. Plate

elements have a significant computational cost saving over 3D elements, however

these have not been applied to propeller blades to solve for a dynamic response

solution.

The presence of a ship hull and appendages causes a non-uniform inflow and

potentially highly unsteady wake to the propeller blades. This is particularly an issue

when the ship is operating in off-design conditions. The non-uniform inflow will

cause the propeller blades to experience rapid load changes as it rotates thus causing a

dynamic response by the propeller. With frequent loading and unloading the

propeller can experience greater fatigue issues.

As shown in the literature little work has been done on fluid-structure interaction of

marine propellers operating in an off design flow regime. This is due to the high

computational cost of current techniques for FSI simulations operating in the behind

condition. The need for a computationally efficient numeric tool for FSI at the early

stages of design has therefore been identified.
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Chapter 3

Propeller Performance

Hydrodynamic Load Model

3.1 Introduction

Blade Element Momentum Theory is chosen to obtain the hydrodynamic loading on

the propeller blades. It is a highly computationally efficient method capable of

obtaining the propeller performance in open water and operating in a wake. The

development and implementation of BEMT is described in this Chapter. The BEMT

method has been chosen over other computationally efficient methods, such as panel

methods, for two reasons. Firstly, panel methods require the wake of the propeller to

be meshed. This means the description of the wake must be known before the

simulation is run, furthermore, this will increase the computational expense of the

method compared to BEMT. Secondly, panel methods use empirical corrections to

account for Reynolds number effects, this can be particularly troublesome in

off-design conditions. This can be improved upon by using accurate experimental or

simulation data in BEMT.

Although the blade element momentum method can be shown to be accurate the

theory can be improved by the inclusion of changes in Reynolds number. This can be

achieved by the inclusion of a 2D foil database to obtain the lift-curve slopes of

various foil sections. The pressure distribution on each section can also be obtained to

be included for structural loading. The development of the database is discussed in

this chapter.

The use of BEMT is to achieve the hydrodynamic loading in a computationally

efficient manner, the computational efficiency can be improved using compiled

languages whilst maintaining the ease of implementation of an interpreted language.
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The objective of this chapter is to describe and verify a computationally efficient

model to obtain the hydrodynamic properties of the propeller using Blade Element

Momentum Theory in an unsteady flow regime.

3.2 Blade Element Momentum Theory

Blade element momentum theory combines two models, blade element theory and

momentum theory. Momentum theory treats the propeller as an infinitesimally thin

plate with a change in momentum occurring at the plate. The flow is modelled by

having an axial velocity V occurring upstream of the plate. When the flow reaches the

plate the flow velocity increases to V1 = V(1 + a) where a is the axial inflow factor.

Similarly, the flow has angular velocity relative to the plate of Ω upstream of the plate

then at the plate the flow angular velocity is Ω(1 − a′) where a′ is the angular inflow

factor.

It can also be shown that in the far wake the axial flow velocity is V2 = V(1 + 2a).

Therefore the thrust and torque of the disc can be given by the axial and angular

change of momentum respectively. The mass flow rate through the disc is given by

2πrδrρV(1 + a) and the thrust is expressed by the axial change in momentum.

δT = 2πrδrρV(1 + a)(V2 − V1) (3.1)

Similarly the torque is given by the change in angular momentum.

δQ = 2πrδrρV(1 + a)r2ω1 (3.2)

Where ω1 is the fluid angular velocity at the disc. So the trust and torque per unit span

are given by:

dT

dr
= 4πρrV2a(1 + a) (3.3)

and

dQ

dr
= 4πρr3ΩVa′(1 + a) (3.4)

This will give the thrust and torque of the disc once integrated. However there are

only a limited amount of blades on a real propeller. To correct for this the Goldstein

correction factors are introduced Goldstein (1929) which continued from the early

work by Prandtl (1921). The Goldstein factor has been calculated for 2-7 blades by



3.2. Blade Element Momentum Theory 37

FIGURE 3.1: Goldstein Correction factors

several authors. It can be seen from Figure 3.1 that the value of the correction factor is

highly dependent on radial position. Therefore a functional relationship is given by

Wellicome.

K =
2

π
cos−1 cosh(xF)

cosh(F)
(3.5)

Where F = Z
2xtanφ − 1

2 and Z is the number of blades. This is then inserted into

equations 3.3 and 3.4 such that:
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dT

dr
= 4πρrV2aK(1 + a) (3.6)

and

dQ

dr
= 4πρr3ΩVa′K(1 + a) (3.7)

This is the required equations for the momentum part of blade element momentum

theory. To increase accuracy the blade is modelled as a 2D lifting surface at an angle of

attack as shown in Figure 3.2.

FIGURE 3.2: Blade Element theory schematic

The 2D lift and drag per radii on the lifting surface is given by:

dL

dr
=

1

2
ρZcU2CL(α)

dD

dr
=

1

2
ρZcU2CD(α)

(3.8)

Where c is the blade chord, α is the angle of attack, Z is the number of blades and U is

the inflow velocity. From Figure 3.2 it can also be seen that:

tanφ =
V(1 + a)

Ωr(1 − a′)
=

1 + a

1 − a
tanψ (3.9)

The local section pitch P is the effective angle of attack plus the induced flow angle.

tan(φ + α) = P/D
πx . Where φ is the hydrodynamic pitch angle. From Figure 3.2 it can be

seen that the thrust and torque can be resolved into lift and drag contributions and

U = πnDx(1 − a′)secφ. Elemental thrust and torque are then given by:

dKT

dx
=

π2

4
(

Zc

D
)CLx2(1 − a′)2 sec φ(1 − tan φ tan γ) (3.10)
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TABLE 3.1: HMRI geometry case used in BEMT

r/R P/D Rake Skew C/D fo/C to/D
0.155 0.576543 0.0000 -2.525 0.151495 0.031264 0.046806
0.250 0.613000 0.0000 -4.000 0.177166 0.034908 0.042166
0.300 0.631000 0.0000 -4.400 0.189166 0.035621 0.038516
0.400 0.663000 0.0000 -4.400 0.209334 0.033798 0.032016
0.500 0.691500 0.0000 -3.150 0.224666 0.029334 0.026016
0.600 0.712000 0.0000 -0.820 0.233500 0.024984 0.020550
0.700 0.721200 0.0000 2.490 0.233834 0.021895 0.015600
0.800 0.716000 0.0000 6.350 0.219166 0.019797 0.011050
0.900 0.692700 0.0000 10.760 0.180834 0.016147 0.007000
0.950 0.674800 0.0000 13.150 0.142166 0.012805 0.004717
1.000 0.651000 0.0000 16.750 0.000016 3.062500 0.003200

and
dKQ

dx
=

π2

8
(

Zc

D
)CLx3(1 − a′)2 sec φ(tan φ + tan γ) (3.11)

Local efficiency is described as η =
V dT

dr

Ω dQ
dr

which can then be expressed as η = tanψ
tan(φ+γ)

where γ is the tangent of the ratio of lift coefficient to drag coefficient.

The inflow factors are derived from local efficiency with axial inflow factor described

as:

a =
1 − ηi

ηi +
1
η tan2ψ

(3.12)

and angular inflow factor described as:

a′ = 1 − ηi(1 + a) (3.13)

The solution procedure is an iterative scheme following the procedure described in

Figure 3.3.

The BEMT code was first implemented in MATLAB, this code was then adapted to be

used in Python in Mccaw (2017) for ease of use. The code has the input of a geometry

file such as the one shown in Table 3.1 and outputs the propeller thrust and torque

coefficients as well as the propeller efficiency. The code works by following the BEMT

algorithm as described.

The local thrust and torque coefficients at each blade section are computed and then

numerically integrated. To ensure the propeller coefficients are correct a generic

integrator is implemented. This takes the local thrust coefficients and the size of each
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FIGURE 3.3: Blade Element solution procedure from Molland et al. (2016)

blade section and uses trapezoidal rule to approximate the integral. This code can be

found in listing A.2.

def TrapRuleIntegration(KT_dx , KQ_dx ,x_R_list ):

# Integrate over blade to compute total coefficients .

f_x = np.zeros_like(x_R_list)

f_x2 = np.zeros_like(f_x)

j = 2

for i in range(len(x_R_list )-1):

h = x_R_list[i] - x_R_list[i-1]

f_x[i] = (h/2) * (KT_dx[i-1] + KT_dx[i])

f_x2[i] = h/2 * (KQ_dx[i-1] + KQ_dx[i])

Total_Thrust = np.sum(f_x)

Total_Torque = np.sum(f_x2)
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return Total_Thrust , Total_Torque

LISTING 3.1: Generic integrator code segment

This model has initially been implemented using the interpreted programming

language Python. Python is a highly usable programming language with an excellent

support network. It is quickly coming popular due to its relatively simple syntax

making it easy to use for beginners whilst maintaining an excellent use for scientific

programming. It makes use of packages such as: SciPy, Numpy and Pandas to easily

deal with numeric problems. The use of Python as the advantage of making software

development times short and making code easily changeable without the need for

memory management or compiling.

3.3 2D foil database

To improve the accuracy of BEMT a 2D airfoil database is used to obtain the drag

coefficient and angle of attack for the required lift coefficient. This improves the

accuracy as the lift curve slope is not assumed to be ideal at 2π per radian. Moreover,

the influence of local Reynolds number can be included in the database which gives

BEMT an advantage over potential flow solvers.

To generate the 2D foil database OpenFOAM has been used to run a series of 2D

simulations with a NACA66 modified foil with several thickness’ , cambers, Reynolds

numbers and angle of attacks. The NACA66 modified foil shape was used for this case

as it is commonly used profile for marine propellers. This database can be extended to

include several profiles. A summary of the cases run is shown in Table 3.2

TABLE 3.2: Summary of cases for 2D foil database

t
c / m

c 0 0.033 0.0165

0.1 Re = 50e3,150e3,250e3,500e3,1e6 ... ...

0.03
...

...
...

0.16
...

...
...

0.22
...

...
...

0.28
...

...
...

Each case was complete at angle of attacks ranging from −6o to 16o. This was done by

generating a circular domain for each foil. The Reynolds number chosen is the likely

range of Reynolds numbers the propeller with experience when at model scale. This is

to coincide with the work completed by Lidtke et al. (2018).
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The mesh for several foils are shown in Figure 3.4. The mesh was generated using

blockMesh with each blockMesh dictionary generated using a Python script.

The meshes generated are of high enough quality to ensure the maximum y+ is below

1 for all geometries and angles of attack and Reynolds numbers. Each foil has a chord

of 1m and the Reynolds number is adjusted by changing the inflow velocity. The angle

of attack is changed by rotating the simulation domain by the desired angle of attack.
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(A) Mesh for tc = 0.03, mc = 0.0165 (B) Mesh for tc = 0.03, mc = 0.033

(C) Mesh for tc = 0.03, mc = 0.0 (D) Mesh for tc = 0.16, mc = 0.0165

(E) Mesh for tc = 0.16, mc = 0.033 (F) Mesh for tc = 0.16, mc = 0.0

(G) Mesh for tc = 0.1, mc = 0.0165 (H) Mesh for tc = 0.1, mc = 0.033

(I) Mesh for tc = 0.1, mc = 0.0 (J) Mesh for tc = 0.22, mc = 0.0165

(K) Mesh for tc = 0.22, mc = 0.033 (L) Mesh for tc = 0.22, mc = 0.0

(M) Mesh for tc = 0.28, mc = 0.0165 (N) Mesh for tc = 0.28, mc = 0.033

(O) Mesh for tc = 0.28, mc = 0.0

FIGURE 3.4: Mesh for several foil shapes used in CFD simulations to generate 2D foil
database
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These cases were completed using the simpleFOAM algorithm with a mesh size of

approximately 62,000 cells for each 2D simulation. This mesh was found to be of

sufficient quality to ensure the y+ value was 1 for all simulations. The

Spalart-Allmaras turbulence model was chosen for these simulations. This is a

one-equation model which solves the turbulent eddy viscosity. It was chosen as it

assumes the flow is fully developed turbulence. This is beneficial compared to

transition models such as the k − ωSST as the flow at the propeller plane will be fully

turbulent. In addition, there is greater stability when running the CFD code.

(A) Clvsα for tc = 0.03,mc = 0 (B) Cdvsα for tc = 0.03,mc = 0 (C) Cmvsα for tc = 0.03,mc = 0

(D) Clvsα for tc = 0.1,mc = 0.033(E) Cdvsα for tc = 0.1,mc = 0.033(F) Cmvsα for tc = 0.1,mc = 0.033

(G) Clvsα for tc = 0.16,mc =
0.0165

(H) Cdvsα for tc = 0.16,mc =
0.0165

(I) Cmvsα for tc = 0.16,mc =
0.0165

(J) Clvsα for tc = 0.22 , mc =
0.033

(K) Cdvsα for tc = 0.22 , mc =
0.033

(L) Cmvsα for tc = 0.22 , mc =
0.033

(M) Clvsα for tc = 0.28 , mc =
0.033

(N) Cdvsα for tc = 0.28 , mc =
0.033

(O) Cmvsα for tc = 0.28 , mc =
0.033

FIGURE 3.5: Lift, drag and moment coefficients for various 2D foil sections. Sev-
eral Reynolds numbers are plotted on the same graph to understand the influence

of Reynolds number

The Clα , Cdα and Cmα curves are shown in Figure 3.5. Here it can be seen that the thin

foil stalls at a lower angle of attack when compared to the the thicker foils. It should

be noted that the within the stall region the coefficients are erratic and not to be taken

at face value. Therefore, within the BEMT code if a 2D section is using data from this
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region then it should be flagged and instead use the linear portion of the curve and

extend the gradient to the calculated angle of attack.

The dependence on Reynolds number can also be significant particularly for the

thicker foils. The drag coefficient is significantly higher for low Reynolds number.

These results compare well with the 2D foil database presented in Lidtke et al. (2018).

As well as the coefficient curves the pressure coefficients for each foil for each

operating condition can be obtained and stored. This data will be used later to obtain

the load distribution on the propeller blades.

The pressure coefficient data is shown in Figure 3.6. The coefficients for a few selected

geometries is shown at angles of attack of −6o 0o and 6o for illustrative purposes. The

pressure differential from the upper and lower surfaces generate the lift and will

therefore dictate the chord-wise load distribution in the structural model. It is also

noted that changes in Reynolds number causes a change in load distribution which is

captured with this model. The centre of pressure for each configuration is shown on

Figure 3.6 also. It can be seen that as the Reynolds number is increased the centre of

pressure shifts towards the trailing edge. The centre of pressure is calculated using

equation 3.14.

CoP =
P(x)x

P(x)
(3.14)
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(A) Cp curves for tc = 0.03, mc
= 0, α = −6o

(B) Cp curves for tc = 0.03, mc
= 0, α = 0o

(C) Cp curves for tc = 0.03, mc
= 0, α = 6o

(D) Cp curves for tc = 0.1, mc =
0.033, α = −6o

(E) Cp curves for tc = 0.1, mc =
0.033, α = 0o

(F) Cp curves for tc = 0.1, mc =
0.033, α = 6o

(G) Cp curves for tc = 0.16, mc
= 0.0165, α = −6o

(H) Cp curves for tc = 0.16, mc
= 0.0165, α = 0o

(I) Cp curves for tc = 0.16, mc =
0.0165, α = 6o

(J) Cp curves for tc = 0.22, mc =
0.033, α = −6o

(K) Cp curves for tc = 0.22, mc
= 0.033, α = 0o

(L) Cp curves for tc = 0.22, mc
= 0.033, α = 6o

(M) Cp curves for tc = 0.28, mc
= 0.033, α = −6o

(N) Cp curves for tc = 0.28, mc
= 0.033, α = 0o

(O) Cp curves for tc = 0.28, mc
= 0.033, α = 6o

FIGURE 3.6: Pressure Coefficient curves for NACA 66 section

3.3.1 Integration into BEMT code

Now the 2D foil database has been established it must be used within the BEMT loop.

For the required lift coefficient obtained from equation 3.10 the angle of attack for

which that lift coefficient occurs for the geometry must be found. This is done by

using linear interpolation between the section thickness, camber and Reynolds

number to obtain a Clα curve for the blade section from which the angle of attack can

be obtained. When using this option the iterative loop changes by, instead of the lift

coefficient being calculated by the empirical formula the interpolation is used.

However, during the first few iterations the angle of attack is often calculated as being

very high. In this region the linear portion of the lift curve slope is used.

To generate the correct lift curve the thickness/chord of the blade section is compared

to that of the database and the two thickness’ in which the blade section lies between
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is found. A weighting is then found to know the difference between the blade section

thickness and the database thickness’. This is repeated for the camber and the

Reynolds number. The lift curve is then calculated by multiplying the weightings by

the corresponding bounding variables.

3.4 Cython

The computational cost for BEMT is small however this can become more significant

when studying an unsteady, non-uniform inflow as the BEMT Python code will be

required to run every time step.

To reduce the computational cost of the BEMT code it has been written in Cython.

Cython is used to write software as fast as a compiled programming language but as

easy to implement as an interpreted programming language. This is done by defining

variables and arrays as static type declarations.

For example the Python code for defining a variable and defining it as a Cython static

variable is shown in listing 3.2

#Python

phi_plus_alpha1 = np.zeros_like(chord)

#Cython

cdef double [:] phi_plus_alpha = phi_plus_alpha1

LISTING 3.2: Initializing Array for Python vs Cython

The use of Cython causes a significant decrease in computational time to perform each

BEMT calculation. To quantify the computational speed up using Cython a test

problem was performed using the HMRI propeller geometry. All variables are kept

the same apart from increasing the number of circumferential sections used. This

number of circumferential sections used is the main drive of computational cost in the

BEMT solver.

3.4.1 Computational Cost

The time comparison between the Python implementation and the Cython

implementation is shown in Figure 3.7 on a log-log plot for clarity. It can be seen the

increase in computational cost increases exponentially with increasing circumferential

sections for both Python and Cython implementations. There is however an outlier for

the first circumferential section size for the Python code. This can clearly be seen when

observing the relative speed up between Cython and Python in Figure 3.8
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FIGURE 3.7: Cython vs Python Computational cost

The first Cython simulation speed up is approximately 10x faster compared to the

Python implementation. This then increases to 45x to 50x speed up for subsequent

simulations. This change in speed up seems to be driven by the Python

implementation as the Python line in Figure 3.7 changes steeply for the 1st simulation.

Interesting to note the initial speed up was actually a 30% slow down. After going

through a line profiler ≈ 30% of the time was used up in the tangent function this was

changed to sin(γ)
cos(γ) which then saw the rapid speed up. Although a 50x speed up is

desirable it does not fully utilize the potential of a compiled language such as C or

Fortran. This is mainly due to the interaction with the foil data base which uses a

Pythonic dictionary which is relatively slow.



3.5. Theodorsen Unsteady Aerodynamics 49

FIGURE 3.8: Relative speed up between Python and Cython models with changing
circumferential sections

3.5 Theodorsen Unsteady Aerodynamics

As the propeller blade vibrates the hydrodynamic properties of each blade section will

change. This is caused by changes in pitching moment and heave. If this change

occurs slowly then the steady state hydrodynamic coefficients can be used. However

if the change is rapid there is a time delay between the motion and the hydrodynamic

effect.

Although more complex dynamic stall models are available for high angle of attack

regions an arbitrary foil motion model has been implemented using the procedure

outlined in Gülçat (2016).

The 2D foil section is modelled by two degrees of freedom, pitching around its

mid-chord and vertical translation. The foil is simplified to a flat plate. The equation

of the chord line will then be:

za(x, t) = −h − αx (3.15)

Where za is the vertical position, h is the distance travelled, α is the angle of attack and

x is the distance from the foil mid-chord.

The downwash for the foil is then given as:
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w(x, t) =
∂za

∂t
+ U

∂za

∂x
= −(ḣ + α̇x + Uα) (3.16)

Referencing the derivation in Gülçat (2016) the unsteady lift coefficient can be

represented as functions of reduced time where the reduced time is given as s = 2Ut
c .

Here U is the inflow velocity, t is the time, and c is the foil chord. s represents the

number of semi-chords the foil travels per time step.

Cl(s) =
πb

U2
(ḧ + Uα̇)−

2π

U
[w(b/2, s)/2 +

∫ s

0
w(b/2, σ)φ′(s − σ)dσ] (3.17)

Here φ′ is the derivative of the Wagner function. The Wagner function is a time

dependent function which takes the form:

φ(s) =
2

π

∫ inf

0

F(k)
k

sin(ks)dk = 1 +
2

π

∫ inf

0

G(k)
k

cos(ks)dk (3.18)

Where F(k) and G(k) are the real and imaginary parts of the Theodorsen function. For

practical uses the Wagner function is given by:

φ(s) ≈ 1 − 0.165e−0.0455s − 0.335e−0.3s (3.19)

When plotted against the reduced time the Wagner function is shown in Figure 3.9

FIGURE 3.9: Wagner function
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From 3.9 it can be seen that at t = 0 the Wagner function is 0.5. This means that for a

rapid change in angle of attack the hydrodynamic forces will be half that of the steady

state value.

The unsteady lift model from 3.17 was implemented in Python. To verify the model a

foil was given an arbitrary motion and validated against models created in literature.

The model chosen was a foil operating at Reynolds number of 1.48 million, oscillating

at a reduced frequency of 0.051 with an angle of attack of 3o ± 8o. The hysteric loop is

compared to models given by Faber (2018) shown in Figure 3.10.

(A) Pure pitch oscillation from 3.17 (B) Pure pitch of foil from Faber (2018)

FIGURE 3.10: Hysteresis loop of a pitching foil using equation 3.17

This model has been included into the BEMT code to account for the blade motions

computed by the structural code. This is done by replacing the 2π portion of equation

3.17 by the lift curve slope obtained from the 2D section data. The 2D section data is

modified by equation 3.17 to give a new Cl vs α curve. The angle of attack is obtained

through the blade element iterations based on the modified Cl vs α curve

Other more sophisticated models for unsteady aerodynamics exist such as the

Leishman (1988), Oye (1991) and Snel (1997) models. These models are more complex

than the implemented model and can account for flow separation and deep dynamic

stall. However, the angle of attack rarely reaches regions of very high angle of attack

and is therefore not within the deep stall region. Although for particular flow regimes

this could be the case and should be considered for future developments. The changes

in moment coefficient follow that of the lift coefficient. The drag coefficient is far more

dependent on separation so the static value is considered satisfactory for this study.

3.6 Verification

To ensure the BEMT is calculating the force coefficients correctly the Hyundai

Maritime Research Institute (HMRI) propeller geometry has been calculated and
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compared with open water experimental results. The propeller geometry can be seen

in Table 3.3.

TABLE 3.3: HMRI Propeller Geometry

r/R P/D Rake Skew(o) C/D fo/C to/D

0.155 0.576543 0.0000 -2.525 0.151495 0.031264 0.046806

0.250 0.613000 0.0000 -4.000 0.177166 0.034908 0.042166

0.300 0.631000 0.0000 -4.400 0.189166 0.035621 0.038516

0.400 0.663000 0.0000 -4.400 0.209334 0.033798 0.032016

0.500 0.691500 0.0000 -3.150 0.224666 0.029334 0.026016

0.600 0.712000 0.0000 -0.820 0.233500 0.024984 0.020550

0.700 0.721200 0.0000 2.490 0.233834 0.021895 0.015600

0.800 0.716000 0.0000 6.350 0.219166 0.019797 0.011050

0.900 0.692700 0.0000 10.760 0.180834 0.016147 0.007000

0.950 0.674800 0.0000 13.150 0.142166 0.012805 0.004717

1.000 0.651000 0.0000 16.750 0.000016 3.062500 0.003200

The diameter of the propeller is 0.212m which corresponds to a scaling factor of 1:46.72

compared to full scale. The propeller operating conditions are shown in Table 3.4.

TABLE 3.4: HMRI Propeller Conditions

Parameter Value

Z 4

BAR 0.431

D 0.212m

Va 1m/s

n 90.9 ,22.72,15.15,9.08,6.5,5.67 rps

Section Profile NACA66 a=0.8 mean line camber

Where Z is the number of blades, BAR is the blade area ratio, D is the diameter, Va is

the inlet velocity for the open water simulations and n is the rotation rate of the

propeller.

The open water experiment was performed as part of the SIMMAN 2013 ship

manoeuvring workshop performed by HMRI.

Figure 3.11 shows the open water performance curve of the propeller when compared

to the experimental values. The efficiency of of the BEMT solution compares very well

with that of the experiment. The thrust coefficient matches reasonably closely to the

experiment with slight discrepancies occurring at J = 0.4 - 0.6 however, more

significant errors occur for the torque coefficient in this range of J.
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The thrust coefficient is predominantly dictated by the lift coefficient and the torque

coefficient is dominated by the drag coefficient. The result shown in Figure 3.11 show

that the use of the 2D foil section data gives good approximations for lift but

overestimates the drag which is a know issue for CFD.

FIGURE 3.11: Performance Curves from BEMT compared with Experimental values.

3.7 Chapter Summary

Blade element momentum theory has been used to provide hydrodynamic loads on

the propeller blades. This method has been improved by using Reynolds number

dependent 2D section data to be able to match the performance curves of the propeller

well. Although the NACA66 mod section profile has been used for the data base this

can be altered to include other foil sections and the database extended.

The use of a C based Python compiler called Cython has been used to greatly increase

performance of the BEMT solution which will be required to run at every time step for

the FSI algorithm. The use of Cython has been shown to give an ≈ 80x speed up

compared to the pure Python version.

Finally, an attempt to capture the unsteady motion of the propeller blade using

Theodorsen aerodynamic functions have been utilised and implemented within the

BEMT code. This alters the lift curve slope of the 2D section based on its pitching and

heaving motions.
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Chapter 4

High Fidelity Propeller Simulations

4.1 Introduction

To ensure the accuracy of the computationally efficient methods high fidelity

simulation methods have been developed.

This chapter describes the methods used for high fidelity computational fluid

dynamics to obtain propeller performance in open water. The blade element

momentum theory can be compared against the high fidelity solution. Both steady

state simulations and unsteady simulations are discussed in this chapter.

The use of high fidelity simulations can give a great deal of information with regards

to the flow features and forces. The focus on this chapter is to obtain force distribution

on the propeller blades and to compare the high fidelity methods to blade element

momentum theory. This is to determine if the use of Blade Element Momentum

Theory is of sufficient accuracy to use as a model for the propeller forces.

4.2 High Fidelity simulations of HMRI propeller

CFD was used to obtain the propeller performance of the HMRI Propeller. The open

water performance was obtained using a fixed inlet velocity and changing the

rotational velocity to change the advance ratio.

4.2.1 Meshing Strategy

The point of interest is for the force loading on the propeller blade. Therefore, the

mesh will be changed by the cell count on the blades. This will ensure the geometry is

captured correctly and the distribution of pressure is accurate.
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The meshes were generated using snappyHexMesh, Table 4.1. The propeller blades

used a wall boundary condition and the outer domain used a symmetry boundary

condition to avoid any wall blockage effects.

TABLE 4.1: Steady HMRI open water mesh definitions

Mesh Cell Count

Coarse 2.2 million

Medium 2.8 million

Fine 5.4 million

The domain can be seen in Figure 4.1 with cross sections shown in Figure 4.2. The inlet

is located 6 propeller diameters upstream from the propeller and the diameter of the

domain is 3 propeller diameters.

FIGURE 4.1: CFD domain for HMRI propeller.

From Figure 4.2 it is seen mesh refinements occur upstream and downstream of the

propeller to ensure good capture of any shed features which may have an impact on

the blade loading.

To model the rotation of the propeller two options are available in OpenFOAM:

Multiple Reference Frame (MRF) or Arbitrary Mesh Interface (AMI). Initially the MRF

model is used for the steady state simulation as it is significantly computationally

cheaper.

The MRF zone is selected using OpenFOAMs topoSet functionality where cell zones

can be created. Within the MRF zone the governing equations change to that shown in

equation 4.1 from Greenshields (2016).

∇ · (uRuR) + 2Ω × uR + Ω × (Ω × r) = −∇p + (νe f f (∇uR + (∇uR)
T)) (4.1)
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(A) Side View of HMRI Propeller fine mesh

(B) Face View of HMRI Propeller fine mesh

FIGURE 4.2: Slice view of HMRI domain slices.

Where Ω is the rotational vector and r is the positional vector from the centre of

rotation to the cell and the rotational vector is defined by the user. The Coriolis force is

defined by 2Ω × uR and the centrifugal force is defined by Ω × (Ω × r) in equation 4.1.

Table 4.2 gives an overview of the HMRI open water simulation.

TABLE 4.2: Steady HMRI open water mesh definitions

CFD software OpenFOAM v1712

Turbulence Model K − ω − SST

Mesh type Unstructured

Cores 48

Reynolds Number at 0.7r 1.5e5- 2e6

4.2.2 Results

The conditions tested are shown with the thrust and moment conditions are shown in

Table 4.3. The inlet velocity is kept fixed and the advance ratio is altered by changing

the rotational velocity. A range of advance ratios are tested to account for the range

tested in experimentation.
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TABLE 4.3: HMRI inlet and rotation conditions

inlet velocity (m/s) Rotational velocity (rps) J

1 22.72 0.2

1 15.15 0.3

1 9.08 0.5

1 6.5 0.7

The thrust, torque and efficiency curves are compared to the experimental results as

shown in figure 4.3. The performance curves for the coarse, medium and fine meshes

are presented. The CFD results compare reasonably well for thrust and torque

coefficient however the efficiency is not well captured. Although the fine mesh tends

to match more closely to the experimental values over the coarse and medium mesh.

There are two primary reasons for this. The CFD simulation can overestimate the drag

impact therefore increasing the torque coefficient hence efficiency is in error despite

the thrust prediction performing well. In addition, there is little detail in the

experimental technique to obtain the range of advance ratios. This means that the

change of advance ratio can be due to either advance speed or rotation rate. The

impact will be a large change in Reynolds number which can have a significant impact

on efficiency as shown in Rijpkema (2015).

FIGURE 4.3: Performance curves for HMRI propeller.

4.2.2.1 Load Distribution Comparison with BEMT

Although the BEMT code gives good comparison for overall thrust and torque

coefficients confidence must be gained that the load distribution along and across the

blade is correct. This is done by comparing the BEMT solution to high fidelity CFD

simulations. A reference blade is radially sectioned at the same positions as the BEMT

input geometry file such that OpenFOAM can calculate the force at each blade section.

The geometry is split altering the Standard Triangle Language (STL) file. An STL file
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defines the geometry by building up a series of triangles which form the larger

structure. The centre of each triangle in the STL is found, each point is translated to

polar coordinates and is sorted into the radial portion and angular positions. Each

triangle can then be flagged of belonging to a certain radial and angular section. The

split blade geometry in the CFD simulation is shown in Figure 4.4. Slight

discrepancies can be seen in splitting the blade into sections however, this should

average out over the entire blade surface.

FIGURE 4.4: HMRI with blade sectioned

The load distribution of the blade compared with the CFD load distribution is shown

in Figure 4.5. As the BEMT code outputs the thrust coefficient curve as opposed to

thrust, the coefficient is changed to thrust using equation 4.2.

dTBEMT

dxBEMT
= ρn2D4 dKT

dx
dxdθ (4.2)

Here ρ is the density of the fluid, D is the diameter of the propeller, dx is the length of

the element in the radial direction and dθ is the angular portion i.e2π / the number of

circumferential sections. dKT is the local thrust coefficient of that section.

To accurately compare the load distributions the CFD thrust distribution is normalised

by the radial length to obtain dTCFD
dxCFD

.
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(A) Thrust distribution of HMRI propeller at
J = 0.05

(B) Thrust distribution of HMRI propeller at
J = 0.2

(C) Thrust distribution of HMRI propeller at
J = 0.3

(D) Thrust distribution of HMRI propeller at
J = 0.5

(E) Thrust distribution of HMRI propeller at J =
0.7

FIGURE 4.5: Load distribution for various advance ratios

It can be seen that the load distributions match well except at J = 0.7 . The position of

maximum load occurs at the same position and the gradient of the curve slope

matches well. However, for J = 0.7 the upper load contribution towards the tip is well

over estimated although the initial negative thrust at the root of the blade is captured.

There is also a small kink in the load distribution towards the tip. This is due to the

resolution of points and can be removed by increasing the number of points in the x/R

plane.

It is therefore shown that the use of BEMT gives a reasonable estimate of load

distribution along the propeller blade.
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4.3 Unsteady Propeller performance

4.3.1 Introduction

The use of high fidelity propeller modelling using a steady MRF region has been

discussed however, this cannot be used when the propeller is performing in a

non-uniform flow field. The load distribution on the blade will change as the propeller

rotates and experiences different flow regimes.

Therefore, an accurate and reliable method for obtaining the blade loading in an

unsteady state is required. This section discusses the development of the method and

compares the performance curves between the experimental and unsteady

simulations.

4.3.2 Meshing Strategy

To calculate the propeller performance in an unsteady flow regime a cyclic AMI is

used in OpenFoam. This is a dynamic mesh calculation where the the propeller is

spinning at the user defined rate to simulate the rotation of the propeller. The use of a

dynamic mesh will require an interface between the stationary portion of the domain

and the rotating portion. The addition of the interface and mesh movements means

the increase in computational cost for an unsteady, dynamic mesh simulation is

significantly higher when compared to a steady state MRF simulation.

To obtain a good quality mesh, the interface between the rotating portion and

stationary portion of the mesh is vital. This is because if the interface is poor, gaps can

appear between the rotating region and stationary region which OpenFOAM cannot

deal with causing simulations to crash.

Therefore, to ensure a good quality interface is kept throughout the simulation

Pointwise is used as the meshing tool as snappyHexMesh is poor at generating a good

interface between the rotating region and stationary region. When using

snappyHexMesh the initial interface can be of good quality however, as the rotation

occurs the communication between cells can change and eventually become zero. This

is a well documented problem when using snappyHexMesh as a mesher.

This is done by creating two regions in Pointwise. The first region is the rotating

region which contains the Propeller as shown in Figure 4.6
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FIGURE 4.6: Rotating region using Pointwise meshing.

The outer, stationary region is created with the rotating region boundaries to create

the domain as shown in Figure 4.7. The boundary conditions for the rotating region

are set to wall for the propeller and the interface regions are defined as AMI patches.

In the Pointwise software the connectors are selected and defined for each mesh

region to ensure the the boundary conditions are two-sided and can share data.

FIGURE 4.7: Domain using Pointwise meshing.

The outer stationary domain is then created and the two regions are merged using the

mergeMesh utility in OpenFOAM. When using Pointwise as a meshing tool it is vital
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to renumber the mesh before running any simulations as OpenFOAM crashes

otherwise.

The boundary and initial conditions are shown in Table 4.4.

TABLE 4.4: Unsteady Propeller simulation boundary conditions

Patch U p

Propeller movingWallVelocity zeroGradient

inlet fixed Value zeroGradient

outlet zeroGradient fixedValue

domain symmetry -

AMIRotor/Stator cyclicAMI -

4.3.3 Results

4.3.3.1 Performance Curve

The unsteady simulation is run using the pimpleFoam algorithm, which is the

transient version of the SIMPLE algorithm. The pimple algorithm effectively uses the

SIMPLE algorithm to find a converged solution at each timestep. It is a stable solution

for a larger timestep. This simulation is complete using 48 cores on the iridis5 cluster.

These are completed for the same range of operating advance ratios as the MRF

simulations as a comparison using the same range of Reynolds number.

The force coefficients for advance ratios J = 0.05 , J = 0.2, J = 0.3, 0.5 and 0.7 are shown

in Figure 4.8.

FIGURE 4.8: Performance curves for Unsteady Propeller

It is shown in Figure 4.8 that the unsteady performance curves match the

experimental performance well except at J = 0.7. The thrust coefficient in particular

matches closely to that of the experiment.
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4.3.4 Computational Cost

The steady and unsteady simulations were complete on the Iridis 5 supercomputer at

the University of Southampton. Each simulation was complete on 48 2.0GHz

processors. The comparison between computation time per time step is shown in

Table 4.5

TABLE 4.5: Computational Cost of High Fidelity CFD propeller simulations

Simulation Execution time per time step

MRF ≈0.5s

AMI ≈100s

The AMI simulation is significantly more expensive compared to the MRF simulation.

This is due to the significant cost of manipulating the mesh at each timestep. This

further demonstrates the use of BEMT as a computationally effective way of

calculating the blade forces as it is a fraction of the computational cost using a single

core compared to using multiple cores for a CFD simulation.

4.4 Chapter Summary

In this chapter the high fidelity computational techniques are compared to BEMT. It is

shown that the overall performance curves achieved by the blade element momentum

solution compares very well with the experimental values as do the high fidelity

techniques.

Moreover, the force distribution along the blade obtained from the high fidelity

solution compare well to that of the blade element solution. This is useful as the load

on the blade can be modelled to a reasonably good accuracy compared to high fidelity

simulations at a fraction of the computational time. Each open water CFD simulation

takes several hours over several cores to complete whereas the BEMT solution takes

less than a second.

Despite the advantages of BEMT over CFD in terms of computational cost, CFD does

give a more detailed flow features which BEMT cannot account for such as blade tip

vortex shedding.

The good agreement between the force distribution of the blade when comparing CFD

and blade element momentum theory gives good confidence that BEMT can be used

as a hydrodynamic model for the propeller blade loading.
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Chapter 5

Unsteady Wake Generation

5.1 Introduction

The open water characteristics of the propeller have been captured and the BEMT

solution has shown to agree with experimental values. However, the propeller

operates behind the hull. The presence of the hull causes a non-uniform and unsteady

inflow to the propeller.

This wake inflow to the propeller will cause it to experience different loading and

angles of attack as the propeller rotates and as any flow features interact with the

propeller at the propeller plane. The unsteady inflow can match closely to the natural

frequency of the blade and cause severe vibration and deformation. This will have a

large impact on the noise and fatigue of the propeller. Moreover, the change of drift

angle can cause large velocity gradients at the propeller plane therefore causing rapid

loading and unloading.

To obtain the non-uniform and unsteady velocities at the propeller plane

computational fluid dynamics have been utilised to model the KVLCC2 hull form.

This hull form has been chosen due to the abundance of validation data from the

SIMMAN conferences Van Hoydonck et al. (2014).

The hull form is rotated to several drift angles which match those studied for the

SIMMAN 2019 conference. This is to obtain a series of wakes with different flow fields

and velocity gradients. The different flow fields will cause the propeller blade to

respond in different ways which will be studied in Chapter 7
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5.2 Meshing strategy

The focus of the simulations is to obtain a wake at the propeller plane therefore

different mesh refinements at the propeller plane were studied.

The mesh is generated using the commercial software Pointwise. This was chosen as it

was found that using the meshing software provided by snappyHexMesh provided

poor cell quality in the boundary layer. Good quality boundary layer cells were found

to be highly important when capturing key features such as the bilge vortices.

The CFD domain is shown in Figure 5.1. With boundary conditions shown in Table 5.1

FIGURE 5.1: CFD domain used to model KVLCC2 hull form

TABLE 5.1: Boundary conditions

Inlet fixed value

KVLCC2 walls noSlip

sides, top and bottom symmetry plane

In this study, the KVLCC2 is scaled to the model scale described in Van Hoydonck

et al. (2014) with particulars shown in Table 5.2. In this CFD study the hull form is

without any appendages, propeller or rudder.

TABLE 5.2: KVLCC2 Geometry and Operating Conditions

Ship Speed Vs (m/s) 1.1702

Froude Number FR 0.142

Lpp (m) 6.893

Lwl (m) 7.0112

Bwl (m) 1.249

Scale 46.426
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Where the Froude number is defined by equation 5.1.

FR =
Vs

√

gLwl
(5.1)

Where g is the gravitational constant, Lwl is the length of the hull at the water line, Lpp

is the length between particulars and Bwl is the beam at the water line.

The symmetry plane at the top was chosen to act as a ’double body’ simulation. This is

acceptable due to the little impact the free surface has on the motion of the ship and

the velocities at the propeller plane. This saves a great deal in complexity and

computational expense as it has been shown that free surface simulations take 1000%

longer than double body simulations Turnock et al. (2008)

An unstructured grid has been generated with good quality T-Rex layers. T-Rex

meshing is anisotropic tetrahedral extrusion where a hybrid between structured and

unstructured meshing occurs. The mesh is structured within the layers at the wall hull

up to the user defined thickness. Then the domain is filled using a Delaunay-based

mesher. A side view of the mesh is shown in Figure 5.2 with the rear of the geometry

shown in Figure 5.3. It can be seen that the Pointwise mesher creates high quality

isotropic layers around the geometry.

FIGURE 5.2: KVLCC2 Mesh
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FIGURE 5.3: The rear of KVLCC2 with layers

Three meshes are developed to ensure the velocities at the propeller plane are

converged. These are compared to experimental results given in detail by Larsson and

Stern (2014). The mesh changes by increasing the mesh refinement at the propeller

plane.

A summary of the meshes is shown in Table 5.3.

TABLE 5.3: KVLCC2 mesh summary

Mesh name Number of cells

G1 6.8 million

G2 10 million

G3 11 million

5.2.1 Results

The CFD simulation was run using OpenFoam v1906 using the simpleFoam algorithm

to obtain a steady state solution. This is to compare with previous simulations and

experimentation of the KVLCC2 hull form at the propeller plane.
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TABLE 5.4: Solver Conditions

CFD code OpenFoam v1906

Turbulence model k − ω-SST

ddt Scheme steady state

algorithm simpleFoam

The velocities at the propeller plane for each mesh is shown in Figure 5.4. This Figure

shows the axial velocities at the propeller plane against the angular position where the

point where θ = 0 is top dead centre of the propeller plane.

The mesh dependence is the most significant at the near hub region. This is because

this is where the velocity gradients are more extreme, compared to the change outer

regions where the flow speed is closer to that of free stream.

As the hull is operating in the straight ahead configuration the steady state wake

should be symmetric. This is not the case for grid G3 as clear asymmetry is observed

at the r
R = 0.4 − 0.6 region. The reason for this asymmetry is due to potentially poor

quality cells in the boundary layer as the aspect ratio would be increased when

refinement is achieved.
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(A) Axial velocity at radial position r
R = 0.3 (B) Axial velocity at radial position r

R = 0.4

(C) Axial velocity at radial position r
R = 0.5 (D) Axial velocity at radial position r

R = 0.6

(E) Axial velocity at radial position r
R = 0.7 (F) Axial velocity at radial position r

R = 0.8

(G) Axial velocity at radial position r
R = 0.9 (H) Axial velocity at radial position r

R = 0.95

FIGURE 5.4: Axial velocity at various radial positions at the propeller plane for three
meshes where R is the propeller radius

It is also important to note that the maximum Reynolds stress at the propeller plane

matches well for grid G2 when compared to literature Larsson and Stern (2014). The

maximum Reynolds stress value at the propeller plane is shown in Table 5.5.

TABLE 5.5: Reynolds Stress components at propeller plane behind KVLCC2

Reynolds Stress Value EFD Lee and Kim (2003) CFD

max(ūu) 0.016 0.01625

max(v̄v) 0.008 0.0082

max(w̄w) 0.002 0.0018

max(k) 0.022 0.027
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For these reasons Grid G2 has been deemed suitable to continue with the numeric

experiments.

5.3 Drift Angles

The flow field at the propeller plane has been determined for various drift angles. The

drift angles chosen coincide with the angles requested by the SIMMAN 2020

conference which are −2o , 0o, 2o ,4o,6o, 8o ,12o and 16o. The different drift angles will

have different flow features at the propeller plane.

5.3.1 Steady Wakes

Using mesh G2 the CFD has been run using the steady state simulation technique as

described in Section 5.2.1.

The resulting velocity field at the propeller plane for each drift angle is shown in

Figure 5.5. Each plot covers the diameter of the propeller. Here the velocities are

normalised by the inlet velocity of 1.1702 m/s. The contours of each plot represent the

axial velocity with the arrows representing the radial and tangential velocities where

the positive axial velocity is coming out of the page. For the 0o drift angle shown in

Figure 5.5b the velocity profile is mostly symmetric with radial and tangential

velocities heading towards the centre. Here the velocity profile is the classic U-shaped

profile with lower velocity near the ship hull.

As the drift angle increases the velocity gradients become higher particularly at the 4o

drift angle where the velocity is lower on port side compared to the starboard and

there is a secondary region of low velocity fluid at r
R = 0.4, θ = 900. At the high drift

angle cases there is a strong asymmetry in the flow particularly in the radial and

tangential velocities.

To ensure flow structures have been captured the Q-criterion Hunt et al. (1988) has

been calculated to identify the vortical structures. The Q-criterion is the second

invariant of the velocity gradient tensor.

Q =
1

2
[(tr(∇u))2 − tr(∇u ·∇u)] (5.2)

Where u is the velocity field and tr is the trace of the matrix. The iso-contour plots,

coloured by vorticity, of the flow features around the KVLCC2 at several drift angles

are shown in Figure 5.6. It can be seen here that two strong counter rotating vortices

occur at the rear of the hull. As the drift angle increases the further flow features are

captured as defined by Xing, T., Bhushan, S., and Stern (2012). This is well defined at a
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12o drift angle where a fore-body bilge vortex, a fore-body side vortex and aft body

hair pin vortex and an aft-body bilge vortex occur. This is shown to emphasise the

correct application of the CFD software and that correct fluid structures have been

captured. This can then be used to assess the impact these fluid structures can have on

the propeller vibration properties.
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(A) Velocity contour at propeller plane for
KVLCC2 at drift angle −2o

(B) Velocity contour at propeller plane for
KVLCC2 at drift angle 0o

(C) Velocity contour at propeller plane for
KVLCC2 at drift angle 4o

(D) Velocity contour at propeller plane for
KVLCC2 at drift angle 6o

(E) Velocity contour at propeller plane for
KVLCC2 at drift angle 8o

(F) Velocity contour at propeller plane for
KVLCC2 at drift angle 12o

(G) Velocity contour at propeller plane for
KVLCC2 at drift angle 16o

FIGURE 5.5: Velocity contour plots at the propeller plane
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(A) Q criterion for KVLCC2 at drift angle −2o (B) Q criterion for KVLCC2 at drift angle 0o

(C) Q criterion for KVLCC2 at drift angle 4o (D) Q criterion for KVLCC2 at drift angle 6o

(E) Q criterion for KVLCC2 at drift angle 8o (F) Q criterion for KVLCC2 at drift angle 12o

(G) Q criterion for KVLCC2 at drift angle 16o

FIGURE 5.6: Q-criterion iso-contour plots for KVLCC2 at several drift angles.
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(A) Q criterion rear view for KVLCC2 at drift
angle −2o

(B) Q criterion rear view for KVLCC2 at drift
angle 0o

(C) Q criterion rear view for KVLCC2 at drift
angle 4o

(D) Q criterion rear view for KVLCC2 at drift
angle 6o

(E) Q criterion rear view for KVLCC2 at drift
angle 8o

(F) Q criterion rear view for KVLCC2 at drift
angle 12o

(G) Q criterion rear view for KVLCC2 at drift
angle 16o

FIGURE 5.7: Q-criterion iso-contour plots for KVLCC2 at several drift angles rear view.

5.3.2 Unsteady Wakes

The wake of the ship hull is inherently unsteady causing a variation in the velocity

field at the propeller plane with time. This results in time varying loading on the

propeller which can result in additional excitation of the propeller blade modes.

To obtain an unsteady solution of the velocity field unsteady Reynolds averaged

Navier Stokes (URANS) has been used. The 1st Order Euler scheme has been used for

the first and second time derivatives. This has the advantage of being bounded so a
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solution is more likely to be found, however the convergence to a solution is not as

quick as a 2nd order backward solution.

To achieve the unsteady solution the steady state solution has been used as an initial

condition. The time step is fixed to 5e-3 seconds to ensure the Courant number

remains below 1.

TABLE 5.6: Solver Conditions

CFD code OpenFoam v1906

Turbulence model k − ω-SST

ddt Scheme Euler

algorithm pimpleFoam

Time Step (s) 0.0005s

Mesh G2

For illustrative purposes the plots shown in Figures 5.8b to 5.13h are taken at every

2nd radial position and every 45o as shown in Figure A.7a. The velocities have been

normalised by the initial velocity, this is to be able to compare the changes in velocity

with respect to time for each point. The axial velocities are shown here however the

radial and tangential velocities are available in the appendix.
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(A) Plotting positions for unsteady wake

(B) r/R = 0.25 unsteady velocity for drift angle
= 0o (C) r/R = 0.25 unsteady velocity FFT for drift

angle = 0o

(D) r/R = 0.4 unsteady velocity for drift angle =
0o

(E) rR = 0.4 unsteady velocity FFT for drift an-
gle = 0o

(F) r/R = 0.6 unsteady velocity for drift angle =
0o

(G) r/R = 0.6 unsteady velocity FFT for drift an-
gle = 0o

(H) r/R = 0.8 unsteady velocity for drift angle =
0o

(I) r/R = 0.8 unsteady velocity FFT for drift an-
gle = 0o

FIGURE 5.8: Unsteady Velocity plots for 0o drift angle
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(A) r/R = 0.25 unsteady velocity for drift angle
= 4o

(B) r/R = 0.25 unsteady velocity FFT for drift
angle = 4o

(C) r/R = 0.4 unsteady velocity for drift angle =
4o

(D) r/R = 0.4 unsteady velocity FFT for drift an-
gle = 4o

(E) r/R = 0.6 unsteady velocity for drift angle =
4o

(F) r/R = 0.6 unsteady velocity FFT for drift an-
gle = 4o

(G) r/R = 0.8 unsteady velocity for drift angle =
4o

(H) r/R = 0.8 unsteady velocity FFT for drift an-
gle = 4o

FIGURE 5.9: Unsteady Velocity plots for 4o drift angle
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(A) r/R = 0.25 unsteady velocity for drift angle
= 6o

(B) r/R = 0.25 unsteady velocity FFT for drift
angle = 6o

(C) r/R = 0.4 unsteady velocity for drift angle =
6o

(D) r/R = 0.4 unsteady velocity FFT for drift an-
gle = 6o

(E) r/R = 0.6 unsteady velocity for drift angle =
6o

(F) r/R = 0.6 unsteady velocity FFT for drift an-
gle = 6o

(G) r/R = 0.8 unsteady velocity for drift angle =
6o

(H) r/R = 0.8 unsteady velocity FFT for drift an-
gle = 6o

FIGURE 5.10: Unsteady Velocity plots for 6o drift angle
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(A) r/R = 0.25 unsteady velocity for drift angle
= 8o

(B) r/R = 0.25 unsteady velocity FFT for drift
angle = 8o

(C) r/R = 0.25 unsteady velocity for drift angle
= 8o

(D) r/R = 0.25 unsteady velocity FFT for drift
angle = 8o

(E) r/R = 0.25 unsteady velocity for drift angle
= 8o

(F) r/R = 0.25 unsteady velocity FFT for drift
angle = 8o

(G) r/R = 0.25 unsteady velocity for drift angle
= 8o

(H) r/R = 0.25 unsteady velocity FFT for drift
angle = 8o

FIGURE 5.11: Unsteady Velocity plots for 8o drift angle
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(A) r/R = 0.25 unsteady velocity for drift angle
= 12o

(B) r/R = 0.25 unsteady velocity FFT for drift
angle = 12o

(C) r/R = 0.4 unsteady velocity for drift angle =
12o

(D) r/R = 0.4 unsteady velocity FFT for drift an-
gle = 12o

(E) r/R = 0.6 unsteady velocity for drift angle =
12o

(F) r/R = 0.6 unsteady velocity FFT for drift an-
gle = 12o

(G) r/R = 0.8 unsteady velocity for drift angle =
12o

(H) r/R = 0.8 unsteady velocity FFT for drift an-
gle = 12o

FIGURE 5.12: Unsteady Velocity plots for 12o drift angle
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(A) r/R = 0.25 unsteady velocity for drift angle
= 16o

(B) r/R = 0.25 unsteady velocity FFT for drift
angle = 16o

(C) r/R = 0.4 unsteady velocity for drift angle =
16o

(D) r/R = 0.4 unsteady velocity FFT for drift an-
gle = 16o

(E) r/R = 0.6 unsteady velocity for drift angle =
16o

(F) r/R = 0.6 unsteady velocity FFT for drift an-
gle = 16o

(G) r/R = 0.8 unsteady velocity for drift angle =
16o

(H) r/R = 0.8 unsteady velocity FFT for drift an-
gle = 16o

FIGURE 5.13: Unsteady Velocity plots for 16o drift angle

For the 0o drift angle case shown in Figure 5.5b, the maximum change in velocity
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occurs at the low radial positions, with the largest change of velocity occurring at the

low velocity positions. As the radial position moves further out the change in relative

velocity gets lower. It is clear that the axial velocity oscillates around a value. To

understand the frequency of these oscillations the fast Fourier transform (FFT) of the

signals has been taken and shown on the right hand sides of Figures 5.8 to 5.13. This

allows the frequency content to be analysed and understand what frequencies are

dominant. From 5.8c it can be seen that the frequency content is made up of low

frequencies in the order of 1 Hz or less. This can be compared to the blade passage

frequency and natural frequency of the blade when analysing the potential response

frequency of the blade.

As the drift angle increases to 4o the frequency content increases also. This is due to

the increase in unsteadiness and vortical structures intercepting the propeller plane as

shown in Figure 5.7c. The increase from the reference velocity also changes greatly at

the r
R = 0.25 value. The FFT plots show that there is a larger range of frequencies in

the velocity signal when compared to the 0o drift case. The higher range of frequencies

can contribute to a greater vibratory response from the propeller.

The drift angle is increased to 6o and shown in Figures 5.10. The magnitude of the

axial velocity fluctuations tend to decrease whilst retaining a wide range of

frequencies. Despite the relatively low fluctuations in axial velocity the radial and

tangential fluctuations remain high as seen in Figures A.3 and A.9.

For a drift angle of 8o the velocity changes are quite high at the r
R = 0.25. However as

the radial position increases the magnitude of the velocity changes becomes less but

the frequency content becomes greater. This is similar to the tangential and radial

velocities.

As the drift angle becomes larger the amplitude of velocity changes do not change

hugely but the frequency content increases although the changes in radial and

tangential velocity can be large.

5.4 Large Eddy Simulation

The unsteady RANS simulations capture the large scale velocity fluctuations however

this misses out the turbulent eddys at scales equivalent to the size of the mesh. These

turbulent fluctuations cause small velocity variations occurring at short time scales.

These high frequency velocity changes can have an impact on the vibratory response

of the propeller blade.

To capture large scale velocity fluctuations Large Eddy Simulations (LES) have been

used.This simulation type simulates the large scale turbulence fluctuations and
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models the small scale turbulence to make the calculation computationally cheaper

when compared to Direct Numeric Simulation (DNS).

LES works by first defining the quantities to be computed, for this case a velocity field

which only contains the large scale components. This is done using a filtering

function, so for a 1-D velocity field the filtered velocity is shown in equation 5.3.

ūi(x) =
∫

G(x, x′)ui(x′)dx′ (5.3)

Here G(x, x′) is the filter kernel. The filter has a local length scale associated with it, ∆

Ferziger and Peric (2002). The eddies larger than ∆ are defined as large eddies and the

eddies smaller than ∆ are small eddies and are modelled. This can be applied to the

incompressible Navier Stoked equations to give.

∂(ūi)
∂t

+
∂(ρ ¯uiuj)

∂xj
=

∂ p̄

∂xi
+

∂

∂xj
[µ(

∂ūi

∂uj
+

∂ūj

∂xi
)] (5.4)

The modelling of the small eddies take the form:

τij = −ρ( ¯uiuj − ūiūj) (5.5)

Where τi,j is called the subgrid-scale Reynolds Stress.This contains the local averages

of the small scale field, therefore the model should be based on either the local velocity

or the previous properties of the fluid. There are several options to model the

subgrid-scale Reynolds Stress, one of which is the Smagorinsky model.

5.4.1 Simulation Set-up

The mesh for the LES simulation was produced using Pointwise. The mesh used is

shown in Figure 5.14.
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FIGURE 5.14: Overview of LES grid

The side view of the KVLCC2 using the LES grid is shown in Figure 5.15. It is shown

that mesh refinement is used at the walls of the hull as well as in the wake region.

FIGURE 5.15: Side View of LES grid

High levels of refinement are used at the propeller plane as shown in Figure 5.16. This

is used in order to appropriately capture the large scale eddies. The size of the eddies

simulated as opposed to modelled is dependent on the local grid size.
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FIGURE 5.16: LES grid at Propeller Plane

TABLE 5.7: LES Solver Conditions

CFD code OpenFoam v1906

Simulation type LES

Turbulence model Smagorinsky

∆ Van Driest

ddt Scheme backward

algorithm pimpleFoam

Time Step 1.67e-4

Grid Size ≈ 100 million cells

5.4.2 Results

The comparison between the RANS results and LES results can be seen in Figures

5.17a to 5.17d. The change in axial velocity with time is shown at a few radial and

tangential positions. The LES simulation creates a significantly more fluctuating flow
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field compared to RANS simulations. The random fluctuations in the simulations

have clearly been captured using LES.

(A) r/R = 0.95 RANS vs LES at propeller
plane position 1

(B) r/R = 0.95 RANS vs LES at propeller
plane position 1

(C) r/R = 0.95 RANS vs LES at propeller
plane position 2

(D) r/R = 0.95 RANS vs LES at propeller
plane position 2

FIGURE 5.17: RANS vs LES simulation results

This rapid change in velocity is further exemplified by considering the Q-criterion

shown in Figure 5.18. The Q-Criterion at Q=10, is shown for the RANS, URANS and

LES simulations at a snapshot in time for comparison. This is for the 0o drift condition.

Here the unsteady separation in the wake is clearly seen creating a compound wake

which consists of various vortical structures and is highly complex. This is in

agreement with previous simulations produced in literature Fureby et al. (2016).
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(A) Q criterion for RANS

(B) Q criterion for URANS

(C) Q criterion for LES

FIGURE 5.18: Q criterion for RANS, URANS and LES simulations, coloured by vortic-
ity

5.5 Turbulent flow field modelling

From the LES results it can be seen that the large scale turbulent fluctuations can have

a strong impact on the velocity fluctuations. However the computational cost for LES

simulations are substantially larger than RANS simulations. Therefore it is
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unreasonable to generate LES simulations for various ship manoeuvring conditions

hence RANS is used. It is therefore desirable to model the turbulent fluctuations in a

computationally cheap way.

This has been done for wind turbine applications using the Veers turbulence model

Veers (1984). This model was also used for Tidal turbine applications in Milne et al.

(2010). This model approximates the low frequency velocity fluctuations based on the

atmospheric conditions.

Other synthetic turbulence models exist such as Mann (1998) which generates a 3D

turbulent wind field for wind turbine applications. Like the method by Veers (1984) it

uses the spectral tensor to model the fluctuations.

Synthetic turbulence models are used as an input for LES simulations. Patruno and

Ricci (2018) provides a good summary of the available methods for generating

turbulent fluctuations. An approach detailed consists of building the fluctuations by

superposition of circular functions, usually defined as spectral functions and based on

the work by Kraichnan (1970). This method has been used to easily generate

homogeneous, isotropic divergence-free velocity fields Patruno and Ricci (2018).

The model implemented in the propeller vibration tool set is described by Smirnov

et al. (2001). This was chosen due to its computational efficiency and ease of use when

combined with RANS simulations.

Firstly the anisotropic velocity tensor of a turbulent flow field is given by

rij = ũiũj (5.6)

This is then diagonalized using an orthogonal transformation tensor aij such that

amianjrij = δmnc2
(n) (5.7)

aikakj = δij (5.8)

Where δ is the Kronecker delta, cn is a vector that defines the fluctuations in the 3

directions (u′v′w′) and aij is the transformation tensor. The transient flow-field in 3

dimensions is given by the Kraichnan method.

vi(x, t) =

√

2

N

N

∑
n=1

[pn
i cost(k̃n

j x̃j + ωnt̃) + qn
i sin(k̃n

j x̃j + ωnt̃)] (5.9)



90 Chapter 5. Unsteady Wake Generation

x̃j =
xj

l
, t̃ =

t

τ
, c =

l

τ
, k̃n

j = kn
j

c

c(j)
(5.10)

pn
i = ϵijmζn

j kn
m, qn

i = ϵijnηn
j kn

m (5.11)

ηn
j , ζn

j , ωn ⊂ N(0, 1), kn
i ⊂ N(0,

1

2
) (5.12)

Where vi(x, t) is the transient flow field which varies in time and space, l and τ are the

length and time-scales of turbulence, ϵijk is the permutation tensor, N(M, σ) is a

normal distribution of random points with mean M and standard deviation σ. kn
j and

ωn represent a sample of n wave number vectors and frequencies. The number of N

points can be changed depending on the number of random distributions although

this will affect the computational cost.

The permutation tensor in 3 dimensions is given as:

ϵijk =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

+1, if(i, j, k) = (1, 2, 3) or (2, 3, 1) or (3, 1, 2)

−1, if(i, j, k) = (3, 2, 1) or (2, 1, 3) or (1, 3, 2)

0, ifi = j or j = k or k = i

(5.13)

The next step is to apply the scaling and transformations from equations 5.8 to

equation 5.9.

wic(i)v(i) (5.14)

ui = aikwk (5.15)

The correlation tensor, turbulent length and time scales are taken from the RANS

simulation. The scaling factors in ci represent the scales of the turbulent fluctuations

along each axis.

It is important to note here that the velocity field generated by this procedure do not

represent solutions to the Navies Stokes equations but generates an approximation to

the turbulent fluctuation spectrum. This is sufficient as this is what is required for

propeller load response.
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5.5.1 Numerical procedure

To obtain the time dependent flow field as defined in equation 5.9 the turbulence

properties at the propeller plane are taken. The velocity correlation tensor is taken

from the Reynolds Stress tensor. This is then diagonalized obtaining the eigenvalues

and vectors such that the conditions defined in equation 5.8 are met.

The turbulent kinetic energy k and specific turbulent dissipation rate ω are read from

the CFD data whilst the turbulent dissipation rate ϵ is calculated using ϵ = 0.09kω.

The length and time scales of turbulence l and τ are also calculated using the

turbulent fields. The turbulent length and time scale are defined in equations 5.17.

l = Cµ
k

3
2

ϵ
(5.16)

τ = l/k0.5 (5.17)

The number of random points in the normal distributions N is then defined and the ω,

ζ , ξ, κ ,p and q matrices are populated using equations 5.10 to 5.12.

The majority of this implementation has been done in Python. The database of

velocities at points around the propeller plane has been generated using the Numpy

making the access of the velocity time history easy to manipulate. Depending on the

number of random points N the population of the transient flow field described in

section 5.9 can be computationally expensive. For this reason the population of

equation 5.9 has been developed using Cython using a similar procedure described in

section 3.4.

5.5.2 Turbulent inflow results

The procedure defined in 5.5.1 is used for the 0o drift angle case and compared to the

LES simulation. The input to the Krainchan method is shown in Figure 5.19. Here the

turbulent kinetic energy, the xx-component of the Reynolds stress tensor and the

turbulent dissipation rate at the propeller plane are shown.

Figure 5.20 shows the turbulent overlay in comparison to the RANS and LES results.
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(A) Turbulent kinetic energy at propeller plane (B) Rxx at propeller plane

(C) ϵ at the propeller plane of KVLCC2

FIGURE 5.19: Turbulence properties at propeller plane for 0o drift
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(A) r/R = 0.25 Turbulent Overlay vs RANS vs
LES

at propeller plane position 1

(B) r/R = 0.25 Turbulent Overlay vs RANS vs
LES

at propeller plane position 1 FFT

(C) r/R = 0.95 Turbulent Overlay vs RANS vs
LES

at propeller plane position 1

(D) r/R = 0.95 Turbulent Overlay vs RANS vs
LES

at propeller plane position 1 FFT

(E) r/R = 0.25 Turbulent Overlay vs RANS vs
LES

at propeller plane position 2

(F) r/R = 0.25 Turbulent Overlay vs RANS vs
LES

at propeller plane position 2 FFT

(G) r/R = 0.95 Turbulent Overlay vs RANS vs
LES

at propeller plane position 2

(H) r/R = 0.95 Turbulent Overlay vs RANS vs
LES

at propeller plane position 2 FFT

FIGURE 5.20: Turbulent Overlay vs RANS vs LES simulation results
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The left hand side of Figure 5.20 is the time history of the velocity at the propeller

plane for the RANS, LES and turbulent overlay. The right hand side is the FFT of the

corresponding velocities. It is shown that the use of the turbulence model certainly

increases the velocity fluctuations compared to the RANS case. The increase in

frequency content increases to values reasonably close to the LES values.

However, at some points the turbulent overlay model performs poorly. This is because

the turbulent overlay model is not designed to solve for the Navier-Stokes equation.

In addition, the turbulent overlay model is based on the RANS solution at the

propeller plane which does not predict the unsteady wake to the same extent as the

LES. LES is capable of capturing the shed vortical structures shown in Figure 5.18.

The turbulent overlay model is, however, a useful addition as it approximates the

turbulent fluctuations of the wake based on the turbulence properties well. Despite

over-estimating some of the velocity fluctuations it can give a useful ’worse-case

scenario’ to the designer.

Although LES could be used instead of using this turbulent flow overlay the

computational cost of obtaining an LES solution is significantly higher. The aim of the

turbulent overlay is to use information from RANS data to generate a good

approximation to the turbulent fluctuations. This is of particular use when simulating

the hull in unsteady manoeuvring conditions when the computational cost for LES is

particularly high.

5.6 Model Scale vs Full Scale

The model ship wake does not completely represent the wake of the full scale ship.

This is due to the Reynolds number difference causing a relative difference in

boundary layer thickness between the model ship and the full scale ship Carlton

(2012). It is therefore desirable to scale the wake to the full scale wake for propeller

design purposes. The change in wake from model scale to full scale is a wake

contraction.

Methods have been developed to numerically obtain the full scale wake from the

model scale, namely the method by Sasajima (1966) that assumes the displacement

wake is purely potential. Hoekstra (1975) extended this method to three dimensions

and modelled three forms of contraction: centre-plane contraction, concentric

contraction and a contraction to a horizontal plane above the propeller.

Wang and Bobo (2011) outlines the various models for the assessment of hull aft end

performance and compares each model against a series of criterion as described by

Odabasi and Fitzsimmons (1978):
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1. The maximum wake around the top dead center position of the propeller disc

should satisfy: wmax < MIN0.75; CB.

2. The maximum acceptable wake peak should satisfy: wmax < 1.7w̄0.7

3. The width of the wake peak should not be less than θB = 360/Z + 10deg.

4. The cavitation number for the propeller tip, defined as:

σn =
9.903 − D/2 − Zp + Ta

(0.051πnD)2
(5.18)

should lay in the safe region defined with reference to non-dimensional wake

gradient.

Wang and Bobo (2011) found that none of the models filled every criterion and none of

the models were ideal with changes in hull form causing each model to behave

differently. Therefore, due to its ease of implementation the Hoekstra wake model has

been implemented to account for wake scaling.

5.6.1 Hoekstra Wake model

This sub section describes the methodology of the Hoekstra Wake model and its

implementation to the model wakes defined. The comparison between the full scale

wake using the wake model and CFD are then compared.

5.6.1.1 Methodology

Firstly the model-ship boundary layer thickness ratio is determined as the contraction

factor c. This is determined from the coefficients of frictional resistance of the full scale

ship and model given in equation 5.21. This is from ITTC ’58

c =
CFs + ∆CFs

CFm
(5.19)

CFs =
0.075

(log10Res − 2)2
(5.20)

CFm =
0.075

(log10Rem − 2)2
(5.21)

Where Res is the full scale ship Reynolds number and Rem is the model scale Reynolds

number. ∆CFs is taken as the roughness allowance of hull resistance given by Townsin

(1985) as:
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∆CFs = 0.044((
ks

Lwl
)0.33 − 10Re−0.333

S ) + 0.000125 (5.22)

Where Lwl is the length of the ship at the water line with ks = 150 × 10−6m being

recommended.

For the Hoekstra wake model the contraction factor is split into three components:, the

contraction factor to the centre of the propeller-shaft, j the contraction to the centre

plane and k the contraction to the hull above the propeller.

The ship wake is defined in terms of radial and tangential coordinates (r, θ), the point

of application of the velocity vector is then changed due to the three contraction

factors given as:

rnew = i[c(r − rhub) + rhub]+ (5.23)

j[r
√

cos2θ + c2sin2θ]+ (5.24)

k[r
√

c2cos2θ + sin2θ] (5.25)

(5.26)

θnew = iθ+ (5.27)

j[tan−1(ctanθ)]+ (5.28)

k[tan−1(
1

c
tanθ)] (5.29)

If i, j or k is negative then the absolute value is taken and c is replaced by 2-c to obtain

expansion over contraction. Hoekstra (1975) have conducted preliminary calculations

which have indicated that it is more accurate to not account for the k contraction in the

lower half of the disc. Modifications are made to rnew to account for the presence of the

hub. This modification only applies to concentric contraction.

If |rcosθ| < 2rhub then the j component of rnew becomes:

j[
√

r2cos2θ + c(r|sinθ|− A) + A2 (5.30)

where A = r2
hub − 0.25r2cos2θ. Also if |rsinθ| < 2rhub the j component of rnew becomes:

j[
√

c(r|cosθ|− B) + B2 + r2sin2θ (5.31)
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Where B = r2
hub − 0.25r2sin2θ. The contraction factors i, j and k are obtained by taking

the harmonic content of the model wake field. It is assumed that the 1st six harmonics

is sufficiently representative. The coefficients obtained are :

Si = 1 − Ao +

⎧

⎨

⎩

A2 + A4 + A6 − 0.5SK IfSk ≥ Sj

−Sj + (A2 + A4 + A6) IfSk < Sj

Sj = −[A2 + A4 + A6 + |max(A2cos2θ + A4cos4θ + A5cos6θ)|]

Sk = 2(A1 + A3 + A5)

Where An are the fourier coefficients. These are obtained using the scientific python

FFT module. These coefficients Si,Sjand Sk are then integrated over the radius of the

wake disc between rhub and D. The contraction factors are then given by:

i =
Fi

|Fi|+ |Fj|+ |Fk|
(5.32)

j =
Fj

|Fi|+ |Fj|+ |Fk|
(5.33)

k =
Fk

|Fi|+ |Fj|+ |Fk|
(5.34)

in which

Fi =
∫ 2R

rhub

Si(r)dr (5.35)

Fj =
∫ 2R

rhub

Sj(r)dr (5.36)

Fk =
∫ 2R

rhub

Sk(r)dr (5.37)

5.6.1.2 Results

This implementation has been tested by comparing the wake generated using the

Hoeskstra method on the CFD simulation at model scale against a full scale CFD

simulation presented in Pereira et al. (2017).

Figure 5.21 shows the axial velocities at the propeller plane. Figure 5.21a shows the

wake generated from the Hoekstra model. It can be seen that the wake contraction is

well captured and overall compares well to the full scale wake shown in Figure 5.21c.
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(A) Wake obtained using model scale CFD and
Hoekstra method

(B) Model scale wake obtained from CFD

(C) Full scale wake and Model scale wake from
Pereira et al. (2017)

FIGURE 5.21: Comparison between Full scale wake from Hoekstra model and wake
from Pereira et al. (2017)

This is a useful result as the computational effort to model the full scale hull is

significantly higher than the effort to model the hull at model scale. The change in

velocity field is significantly altered when operating at full scale. The velocity at the

outer regions of the propeller operating region is higher, this will change the loading

on the propeller significantly.

5.7 Chapter Summary

In this chapter a computational fluid dynamics method has been developed to capture

the wake of the KVLCC2 hull form at a drift angle of 0o. The wake at the propeller

plane was validated by previous numerics and experimentation on the hull form from

literature.

The RANS simulations have been extended to obtain the unsteady flow field at the

wake field. The steady state solution has been verified at the propeller plane giving

reasonable confidence that the URANS simulations generate a reliable unsteady wake.

This has been done for drift angles of −2o,0o,4o,6o,8o,12o,16o to create a series of

unsteady wakes which can be used as inputs to the computationally efficient FSI tool.
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The unsteady flow field will cause time dependent loading on the propeller which will

cause the propeller to respond in an unsteady manner.

By using the Kraichan turbulence model a synthetic turbulent field can be generated

to capture the effects of the turbulent fluctuations on the structural response of the

propeller blade. This is useful as it can reduce the need for computationally expensive

LES simulations to obtain a unsteady wake which the propeller experiences.

Finally, the Hoekstra wake model has been used to obtain the wake of a full scale ship

using the output of a model scale simulation. This can reduce the need for a full scale

hull form simulation which can be significantly more computationally expensive

compared to model scale simulations.

The work complete in this chapter can be used as the input velocities to the propeller

hydrodynamic model described in Chapter 3. In future work the CFD simulation can

be extended to include the influence of a free surface and more complex manoeuvres

such as zig zagging or turning circles.
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Chapter 6

Efficient Structural Modelling of a

Propeller Blade

6.1 Introduction

This chapter discusses the modelling techniques available to model the structural

response of the propeller blade. Finite element Analysis (FEA) is a well established

technique to obtain the structural properties of an object. This includes obtaining the

mass and stiffness matrices of the structure which dictate the response of the object to

an external load.

An FEA solution splits the structure into many small parts called elements. These are

usually simple shapes such as triangles, rectangles, or the 3D equivalent where

obtaining the mass and stiffness matrices are relatively simple. These can then be

joined to obtain the mass and stiffness matrices of a complex geometry.

There are several element types which capture different physics and have different

computational costs. The elements studied in this chapter are: Plate, Shell and 3D

elements. The implementation of these elements, as well as their computational cost

and ability to capture the blade properties are studied and compared to industry

standard methods.

The development of a robust and accurate structural model will allow the dynamic

pressure loads obtained from the hydrodynamic model to be applied and the

structural response can be computed. Although this is possible using commercial

codes such as Ansys, these can have a significant computational cost particularly

when the dynamic response is required.
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6.2 Plate Model Theory

A plate element is a structural model to approximate the stress and deformation.

There are two main plate models: the Kirchoff-love plate theory A. E. H. Love (1888),

or the Reissner-Mindlin plate theory R. D. Mindlin (1951). The Kirchoff-love plate

theory is commonly referred to as thin plate theory and Reissner-Mindlin is thick plate

theory. The thin plate theory has limitations in that shear deformations are ignored.

Thick plate theory, however, does not make this assumption and is therefore seen as a

more applicable theory for propeller blades. This is due to propeller blades having a

relatively low aspect ratio. Although plate theory will not be a completely accurate

representation of the blades it will give a good approximation as blades tend to be

reasonably flat and will exhibit small deflections.

FIGURE 6.1: Schematic of Thin Plate Theory

The model is split into several elements each with a degree of freedom in the

z-direction and rotation about the x and y-directions as seen in figure 6.1. The plate is

usually modelled with constant thickness h. The assumptions of thin plates are

described by Ventsel (2001):

• The material is elastic, homogeneous and isotropic.

• The plate is initially flat.

• The deflection is small compared to the thickness of the plate

• The length of the elements at the mid-plane are not altered. This means that the

vertical shear strains γxy and γyz are negligible, as is the normal strain ϵx

• The stress normal to the middle plane σz is small compared to the other stress

components and is therefore neglected.
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• The displacements of the plate are small.

These assumptions are known as the Kirchhoff hypotheses. This aids in the

development of the Kirchhoff plate which is valid for thin plates. However, an

extension to this theory is the Reissner Mindlin plate theory which is more practical

for ’thick’ plates Liu (2014). The practical differences between thick plate theory and

thin plate theory is the ratio between the reference length a and the thickness h. A

thick plate has a ratio a
h of ≤ ≈8, whereas a thin plate has ≈8 ≤ a

h ≤ ≈ 80 Liu (2014).

Typically a marine propeller has an length to thickness ratio within the ’thick’ region

albeit close to the upper limits.

The three dimensional structural problem can be simplified by removing a degree of

freedom and making the system two-dimensional.

For 2D stress, the components are:

σ =

⎧

⎪

⎨

⎪

⎩

σx

σy

σxy

⎫

⎪

⎬

⎪

⎭

(6.1)

And the strain components are:

ϵ =

⎧

⎪

⎨

⎪

⎩

ϵxx

ϵyy

γxy

⎫

⎪

⎬

⎪

⎭

(6.2)

The strain-displacement relationships are:

ϵxx =
∂u

∂x
, ϵxx =

∂v

∂y
, γxy =

∂u

∂y
+

∂v

∂x
(6.3)

Where u and v are the displacements in the x and y directions respectively. The stress

and strain can be related using Hooke’s law such that:

σ = cϵ (6.4)

Where
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c =
E

1 − ν2

⎧

⎪

⎨

⎪

⎩

1 ν 0

ν 1 0

0 0 (1 − ν)/2

⎫

⎪

⎬

⎪

⎭

(6.5)

For application to the Reissner-Mindlin plate theory the displacement components can

be expressed as:

u = zθy

v = −zθx

(6.6)

where θy and θx are the rotations about the y and x axis respectively.

6.3 FEA development

To effectively model the deformation of the plate model the geometry must be split

into several elements. The element shapes can be: triangular, rectangular, or

quadrilateral. For the propeller geometry, quadrilateral elements have been chosen

due to the flexibility in geometry. Although triangular elements can be used for

complex geometry, they have been shown to be less accurate compared to

quadrilateral elements.

For FEA two coordinate systems exist a global coordinate system and a local

coordinate system. These can also be called physical and natural coordinate systems

respectively. The global coordinates contain information of the geometry, the local

coordinates are always numbered anti-clockwise. The local coordinates are η and ξ

and the at node 1η = -1 ,ξ = -1 at node 2 η = -1 ξ = 1, etc as shown in figure 6.2.

FIGURE 6.2: Coordinate mapping from Global to local coordinates



6.3. FEA development 105

6.3.1 Shape Functions

To interpolate the deflections and stresses from nodal positions to give a field variable,

shape functions are used. There is one shape function for each local node with the

value of the shape function equal to one at its corresponding nodal position and equal

to zero everywhere else. For the quadrilateral elements the shape functions are:

N1 =
1

4
(1 − ξ)(1 − η)

N2 =
1

4
(1 + ξ)(1 − η)

N3 =
1

4
(1 + ξ)(1 + η)

N4 =
1

4
(1 − ξ)(1 + η)

(6.7)

For example, at node 1 ξ = −1 and η = −1 ∴ N1 = 1 ,N2 = 0,N3 = 0,N4 = 0

The shape functions can be stored in a matrix such that:

N =

⎡

⎢

⎣

N1 0 0 N2 0 0 N3 0 0 N4 0 0

0 N1 0 0 N2 0 0 N3 0 0 N4 0

0 0 N1 0 0 N2 0 0 N3 0 0 N4

⎤

⎥

⎦

(6.8)

This can be used to obtain the global coordinates from the local coordinates such that:

X = Nxe (6.9)

Where X is the vector of the physical coordinates and xe is a vector of global

coordinates at the nodes. The deflections and rotations can then be expressed by:

⎧

⎪

⎨

⎪

⎩

w

θx

θy

⎫

⎪

⎬

⎪

⎭

= Nde (6.10)

Where de is the displacement vector for all nodes.
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de =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

w1

θx1

θy1

w2

θx2

θy2

w3

θx3

θy3

w4

θx4

θy4

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(6.11)

6.3.2 Element matrices

The deflection, velocity and acceleration of the plate are dictated by the equation of

motion:

[M]ẍ + [C]ẋ + [K]x = f (6.12)

Where [M] is the mass matrix,[K] is the stiffness matrix and [C] is the damping matrix.

Each finite element has its own mass, damping and stiffness matrices which are

combined to make the global matrices.

To populate the local matrices the kinetic energy of the plate is:

Te =
1

2

∫

Ve
ρ(u̇2 + v̇2 + ẇ2)dV (6.13)

Where u , v and w are the displacement components of the plate and thė notates time

derivatives.

⎡

⎢

⎣

u

v

w

⎤

⎥

⎦

=

⎡

⎢

⎣

zθy

−yθx

w

⎤

⎥

⎦

(6.14)

Where the left hand side is the displacement matrix. The kinetic energy equation then

becomes:
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Te =
1

2

∫

Ae
ρ(hẇ2 +

h3

12
θ̇x

2
+

h3

12
θ̇y

2
)dA (6.15)

Where h is the thickness of the plate element. In matrix form this gives:

Te =
1

2

∫

Ae
ρ(ḋT Iḋ)dA (6.16)

Where I is the inertial matrix:

I =

⎡

⎢

⎣

ρh 0 0

0 ρh3/12 0

0 0 ρh3/12

⎤

⎥

⎦

(6.17)

Using equation 6.10 the mass matrix for the element can be defined as:

me =
∫

Ae

NT INdA (6.18)

The stiffness matrices are defined from the potential energy for the plate:

Ue =
1

2

∫

Ae

∫ h/2

−h/2
ϵTσdAdz +

1

2

∫

Ae

∫ h/2

−h/2
τTγdAdz (6.19)

The 1st term on the right hand side is the in-plane stresses and strains and the 2nd

term on the right hand side is the transverse stresses and strains. γ is the off plane

shear strain components given as:

γ =

{

θy + ∂w
∂x

−θx + ∂w
∂y

}

(6.20)

and τ is the average shear stresses given as:

τ = κ

[

G 0

0 G

]

= κcs (6.21)

Where G is the shear modulus and κ is the shear correction factor. The shear correction

factor is to account for the non uniformity of the shear stress across the thickness of

the plate. The shear stress is non-uniform as the shear stress is zero at the surfaces Liu

(2014). Substituting 6.1, 6.2, 6.20, 6.21 into 6.19 gives the elemental stiffness matrix.
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ke =
∫

Ae

h3

12
[BI ]TcBIdA +

∫

Ae

κh[Bo]TcsBodA (6.22)

Where [BI ] is the strain matrix associated with the in-plane stress taking the form

BI = [BI
1BI

2BI
3BI

4] and [Bo] is the strain matrix associated with the off-plane shear stress

and strain.

BI
j =

⎡

⎢

⎢

⎣

0
∂Nj

∂x 0

0 0
∂Nj

∂y

0
∂Nj

∂y
∂Nj

∂x

⎤

⎥

⎥

⎦

(6.23)

and

Bo
j =

[ ∂Nj

∂x −Nj 0
∂Nj

∂y 0 −Nj

]

(6.24)

6.3.3 Global Matrix Formation

To solve the matrix problem a global matrix is formed. This is done by first creating

the mesh. The mesh consists of a series of quadrilateral elements made up of 4 nodes.

Each node has an ID number, an IEN and a node list. The ID is an array with each

array element corresponding to a node. The IEN corresponds to the element and

consists of 4 array elements corresponding to the node number. The node list contains

information on the global coordinates of the element. An example for a 2x2 square

matrix is shown in figure 6.3.

FIGURE 6.3: 2 by 2 finite element grid
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Here the element numbers are in the centre of the elements. The global node numbers

range from 0 to 8 and the local node numbers are inside the elements and range from 0

to 3 . Local node numbers are inside the elements and are arranged in an anti

clockwise direction. The IEN for this case would be:

IEN =

⎡

⎢

⎢

⎢

⎢

⎣

0 1 4 3

1 2 5 4

3 4 7 6

4 5 8 7

⎤

⎥

⎥

⎥

⎥

⎦

(6.25)

The 1st row of matrix 6.25 refers to element 1, the 2nd row refers to element 2 etc. The

ID matrix stores the boundary conditions. For the purposes of the thesis this will be a

cantilever boundary condition at the y = 0 points. As each node has 3 degrees of

freedom, the condition for each of these three conditions are defined. For a cantilever

plate the ID matrix is shown in equation 6.26.

ID =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−3

−2

−1

−3

−2

−1

−3

−2

−1

0

1

2
...

15

16

17

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(6.26)

The node matrix defines the global coordinates of each node to capture the physical

geometry. This consists of the x and y coordinates for each node.

The global mass and stiffness matrices can now be populated. This is done by

applying equations 6.18 and 6.22 to each element. The local mass and stiffness matrix

are then added to the global matrices only if the ID corresponding to the nodes of the

element is above or equal to 0, hence applying the boundary conditions. Using the ID

matrix and IEN matrix the correct global matrix position can be added to such that
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TABLE 6.1: Material Properties for Square Plate

Youngs Modulus 2E11
Poissons ratio ν 0.3
Plate thickness 0.1m
Plate Length 1m

Density 7850 kg/m3

elements with sharing nodes can be added together. For example the ID value of

element 0, node 2 is equal to the ID value of element 1, node 3. i.e ID[IEN[0,2]] ==

ID[IEN[1,3]].

To compute the integral in equations 6.18 and 6.22 gauss quadrature is used. It is

important to note here that 2x2 Gauss points are used for the quadrature, however this

is not done for the 2nd integral of 6.22. This is due to the phenomena called ’Shear

locking’ where the plate becomes over stiff when the thickness of the plate is reduced,

this is caused by the fact that shape functions are used to approximate the deformation

of the displacements and thus constraining the deformation to that shape function Liu

(2014). To overcome this, only one Gauss point is used for the 2nd term in 6.22.

6.3.4 Application to Square Plate

The FEA plate model was applied to a square plate to ensure correct physics and

implementation. A simple square geometry was chosen with side length 1m and

cantilevered on the y = 1 position. The material properties are shown in table 6.1.

To test the mass and stiffness matrices have been populated correctly, the natural

frequencies were calculated and compared to Ansys. The natural frequency was

chosen as it only checks for mass and stiffness as opposed to a deflection test which

would mean ensuring the force is applied correctly also. The 1st 6 natural frequencies

of the Plate model and Ansys model is compared as shown in table 6.2.

TABLE 6.2: Comparison between Plate model and full 3D FEA model from Ansys

Mode Ansys Frequency, fre f (Hz) Python Frequency, f (Hz)

1 83.786 83.4

2 196.65 196.11

3 491.18 491.05

4 530.41 -

5 621.43 622.2

6 690.2 689.64

7 1161.2 1160.59
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Moreover, the mode shapes have been compared as shown in figures 6.4a to 6.10b.

Here the figures marked a) are from the Plate model and the figures marked b) are

from Ansys. The colours in the figures marked a) indicate the level of deflection in

that mode. It can be seen that the mode shapes match well. It is, however, important

to note that mode 4 of the Ansys model shown in figure 6.7a occurs on the x-y plane

which is not included as a degree of freedom in the Plate model.

(A) (B)

FIGURE 6.4: Comparison of mode shapes for mode 1

(A)
(B)

FIGURE 6.5: Comparison of mode shapes for mode 2

(A)
(B)

FIGURE 6.6: Comparison of mode shapes for mode 3
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(A)

FIGURE 6.7: Comparison of mode shapes for mode 4

(A) (B)

FIGURE 6.8: Comparison of mode shapes for mode 5

(A)
(B)

FIGURE 6.9: Comparison of mode shapes for mode 6

(A)
(B)

FIGURE 6.10: Comparison of mode shapes for mode 7
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The 1st mode shape is a clear bending mode with the second mode clear torsion which

are standard for cantilevered geometry.

The mesh consisted of a 10x10 grid. The grid dependence can be clearly demonstrated

in figure 6.11

FIGURE 6.11: Mesh Convergence of Square Plate. Difference between computed nat-
ural frequency and reference frequency

Where f are the frequencies of each mode depending on the mode and fre f are the

frequencies taken from Ansys. The mesh sizes are a 5x5 , 10x10,

15x15,20x20,30x30,40x40 and 50x50 grids. At low grid resolution the maximum error

is 8%, as the grid increases the computational cost increases as shown in figure 6.12.

This was run on an Intel Core i7-6700 CPU @ 3.40GHz processor.
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FIGURE 6.12: Change in computational cost due to increasing mesh size

The computational time increases rapidly as the number of elements increases.

Therefore, the minimum number of elements required for an accurate result is to be

used. From Figure 6.11 it can be seen that an accurate result can be achieved using

≈1000 elements

6.3.5 Application to Propeller Geometry

The objective of the plate model is to apply it to a Propeller blade, therefore the model

is applied to a propeller geometry such as the work completed by Khan (1997). To do

this effective meshing must take place and variable thickness to account for the

variable thickness in the propeller.

6.3.5.1 Meshing

To mesh the Propeller blade the propeller geometry file is used as an input. Here each

radial position is defined as well as the chord, skew and thickness. The nodal points of

the blade are then defined using the equations from Carlton (2007).

xp = −[iG + rθstan(θnt)] + (0.5c −
x

c
)sin(θnt + yu,lcos(θnt) (6.27)

yp = rsin[θ+
(0.5c − x

c )cos(θnt)− yu,l sin(θnt)

2r
] (6.28)

zp = rcos[θ+
(0.5c − x

c )cos(θnt)− yu,l sin(θnt)

2r
] (6.29)
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Where, iG is the generator line rake, r is the radial position, θnt is the pitch angle, θs is

the skew angle, x is the x coordinate, c is the chord and yu,l is the upper or lower

coordinate of the foil section. The foil geometry can be changed for each propeller, the

foil geometry for this case is the NACA66 mod geometry. The xc and yc is shown in

equation 6.31.

xt

T
= [0 0.2368 0.3249 0.4368 0.6086 0.8262 0.9493 1 0.9736 0.8617

... 0.6871 0.4709 0.2378 0.1209 0.0042]
x

c
=

[

0 0.0125 0.025 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 1
]

xm

M
= [0 0.0906 0.1585 0.2709 0.4479 0.6988 0.8627 0.9606 0.9992 0.9778 0.8884

... 0.7021 0.3684 0.1842 0] (6.30)

and

yu,(l) =
xm

M
M + (−)

xt

T
T (6.31)

where, M is the maximum camber for that section and T is the maximum thickness.

There is now points defined in Cartesian coordinates which describe the geometry of

the propeller blade.

The next step is to apply the node ID values for each node point, the propeller blade is

to be cantilevered so the points at the root of the blade are set such that the deflection

and rotation are zero, the IEN is then populated. As the shape of the propeller blade is

not a square or rectangle the finite elements will not be square, this is an advantage of

using quadrilateral elements as they can be formed in an arbitrary shape.

The square plate validation case is of uniform thickness however, the propeller blade

is not. To account for thickness, each element is prescribed a thickness dictated by the

thickness distribution, described by the input file. To account for the chordwise

thickness distribution equation 6.30 is used. However, this results in zero thickness at

the trailing edge, this is corrected by adding a trailing edge thickness in the order of ≈

1mm to the section profile.

For the HMRI propeller this results in the mesh shown in figure 6.13.
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TABLE 6.3: Material Properties for HMRI propeller

Material Name Stainless Steel
Youngs Modulus 2E11
Poissons ratio ν 0.3

Propeller Diameter 0.212m
Density 7850 kg/m3

Yield Stress 260 MPa

FIGURE 6.13: FEA mesh for HMRI propeller with a 15x15 element mesh

The material properties and propeller geometry are shown in table 6.3.

An Ansys model has been generated to verify the applicability of the Plate model.

Again, the modal frequencies and shapes have been used as a verification case. The

results of the Ansys model and Plate model are shown in figures 6.29a to 6.29n

(A) Python model
(B) Ansys model

FIGURE 6.14: HMRI propeller vibration mode 1
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(A) Python model (B) Ansys model

FIGURE 6.15: HMRI propeller vibration mode 2

(A) Python model (B) Ansys model

FIGURE 6.16: HMRI propeller vibration mode 3

(A) Python model
(B) Ansys model

FIGURE 6.17: HMRI propeller vibration mode 4

(A) Python model (B) Ansys model

FIGURE 6.18: HMRI propeller vibration mode 5
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(A) Python model
(B) Ansys model

FIGURE 6.19: HMRI propeller vibration mode 6

It can be seen that the mode shapes match closely between the plate model and the

Ansys Model. As seen in Table 6.4 the frequencies of the 1st two modes match quite

well however the higher frequency do not match as well. This seems to be an issue

with the chord of the blade as the higher modes tend to be rotational modes around

the centre line.

TABLE 6.4: Comparison between Plate model and full 3D FEA model from Ansys for
HMRI propeller

Mode Ansys Frequency, fre f (Hz) Python Frequency, f (Hz) Error

1 1132.6 1094.2 3%

2 2435.2 2541.76 4%

3 3637.7 4130.24 11%

4 4520.4 5002.45 9.6%

5 4935. 7084.78 30%

6 6809.5 8424.8 20%

The same analysis has been performed using the Potsdam Propeller test case which

has a higher chord thoughout the blade with results shown in table 6.5. Here the

frequencies match closely throughout the first six modes.

TABLE 6.5: Potsdam Propeller Test Case Modal Frequencies

Mode Ansys Frequency (Hz) Python Frequency (Hz) Error

1 1130 1122.18 0.7%

2 1885.5 1693.7 13%

3 2726.1 2635.33 3%

4 3290 3844.9 16%

5 4046.3 3911.9 3%

6 4559.6 4764.77 4%
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(A) Python model (B) Ansys model

FIGURE 6.20: PPTC propeller vibration mode 1

(A) Python model (B) Ansys model

FIGURE 6.21: PPTC propeller vibration mode 2

(A) Python model (B) Ansys model

FIGURE 6.22: PPTC propeller vibration mode 3
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(A) Python model
(B) Ansys model

FIGURE 6.23: PPTC propeller vibration mode 4

(A) Python model (B) Ansys model

FIGURE 6.24: PPTC propeller vibration mode 5

(A) Python model (B) Ansys model

FIGURE 6.25: PPTC propeller vibration mode 6

From a modal analysis perspective, using the plate model gives a reasonably good

approximation when compared to the full 3D Ansys model. This gives good

confidence that the mass and stiffness matrices are somewhat correct. Since the modal

frequencies are well captured, any excitation of these modes by an external force will

be captured by the plate model in the same manner as the 3D model.
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6.3.5.2 Stress Modelling

The stress distribution across the blade is informative to the propeller designer as

regions of high stress can cause damage and fatigue issues to the blade. High stresses

should be designed against by choice of material and geometry properties such as

thickness distribution and chord.

To model stress using the plate formulation, the deflection must be obtained either

from static deflections using equation 6.12 or dynamic deflections from the HHT − α

method described in section 6.5.

The stress is computed using equation 6.32.

σ = −zcBw (6.32)

Where z is the distance from the plate mid plane to the face i.e 0.5 thickness, w is the

deformation vector for the 3 degrees of freedom for each node in the element. B is the

stress matrix described in 6.23 and c is the material matrix.

σ consists of the stress in the x-direction σxx, y-direction σyy and the shear stress σxy

This gives the elemental stress, the global stress matrix is obtained in the same manner

as the global stiffness matrix.

When applied to the 1m square plate example this gives the stress distribution shown

in figure 6.26.

FIGURE 6.26: Von Mises Stress Distribution of 1m x 1m plate
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The stress distribution shown is the Von Mises Stress distribution. This is often used

as the Von Mises yield criterion are stated for the material. The Von Mises Stress is

given by equation 6.33.

σv =
√

σ2
xx − σxxσyy + σ2

yy + 3σ2
xy (6.33)

The stress distribution on the plate can be compared to distribution given using Ansys

shown in figure 6.27.

FIGURE 6.27: Von Mises Stress Distribution of 1m x 1m plate using Ansys

From these figures it can be seen that the stress distribution compares well between

the two models and the maximum stress is equal between the two models. This gives

a good indication that the stress is being analysed correctly within the plate model.

6.3.5.3 Wet modal Analysis

The modal frequencies change when the solid is submerged in a fluid. This is due to

the additional mass on the blade due to the fluid. The additional mass adds to the

global mass matrix thus changing the eigen frequencies shown in equation 2.19.

To compute the wet modal frequencies and shapes, the blade is submerged in a

domain of water as shown in figure 6.28. The domain is set spherical and as close to

the radius of the blade. This is to ensure the numerical stability as larger domains are

more likely to obtain spurious modes.
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FIGURE 6.28: HMRI propeller in sphere of water for wet modal analysis.

To effectively compute the wet modes, additional boundary conditions must be

defined. These are: defining the material of the sphere as water, defining the sphere as

an acoustic region, the propeller is then defined as a structural region. These two

conditions tell Ansys that the structural region is the solid and to perform the modal

analysis on this region. The sphere acts as a fluid which the energy can transfer to. A

fluid-solid interface surface is defined on the surface of the propeller, this is to define

the surface which connects the fluid region and solid region. The root of the blade is

set to have zero displacement. The outer circumference of the sphere has a defined

boundary condition. This can either be radiation or absorption boundary conditions.

The radiation boundary condition treats the boundary as if it goes to infinite and the

ratio of the pressure and outward normal velocity is equal to Z = ρ0C0, where ρ0 is the

fluid density and C0 is the speed of sound. The absorption boundary condition

absorbs the pressure wave to ensure no pressure wave are reflected back.

The wet vibration frequencies for a series of configurations are shown in table 6.6.

TABLE 6.6: Wet Modal frequencies for the HMRI propeller

Mode number ConfigA (Hz) Config B C D E F G

1 1150.59 671.282 671.28 667.8 667.02 705.4 671.2

2 2512.41 1716.71 1716.7 1707.7 1704.8 837.7* 1716

3 3693.32 2686.6 2686.6 2667.75 2663.86 1132.7* 2686.6

4 4590 3497.1 3497.1 3476.5 3474.1 1132.7* 3497.14

5 5203 4210.8 4210.87 4186 4181.9 1132.7* 4210.88

6 6909 5208.03 5208.02 5170.8 5136 1398* 5208.03

* erroneous mode The 1st 6 modes for each configuration are shown in table 6.6.

Configuration A are the dry modes i.e the modes in a vacuum. Configuration B used

an absorption surface as an outer boundary condition with using mesh 1.

Configuration C uses a radiation boundary condition using mesh 1. Configuration D

uses an absorption boundary condition with mesh 2 with configuration G using a

radial boundary using mesh 2. Configuration E uses an absorption boundary
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condition with a low absorption coefficient. Finally Configuration F uses a large

domain with an absorption configuration. A summary of the configurations is shown

in table 6.7. Where a is the absorption coefficient.

TABLE 6.7: Wet Modal frequencies for the HMRI propeller

Configuration Mesh size (No. elements) Boundary Condition Domain radius (m)

A 5000 N/A N/A

B 18000 absorption a = 1 0.1

C 18000 radiation 0.1

D 100000 absorption a = 1 0.1

E 18000 absorption a = 0.1 0.1

F 104000 absorption a = 1 1

G 100000 radiation 0.1

It is clear that the wet modal frequencies are much reduced when compared to the dry

frequencies which is in agreement with literature Kim et al. (2018), Chen et al. (2017).

It is important to note that only the frequencies change with the addition of the fluid

domain. The mode shapes are the same as the mode shapes shown in figures 6.29a to

6.29n. This is because the local additional mass of the fluid is distributed uniformly

across the blade. The potential and kinetic energy within the model do not change

when moving from a vacuum to water Amabili (1996).

6.3.6 Added Mass Modelling

The added mass due to the fluid is modelled by treating each element as a rectangular

plate. Analytical approximations are available for simple 3D bodies in infinite fluids

as shown in Paidoussis (2014) Blevins (1990).

The added mass of a ellipse plate in heave is given by equation 6.34.

madded = ρ f luidab2K1 (6.34)

Where ρ f luid is the density of the fluid, a is half the length of the plate, b is half the

breadth of the plate and K1 is a constant based on the ratio of b
a . The relationship of b,

a and K1 is found in Table 6.8.
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TABLE 6.8

b
a K1 K

0 4.1846 -

0.1 4.1228 0.8033

0.2 3.9874 0.7398

0.3 3.8202 0.6713

0.4 3.6404 0.6067

0.5 3.4588 0.5489

0.6 3.2819 -

0.7 3.113 -

0.8 2.9538 -

0.9 2.8051 -

1.0 2.6667 0.3556

Furthermore, the added mass moment of inertia of a 3D body must be accounted for.

This again uses an elliptical plate to model the added mass at each element. The

added mass moment of inertia is given by equation 6.35

maddedI = ρ f luida3b2K (6.35)

Where K is given by the values in table 6.8. It is important to note that the values of K1

and K are bounded in the analysis tool. That is to say if the ratio of b and a is above

the maximum, then the maximum value of K1 or K is used.

Each component of the added mass is applied to a local added mass matrix which

takes the form:

⎡

⎢

⎣

madded 0 0 madded 0 0 madded 0 0 madded 0 0

0 maddedI 0 0 maddedI 0 0 maddedI 0 0 maddedI 0

0 0 maddedI 0 0 maddedI 0 0 maddedI 0 0 madded

(6.36)

On the third row the added mass inertial term is changed to represent the change in

inertial direction so the major and minor radii have been switched.

The new global mass matrix now takes the form [M] = [M] + [Madded]. This is now

applied to the HMRI propeller geometry using the same structural properties as

shown in table 6.3. The wet modal frequencies are shown in table 6.9 and compared

with the modal frequencies of configuration B.
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TABLE 6.9: Wet Modal frequencies for the HMRI propeller comparison between Ansys
model and Plate model

Mode number Plate Dry Modes (Hz) Config B Plate Wet Modes Error

1 1094.2 671.282 704.04 5%

2 2541.76 1716.71 1596.1 7%

3 4130.24 2686.6 2494.25 7%

4 5002.45 3497.1 3177.33 10%

5 7084.78 4210.8 4126 2%

6 8424.8 5208.03 5228.64 0.3%

It can be seen that the modal frequencies from the Ansys model and the Python model

are very close with a maximum error of 10 percent. This is achieved using a simple

approximation for added mass with very little additional computational expense.

This level of accuracy can also be achieved when studying the PPTC propeller. The

Ansys model is compared to the Plate model in table 6.10

TABLE 6.10: Wet Modal frequencies for the PPTC propeller comparison between An-
sys model and Plate model

Mode number PPTC Ansys Mode Frequencies Plate Wet Modes Error

1 679.49 702.04 3%

2 1260 1129.06 11.5%

3 1773.6 1944.7 11%

4 2568 2589.9 0.8%

5 2876.4 3061.8 7%

6 3837.3 4171.0 8%

6.3.7 Effect of Twist

A key component of the design of a propeller blade is the pitch distribution. Using a

Plate to model the structures of a propeller, by definition, removes all twist. To

understand the impact of twist on the modal frequencies, the rectangular plate has

been used with various levels of twist as shown in figure 6.29. The angles chosen are

45o and 90o as the maximum twist on a propeller blade is approximately 50o-60o root

to tip, the chosen angles are slightly high but exemplify the issue of using plate theory.
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(A) 45o twist plate
(B) 90o twist plate

(C) 45o twist plate Mode 1 (D) 90o twist plate Mode 1

(E) 45o twist plate Mode 2 (F) 90o twist plate Mode 2

(G) 45o twist plate Mode 3 (H) 90o twist plate Mode 3

(I) 45o twist plate Mode 4 (J) 90o twist plate Mode 4

(K) 45o twist plate Mode 5 (L) 90o twist plate Mode 5

(M) 45o twist plate Mode 6 (N) 90o twist plate Mode 6

FIGURE 6.29: Twisted Plate mode shapes
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It is shown that the levels of twist, albeit quite extreme twist, can have an impact on

the mode shapes and frequencies. Table 6.11 shows the frequencies when the plate is

twisted. With the addition of twist, the 1st bending mode reduces significantly,

indicating that the stiffness is reduced. This change is because the 1st mode shape is

still acting in the pure bending direction but there is more mass concentrated to

encourage this bending mode.

TABLE 6.11: Modal frequencies of twisted Plate from Ansys

Mode number 45o twist 90o twist

1 78.767 68.915

2 272.14 230.03

3 350.51 357.8

4 560.42 529.67

5 698.62 704.21

6 700.51 709.83

Plate elements do not account for degrees of freedom in the x and y directions as a

way to reduce the problem. In the case of a highly twisted blade where the plate

model may not be sufficient to capture the motion correctly 3D elements can be used.

6.4 3D Solid Elements

To better account for twist, 3D solid elements have also been used. This can be done

by including a Z direction to the mesh and changing the element type from a 2D plate

element to a 8 node 3D brick element. The same principals for construction of the

plate elements apply to the construction of the 3D elements.

The shape functions for the 8 node 3D element are:
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N1 =
1

8
(1 − ξ)(1 − η)(1 − ζ)

N2 =
1

8
(1 + ξ)(1 − η)(1 − ζ)

N3 =
1

8
(1 + ξ)(1 + η)(1 − ζ)

N4 =
1

8
(1 − ξ)(1 + η)(1 − ζ)

N5 =
1

8
(1 − ξ)(1 − η)(1 + ζ)

N6 =
1

8
(1 + ξ)(1 − η)(1 + ζ)

N7 =
1

8
(1 + ξ)(1 + η)(1 + ζ)

N8 =
1

8
(1 − ξ)(1 + η)(1 + ζ)

Where ξ , η and ζ are local coordinates. Each node has degrees of freedom in the u, v

and w directions. Therefore every element has 24 degrees of freedom.

The strain matrix is now defined for each node as:

Bi =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∂Ni
∂x 0 0

0 ∂Ni
∂y 0

0 0 ∂Ni
∂z

0 ∂Ni
∂z

∂Ni
∂y

0 ∂Ni
∂z

∂Ni
∂y

∂Ni
∂z 0 ∂Ni

∂x
∂Ni
∂y

∂Ni
∂x 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(6.37)

The elemental stiffness matrix is then given as:

ke =
∫ +1

−1

∫ +1

−1

∫ +1

−1
BTcBdet|J|dξdηdζ (6.38)

and the elemental mass matrix is given by:

ke =
∫ +1

−1

∫ +1

−1

∫ +1

−1
ρNT Ndet|J|dξdηdζ (6.39)

Where N is the matrix of shape functions, J is the Jacobian extended to include the 3rd

dimension and c is the material constant for 3D solids as shown in 6.40.
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c =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 G 0 0

0 0 0 0 G 0

0 0 0 0 0 G

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(6.40)

Where c11 = E(1−ν
(1−2ν)(1+ν c12 = Eν

(1−2ν)(1+ν and G = E
2(1+ν .

The elemental mass and stiffness matrices are again integrated numerically using the

Gaussian integration scheme, however this is extended to 8 nodes with there being 2

nodes in each direction.

This 8 node element has been applied to the square plate using a 15x15x2 elements

grid, giving the modal frequencies shown in table 6.12. Here it can be seen that the 8

node element frequencies are higher when compared to the base case. This is a well

documented case where this element type is over-stiff in bending which leads to the

higher frequencies Bathe (2016).

To correct this problem a 20 node 3D element can be used. Here, additional nodes are

created between the original 8 nodes as shown in figure 6.31. The main difference here

is the Shape functions are no longer linear but are quadratic.

The shape functions are different depending on the node. The shape functions are

defined such that they are equal to 1 at the corresponding node and 0 at every other

node. The shape functions are quadratic meaning they can obtain a greater level of

accuracy for a given mesh size when compared to the linear shape functions.

N1,2,3,4,5,6,7,8 =
1

8
(1 + ξ jξ)(1 + ηjη)(1 + ζ jζ)(ξ jξ + ηjη + ζ jζ − 2)

N10,12,14,16 =
1

4
(1 − ξ2)(1 + ηjη)(1 + ζ jζ)

N9,11,13,15 =
1

4
(1 − η2)(1 + ξ jξ)(1 + ζ jζ)

N17,18,19,20 =
1

4
(1 − ζ2)(1 + ξ jξ)(1 + ηjη)

(6.41)

The formulation of the elemental mass and stiffness matrices can be obtained in the

same manner as previous however, as there are now 20 nodes compared to 8 the

computational cost increases considerably for the same mesh size. For a mesh of size

1X1X2 an example grid is shown in figure 6.30
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FIGURE 6.30: Example of a 1X1X2 grid using 20 node 3D elements

FIGURE 6.31: Schematic of 20 node 3D element

The modal frequencies for the 20 node element are compared to the 8 node elements

for the same mesh size. It can be seen that the 20 node elements perform far better

when compared to the 8 node elements.
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TABLE 6.12: Modal frequencies of Plate when using 8 node elements and 20 node
elements

Mode number 3D 8 node elements 3D 20 node elements

1 92.39 83.78

2 203.95 196.64

3 533.1374 491.18

4 544.617 530.4

5 676.822 621.43

6 738.33 690.2

Despite the 20 node 3D element type performing well in terms of accuracy, the

computational cost can be significant. The computational time to calculate the modal

frequencies for the plate elements, the 8 node 3D elements and 20 node 3D elements

were computed for the same number of elements for each. The computational

comparison is shown in figure 6.32 with the y-axis presented in a logarithmic plot.

FIGURE 6.32: Computational cost comparison between plate elements, 8 node 3D ele-
ments and 20 node 3D elements

From 6.32 it can be seen that the Plate elements have a significant computational

saving of 2 orders of magnitude for the 8 node element and approximately 3 orders of

magnitude over the 20 node 3D element. This gives a strong indication that the plate

elements are a good compromise between accuracy and computational cost. It is also

interesting to note that the change in computational cost differs between the different

element types. This can be explained when the code is analysed line by line using a
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line profiler. The line profiler analyses the time taken for each line of a function to be

run. This is done for the main FEA function with the results shown in figure 6.33.

FIGURE 6.33: Percentage time each part of the FEA formulation takes

The results of the line profiler indicate that for the Plate elements the majority of the

time is taken in the eigenvalue calculation. This is because there are only 4 nodes per

element therefore the shape function matrices will be small, moreover only 4 Gauss

integration points are used therefore saving computation.

This changes when the 3D elements are used. For the 8 node elements the Eigenvalue

calculation only requires 2% of the overall compute time. This is because the number

of Gauss integration points has increased from 4 points for the 2D case to 8 points for

the 3D case. The addition of the 3rd dimension also increases the shape function

matrices for each element. The 20 node element requires more time using the

Eigenvalue solver compared to the 8 node elements. This is due to the fact that each

element has 20 nodes, hence the global mass and stiffness matrices will be much larger

for the same element size causing greater computation to solve the eigenvalues.

Despite this, the number of Gauss integration points remains 8 for the 20 node element

hence why the relative time solving the local mass and stiffness matrices are lower.

6.5 HHT - α

To calculate the dynamic response to a load, a numeric integration scheme must be

applied. For this case the Hilber-Hughes-Taylor-α scheme is used. The
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Hilber-Hughes-Taylor-α (HHT − α) is a generalized method of the Newark − β

numerical integration method which is an unconditionally stable, implicit scheme.

Full explanation of the HHT − α method can be found in Hughes (1983). This method

is chosen due to its wide use in FSI literature Bathe (2016), Liaghat et al. (2014).

The dynamic system of the blade is modelled by:

[M]ẍ + [C]ẋ + [K]x = f (t) (6.42)

Where M is the mass matrix C is the damping matrix K is the stiffness matrix, x is the

nodal points and ˙ represents the derivative with time.

For the HHT-α method the equation of motion 6.42 is modified such that.

Mẍi+1 + (1 − α)Cẋi+1 + αCẋi + (1 − α)Kxi+1 + αKxi = (1 − α) fi+1 + α fi (6.43)

Here, each node’s position is defined at a time step i with time moving to the next time

by time step h such that ti+1 = ti + h. Therefore the subscript i represents the relative

time position. The parameter α represents numerical lag in the damping, stiffness and

forces.

The HHT-α method is an extension of the Newmark-β method which used the finite

difference approximation:

xi+1 = xi + hẋi + h2[(
1

2
− β)ẍi + βẍi+1

ẋi+1 = ẋi + h[(1 − γ)ï + γẍi+1

(6.44)

Where γ and β are constants which control the stability of the solution. Using

conditions:

0 ≤ α ≤
1

3

β =
(1 + α)2

4

γ =
1

2
+ α

(6.45)

The solution will be 2nd order accurate and unconditionally stable Gavin (2018).

Substituting 6.44 into 6.45 gives:
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[M + h(1 − α)γC + h2(1 − α)βK]ẍi+1 = [h(1 − α)(1 − γ)C + h2(1 − α)(
1

2
− β)K]ẍi

+ [C + h(1 − α)K]ẋi

+ Kxi + (1 − α) fi+1 + α fi

(6.46)

Which can then be numerically solved to computed the dynamic response of the

structure to a load.

6.5.1 Verification

To ensure the HHT-α is correctly implemented, a small problem implemented and

verified against the solution given in Gavin (2018).

This problem was a simple linear structural model shown in Figure 6.34. This will

have a simple 3X3 mass, stiffness and damping matrix.

FIGURE 6.34: Simple linear model for HHT verification

The initial conditions were given as: x = [0, 0, 0] ,ẋ(0) = [1, 1, 1] and ẍ(0) = [0, 0, 0]. A

time step of 0.1s and 0.001s were used as well as α values of 0 and 0.1.

The results computed by Gavin (2018) are shown in figure 6.35 and compared with the

implemented method.
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(A) α = 0 (B) α = 0.1

(C) Results from Gavin (2018)

FIGURE 6.35: acceleration of 1st mass with time using HHT-α method

Here it can be seen that the time history of the acceleration of the 1st mode match well

when comparing the implemented method and the method by Gavin (2018). This

gives confidence that the HHT − α method has been implemented correctly.

6.6 Chapter Summary

In this chapter the use of a Plate model to represent the propeller blades has been

developed and the implementation procedure has been discussed.

The code has been verified against the industry standard code Ansys and the code

gives excellent agreement when comparing the results of a flat plate. This is capable of

obtaining the deformation, stress and modal frequencies well.

The use of the plate model has also been used to model propeller blades. This has

been shown to give reasonably close results to the full 3D structural model. However,

issues can arise when a highly twisted blade is used.

The computational cost between using 3D elements and plate elements has been

discussed with the plate elements displaying a significant computational saving.
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By approximating the added mass effect on each plate element, the modal frequencies

of a wet blade can be achieved. This gives a reasonably good approximation of

lowering the modal frequencies.

The use of plate model elements have been shown to be a computationally efficient

method of obtaining the structural properties of the blade and will be used in the

fluid-structure interaction model.
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Chapter 7

Fluid-Structure Interaction Model

7.1 Introduction

Changes in inflow to the propeller will change the imposed time varying load on the

blades. Moreover, different propeller geometries and material properties will cause

the blade to deform differently. The change in deformation behaviour is required

using a fluid-structure interaction model which is to be computationally efficient.

This chapter introduces the implementation of the fluid-structure interaction tool. The

algorithm is discussed for one-way and two-way coupling. Results from using the

tool are shown for various numeric and physical parameters changes. Finally, some

downfalls and improvements to be made are discussed.

7.2 Coupling Algorithm

To couple the BEMT hydrodynamic model and the plate FEA model, the

hydrodynamic and structural conditions must be defined. Firstly, the unsteady inflow

to the propeller must be defined along with the geometry of the propeller. The

operating conditions can also be selected.

The structural properties can then be chosen to define the elastic modulus and the

density of the material. A flow chart of the coupling algorithm is shown in Figure 7.1.

Secondly the propeller geometry is defined as well as the wake data. In this case the

wake data is taken from CFD simulations of the hull. The user can then check if

turbulent fluctuations are to be generated using the technique shown in Section 5.5.1.

If this is selected then the wake with velocity fluctuations are used as an input to the

BEMT code, otherwise the RANS velocity data is used. The Cl v α data base is called

here to be used within the BEMT iterations.
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The BEMT code outputs the thrust distribution along the blade, however this is only

the distribution along the blade line and not the chordwise distribution. This is

generated using the method described in Section 3.3 were the Cp curves from the 2D

foil simulations are used.

The load distribution is then applied to the plate structural model to obtain the blade

nodal deformations, velocities and accelerations. The load and nodal deformations are

then stored for future analysis. If the time step is the final time step, the simulation is

complete.

Otherwise, the user has previously stated if the coupling is one-way or two-way. If the

coupling is one-way the BEMT is called again at the next time step and the procedure

repeated until the final time step. If two-way coupling is used the blade geometry is

updated then the BEMT called again and the procedure repeated until completion.

The blade geometry is updated by calculating the additional pitch of the blade due to

the deformation. Although the rake will be changed due to the blade bending this is

not accounted for in the BEMT formulation.

7.2.1 Damping

Damping causes the dynamic motion of the system to reduce with time. There are two

main contributors to damping: hydrodynamic and material damping. The

hydrodynamic damping has not been investigated in this study and is an aspect that

must be considered and efficiently modelled in future work, particularly within a

moving fluid. The damping of the material has in fact been accounted for and can be

changed within the design environment.

The damping matrix is defined in equation 7.1.

C = αd[M] + βd[K] (7.1)

Where αd is defined as ω0
ω1

where ωn is the blade natural frequency at the nth mode. βd

is defined in equation 7.2.

βd =
(1 − αd)ζ
ω1 − αdω0

(7.2)

Here, ζ is the damping ratio. These are known as Rayleigh damping coefficients and

have been used for structural applications for many years Song and Su (2017).

The damping ratio term ζ can be changed to obtain a more accurate structural

response. Although this may be acceptable for a design tool application far more work
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FIGURE 7.1: Flow Chart of FSI algorithm

is required in identifying proper damping behaviour for the structure in moving

water. Furthermore, the damping properties of non-homogeneous composite

materials often differ from metallic materials . Therefore, a more robust and

comprehensive damping model will be required.

7.2.2 Force Modelling

To model the force distribution of the blade, the Cp curves developed from Section 3.3

have been used. Given the bounds of the camber, thickness, Reynolds number, angles
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of attack and the weighting for each blade section, a pressure coefficient distribution is

obtained.

The pressure distribution on the blade is obtained from the Cp curves and is shown in

Figure 7.2. The pressure difference between the top surface and bottom surface is very

small hence the small pressure at the leading edge.

FIGURE 7.2: Pressure Distribution on HMRI propeller from BEMT

However, to use the HHT − α method the force must distributed on the nodes. Here it

is assumed the load on each element is uniformly distributed. To obtain the nodal

loads the force vector from the plate FEA formulation from section 6.3 is generated.

This gives a load distribution on the blade shown in Figure 7.3.
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FIGURE 7.3: Load Distribution from FEA

As discussed in Chapter 6.3 the force distribution requires the calculation of element

areas at every timestep, this causes the computational cost to increase. Also, the

interaction with the foil database within the BEMT loop can have a considerable

computational cost, especially when a high number of circumferential sections are

used. This can be improved by good optimization and writing the code in a fully

compiled language such as C or FORTRAN.

7.3 Numerical Investigations

To determine the applicability of the BEMT-Plate model coupling algorithm a series of

numeric tests have been run to obtain the deflection of the blade and the frequency

content of the deflection.

These test include the influence of one-way coupling and two way coupling, changes

in physical parameters and changes in numerics.

The changes in physical parameters involves changing the drift angle the propeller is

operating at, influence of turbulent fluctuations, applying to a full scale propeller and

changing the material property.

Changing the numerics will also change the resolution of the results obtained. For

instance changing the number of circumferential sections will change the detail of the

wake the propeller will interact with, changing the timestep will change the frequency
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range the blade will vibrate and changing the FEA mesh size will influence the detail

of the mass and stiffness matrices.

This section will investigate the influence of these changes using the BEMT-Plate

coupling tool.

7.4 Application of Tool

Firstly, the tool is applied to the several drift angles obtained in Chapter 5. To obtain

the difference between the different cases, a reference case has been run. This

reference case is using steel as a material with a setting of 1o per circumferential

section with no hysteresis and one-way coupling. The deflection of the blade tip is

shown in Figure 7.4 with each drift angle shown also.

Figure 7.4 shows the blade tip deflection with time as the propeller rotates. For the

first few time steps the change in deflection is quite rapid due to the propeller going

from zero loading to loaded. This causes an impulse load which causes the propeller

blade to vibrate at its natural frequency.

Figure 7.4b is the deflection of the blade at 0o drift angle. It can be seen here that the

blade goes from a high loading region of the wake to a low loading of the wake per

cycle. Furthermore, the effect of the tangential wake is captured quite well with the

rapid increase in loading occurring as the blade is on the up part of the cycle. The

loading is reduced slowly as the blade cycles down with the tangential wake causing

the reduction in loading.

It is also noted that there are a few discrepancies on the blade deformation where the

deflection rapidly changes. This is due to convergence not being met in the BEMT

solution therefore causing a sudden change in loading. In an attempt to ensure

convergence is met the angle of attack from the previous time step is used as the initial

guess for the current time step angle of attack. If convergence is still not met, a flag is

initialised and simple finite difference solution is used to obtain the angle of attack of

the current time step using the previous angle of attack and the gradient.

As the drift angle increases the shape of the deflection changes. For the 4o drift angle a

2nd uptick in deflection can be seen with a 3rd scene in the 6o and 8o drift angle

simulations. The change in deflection for drift angles 12o and 16o are similar with a

rapid reduction on deflection in as the blade rotates down.

The differences between the deflections are very distinct therefore the changes caused

by the velocity profiles shown in Figures 5.5 are well captured. The time history is

normalised by the time for one propeller rotation,T.
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(A) −2o drift angle

(B) 0o drift angle (C) 4o drift angle

(D) 6o drift angle (E) 8o drift angle

(F) 12o drift angle (G) 16o drift angle

FIGURE 7.4: 1 way coupling of BEMT-Plate using steel as the material

To obtain the frequency content of the deflection, the fast Fourier transformation of the

deflection of all points are taken. This is shown in Figure 7.5. It can be seen that the

dominant frequency occurs at approximately 10Hz for each case. This is expected as it

is the blade passing frequency. Also, there are increases in energy at multiples of the

passing frequency. This is in agreement with other propeller FSI studies in literature

Tian et al. (2017).
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(A) −2o drift angle

(B) 0o drift angle (C) 4o drift angle

(D) 6o drift angle (E) 8o drift angle

(F) 12o drift angle (G) 16o drift angle

FIGURE 7.5: Frequency content of blade elements for each drift angle.

As well as the blade deformations, the designer can design against stress

requirements. The stress through the blade at each time step is calculated and the

maximum Von Mises stress is plotted as shown in Figure 7.6.
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(A) −2o drift angle

(B) 0o drift angle (C) 4o drift angle

(D) 6o drift angle (E) 8o drift angle

(F) 12o drift angle (G) 16o drift angle

FIGURE 7.6: Steel Two-way coupling

It can be seen here that as the blade rotates the stress increases and decreases

according to the deflection. The stress variation can cause fatigue issues. It is

interesting to note the rapid change in maximum stress, particularly for the drift angle

of 6o. If the designer finds the stress is too large for the given blade, design changes in

blade thickness can be made to ensure stresses remain below the desired value for all

manoeuvres and hull appendages.
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7.4.1 Numeric Changes

To ensure the computationally efficient tool is providing accurate and precise results a

series of numeric tests have been run. These include: using one-way vs two-way

coupling, changing the structural mesh size, changing the time step, and the inclusion

of hysteresis.

7.4.1.1 One-way vs Two-way Coupling

The use of the one-way and two-way coupling techniques have been studied for each

drift angle. These are shown in Figure 7.7.

The change in maximum deflection going from one-way coupling to two-way

coupling is shown to be very small. This is because the material is very stiff and the

deformation is predominantly bending with very little twist occuring. The only

geometric parameter changing in the BEMT algorithm is the local pitch as the rake

and skew is not accounted for. A change in skew or rake will change the pressure

distribution on the blade and therefore change the structural response.

The plate model can, currently, only model metallic materials. However, composite

propellers can be used where there can be strong bend-twist coupling. The use of

these materials will show a more distinct change between one-way and two-way

coupling techniques.
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(A) −2o drift angle

(B) 0o drift angle (C) 4o drift angle

(D) 6o drift angle (E) 8o drift angle

(F) 12o drift angle (G) 16o drift angle

FIGURE 7.7: Deflection of steel blade comparing one-way and two-way coupling
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7.4.1.2 Influence of Mesh size

To ensure an accurate solution, the mesh convergence for the structural elements is

shown in Figure 7.8. Here a 20 x 20 grid, a 30 x 30 grid and a 40 x 40 grid have been

tested. It is clear that convergence is met when a 30 x 30 grid is used and the use of a

40 x 40 grid changes the deformation an insignificant amount. The 20 x 20 grid is too

low resolution to give accurate deformation, although significant computational

expense is saved when using the 20 x 20 grid.

(A) −2o drift angle

(B) 0o drift angle (C) 4o drift angle

(D) 6o drift angle (E) 8o drift angle

(F) 12o drift angle (G) 16o drift angle

FIGURE 7.8: Deflection of steel blade with various mesh densities
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7.4.1.3 Time Step

Figure 7.9 shows the influence in changing the time step. In the base case, a time step

of 0.00028s was used corresponding to 1o of propeller rotation per time step. To check

convergence the time step has been halved to correspond to 0.5o per time step.

(A) −2o drift angle

(B) 0o drift angle (C) 4o drift angle

(D) 6o drift angle (E) 8o drift angle

(F) 12o drift angle (G) 16o drift angle

FIGURE 7.9: Deflection of steel blade comparing time steps

The changing of the time step is shown to have no influence on the maximum

deflection. Therefore, a time step of 1o of propeller rotation is sufficient for the studied



152 Chapter 7. Fluid-Structure Interaction Model

wake. However, if the wake had particularly large circumferential velocity gradients,

then a higher time step would be recommended. Again, it can be seen that large

fluctuations in deformation occur at the 16o drift angle due to the sensitivity of the

BEMT convergence.

7.4.1.4 Hysteresis

The inclusion of the hysteresis model, described in Section 3.5, is studied here with the

maximum deflection for each drift angle shown in Figure 7.10.

The inclusion of the hysteresis model shifts the deformation up by approximately

20%. As the blade deforms, the change in pitch and heave cause the lift curve to shift.

The pitch change due to the deformation is very small with the heave being far more

significant.

As the blade heaves, up the lift coefficient for a given angle of attack is lowered.

Therefore, within the blade element momentum theory algorithm, a higher angle of

attack is required to obtain the same lift coefficient as the run without hysteresis. This

causes higher loading on the blade when the pressures from the 2D foil database are

applied to the structural model causing higher deformations and stress. Although,

work has been done including hysteresis with BEMT Yu et al. (2017), little work has

been done when analysing the deflection of the blades.

What is not included in the BEMT-Plate FSI model is a correction to the pressure

distribution due to the blade section deformation. This should alter the angle of attack

the blade experiences and therefore the load distribution on the blade section whilst

keeping the same blade loading as the non-hysteresis model. This can be investigated

and implemented in future developments.

7.4.2 Physical Parameters Changes

To showcase how the tool reflects various changes in the physical parameters,

simulations have been performed to include: changes in material, changes in

geometry, and the application to a full scale propeller. The latter includes adjustments

to reflect the full scale change using the method presented in section 5.6.1. In addition,

the effectiveness of the turbulence model, described in section 5.5.1, in accurately

describing the blade deformation is discussed and compared to the LES input. Finally,

the impact on one-way vs two-way coupling is also shown.
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(A) −2o drift angle

(B) 0o drift angle (C) 4o drift angle

(D) 6o drift angle (E) 8o drift angle

(F) 12o drift angle (G) 16o drift angle

FIGURE 7.10: Deflection of steel blade using Hystersis model.
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7.4.2.1 Change in Material

The reference case used steel as a material, however, traditionally propeller blades are

made from Nickel Aluminium Bronze (NAB). This material has a lower Youngs

modulus and density when compared to steel. The material properties of NAB are

shown in Table 7.1

TABLE 7.1: Nickel Aluminium Bronze Material Properties

Property Value

Youngs Modulus 110000 106

Density 7530

Poissons ratio 0.3

Yield Stress 240 MPa

The deflection and stress for each drift angle are shown in Figures 7.11 and 7.12

respectively.

Here it can be seen that the deflection is much larger for the NAB when compared to

the steel blade, although the shape of the deflection is the same as the steel blade. This

is expected given the blades Youngs modulus is approximately half of that of steel,

ergo the deflection is twice as large. Although the mode shapes remain constant when

changing materials, the modal frequencies change significantly. With less stiffness the

frequencies are reduced by ≈ 30%.
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(A) −2o drift angle

(B) 0o drift angle (C) 4o drift angle

(D) 6o drift angle (E) 8o drift angle

(F) 12o drift angle (G) 16o drift angle

FIGURE 7.11: Deflection of NAB blade compared to Steel blade.

Despite the deflection being twice as large, the maximum stress of the blade remains

constant next to the steel blade. This is because the stress is computed based on the

local deformation and structural properties. Given the Youngs modulus has been

approximately halved and the deformation has been doubled it should follow that the

stress remains constant. However, the yield stress of NAB is less than steel, therefore,

the NAB blade will experience higher levels of fatigue per revolution.
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(A) 0o drift angle

(B) 4o drift angle (C) 6o drift angle

(D) 8o drift angle (E) 12o drift angle

(F) 16o drift angle (G) 16o drift angle

FIGURE 7.12: Maximum Von Mises Stress for NAB blade and Steel Blade.

7.4.2.2 Change in Geometry

When designing a propeller blade there are many changes to make which fullfill

different requirements. For instance, the efficiency of the propeller can be increased by

reducing the chord. This, however, will have a detrimental effect on the structural

properties of the blade. Figure 7.13 shows the deflection of the blade using 90% of the

original blade chord.



7.4. Application of Tool 157

(A) −2o drift angle

(B) 0o drift angle (C) 4o drift angle

(D) 6o drift angle (E) 8o drift angle

(F) 12o drift angle (G) 16o drift angle

FIGURE 7.13: Deflection of steel blade with 10% reduction of the chord.

It can be seen that the reduction in chord does in fact increase the deflection for all

drift angles. The reduction in chord causes the changes in the convergence capability

of the BEMT solution causing a rapid change in loading on the blade. This is the

reason for the large deformations at the 16o drift angle case. The discrepancy only

occurs at 16o drift angle due to the larger velocity gradient causing the BEMT solution

to fail to converge. This demonstrates a weakness in the capabilities of the BEMT-Plate
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model as the lack of successful convergence in the BEMT solution can cause

non-physical blade excitation in more extreme wakes.

The effect of changes in chord is shown in this case however the designer can also

change geometric parameters such as: thickness, skew, camber distribution and pitch

which can all be captured by the model.

7.4.2.3 Turbulence Response

In this sub-section the inclusion of the turbulence model described in section 5.5.1 is

included. The maximum blade deflection for each drift angle is shown in Figure 7.14.
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(A) −2o drift angle

(B) 0o drift angle (C) 4o drift angle

(D) 6o drift angle (E) 8o drift angle

(F) 12o drift angle (G) 16o drift angle

FIGURE 7.14: Deflection of steel blade with turbulent overlay

The effect of turbulence has a significant effect on the blade deformation. Firstly, the

solution takes far longer to converge due to the highly fluctuating velocity field, hence

the large spikes at the beginning of the simulation.

Secondly, the shape and peak of the blade deformations are altered considerably. For

the −2o drift angle case, the peak in the rotation is considerably reduced and a

secondary peak occurs. This can have a significant effect on the life cycle of the blade
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as a peak in blade deformation occurs twice in one cycle which will be detrimental to

the fatigue performance of the blade.

For the 0o, 4o, 6o, 8o and 12o cases the shapes of deformation have been altered by

reducing the peaks and troughs of deformation. However, the 16o case shows a

definite increase in deformation at the 2nd peak of its rotation.

It is noted that there is a consistent high frequency deformation for all cases. These

fluctuations are too small to be caused by the BEMT non-convergence. They are a

result of the turbulent fluctuations causing different parts of the blade to experience

different loading which in turn gives rise to the first natural frequency to be excited.

The damping of the structure is well captured in the model to ensure the larger

fluctuations are damped. As described in section 5.5.1, the turbulent flow field

generated by the synthetic turbulence model overestimate the magnitude of the

fluctuations therefore the high frequency deformations can be treated as a worse case

scenario.

7.4.2.4 Application to a Full Scale Propeller

Although model propellers are often used for testing and validation, the propeller will

ultimately be used at full scale. Using the Hoekstra contraction method, described in

section 5.6.1, the input velocities have been modified and the HMRI propeller has

been resized to full scale. The full scale parameters are shown in Table 7.2.

TABLE 7.2: HMRI Full scale propeller Geometry

Diameter 9.86m

n 1.45m/s

Vs 7.987m/s

Figure 7.15 shows the maximum blade deflection for the full scale propeller. It is

shown that the deflection is significantly larger when compared to model scale. In

addition, the contraction of the wake causes more rapid changes in loading to occur at

the root of the blade. This gives a far more smooth deflection when compared to the

model scale deflections which are more sensitive to circumferential changes in the

wake. This is because in model scale the slower moving wake regions extend to larger

radial sections causing higher loading at the mid-blade compared to full scale

deflections.
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FIGURE 7.15: Maximum deflection of blade of full scale propeller using Hoekstra
wake contraction at 0o drift angle.

7.5 Chapter Summary

This chapter introduced the methodology of coupling the Blade Element Momentum

Theory hydrodynamic loading with a 2D plate structural model. The method for

computing damping has been discussed and numerical tests have been performed.

It has been found that changes in material and geometry of the propeller blade can be

altered and are well captured in the model. Scaling to a full scale propeller using wake

contraction methods have been discussed, although the deflection results require

verification. Furthermore, the changing of mesh size and time stepping can be altered

to the users requirements of computational time and detail of the studied wake.

The use of one-way coupling vs two-way coupling gives a negligible difference in

deflection results. The extension of the plate model to include composite materials

with bend-twist coupling would be required to have a significant impact for two way

coupling.

However, the use of the hysteresis model has showcased the need for further

development requirements as the deflections have been significantly increased by the

inclusion. The need for the pressure distribution modification due to the blade motion

should be investigated and a model to capture this should be implemented.

Overall, the sensitivities of the modelling techniques have been captured and

discussed with the changes available to the propeller designer being shown to be

captured by the stresses and deformations produced by the model.
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Chapter 8

High Fidelity Fluid-Structure

Interaction Simulation

8.1 Introduction

To test the accuracy of the fluid-structure interaction model a high fidelity model has

been used using one-way finite element analysis with CFD coupling to obtain the

vibration properties of the propeller. This has been achieved running a CFD

simulation of the propeller with a non-uniform inlet in OpenFoam and mapping the

pressures on a reference blade to a transient model in Ansys.

8.2 Non-uniform inlet

8.2.1 CFD Setup conditions

To obtain a non-uniform inlet to the propeller the wake of the KVLCC2 at the

propeller plane is mapped to the inlet of the propeller simulation as shown in Figure

8.1. The inlet profile is coloured by velocity with blue for low velocity and red

indicating high velocity.

To obtain a non-uniform inlet in Openfoam the inlet boundary condition is set to a

timeVaryingMappedFixedValue condition. This allows an inlet which varies in space and

time for velocity and pressure. An additional folder must also be introduced to allow

the definition of the data. The data is stored in the directory tree as shown:

case directory

constant

boundary data

inlet
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0

The inlet folder contains a points file which defines the coordinates of the points in

which the fields are mapped to. The 0 directory contains the values of the field, which

are mapped to the required boundary. To ensure the simulation is representative of

the model described in Chapter 7, only the velocity has been mapped to the inlet and

not pressures or turbulence properties.

FIGURE 8.1: Velocity inlet to Propeller CFD simulation

The same mesh as described in Section 4.3 has been used with the only change being

the inlet conditions. The propeller is located 0.7D from the inlet, this was found to be

optimal in previous studies Ji et al. (2012). The propeller is rotating at a rate of 9.9 rps

as this is the rotation rate of the propeller at a ship operating speed of 1.1702 m/s

according to Sung et al. (2014).

To obtain the pressure distribution over the blade the sampleDict utility has been used

which stores the pressure of the blade at each time step. A time step of 2.8e−04 has

been used to represent 1o of propeller rotation per timestep. Moreover, a reference

blade is defined to map the pressures of one blade to the structural model.

8.2.2 Results

The thrust force produced by the whole propeller and the reference blade was

recorded, the time history of these forces are shown in Figure 8.2. Here the propeller



8.2. Non-uniform inlet 165

thrust force oscillates about a mean value due to shed vorticity. A larger fluctuation of

thrust force can be seen on a single propeller blade due to the non-uniform inlet. The

frequency of this oscillation is the blade passing frequency. As the blade rotates it will

experience high loading at the region of low velocity, this is indicated by the shape of

the propeller performance curve as at low advance ratio the thrust coefficient is high.

The blade rotates and experiences a reduction in loading as the fluid velocity increases

again.

The asymmetry between the unloading and loading region is due to the tangential

wake. As shown in Figure 5.5b the z-component of velocity is directed towards the

ship hull. This causes the tangential wake to increase the effective incidence when the

tangential wake is positive. This increases the loading thus slowing the unloading.

The opposite is applicable in the opposite half of the propeller rotation where the

tangential wake reduces the incidence hence increasing the loading causing the rapid

rise in loading.

FIGURE 8.2: Thrust force time history of Reference Blade and Overall propeller.

8.2.3 Transient Structural simulation

To obtain the transient response to the propeller loading a high fidelity Ansys model

has been used. This is done by mapping the pressure loads of the propeller blade from

the CFD solution to the model. The base of the blade is restricted in motion, making it

a cantilevered blade. The pressure distribution of the propeller blade at each timestep

of the CFD simulation are applied at the same corresponding timestep of the FEA

calculation.
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8.2.3.1 Set up

Firstly the geometry was imported and the propeller loading imported in the correct

format. Care has been taken to correctly match the time step of the CFD simulation to

the FEA simulation. The pressure loading on the Ansys model and the CFD model are

shown on Figures 8.3 .

(A) Face of propeller blade pressure distribu-
tion from CFD.

(B) Pressure loading on Face of propeller blade
for Ansys simulation

(C) Back of propeller blade pressure distribu-
tion from CFD.

(D) Pressure loading on Back of propeller blade
for Ansys simulation

FIGURE 8.3: Pressure Distribution on HMRI Blade

As shown the pressure distribution is mapped well between the CFD simulation and

FEA simulation. The FEA mesh consists of C elements and is applied in a Vacuum as

opposed to water. This is in keeping with procedures within the industry sponsor. The

main difference between operating in a vacuum and water is the frequency in which

the blade will be excited due to added mass effects. Also the added damping will not

be considered in a simulation in a vacuum. The blade remains stationary throughout

the simulation, the coordinates of each load application point is applied at a stationary

point and the pressure loading changed with time.

8.2.3.2 Results

The deformation of the blade at the 1st loading time step is shown in Figure 8.4. Here

the blade deformation shape is predominantly bending with peak bending at the

blade tip.
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FIGURE 8.4: Blade deformation shape at 1st time step

Figure 8.5 shows the deformation of the blade at several probe points on the blade

surface. The shape of bending with time matches the shape of propeller loading. The

maximum loading is very small at approximately 1 nanometer. It should be noted that

the 1st few time steps up to ≈ 0.15s is the reaction to an impulse force. The frequency

of this reaction is the 1st natural frequency and should be discounted from the

analysis of determining the vibration frequencies.

FIGURE 8.5: Time dependent deformation at several probe positions.

8.3 Comparison with Computationally Efficient model

The computationally expensive model has been compared against the

computationally efficient model described in Chapter 6 . The deflection at the tip for

the BEMT-Plate coupling and CFD-FEA coupling is shown in Figure 8.6.
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FIGURE 8.6: Comparison between the tip deflection of CFD-FEA coupling vs BEMT-
Plate model coupling

It can be seen that the overall trend of the deflection compares well between the two

simulations. The tip deflection magnitude is slightly higher for the plate coupling tool.

Additional features are seen at the peak loading and as the blade loading decreases.

These additional features can be attributed to the tangential wake. At these positions

the tangential wake is not precisely zero which will add a slight force at this position.

The BEMT solution does not account for the effect of the presence of the propeller on

the upstream velocity which the CFD simulation will account for. The inclusion of the

wake contraction for the full scale propeller described in Section 5.6.1 reduced the

rapidly changing deflections and gave results in a similar shape to the CFD-FEA

coupled simulation. Therefore, the inclusion of the wake contraction for the

BEMT-Plate model will be required.

Despite the errors associated with the BEMT-Plate coupling model, considering the

computational cost, it gives a good approximation of the deflection of the blade due to

unsteady loading. The shape of deflection, shown in Figure 8.7 matches well to the

CFD-FEA coupled simulation shown in 8.4.
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FIGURE 8.7: Deflection shape due to pressure loading

The Von Mises stress distribution of the blade occurring at a point of maximum

deflection is shown in Figure 8.8. It is shown that the stress distribution of the Python

model matches the Ansys model reasonably well with the central spine of the blade,

where the majority of the thickness is held, experiencing the most stress. Also, the

region at the root of the blade experiences high stress. When compared to

experimental data presented by Savio (2015) the shape of deflection matches well to

the presented model. Although this study used a material with a lower elastic

modulus the shape of deformation is inline with the literature albeit the deflection

shown is far smaller in this case due to the higher elastic modulus.
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(A) Stress distribution on Back of blade
from Ansys.

(B) Stress distribution on Back of blade
from Ansys

(C) Stress Distribution from Python Model

FIGURE 8.8: Stress Distribution Comparison between Ansys model and Python
Model.

8.4 Discussion

8.4.1 Computational Cost

The main benefit of utilizing the BEMT-Plate model is the computational cost. The

computational time per time step of both the CFD-FEA coupled simulation and

BEMT-Plate coupled simulation is discussed in this section.

The CFD-FEA simulation is a one-way coupled simulation so the pressure loads from

CFD are mapped directly to the structural simulation. Therefore, the computational

cost of each simulation can be easily obtained.

The CFD simulation was run on 48 cores on the Iridis 5 cluster. Each time step takes ≈

68s. Although the computational cost is highly dependent on mesh size and

convergence criteria an estimate of cost can be provided. The FEA simulation was run

on 4 cores using Ansys. Each time step takes ≈ 13s.

Table 8.1 shows the break down of computational cost for the CFD and FEA

simulations. For both simulation methods the parallel efficiency was close to 99%

meaning that there was only a small overhead in transferring data between cores.

Therefore, it is a reasonable assumption to linearly scale the computational time to

obtain the cost as if it where run in serial.
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TABLE 8.1: Computational Cost of CFD-FEA simulation

Simulation Cost (parallel) Cost (serial)

CFD ≈ 68s ≈3264s

FEA ≈ 13s ≈52s

Total ≈ 81s ≈3316s

In comparison, the BEMT-Plate modelling technique, using 30 structural elements,

takes ≈ 1.8s - 2s per time step. For the same computational cost the BEMT-Plate

modelling technique can analyse 1000s of designs as one coupled CFD-FEA

simulation. This is, perhaps, a somewhat unfair comparison given the far more

detailed data that the high fidelity model can output however, the applicability of the

BEMT-Plate coupled modelling technique as a design tool has been demonstrated.

Finally, a good speed up has been shown to decrease the computational cost when

going from an interpreted programming language to a compiled language. This can

be used throughout each part of the design code to decrease the computational cost

further. The use of Python allows more rapid development due to the lack of need to

deal with memory management and compliers.

In this Thesis only one case has been presented for the given wake fields however, the

computational cost of the algorithm is low enough to run many thousands of

propeller designs and operating conditions. Although the deformation results may

not be as accurate as the high fidelity simulation, it is possible to compare propeller

designs against each other.

8.4.2 Design applications

It is desirable to obtain the blade deformation characteristics at the early stage of

propeller design, as significant structural damage and fatigue can be mitigated by

ensuring the stress and deformations that the blade experiences when operating in the

unsteady wake, are within the found criteria. Designs can be tuned in a more efficient

manner as opposed to being overly cautious with blade thickness and chord to ensure

the structural requirements are met.

With the increased use of optimization and machine learning in recent years a

computationally cheap tool is required to run many designs and obtain the optimal

design based on user defined parameters. This is not realistically feasible using high

fidelity methods within the design stage.

The use of the Plate-BEMT method can be applied to several applications of rotating

systems such as: fan design, wind and tidal turbines and aircraft propellers, although

these should be validated.
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Although this chapter has demonstrated the applicability of BEMT-Plate coupling

there are some disadvantages. Firstly, the BEMT can achieve poor convergence when

experiencing a unsteady wake with extreme velocity gradients. The non-convergence

can cause a sudden change in load on the blade which causes the blade to vibrate at

the natural frequency. Although care must be taken to determine if this is an numeric

caused vibration or an impulse due to the fluid loading and structural response.

The predominant deformation which occurs on the propeller is in the rake direction.

This is not, however, accounted for in the BEMT solution. Therefore the change in rake

caused by the deformation will not be considered when completing a 2-way coupled

simulation. This has been considered by the inclusion of hyteresis changing the

pressure distribution on the blade. Further tests will be required to ensure this is an

accurate model or if more sophisticate models are required.

With increased use of composite materials the plate FEA should be extended to

include this choice of material. This will allow the user to define materials with strong

bend-twist coupling and design a propeller blade which utilises this material property.

The main, practical benefit of obtaining the vibration properties of the propeller blades

at the design stage is to design against the high vibration before models are built

which will greatly improve the speed in which low vibration propellers are

developed. Further to this, the tool can take into account various operating conditions

which can cause greater vibration to the propeller blades. The use of the developed

tool can minimize the need for an expensive re-design if vibration issues arise during

certain drifting cases.

8.5 Chapter Summary

In this chapter an unsteady marine propeller simulation has been run to obtain

pressure loading on a blade as it rotates in a non-uniform wake using CFD. The

pressure loading from the CFD simulation has been mapped on to a structural model

of the propeller blade.

The blade deformation has been compared to the BEMT-Plate coupled simulation to

obtain the difference in blade tip deflection. It was shown that the BEMT-Plate model

compares reasonably well with the high fidelity model with a tip deflection error of ≈

10 %. The blade deformation shape matches well to the high fidelity model.

The difference in maximum deflection at the tip is consistent throughout the rotation

with the shape of tip deflection matching well through time. The need for good wake

contraction has been identified, as the inflow velocity to the propeller contracts in the

CFD simulation which is not captured in the BEMT solution. Without this contraction
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an additional perturbation in deformation is seen as the propeller is rotating upward

towards the dead centre position.

The stress distribution of the plate model agrees very well with that of the 3D FEA

model as does the maximum Von Mises stress. However, the 2D nature of the plate

model is limiting to only computing the stress due to tension.

Finally, the impact of the BEMT-Plate model has been discussed, citing that the

computational cost has the main advantage over high fidelity models. The BEMT-Plate

technique is therefore, a good candidate for design stage FSI modelling of propeller

blades. Although some aspects of the modelling techniques have found to be lacking

in robustness and accuracy, the capability for implementation has been demonstrated.
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Chapter 9

Conclusions

A computationally efficient method has been developed that allows the vibration

characteristics of alternative propeller design at the concept to be evaluated. The

one-way coupled method using a blade element momentum theory and two

dimensional FEA plate structure is evaluated to be at least three orders of magnitudes

faster than a full high fidelity two way coupling approach. As such it can provide an

excellent means of evaluating many designs, as for example in genetic algorithm

based optimisation process prior to the eventual confirmation of behaviour using a

high fidelity simulation on the final design.

The approach discussed can provide a designer with rapid insight into the vibration

properties of the propeller blades for a given geometry. Although fine details, such as

trailing edge vortex structures, will not be captured by this model the analysis of such

features can be reserved for high fidelity simulations.

Furthermore, the approach can rapidly examine the ship speed in which vibration

inducing cases can be developed. This has been developed within a framework of

standard wakes that have a higher probability of having mechanisms which cause

severe vibration issues. In this study, various drift angles have been used in the initial

framework. However, this framework can be built upon to include far more

conditions such as: zig zag manoeuvre, turning circles or crash stops. This is a useful

addition as, currently, propellers are designed using the wake field when the ship is

operating normally. This can result in excessive vibration and fatigue during

manoeuvres which are not accounted for in the propeller design. This has the

potential to be costly as it could not be found to be an issue until the propeller is in

service, resulting in an expensive redesign.

To obtain the hydrodynamic loading the use of BEMT has been shown to give good

agreement with the experimental performance curves. BEMT has been shown to be

computationally efficient and can include Reynolds number effects which has the

advantage over other computationally efficient models such as potential flow based
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panel methods. The use of the Reynolds number dependent hydrofoil database has

been shown to give good Clvsα which change due to Reynolds numbers. In this thesis

only the NACA66 mod foil section has been used as it is a commonly used section

shape for propeller blades however other section shapes could be included in the

database giving the designer more control over the design.

A hysteresis model has been included in the hydrodynamic model to account for the

changes in lift coefficient of the blade section caused by the pitching and heaving of

the blade. This has been verified against previous work using the same model. The

stall region of the blade section is accounted for by the 2D foil database however, the

dynamic deep stall properties of the foil have not been modelled. For the present

study this is acceptable due to the reasonably low angles of attack the blade sections

experience however, further work could be done to effectively model these regions.

Cython is utilized at this stage to significantly decrease the computational cost of each

BEMT cycle. It is shown that the use of this compiled version of Python decreases the

computational time by ≈ 80x. This fulfils objective 1 as, due to the low computational

cost of running a BEMT routine in Cython is small it can be run on a local machine

hundreds of times with ease.

The BEMT solution is compared against a high fidelity CFD simulation. It is found

that using BEMT gives a load distribution which compares well to high fidelity

simulations. The high fidelity simulation techniques have been established for both a

steady state simulation and unsteady simulations.

Objective 4 has been completed as a series of unsteady, non-uniform wakes have been

generated using CFD simulations of the KVLCC2 hull form at various drift angles.

These simulations have been shown to agree well with various studies in literature. In

an attempt to capture turbulent fluctuations in the wake a synthetic wake model has

been implemented which can generate a turbulent flow field based on the RANS

results. The synthetic turbulent flow field was compared to an LES simulation. The

synthetic model compared reasonably well in some regions of the wake but very

poorly in others. The LES simulation showed a significant difference in flow field at

the propeller plane compared to URANS simulations so should be accounted for

when studying propeller vibration. The synthetic turbulence model did not capture

this well however, the unsteady flow field was captured. This drives the

fluid-structure interaction that cause a propeller to vibrate. The Hoekstra wake

contraction model has been implemented to obtain the equivalent full scale wake.

This is shown to give a reasonably accurate description of the effects of scale when

compared to a high fidelity CFD simulation with a small computational cost.

To obtain the structural properties the propeller blade has been modelled using plate

elements. The uses of these elements has been shown to give good agreement with the

mode shapes and modal frequencies when compared to a high fidelity full 3D FEA
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analysis using Ansys software. It has been shown that using plate elements

significantly reduces the computational cost of the structural analysis and are therefore

determined as a good choice for obtaining the structural properties in an efficient

manner. The stress of distribution of a 2D plate compares well with the high fidelity

simulation. The HHT − α method is discussed and implemented to capture the

dynamic motion of the structure and to capture the response to a time dependent load.

As the propeller is submerged in water the added mass effects are modelled using

empirical corrections. These use of the empirical corrections are shown to give a good

reduction in modal frequencies without changing the mode shapes which agrees well

with literature. Moreover, the wet modal frequencies agree well with the high fidelity

modelling technique for submerged propeller blades.

Although the plate model gives good agreement with 3D models there is a limitation

due to the lack of degrees of freedom. This causes errors when a highly twisted blade

is being studied. The lack of modelling of composite materials is also an issue but this

can be developed in future work. Although the wet blade has been modelled

reasonably well the change in structural response due to moving water has not been

included nor has the inclusion of added damping which should be complete in future

studies. Objectives 2 3 and 5 have therefore been realized with the structural

properties well established and compared well against high fidelity methods.

Chapter 7 discusses the use of the BEMT-Plate modelling technique. A series of

numeric and physical parameter changes were performed to test for the sensitivity of

changes to the model. It was shown that the modelling technique captures the

deformation of the blade due to changes in wake field well. It is also shown that the

designer can change physical parameters such as: the geometry and material when

designing the propeller and these changes are well captured by the model.

The weakness of the BEMT-Plate model are shown to be the lack of robust

convergence in the BEMT solution causing non-physical rapid deformations of the

blade. Due to metallic materials being used the rotational deformation is very small.

This causes the difference between the one-way and two-way coupling algorithms to

be negligible. This further demonstrates the need for implementation of a composite

material option within the plate model FEA as this can enable the designer to design

for the coupled deformation characteristics of these materials. The hysteresis model is

shown to significantly increase the deformation. This is due to the change in pressure

distribution on the blade section due to blade motion not being accounted for, which

should be implemented in future.

Chapter 8 compares the computationally efficient model to a high fidelity CFD-FEA

coupled simulation. Both simulation methods match in terms of initial conditions and

boundary conditions and both are coupled using the one-way algorithm. It is shown

that the BEMT-Plate model overestimates the deflections when compared to the high
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fidelity model however the shape of deflection and stress distribution on the blade

compare very well. The computational cost of each method is also discussed with the

BEMT-Plate model showing significant computational cost savings such that 1000s of

designs can be analysed at the same cost as one high fidelity model.

The contribution this thesis provides is the use of a Blade Element Momentum theory

code, coupled with a reduced FEA model to provide the vibration properties of

marine propeller blades in a computationally efficient method. The applicability of the

code has been discussed and compared with a high fidelity model and is shown to

agree well with high fidelity methods.

9.1 Recommendations For Future Work

Following from the work completed in this thesis it is recommended to further

investigate the effects of hysteresis on the blade deformation and how it is

implemented into the blade element momentum theory loops. Moreover, particularly

high angles of attack can be experienced by the blade. A more complete dynamic stall

model for these regions will be of interest. Moreover, the incorporation of cavitation

modelling would be highly beneficial due to its dominance of noise contribution, this

should be done in a computationally efficient way to ensure the code is not slowed to

be unpractical for use.

Further investigations into the applicability of using the plate FEA model to capture

the properties of composite materials will also add value to the project. The ability to

model composite coupling at the design stage would be of benefit for future

applications.

Furthermore, due to the quick nature of the proposed method it would be of interest

to apply the tool in an optimization environment to design a propeller with low

vibration properties within various non-uniform, unsteady wakes.

Although the synthetic turbulence model has been used to generate a turbulent

overlay has been implemented a more robust study of available models should be

carried out in an attempt to better produce a turbulent flow field.

A larger database of wakes should be generated to include different manoeuvres and

operating conditions. This will aid designers to develop a low vibration blade for a

wider range of flow regimes.

Finally, full validation of the numeric tool is required. Although the tool has been

verified using computationally expensive techniques there is still the requirement to

validate against both physical model scale data or full-scale data.
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190 Chapter A. KVLCC2 wake plots

Appendix A

KVLCC2 wake plots

(A) rR = 0.25 unsteady velocity for drift angle =
0o

(B) rR = 0.25 unsteady velocity FFT for drift an-
gle = 0o

(C) rR = 0.4 unsteady velocity for drift angle =
0o

(D) rR = 0.4 unsteady velocity FFT for drift an-
gle = 0o

(E) rR = 0.6 unsteady velocity for drift angle =
0o

(F) rR = 0.6 unsteady velocity FFT for drift angle
= 0o

(G) rR = 0.8 unsteady velocity for drift angle =
0o

(H) rR = 0.8 unsteady velocity FFT for drift an-
gle = 0o

FIGURE A.1: Unsteady Velocity plots for 0o drift angle
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(A) rR = 0.25 unsteady velocity for drift angle =
4o

(B) rR = 0.25 unsteady velocity FFT for drift an-
gle = 4o

(C) rR = 0.4 unsteady velocity for drift angle =
4o

(D) rR = 0.4 unsteady velocity FFT for drift an-
gle = 4o

(E) rR = 0.6 unsteady velocity for drift angle =
4o

(F) rR = 0.6 unsteady velocity FFT for drift angle
= 4o

(G) rR = 0.8 unsteady velocity for drift angle =
4o

(H) rR = 0.8 unsteady velocity FFT for drift an-
gle = 4o

FIGURE A.2: Unsteady Velocity plots for 4o drift angle
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(A) rR = 0.25 unsteady velocity for drift angle =
6o

(B) rR = 0.25 unsteady velocity FFT for drift an-
gle = 6o

(C) rR = 0.4 unsteady velocity for drift angle =
6o

(D) rR = 0.4 unsteady velocity FFT for drift an-
gle = 6o

(E) rR = 0.6 unsteady velocity for drift angle =
6o

(F) rR = 0.6 unsteady velocity FFT for drift angle
= 6o

(G) rR = 0.8 unsteady velocity for drift angle =
6o

(H) rR = 0.8 unsteady velocity FFT for drift an-
gle = 6o

FIGURE A.3: Unsteady Velocity plots for 6o drift angle
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(A) rR = 0.25 unsteady velocity for drift angle =
8o

(B) rR = 0.25 unsteady velocity FFT for drift an-
gle = 8o

(C) rR = 0.25 unsteady velocity for drift angle =
8o

(D) rR = 0.25 unsteady velocity FFT for drift an-
gle = 8o

(E) rR = 0.25 unsteady velocity for drift angle =
8o

(F) rR = 0.25 unsteady velocity FFT for drift an-
gle = 8o

(G) rR = 0.25 unsteady velocity for drift angle =
8o

(H) rR = 0.25 unsteady velocity FFT for drift an-
gle = 8o

FIGURE A.4: Unsteady Velocity plots for 8o drift angle
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(A) rR = 0.25 unsteady velocity for drift angle =
12o

(B) rR = 0.25 unsteady velocity FFT for drift an-
gle = 12o

(C) rR = 0.4 unsteady velocity for drift angle =
12o

(D) rR = 0.4 unsteady velocity FFT for drift an-
gle = 12o

(E) rR = 0.6 unsteady velocity for drift angle =
12o

(F) rR = 0.6 unsteady velocity FFT for drift angle
= 12o

(G) rR = 0.8 unsteady velocity for drift angle =
12o

(H) rR = 0.8 unsteady velocity FFT for drift an-
gle = 12o

FIGURE A.5: Unsteady Velocity plots for 12o drift angle
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(A) rR = 0.25 unsteady velocity for drift angle =
16o

(B) rR = 0.25 unsteady velocity FFT for drift an-
gle = 16o

(C) rR = 0.4 unsteady velocity for drift angle =
16o

(D) rR = 0.4 unsteady velocity FFT for drift an-
gle = 16o

(E) rR = 0.6 unsteady velocity for drift angle =
16o

(F) rR = 0.6 unsteady velocity FFT for drift angle
= 16o

(G) rR = 0.8 unsteady velocity for drift angle =
16o

(H) rR = 0.8 unsteady velocity FFT for drift an-
gle = 16o

FIGURE A.6: Unsteady Velocity plots for 16o drift angle
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(A) Plotting positions for unsteady wake

(B) rR = 0.25 unsteady velocity for drift angle =
0o

(C) rR = 0.25 unsteady velocity FFT for drift an-
gle = 0o

(D) rR = 0.4 unsteady velocity for drift angle =
0o

(E) rR = 0.4 unsteady velocity FFT for drift an-
gle = 0o

(F) rR = 0.6 unsteady velocity for drift angle =
0o

(G) rR = 0.6 unsteady velocity FFT for drift an-
gle = 0o

(H) rR = 0.8 unsteady velocity for drift angle =
0o

(I) rR = 0.8 unsteady velocity FFT for drift angle
= 0o

FIGURE A.7: Unsteady Velocity plots for 0o drift angle
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(A) rR = 0.25 unsteady velocity for drift angle =
4o

(B) rR = 0.25 unsteady velocity FFT for drift an-
gle = 4o

(C) rR = 0.4 unsteady velocity for drift angle =
4o

(D) rR = 0.4 unsteady velocity FFT for drift an-
gle = 4o

(E) rR = 0.6 unsteady velocity for drift angle =
4o

(F) rR = 0.6 unsteady velocity FFT for drift angle
= 4o

(G) rR = 0.8 unsteady velocity for drift angle =
4o

(H) rR = 0.8 unsteady velocity FFT for drift an-
gle = 4o

FIGURE A.8: Unsteady Velocity plots for 4o drift angle
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(A) rR = 0.25 unsteady velocity for drift angle =
6o

(B) rR = 0.25 unsteady velocity FFT for drift an-
gle = 6o

(C) rR = 0.4 unsteady velocity for drift angle =
6o

(D) rR = 0.4 unsteady velocity FFT for drift an-
gle = 6o

(E) rR = 0.6 unsteady velocity for drift angle =
6o

(F) rR = 0.6 unsteady velocity FFT for drift angle
= 6o

(G) rR = 0.8 unsteady velocity for drift angle =
6o

(H) rR = 0.8 unsteady velocity FFT for drift an-
gle = 6o

FIGURE A.9: Unsteady Velocity plots for 6o drift angle
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(A) rR = 0.25 unsteady velocity for drift angle =
8o

(B) rR = 0.25 unsteady velocity FFT for drift an-
gle = 8o

(C) rR = 0.25 unsteady velocity for drift angle =
8o

(D) rR = 0.25 unsteady velocity FFT for drift an-
gle = 8o

(E) rR = 0.25 unsteady velocity for drift angle =
8o

(F) rR = 0.25 unsteady velocity FFT for drift an-
gle = 8o

(G) rR = 0.25 unsteady velocity for drift angle =
8o

(H) rR = 0.25 unsteady velocity FFT for drift an-
gle = 8o

FIGURE A.10: Unsteady Velocity plots for 8o drift angle
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(A) rR = 0.25 unsteady velocity for drift angle =
12o

(B) rR = 0.25 unsteady velocity FFT for drift an-
gle = 12o

(C) rR = 0.4 unsteady velocity for drift angle =
12o

(D) rR = 0.4 unsteady velocity FFT for drift an-
gle = 12o

(E) rR = 0.6 unsteady velocity for drift angle =
12o

(F) rR = 0.6 unsteady velocity FFT for drift angle
= 12o

(G) rR = 0.8 unsteady velocity for drift angle =
12o

(H) rR = 0.8 unsteady velocity FFT for drift an-
gle = 12o

FIGURE A.11: Unsteady Velocity plots for 12o drift angle
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(A) rR = 0.25 unsteady velocity for drift angle =
16o

(B) rR = 0.25 unsteady velocity FFT for drift an-
gle = 16o

(C) rR = 0.4 unsteady velocity for drift angle =
16o

(D) rR = 0.4 unsteady velocity FFT for drift an-
gle = 16o

(E) rR = 0.6 unsteady velocity for drift angle =
16o

(F) rR = 0.6 unsteady velocity FFT for drift angle
= 16o

(G) rR = 0.8 unsteady velocity for drift angle =
16o

(H) rR = 0.8 unsteady velocity FFT for drift an-
gle = 16o

FIGURE A.12: Unsteady Velocity plots for 16o drift angle

def BEMT(J,N_blades ,chord ,P_D ,BA_ratio ,

lift_curve_slope ,root_thickness ,x_R_list ,local_P_D ,chord_diameter ,

thickness_distribution ,MC_0 ,n,D,N_circum ,Va,db ,AllUx ,Allr ,AllUtau ,data ,Cl_list = [],Cd_list = []

’’’

Main Blade Element Momentum Theory Function. Uses algorithm form referenced

book.

Parameters

----------

J: float
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advance ratio

P_D: float

pitch diameter ratio at 0.7 radius

BA_ratio: float

blade area ratio

N_blades: int

number of blades

chord: array of floats

chord of blade at different radial positions

relative_pitch_distribution : array of float

pitch distribution at radial positions relative to pitch distibution at

x_R = 0.7

lift_curve_slope : float

lift curve slope of blade

root_thickness : float

thickness at blade root

x_R_list

local_P_D : array

local pitch/Diameter distribution

chord_diameter : array

chord/diameter distribution

thickness_distribution : array

thickness distribution

MC_0: array

camber distribution

n: float

rps

D: float

diameter

N_circum: int

number of circumferntial sections

Va: float

ship axial velocity

db: database

Cl alpha database

AllUx: array

local axial velocity

Allr: array

local radial velocity

AllUtau: array

local tangential velocity

data: database

Cl Cd database

Cl_list: list

list of Cl time history

Cd_list: list

list of Cd time history

alpha_list : list

list of alpha time history

hysteresis :bool

Hysteresis flag on or off

Clhyst:float

Cl hysteresis loop

hdotdot: float

heave acceleration

alphadot: float

angle of attack acceleration

hdot:float
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heave velocity

dt: float

timestep

Returns

-------

Total_Thrust : float

total thrust coefficient along blade

Total_Torque : float

total torque coefficient along blade

Open_eta: float

open water efficiency

Cl: array

Cl distribution

U: array

Velocity distribution

KT_array: array

thrust coefficient distribution

alpha: array

angle of attack distribution

’’’

assert N_blades >= 3 and N_blades <=5,’Number of blades must be between 3 \

and 5 but is of value {}’.format(N_blades)

assert type(J) == np.float or np.float64 ,’J is not of type float but is of type {}’.format(type(

assert type(P_D) == np.float or np.float64 ,’P_D is not of type float but is of type {}’.format(t

assert type(BA_ratio) == np.float or np.float64 ,’BA_ratio is not of type float but is of type {}

assert type(N_blades) == int ,’N_blades is not of type int but is of type {}’.format(type(N_blades

assert type(chord) == np.array or np.ndarray ,’chord is not of type array but is of type {}’.form

assert type(lift_curve_slope) == np.float or np.float64 ,’lift_curve_slope is not of type float b

assert type(root_thickness) == np.float or np.float64 ,’root_thickness is not of type float but i

# create arrays

phi_plus_alpha = np.zeros_like(chord)

tan_psi = np.zeros_like(chord)

K_series = np.zeros_like(chord)

thickness_chord = np.zeros_like(chord)

KT_dx = np.zeros_like(chord)

Cl = np.zeros_like(chord)

Cd = np.zeros_like(chord)

KQ_dx = np.zeros_like(chord)

phi = np.zeros_like(chord)

alpha = np.zeros_like(chord)

CC= np.zeros_like(chord)

U = np.zeros_like(chord)

circumferences = np.arange (0,1,1/ N_circum)

KT_array = np.zeros((len(chord),N_circum ))

KQ_array = np.zeros_like(KT_array)

inflowfunc = False

wt_axial = wakeinflow(x_R_list ,N_circum , inflowfunc)

wt_axial = (Va - AllUx)/Va

U_tau = tangentialInflowfunction(x_R_list ,N_circum ,inflowfunc)

U_tau = np.zeros_like(wt_axial)

U_tau = AllUtau

oldmethod = False
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test = True

aList = []

apList = []

for j,circumference in enumerate(circumferences ):

for i,x_R in enumerate(x_R_list ):

# compute local advance ratio

J_local = J*(1- wt_axial[j,i])

# local tangential wake

tangential_wake = U_tau[j,i]*(1- wt_axial[j,i])

#

# thickness /chord

thickness_chord[i] = thickness_distribution[i] / chord_diameter[i]

# set initial angle of attack to 0

alpha[i] = 0.0

# set number of alpha iterations to 0

alpha_iterations = 0

# set convergence flag to 0

alpha_converge = 0

# start of alpha convergence loop

tc = thickness_chord[i]

# section camber

mc = MC_0[i]

# find thickness and camber bounds

tcBounds ,mcBounds ,wtc ,wmc = interpolatedtcmc(tc ,mc ,data)

while alpha_iterations < 200 and alpha_converge == 0:

alpha_iterations += 1

# calculate tan of inflow angle

tan_psi[i] = J_local / (np.pi*x_R)

# induced flow angle plus angle of attack

phi_plus_alpha[i] = np.arctan2(local_P_D[i],(np.pi*x_R))

# inflow angle

phi[i] = phi_plus_alpha[i] - alpha[i]

# ideal efficieny

eta_ideal = tan_psi[i] / np.tan(phi[i])

# initially set efficiency to ideal

eta = 0.9 * eta_ideal

gamma = 0.0 # zero for ideal efficiency

a_pp = tangential_wake*tan_psi[i] #wake rotation factor a’’

# Goldstein Correction

SF=( N_blades /(2.0* np.tan(phi[i])*x_R )) -0.5

F1=np.cosh(SF)

F2=np.cosh(SF*x_R)

F3=F2/F1

F4=np.arccos(F3)

K = (2.0*F4/np.pi)
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# store factor in array

K_series[i] = K

# set number of efficiency iterations to 0

eta_iterations = 0

eta_converge = 0

while eta_iterations < 200 and eta_converge == 0:

# axial inflow factor

a = (1 - eta_ideal+a_pp )/( eta_ideal + (( tan_psi[i]**2)/ eta))

# local thrust coefficient

R = D/2

# local thrust coefficient

KT_dx[i] = np.pi*( J_local **2) * x_R * K * a*(1+a)

# circumferential inflow factor (a ’)

a_p = 1-eta_ideal *(1+a+a_pp)

Cl[i] = KT_dx[i]/((( np.pi **2)/4)*( N_blades*chord_diameter[i])*( x_R **2)*((1 - a_p+a_pp )**2) \

* (1/np.cos(phi[i]))*(1 -np.tan(phi[i])*np.tan(gamma )))

gamma = np.arctan2(Cd[i],Cl[i])

# compute efficiency

eta_calculated = tan_psi[i]/(np.tan((phi[i]+ gamma )))

eta_iterations += 1

if np.abs(eta_calculated - eta) < 0.01:

# if old efficiency = new efficiency

# set convergence flag to 1 to stop iteration

eta_converge = 1

# KF is lambda from goldstein correction

KF = np.tan(phi[i])* x_R

U1 = -0.65*KF*KF +1.1*KF +0.664

U2 = (0.85+(KF -0.3)*( -4.0+(KF -0.4)*(15.42 -47.95*(KF -0.5))))

U2 = -0.09+(KF -0.2)* U2

U3 = (1.375+(KF -0.3)*( -3.75+(KF -0.4)*(20.85 -75.7875*(KF -0.5))))

U3 = -0.2+(KF -0.2)* U3;

K1 = U1+(BA_ratio -0.4)*( U2+U3*(BA_ratio -0.8))

if oldmethod:

#CC[i] = 1

db2 = interpolator(db ,tc,mc)

db2.prepareReWeights(Re)

dCl_dMC = db2.getdCldmc(db.ReValues)

MC_alpha_zero = ((Cl[i]/ dCl_dMC) * CC[i])

# lift_curve_slope = 5.7

camber_deficit = (MC_alpha_zero) + MC_0[i]

alpha_calculated = (camber_deficit*dCl_dMC )/ lift_curve_slope



206 Chapter A. KVLCC2 wake plots

# alpha_calculated = alpha_calculated *np.pi /180

continue

if test:

tc = thickness_chord[i]

mc = MC_0[i]

nu = 1.004e-6 # kinematic viscosity of water at 20C

U[i] = ((1+a)* AllUx[j,i]) /np.sin(phi[i])

Re = chord[i] * U[i] / nu

db2 = interpolator(db ,tc,mc)

ArturTestMethod = False

if ArturTestMethod:

db2.getPerformanceCurve(Re)

dCl_dMC = db2.getdCldmc(db.ReValues)

MC_alpha_zero = ((Cl[i]/ dCl_dMC) * CC[i])

alpha_calculated ,Cd[i],lift_curve_slope = db2.getParamsForCl(Cl[i],alpha[i])

alpha_calculated = hysteresisAlpha(Cl[i],alpha_calculated ,Re ,U[i],chord[i],hdotdot ,alphadot ,hdot ,lift_cu

else:

alpha_calculated ,Cd[i],lift_curve_slope = GetAlpha(Re ,alpha[i],tcBounds ,mcBounds ,wtc ,wmc ,data ,Cl[i])

Cd[i] *= 0.75

alpha_calculated = np.deg2rad(alpha_calculated)

alphaPrime = alpha_calculated

continue

else:

# set the new efficiency to calculated efficiency

eta = eta_calculated

if np.abs((alpha[i] - alphaPrime )/alpha[i]) <0.001:

# compute local torque coefficient

KQ_dx[i]=4.935* J_local *(x_R **3)*K*a_p *(1+a)

KQ_array[i,j] = KQ_dx[i]

#KT_dx[i] *= (1-np.tan(phi[i])* np.tan(gamma) )

KT_array[i,j] = KT_dx[i]

#U[i] = np.pi*n*D*x_R *(1- a_p )*(1/ np.cos(phi[i]))

# set convergence flag to 1 to stop iteration

alpha_converge = 1

aList.append(a)

apList.append(a_p)
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else:

alpha[i] = (alphaPrime + alpha[i]) / 2.0

if x_R_list [-1] != 1:

# set tip coefficients to 0

np.append(K_series ,0)

np.append(local_P_D ,local_P_D [-1])

np.append(alpha ,alpha [-1])

#KT_array [-1] = 0

#KQ_array [-1] = 0

elif x_R_list [-1] == 1:

K_series [-1] = 0

local_P_D [-1] = local_P_D [-2]

alpha[-2] = alpha [-1]

KT_array [-1] = 0

KQ_array [-1] = 0

Total_Thrust = TrapIntegration2D(KT_array ,x_R_list ,circumferences)

Total_Torque = TrapIntegration2D(KQ_array ,x_R_list ,circumferences)

# open water efficiency

Open_eta =(J*Total_Thrust )/(2.0*3.1416* Total_Torque)

return Total_Thrust , Total_Torque , Open_eta , Cl ,U,KT_array ,alpha

LISTING A.1: Blade Element Momentum Theory Code

def finite_element_2d(nodes , IEN , ID , f,E,nu ,h,rho ,kappa ,printMode ,rhoFluid ,Elementforce ,onlyFor

# Numbers

N_equations = np.max(ID)+1

N_elements = IEN.shape [0]

N_nodes = nodes.shape [0]

N_dim = nodes.shape [1]

# Location matrix

LM = np.zeros((IEN.shape [1]*3, IEN.shape [0]), dtype = int)

for e in range(N_elements ):

for a in range (4):

b = 3*a

LM[b,e] = ID[IEN[e,a]]
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LM[b+1,e] = ID[IEN[e,a]] + 1

LM[b+2,e] = ID[IEN[e,a]] + 2

# Global stiffness matrix and force vector

K = np.zeros(( N_equations , N_equations ))

M = np.zeros(( N_equations , N_equations ))

F = np.zeros(( N_equations ,))

S = np.zeros((N_elements ,3))

# Loop over elements

if onlyForce:

for e in range(N_elements ):

f_e = force(nodes[IEN[e,:],:], f,Elementforce[e])

for a in range (12):

A = LM[a, e]

if (A >= 0):

F[A] += f_e[a]

return F

else:

for e in range(N_elements ):

k_e = stiffness_inplane(nodes[IEN[e,:],:],E,nu ,h[e]) + stiffness_shear(nodes[IEN[e,:],:],E,nu ,h[e],kappa

f_e = force(nodes[IEN[e,:],:], f,Elementforce[e])

m_e = mass(nodes[IEN[e,:],:],h[e],rho) + addedMassMatrix(nodes[IEN[e,:],:], rhoFluid ,h[e])

for a in range (12):

A = LM[a, e]
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for b in range (12):

B = LM[b, e]

if (A >= 0) and (B >= 0):

K[A, B] += k_e[a, b]

M[A ,B] += m_e[a, b]

if (A >= 0):

F[A] += f_e[a]

# Solve

D_A = np.linalg.solve(K, F)

w_A ,B_A = scipy.linalg.eig(K,M)

D = np.zeros(N_nodes)

FF = np.zeros_like(D)

B = np.zeros(N_nodes)

# convert to Hz (from rads -1)

ef = np.sqrt(w_A)

ef /= (np.pi*2)

ef,B_A = sorting(ef ,B_A)

for n in range(N_nodes ):

if ID[n] >= 0: # Otherwise T should be zero , and we’ve initialized that already.

D[n] = D_A[ID[n]]

B[n] = B_A[ID[n],printMode]

FF[n] = F[ID[n]]

computeStress = True

if computeStress == True:

S = computeStresses(nodes , IEN , ID , f,E,nu ,h,rho ,D)



210 Chapter A. KVLCC2 wake plots

return D,ef ,B,M,K,F,S

def stiffness_inplane(nodes ,E,nu ,h):

’’’

Calculate local inplane Stiffness matrix

Parameters

-----------

nodes: array

node numbers

E: float

Youngs modulus

nu: float

poissons ratio

h: float

section thickness

Output

--------

k_ab: float

local inplane stiffness matrix

’’’

def psi_k( N, dN):

B = BI_Matrix(dN)

c = materialMatrix(E,nu)

return ((h**3)/12)* np.dot(np.dot(B.T,c),B)

k_ab = volume_quad_element(nodes , psi_k)

return k_ab

#@profile

def stiffness_shear(nodes ,E,nu,h,kappa ):
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’’’

Calculate local shear Stiffness matrix

Parameters

-----------

nodes: array

node numbers

E: float

Youngs modulus

nu: float

poissons ratio

h: float

section thickness

kappa: float

constant

Output

--------

k_ab: float

local shear stiffness matrix

’’’

def psi_k( N, dN):

B = B0_Matrix(dN,N)

cs = materialMatrixShear(E,nu)

return h*kappa*np.dot(np.dot(B.T,cs),B)

k_ab = volume_quad_element2(nodes , psi_k)

return k_ab

def materialMatrixShear(E,nu):

’’’

Calculate local material matrix
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Parameters

-----------

E: float

Youngs modulus

nu: float

poissons ratio

Output

--------

Material Matrix in Shear

’’’

G = E/(2*(1+ nu))

cs = np.array ([[G,0],

[0,G]])

return cs

def materialMatrix(E,nu):

’’’

Calculate local material matrix

Parameters

-----------

E: float

Youngs modulus

nu: float

poissons ratio

Output

--------

Material Matrix
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’’’

c1 = E/(1-nu**2)

c2 = np.array ([[1, nu ,0],

[nu ,1,0],

[0,0,(1-nu )/2]])

return c1*c2

def volume_quad_reference(psi):

’’’

Calculate integral using quadrature

Parameters

-----------

psi: function

funtion to be integrated

Output

--------

I: float

Integral

’’’

eta = 1/np.sqrt (3)

xi1 = np.array([-eta , -eta])

xi2 = np.array ([eta , -eta])

xi3 = np.array ([eta , eta])

xi4 = np.array([-eta , eta])

I = (psi(xi1) + psi(xi2) + psi(xi3) + psi(xi4))

return I
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def volume_quad_reference2(psi):

’’’

Calculate integral using quadrature

Parameters

-----------

psi: function

funtion to be integrated

Output

--------

I: float

Integral

’’’

xi1 = np.array ([0, 0],dtype = np.float64)

I = (psi(xi1)) * 4

return I

def volume_quad_element2(nodes , phi):

psi = lambda xi: jacobian_determinant(nodes , xi) * phi(shape_functions(xi),

global_derivs_from_local(nodes , xi))

return volume_quad_reference2(psi)

def volume_quad_element(nodes , phi):

psi = lambda xi: jacobian_determinant(nodes , xi) * phi(shape_functions(xi),

global_derivs_from_local(nodes , xi))

return volume_quad_reference(psi)

def BI_Matrix(dN):

’’’

Calculate local B matrix
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Parameters

-----------

dN: array

shape function derivatives

Output

--------

B: array

B matrix

’’’

B0 = np.array ([[0,dN[0,0],0],

[0,0,dN[0,1]],

[0,dN[0,1],dN[0 ,0]]])

B1 = np.array ([[0,dN[1,0],0],

[0,0,dN[1,1]],

[0,dN[1,1],dN[1 ,0]]])

B2 = np.array ([[0,dN[2,0],0],

[0,0,dN[2,1]],

[0,dN[2,1],dN[2 ,0]]])

B3 = np.array ([[0,dN[3,0],0],

[0,0,dN[3,1]],

[0,dN[3,1],dN[3 ,0]]])

B = np.hstack ((B0,B1,B2 ,B3))
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return B

def B0_Matrix(dN,N):

’’’

Calculate local B matrix

Parameters

-----------

dN: array

shape function derivatives

Output

--------

B: array

B matrix

’’’

B0 = np.array ([[dN[0,0],-N[0,0],0],

[dN[0,1],0,-N[0 ,0]]])

B1 = np.array ([[dN[1,0],-N[0,3],0],

[dN[1,1],0,-N[0 ,3]]])

B2 = np.array ([[dN[2,0],-N[0,6],0],

[dN[2,1],0,-N[0 ,6]]])

B3 = np.array ([[dN[3,0],-N[0,9],0],

[dN[3,1],0,-N[0 ,9]]])

B = np.hstack ((B0,B1,B2 ,B3))

return B
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def sorting(ef ,B):

’’’

Sort matrices or arrays in order of acending frequency

parameters

----------

ef: array of floats

modal frequencies (Hz)

B: array of floats

array of mode shapes

returns

--------

f: array of floats

sorted modal frequencies (Hz)

BSorted: array of floats

sorted array of mode shapes

’’’

indices = np.argsort ((ef.real))

f = np.sort((ef.real))

BSorted = np.zeros_like(B,dtype=complex)

for i, index in enumerate(indices ):

BSorted[:,i] = B[:,index]

return f,BSorted

def shape_functions(xi):

’’’

Linear Shape Functions

Parameters
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-----------

xi: array

local coordinates

Output

--------

N: array

Shape Functions

’’’

N1 = 0.25*(1 -xi[0])*(1 -xi[1])

N2 = 0.25*(1+ xi[0])*(1 -xi[1])

N3 = 0.25*(1+ xi [0])*(1+ xi[1])

N4 = 0.25*(1 -xi [0])*(1+ xi[1])

N = np.array ([[N1 ,0,0,N2 ,0,0,N3 ,0,0,N4 ,0,0],

[0,N1 ,0,0,N2 ,0,0,N3 ,0,0,N4 ,0],

[0,0,N1 ,0,0,N2 ,0,0,N3 ,0,0,N4]])

return N

def derivs_shape_functions(xi):

’’’

Linear Shape Function derivitives

Parameters

-----------

xi: array

local coordinates

Output
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--------

dN: array

Shape Functions derivitives

’’’

dN = np.array ([[0.25*( -1+ xi[1]), 0.25*( -1+xi[0])],

[0.25*(1 -xi[1]), 0.25*( -1 -xi[0])] ,

[0.25*(1+ xi[1]), 0.25*(1+ xi[0])],

[0.25*( -1 -xi[1]), 0.25*(1 -xi [0])]])

return dN

def global_from_local(nodes , xi):

’’’

Get global coordinates from local coordinates

Parameters

-----------

nodes: array

node numbers

xi: array

local coordinates

Output

--------

global coordinates

’’’

N = shape_functions(xi)

return np.dot(N, nodes)

def jacobian(nodes , xi):
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’’’

Calculate local Jacobian matrix

Parameters

-----------

nodes: array

node numbers

xi: array

local coordinates

Output

--------

Jacobian array

’’’

dN = derivs_shape_functions(xi)

return np.dot(dN.T, nodes)

def jacobian_determinant(nodes , xi):

’’’

Calculate the determinant local Jacobian matrix

Parameters

-----------

nodes: array

node numbers

xi: array

local coordinates

Output

--------
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Jacobian determinant

’’’

return abs(np.linalg.det(jacobian(nodes , xi)))

def global_derivs_from_local(nodes , xi):

’’’

Calculate the determinant local Jacobian matrix

Parameters

-----------

nodes: array

node numbers

xi: array

local coordinates

Output

--------

Calculate global derivatives from local derivatives

’’’

J = jacobian(nodes , xi)

dN = derivs_shape_functions(xi)

dN_global = np.zeros_like(dN)

for i in range (4):

dN_global[i,:] = np.linalg.solve(J, dN[i,:])

return dN_global

LISTING A.2: Plate Theory FEA Code
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