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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND THE ENVIRONMENT

Institute of Sound and Vibration Research

Doctor of Philosophy

NONLINEAR SIGNAL PROCESSING TECHNIQUES FOR SIGNAL DETECTION

by Julian Leslie Deeks

The performance of underwater acoustic signal detection schemes can be reduced by

extremes of variability in the input signal. Linear detectors such as spectral amplitude

thresholding or matched filtering often show degrading detection performance as the

power in the signal of interest reduces compared to the noise. Recently, literature

examining weak signal detection has focused on exploiting nonlinear system models

such as the Duffing equation, to improve detection. The applications in the literature

include non-destructive testing, tool wear indication and seismic activity detection.

However, not much attention has been paid to their application to underwater signal

detection, and importantly very little is published on robust and comprehensive

detection performance assessment. Two nonlinear mechanisms found in the Langevin

system and the Duffing system, Stochastic Resonance and a transition from chaotic to

stable motion, are examined in this thesis, as signal conditioning tools. Using

Receiver Operating Characteristics analysis the detection performance is, for the first

time, comprehensively measured for different input noise distributions and for

different nonlinear pre-processing system configurations. A novel replica correlation

detector is devised, that exploits a property of the stable motion in the normalised

Duffing system. The often claimed noise immunity of nonlinear systems is refuted; the

findings in this thesis strongly show that performance degrades with increasing noise

in a similar to linear detectors. However it is also shown that under certain

configuration conditions the Duffing transition mechanism generates better detection

performance than a benchmark linear detector, when the signal of interest is mixed

with highly impulsive real biological snapping shrimp noise.
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ẍ Acceleration

∆ω Angular frequency difference

∆ωe Estimated angular difference frequency (beat frequency)

∆V Potential energy barrier height in a bistable system
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Chapter 1

Introduction

The detection of acoustic signals underwater, is a goal that is common across many

activities including commercial fishing, oceanography, defence, oil industry and sea

floor surveying. Various signal and data processing techniques have evolved to

improve the detection performance of underwater acoustic systems but it still remains

a key goal to improve the ability to separate the ‘wanted’ weak signal that

corresponds to the object to be detected, from the unwanted noise that can arise from

many sources underwater. Many techniques have been developed with assumptions of

data stationarity (no variation with time in the principle data moments such as mean

and variance) and with the assumption of a Gaussian distribution of the background

(ambient) acoustic noise.

In the real world, signals of interest are usually unstable and often discontinuous, and

the unwanted noise component may have statistics different to the convenient

Gaussian distribution. One key cause of instability in acoustic signals underwater is

due to the variation in sound speed profile (SSP) with depth. Some SSP’s can cause

the path of acoustic signals to diffract, which can result in the signal never reaching

the receiving sensor. To improve the performance of weak signal detection schemes

algorithms are required that take into account these real world characteristics.

The ‘conventional’ signal processing techniques used in underwater acoustic sensor
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systems, such as military sonars, to detect an acoustic signal of interest are almost

invariably linear in nature. The type of signals that it might be desirable to detect

can be completely coherent, for example a transmitted single tone sine wave. Or they

may be largely incoherent such as might be generated by an underwater seismic event.

As a result, many linear detection techniques can be thought of as residing somewhere

on a spectrum of coherency, that runs from incoherent energy detection schemes at

one end, to fully coherent processing at the other end. In this model coherence refers

to how periodic or regular, the signal to be detected is.

The success of detection schemes is determined by how well they can separate the

signal of interest from the background noise. For coherent signals mixed with

incoherent background noise, coherent processing techniques such as matched filtering

or frequency transformation and time integration are commonly used. A problem

arises with these techniques when the power in the signal is small compared to the

power in the background noise. The problem is further compounded when the signals

only last for a short time, so that time integration may not offer much benefit in

terms of discriminating the signal from the noise. Ultimately most conventional linear

detection technique fail progressively as the ratio of the powers worsens and/or the

length of time the signal is present, shortens.

Over the last 25 years there has been some interest in exploiting nonlinear systems to

aid in detection. A number of claims have been made as to their performance, such as

immunity to noise and good success in detecting extremely weak coherent signals at

very small signal to noise power ratios. The prospect that these nonlinear systems

would perform as well in the case of underwater signal detection has not been

examined in any comprehensive way.
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1.1 Overview

The goal of this thesis is to investigate the hypothesis that nonlinear system models

can be applied to the problem of detecting signals that are sometimes considered

‘weak’ in the sense that they are very low power compared to the noise. A variety of

nonlinear system models exist and the state of the current progress towards successful

weak signal detection based on these models is examined in detail in Chapter 2.

The phrase ‘nonlinear systems’ is broad in its coverage and so requires clarification.

In this thesis nonlinear systems refers to those systems that can be modelled as

mathematical equations, where those models can be configured to demonstrate

repeatable nonlinear behaviours. The use of such equations readily enables their

implementation as code in a suitable modelling environment. There are many such

nonlinear model available; ranging from the simplest such as the Logistic (or

Population) model [1], to the Navier-Stokes equations [2] or Einstein’s field equations

[3]. In this thesis the work is restricted to using two models that are commonly used

in the context of signal detection, and that are relatively easy to solve numerically.

These are the Langevin and the Duffing systems.

Early work on chaotic nonlinear systems has claimed successful detections at input

signal to noise ratios (S/N) as low as -68dB, and more recent work has claimed a

minimum detectable signal with a S/N of -91dB. Although these very low S/N values

appear to indicate that nonlinear oscillators may have potential to improve detection

it is not always easy to be sure the same definition of S/N has been used across all

such claims. The use of the S/N metric alone is often used in the literature as the

definitive measure of detection performance. However, the differing definitions of S/N

used render it almost impossible to make quantitative comparisons. A standard

method of measuring detection performance, that will allow quantitative comparisons

to be made, is required. One aim of the thesis therefore, is apply more robust

detection performance measures, and to do so for a larger range of input data types,

3



including real data. Such a comprehensive assessment has not been found in the

literature.

1.2 Main developments

The work presented in this thesis can be divided into three main topics; Stochastic

Resonance (SR), transition and applications. Each topic has its own chapter; SR is

developed and assessed in Chapter 3, the transition from chaos to stable dynamics in

the Duffing system is similarly treated, in Chapter 4. In Chapter 5 the transition in

the Duffing is more deeply investigated, and two signal detection applications of the

mechanism demonstrated. Chapter 3 is devoted to the exploration of the behaviours

associated with SR, and their relevance to signal detection. Controlling the

occurrence of SR in the Langevin and in the Duffing system is necessary in a practical

detection scheme. The chapter demonstrates this, and then develops SR in a form

suitable as a signal conditioning stage before detection. The detection performance is

then explored for a small selection of simulated input signal types.

The assessment, presented in this thesis, was the most wide ranging quantification of

detection performance on a nonlinear based system known to date, using Receiver

Operating Characteristic (ROC) analysis. The ROC metric has the property that it is

independent of the signal processing scheme it is measuring, in the sense that it

collects statistical data in the same way regardless of which detector generated the

data. Consequently the performance of very different detectors can therefore be

quantitatively compared. The SR assessment presented here is the strongest

confirmation known to date that SR is unlikely to provide any detection benefit in

underwater acoustic detection applications. Moreover, the comprehensive analysis of

output S/N ratio under different input conditions carried out here, undermines the

implication present in commonly used SR terminology. A common assertion is that

by adding noise to the input of an SR system, there is a nonlinear beneficial

enhancement in the output S/N at one particular input S/N value. Although output

4



S/N does rise before falling again, the evidence presented in this thesis, for the first

time, proposes that there is no benefit. Rather, that the increase in output S/N

represents the system recovering to the equivalent linear system S/N value, from a

large nonlinear reduction in output S/N, at lower input S/N values.

The thesis then turns to the second nonlinear mechanism, a transition by the systems

dynamics from one dynamic state to another. The investigation of this mechanism as

a pre-processing step prior to detection, is the focus of Chapter 4. The Duffing system

is the model most used in Chapter 4, chosen over the Langevin system primarily for

commonality with previous related published research on similar topics (see for

example [4, 5, 6, 7, 8]). The Duffing system has several controlling parameters, that

are used to configure the system to initiate distinctly different dynamics states. The

specific transition of most interest here is between a low energy chaotic state and the

first stable dynamic state, which is explained in detail in Section 4.2.2. One other

transition type is briefly investigated in the chapter, between a very low energy

unstable periodic state and the same first stable dynamic state.

One of the first tasks of the chapter is to verify that the transition mechanism can be

used in detection by confirming the work of previous researchers [4]. The second

order, inhomogeneous nonlinear Duffing equation is implemented in the models in this

thesis as two first order coupled systems. The inhomogeneous part is comprised of

either one, two or three forcing terms, depending on the test being carried out. The

system is configured to operate in a lower energy chaotic state until additional energy

is added, in the form of two of the forcing terms that represent an input signal. The

two force terms of the model represent noise and one sine wave signal of interest. It is

the two input force terms that add sufficient energy to trigger the whole system to

transition from the low energy chaotic dynamics to the higher energy stable periodic

state.

The properties chaos-to-stable transition are extensively explored in the chapter

including for the first time, an assessment of a selection of different Duffing
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configurations that all lead to the same transition. The impact on detection

performance for a small set of input signal types was assessed towards the end of the

chapter. The first evidence that a Duffing system configured as a transition

pre-processing stage improves detection performance to be quantitatively comparable

to a conventional linear detector, under certain conditions, is presented towards the

end of the chapter.

The function of detecting a signal can be implemented as a binary decision process. A

typical and simple, conventional linear detector might be comprised of the following

signal processing steps.

1 Obtain a finite length of a time-series of input signal samples.

2 Perform a discrete Fourier transform into the frequency domain where

the signal is now represented by amplitude versus frequency.

3 Select all frequency bins where the amplitude is larger than a fixed

threshold.

The detector has ‘decided’ there is a signal present in those few bins with

over-threshold amplitudes. Unfortunately it is the case that sometimes there is not a

signal present at the frequency, and the high amplitude was caused by unwanted

random background noise. The output from a Duffing system that has been triggered

into stable dynamics may contain several coherent, usually harmonic, components. A

binary decision detector operating only on amplitude may not always select all of

these components. The development of a replica correlation processing stage is a key

step presented in this thesis, on the route towards a practical detection system.

The desire to detect signals of unknown frequency requires a wideband detection

system. Characterisation of the bandwidth and phase behaviour of the Duffing

system was therefore a further component required, that supported the development

later in the thesis (Sections 5.2.6 and 5.6) of an array of Duffing oscillators, each with

a different internal drive frequency. The problem of unknown input phase was solved
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by using four parallel Duffing systems, each with a different phase. The knowledge of

the bandwidth, the addition of replica correlation detection and the four-phase

solution, were combined into a single unit termed the Duffing Array Element (DAE).

One of the final steps in the thesis was to implement an array of DAE’s and

characterise its behaviour using real and simulated input data.

In addition to the demonstration of the wideband DAE based system, a single DAE

was used to confirm that it was possible to build a nonlinear detection system that

would outperform Fourier transform based detection schemes at low false alarm rates,

when the input single tone sine wave was heavily obscured by loud and highly

impulsive biological noise.

1.3 Structure of the thesis

Chapter 2 establishes the state of the art from previously published literature, in

topics central to nonlinear signal detection, as well as assessing some important

supporting topics that will be referred to throughout the thesis. Nonlinear system

models are discussed with emphasis on two particular systems, the Langevin equation

and the Duffing nonlinear oscillator equation. Both systems form the basis for much

of the investigation described throughout this thesis, and they will be referred to as

the system ‘models’.

The chapter also describes other topics, which are not necessarily state of the art, but

are essential to the thesis. These essential methods and techniques will be used

throughout the thesis as signal processing and data visualisation tools. Some of the

tools described metrics that enable nonlinear system behaviours to be quantified, and

detection performance to be measured. In many cases the chapter will include some

explanation of how the methods operate, their relevance to the thesis and the benefit

of using them.

The two nonlinear mechanisms are first introduced in Chapter 2, SR and a single step
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transition between two distinct dynamic states of a nonlinear system. More

specifically the second mechanism is almost exclusively confined to the transition from

chaotic dynamics to a stable periodic limit cycle. However, a slightly different

transition, from one lower energy stable state to the same limit cycle, is briefly

considered in Chapter 3. Both mechanisms, SR and chaos-to-stable transition, were

selected to form the core of the investigation in this thesis for two reasons. Firstly,

both have a large extant body of relevant published research work, which provides a

solid basis for this thesis to build on. Secondly, a comprehensive review of the

potential of other types of nonlinear mechanisms was considered beyond the practical

scope of the thesis reported here.

The first of the two nonlinear mechanisms is investigated in Chapter 3. SR is

demonstrated using the Langevin system and the behaviours of SR relevant to

improving detection performance, are explored and described in detail. The chapter

opens by building on some of the techniques first introduced in Chapter 2, but

adapting them where necessary to SR.

Chapter 4 follows a similar pattern to the SR chapter, but considers the Duffing

transition. The transition is introduced, its properties explored and the basic

detection performance measured for the ideal simulated data case (single sine wave in

Gaussian white noise). The novel parameter space investigation is then used to select

several configuration cases, the detection performance of each one is then measured

and compared to the conventional linear (benchmark) detector.

Further properties of the Duffing system are characterised for their impact on

performance, in Chapter 5. In this chapter, the DAE is developed and the final

demonstrations of the system, either as a wideband sensor or a single sensor, are

made using real data inputs.
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1.4 Novel contributions

The novel contributions made in this thesis can be summarised as follows:

• The first known application of the mechanism of SR to the problem

of underwater acoustic signal detection.

• The first known measurement of the detection performance by robust

means, of a stochastic resonant system, for different input signal and

noise types.

• A novel description of SR is proposed. SR has previously been

described as a ‘resonance’ process that enhances the signal to noise

ratio at the output, when the input S/N reaches a particular value.

The SR condition is commonly achieved by adding more noise to a

fixed (and relatively high) S/N input signal. The common

description that SR is an enhancement to the output signal to noise

ratio, can easily generate an erroneous belief that SR offers some

additional discrimination between signal and noise. The findings

presented in this thesis support a more accurate description of SR.

SR is better described as a recovery from a catastrophic collapse in

output signal to noise ratio, back to an S/N level that closely

matches the expected S/N of an analogous linear system.

• The first known characterisation of a range of properties of the

Duffing transition mechanism, with an assessment of their relevance

and impact on detection performance.

• A novel approach to the review of various Duffing configurations that

may have potential for improved detection, carried out by a

characterisation of Duffing parameter space.

• The measurement of the detection performance of a chaos-to-stable

nonlinear system, in the presence of different input signal and noise

types.
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• The development of a matched filter detection system specific to the

Duffing transition pre-processor and based on replica correlation that

uses a replica unique to the nonlinear system.

• The construction of a wideband time-frequency visualisation tool

based on an array of nonlinear systems

• The application of the wideband time-frequency visualisation tool to

real data in the form of a voice recording. This novel work

significantly moves on from the only other known published example

of a working array of nonlinear systems, by using real input data, by

characterising its behaviour and by using the new detection scheme.

• Solid confirmation that the chaos-to-stable transition pre-processing

mechanism is not immune to noise as much previous work had

asserted.

• Confirmation of the detection performance of the chaos-to-stable

mechanism when applied to signals comprised of highly impulsive

real biological noise, mixed with simulated sine wave tone. The

discovery of a new and potentially useful result that nonlinear

pre-processing, with tailored replica correlation detection,

outperforms convention linear detection for the impulsive noise case.
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Chapter 2

Literature Review and

Background

2.1 Introduction

Detection of underwater targets by separating their associated acoustic signals from

unwanted acoustic background noise becomes increasingly hard as the level of the

noise increases. Optimal detection theory for the ideal of Gaussian noise with an

additive stationary sinusoidal signal is well established. This idealisation leads to

detectors which may perform poorly in real world scenarios where the underlying

assumptions are violated. The work reported in this thesis explores nonlinear

detectors for use in such conditions.

The majority of this chapter develops a number of elements important to aid the

understanding of the two nonlinear mechanisms in the context of signal detection.

Elements of SR, nonlinear dynamics, signal detection theory and performance

measurement, are described starting at a basic level. Methods of solving and

presenting the output from, nonlinear systems are then introduced. There then

follows a brief overview of some of the more complex properties and behaviours of

nonlinear systems.
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In the final sections of this chapter the state of the art in nonlinear mechanisms and

behaviours, particularly SR and the transition, are reviewed to establish the

background material which form the basis of this thesis. The chapters that follow will

build on the material reviewed, to characterise the behaviours and properties of these

mechanisms, most relevant to signal detection. Of most interest in this thesis are

signals that are non-ideal because, for example the noise component does not have

Gaussian distribution. The component to be detected is of most interest here, when it

is very weak, in the sense of having a very small signal to noise ratio (S/N).

The breadth and maturity of our understanding as published in the literature and

compared across the two mechanisms in the context of signal detection, is quite

variable. Several identifiable steps have been made in advancing our understanding of

SR over the last 30 years. Significant progress has been made in the mathematical

description, cataloguing behaviours and finding conditions for existence. SR has been

used to explain numerous observed behaviours in biology and earth sciences.

However, application of SR to solve a wide range of engineering problems is very

sparse in the literature. There has been a large body of literature looking at the

transition mechanism in nonlinear oscillators for weak signal detection in the last

fifteen years, but the scale of progress in terms of understanding and formal

description, by comparison to SR is relatively small.

Linkage between SR and coupled synchronous nonlinear systems was investigated

quite early [9]. Coupled nonlinear systems, such as the Duffing or Langevin systems,

in general form a large and distinct body of research. Much of it relates to detection

problems, either indirectly [10, 11, 12, 13, 14, 15] or directly as an application

[9, 16, 17, 18, 19]. Coupled systems were reviewed in the early stages of the research

for this thesis, however the topic was discarded as it was deemed beyond the scope.

However, this domain is a strong candidate for future work.

Understanding the potential role of SR in weak signal detection has also been looked

at [20, 21]. However to date no work has been published to establish how a weak
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signal detection scheme, using the capabilities of SR, could be controlled for

detection, or measurements made to establish how well it would perform as a

pre-processor for a detector.

Sections 2.5 and 2.6 are primarily a literature review, and will focus on the most

recent, relevant and significant advances made. The goal is to seek connections

between the various areas that support the proposal that one or both, SR and the

transition mechanism, nonlinear signal processing techniques can enhance detection

performance compared to common linear detection methods.

2.2 Standard detection theory

Before introducing any topics related to nonlinear dynamics it is first necessary to

establish what is meant by detection, and how detection performance is measured.

Some theory relating to the type of signals to be detected, how they are detected and

detection performance metrics, are introduced in this section. The section opens with

some simple definitions.

2.2.1 Signal models

Throughout this document the stand-alone use of the term ‘signal’ refers to the total

input to the system. The term ‘signal’ is also found used repeatedly throughout this

thesis in the phrase ‘signal-to-noise-ratio’. Its meaning in that context is distinctly

different, and is defined below in Section 2.2.2. In the stand-alone usage case the term

addresses any mixture of noise and periodic components, whether real or simulated.

The nonlinear models used throughout this thesis are the ‘system’ referred to, and are

defined later in Section 2.3.1. It is important to understand that the additive

components of the input signal form an integral part of these system models, as

distinct forcing terms. This is discussed further in Section 2.3.1.

The term ‘signal of interest’ (SoI) will be used to refer to that part of the signal that
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is the component to be detected, s (t) = A cos (2πf0t+ φ). It is assumed that additive

mixtures sufficiently model real data in the context of detection performance

assessment. Consequently convolutive or multiplicative mixtures are not considered in

the research reported here. All the simulated SoI’s generated and used in this thesis

are sine waves or sums of sine waves, the input ‘signal’ is therefore assumed to be

modelled as shown in Equation (2.1).

y (t) =
∞∑
i=0

Ai cos (2πfit+ φi) + n (t) (2.1)

Much of the literature on signal detection using the Duffing system refers to the

Duffing system itself as the ‘detector’. However, the nonlinear systems used here (and

in the reviewed literature), only output a time-series of discrete samples that have

dynamics representing a system state, that is dependent in a nonlinear way on the

input signal it was given. The output time-series tells us nothing directly, about

whether the SoI was present or not at the input. In other words a nonlinear system

used in this way is not the detection decision maker. The terminology that will be

used throughout this thesis, is to refer to all the nonlinear systems as pre-processing

stages, or simply pre-processors. The detection decision stage is regarded as a

separate signal processing step that follows the nonlinear pre-processor, to produce

the SoI present/absent binary decision.

2.2.2 Signal to noise ratio

The terms ‘signal’ and ‘SoI’ were defined earlier in Section 2.2.1. Here a second,

distinctly different use of the term ‘signal’ is defined as follows. Throughout this

thesis, where ever the term ‘signal’ is used in the phrase ‘signal to noise ratio’, it is

defined as meaning the SoI component only.

The S/N is a well established metric used extensively in the field of signal processing,
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to indicate how strong a SoI is compared to the rest of the signal. A common way of

using the S/N metric is to consider S/N gain, which is defined as the increase in

output S/N relative to the input S/N. The S/N gain metric has been used for

nonlinear systems [22, 23, 24, 25]. However, it can be extremely difficult to define a

suitable method of measuring S/N on time-series data. The SoI can vary in amplitude

over time, and the noise component may also exhibit rapid variation in colour, power

and amplitude distribution. For example, the noise content in a signal might exhibit

steeply sloping (colour) features in its spectrum, or large peaks not associated with

the SoI but potentially close in frequency. That spectral profile may also vary

significantly over time. In such an example it is far from clear which of the features

should be included in the power estimate of noise. These complications are common

features in underwater acoustic signals, and it will be shown later in the thesis, the

spectrum of the output from a nonlinear system can also exhibit some of these

features.

For these reasons S/N gain is not viewed as a suitable measure of the effectiveness of

the preprocessor. S/N will be used, with care, particularly to aid in configuring some

of the simulated signal input used in this thesis.

Recently, several researchers have applied S/N gain as a measure of the detection

performance of nonlinear dynamical systems [4, 26, 27]. Signal to noise ratio at the

output of a system has been viewed by some as a useful means of comparing different

systems [7], however on its own it is not a comprehensive measure of detection

performance.

The S/N as a variable, denoted snr, is most commonly defined as the ratio of average

power in the sine wave signal component PS to the average power in the noise

component, PN .

snr =
PS
PN

(2.2)
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A sine wave is commonly characterised using one of three amplitudes; zero to peak

amplitude, A, peak-to-peak amplitude, Ap, or root-mean-square amplitude, Arms.

The power in the sinusoid PS , is related to each, as shown in Equation (2.3). For all

simulations in this thesis the simulated additive noise is generated with zero mean.

The power in white Gaussian noise is therefore equal to its variance σ2.

PS =
A2

2
=
A2
p

8
= A2

rms (2.3)

The S/N ratio for a sinusoidal signal in noise can be expressed as:

snr =
PS
PN

=
A2/2

σ2

snr =
A2

2σ2
(2.4)

SNR = 10 log10

(
A2

2σ2

)
(2.5)

Where SNR is the S/N expressed in decibels and σ2 is the variance of the noise.

The true values of the signal amplitude and noise variance are usually unknown

quantities in a real signal detection scheme. Therefore to estimate the S/N it is

necessary to measure the average noise and average signal power. The definition of

the measured snr variable used throughout this thesis is as follows:

snr =

(
Sp
Np

)
(2.6)

Where Sp is the signal power measured in a defined frequency band and Np is the

noise power in the same narrow band. This definition of measured snr depends on the

bandwidth selected, so this bandwidth should be quoted along with the snr whenever

it is used.
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The estimation of S/N from the simulation data was based on measurements taken

from the Power Spectral Density (PSD) of the Fourier transformed time-series data.

The size of the Fourier transform was equal to the number of samples in the

time-series data, typically this was > 8000 samples. Two copies of the PSD were

retained, the second copy was then median filtered to smooth the spectrum in the

signal frequency bin to the same level as the surrounding bins. The ratio of the first

and smoothed second spectrum was then formed. The value in the frequency bin of

the simulated sine wave was collected from the ratio power spectrum, which is an

estimate of the required S/N. Finally the width of the frequency bin was calculated

from the size of the Fourier transform, which is the noise bandwidth value required to

make the S/N definition complete.

The S/N measurement procedure described above provides an estimate of the S/N. In

all simulations the signal frequency was chosen to be centred in its discrete bin in the

frequency domain, which reduced signal power measurement error caused by

scalloping loss. Spectral leakage was reduced by leaving the data non-windowed,

which is equivalent to applying a rectangular window function for a finite length of

sampled data. Noise power estimation accuracy was improved by making a large

number of iterations of the simulation and forming the arithmetic average of all power

spectra.

All spectra were formed as one-sided, corrected and normalised PSD without

additional windowing. The PSD smoothing filter was configured as a fixed sample

length two-pass symmetric median filter. The filter length was selected by trial and

error for each simulation case, based on a visual inspection of the output spectrum in

and around the sine wave frequency bin. Typically the value most often used here is a

length of 13 samples. The need to adjust the filter length was usually caused by the

appearance of ‘rise-up’ artefacts in the smoothed PSD noise floor at the adjacent

lower frequency bins.

The method of measuring the S/N is used extensively in Chapters 3 and 4,
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occasionally in comparison with the expected (calculated values) where the noise and

the signal are simulated.

2.2.3 Optimal detection

In this section some fundamentals of binary decision detectors based on a likelihood

ratio criterion are reviewed. The background covered is necessary in order to place

the detection scheme developed in Chapter 5 on a sound footing. There is no new

work in this section as much of it is covered in text books on signal processing (see for

example Chapter 13 [28] or Chapter 13-14 [29]). The starting assumption is that a

signal has already been cast into a sequence of discrete time series samples, by the

processing associated with the collecting sensor system.

It is assumed that one of only two possible hypothetical models will sufficiently

accurately represent an unknown discrete time series data set xm measured by the

sensor. The first hypothesis H1 models the signal as an additive combination of two

components, the unwanted and the wanted component. In this context, ‘wanted’

refers to the signal to be detected (the SoI) sm and ‘unwanted’ is all the remaining

signal content, which will be referred to as noise nm. The second hypothesis H0 (the

null hypothesis) models the signal as devoid of the wanted signal sm, the two cases

are conventionally written as shown in Equation (2.7).

H1 : xm = sm + nm

H0 : xm = nm

 (2.7)

The goal is to find an expression that can be used to maximise the probability that

the wanted component sm is present given the value of the current sample xm

measured on the sensor, whilst minimising the probability of the alternative

hypothesis given the same sample value. The goal can be represented as an inequality

of the two probability distributions, both conditional on the current value of xm.
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P (H1|xm) > P (H0|xm)

Note that each hypothesis has an associated probability distribution function, the two

pdf’s are assumed to be different as a result of the two different signal models of

Equation (2.7). The pdf’s are labelled here as p (xm|H1) and p (xm|H0), the reason

for their introduction will become apparent in the following steps. The most probable

of the two hypotheses is automatically selected for by forming the ratio of the

probabilities associated with each hypothesis. If the ratio is greater than 1 the

hypothesis represented in the numerator of Equation (2.8) is selected.

P (H1|xm)

P (H0|xm)
> 1 (2.8)

The next step is to recast the ratio of conditional probabilities in Equation (2.8) as a

ratio of the two corresponding conditional probability distribution functions. This is

necessary since in effect Equation (2.8) is a mixture of discrete and continuous

random variables, H and x respectively. The approach seeks to find the total

probability of error that the wrong hypothesis is selected, then to minimise the error.

The procedure (see for example page 225 Schwartz and Shaw [30] ) starts by finding

integral expressions for the two types of error, over each of the two regions on X. The

probability of false detection PFD corresponds to selecting hypothesis H1 when no

wanted signal component is present, and the probability of false rejection PFR

corresponds to selecting H0 when a wanted signal is present. The two error

probabilities are made mutually exclusive by fixing a threshold value of xm = d so

that all X is divided into two regions, commonly labeled X1 for the signal present

hypothesis H1, and X0 for H0. Next, using the fact that the probabilities of the two
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hypotheses are also mutually exclusive allows the use of the total probability theorem

to find the total probability of error Pe. The expression for Pe is therefore as follows:-

Pe = PFR + PFD

= P (H1)P (X < d|H1) + P (H0)P (X > d|H0) (2.9)

Pe = P (H1)

d∫
−∞

p (xm|H1) dx+ P (H0)

∞∫
d

p (xm|H0) dx (2.10)

The need for the pdf’s is now clear. It is necessary to integrate over a continous

region of X bounded on one side by d in order to calculate the probability

P (X < d|H1) (and similarly P (X > d|H0)).

Note that the two integral regions cover all X and are mutually exclusive, as are the

probabilities of the two hypotheses. Using these properties as well as simplifying the

conditional pdf’s to p (xm|H1) = p1 (xm) and p0 (xm) conditioned on the null

hypothesis probability, leads to the following:-

Pe = P (H1) +

∞∫
d

[(1− P (H1)) p0 (xm)− P (H1) p1 (xm)] dx (2.11)

The value P (H1) is fixed, so to minimise the total probability of error Pe it is

necessary to minimise the value of the integral. However, the probabilities and pdfs in

Equation (2.11) all non-negative by definition.

The final step in the procedure derives the expression for the likelihood ratio, which is

the key relation used in the design of an optimal or maximal detector. Unfortunately

the step itself contains an important inherent assumption not usually brought out in

text books on the subject. The step proceeds as follows. It is assumed that the
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majority of the area under the pdf curve p1 (xm) falls on one side of the single

threshold xm = d, and that the majority of the area under p0 (x) falls on the other

side of xm = d. The situation is further constraining because the relative positions of

the two pdf’s are assumed fixed such that the mean of p1 (xm) is ordered higher than

that of p0 (xm). The step at Equation (2.9) enshrines this ordering constraint by the

choice of the direction of the inequalities. Clearly these assumptions are valid for the

case that both pdf’s are unimodal (for example Gaussian). Pe can be minimised by

making the term P (H1) p0 (xm) large so that the integral is as small as possible. The

following inequality ensures minimum error in selecting the hypothesis, it is controlled

by setting an optimal value for d.

P (H1) p1 (xm) > (1− P (H1)) p0 (xm)

The likelihood ratio is therefore

LR (xm) ,
p1 (xm)

p0 (xm)
>

1− P (H1)

P (H1)
(2.12)

The analysis described above is usually presented alongside examples of amplitude

probability distributions for p0 and p1, that both have a single peak (unimodal). That

is not to say the analysis is necessarily invalid for multimodal distributions, just that

care needs to be taken in understanding the change in the distributions with and

without signal present. More specifically, it is most desirable that the data output

from the nonlinear system can be further processed to ensure there is a single

boundary between the two probability inequality regions P (H1) < P (H0) and

P (H1) > P (H0). In this way a single detection threshold is sufficient, and the

two-integral relation of Equation (2.10) that encapsulates a single threshold, and the

likelihood function of Equation (2.12), are then sure to be valid.

The option to measure more than one data sample xm from the sensor will nearly

always be the case in a practical detection system. Solving the likelihood ratio of
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Equation (2.12) uses the probability distribution function for several samples, in both

hypotheses. Averaging several samples has the effect of reducing the variance about

the mean, for unimodal pdf’s such as a Gaussian pdf. Assuming the two pdf’s are

already separated along xm to some degree, the discrimination between the two

hypotheses improves because the total error Pe reduces. Clearly, averaging in this way

is desirable because the result is better detection performance in a binary decision

detector.

Unfortunately, the amplitude distributions output from a nonlinear system are not

necessarily unimodal, and the relative positions of the multiple peaks for both

hypotheses, may not be optimal for an improvement in distribution separation, by

averaging the data. A method of ensuring a unimodal distribution at the output of a

nonlinear system, using correlation detection (and correlation coefficient distribution)

rather than frequency binning and amplitude distributions, is described in Chapter 5.

The key points to note from this section in relation to the rest of the chapters is as

follows. The output probability distribution functions may not necessarily be

unimodal or ordered on the positive X parameter, such that the signal-present pdf

has predominantly larger values of xm. It may also generate xm smaller than the

noise only pdf.

Basic optimal detection theory was presented in this section. The question of how to

measure the detection performance of a practical system, is introduced in the next

section, and the performance metric described will be used extensively in this thesis.

The measured results will be frequently presented as a pairwise comparison of two

measures. One measure will be made on the nonlinear system in question, and the

second will be made on a benchmark ‘conventional’ detector scheme. The benchmark

scheme will be a simple threshold on amplitude (or power), of the Fourier transform

of the signal. It is important to emphasise that the goal here is not to demonstrate

how nonlinear systems can outperform ‘conventional’ FFT and threshold detection on

a single sine wave in Gaussian white noise, but to indicate the offset from a constant
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benchmark. In that way, comparison of the performance of different and disparate

nonlinear schemes can be compared via the benchmark proxy.

2.2.4 Performance assessment

Receiver Operating Characteristics analysis (ROC analysis) provides a statistical

method of measuring the performance of a receiver or detector. Some important

attributes of the method make it attractive. It can be applied to any detector, which

makes it a common metric so that the performance of quite different detectors can be

quantitatively compared. The same technique can be applied at any point in the

signal/data/information processing chain so the performance of the system up to that

point can be assessed. ROC analysis quantifies the performance of a binary decision

detector, which requires a single threshold applied to the amplitude at the frequency

(signal) of interest. The decision then is made as ‘signal present’ for amplitudes

higher than the threshold, and absent for amplitudes lower. However, in the presence

of noise it is possible that the wanted component may in fact be absent but the noise

momentarily generates an amplitude higher than the threshold, leading to a false

positive. Conversely the desired component may be present but generates an

amplitude too low for a detection to occur. This is a false negative. Both of these

situations are false outcomes. For a binary decision detector then, there are four

possible outcomes (two true and two false) created by permuting signal present or

absent with amplitude higher or lower than the threshold.

ROC analysis can be conducted at any suitable point in a signal processing chain

where a decision between outcomes (signal present or absent) can be made. Notice in

this case there are two detection choices regarding the SoI. This situation is normally

referred to as a two-class ROC analysis and will be the basis for all ROC analysis in

this thesis [31]. It is possible to perform ROC analysis using three or more classes

[32, 33].
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Figure 2.1: Stylised probability distribution functions. The four outcomes in a binary
decision detector, testing for the presence or absence of the wanted component in an
input signal. False positive (FP), false negative (FN), true positive (TP) and true
negative (TN). Integrating over each region in each of the two PDF’s calculates the
probability value for each outcome.

The ROC analyses carried out in this thesis were usually made in the frequency

domain, based on the bin corresponding to the frequency of the SoI. However, some of

the ROC analyses in Chapter 5 were made at the output of the correlator, which is

described in Section 5.2.4. In both cases the data were collected from multiple pairs of

simulation runs. The first run generates the simulated noise and collects the signal bin

amplitude with signal absent. The second run keeps the same noise used in the first

run, adds a simulated signal, and collects one sample of the amplitude statistic in the

signal frequency bin, with signal present. The pair of runs constitutes one iteration.

Pre-defining the frequency bin in this way clearly is not representative of real

detection system because the frequency of a SoI will generally be unknown. False

positives can be declared not only within the correct frequency bin, but also in all

other frequency bins where the spectrum level is highest on a given occasion. The

fixed-bin approach removes variation in detection performance resulting from this

second type of false positive. The result is a falsely high ROC curve (detection

performance) that is better for comparing different detection schemes because it

removes a source of variation not relevant to the comparison.
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The ROC analysis method is illustrated in the following example. A simple input

signal to a basic detection scheme, was simulated by adding a single sine wave to

white Gaussian noise. The average power of each of the two parts of the input signal

were chosen so that the input SNR was −31dB, calculated using Equation (2.5). The

simulated input signal was created using simulated Gaussian noise with a standard

deviation of σ = 1.4061 (variance σ2 = 1.977), and a sine wave peak amplitude of

A = 0.05604. 1300 iteration pairs were generated, with the sine wave present and

then absent, with the independent but identically distributed Gaussian noise

regenerated for each iteration pair. The amplitude value in the pre-determined

frequency bin, was collected for each of the pairs in an iteration.

The amplitude values collected from a sufficient number of iteration pairs are sorted

into one of the four outcomes, forming what is sometimes referred to as a confusion

matrix (see, for example, Figure 1 of [31]). The ROC algorithm sorts the amplitude

counts into the two distributions illustrated in Figure 2.1, and proceeds to step a

detection threshold across the two distributed amplitude (counts) data sets. At each

step the four confusion matrix values are calculated by summing the counts within

each of the four areas illustrated in Figure 2.1, (TP , FP , TN , FN). Using this

information the True Positive Rate (TPR) and the False Positive Rate (FPR) are

calculated using Equations (2.13) and (2.14) [31].

TPR =

(
TP

TP + FN

)
(2.13)

FPR =

(
FP

FP + TN

)
(2.14)

The set of paired values of TPR and FPR calculated for each threshold step, are

then plotted. For the example described here the resulting plot is shown in Figure

2.2. The ROC curve for the simulated input signal configured with SNR = −31dB is
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shown, rising from the (0, 0) coordinate to the (1, 1) coordinate. ROC curves

generated from a two-class analysis, will always start and finish at these points.

The second ROC curve shown in Figure 2.2, was generated with a calculated input

SNR of −34dB, by changing the sine wave amplitude to 0.0397. The effect of

reducing the input S/N on the position of the ROC curve is clear, the curve moves

position down and to the left. Removing the sine wave component altogether from

the input signal, leaving just the noise, would cause the ROC curve to shift further

downwards, to become a straight line rising from bottom left to the top right corner

on the ROC plot. This line represents the equal probability outcomes, a detector

exhibiting this type of ROC curve has a detection performance no better than the

toss of a fair coin. The generic terms TPR and FPR are used throughout this thesis.

However, it is noted that the terms Probability of Detection and Probability of False

Alarm, are commonly encountered where ROC analysis is applied to underwater

acoustics and sonar performance.

Movement of ROC curve in the other direction, towards the top left is interpreted as

improved performance of the binary decision system. The amount of improvement

can be quantified, and represented by a single number, the Area Under Curve (AUC).

Improved system performance is indicated by increased AUC. All the work described

in this thesis uses the AUC metric [31]. Specifically, the AUC value is calculated as

the area between the equal-probability line and the curve itself. The maximum value

the AUC can take is therefore 0.5 [31]. An area integration function built into the

modelling environment used for all simulations, was used to find all AUC values in

the work reported here.

The frequency domain detectors used in this thesis, are all based on a single Fourier

transform with no averaging, overlap or windowing. Unless otherwise stated, the SoI

is chosen so that the frequency coincides with the centre of a frequency bin. Using no

windowing on the finite length data is the same as applying a rectangular window
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Figure 2.2: Example ROC curves at two calculated input SNR values, as indicated by
the in-plot legend. AUC = 0.3419 for input SNR = −34dB, and AUC = 0.4448 for
the input SNR = −31dB. Set up parameter values were as discussed in the text.

over the entire data length. There is therefore no leakage of energy into other

frequency bins.

ROC analysis requires a large number of iterations in order that the ROC curves are

estimated accurately. The more iterations each analysis uses, the longer it takes to

generate the ROC curve. All the ROC curves in this thesis are therefore a trade off

between tolerable simulation run time and reasonable stability. A smooth ROC curve

is a good indication of stability in the result. Typically between 400 and 2000

iterations were used to generate all the ROC curves in this thesis, the model typically

taking between twenty minutes and three hours to run on a basic specification laptop

computer (CPU 2GHz, Memory 8GB).

Much of the available performance analyses of non-linear system based detectors

carried out by previous researchers falls short for one or more of the following reasons.

The performance measure chosen does not enable a fair comparison of disparate
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detection schemes. The measure was applied to a specific configuration of the

nonlinear system. An example of the first of these is provided by a performance

analysis of a stochastic resonant based detector [34], where the probability of error

and the probability of detection (Pe and Pd respectively) were measured. The

problem is that they were considered as two separate performance measures, the final

step of combining them to generate a full ROC analysis was not carried out. The

more complete ROC analysis measure was however, applied to an array of stochastic

resonance based detectors, (termed suprathreshold SR) [35]. The work was in effect

an attempt to improve the sensitivity to the SR mechanism to very weak signals by

averaging across an array of SR detectors. In this case unfortunately, ROC analysis

was not applied to a single SR detector. To date the only known work quantifying

performance of the Duffing transition mechanism uses only the probability of

detection. False alarm rate was considered but a rather extraordinary claim that ‘no

false alarms occurred in our experiments’ was made [8]. In summary, only a small

number of limited scope analyses quantifying the detection performance of various SR

based systems exist, and no substantive ROC analyses of the Duffing (or any other

nonlinear system) transition mechanism have been found to date.

ROC analysis was also carried out on a rather unusual application of chaotic systems

[36]. The malleability of nonlinear models such as the Lorenz system was employed to

generate tailored time series used as input to secondary nonlinear systems in order to

improve the performance of the second system being used to detect faults [36].

2.3 Nonlinear systems introduced

The nonlinear system models used throughout this thesis, will now be described.

They are introduced at this point, prior to covering the state of the art on the use of

the two nonlinear mechanisms found in nonlinear systems, that form the focus of this

thesis.
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2.3.1 System models

Two nonlinear system models are considered in this thesis. The Langevin system is

used predominantly in the investigation of SR, and the Duffing system is used to

investigate the chaos-to-stable transition mechanism. Both system models are

introduced and defined in this section.

The Duffing oscillator implemented in the model is a periodically forced, damped,

spring system with a restoring force term composed of additive linear and nonlinear

components. The version implemented was selected as the most commonly used, and

is based on the system first introduced and extensively studied by G. Duffing in 1918

([37] page 2. Duffing’s original publication is in German [38], sections translated into

English [39]). Two additional forcing terms are modelled representing the input

perturbation noise and the SoI. The periodic components of the input are modelled as

always additive to each other and to the noise components, where simulated input

data are used. The system is shown in Equation (2.15), where the three terms on the

right hand side are the three separate force terms.

ẍ+ δẋ− αx+ βx3 = γ cos (ω0t+ φ0) + F (t)

ẍ+ δẋ− αx+ βx3 = γ cos (ω0t+ φ0) +A cos (ωt+ φi) + n (t) (2.15)

where:-

γ cos (ω0t+ φ0) = Configurable periodic force term, internal to the system

and:-

F (t) = A cos (ωt+ φi) + n (t)

A cos (ωt+ φi) = SoI

n (t) = Contaminating noise

 (2.16)
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The Duffing model represented by Equation (2.15) is a forced (inhomogeneous),

damped, second order, nonlinear system.

The original formulation of the Langevin equation is a second order system and lacks

the restoring force terms seen in the Duffing model. Its original form is shown in

Equation (2.17).

d2x

dt2
= −γ dx

dt
+ n (t) (2.17)

However, in the domain of nonlinear signal processing and time-series analysis a

version closer in form to the Duffing system is almost always used [40, 41, 42, 43].

This commonly used version is shown in Equation (2.18), and it is this form that is

considered in this thesis.

Equation (2.18) can be configured to exhibit certain behaviours seen in the Duffing

system. It is a bistable system with two stable points symmetric about x = 0. Three

additive forcing terms are included on the right hand side of the Langevin equation,

one periodic and two noise terms, the two force terms are designated as a model of

the input signal xs (t) = s (t) + n (t) where s (t) = A cos (ωt+ φi). The noise term

n (t) will be used as the main system control during the simulations, in the sense that

the variance and distribution of the added noise n (t) can be varied in order to initiate

the stochastic resonance behaviour. Stochastic resonance will be introduced in

Chapter 3. The meaning of the third force term ξ (t) is described later in this section.

δẋ− αx+ βx3 = A cos (ωt+ φi) + ξ (t) + n (t) (2.18)

The Langevin system in this form, is first order but Duffing is a second order system.

The difference has implications impacting the use of phase space as a tool to visualise

the behaviour of first order systems.

The Langevin system is the model most commonly used to demonstrate and
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investigate SR, see for example [41, 44, 45, 46, 43]. In publications investigating SR

that use the Langevin system, the equation is almost invariably defined in its first

order Brownian motion (stochastic equation) form as shown in Equation (2.19).

δ
dx

dt
− αx+ βx3 = A cos (2πft+ φi) +

√
2Dξ (t) (2.19)

The symbols used reflect the origins of the equation, in modelling the diffusion of gas

molecules or other particles through a medium. It is more useful to re-state the model

using more conventional signal processing symbols, by changing the stochastic

diffusion term
√

2Dξ (t). In Brownian motion the real physical quantity known as the

one dimensional particle diffusivity is conventionally defined as

D =
1

2

d〈(x0 − xn)2〉
dt

where 〈(x0 − xn)2〉 is the Mean Squared Distance (MSD), between an arbitrary

datum point x0 and the evolving discrete distance from the datum, of the position of

a particle at discrete times xn. Integration for a large number of particles over time

leads to 〈(x0 − xn)2〉 = 2Dt. Considering x not as particle position but amplitude of a

zero mean constant power random time series then MSD is simply the variance σ2,

and it is a fixed value at any time (including t = 1). Therefore the diffusion becomes
√

2Dξ (t) = σξ (t), and this will be represented even more succinctly as the input

signal noise n (t).

The term δ in Equation (2.18) is always set to a value of 1 for the simulations used

and results reported in this thesis, except in a small number of cases where indicated.

This is in accordance with the Langevin configuration used by the majority of other

researchers (for example [41, 44, 45, 46, 43]). With these changes the Langevin

system is re-cast as Equation (2.20).

Most publications (including this thesis) introduce SR by describing how the resonant

effect is initiated by adding a controlled amount of extra noise to the input. The
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direct implication is that a third forcing term should be present in the model, that

acts as the SR optimising control. This explains the presence of the third noise term

ξ (t) shown in Equation (2.18). The basis of such a model having three force terms is

further supported because the nature of the real data input in underwater weak signal

detection will generally be unknown and not controllable. So the simplest means of

control and optimisation is via the third forcing noise term. In an implementation of

SR pre-processing, with a later detection stage targeting real world signals, the

Langevin pre-processor would therefore be more accurately modelled using three

forcing terms; two unknown input terms and the third noise control term. However,

the SR work described in this thesis, Chapter 3, concentrates on simulated data and

not real data. Consequently it is sufficient to use a Langevin model that comprises

only two force terms, both are modelled as the input signal so no third force term

ξ (t) is necessary. Therefore the two roles, of controlling the input noise, and

simulating an ‘unknown’ input noise of a real signal, are represented by one noise

force n (t). The version of the Langevin system implemented and considered in the

investigations in this thesis is therefore represented by Equation 2.20.

ẋ− αx+ βx3 = A cos (2πft+ φ) + n (t) (2.20)

2.3.2 Numerical solution

There are no analytic solutions to the non-linear system models used in this thesis.

Developing fully accurate, robust, global analytic methods to solve these stochastic

nonlinear systems is not a realistic expectation. However, locally accurate analytic

solution methods do exist. Many of these are based on the local linearisation of the

system in the region where a local solution is sufficient. Numerical methods provide

the global solution needed, consequently these methods are used throughout this work.
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A large number of methods of solving nonlinear systems numerically exist. They have

been developed over a number of decades fulfilling a range of aims, targeting one or

more of; speed, accuracy, accuracy specifically in the fast sections of the dynamic

system solution, specific difficult applications or algorithm simplicity.

The primary numerical method used here is a fourth order Runge-Kutta four stage

(RK4), fixed step method. Variable step methods are available but the Runge-Kutta

method was selected for its ease of implementation. It was necessary to implement a

version of RK4 where the input signal samples could be correctly integrated into the

appropriate place in the four stage calculation. The RK4 numerical solver algorithm

adopted for this thesis is derived in Appendix A. The derivation in the appendix uses

the Duffing system reduced to two coupled first order systems, as the example

nonlinear system. The bespoke method pays particular attention to the correct

inclusion of the data samples at each RK4 stage, that represent the input signal.

2.3.3 System rescaling

It is often convenient to normalise the variables and parameters of a nonlinear system

to make it simpler to configure. This is because there are fewer control parameters,

but the system behaviours are left unchanged. Two different normalisation regimes

are used in this thesis. The first is used in the SR investigations of Chapter 3, the

second is used in the transition investigations in Chapter 4 and to a lesser extent in

Chapter 5. The three main reasons for normalisation are as follows. First,

normalisation to a particular regime used previously, maintains consistency with that

previous research, which enables comparison and cross-validation of results. Second,

for a non-normalised system more system parameters need to be changed in order to

configure the system into a given state. The third reason is the likelihood of

divergence in the numerical solution can be reduced by selecting a suitable

normalisation scheme.

The two normalisation methods mentioned earlier, are introduced as follows. First, a
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full re-scaling of the Langevin system to render it dimensionless, is used extensively in

the SR investigation. Second, the method chosen for the the Duffing system (for the

work in Chapter 4) is a more restricted frequency normalisation approach, rather

than a full dimensionless Langevin re-scaling [4]. The derivation is reproduced in a

slightly expanded form in Appendix A. The re-scaling method for the Langevin

system is described in detail in the remainder of this section.

The normalised (dimensionless) Langevin system used in the SR study follows the

scheme proposed by previous workers [47]. The derivation of the re-scaling factors

starts by temporarily re-introducing the factor δ into the Langevin Equation, as

shown in Equation (2.21). Recall that although the implemented models used in this

thesis set δ = 1 in all SR simulations, its inclusion provides clarity in the dimensional

analysis that generates the two factors required to re-scale the time and frequency

variables.

The Langevin system derived from considerations of Brownian motion, is usually

described as a balance of forces. As such it is a model for a mechanical system where

the variables represent real world quantities that have specific units. From this point

of view, all the additive terms in the Langevin system (Equation (2.18) and repeated

below) can be considered as force terms that have dimension
ML

T 2
, (here the

capitalised letters stand for mass, length and time respectively). Dimensional analysis

is used to find the dimensions of the two variables (x and t) and all the parameters

(δ, α, β,A). Square brackets are used in the analyses to denote ‘dimension of’, for

example [x] means ‘dimension of x’. A suitable combination of the three parameters

δ, α and β is then found such that the resulting re-scaling factor has a dimension that

is the inverse of force. The separate force terms are then re-scaled using this factor to

make them dimensionless. It is also necessary to find one additional parameter

combination to re-scale the time variable to a dimensionless form. Finding the

dimension of δ is chosen as an example of the process, which proceeds as follows:

34



δẋ− αx+ βx3 = A cos (ωt+ φ) + n (t) (2.21)

[δ] [ẋ] =
M

T

L

T
=
ML

T 2

[δ] =
M

T

The dimensions of the remaining quantities are found in a similar way and all are

stated as follows:
[δ] =

M

T
, [α] =

M

T 2
, [β] =

M

L2T 2
, [t] = T .

At least one combination of parameters forms a re-scaling factor having a dimension

that is the inverse of force. It is possible to use the full and formal dimensional

analysis approach to derive the required factor however, in this case it was just as

quick to find it by inspection because of the limited set of possible combinations. The

force re-scaling factor was found as follows:

[√(
β

α3

)]
=

√
M

L2T 2

T 6

M3

=
T 2

ML

The remaining re-scaling factors are found in a similar way. The full form of the

factors for time and frequency require the damping parameter δ. However the

Langevin system used in this chapter does not include the damping term. The impact

on the re-scaling factors is to remove the damping term by setting δ = 1. The two

re-scaling factors can now be stated as; for force terms
√
β/α3, and for the time

variable α/δ.

Re-scaling all additive force terms and the time variable produces a new set of

dimensionless terms (denoted by the subscript ∗), in the following way:
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ẋ∗ =
√

(β/α3) δẋ =
√

(β/α3) ẋ

x∗ =
√

(β/α3) αx =
√

(β/α) x

x3∗ =
√

(β/α3) βx3 =
√

(β3/α3) x3

A∗ =
√

(β/α3) A

t∗ = (α/δ) t = αt

n∗ (t) =
√

(β/α3) n (t)

The normalised Langevin system can be re-written with the ∗ subscript dropped,

provided it is understood all terms except the driving frequency parameter f are now

re-scaled and dimensionless. The natural frequency of the linear homogeneous part of

the system is now fixed at a dimensionless value of δ/α = 1/1 = 1.

ẋ− x+ x3 = A cos (2πft+ φ) + n (t) (2.22)

The form of the two systems, Equation (2.18) and the normalised version, Equation

(2.22) above, is the same apart from the two factors α and β. This allows a single

coded implementation of the Langevin system to be constructed, that can be used

(with care) as either a non-normalised or a normalised system. Setting α = β = 1 in

the coded implementation of the non-normalised system of Equation (2.18) is

equivalent to normalising the system, because all the scaling factors use one or both

of α and β. This convenience is valid provided it is understood all output (x

displacement) and control quantities (amplitude A, noise n (t) and t time) are

re-scaled and dimensionless.

The result is a normalised Langevin equation that retains all the SR related

behaviours associated with a bistable system with two stable energy minima located

at
√
|α|/|β|, but with fewer control parameters. All modelling and simulation carried

out in Chapter 3 using a Langevin system was therefore based on a single encoded

implementation of Equation (2.22).
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2.3.4 Phase space

Phase space is an abstract but concise way of visualising all the possible states of a

system. The space is defined by the minimum number of degrees of freedom in the

system and each point in the space represents one system state.

In dynamical systems the system state changes over time from one point in phase

space to the next usually with a smooth transition. A continuous trajectory is traced

out in phase space by the changing system state. Phase space plotted with

trajectories is known as a phase portrait.

For conservative dynamical systems phase portraits are often simple closed loops or

even one or more non-moving points (stable states). The phase portraits for

dissipative systems such as those studied in this thesis tend to show a variety of

additional and more complicated structures that reveal a great deal about the distinct

dynamic and stationary states the system can occupy. The number of dimensions of

the phase space of a system is the minimum number of degrees of freedom required to

fully define all possible system states. Clearly graphical representation of phase space

is difficult for systems with more than three dimensions.

It is still possible to extract information from higher dimension portraits by taking

appropriate two dimensional sections through the phase portrait. This technique was

initially developed by Henri Poincaré and the simple fixed position planar approach is

known as a Poincaré section.

Another ‘dimension reduction’ technique is known as a Recurrence plot. In this case

the two dimensional plane is not a fixed section through the original phase portrait

but an abstract manifold where the trajectory crossings are equidistant in time not

space. Recurrence plots are most useful when the manifold is approximately

transverse in phase space, to the major trajectory flow pattern. Such plots can reveal

complex cyclic behaviours in the trajectories themselves. Poincaré sections therefore
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can be considered as a specific type of the more general recurrence plot technique.

Phase space plots generally require the originating system to have two or more

dimensions, to generate the corresponding plots of two or more dimensions. An

estimate of a two dimensional phase space can be made from the single

one-dimensional time-series solution of a one dimensional system such as the

Langevin system of Equation (2.18).

Phase portraits are such a fundamental and useful tool revealing many of the

behaviours of a dynamical system that they are used extensively throughout this

thesis.

2.3.5 Lyapunov exponents

Lyapunov exponent techniques are widely used as an indicator that a dynamical

system is in a state of chaos. It achieves this by calculating an estimate of the rate of

divergence of two proximal trajectories in the phase space of a system. There are two

approaches available for calculating Lyapunov exponents depending on whether the

system equations are known [48] or alternatively for when only a system time series

output is available [49, 50, 51]. Both techniques are powerful tools to characterise

phase space and parameter space for nonlinear dynamical systems [52]. However

estimating Lyapunov exponents from a time-series can be a difficult and imprecise

task [53] and ([54] page 70).

The time series based technique calculates the logarithm of the ratio of the distance

between a base trajectory and another nearest adjacent trajectory in phase space,

before and after one discrete time step. The process then finds a new trajectory

nearest the base and repeats the ratio calculation, stepping along the base at each

iteration. After sufficient repeats the average exponent is found. This procedure is

well described [53] and finds the maximal exponent value rather than the spectrum,

from a time series of data.
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A positive maximal exponent is taken as an indication of the system being in a

chaotic state. However, non-chaotic but very noisy time series data can also produce

positive exponent values. Maximal exponent values derived from a time series

therefore may not be a sufficient indicator of chaos. More robust confirmation of

chaos can be made if the technique is used in conjunction with others such as

calculations of data dimension. A non-integer dimension value can indicate the

presence of a strange (chaotic) attractor (see Section 2.3.6 for more detail).

One area of recent active research has investigated Lyapunov vectors [55, 56] to

explore more robust characterisation of predictability and stability in chaotic systems.

It is considered desirable to have a more precise method of assessing the stability of a

nonlinear detection system as one contribution towards improving its performance as

a detector.

2.3.6 Some essential features of dynamic systems

Features and behaviours relevant to the dynamical systems investigated in this thesis

are introduced and briefly described in this section. Most of the structures described

here can be revealed by constructing the system phase portrait, recurrence plots or

Poincaré sections described previously. Using these visualisation tools these features

present as clearly identifiable patterns or structures which are repeatable but not

necessarily permanent over time. Several of the structures can be found in linear

systems as well as nonlinear ones.

The state of a dynamical system, or system state, has two distinct but specific

meanings in the context of this research. The first is the more widely understood

meaning particularly in relation to phase space and is best described by illustration.

The phase portrait of a two dimensional system whose dimensions are represented by

displacement and velocity, is a two dimensional plot of velocity versus displacement.

Any point in this space has these two variables that uniquely identify it. Any pair of

values for those two variables represents a unique system state for that particular
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system. This meaning of the term ‘system state’ will be distinguished in the rest of

this thesis (where necessary) as that associated with there being a state vector of

unique variable values.

The second meaning of ‘system state’ used in this thesis refers to a region or manifold

having common gross system behaviours. This meaning will be described in more

detail at the end of this section. First it is necessary to describe structures found in

the visualisations of dynamical systems.

The path marked out in phase space from one point to the next by the continuous

change with time, of the variables representing the system state (the state vector) is

termed a trajectory. A dynamical system can have two or more dimensions and, in

general, the system state trajectories have the same dimension, clearly identifiable in

the system phase portrait. For example, the Lorentz system is three dimensional and

its full phase space is also three dimensional.

The notion of ‘trajectory’ or ‘path’ implies that the evolving state vector always

changes to some nearby neighbouring state, and does so in some orderly or perhaps

deterministic way. State vector evolution does not always move from one previous

state to a single following state. Under certain conditions a system can bifurcate to

two states existing simultaneously at one time point. It does not necessarily mean the

system exists at both states simultaneously rather that it can jump apparently

randomly to one or the other.

It is usual to describe the fixed points of a simple linear dynamical system, but the

more general name used for a special class of the analogous features found in

nonlinear systems is the term attractor. The properties of attractors are that they

can be stable or unstable, moving or stationary, closed or open, transient or

permanent, and one, two or more dimensional. They can be a closed manifold that

bounds finite regions of phase space or be the simplest of singular fixed points. The

name attractor is a little misleading in that if it is an unstable feature all nearby
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trajectories may in fact diverge away from it rather than converge towards, or be

attracted to it. In both cases the name attractor is most commonly used although the

term repellor can be encountered.

The common feature for all attractors is that when a system evolves towards (or away

from) it the gross behaviour of the system will change. For example a single fixed

point in phase space may be a permanent stable point for the given system. A system

state trajectory close enough will often move with one characteristic behaviour

towards the fixed point where it will terminate. In this case the gross system

behaviour alters from one of changing state to unchanging state.

If the attractor is not a point, but a stable, closed state trajectory, then any

trajectory starting close enough may move towards it, where it becomes entrained

onto that attractor. In this case the system state is still changing but it remains on

this attractor trajectory for all time unless acted on by a new force that causes the

fundamental system to alter. This type of closed attractor is given the name limit

cycle to indicate the resulting system state periodicity usually associated.

A closed attractor of more than one dimension encloses a finite region in phase space.

All trajectories within the enclosed region can sometimes either become entrained by

the bounding attractor, or be continually forced away from the enclosing boundary.

Regions in phase space containing an attractor, where all starting points for

trajectories in that region, terminate at the attractor, are called basins of attraction.

Some or all of the region bounded by a closed limit cycle may form part of its basin of

attraction.

The boundary between basins of attraction is a trajectory that can also be an

attractor of more than one dimension. For some systems some of their attractor basin

boundaries may not necessarily be smooth. Some irregular boundaries it can exhibit

the additional property of being either self-similar or otherwise non-smooth, at all

scales of the systems dimensions. In this case it is referred to as a fractal boundary.
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Strange attractors are a class of attractors usually associated with chaotic nonlinear

systems, although they can exist in non-chaotic systems too. They can be temporary

or non-moving permanent structures and usually have non-integer dimension. A key

property of strange attractors is that the gross system behaviour on a strange

attractor is distinct from that found on other attractors. The system state moves

with a fixed sequential path over the attractor manifold for most other

multi-dimensional attractors. For example in a limit cycle the system state moves in

one direction around a periodic orbit. However trajectories near a strange attractor

converge towards it in the same way as they do with other attractor manifolds. Once

entrained by the strange attractor the gross behaviour of the system is quite different

in that the system state can move to any other point on the entrapping manifold in a

seemingly random way. But even with this seemingly random behaviour, some

complicated but cyclic behaviour can be captured by visualising the system time

evolution using either a Poincaré section or a recurrence plot. A key point to note is

that the system behaviour entrained to a strange attractor can produce processes that

appear to be random, in one or more of the system state variables, but such processes

are fully deterministic. This rather alarming assertion is what marks such chaotic

behaviour as different from true stochastic behaviour. Both appear to be random but

only chaos is deterministic. However, because of the extreme sensitivity to initial

conditions exhibited by chaotic systems it is almost impossible to actually predict the

course of the chaotic random process in any real-world practical chaos system.

The mere presence of a permanent stable attractor does not always cause all nearby

trajectories to converge towards it (or diverge from it). The nonlinear system may be

configured such that other transient attractors appear that serve to seduce a

trajectory temporarily.

The second meaning of the term system state can now be more easily understood.

This use of the term ‘system state’ refers to a behaviour of the system at a gross level,

such as periodic stable behaviour or bounded chaotic behaviour inside a basin of
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attraction or unchanging state when terminated at a fixed point. In these examples

the values of the system variables (the state vector) may be fixed or changing but

they can only take on values that are constrained in some way. The constraint will be

a limit cycle, a region of phase space bounded by an attractor a fixed point or one of

the other features described in this section.

In summary, a bounded or constrained set of different state vectors that all result in

the same gross system behaviour gives the definition of the second meaning of the

term ‘system state’. This meaning will be used throughout the rest of this thesis

unless it is specifically made clear to the contrary by evoking the ‘state vector’

clarification.

2.3.7 Dynamic behaviours of nonlinear systems

In this section the dynamic behaviour of several variants of a system model based on

the Duffing nonlinear system are described and illustrated. The aim is to provide a

good grounding the type of dynamic behaviour that should be expected when the

given system is configured in different ways. The simplest system is the starting

point, which is an homogeneous (unforced) and linear system, before moving onto

damped variants. Finally the results using the version used in the rest of this thesis

are presented, i.e. the fully nonlinear, damped and forced Duffing system. At each

step, examples of the time-series output and the phase space behaviour are given.

The full version of the Duffing system model was defined in Equation (2.15). Note

that the form of Equation (2.15) uses the convention of a negative stiffness term.

Consequently a positive value of α results in negative linear term scaling, and vice

versa. The variants of the Duffing base model investigated in this section are defined
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in Equations (2.23), (2.24) and (2.25).

ẍ− αx = 0 (2.23)

ẍ+ δẋ− αx = 0 (2.24)

ẍ+ δẋ− αx+ βx3 = 0 (2.25)

Indication of the dynamic behaviour of a system can be found by investigating three

properties of the system. The existence and position of all fixed points, the existence

of complex roots for the system (where they can be calculated), and the nature of any

damping factor. The analysis method used to reveal the nature of these properties for

an homogeneous differential equation can be illustrated by using Equation (2.25) in

an example. Note however, the same procedure can be applied to all three second

order homogeneous (autonomous) systems shown in Equations (2.23), (2.24) and

(2.25). The example analysis proceeds as follows.

1 Reduce the second order equation to a system of two first order

equations. If the equation (or system) is already first order, this step

can be omitted. Equation (2.25) reduces to the following:

ẋ1 = x2

ẋ2 = αx1 − βx31 − δx2

2 Find the Jacobean matrix of the first order system.

J =


∂ẋ1
∂x1

∂ẋ1
∂x2

∂ẋ2
∂x1

∂ẋ2
∂x2

 =


0 1

(
α− 3βx2

)
−δ


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3 Find the fixed points of the system, which are defined as follows:

ẋ1 = x2 = 0

ẋ2 = αx1 − βx31 − δx2 = 0

The three fixed points are therefore found at x = 0, x = ±
√
α

β
.

4 Use the Jacobean to investigate the nature of the fixed points.

Substitute each fixed point value in turn, into the Jacobean. The

eigenvalues (λ) of each of the three resulting matrices are then found,

as the roots of the determinant of (J − λI).

det (J − λI) = λ2 + δλ−
(
α− 3βx2

)
(2.26)

The nature of the eigenvalues (the roots) found from the resulting characteristic

equation, Equation (2.26), determine the stability and type of the fixed points, and

therefore the dynamic behaviour of the original system near the fixed points. Real

valued roots be positive or negative, and when the roots are complex, the real part

may be positive, negative or zero. These combinations determine the classification of

the fixed points as follows.

• Both real, one positive one negative. The fixed point is a saddle point and the

dynamics are always unstable.

• Both real, both positive. The fixed point is an unstable node

• Both real, both negative. The fixed point is a stable node

• Both are complex, both real parts are positive. The point is an unstable focus

• Both complex, both real parts are negative. The point is a stable focus

• Both complex, both real parts are zero. The point is a centre

When a fixed point has been identified as an unstable point (of any type), then the

system will be characterised by phase space trajectories that diverge away from the

point. How the trajectory diverges is different for each type, for example the
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dynamics follow a divergent spiral path around an unstable focus.

Inspection of Equation (2.26) shows that the nature of the roots is determined by the

values assigned to α, β and δ. For example assigning α = −1, β = δ = 0 in Equation

(2.25) and using the analysis method described above, generates complex eigenvalues

with a zero valued real part. In this case, the fixed points are classified as centres.

Closed trajectories around (and near to) a centre can be ellipses. However, for this

case, the phase space trajectory remains at fixed distance from the centre. This is the

Simple Harmonic Motion (SHM) case. The dynamics for this case are illustrated in

Figure 2.3 (a) shows the phase space trajectory and the displacement time-series is

shown in (b). By introducing a small positive damping factor into the system,

δ = 0.1, the eigenvalues are still complex but both real parts are now negative. The

fixed point is therefore classified as stable, and nearby trajectories in phase space will

spiral into the point. This case is illustrated in Figure 2.3 (c), with the corresponding

displacement time-series shown in (d).

A similar analysis was applied to Equation (2.24) to find the behaviour of that

system. The damping factor was set non-zero so an oscillatory output with reducing

amplitude is expected. Figure 2.3 ((c): phase space and (d) time-series) shows the

implemented model exhibits this behaviour, further validating the model.

Equation (2.25) introduces the nonlinear term, controlled by the scaling factor β. The

analysis of the fixed point for this system was carried out in the same way as

described earlier. The introduction of the nonlinear term significantly modifies the

function by generating two new stable equilibrium points when α in Equation (2.25)

is positive. In all the work described in this thesis these are always symmetrically

positioned either side of x = 0.

The point x = 0 itself is also changed into an unstable point. Equation (2.25) is a

damped, unforced nonlinear system. The presence and sign of the damping factor

46



(a) (b)

(c) (d)

Figure 2.3: Unforced Duffing behaviours (linear cases): a) Phase space; linear, unforced
no damping (α = −1, β = 0, δ = 0), the ‘simple harmonic motion’ (SHM) case. b)
Time-series for the SHM case, (α = −1, β = 0, δ = 0). c) Phase space; for the damped
SHM case, (α = −1, β = 0, δ = 0.1). d) Time-series for the damped SHM case,
(α = −1, β = 0, δ = 0.1)

47



(a) (b)

(c) (d)

Figure 2.4: Unforced Duffing behaviours (nonlinear, damped cases): a) Phase space;
nonlinear, unforced, damped (α = −1, β = 1, δ = 0.5) b) Time-series; (α = −1, β =
1, δ = 0.5) c) Phase space for the positive linear coupler case; (α = 1, β = 1, δ = 0.5).
d) Time-series for the positive linear coupler case; (α = 1, β = 1, δ = 0.5).

means a decaying amplitude output should be expected. Setting the input linear

scaler α to a negative value results in a positive scaling of the linear displacement

term. This configuration does not generate any real-valued equilibrium points other

than the single (trivial) solution at x = 0. A decaying output with amplitude should

be expected. Figure 2.4, phase (a) and time-series output (b), confirms this is the

case. The plots (c) and (d) of the same figure show the same system but with a

positive α value input. The output will be oscillatory for α positive or negative,

provided the system is not critically damped. However, in the positive α case, the
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dynamic will occur in the region near one or the other of the two stable fixed points

(at x = −1 and x = 1). In the case illustrated, the dynamic behaviour converges to

x = +1 because the initial conditions set were both positive. It can easily be

demonstrated that with a negative value for the displacement initial condition, the

output dynamic converges to the negative equilibrium point at x = −1.

Clearly the two additional equilibria play an important role in the nonlinear system

behaviours. These equilibria are discussed in terms of an energy function, in more

detail in the Section 2.4.1.

2.4 Nonlinear systems and signal detection

The next three subsections in this chapter are primarily included to provide some

minimum necessary background to the use of SR as a pre-processing stage to improve

detection performance. Before describing the energy in a bistable nonlinear system

and the conditions necessary for the mechanism of SR to manifest in the system, it is

necessary to first describe what SR is. SR refers to an amplitude enhancing resonance

between a periodic force such as a sine wave, and the average rate of transition

between states in a dynamic system initiated by a random (stochastic) force. The

transition in this context refers to the transition between two stable states (the

bistable system), when the combined energy of the stochastic and the periodic forces

is sufficient to maintain a regular periodic transition. The dynamics of a nonlinear

system in a state of SR, is usually characterised by a noisy periodic orbit. A sufficient

energy supplied by the two forces, is therefore required in order to move the system

from a quite different and lower energy dynamic, to one of SR. To understand this

better, the next section describes the energy in a nonlinear system in detail.
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2.4.1 Energy in nonlinear systems

The concept of an energy function is a powerful tool to understand SR. The energy

function can be derived from the model for a nonlinear system such as Duffing.

Examination of its behaviour is a useful way of visualising how such systems can be

controlled and used for weak signal detection by the mechanism of SR. Capturing the

effect of various forcing regimes (noise or periodic) and the variable controlling

parameters will enable the choice of configurations for optimal detection. The

background ideas described in this section will be employed primarily in the

investigations of SR in Chapter 3. The analyses in this section are carried out using

the Duffing system, but the same arguments apply equally to the Langevin system,

which will be used extensively in the SR investigations.

The Duffing nonlinear oscillator system used in this thesis, Equation (2.27) can be

regarded as a summation of forces. The force terms ẍ and δẋ are dynamic forces that

varies with time, whereas the terms −αx and +βx3 combine to form a stiffness term,

the spring restoring force, that varies with displacement.

ẍ+ δẋ− αx+ βx3 = γ cos (ω0t+ φ) +A cos (ωt) + n (t) (2.27)

Derivation of the potential energy function can be found using the standard ‘work’

integral. The potential energy V is calculated by integrating the restoring force Fs

applied, over an displacement range x = l2 to x = l1, as follows.

V =

∫ l2

l1

Fsdx

For the Duffing system the potential energy is:-

V =
βx4

4
− αx2

2
(2.28)

The potential energy function of Equation (2.28) is shown in Figure 2.5.
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Figure 2.5: Energy function example. Generated by the model of Equation (2.28) In
this example the coupling terms were arbitrarily scaled as α = β = 6, however the two
energy wells (at x = ±1 in this example) will always exist but the height of the energy
barrier between them reduces as α and β reduce

There are several features to note in Figure 2.5 and in particular, which system

parameters control the feature. The energy function shown is clearly that of a

symmetric double-well system, frequently termed a bistable system because the

function exhibits two stable minima. The third fixed point at x = 0 is unstable. The

height of the central raised energy ‘barrier’ is defined by α2/ (4β), α and β are the

linear and nonlinear coupling factors in the Duffing system of Equation (2.27). The

position of the two minima are defined by ±
√
α/β, in a symmetric bistable system.

However, this model needs to be modified to reflect the forced Duffing system used in

the work described in this thesis. The inclusion of the forcing terms from the right

hand side of Equation (2.27) in the derivation of the new energy function mean it is

no longer a solely potential energy. The modified energy function E, now contains a

mixture of potential energy V and some additional kinetic energy terms, is shown for

a Duffing system in Equation (2.29). The derivation, which now includes three (right

hand side) forcing terms (two periodic and one stochastic), is derived in the same way
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as before.

E =
βx4

4
− αx2

2
+ xA cos (ωt) + xγ cos (ω0t+ φ) + xn (t) (2.29)

The forced system energy function of Equation (2.29) is different to the unforced case

in that it is no longer static with time, because all three force terms on the right of

Equation (2.27) are time dependent. The behaviour is revealed in Figure 2.6, periodic

forcing rocks ([57, 47]) the energy function in plot (a), and stochastic forcing destroys

the smooth nature of the function but does not rock the overall form of the function,

see plot (b). It is the combination of both these force types that can lead to

stochastic resonance (introduced in Chapter 2 Section 2.5), provided the static energy

function well depths are slightly higher than the rocking energy provided by a

periodic force, then the further addition of a stochastic force supplies sufficient energy

to overcome the potential energy barrier and pass the system state back and forth

between the wells with a period related to Kramers’ rate (see Section 2.4.2).

It must be pointed out that while the method of illustrating how the energy function

is affected by the forcing terms, is the same as used in earlier work ([57, 47]), the

method ‘looses’ the dynamic force terms on the left of Equation (2.27), ẍ and ẋ. The

rocking motion (a) and the noise motion (b) shown in Figure 2.6 are still valid.

Including the ‘lost’ time varying force terms may be expected to alter the simple

noisy rocking motion shown in Figure 2.6. However, the impact on SR is not expected

to be great because, in general, the right hand side forcing terms will have a

significantly different amplitude compared to the left hand side time varying terms of

Equation 2.27.

2.4.2 Kramers’ rate

During 1940 H. A. Kramers developed a theory governing chemical reaction rates

based on models of the Brownian motion of particles and the amount of thermal

excitation (reviewed within [47]). The concept has been applied to more general
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(a) (b)

Figure 2.6: Energy function example. (a): The energy function rocks with a pe-
riod equal to the frequency of the drive force. Three time-snap shots at phases
Φ = {0, π/2, π} shown. (b): No periodic forcing, extreme additive Gaussian noise
(σ = 1.6, µ = 0 ).

nonlinear systems particularly those with double well energy potentials where random

processes can excite the system to jump between the wells with a predictable period.

Kramers’ rate emerges as a condition on the existence of stochastic resonance in a

nonlinear system and will be discussed and applied further in Section 2.4.3.

In the context of nonlinear systems, Kramers’ rate is a means of describing the

average period with which a dynamic ‘particle’ will transition between the potential

wells in a potential energy double-well system such as Duffing when a stochastic

forcing input is present.

There are several different versions of the equation for Kramers’ rate, as applied to

nonlinear models [20, 58, 47]. The variation tends to depend on whether the nonlinear

system has had variable re-scaling applied, whether a term for friction is excluded [20]

and/or how the frequency is defined. The original Kramers’ rate equation contains

additional terms that can be simplified for high friction cases. This corresponds to

overdamping in unforced systems such as an unforced Duffing system. The simplified

form governing the average well to well transition rate, was re-stated by Gammaitoni
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[47] (from Kramers’ original 1940 paper), and shown in Equation (2.30).

kr =
ωnωb

π
√

2γk
e

(−∆V

D

)
(2.30)

Where ωn = resonant frequency of the unforced nonlinear system

ωb = a transition rate associated with the slope over the energy barrier

D = Diffusion coefficient (the noise amplitude factor)

γk = Kramers’ friction term

∆V = the energy barrier height

Equation (2.30) is the representation found for one limiting case where γk is large

γk >> ωb. The term γk itself is called viscous friction in the chemistry literature and

normally represents a mechanism that either slows down or speeds up a chemical

reaction rate. This is the ‘large friction’ case, in some treatments [20, 59] the system

in consideration is considered to be ‘overdamped’ when the friction term is set to a

value of γk = 1. In the context of Brownian motion it is sometimes regarded as a

scaled temperature or thermal excitation term. In the work described in this thesis it

will be assumed that the energy of the noise will be fully encapsulated in the diffusion

coefficient (noise) term of Equation (2.30) D. The two terms ωn and ωb have been

described as frequency terms [47], and elsewhere [58] as ‘..related to the slope of the

potential barrier...’. Specifically, ωn is described as the frequency of the potential in

the minima of a double well system, and ωb is the frequency at the top of the

potential barrier [47].

The behaviour of the double well potential function V (x, t) in the presence of a

periodic forcing term was described in Section 2.4.1, where it was shown that a

periodic force such as γ cos (ω0t) +A cos (ωt) will cause the potential function to rock

back and forth with time (for example see Figure 2.6). Therefore the potential barrier
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height in one energy well will be different to that in the other, most of the time. A

transition of the phase space trajectory of the dynamic system from the low barrier

well to the higher barrier well in that half of the cycle of the periodic forcing will be

more likely than a transition in the other direction. In other words the probability of

transition (or escape as it is sometimes termed) is direction dependent when a

periodic force is present. The connection to stochastic resonance stems from the fact

that if the system is appropriately configured, a periodic forcing term alone will not

provide enough energy for the system to transition between the wells, the potential

barrier between them always has a finite value. The addition of another forcing term,

stochastic noise, may just provide the required additional energy for the trajectory to

escape. The key point is that the cycle of escape back and forth is now initiated by the

addition of noise, and it is maintained mostly periodic with much greater amplitude,

by the original periodic forcing. Occasionally the noise fails to provide enough energy

because it is random. The relevance to the current work lies in the phrase just used

‘appropriately configured’ (for stochastic resonance). The investigations in later

sections of this thesis look at configuring nonlinear systems to operate as nonlinear

detectors using two different phase space trajectory transition mechanisms. Given one

unknown input noisy signal, is it possible to trigger both transition mechanisms when

they seemingly require different signal to noise ratio regimes to do so.

Note that the height of the central potential energy barrier in a bistable system is

given by ∆V =
(
α2/4β

)
. This has significance not only in the stochastic resonance

discussions of Chapter 3 but also in the topic of alternative Duffing configurations

investigated in Section 4.6.

2.4.3 Conditions for stochastic resonance

Most of the conditions and bounds governing the occurrence of SR in a system were

established in theory based work by early researchers [43, 60, 61, 62, 47]. This early

work centred on bistable non-linear systems and at first it seemed that bi-stability
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was a necessary condition for SR to exist. Since then SR has been demonstrated in

monostable systems [63].

The following list is a summary of the main set of conditions for SR to exist.

Unfortunately the published material does not always make it clear if these conditions

can be individually labelled as necessary, sufficient or both. However the consensus is

that if the system meets them then SR can probably be found provided the system is

configured appropriately.

• The system must be nonlinear and subject to at least two types of forcing; one

periodic and one random (stochastic)

• The periodic force must be ‘weak’. Qualitatively this is related to whether the

system can transition the potential barrier (see Figure 2.5) by obtaining energy

solely from a single periodic force alone. A periodic force imposes a time evolving

rocking motion on the otherwise static (unforced) energy function. Such a force is

considered ‘weak’ if the force rocking motion amplitude never causes the central

energy barrier height to become ≤ 0, in either of the energy function minima.

• The principle SR condition is the so called time scale matching condition T ≈ 2Tk

[61], where T is the time period of the periodic force and Tk is Kramers’ time, which

is the time is period corresponding to the average stochastic one way transition

between stable states. Kramers’ time is the inverse of Kramers’ rate and this leads

to the SR rate condition, Equation (2.31).

ω =
kr
2

(2.31)

The factor 2 is a consequence of the original formulation of Kramers’ rate, which

was designed as model of one way chemical reactions. The condition provides an

upper bound on the periodic frequency, stochastic resonance always rapidly reduces

at periodic force frequencies higher than
kr
2

. The time scale matching condition has

been described as ensuring the forcing frequency is much slower than the rate

adiabatic limit in the chemical reaction [60], which is the time taken to achieve
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stability or equilibrium in one stable state or the other. In this sense it probably

related to the same mechanisms that govern the length of the chaotic (or stable)

transient found in the Duffing system, which was discussed previously, starting at

Section 4.6.

• SR was discovered to exist in the Langevin system if the variance of the additive

noise is confined within certain bounds determined by the forcing frequency and its

amplitude. Upper and lower bounds on the noise variance σ21 6 σ2 6 σ22 were first

suggested by Benzi et al. [43, 64]. The Langevin system was originally developed as

model for Brownian motion. This system can be used as an alternative formulation

of the model of a nonlinear system such as Duffing, it incorporates a noise term and

a generalised energy function term. The variance bounds are not strictly a condition

for SR, but the are an indication of how to configure a system SR to occur.

Note that none of the conditions have any dependence of any given specific nonlinear

system such as the Langevin or the Duffing system. However, its existence does clearly

depend on certain generic aspects for example bistability in the energy function of the

system [60]. In this case though it has been shown that bistability is not a necessary

condition, recent work has shown the existence of stochastic resonance in systems

that are not bistable [63]. Therefore bistability is at least a sufficient condition.

The energy minima in symmetric bistable system are found at ±
√
α/β, as described

in Section 2.4.1. The energy barrier height can derived from the static potential

energy function (Equation (2.28)) by setting x =
√
α/β, and for the barrier

maximum, by setting x = 0. The difference between the two energy levels gives the

barrier energy (height) ∆V in Equation (2.32). Note here that symmetry of the

energy function is now inherently assumed, asymmetry would produce different values

∆V for either side of the barrier.
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∆V =
α2

4β
(2.32)

The periodic force term critical amplitude required in the absence of noise, Ac to cause

a dynamic trajectory to just surmount the barrier is given by Equation (2.33) [65].

Ac =

√(
4α3

27β

)
(2.33)

Ac, α and β are the critical (periodic SR) amplitude, linear coupling and nonlinear

coupling respectively. The SR condition of a weak periodic signal discussed earlier is

related to Equation (2.33). The signal is considered weak if the amplitude of the

periodic component is less than Ac [20].

The work reported here is based on a Duffing system implementation without variable

re-scaling or frequency normalisation. A practical detection system based on SR will

need to be controllable for a wide frequency spectrum, and for unknown input data

statistics. Therefore the system parameters of most interest are the additive noise

variance and the frequency. The frequency of the signal to be detected is cast as the

periodic forcing term satisfying the SR rate condition ω =
kr
2

. Selecting the required

Kramers’ rate by configuring the linear and nonlinear coupling values provides a

convenient way to fix the range of frequencies that can be detected using SR.

Pre-selecting an appropriate variance for the additive Gaussian noise will also provide

some amplitude control compared to the scaled (but unknown S/N) input signal. A

more convenient version of the Kramers’ rate is shown in Equation (2.37), which will

enable the type of control of the Duffing system configuration required. This version

of the Kramers’ rate relation clearly relates to the controlling parameters used in the

nonlinear systems considered in this thesis.
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Some of the relevant discussion points and equations introduced in Section 2.4.2, and

Equation (2.32) in this section, can be used to derive the version of the Kramers’ rate

relation shown in Equation (2.37). The treatment that the diffusion coefficient D [58]

is the same as noise in a noisy signal [47], and the assumption made in Section 2.4.2

that D encapsulates all the noise energy in a noisy signal, leads to the relation in

Equation (2.34), where σ2 is the noise variance. The discussion in section 2 of

Gammaitoni et al. [47] describes a Kramers’ rate relation for an unforced and

frequency normalised system, such that ωn = ωb = 1. However, for the

non-normalised systems considered in the context of SR in this thesis, the relation

shown in Equation (2.35) holds. This is consistent with other work [65].

D = σ2 (2.34)

ωnωb = α (2.35)

γk = δ (2.36)

Kramers’ friction term equates directly to the damping factor δ [65] of both the

Langevin and Duffing systems’ in Equations (2.19) and (2.18). The friction term γk

can therefore be replaced by the damping term, as shown in Equation (2.36). It is

assumed that SR investigated in the Langevin system will always satisfy the large

friction assumption [47], where the damping factor is set as δ = 1. The Duffing system

is also investigated in Chapter 3, but the value of the damping factor may vary.

Substituting Equations (2.34), (2.35), (2.36) and the relation for the barrier height

found earlier (Equation (2.32)), into Equation (2.30) leads to the form of Kramers’

rate shown in Equation (2.37). This derivation follows a similar scheme described by

Lai and Leng [65].
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kr =
α

π
√

2δ
e

 −α2

σ24β


(2.37)

Equation (2.37) will be used in all calculations of Kramers’ rate carried out in this

thesis.

The necessary background understanding required to proceed to the new work

described in this thesis, has been established in this chapter. Before proceeding to the

next chapter, where the application of nonlinear system properties to signal detection

is investigated, it is necessary to review the state of the art for the two nonlinear

mechanisms of primary interest in this thesis. The next section reviews Stochastic

Resonance advances, and the final section in this chapter, reviews the prior art

relating to the transition mechanism.

2.5 Review of Stochastic Resonance

Stochastic Resonance (SR) is the name generally used for the occurrence of a

significant increase in the output S/N, reaching a maximum value before decreasing

again, all as the input S/N reduces monotonically. It is a nonlinear effect dependent

on the system itself. This counter-intuitive mechanism only occurs when a suitable

system is configured in a specific way.

SR has been found in several physical systems [66] as well as simulated either using

electrical circuits or computer models [67]. Stochastic resonance has also been

demonstrated in models including the damped forced Duffing system. A Duffing

model was used to investigate residence time distributions as a means to identify the

existence of SR [68]. A physical electrical circuit implementation of the Duffing

oscillator has also been used to study SR [69]. Analogue circuits have also been used

to widen the scope to forced damped bistable systems [61]. The effects of designing
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controllable asymmetry into the energy function of a bistable system has been studied

[70], and this approach may offer a route to the optimisation of an SR based signal

detector. However that investigation is left to future research.

A theoretical basis for SR [60] was established soon after the first identified existence

in the Lorenz system [43]. There followed the establishment of theory specifically for

bistable systems such as the Duffing system [61, 46]. A common indicator of the

existence of SR is the non-monotonic change in the observed S/N, however caution is

required when determining the value of S/N [71, 62]. Since these early steps SR has

been integrated into detection theory [72, 73]. A key finding is the derivation of the

optimum noise probability density function for maximising any improvement in the

S/N.

SR cannot improve the input-output S/N gain beyond unity except when the detector

is configured so that Linear Response Theory (LRT) no longer applies [23]. There are

at least three SR related mechanisms available to optimise a single bistable Duffing

system. Firstly, select the optimal pdf of the noise to add. Secondly, select a

configuration where LRT is not applicable. Thirdly, configure the Duffing system so

that there is an optimal balance in the trade off between it being a suboptimal

detector (where SR is applicable [74]) and any other drivers on the system

configuration.

In fact the same LRT issue was identified by Inchiosa et al. in their early, but key

paper [75] that links SR, coupled systems and specifically the Duffing nonlinear

system. It was asserted that a bistable system such as the Duffing system is clearly a

system that presents a nonlinear response to certain input stimuli, and so LRT is not

necessarily applicable and therefore the potential for greater than unity S/N gain may

well exist. But this has not been demonstrated in the Duffing system to date.

More recent work has systematically investigated a Duffing system with asymmetric

potential wells. Three types of asymmetry were considered in [70], and the effect on
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the output S/N versus the noise level were measured. One metric that can be used to

reveal asymmetry in a bistable system such as Duffing, is to consider the average

amount of time the dynamics of the system spends within one energy well, compared

to the time spent in the other well. This dwell time is referred to as residence time.

The start and stop times defining it, correspond to when the system dynamics cross

the energy barrier between wells, into or out of a well, respectively [70]. Residence

times were measured [70] and found to show asymmetry although the average total

residence time in each potential well totalled the periodic drive frequency. The

authors point out that SR in an asymmetric Duffing has been studied previously (see

references therein) but theirs is the most systematic investigation. A similar

investigation of asymmetry was carried out a year earlier by Rajasekar et al. [76], but

with some important differences in scope. The subject of the earlier paper was a

different form of SR, where the added noise is replaced by a very high frequency

periodic term to generate the so-called vibrational SR. The paper also approached the

topic from a much more theoretical point of view. Vibrational SR will not be

investigated further in this thesis but is noted here as a possible avenue for future

work.

The Duffing system has recently found application to the modelling of nonlinearities

in physical nano-mechanical resonators [77]. The application itself is not of interest to

the work reported in this thesis, but some of the findings are relevant. The work

considered a quadrature formulation of the displacement and the input of white noise

to enable very precise measurement of the resonant frequency of the system. The

noise level was deliberately kept below the energy levels required for frequent

transition between the two stable basins of attraction. Increasing the noise power is in

effect analogous to reducing the difference between the ‘natural’ frequencies of the

two stable basins. The implication on the detection performance when impulsive noise

forms part of the input to the Duffing system is discussed in Chapter 5.

The same issues of post system detection, performance analysis, non-Gaussian noise
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and non-trivial signals are of interest in SR as they are for the nonlinear oscillator

mechanism. In the context of SR some progress has been made individually across all

of these issues. For example impulsive noise has been explored [78] but detection

performance not fully assessed. More recently nonlinear pre-processing and

non-Gaussian noise impact have received attention [34], but the nonlinear elements

used were not relevant. The detection performance of SR has been addressed from the

point of view of system design [79] and also performance analysis [35], but for SR as a

stand alone mechanism only. Different types of additive noise, and evidence that

signal to noise enhancement can be greater than unity (in ratio to input S/N) was

most recently explored for an array of nonlinear elements [22], but note that the array

elements were uncoupled. Although the array was comprised of ‘arbitrary nonlinear

elements’ (not necessarily Duffing oscillators) the key results are still relevant, and are

as follows. The nonlinear elements must be sub-optimal, S/N gain (input/output) can

exceed unity if the array is large enough and the gain in signal to noise improvement

increases with the number of nonlinear elements in the array.

The term Stochastic Resonance originates with Benzi and co-workers in 1981 while

investigating the apparent periodic occurrence of climate change markers [43] and

[80]. The majority of research effort since 1981 has concentrated on discovering SR in

an increasing range of physical and natural systems. Broadly, the goals of that body

of work were to first show the existence of SR in the chosen natural system (climate

change, neuron firing, lasers [66] etc) then to use models of SR to further explain

some of the behaviours observed in the system. Much of this effort is summarised and

cited in two comprehensive surveys of SR research, conducted independently. The

first was prepared by Mitaim and Kosko in 1998 [81] while more recent work was

captured by Gammaitoni et al. in 2009 [82]. In parallel a number of researchers have

developed aspects of the theory of SR without necessarily basing their approach on

real physical or natural systems. A major part of this area of research concentrated

on understanding the timings associated with various stages of traversing the energy

function (introduced in Section 2.4.1) during well to well transitions as initiated by
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stochastic forcing (see for example [68]). The phase state change in time of the output

from a stochastic resonant system is determined by the dwell time at each energy

state at each point in time during the backward and forward traverse of the energy

barrier. Understanding the dwell times leads to an understanding of the shape of the

periodic output from the system.

Investigating possible applications of SR appears to be a smaller field of research

compared to the body of work focusing more on the theoretical aspects of SR or on

discovering examples in nature. Even so, there are a number of researchers who have

investigated how SR might be applied to a wide variety of signal detection problems.

See for example: signal detection in heavy tailed non-Gaussian noise [35] and in

impulsive noise [78], varying the system parameters to optimise SR signal detection

[44]. Inchiosa and Kosko provided some of the first research on SR detection

performance in coupled systems [75], while work on connecting detection based on SR

to conventional detection theory was carried out by Kay [74] and by Hari et al. [35].

Asdi and Tewfik also used cascaded nonlinear systems to investigate SR [20] and came

to the conclusion that SR based detectors do not suffer from reducing performance

with reducing observation time, in the way that conventional matched filter based

detectors do.

Over the last 30 years attempts to apply the stochastic resonance mechanism to the

detection of signals considered weak in the sense they have low signal to noise ratios,

have been made. Such attempts have addressed the detection of gravitational waves

[83], fault diagnosis usually in rotating machinery of various types [41, 65], and ultra

wideband radio signal detection [84]. Of all these applications by far the largest body

of published material deals with the application of SR to fault diagnosis in rotating

machinery. The recent publications by Wang et al. [41] contains several example

citations within. Most of the work related to detection exploits the apparent

nonlinear and dramatic increase in amplitude of the coherent (signal of interest)

component output from the nonlinear system, that occurs at the onset of SR. The
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mechanism causing this was described in terms of the energy in the system in Section

2.4.1 of the previous chapter. The amplitude increase resulting from the system

dynamics becoming energetic enough to transition periodically between two energy

wells rather than remaining contained within one well, provides most of the

motivation in the published research to investigate detection applications.

The first known publication having relevance to underwater acoustics discusses a

rather indirect application of SR [85]. The technique uses SR to enhance the

performance of a radon transform to select linear features otherwise obscured, in a

noisy image. The method is applied to static LOFAR images, which are normally real

time updating waterfall time-frequency spectrogram sonar displays. Linear frequency

lines appear to be visually enhanced in their example, however there is no

quantification of the apparent improvement. Zhang and co workers applied SR as a

pre-processing stage to the problem of signal detection in the presence of underwater

reverberation noise [44]. This is the only publication found to date that uses ROC

analysis, albeit for one particular type of input and only for simulated data.

Nevertheless, this is a step forward because a performance measure was used that for

the first time enables global comparison of detection performance.

More recently the first papers attempting to apply stochastic resonance to underwater

weak acoustic signal detection have been published [86, 59]. In both papers the

Langevin model was employed as the nonlinear stochastic resonant system. Real

acoustic data in the form of simple transmissions, either single frequency tone pulses

or linear frequency modulated chirp [86], were collected and in the pulsed single

frequency case, filtered to remove most of the noise power in frequencies away from

the signal [59]. The signals were then input into the Langevin system and results

displayed either is an increase in output S/N or increase in output amplitude, as

evidence that stochastic resonance has in fact occurred. One of the research teams

recognises that in a real situation it will often be the case that little or nothing would

be known about the nature of the underwater acoustic signal [86]. To mitigate that

65



problem they apply a simple genetic algorithm to adapt the linear and nonlinear

coefficients of the Langevin system to maximise the output amplitude from the

system. Crucially none of the papers goes on to apply a recognised metric to measure

the detection performance, and neither do they attempt to compare the performance

of their stochastic resonance based system to a more conventional linear detection

scheme. In short these publications do not answer the question of whether stochastic

resonance can enable a detector of underwater acoustic signals to perform measurably

better than a benchmark, commonly used detection scheme.

2.6 Review of Nonlinear systems and detection

Many models, originally developed to represent real systems, can exhibit nonlinear

and chaotic behaviour. Examples include the logistic or population model, Chua’s

circuit, Duffing’s circuit, Lorenz’s weather cell model. Applying them to the problem

of signal detection began in the mid 1990’s by considering the small perturbations

used for chaos control as a signal to be detected, [87]. The tone of the paper [87]

implies the application to signal detection was already known however a search for

any earlier references has not so far been successful.

The nonlinearity we focus on in our work is a specific chaos to stable transition

brought about by a small input perturbation. As far as the author of this thesis can

discover, the potential for this basic mechanism to enable weak signal detection was

first established in 1996 [88] and then apparently independently in 1999 [4]. Most of

the subsequent published material builds on the work of Wang and co-workers [4] and

usually focuses on applications, with some occasional progress in advancing

understanding. The notable steps include the following. A method of finding the

transition point, the phase and the frequency [89], realisation that increasing the

nonlinearity in the system may offer better sensitivity [5], and a more formal

description of two particular behaviours (intermittent chaos and the transition) [90],

[91]. The optimal configuration of the chaotic oscillator was also addressed. The
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coefficients of the restoring force (the linear and nonlinear terms combined) can be

optimised to achieve lower S/N values at which a signal can be detected [26].

A theoretical basis for selecting appropriate parameter values for a Duffing nonlinear

system was also explored [91]. Expressions for the threshold of nonlinearity and

amplitude were found and these will contribute to the validation of my work by

demonstrating consistency with established findings. The stability of the system was

shown to depend on the level of the damping and restoring force coefficients.

Instability can be controlled (eliminated) by sufficient damping, even if it is nonlinear

[92].

The fact that most work labels the nonlinear transition mechanism itself as a

‘detector’ is not strictly valid in the sense that a detector is (most commonly) an

automated step in the signal processing, that makes a binary decision as to whether

the wanted signal is present or not. A simple amplitude threshold test applied after

transformation from the time to the frequency domain is an example of a separate,

and linear, detector. A true detection scheme implemented as an additional processing

step after the nonlinear system has been described [93], however the approach was

limited to the application, without a performance measure, of thresholding the

Lyapunov exponents. Detection will be explored in more depth in Chapter 5.

The basic nonlinear transition scheme has been applied to fault diagnosis and early

fault detection [94, 95], radiated underwater [96] and above water narrowband signals

[97], seismic signals [98], tool wear signature [99], GPS signals [93] and blood flow

speed measurement [100]. Apart from a few examples (some cited earlier) only

limited progress in generalising any mathematical description of the idea has been

made and crucially, no complete quantification of how the mechanism affects the final

detection stage performance has been carried out. Detection performance assessments

will form the bulk of Chapter 5.

The detection mechanism based on a binary classifier is presented with the output
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from a nonlinear filter instead of the traditional linear matched filter output.

Processing the nonlinear filter output for optimal classifier performance includes

applying some measure of the nonlinear change of filter system state caused by the

presence of a signal. The most commonly used measure is the first or largest

Lyapunov exponent [7] which measures the rate at which adjacent trajectories in

phase diverge over time. A positive value for the maximal exponent is taken as one

indicator of chaos. However the approach can produce misleading results if the data

set is very noisy or very short, because all methods for estimating Lyapunov

exponents rely on temporal averaging.

Most recently a simple measure of the minimum radial distance in phase space to the

nearest trajectory point [96] was proposed as a measure as the basis for a detection

decision. Phase space is described in Section 2.3.4. By the proposed measure a small

radial distance value indicates that the nearest trajectory is close and therefore the

system is likely to be in a dynamic state of chaos. A larger value is assumed to

indicate the system is possibly stable. The algorithm is trivial to implement and is

computationally cheap. However the output will have some sensitivity to the initial

conditions and for very short data sets the result could be increasingly misleading if

the initial transient is not managed carefully.

As we have seen, no published material presenting a complete detection performance

assessment has been found, but a small number of limited scope performance analyses

have been carried out. Most published work tends to echo the two claims of Wang et

al. [4] that the mechanism is immune to noise and that weak signals having a S/N as

small as -26 dB can be detected. These properties, while attractive, are neither a

complete nor a robust indication of detection performance because they do not

consider false alarm rates.

Noise immunity has become an assumed baseline property and is much quoted in the

introduction to many papers looking at applying the Duffing system as a weak signal

detector (see for example: [4, 5, 8, 101]). The qualitative definition of noise immunity
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in the published material derives from the behaviour of the trajectory in phase space.

The observation is that additive noise does not cause the system to exit the basin of

attraction of the strange attractor. None of these papers bound or modify the

apparent ‘universal’ nature of the supposed immunity to noise. The most robust

examination of ‘noise immunity’ in Duffing like systems found to date [102] makes the

point that noise will affect the neighbouring attractor basins if the intensity is large

enough, and that in the case of the Duffing system, any noise effect acts only through

the initial start transient observed in nonlinear systems with initial condition

sensitivity. Their analysis is also carried out using a modified version of the Duffing

system, which differs by the addition of an extra nonlinear term x5. The qualitative

results are still applicable to the work reported in this thesis because both systems

(with or without the x5 term) exhibit one stable and one unstable (chaotic) attraction

basin next to each other.

A more recent theoretical analysis of the noise immunity [84] asserts that the noise

can do no more than impose a variability on the phase space trajectory without

changing the course the basic noise free trajectory would take. This may be a valid

finding all the while the noise is small and the trajectory remains in the attractor

basin. It will be shown in Chapter 5, that in the context of detection performance the

noise immunity claim is by no means true for all signal to noise regimes.

Transition from chaos to stable limit cycle is useful but the reverse transition can also

act as a detection indication [94]. The reverse transition method seems to offer wider

bandwidth as the input frequencies move away from the drive frequency.

Recently a complex version of the Duffing oscillator has been used to detect complex

signals [8], interestingly this is one of the few publications to consider probability of

detection as another measure of performance rather than just the minimum S/N and

the ubiquitous claim of ‘definite immunity to noise’. However, the publication stops

short of a full detection performance assessment.
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Chapter 3

Stochastic Resonance

3.1 Introduction

In this chapter the mechanism of Stochastic Resonance (SR) is considered for its

potential as a signal processing technique applied to the detection of narrow band

signals mixed with additive broadband noise. In particular the aim is to quantify the

impact of SR on detection performance when considered as a pre-conditioner to

improve a signal detection processing scheme. The investigation proceeds within the

context of the application of SR to underwater weak acoustic signal detection. In

Chapter 2 some basic properties of SR in context of the energy function of a nonlinear

system were discussed. It was established that prior researchers have made some

initial steps in applying SR to signal detection. However in most of those applications

the signals of interest were in a high signal-to-noise regime or there was some prior

knowledge of the signal that could be exploited in the detection scheme. Very little

research looks at applying SR to underwater weak signal detection, or to adequately

measuring the performance of the SR based detection scheme.

To recap, SR refers to an amplitude enhancing resonance between a periodic force

and the average rate of transition between states in a dynamic system initiated by a

random (stochastic) force. SR occurs in a dynamic system for a particular subset of

71



all possible parameter combinations that control the system configuration. The

commonest indicator of the presence of SR is the onset of a clear and abrupt increase,

followed by a slower decrease, in output signal-to-noise ratio (S/N), as the variance of

the noise at the input increases for a fixed signal amplitude.

Detecting signals in low S/N is a common problem in passive sonar. In the

underwater environment the unwanted components of any input signal might be

comprised of ambient noise in the sea, man-made noise, other biological noise, rain

and other above water weather noise and underwater seismic events. Can SR be

exploited to improve the detection of narrowband signals in the underwater, where

they are weak in the sense that the S/N is very low.

The application of the SR mechanism to detection problems in general was introduced

and discussed in Chapter 2. Only two publications attempt to apply SR to weak

underwater acoustic signals, and no prior work comprehensively measures the impact

of SR on weak signal detection performance. Most prior research that investigates

detection, tends to consider higher S/N regimes than are usually encountered for

weak signals, (underwater or otherwise). The implications of this are discussed in this

chapter, particularly the significance for system configuration in a practical detection

scheme.

The nonlinear, or anomalous, behaviour in output S/N is usually presented in

published research in a way that implies it may offer benefit in signal detection or for

other signal processing tasks. The language used is most often very positive,

describing an ‘increase’ in S/N, and asserted in the context of signal detection. The

underlying system behaviours that generate the apparent anomalous increase in

output S/N (which is usually labelled as SR) have not so far been presented, and

certainly not as a wider view of the behaviours at lower and higher S/N regions. The

concept that SR (the peak in output S/N) is beneficial is investigated and quantified

in this chapter.
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3.2 Outline of chapter contents

The chapter opens by first defining some basic aspects of the methods and approach

used, including system model definitions. Then follows a consideration of the

behaviours and properties of the SR mechanism. The chapter includes a

quantification in terms of metrics such as S/N, where SR will occur within the

configuration/parameter space of the defined nonlinear systems. The existence of SR

in both the Duffing and the Langevin systems is confirmed, and the means to control

it in order to exploit it for signal detection is also established.

This chapter also serves to introduce the application of the metrics, which will be

used throughout the rest of the thesis. A brief discussion on the use of input/output

nonlinear system gain will be made, in particular on its suitability as a measure of

detection performance. The basics of Receiver Operating Characteristics (ROC)

analysis was introduced in Chapter 2, and ROC curves will be measured for all SR

cases discussed in this chapter.

The latter part of the chapter predominantly investigates and describes the

application of SR to a few realistic underwater weak acoustic signal scenarios, this is

restricted to simulated signals. The detection performance with and without

nonlinear SR pre-processing, is measured in each scenario and comments on the

utility and outcome of the scheme made.

3.3 Methods

The approach taken in this chapter is to define two suitable nonlinear system models,

confirm the existence of SR in them, collate the conditions for SR and understand

how SR can be controlled in those systems. The chapter will also establish how SR

can be used to improve signal detection, demonstrate a SR based detection scheme

and measure the detection performance as compared to that of a suitable and more
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commonly used signal processing scheme. The nonlinear systems are treated as a

pre-processing stage, with a separate detection stage that follows. Detection is a

simple binary decision on whether the signal is present or absent, based on a fixed

amplitude threshold set in the frequency domain.

3.3.1 System model definitions

The configuration and form of any chosen nonlinear pre-processing systems is crucial

to how they behave. All of the work described in this chapter will be carried out

using the following two nonlinear system models. The main model used in this

chapter is the Langevin system, with some comparative assessment made using the

Duffing system. The two systems were introduced in Chapter 2, and the versions of

each system used in this chapter are re-stated below:

Duffing ẍ+ δẋ− αx+ βx3 = Fi (t) (3.1)

Langevin ẋ− αx+ βx3 = Fi (t) (3.2)

The both systems use two additive forcing terms (one periodic and one stochastic),

which are modelled in the same way; Fi (t) = A cos (ωt+ φ) + n (t). Together the two

force terms form the modelled signal input to the nonlinear system. The output is

derived by numerical solution using either the Heun method or the fixed step 4th

order Runge-Kutta method.

3.3.2 Signal to noise ratio

The S/N metric is used extensively in this chapter, either as a calculated value based

on the amplitude and deviation values used to generate simulated signals, or as an

estimated value based on measured noise and sine wave power spectrum levels. The

concept of S/N was introduced in Section 2.2.2, where it was defined in the most
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commonly encountered form, and this version is repeated below.

snr =
A2

2σ2
(3.3)

The true values of the signal amplitude and noise variance are usually unknown

quantities in a real underwater acoustic signal detection scheme. Therefore to

estimate the S/N it is necessary to measure the average noise and average signal

power. The method for estimating the snr (and SNR) by using measured data taken

from a power spectrum, was described in detail in the latter part of Section 2.2.2 in

the previous chapter. The measurement method is used in this chapter.

3.3.3 Normalisation

The normalised (dimensionless) Langevin system used in this chapter follows the

scheme proposed by previous workers [47]. The derivation of the re-scaling scheme

was described in detail in Chapter 2 Section 2.3.3. Three generic reasons for

normalising a system were also offered in that section. Agreement with the methods

used in previous research and a reduction in the number of controlling parameters,

were the primary reasons for the re-scaling used here. Controlling severe divergence in

the numerical solution (the third reason offered) was found to be less of an issue for

the Langevin system used in these SR investigations.

The full re-scaling scheme aimed to render all the components of the Langevin system

dimensionless. The approach primarily concentrated on removing the dimensions of

force from each term in the system model, by finding a suitable mixture of the

existing parameters, which in combination, had the inverse dimension for each term.

A similar approach was used to render the time factor as dimensionless. The now

re-scaled version of the Langevin system was then implemented as part of an encoded

model where solutions were found using a the RK4 method.
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3.3.4 Methods of assessing performance

In this chapter measuring the detection performance of a system based on SR will be

carried out using ROC analysis. The technique of ROC analysis was described in

Chapter 2. ROC analysis is a robust approach to measuring detection performance as

it provides a valid and quantified comparison between widely different detection

schemes and associated signal processing, because the method is independent of the

detection scheme being measured.

3.4 Demonstration of SR in two systems

It is necessary to demonstrate SR in the chosen models to illustrate how a detector

will function, to show how the conditions for SR are met and therefore show how SR

can be controlled and how the model performs as a pre-processing stage before the

detection stage. The first system investigated was the Langevin system (see Equation

(3.2)), and the variation of output S/N with input noise deviation was selected for

investigation because it is the indicator most commonly used to visualise SR.

The Langevin system was configured for the normalised case, where the parameters of

the system were set as α = β = 1. The simulated input signal was composed of two

additive parts, a sine wave and a Gaussian white stochastic (noise) term. The

periodic component amplitude was fixed at a sub-threshold value of 0.18 for all

simulations in this section. The energy barrier height between minima in a bistable

system determines a critical amplitude, above which the system can begin to switch

between energy minima periodically. If the periodic component has an inherent

amplitude greater than this critical or threshold amplitude Ac the behaviour is called

supra-threshold SR. Using Equation (2.33) leads to a value of Ac ≈ 0.385, which is

greater than the periodic amplitude used in this section A = 0.18. The system in this

case is configured to exhibit sub-threshold SR.

76



Using Equation (2.37) and setting the model as a normalised system (α = β = 1) the

Kramers rate for the Langevin configuration used here is kr ≈ 0.22. Recall that

Kramers rate describes the one way transition between two energy minima. One key

condition for SR to exist is that the periodic force must have a frequency f 6 (kr/2).

Note the distinction between the existence of a ‘Kramers rate’ for a system, and the

condition for SR imposed by ‘half the Kramers rate’. The four plots shown in Figure

3.1 illustrate the effect of incrementing the sine wave frequency from f = 0.01045,

which is << half the Kramers rate, to approximately twice the Kramers rate.

(a) (b)

(c) (d)

Figure 3.1: Langevin system SR variation with increasing frequency. Output S/N vari-
ation with noise deviation. The four plots reveal the disappearance of the signature SR
peak as the frequency increases to approximately twice the Kramers rate. a) frequency
= 0.01045, b) 0.03005, c) 0.10975, d) 0.44032. The Langevin system was normalised:
α = β = 1.0, A = 0.18.
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The Kramers rate for the re-scaled dimensionless system described here will always

become asymptotic to the same value because in such a normalised system it is

dependent only on the noise (σ) and is independent of the remaining control

parameters (forcing frequency f and periodic component amplitude A).

Figure 3.1 shows four plots at four different input sine wave frequencies. All four plots

show the S/N (value in decibels, SNR) measured at the output of the Langevin

system, for increasing input additive noise deviation σ. With the sine wave amplitude

fixed constant the input S/N is therefore decreasing as the added noise increases.

Each of the four plots were generated from the average of 30 runs. The precise values

of four chosen frequencies were selected so that the energy in the sine wave falls in the

centre of a frequency bin in the frequency domain, for the fixed sample rate used in

all simulations in this section. This will always be referred to as a ‘bin-centred’

frequency, and was previously described in more detail in Section 3.3.2.

Figure 3.1 plot a) (the lowest frequency) illustrates the existence of SR in a normalised

Langevin system by the presence of a peak in output S/N at noise deviation σ ≈ 1.8.

To the left of the peak there is a sharp decrease in the S/N as input noise reduces. To

the right of the peak the S/N decreases with increasing input noise, but more slowly.

In plot b) the SR peak is still evident but shifted up to an input noise value of

σ ≈ 2.5, and the output S/N at SR peak is lower. Note also that the low S/N point

that occurs before the SR peak has also increased as frequency has increased.

Once the force frequency f becomes equal to, and then exceeds, half the Kramers rate

for the system configuration (plots c and d respectively) then the nature of the output

S/N behaviour changes. The SR peak disappears and the variation in output S/N

becomes monotonically decreasing with increasing input noise. The absence of a SR

peak at the two higher frequency plots (c and d) is as a result of the system being

driven at a frequency either at or significantly above half the Kramers rate, which

violates the SR Kramers rate condition (f 6 kr/2).
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The key observation is that the cause of the disappearance of the SR peak is not

because the output S/N value at the SR peak position has significantly reduced, but

because the output S/N value in the valley to the left of the SR peak dramatically

increases as the force frequency approaches kr/2. At higher frequencies the output

S/N ceases to change with frequency, even at noise levels corresponding to the

position of the ‘valley’. At these higher frequencies it stabilises to a monotonic

variation with input noise level.

The results in Figure 3.1 also indicate the upper frequency bound on the utility of the

Langevin system imposed by half the Kramers rate, assuming any exploitable benefit

exists at or near the stochastic resonant peak. At higher frequencies the system

exhibits linear behaviour. The impact on detection performance for input S/N values

that span the nonlinear and linear behaviours seen in Figure 3.1, is examined in

Section 3.6.

The existence of SR in Duffing is well established [70, 43, 83, 19], consequently this

system was chosen as the next nonlinear system to be considered in the

characterisation of SR for detection, for three reasons. Firstly to provide a

comparison with the Langevin system in order to confirm similarities in SR

behaviours for a functionally similar system configuration. Secondly to introduce the

damping factor as an additional configuration parameter, and demonstrate its impact

on SR. Thirdly to complete the final step towards a practical signal conditioning

system prior to a detection stage, by investigating the so called large parameter SR.

The third reason is investigated fully in Section 3.6.

To compare the SR behaviour of the Duffing system to that of the equivalent

normalised Langevin configuration, all configuration controls for the Duffing system

were set identically to those used for the Langevin investigation described above. As

before the simulated input signal comprises two force terms; a sine wave and a white

Gaussian noise term. All data were generated from 30 averages for each of the

simulation runs. Also as before the output S/N was measured as described in Section
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3.3.2 with the S/N noise bandwidth indicated on all figures. Table 3.1 below

summarises the Duffing configuration.

Parameter/variable Value

Linear coupler α 1

Nonlinear coupler β 1

Sine wave amplitude, A 0.18

Damping factor δ 1

Frequency f 0.01045 and 0.10975

Spectral averages 30

Sample rate 11.11111

Noise Gaussian white

Half the Kramers rate kr ≈ 0.11

Table 3.1: Duffing configuration: Sine wave amplitude set as sub-threshold (A < Ac).
Both frequencies were chosen to be bin-centred in the frequency domain.

(a) Frequency = 0.01045 Hz. (b) Frequency = 0.10975 Hz.

Figure 3.2: Stochastic resonance observed in the Duffing system and compared to
Langevin. Continuous lines (both plots) are re-plots of lower left and lower right plots
of Figure 3.1. 30 data averages at each noise deviation value. (a): Frequency is bin-
centred ≈ (1/10) (kr/2). (b): Frequency ≈ (kr/2), at the onset of linearity.

Figure 3.2 shows results for a configuration of the Duffing system that enables

comparison with the Langevin derived data shown previously. The output S/N curves

for the Duffing system are plotted at two frequencies along with the corresponding

result found previously for the the Langevin system. The corresponding Langevin
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data are repeated from Figure 3.1 plots a) and c), above. The behaviours of the

Duffing system are broadly similar to that observed for the Langevin system.

The impact of varying the damping factor of the Duffing system can now be

examined. The Duffing configuration of Table 3.1 was re-used, with the force

frequency set to f = 0.01045 which meets with the Kramers rate SR condition so SR

is expected. Three output S/N data sets were generated at three different damping

factors. The three cases were; a severely over-damped Duffing system δ = 1.0, the

near-critical damped case δ = 0.5 and an under-damped case δ = 0.2. The three

results are shown in Figure 3.3. The noise deviation value corresponding to the

position of the SR peak in S/N value, is different for each of the three damping cases,

falling at σ ≈ {1.8, 1.4, 1.0} respectively. However the variation in damping has little

effect on the output S/N value at the SR peak.

One approach to designing a practical detector might be to ensure that the onset of

SR occurs at the lowest input S/N possible by severely over damping the nonlinear

system. Controlling SR by the addition of more noise as a third forcing term therefore

becomes attractive as the widest possible range of input S/N values can be

accommodated.

3.4.1 Linear and nonlinear regions

Quantitative comparison of the variation in S/N at input to, and output from, a

nonlinear system reveals the true nature of the behaviour of the nonlinear system as

the input S/N reduces. Similarly, a quantitative comparison of the variation of the

power in the periodic component with that of the noise power at the same frequency,

when viewed separately, provides an explanation of the SR behaviour.

Two signals with different amplitude sine waves were investigated, both amplitudes

were less than the critical amplitude Ac so that both present sub-threshold SR. White

Gaussian noise added as before to make a simulated noisy input signal. The
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Figure 3.3: Stochastic resonance observed in the normalised Duffing system at three
(δ) damping values. 30 data averages at each noise deviation value. Frequency 0.01045
Hz, is bin-centred ≈ (1/10) (kr/2). Configuration: α = β = 1, sine wave amplitude is
sub-threshold at A = 0.18

normalised Langevin system was used as the pre-processor and the output time-series

was transformed to the frequency domain. The input noise deviation was incremented

for between simulation runs, with data obtained from 30 averages at each deviation

value. Narrowband S/N values were measured as previously described, from the

frequency transformed and averaged data. In addition the input S/N’s were also

measured from frequency transformed input signal data, averaged in the same way.

The signal generation sample rate and numerical solver step size were selected to

ensure the same noise bandwidth existed for input S/N calculations as for output

S/N’s.

The input and output data were plotted as S/N versus noise deviation in Figure 3.4,

plot a) at sine wave amplitude A = 0.3 and plot b) at A = 0.1. In both plots, at no

point does the output S/N level exceed that of the input S/N, for the sine wave in

white Gaussian noise case. The lack of input/output gain in this sub-threshold SR,

simulated input signal case is in agreement with previous findings [103, 25]. Figure

3.4 further indicates that no improved detection performance should be expected
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when operating at the SR peak. This finding is considered further in Section 3.5, by

quantifying the detection performance for different input signal types .

(a) Input amplitude A = 0.30 (b) Input amplitude A = 0.10

Figure 3.4: Nonlinear regions of output S/N. Stochastic resonance observed in the
Langevin system. Frequency = 0.01045 Hz. α = β = δ = 1. S/N calculated using
30 realisations at each noise deviation value. Periodic component, critical amplitude
Ac = 0.345.

The concept that SR is a ‘peak’ in output S/N that may provide some benefit for

weak signal detection can now be challenged. Figure 3.4 supports an alternative view,

the case for this proceeds as follows. The output S/N at first follows a gradual

monotonic reduction in both plots of Figure 3.4, as the input S/N (noise deviation at

a fixed sine wave amplitude) reduces. In plot (a), where A = 0.3, the gradual

monotonic reduction abruptly changes at a noise deviation σ ≈ 0.3. In plot (b)

(A = 0.1) the same abrupt change occurs at σ ≈ 0.65. At higher deviation values the

abrupt change manifests as a sudden and significant reduction in output S/N. The

tentative finding is that the input noise deviation value where this sudden reduction

in output S/N occurs, appears to be inversely dependent on the amplitude of the sine

wave component of the input simulated signal.

After the large reduction the output S/N then recovers back to close to the linear

behaviour (exhibited by the continuous line, input snr curves), as the noise deviation

increases. The nonlinear behaviour of the output from a Langevin system configured
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for SR can now be seen as comprising three regions (near-linear, nonlinear, linear)

that occur in a sequence that corresponds to three input S/N regimes (high, medium,

low). Therefore, rather than consider SR as a ‘peak’ in output S/N at specific noise

deviation values, it should be more accurately considered as generating a collapse in

output S/N at lower, but equally specific noise deviation values corresponding to the

‘nonlinear’ region described above. For the input signal type and Langevin system

configuration used to generate Figure 3.4, the near-linear, nonlinear, linear regions

are; plot (a) σ = {< 0.3, 0.3to ∼ 2.5, > 2.5}, and (b) σ = {< 0.65, 0.65to ∼ 3.0, > 3.0}

Examination of the amplitude of the sine wave at the output compared to the noise

floor reveals the origin of the collapse in output S/N. The averaged data used above

to calculate the output S/N at each noise deviation increment (Figure 3.4) were

separated into two sets of power spectrum levels, the measured noise-only power and

the sine wave plus noise power. This was carried out for both input sine wave

amplitude cases.

The separated power data plotted against noise deviation value are shown in Figure

3.5, plot (a) for the input sine wave amplitude A = 0.3 case and plot (b) for A = 0.1.

Both plots show a variable but always positive, difference between the signal and

noise power curves. Note that the S/N dashed lines of Figure 3.4 equate to this

difference. The noise power (dashed lines) exhibit an abrupt increase at the same

deviation values as the dip in S/N found earlier. At a slightly higher noise deviation

there is an equally sudden increase in output sine wave power. At still higher

deviation values the difference in the two power curves reaches a second maximum

(the first being at extremely low σ). The (second) maxima for the two input

amplitude cases occur at σ ≈ 1.8 in plot (a) and σ ≈ 2.0 in plot (b), which agrees

with the two corresponding SR peaks shown in Figure 3.4 earlier.

It can now be seen that the primary cause of the collapse in output S/N is shown to

be a sudden increase in the noise floor, which occurs at slightly higher input S/N
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(a) Input amplitude A = 0.30 (b) Input amplitude A = 0.10

Figure 3.5: Output signal amplitude and noise power spectral levels. Drive frequency
f = 0.01045 α = β = 1.0, S/N calculated using 30 realisations at each input noise
deviation level.

values (i.e. ‘earlier’ in terms of noise deviation) than for the increase in sine wave

amplitude. As the noise deviation increases the energy in the system also increases to

a value sufficient to cause random transition between the two potential energy

minima in the bistable system, whether the periodic component is present at the

input or not. The result is the sudden ‘cliff face’ as the noise floor power increases

dramatically. The narrowband signal power also exhibits a sudden increase for the

same reason, but this increase lags the onset of the noise-only transitions. The S/N is

the ratio of the noise power and signal power shown in Figure 3.5, and it is the lag

between the increases in these two powers which causes a collapse in output S/N.

3.5 Detection performance: Normalised systems

3.5.1 Simple detection performance

In the preceding sections some key nonlinear system behaviours and underlying

causes of the SR effect were established. Some insight into controlling the occurrence

of SR by varying some system parameters was also gained. In this section the basic

detection performance for an input signal composed of white Gaussian noise and a
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sine wave can now be quantified. The two force terms of the Langevin system shown

in Equation (3.2) and described in Section 3.3.1 (noise and the periodic component)

represent the input signal, where the noise term (n (t)) is Gaussian white noise and

the periodic term is a sinusoid with; A = 0.04 and φ = 0. The sine wave amplitude

and additive noise are both sub-threshold. The optimum performance of the detector

is expected when the preceding nonlinear stochastic resonant signal conditioning stage

achieves its best output S/N. To test this the detection performance is measured

using ROC analysis, at three input signal to noise ratios as indicated by the three

noise deviation values of Figure 3.7.

Detection is achieved by transforming the time-series output of the nonlinear system

into the frequency domain, and selecting a threshold for the frequency bin

corresponding to the sine wave frequency. A detection scheme of this type clearly

does not represent a real practical detection system because prior knowledge of the

frequency bin where the sine wave will occur is used to perform the ‘signal present’ or

‘signal absent’ counts that form the basis of the ROC analysis. However the approach

adopted here does provide a benchmark ROC comparison method (albeit favourably

offset from the expected ROC of a realistic system), where all the factors affecting

ROC are controlled. The ROC analysis comprises a pair of simulation runs, one with

signal present and one with it absent. A single independent white Gaussian noise

realisation is generated for each iteration pair, the same noise is used in both runs.

The simulated noise is re-seeded and re-generated between iteration run pairs to

produce independent but identically distributed noise.

The assumption that SR enhances detection performance can now be tested. In order

to demonstrate the impact on the ROC curves it is necessary to reduce the input S/N

compared to that used previously in this chapter, so that the ROC curves are

positioned to clearly reveal any differences resulting from different system

configurations and detection schemes. ROC curves can be viewed as encapsulating

information on how separated the signal-plus-noise amplitude distribution is from the
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noise-only amplitude distribution. The S/N metric also encapsulates information from

the same amplitude distributions. However, it is more analogous to measuring how

different the mean value of the amplitude distributions of both the signal-only and

noise-only cases are. If no averaging is used the S/N metric measures a single

snapshot of the separation of the amplitude values of the two cases at one point in

time. At high S/N the well separated distributions will generate ROC curves with

near maximum true positive rates approaching 1.0 even at almost zero false alarm

rates. This type of curve presents on the ROC plot at an extreme position to the left

and top of the graph area. In this ‘perfect detection performance’ state, additional

changes to the system intended to separate signal and noise still further may well

succeed but the change cannot improve the ROC curve position any further.

Similarly, very low input S/N values correspond to ROC curves that form a straight

diagonal line from bottom left to top right of the ROC curve plot, and additional

system changes detrimental to the detection performance cannot degrade the ROC

curve position any further.

It has been shown in previous sections that the occurrence of SR in relation to the

input noise deviation can be varied by changing the sine wave amplitude, but remain

sub-threshold This provides a useful control to tune the position of the ROC curves

on the ROC analysis plot in order that they do not present at either of the two

extremes described above. In this way all the resulting ROC curves positions can be

tuned to present on a ROC plot in positions that usefully reveal the effect of smaller

variations in input S/N. This will not affect the positioning of the ROC curves

relative to each other, performance comparisons are therefore robust.

The normalised Langevin configuration was used, the drive frequency chosen as

f = 0.01045. In order to tune the ROC curve positions a good input sine wave

amplitude was found by trial and error to be A = 1.0, which is sub-threshold and

reduced to about 1/4 the critical amplitude. The system energy barrier height is fixed

and transition between stable minima requires the same energy as before. Therefore a
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consequence of the sine wave amplitude reduction is that larger noise deviations were

required to initiate SR, in other words the SR peak occurs at higher noise deviation

values and lower input S/N.

σ = 0.92

σ = 1.8

Figure 3.6: Output narrowband S/N variation with noise deviation. Normalised
Langevin system α = β = 1.0, frequency f = 0.01045, sine wave amplitude A = 0.1.
The indicated noise deviation values; (σ = 0.92 and σ = 1.8) were used in generating
the ROC curves of Figure 3.7.

The output S/N variation as a function of input noise deviation was found first and is

plotted in Figure 3.6. Two noise deviation values were selected from Figure 3.6, at the

minimum and (SR) maximum output S/N. The minimum in output S/N at σ = 0.92

corresponds to higher input S/N compared to the SR maximum in output S/N (at

σ = 1.80). ROC analyses using 500 realisations were carried out at the selected

deviation levels, with and without the Langevin system pre-processing stage present

in the detection processing chain.

The processing chain with the Langevin pre-processing stage removed forms a linear

detection scheme. The detection performance of this linear system was obtained by

ROC analysis, and the resulting ROC curves are the benchmark representing the

performance of a commonly used linear detection approach. Since the input signal is
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white Gaussian noise added to a sine wave, near optimal detection performance is

expected from the linear detection scheme.

Figure 3.7: ROC Analysis. At two noise deviation values, FFT only (benchmark)
ROC curves included for performance comparison. ROC curves generated using 500
realisations. Normalised Langevin system detection performance, and compared to the
linear benchmark case (FFT only with no Langevin pre-processing). Low input S/N
with sine wave amplitude A = 0.1 < Ac ≈ 0.385. Frequency of sine wave meets the
Kramers rate condition (f = 0.01045 << (1/2) kr ≈ 0.225 ).

Figure 3.7 shows two pairs of ROC curves. The first pair measure the detection

performance at an input noise deviation of σ = 0.92 (filled dot marks), and the second

pair at an input deviation of σ = 1.8 (‘plus’ symbol marks). The lower deviation value

corresponds to the extreme collapse in output S/N, in the nonlinear region described

in Section 3.4.1. The higher value marks the SR peak, the maximum in output S/N

for this system. The two ROC curves for the Langevin pre-processor configuration

show very poor performance in general, and always worse than the benchmark

detection configuration. At the SR peak point the Langevin ROC curve is nearly
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symmetric about anti-diagonal line, and indicates a significantly better performance

at low false positive rates than the Langevin ROC measured when the output S/N is

low (σ = 0.92).

The severe asymmetry in the ROC curve measured for an input noise of σ = 0.92 can

be explained as follows. The significant reduction in output S/N occurs over the noise

deviation region 0.5 to 1.2 (Figure 3.6), where the nonlinear system exhibits almost

no transitions between the two energy minima because the energy of the input signal

is too low. The system dynamics are confined to a trajectory that is almost

exclusively contained within one energy well. At noise deviation values higher than

∼ 1.2 the system begins to transition between wells increasingly more frequently, and

at first the timing of the transitions is almost exclusively random.

At deviations between σ ∼ 1.2 and about 1.8 the system spends periods either

transitioning with the sine wave frequency, or oscillating at the sine wave frequency

within one energy well, or randomly transitioning between wells or even transitioning

at rates other than the input sine wave frequency. The length of time the system

spends in any of these states is random, and the change to another of the states is

also random. However the proportion of the total time spent in the first state begins

to increase with increasing input deviation. As the input noise approaches σ = 1.8 the

first state becomes dominant until it is the only state, at SR.

As the system starts to transition the amplitude distributions for both the noise-only

(N) and (at a slight lagged time) the signal-plus-noise (S+N) become bimodal. This

represents the two distinct amplitudes, one associated with noisy oscillations within a

single energy well and the higher amplitude mode associated with transitioning (noisy

oscillations between wells). The morphing system states described above manifest as

a growing second peak and a reducing first peak, in both bimodal distributions (N

and S+N), as the input noise level increases. The original first peak in the two

amplitude distributions has largely disappeared at σ = 1.8 i.e at the SR and the

system reverts to a mono-modal distribution.
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Incrementing a single threshold across bimodal (N and S+N) amplitude distributions

to generate the ROC data results in quite large and rapid increases in the number of

False Positive counts (FP) at low False Positive Rates (FPR). This leads to a collapse

in the ROC curve at low FPR. This effect is clearly seen on the ROC analysis of

Figure 3.7 in the curve for the Langevin system at input noise σ = 0.92, where the

collapse occurs at FPR below about 0.15. The asymmetry in that Langevin ROC

curve results from an equally sudden recovery of the ROC curve back to an

apparently better detection performance, at FPR higher than about 0.15. The FPR

value at which the ROC curve transitions from very poor (low detection performance)

True Positive Rate (TPR) values to very good TPR’s forming the asymmetric ‘S’

shape, is believed to depend on how well separated the second ‘N’ mode is from the

the first ‘S+N’ mode.

While the ROC curves shown in Figure 3.7 is valid as far as a single threshold (binary

decision) detector is concerned, it is possible that a more sophisticated detector might

generate better detection performance. For example, one option is to add a further

processing step at the output of the nonlinear system, to separate transitioning and

non-transitioning time-series’, treating each to its own binary detector.

3.5.2 Impulsive noise

The input signal used in the simulations of the preceding sections of this chapter have

all used the additive combination of Gaussian white noise with a sinusoid, where the

Gaussian noise acted as a simulation of real noise. For underwater signal detection it

is often the case that the background noise can be made up of many different types of

source [104]. Under certain conditions the noise background has been shown to be

anything but Gaussian [105]. Rayleigh-mixture, K distribution and log-normal

(impulsive) have all be found to be a better fit to the statistics of some types of

underwater noise, when compared to the Gaussian model.
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The contributors to underwater ambient noise were introduced in Section 3.1. In this

section one particular type of underwater background noise is considered. Biological

noise can vary in frequency content, loudness and localisation, all depending on the

particular sound generating species. One of the loudest sounds is generated by the

snapping or pistol shrimp (Family: Alpheidae, with more than 1000 species), making

a highly impulsive noise. The sound made by dense colonies of snapping shrimp can

present some of the most extreme and challenging conditions for detecting an acoustic

signal of interest. The sound is generated by a triggered closure of one of the shrimps

claws creating a cavitation bubble that collapses to produce the main impulse noise

spike [106]. The result is a very loud click or impulsive noise. The sound levels of

groups of snapping shrimp have been quantified in order to understand the impact on

sonar [107]. Simulating the main impulse noise event, and measuring its impact on

the ability to detect a sine wave is the subject of this section.

The simulated signal mixture comprises three additive components; white Gaussian

noise, a single tone and simulated impulsive noise. The mixture is artificially

generated and input to the Langevin system. Inspection of a typical snapping shrimp

impulse time-series shows initial large, finite time length, positive and negative going

components with a longer and smaller amplitude noisy decaying oscillating tail. The

initial positive and negative components can be modelled using an extremely low

variance Gaussian distribution function (Equation (3.4)). The coded implementation

of the impulse signal generation runs two Gaussian functions, one positive going and

one negative going, with a fixed but very small time (three sample points) gap

between them.

The generator then stitches together first the positive spike then the negative spike.

The size of any one spike in the whole sequence is controlled by three factors; the noise

deviation value that generates the Gaussian white noise (added later), a spike size

factor randomly selected from between 0.1 and 8 and a third fixed multiplier of size 6.

The last factor ensures the spike levels appear considerably larger than the Gaussian
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noise deviation. The inclusion of the Gaussian noise deviation as a factor ensures the

impulsive noise power scales linearly as the added Gaussian noise level increases. The

time between spike pairs is also uniformly random. The signal generation code allows

selection of the density of spike pairs in a given overall time length. The impulsive

noise sequence is then added to the sine wave and the white Gaussian noise sequences.

It =

(
1

a
√
π

)
e−(t/a)

2

(3.4)

The combined input signal comprising the three parts is shown as a time-series in

Figure 3.8, for the noise deviation σ = 1.8.

The two noise deviation values corresponding to the lowest and the peak output S/N

values, were found in the same way described in Section 3.5.1, by generating a plot of

output S/N variation as a function of input noise deviation at fixed sine wave

amplitude. The impulsive noise controls were fixed throughout but the impulse noise

scales as σ increases as described above. The ROC analysis was carried out in the

same way as described in Section 3.5.1 and the results presented in Figure 3.10.

The time-series shown in Figure 3.8 qualitatively illustrates the essential feature of

impulsive noise, the presence of large excursions in amplitude. The amplitude

distribution function of impulsive noise is therefore characterised by longer tails,

compared to the normal distribution function. This feature can be quantified by the

kurtosis measure. Unfortunately there are a number of ways of defining kurtosis. The

measure of excess kurtosis is chosen to quantify all the simulated impulsive signals

that are used in this thesis. The kurtosis of a normal distribution is 3, term ‘excess’

kurtosis simply measures the kurtosis value over and above that found for a normal

distribution. Consequently a positive excess is more impulsive than a signal having a

normal distribution, and a negative value, less impulsive. The definition of kurtosis

(and therefore excess kurtosis) used in this thesis is based on the fourth standardised

moment ye (kurtosis), minus 3. The fourth standardised moment is defined as the

ratio of the fourth central moment µ4 to the fourth power of the standard deviation
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σ4. This definition is summarised in Equation (3.5) below, where for n samples of

data xi:

ye =
(µ4
σ4

)
− 3 (3.5)

Where the fourth central moment is ‘centred’ about the mean µ of the data xi:

µ4 =

(
1

n

)( n∑
i=1

(xi − µ)4
)

(3.6)

Figure 3.8: Time-series of the input signal. Signal comprises Gaussian noise at σ = 1.8,
sine wave at f = 0.01045 and A = 0.1, and impulsive noise (arbitrary spike density
factor = 65, spike size = 6 × σ× rand(0.1 to 8) ). Variance of the combined additive
simulated input signal data was measured as σ2 = 3.88. Excess kurtosis as defined in
Equations (3.5) and (3.6) ye = 17.44.

The detection performance of the detector with Langevin pre-processing is shown by

the results in Figure 3.10 to be always worse than the benchmark linear system in

both deviation cases, as indicated by their lower ROC curves. The orthogonal
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σ = 0.92

σ = 1.8

Figure 3.9: Output narrowband S/N variation with noise deviation. Normalised
Langevin system α = β = 1.0, frequency f = 0.01045, sine wave amplitude A = 0.1.
The indicated noise deviation values; (σ = 0.92 and σ = 1.8) were used in generating
the ROC curves of Figure 3.10.

pairwise comparison of the performance of the linear system at the two deviations

shows worse detection performance at the higher input noise deviation σ = 1.8, which

is expected. However the pairwise comparison of the performance with Langevin

pre-processing shows the reversed situation. The ROC curve for the higher input

noise deviation shows better detection performance over the σ = 0.92 case. However

this counter-intuitive result should be expected from inspection of Figure 3.9 where

the output S/N is highest at input σ = 1.8.

There is some asymmetry in the curve for the Langevin low input deviation case

(σ = 0.92) but less than can be seen for the corresponding curve (Langvin, low input

deviation) in the Gaussian-only noise used in the previous section in Figure 3.10.

Without further investigation of the distributions at in the nonlinear region it is

unsafe to draw any general conclusion linking the use of impulsive noise to a

reduction in ROC curve asymmetry.
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Figure 3.10: ROC Analysis. At two noise deviation values, FFT only (benchmark)
ROC curves included for performance comparison. ROC curves generated using 500
realisations. Normalised Langevin system detection performance, and compared to the
linear benchmark case (FFT only with no Langevin pre-processing). Low input S/N
with sine wave amplitude A0 = 0.1 < Ac ≈ 0.385. Frequency of sine wave meets the
Kramers rate condition (f = 0.01045 << (1/2) kr ≈ 0.225 ).

3.5.3 Harmonic input

By considering a noise free sinusoidal input the harmonic nature of the output from a

nonlinear system operating at or near SR can be observed. Figure 3.11 demonstrates

the nature of the time-series and spectrum of the output when operating at the SR

peak and near the upper bound of the sub-threshold sine wave amplitude case.

Figure 3.11 motivates the possibility that a nonlinear system will respond to a general

periodic signal consisting of a tone plus harmonics, i.e by acting as a better

time-domain matched filter. A stochastic resonant pre-processor might provide

improved detection performance for such harmonic signal mixtures. As a test of this

idea a square wave was considered as an example of periodic input signal with a
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(a) (b)

Figure 3.11: Output from a Langevin system when driven by a sinusoid with no noise.
(a) Periodic displacement time-series output from the system. (b) Unscaled power
spectrum, the Fourier transform of the displacement time-series. The amplitude of
this single forcing term is sub-threshold but large enough to cause periodic transition
between energy minima.

harmonic set.

Harmonic input to a nonlinear system in the form of a square wave with additive noise

has been investigated in two publications [108, 45]. Their focus was amplification and

gain respectively, but not detection performance. Amplification of an input

rectangular (square) wave without significant distortion of the waveform at the output

has been studied in very restrictive circumstances [108]. In particular a relatively high

S/N (high for signal detection problems). That a high S/N input square wave whose

fundamental frequency has amplitude that is just sub-threshold, produces periodic

transition should not be a surprise. The more relevant finding is that the addition of

increasing noise distorts the output so that it no longer resembles a square wave.

Casado et al. [45] found that the inter-well and intra-well dwell time were

independently variable and related to the shape of the energy function in the low

energy minima, and the strength of both the noise and the signal. They further

showed that under certain conditions a Langevin system driven by a square wave of

duty cycle one, and white noise in a sub threshold SR configuration, gains greater the

unity are possible. This appears to be consistent with previous results [108].
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It may not be possible to easily improve detection performance by changing the filter

matching prior to the simple binary threshold decision detector. It would be necessary

to change from a Fourier transform (effectively this is sine wave replica matching) to a

more complex filter using harmonics that adapts depending on the input S/N.

However the nonlinear system may exhibit a different mix of harmonic amplitudes at

the output if the input changes from sinusoidal to harmonic. The aim of this section

therefore is to investigate the response of the nonlinear system to harmonic input,

rather than consider harmonic filters to match the output of the nonlinear system.

Two sub-threshold amplitude cases are considered in this section; very low amplitude

(A << AC) and high input amplitude where A ≈ 0.7Ac. A sinusoidal and square

wave input were generated for both cases so that the behaviour of the system with

square wave input could be compared to the sine wave case. A suitable square wave

can be generated by using the odd harmonics of a chosen fundamental frequency sine

wave. The peak amplitude of the fundamental and all odd harmonics in a square

wave are given by Equation (3.7), where k is a positive integer that represents the

fundamental and odd harmonics number, such that k = {1, 2, 3, ...}. The input signals

(square or sine) were configured so that their respective peak excursions (overall

amplitudes) were different in order that the amplitude of the fundamental frequency

of the square wave was constrained to be identical to that of the sinusoidal input.

This configuration compensates for the difference in amplitudes at the fundamental

(k = 1) by a factor of (4/π) encapsulated in Equation (3.7).

Ak =

(
4

π

)
.

1

(2k − 1)
(3.7)

The sine wave amplitude for the low input signal amplitude (A << Ac) was set as

A = 0.1. The corresponding square wave amplitude required to maintain the same

amplitude at the fundamental was therefore calculated and set as A = 0.0785398. At
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the larger input signal case the two amplitudes were set as A = 1.8 and for the square

wave as A = 0.14137. The frequency was set as f = 0.0131 and the normalised

Langevin system configured by setting α = β = δ = 1. Plots of output S/N as a

function of input noise deviation were generated from 30 averaged realisations. The

square wave and the sine wave case for the low input are shown in Figure 3.12 and

the high input amplitude case is shown in Figure 3.13.

In both amplitude cases it is clear there is no significant difference in the SR

behaviour between sine or square wave input. Comparison of the square wave data

with the sine wave data in each amplitude cases, shows good alignment of the two

curves. The onset of the nonlinear region at σ > 0.7 is almost identical for pairwise

curve comparison in the low amplitude case (Figure 3.12). It is also identical in the

high input amplitude case but nonlinearity commences at lower deviation, σ > 0.6.

(a) (b)

Figure 3.12: Langevin system SR for two types of input periodic component, single
sinusoidal tone and square-wave. Variation with additive noise deviation value, at
fixed amplitude periodic component for the low amplitude input case (A << Ac).
(a): Output amplitude variation with noise. (b): Output S/N variation with noise.
Frequency 0.0131. Normalised Langevin system α = β = 1.0, δ = 1.0.

Three noise deviation values can be selected based on the configuration for SR shown

in Figure 3.12, notably that the amplitude of the periodic component was set at

A = 0.10 for the sine wave and A = 0.0785398 for the square wave. Recall the
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Figure 3.13: Langevin system SR for two types of input periodic component, single
sinusoidal tone and square-wave. Variation of output S/N with additive noise deviation
value, at fixed amplitude periodic component for the HIGH amplitude input case (A ≈
0.7Ac). Peak amplitude sine wave A = 0.18, peak amplitude of the square wave signal
A = 0.14137. Frequency0.0131. Normalised Langevin system α = β = 1.0, δ = 1.0.

threshold amplitude for a single (periodic) force term is Ac = 0.385 (for the

normalised Langevin system used here), as outlined in Section 2.4.3 Equation (2.33).

The detection performance is quantified by the calculation of ROC curves, for the

case of the square wave this was measured using only the frequency bin corresponding

to the fundamental frequency of the square wave. Statistical amplitude count data

were not collected at the other harmonic frequencies. For the reasons described in

Section 3.5.1 the lower input amplitude case was chosen for the comparison of

detection performance by ROC analysis.
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Figure 3.14: ROC curves: Comparing square wave input to sine wave input, both with
white Gaussian noise. Analyses at three harmonic signal to additive noise power ratio’s,
corresponding to the three noise deviation values σ = 0.8, 0.95, 2.2. Input amplitudes
correspond to the low amplitude case of Figure 3.12. Fundamental input frequency
f = 0.0131 , normalised Langevin: α = β = δ = 1.
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Inspection of the ROC curves of Figure 3.14 shows no obvious difference in the

detection performance for a square wave input compared to a sine wave input, at low

input amplitude (A << Ac). The comparison holds at all three input noise deviation

values considered; σ = {0.8, 0.95, 2.2}. In this comparison the amplitude of the square

wave fundamental frequency is the same as the sine wave amplitude. The results show

nothing that was not expected from the nonlinear system output S/N behaviour seen

in Figures 3.13 and 3.12 (b).

The ROC curve for the minima in output S/N case (σ = 0.95), exhibits the same

asymmetric form seen in Figure 3.7, suggesting that using a square wave input also

results in a bimodal amplitude distribution.

The data presented in this section so far provides some evidence that additional

energy input in the form of higher harmonics, does not alter the SR behaviour or

detection performance as measured at the fundamental frequency. However, the

second and third harmonics of a square wave have amplitudes one third and one fifth

that of the fundamental respectively. It is possible the energy supplied by these

higher harmonics is insufficient to have an effect. An input signal comprising of six

equal amplitude harmonics, identical to the amplitude used in Figure 3.14, was also

investigated. The six-harmonic test signal was configured to contain even as well as

only the odd harmonics normally present in a square wave.

The ROC’s for two input cases, sine wave or six equal amplitude harmonics, were

computed at the SR peak corresponding to a noise deviation σ = 2.2 and are shown

in Figure 3.15. The normalised Langevin system was used in both cases, the

frequency was set at f = 0.0131 and the amplitude of the sine wave and also all six

harmonics was set as A = 0.10. For the harmonic input the ROC analysis considered

the amplitude in only the frequency bin corresponding to the fundamental frequency.

The detection performance measured for the two input signal types are very similar.

There is no evidence in the ROC analysis for an effect on the amplitude of the
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Figure 3.15: ROC curves: Harmonic input (six equi-amplitude harmonics) compared
to single tone input. Analysis at SR peak corresponding to the noise deviation values
σ = 2.2. Input amplitudes correspond to the low amplitude case of Figure 3.12, A =
0.10. Fundamental and sinusoidal input frequency f = 0.0131 Hz.

fundamental output tone at the SR peak, when higher harmonics of that frequency are

added to the input tone. The tests presented in this section do not provide sufficient

evidence that the nature of the stochastic resonant output at one frequency from a

nonlinear system is affected by energy from elsewhere in the frequency spectrum.

3.6 Discussion

The signature increase in output S/N as the input S/N decreases, that marks the SR

peak, has motivated the suggestion that SR may often provide an exploitable benefit

when detecting weak signals. However no evidence was found that using a nonlinear

system in this way generates any significant or useful enhancement in detection

performance compared to conventional processing by the Fourier transform, for the
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range of scenarios and system configurations examined. Even if increased performance

had been demonstrated, configuring the nonlinear system to maintain the best level of

performance over a usefully large proportion of configuration space (frequency, input

S/N, etc) remains a problem because of the large number of inter-dependent system

parameters that need configuring.

The chapter investigated some of the nonlinear system behaviours associated with SR.

The counter-intuitive increase in output S/N for a decrease in input S/N is mirrored

in the ROC analyses. Better detection performance is found at the SR peak where the

input S/N is lower, compared to the performance measured at the minimum in output

S/N in the nonlinear region, where the input S/N is higher. However, a conventional

FFT always performs better in all the test scenarios investigated in this chapter.

The output S/N is never greater than the input S/N (at the identical noise

bandwidth) for the sub-threshold configurations investigated. Figure 3.4 compares

input and output S/N and highlights that rather than SR occurring as a peak in

‘performance’ it should more correctly be considered as a recovery back to a state

that is very similar to linearity after a nonlinear region of reduced output S/N. When

viewed in this way it is no longer surprising that ROC analyses carried out at SR (the

peak in output S/N), shows that pre-processing using an SR system does not

out-perform the linear detector (one without nonlinear SR pre-processing).

Most of the work in this chapter has used dimensionless nonlinear systems, and

re-scaling factors for the system variables and parameters were found. By removing

these re-scaling factors it is possible to build a practical a system that uses the

mechanism of SR as a pre-processing stage prior to a detection stage, that is not

constrained to detecting extremely low frequencies outside most practical use.

However the dimensionless version of the system will capture the same behaviours as

the same system that was not made dimensionless. Therefore no change in detection

performance should be expected from the large parameter nonlinear SR system

compared to its dimensionless form.
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Harmonic input to a stochastic resonant system was investigated in order to explore

whether additional energy in other parts of the frequency spectrum might alter the

detection performance at the fundamental frequency of an input. The ROC analyses

conducted at the fundamental frequency demonstrated no performance enhancement

compared to the single tone input case. The interpretation that energy does not

transfer between frequencies in a nonlinear stochastic resonant system is very

tentative, given the narrow range of scenarios simulated.

Stochastic resonance can be considered as a recovery back to linearity from a region

of extreme nonlinearity. But there are many other nonlinear behaviours that the same

models (Duffing and Langevin) can exhibit. In the next chapter a different transition

mechanism is considered for its potential to improve detection performance for weak

signals. Specifically the transition from chaotic system dynamics to stable dynamics is

investigated.
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Chapter 4

Stable Limit Cycle Transition

4.1 Introduction, aims and outline

The nonlinear mechanism considered in the previous chapter was stochastic resonance

which is initiated by forcing the system with sufficient noise to cause transition

between stable potential energy minima separated by a barrier of higher energy. The

transitions are made periodic by the presence of a second, periodic forcing term. The

Duffing system can achieve another stable state quite distinct from the bistable

configuration considered in the last chapter. At higher energy the system becomes

chaotic, as input forcing energy becomes higher still the system can transition from

chaotic instability to a stable energy state. This stable state is not a stable point but

fixed trajectory in the system dynamics known as a limit cycle. This transition from

chaos to a limit cycle was introduced in Chapter 2, and is the main focus of the

investigation described in this chapter.

The Duffing nonlinear system model is arguably the most frequently investigated

system in the context of nonlinear behaviours and also as part of a detector of weak

signals. However, much less so in the context of underwater signal detection. The

research reported here uses the Duffing model model to investigate the behaviours

associated with the transition, and the impact on detection performance. The
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transition mechanism has often been described as a ‘detector’ of weak signals,

however the mechanism does not decide the presence of a signal it merely responds to

it. Therefore to remain consistent with the terminology used in Chapter 3 the term

pre-processor will continue to be used, but in this chapter it is applied to a nonlinear

Duffing system configured for chaos-to-stable transition.

Some of the claims for the improvement in detection using nonlinear systems were

reviewed in Chapter 2. In many cases the improvement is described only in

qualitative terms. In some cases the signal-to-noise (S/N) metric is used as a measure

of detection performance. Only in one or two cases is ROC analysis used, and only for

the simplest input signal case of a sine wave with added Gaussian noise. The main

aim of this chapter is to measure detection performance with the nonlinear

pre-processor in place, for a range of input signal cases, using ROC analysis as the

most robust metric.

4.2 Methods

The behaviours of a nonlinear system are controlled by the parameters of the system.

The parameters of a system model such as the Duffing equation can be a constant

multiplier on the individual additive components and variables. More complicated

behaviour can be generated by changing the parameters to be time dependent or

dependent on the existing variable. Surveying changes of state in parameter space is

therefore a useful means of visualising the dependence of behaviour on model

configuration. Scaler parameter space does not say anything about how the state of

the system varies with time. A common method of visualising the system state

variation in time is phase space [90, 84]. Both methods of revealing system behaviours

are used in this chapter.

The detection performance of a conventionally optimal detector increases as the data

length of a stationary signal in Gaussian noise increases. Prior work [20] has

108



suggested this is not true for the stochastic resonance detection mechanism in the

Duffing system. One of the aims in the current chapter is to discover whether this

assertion of constant detection performance is also true for the transition mechanism.

Using a nonlinear transition technique to detect signals, and assuming constant

detection performance with input data length, suggests the potential for an

increasingly favourable comparison with a conventional optimal matched filter for

shorter data input lengths.

4.2.1 The Duffing model

The Duffing system will be used throughout this chapter as the basis for investigating

the chaos-to-stable transition. Most of the relevant prior work that considers this

transition, which was introduced in Chapter 2, uses the Duffing model. The initial

definition of the model was also introduced in Chapter 2, with a specific

implementation re-defined for use in the SR investigations in the previous chapter

(Section 3.3.1). The version used in this chapter differs from that used in the previous

chapter because here three driving terms will be used, two periodic and one

stochastic. The first periodic drive term is referred to as the internal drive term, the

other two terms represent the input signal as an additive combination of noise and

periodic terms. The system is described below, with the full definition used in this

chapter shown as Equation (4.1).

ẍ+ δẋ− αx+ βx3 = γ cos (2πf0t+ φ0) + Fi (t)

ẍ+ δẋ− αx+ βx3 = γ cos (2πf0t+ φ0) +A cos (2πft+ φi) + n (t) (4.1)

where:-

γ cos (2πf0t+ φ0) = Configurable periodic force term, internal to the system
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and:-

Fi = A cos (2πft+ φi) + n (t)

A cos (2πft+ φi) = Input signal: periodic component

n (t) = Input signal: noise component

 (4.2)

The input periodic force term amplitude A can take any value however there is a

minimum value that is just sufficient to cause transition to the limit cycle, Am. This

is discussed in detail in Section 4.2.3 below. Note that the form of the homogeneous

part of the Duffing system used here, differs from the original definition, by a change

of sign of the linear stiffness force term αx. The original form published by Georg

Duffing in 1918 (Original in German, referenced in [91, 37]), and the form used here,

are shown together below for ease of comparison (with only one force term for

simplicity).

ẍ+ δẋ+ αx+ βx3 = γ cos (2πft) Duffing’s original

ẍ+ δẋ− αx+ βx3 = γ cos (2πft)

The consensus in published work that considers the original form of the Duffing

equation designates it as a ‘hardening’ system when the linear and nonlinear stiffness

scalers are set as α > 0 and β > 0, and as a ‘softening’ system when α > 0 but β < 0

[39](chapter 5) and [91, 109, 110]. To date no publications considering the form of the

Duffing used here where α is negative, have been found describing that form of the

system as either hardening (α < 0 , β > 0) or softening (α < 0 , β < 0)

To make a pre-processor using the Duffing system requires a method of solving the

Equation (4.2) over time. However, the solver method chosen must be flexible enough

to allow parameter modification and also the input of both real and simulated

discrete input data (represented by the Fi forcing terms). This means the

implemented numerical solver must manage input sets of discrete real-signal samples,
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at the same time as data generated using the signal generation function libraries.

A suitable and comprehensive analytic solution to the Duffing equation is also not

available, however restricted scope solutions are possible. Local linearisation

techniques based on a Taylor expansion and taking the Jacobian of the system

(Lyapunov’s First Method; see Chapter 6 [111]) can provide analytic solutions over a

very small region about selected fixed points. Other methods based on a Volterra

series expansion [112, 110] and the Laplace Decomposition Algorithm [113], have also

been studied. The work reported in this chapter therefore uses a specially written

numerical solver, which implements the ‘classic’ or ‘original’ four stage fixed step

Runge-Kutta numerical method (RK4). The RK4 numerical solver algorithm adopted

for this thesis is described in Appendix A. The RK4 method is used extensively for

solving nonlinear systems such as the Langevin, Lorenz and the Duffing systems. The

method implemented in this chapter solves a first order coupled system version of

Equation (4.2) producing the state space solution (x, ẋ). The RK4 method was

implemented in Scilab, which is an open source numerical computation tool similar to

Matlab, and was used for all the numerical modelling in this thesis. Scilab is designed

to operate to a precision of η = 2.22× 10−16, which can be confirmed by evoking a

built in Scilab diagnostic function [114]. This generates an error of approximately

∼ η

h
+ hq [115] where q = 4 the RK4 order, typically 0.00001 < h < 0.0001 the time

step size. The maximum error is approximately ∼ 2× 10−11. A fixed step fourth order

RK4 numerical solver was found to be easy to implement in the flexible form required.

The Duffing system implemented for the work reported here was re-cast in a frequency

normalised form, as discussed in Chapter 2 Section 2.3.3, and as derived in Appendix

A. Note that this frequency normalisation method does not remove any divergence

problems inherent to nonlinear systems solved using numerical methods. However,

this scheme significantly reduces RK4 numerical solution divergence problems found

during validation tests of the RK4 solver implementations of both a non-normalised

and a frequency normalised Duffing system. Normalisation fixes the system parameter
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values for a given desired state no matter what the force frequency is.

4.2.2 The transition mechanism

To demonstrate the mechanism of transition the system of Equation (4.1) was

configured in the same way as previous researchers [4]. The parameter values are

summarised in Table 4.1. Wang et al. [4] described the existence of a critical value for

the amplitude of the internal force term, denoted γc. In the absence of the input force

terms Fi in Equation (4.1), the critical internal amplitude value is that nominally

maximum internal force amplitude value that places the Duffing system in a state just

inside a chaotic regime such that a small additional force will cause the system to

transition to a periodic stable state. The additional force is assumed to be provided

by the input signal Fi comprising a sine wave and a noise term. The existence of a

critical internal force amplitude implies the additional (input) force terms must have

an amplitude large enough to cause transition to the limit cycle. The input signal

therefore provides the small but finite sized amount of additional energy required to

attain the limit cycle. Clearly all the parameters of Equation (4.1) are open to

variation, however the parameter values shown in Table 4.1 are the baseline set used

throughout this chapter except where stated otherwise. The effect of different

parameter value choices is discussed later.

Parameter Symbol Value

critical internal force term amplitude γc 0.812

damping factor δ 0.5

linear factor α 1

nonlinear term factor β 1

phase difference φ 0

initial conditions (x0, ẋ0) (0, 0)

sinusoidal input minimum amplitude Am 0.0201

Table 4.1: Baseline Duffing parameter values for chaos to stable limit cycle transition.
Phase φ is the simulated phase difference between the input tone A cos (2πft) and the
internal force term γ cos (2πf0t). A RK4 constant step size of h = 0.0000204 is used,
unless otherwise stated.
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In order to configure the Duffing system as a pre-processor based on the

chaos-to-stable transition it is necessary to first find the critical value γc. To do this

the Duffing system is configured with only the internal force term, the input

amplitude is set to zero Fi = 0. The internal force term amplitude value γ is then

selected on the basis of a series of trial numerical solution runs to find the lowest

value to three decimal places that causes a stable transition to the limit cycle (as

observed in a phase space plot). The internal force amplitude is then reduced slightly

and set at this lower amplitude (typically 0.002 lower). The resulting amplitude value

is termed the critical amplitude value γc and has a value broadly in agreement with

the value reported in Wang et al. [4] (where the value was set as γc = 0.815 for an

RK4 step size of h = 0.004). This procedure need only be performed once prior to any

type of data collection run carried out and described in this thesis. The Duffing

system is now considered poised in a chaotic state close to a transition to stability.

More sophisticated methods of selecting γc have been sought by others [89], however

the trial run method described above is considered sufficiently rigorous and is used

throughout this thesis. The selection of γc is discussed in more detail in Section 4.2.3.

Once the static value for the critical internal force amplitude γc has been found by

the procedure outlined above, the same method can be used to establish the existence

of a minimum periodic input force term amplitude Am that causes transition. This

approach established the value of Am in Table 4.1.

The phases of the controllable internal periodic force and the input signal is

represented in Equation (4.1) by the two terms φ0 and φi. It is sufficient to consider

only the difference between the two phases. The phase difference is represented as

simply φ = φ0 − φi. The phase difference is set to φ = 0 by setting φi = φ0 = 0, for all

the investigations in this chapter, unless otherwise stated. During investigations later

in this thesis, where real input signals are used and where the phase is not known, the

internal force phase value (φ0) is set to zero. The impact of an unknown but finite

phase difference where real data is involved, is discussed and investigated throughout
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Chapter 5.

Selecting the system parameter values that are the most appropriate for each

pre-processing task, based on a more formal approach, would be a line of further

research, however the development of methods and algorithms for this purpose is not

the focus of this chapter. Suitable values are here found by trial and error. This

method was found to be sufficient because it results in stable parameter values.

Figure 4.1 illustrates the system performance obtained when selecting the frequency

of the input and the internal forcing terms to be the same, (f0 = f) with zero phase

difference (φ0 − φi), signal amplitude set to the minimum A = Am = 0.0201, no added

noise (n (t) = 0) and a RK4 step size h = 0.00004. The sample rate was set to 2000

Hz, and 4000 simulation input points were used to generate the data.

The RK4 solution of Equation (4.1) generates time-series output for both the

displacement (x) and its derivative (velocity). These are used to plot phase space,

which visualises the time evolution of the system state defined by its displacement

and velocity. The time evolving state is a connected (continuous) trajectory of state

points and not simply an incoherent random scatter plot of system states. The main

features and behaviours are seen in the four plots of Figure 4.1. Plot (b) shows the

system transitioned to the stable limit cycle. The short initial trajectory that

smoothly connects the initial point (0, 0) to the limit cycle is the initial or start-up

transient. The fundamental frequency and four additional harmonics are visible in

both spectra (c) and (d) however the noise energy at all other frequencies significantly

reduces when the system has stabilised. At the same time the energy in the sine wave

component of the input drive has increase by approximately 3.4dB. This increase is

far greater than the simple addition of a second sine wave drive at the same phase

and frequency, of amplitude A = 0.0201.

The main features shown shown in Figure 4.1 such as stable and chaotic motion in

phase space, nature of the spectrum and importantly the amplitude change at the 80
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(a) (b)

(c) (d)

Figure 4.1: The Duffing pre-processor output illustrating transition. (a): Phase space
with internal drive only. System in chaos. Drive amplitude at critical value, γc = 0.812.
(b): Phase space after transition. Two drives, γc = 0.812 and A = Am = 0.0201. (c):
Non-normalised and non-corrected power spectrum of Duffing displacement (x) output
for one (internal) drive. System in chaotic state prior to transition, drive amplitude
γc = 0.812 and A = 0. (d): Output power spectrum with two drives, system is in a
stable state. γc = 0.812 and A = Am = 0.0201. Frequency is set to 80 Hz. All other
configuration as shown in Table 4.1.
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Hz peak, will be discussed and re-visited repeatedly in the rest of this chapter. The

first feature discussed in some detail in Section 4.6 is the short start-up transient

trajectory seen in the phase space plot. The initiating state for the Duffing numerical

solver was (x0 = 0, ẋ0 = 0), from this point the trajectory clearly takes a finite time to

converge to the stable limit cycle.

4.2.3 Minimum signal to trigger transition

The existence of an ‘internal’ periodic force of critical amplitude γc, that places the

system in the chaos regime so that an additive finite sized amplitude input force

causes transition, directly implies the existence of a minimum detectable input force

amplitude. Several of the publications referenced in Chapter 2 use a single value for

γc in their work [4, 5, 8], but it would be incorrect to suppose there is only one correct

value and none of the other ‘nearby’ amplitude values can be considered as critical.

The situation can be clarified by a simple input/output nonlinearity test using the

Duffing model of Equation (4.1). The model was configured without the additive

noise n (t) or sine wave (A cos (2πft)), leaving only the ‘internal’ drive term

γ cos (2πf0t) input terms.

To find the critical drive amplitude the amplitude of the output displacement x with

varying drive amplitude γ was investigated, the results are presented in Figure 4.2.

The variation is clearly nonlinear, the plateau region at drive amplitudes greater than

0.825 corresponds to the stable limit cycle (as indicated in phase space, for example

see Figure 4.1 (b)). The ‘cliff face’ at drive amplitudes 0.800 6 γ 6 0.825 represents

the range of critical drive amplitude values suitable for setting to system to be close

to stability. The upper bound on the range of suitable values is determined by the

need to keep the system chaotic. The lower bound on the range of values is arbitrary,

but that the larger the value of γc chosen, the smaller the amplitude of the sine wave

component of the input signal can be and still cause a transition.

116



Figure 4.2: Finding an appropriate value for the critical drive amplitude, γc. Drive
frequency is arbitrarily chosen but tuned to be centred in a frequency bin in the FFT
spectrum, frequency = 501.17 Hz. No noise and only one sinusoidal drive term ( A set
to zero)

Figure 4.2 shows there is a minimum value for the internal drive amplitude (or

equivalently; internal amplitude combined with input drive amplitude) that will cause

the transition. Previous research ([4, 96, 7]) describes the internal system force term

amplitude γc as a critical amplitude to indicate the system is poised just prior to

transition to stability. However it is the total additive amplitudes of all in phase

forcing terms that can be considered a threshold or critical amplitude, above which

the system is fully stable (and this occurs at a value of γ = 0.831 in Figure 4.2). The

value of internal force amplitude γ that holds the system near stability but still in

chaos, could be selected from any value between approximately γc ≈ 0.81 to 0.83. In

this thesis γc will continue to be used as to indicate the system poised in this state,

and for consistency it with previous research γc will continue to be called the critical

(internal force) amplitude.

The results of Figure 4.2 were obtained using a single periodic force term with

variable amplitude γ. It is trivial to demonstrate that the coherent addition of two
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force terms of the same period would generate the same result, where the the stable

plateau region once again occurs when the amplitude exceeds about 0.823. However

in this case it is when the summed force amplitudes exceed the value such that

γ +A > 0.82. Selecting a critical value for the internal force amplitude γc ≈ 0.81 to

0.83 will therefore require a small but finite minimum amplitude Am to trigger full

transition to the stable limit cycle. Further increases in the value of A will generate

increased output. However the changes are small compared to the nonlinear change in

output amplitude over the transition region (which is the region where force term

amplitudes range from ∼ 0.81 to ∼ 0.83 in Figure 4.2). Configuring the Duffing

system to respond by transitioning to stability in the presence of an input sine wave

of the right frequency and of sufficient minimum amplitude Am will form the basis of

a pre-processing stage aimed at improving detection performance.

4.3 Additional system behaviours

In order to fully control the Duffing system and its impact as a pre-processor in

detection performance it is necessary to describe and understand two distinct

behaviours common to many nonlinear systems. The first behaviour is associated

with the chaos-to-stable limit cycle transition. With the drive amplitude of a sine

wave forcing term fixed at a value sufficiently high for stable limit cycle dynamics, the

system output will nearly always start with a short transient period of unstable

motion before settling at the limit cycle. The second behaviour is associated with the

form of the nonlinear system used in this investigation where two of the three force

terms are periodic, one representing an ‘internal’ configuration force

(γc cos (2πf0t+ φ0)) and the second representing an input sine wave

(A cos (2πft+ φi)). The two periodic terms must necessarily be close in phase and

frequency in order that the system will transition fully.
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4.3.1 Transients and initial conditions

The numerical solver used in the work reported here is initiated with two starting

values for the paired first order system, (x0, ẋ0). Selecting the optimal initial

conditions is driven by consideration of numerical solution stability and accuracy,

managing potentially unwanted behaviour and improving detection performance. The

Duffing system forced periodically with sufficient amplitude to cause transition will

generally first exhibit chaotic behaviour that persists for a short time before the

system converges to the stable limit cycle. The right side phase space plot of Figure

4.1 shows an example of an initial transient initiating from (x0 = 0, ẋ0 = 0), in this

case a chaotic transient. A method of predicting the lifetime of the initial chaotic

transient was developed in the mid 1980’s [116], specifically for two dimensional flows.

The authors assert the same methods can also be applied to three-dimensional

time-continuous systems such as Duffing, and their method centres on predicting the

value of the critical exponent ζ of Equation (4.3).

τ ∼ (p− pc)−ζ , subject to p > pc (4.3)

τ is the transient time, p is a parameter of the system (typically, forcing amplitude),

pc is a threshold value at which the strange attractor disappears. The system remains

in chaos while p > pc and until the trajectory becomes captured by another attractor.

The specific transition from chaos to stable motion at the limit cycle motion exhibited

in Duffing caused by a sufficiently large force amplitude can be interpreted in the

same way. For a fixed input sine wave amplitude ( A+ γc for in-phase periodic forces)

the system output amplitude does not instantaneously achieve the maximum

expected while in stable motion. The output amplitude begins to grow, form the

initial starting condition of (x0 = 0, ẋ0 = 0). During this initial period the system is

in a state of chaos even though the input amplitude is sufficient to cause stable

motion. Eventually the trajectory touches a second unstable fixed point (in Duffing at
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(ẋ, x) = (0, 0)). This event is termed crisis (specifically, one type of crisis) and at this

point the chaotic attractor is destroyed [117, 116]. However, the trajectory will

continue to move chaotically while it is very close to the original site of the now

destroyed chaotic attractor. At some (average) finite time τ later the trajectory has

moved away from the old chaotic attractor site and becomes captured by the stable

(limit cycle) attractor. The trajectory remains within the basin of the new stable

attractor. In the absence of any further system parameter changes, the subsequent

motion constitutes the periodic stable long term behaviour of the Duffing system

because the strange attractor no longer exists to revert it to chaos. The short period

of chaotic motion before full capture by the limit cycle and in the absence of the

original strange attractor of average time length τ , is termed transient chaos.

The dependence of transient time on the combined amplitudes of the input for the

system of Equation (4.1) but without the noise term n (t), was investigated as follows.

The investigation is comprised of a series of measurements over 80 realisations of the

configuration, varying the initial start point between realisations. At completion the

transient times for all 80 iterations are averaged, then the sine wave amplitude is

incremented and the measurement process repeated. The Duffing system was

configured at critical drive amplitude γc = 0.812 with the sine wave amplitude set to

an initial value of A = Am = 0.02. Initial conditions selected randomly from anywhere

on or within the area enclosed by the stable limit cycle, or if from outside the limit

cycle very close to it (see Figure 4.1 for an example of a stable limit cycle). The

random selection of initial conditions was uniformly distributed. The result is shown

in Figure 4.3.

The Duffing system results shown in Figure 4.3 are qualitatively consistent with

earlier results found for the Henon map [116]. As the overall forcing amplitude

(γ +A) is increased the average time length of the initial chaotic transient reduces.

Each time the transition is triggered by the appropriate input, a chaotic transient will
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Figure 4.3: Measured transient time in the single Duffing system (according to the
Grebogi model [116]). System forced periodically with increasing amplitude (the pa-
rameter p) over the critical amplitude for stable dynamics, pc = γc. Average transient
time length Tτ at each p increment is here measured as the number of unscaled points
in the initial transient, for random initial conditions.

nearly always be present, and its length remains fixed even if the input signal length

(and therefore the Duffing output) is shortened. The performance of a binary

detection based on a simple threshold applied to the chosen variable (for example,

spectral component or correlation value) will degrade as the incoherent and reduced

average amplitude chaotic transient length increases as a proportion of the total

Duffing output data length. It was therefore desirable to find strategies to ether keep

the chaotic transient as short as possible, or eliminate it altogether.

It is important to note that τ is an average time, and the results shown above were

obtained using randomised initial conditions. It is possible to reduce the transient

time to zero by selecting initial conditions that lay on the stable limit cycle very close

to the point x0 = 0 and ẋ0 positive. This initial condition is stable in the sense that

transient time is always zero when the system is configured with these initial

conditions. The result is not as attractive as it may seem because the required

(positive) value of ẋ0 in a practical detection scheme with Duffing transition
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pre-processing, may not always be easy to determine. In order to maintain

consistency most of the investigations in the rest of this chapter will use initial

conditions of (x0 = 0, ẋ0 = 0) unless otherwise stated. In cases where the transient

impacts or potentially degrades measurements the transient section is discarded.

4.3.2 Intermittent chaos

The frequency of a real (but unknown) input signal will not necessarily match the

internal drive frequency of the Duffing system, these are f and f0 of Equation (4.1)

respectively. The output of the Duffing system, where there is a difference in

frequency between the two force terms (ignoring the noise term for now) is

characterised by cycling between a period of stable oscillations followed by a period of

chaos. The regularity of the behaviour is illustrated in Figure 4.4 (a), however this

was only achieved by using zero noise input and the sinusoidal input having an

amplitude at least double the minimum necessary to trigger transition. Intermittency

rapidly becomes irregular as the signal amplitude is decreased, plot (b) illustrates the

behaviour with input amplitude set to the minimum necessary to cause transition.

The regularity deteriorates further as noise is introduced into the input.

Intermittent chaos serves to reduce the proportion of time spent in a stable

configuration. However if the period of intermittency is very low (i.e. the two

frequencies are very close) the required length of data output from a practical Duffing

pre-processor sufficient to make a detection may be shorter than half of one

intermittent chaos cycle. In other words the next period of chaos is beyond the useful

data length and therefore cannot degrade detection performance. By shortening the

Duffing output (or equivalently the input) it is therefore possible to widen the

effective bandwidth of a single Duffing pre-processor, without the need for prior

knowledge of the input signal. In some applications and Duffing configurations the

effective bandwidth may be wider than has been previously reported [4]. It is noted

here, but not investigated, that detecting the difference frequency may provide a
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(a) (b)

Figure 4.4: Intermittent chaos at high, and minimum, input amplitude. In this example
f0 = 280 Hz and f = 286 Hz. Duffing configured with the baseline values of Table 4.1
with the following changes. (a) input sine wave amplitude fixed at A = 2Am = 0.0402.
(b) uses Am = 0.0201. Noise deviation is zero and the internal drive amplitude set to
critical as γc = 0.812.

means of adaptive tuning or frequency locking for a single Duffing pre-processor.

4.3.3 Bandwidth

The presence of intermittent chaos within the time window of data output from the

nonlinear system is illustrated in Figure 4.4. The time-series data plotted in the figure

reveals the amplitude of the periodic components to be larger than the interleaved

unstable chaotic sections. The difference is not large but the figure does illustrate

some apparent dependence on how the input sine wave amplitude impacts the size of

the beat-frequency envelope. If nothing were known of the input signal, observing the

presence of intermittency would indicate the probable presence of a sine wave at the

input, that had an amplitude at least A > Am and that was close in frequency to the

internal force term. It can be observed from the figure, that if the input time length

were, for example, about 0.12 seconds in length then one whole periodic section and

one whole chaotic section would be passed to the detection stage.
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The overall amplitude seen by the detector would be less than if the whole 0.12

seconds had been fully periodic. It would depend on the detector type to know by

how much the detected amplitude is degraded by the section of lower amplitude

chaos. It is safe to assert therefore that if two whole sections of periodic behaviour

and one of chaos, were present in the time window of data passed to the detector,

then the amplitude would now be higher. However it would not attain the same

overall amplitude seen for a continuous periodic output for the whole time window.

As the difference between internal drive frequency and the input sine wave frequency

grows larger more and more of each type of intermittent chaos packs into the time

window, analogous to the closing of a concertina bellows. We can therefore

hypothesise that as the difference frequency grow, the overall amplitude cycles up and

down converging to some value lower than the maximum that would be observed for

full periodic motion within the time window. The measured value of the output from

a detector, which could be amplitude or some other related parameter, can be used to

measure the bandwidth of a single Duffing system. This analysis is carried out in the

next chapter in Section 5.5.

4.4 Varying the Duffing parameters

The basic transition mechanism and the main conditions required to initiate it have

been introduced in the previous section. This section describes some additional

behaviours that contribute to an understanding of why the mechanism occurs and

what are the potentially exploitable properties that can be used to enable an

improvement in the performance of the detector stage. The behaviours are revealed

by simplifying the Duffing system to use a single internal periodic drive force of

amplitude γ, and then performing a limited pairwise parameter space examination of

the parameters; damping δ, linear coupler α, nonlinear coupler β and drive amplitude

γ.

124



4.4.1 Parameter space configurations

The Duffing system defined in Equation (4.1) is configured by a linear scaling

parameter applied to each term, (the two terms representing an additive input signal

A cos (2πft) and n (t), have been ignored in the investigation of parameter space

discussed in this section). All of the previously published work referenced in this

thesis (see for example: [4]), that investigates specifically the Duffing system as a

detector of weak signals, use system configuration values at or very close to those

shown as the baseline set in Table 4.1. It is useful to investigate a range of values for

all of these configuration parameters to find a set that enables a better detection

performance compared to the baseline values.

Four of the scaling parameters are key in configuring the system to exhibit chaotic,

nonlinear or stable behaviours and some have been discussed earlier. The

investigation in this section will concentrate on the following four parameters;

• The damping factor applied to the velocity term, δ

• The factor applied to the linear displacement term x, α

• The factor applied to the nonlinear displacement term x3, β

• The amplitude factor applied to the internal drive term, γ

The parameter space investigation was carried out by fixing two parameters at their

baseline values (see Table 4.1), and varying the other two. The investigation was

limited to following four combinations from this basic scheme;

a) Vary drive amplitude and damping (γ and δ), fix linear and

nonlinear couplers (α and β)

b) Vary γ and β, fix α and δ

c) Vary γ and α, fix β and δ

d) Vary β and α, fix γ and δ

In each combination the numerical solver was nest-iterated typically 80 times for the

two varying parameters. The displacement x from the Duffing system was
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transformed using an FFT to enable easier peak value picking at the test frequency,

which was fixed at f = 489.92Hz for all simulations. All the Duffing configuration

values for the parameter space investigation are summarised in Table 4.2. The results

are plotted as greyscale plots with the two independently varying parameters on the

first two axes and the output amplitude as the dependent variable forming the

greyscale surface. The results are discussed in separate sections below; Section 4.4.2

discusses combinations a) and b), and Section 4.4.3 discusses c) and d).

Parameter or other Symbol Fixed As a variable
system constant or name value range figure

Critical forcing term
amplitude

γc 0.812 0.3 6 γc 6 1.3 4.5,
4.6,
4.7

Damping factor δ 0.5 0.25 6 δ 6 1.05 4.5

linear coupling factor α 1 0.4 6 α 6 1.2 4.7,
4.8

nonlinear term coupling
factor

β 1 0.4 6 β 6 1.2 4.6,
4.8

phase difference φ 0

number of data points maxsiz 2000

Force frequency 2πf0 489.92

Input tone amplitude A 0

RK4 constant step size h 0.00002

Noise n (t) variance σ 0

Table 4.2: Duffing parameter values used in the model, for the damping/force ampli-
tude parameter space investigation. The force frequency is chosen to be frequency bin
centred in the spectral transform of the output displacement data.

4.4.2 Varying the drive/damping and drive/nonlinear coupler

Figure 4.5 shows the results of the drive amplitude/damping parameter space

investigation. The main features align diagonally from lower left to upper right, with

the high output amplitude regions towards the upper left. There are two distinct high

amplitude regions separated by clear line from (δ = 0.25, γ = 0.8) to

(δ = 0.72, γ = 1.28). Both regions represent a Duffing system that has transitioned to

a stable state. The isolated elongated high amplitude islands are the result of other
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stable trajectories in the system dynamics. However they are distinct from the main

limit cycle considered in this chapter because they generate a more complex set of

frequencies. Their pathways in phase space exhibit a variety of crossing trajectories

which result in additional frequencies higher and lower than the drive frequency and

its harmonics. The original benchmark values of damping and critical internal drive

amplitude (δ = 0.5 and γc = 0.812) for configuring the Duffing system to in chaos but

just before transition, can now be seen in context.

Figure 4.5: Two dimensional parameter space. Variation of Duffing output amplitude
as a function of two independently varying parameters; damping δ and drive amplitude
γ. Linear coupler α and nonlinear coupler β values fixed at 1 and 1 respectively. All
other configuration values as in Table 4.2. (Benchmark values for damping and drive
amplitude were δ = 0.5, γ = γc = 0.812).

Figure 4.6 shows the results of the drive amplitude/nonlinear coupler parameter space

investigation. The main features align in a slow curving diagonal from right to upper

left, with the stable region of the limit cycle (high output amplitude) towards the

upper and right third of the plotted parameter space. The isolated high amplitude
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islands in this view also represent regions of near-stable dynamics but as the influence

of the nonlinear displacement term x3 is reduced as β reduces, these isolated regions

produce higher output amplitudes. As before there is a clear demarcation between

the lower amplitude chaotic regions and the stable limit cycle (high output

amplitude) region. The small relatively flat region of lowest output amplitude at

bottom right in Figure 4.6 is a stable trajectory within one energy minimum well of

the bistable system. The baseline values of critical drive γc = 0.812 and nonlinear

coupler β = 1 lie at the demarcation line but just within the chaos region.

Figure 4.6: Two dimensional parameter space. Variation of Duffing output amplitude
as a function of two independently varying parameters; nonlinear coupler β and drive
amplitude γ. Linear coupler α and damping δ values fixed at 1 and 0.5 respectively.
All other configuration values as in Table 4.2. (Benchmark values for nonlinear coupler
and drive amplitude were β = 1, γ = γc = 0.812).
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4.4.3 Varying the drive/linear coupler and nonlinear/linear couplers

Figure 4.7 shows the results of varying drive amplitude γ and the linear coupling term

α. The range of features is the same as was seen in Figures 4.5 and 4.6, these are as

follows. High output amplitude regions where the system has transitioned to the limit

cycle. Medium amplitude regions that generally correspond to chaotic behaviour.

Isolated islands of stability and high output amplitude but with crossing-trajectories.

Finally, a relatively flat region at the lowest output amplitude in the bottom right

corner.

Figure 4.7: Two dimensional parameter space. Variation of Duffing output amplitude
as a function of two independently varying parameters; linear coupler α and drive
amplitude γ. Nonlinear coupler β and damping δ values fixed at 1 and 0.5 respectively.
All other configuration values as in Table 4.2. (Benchmark values for linear coupler
and drive amplitude were α = 1, γ = γc = 0.812).

The final parameter space plot shown in Figure 4.8 shows the output amplitude as a

function of the variation of linear and nonlinear coupling factors, α and β
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respectively. As before the same set of four main features are all present; stable high

output, chaos, isolated high points and low stable single well trajectories. In addition

however, there is a fifth region of a distinct nature, that is flat and generates the

lowest output amplitude (≈ −65dB) which is not single energy well trajectory. This

region forms a ‘fat finger’ shape running diagonally from the left and thinning in

width up to the centre top of the plotted area. This region represents a series of

semi-stable trajectories in phase space that are non-crossing, almost circular and

centred on the system unstable saddle point (x = 0, ẋ = 0). Importantly there are no

generated frequencies additional to the drive frequency f and its harmonics, and it is

adjacent to two regions of high (transitioned) output amplitude by a sharp ‘cliff face’

demarcation boundary.

Figure 4.8: Two dimensional parameter space. Variation of Duffing output amplitude
as a function of two independently varying parameters; nonlinear coupler β and linear
coupler α. Drive amplitude γ and damping δ values fixed at 0.812 and 0.5 respectively.
All other configuration values as in Table 4.2. (Benchmark values for linear coupler
and drive amplitude were β = 1, α = 1).
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4.4.4 Selecting configurations

The Duffing system will operate as a pre-processor when suitable parameters are

selected to place the system in a chaotic state just before transition to the stable limit

cycle. The addition of extra energy at the right frequency, deriving from an input

signal, will cause a transition and increase the output signal amplitude. The ideal

requirement for the correct type of transition is; the high output region is the limit

cycle, no extra frequencies additional to the drive/input frequency and its harmonics

and the transition is sharp.

Suitable locations for parameter selections that meet the transition requirements can

been seen on all four plots (Figures 4.5, 4.6, 4.7 and 4.8). These are marked by a clear

and sharp change from low Duffing output displacement amplitude to high (and

generally flat) output amplitude regions. For example, a sharp cliff face line between

suitable low and high regions is shown as an obvious linear feature running from

(δ = 0.25, γc = 0.45) to about (δ = 0.65, γc = 1.1) Figure 4.5. The demarcation

between the two regions (red-high and light blue or yellow-lower) becomes

progressively less distinct along this particular linear feature, as the transition

becomes less abrupt. It is also noticeable that the difference between the high and low

regions is greater (about 7 or 8 dB) near the (δ = 0.25, γc = 0.45) end compared to

about 2 to 4 dB at the (δ = 0.65, γc = 1.1) end. In Figure 4.8 another curving and

reasonably abrupt transition edge, with similar properties, is found between points

(α = 0.4, β = 0.95) and (α = 0.7, β = 1.28).

Clearly there is more than one parameter set, that could satisfy the ‘transition’

system configuration requirement. However, it is possible to pick a small number of

parameter configuration sets as alternatives that are different to the baseline set in

Table 4.1, solely on the information gained from the limited parameter space survey

and associated analysis carried out here. In addition to meeting the requirement

outlined above parameters are also selected where they maximise the amplitude
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difference at abrupt transition locations. It is assumed these conditions will provide

the maximum detection performance.

In addition to the baseline configuration five further configurations were selected,

these and the baseline configuration for the four parameters are summarised in Table

4.3. Configuration sets A and B were selected from Figure 4.5 and sets C and D from

Figure 4.7. Set E is selected from Figure 4.8 and will be used to investigate the

transition from the stable saddle point trajectory to the limit cycle. This transition

was described above, and is clearly a different type of transition with a larger

amplitude change.

Parameter Baseline Set A Set B Set C Set D Set E

Critical amplitude γc 0.812 0.51 1.25 0.812 0.93 0.812

Damping factor δ 0.5 0.3 0.7 0.5 0.5 0.5

Linear coupling α 1 1 1 0.45 0.72 0.7

Nonlinear coupling β 1 1 1 1 1 1.15

Table 4.3: Alternative Duffing parameter configuration values. Also included in the last
line, is the corresponding minimum input signal amplitude required to cause transition,
for the given critical force amplitude γc.

4.5 Basic detection performance

The first Receiver Operating Characteristics (ROC) analyses will be carried out in

this section. The aim is to quantify the impact on detection performance of the

chaos-to-stable transition pre-processing. The calculation of ROC curves were

introduced in Chapter 2 Section 2.2.4. This will be carried out for all the transition

configurations shown in Table 4.3 using the simplest input signal and basic binary

decision (single threshold) detection in the frequency domain.

Six analyses were completed for the baseline configuration and the five new parameter

combinations. The frequency of both the internal drive f0 and the input sine wave f ,
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was fixed at 489.92 Hz for all analyses. The initial conditions for the RK4 solver were

fixed at (x0 = 0, ẋ0 = 0), and the phase difference between the two periodic force

components was fixed at φ = 0. The third forcing term was white Gaussian noise.

Three ROC curves were generated for each of the six configurations, using 500

realisations each of the two periodic terms and identical but independently

distributed noise at each realisation. The three curves were comprised of one

measurement using the FFT only (no Duffing pre-processing), and two with Duffing

pre-processing as well as the FFT of their outputs. The two Duffing ROC curves were

obtained using the same input S/N but different input signal power levels. The first

power level was dictated by the minimum input sine wave amplitude needed to trigger

transition (Am), the second by increasing the sine wave amplitude until a stable

maximum in detection performance (highest ROC curve position) was found. To

maintain the same input S/N the Gaussian noise deviation was also increased. The

first FFT only ROC curve represents conventional detection processing and forms the

comparator common across all six ROC analyses.

To generate the ROC data the first step in all six cases was to check that the critical

internal drive γc values read from the parameter space investigation plots, configure

the Duffing system as chaotic but near to stability. This was carried out by a series of

trial and error small increments of γ until the system transitioned and the stable limit

cycle was observed in phase space. The critical internal drive was then selected as the

last value not causing transition. During this process the other two force terms (sine

wave and noise) were excluded. Next, in each case the internal drive term was

configured with the critical amplitude γc value found for that case, then the minimum

input sine wave amplitude Am causing transition to the limit cycle was found by a

similar trial and error method. The minimum sine wave amplitude varies across the

six configurations because the size and abruptness of the transition region varies.

Finally the Gaussian noise deviation value was selected so that the input signal power
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Figure 4.9: Basic detection performance ROC curves, configuration SET ‘BASELINE’:
Single tone in white Gaussian noise. Parameter configuration: Coupling α = β = 1,
critical internal drive amplitude γc = 0.812 and damping factor δ = 0.5. Input S/N is
the same for all ROC curves. Minimum input sine wave amplitude to trigger transition
is Am = 0.02, with input noise deviation σ = 0.23. Input sine wave amplitude for
maximum detection performance is A = 0.04 with noise σ = 0.46. Frequency f0 = f =
489.92Hz, phase difference φ = 0, solver initial conditions (x0 = 0, ẋ0 = 0).

ratio’s (Am
2/σ2 and A2/σ2) were identical across all ROC curves in all six

configurations in this section, even though the total input power varies. To generate

the third ROC curve it was necessary to select an additional input sine wave

amplitude A. In this case the ROC analysis was repeated for each small increment in

input sine wave amplitude, until the ROC curve position converged to a stable

(maximum detection performance) point. At this point further increases in input

amplitude do not improve detection performance and in some cases begin to degrade

performance. As before, at each increment of A the input S/N was maintained by

incrementing noise deviation too.

The results of the first three ROC analyses with Duffing configured using the baseline
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Figure 4.10: Basic detection performance ROC curves, configuration SET ‘A’: Single
tone in white Gaussian noise. Parameter configuration: Coupling α = β = 1, critical
internal drive amplitude γc = 0.51 and damping factor δ = 0.3. Input S/N is the same
for all ROC curves. Minimum input sine wave amplitude to trigger transition is Am =
0.02, with input noise deviation σ = 0.23. Input sine wave amplitude for maximum
detection performance is A = 0.09 with noise σ = 1.035. Frequency f0 = f = 489.92Hz,
phase difference φ = 0, solver initial conditions (x0 = 0, ẋ0 = 0).

parameter set from Table 4.3, are shown in Figure 4.9. The two ROC curves that use

Duffing pre-processing are lower than the FFT-only curve, the detection performance

is worse for all Duffing pre-processing in this baseline configuration. The maximum

detection performance using pre-processing occurs when the input sine wave

amplitude is A = 0.04, twice the minimum amplitude value (Am = 0.02) that triggers

transition. The True Positive Rate (TPR) of three curves (FFT-only, ‘Duffing

minimum’ and ‘Duffing best’) can be compared at a fixed False Positive Rate (FPR).

A low FPR is usually desirable in detection problems, so a FPR = 0.1 is selected

arbitrarily. At this FPR the TPR values for the three ROC curves are ∼ 0.97, ∼ 0.9

and ∼ 0.86 respectively.
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Figure 4.11: Basic detection performance ROC curves, configuration SET ‘B’: Single
tone in white Gaussian noise. Parameter configuration: Coupling α = β = 1, critical
internal drive amplitude γc = 1.25 and damping factor δ = 0.7. Input S/N is the
same for all ROC curves. Minimum input sine wave amplitude to trigger transition
is Am = 0.013, with input noise deviation σ = 0.1495. Input sine wave amplitude
for maximum detection performance is A = 0.16 with noise σ = 1.84. Frequency
f0 = f = 489.92Hz, phase difference φ = 0, solver initial conditions (x0 = 0, ẋ0 = 0).

The results for configuration sets ‘A’ and ‘B’ are shown in Figures 4.10 and 4.11

respectively. The detection performance is worse than the FFT-only case for both

configurations. The TPR values for ‘Duffing best’ and ‘Duffing minimum’, at FPR

= 0.1 are; for configuration set ‘A’, ∼ 0.77 and ∼ 0.54. For set ‘B’, ∼ 0.82 and ∼ 0.37.

All four Duffing pre-processing ROC curves are worse when individually compared to

their corresponding curves obtained for the baseline configuration, (Figure 4.9).

Comparing configurations ‘A’ and ‘B’ the best detection performance is obtained from

set ‘B’.

The results for configuration sets ‘C’ and ‘D’ are shown in Figures 4.12 and 4.13

respectively. The detection performance is again worse than the FFT-only case for
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Figure 4.12: Basic detection performance ROC curves, configuration SET ‘C’: Single
tone in white Gaussian noise. Parameter configuration: Coupling α = 0.45 and β = 1,
critical internal drive amplitude γc = 0.812 and damping factor δ = 0.5. Input S/N is
the same for all ROC curves. Minimum input sine wave amplitude to trigger transition
is Am = 0.02, with input noise deviation σ = 0.23. Input sine wave amplitude for
maximum detection performance is A = 0.22 with noise σ = 2.53. Frequency f0 = f =
489.92Hz, phase difference φ = 0, solver initial conditions (x0 = 0, ẋ0 = 0).

both configurations. The TPR values for the Duffing ‘best’ and ‘minimum’ ROC

curves at FPR = 0.1 are; for configuration set ‘C’, ∼ 0.85 and ∼ 0.33 and for set ‘D’,

∼ 0.85 and ∼ 0.31. The ‘best’ ROC curves for configuration sets ‘B’, ‘C’ and ‘D’ show

very similar detection performance. The Duffing ‘minimum’ curves also show very

similar performance at low FPR.

The large difference between Duffing ‘best’ and ‘minimum’ ROC curves that exists for

the three configurations ‘B’, ‘C’ and ‘D’ is caused by a large change in the

distribution of the output amplitudes at the frequency of the sine wave. At the

minimum input sine wave amplitude the output distribution is asymmetric with

negative skewness and a large variance (long tail). At Duffing ‘best’ performance the
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Figure 4.13: Basic detection performance ROC curves, configuration SET ‘D’: Single
tone in white Gaussian noise. Parameter configuration: Coupling α = 0.72 and β = 1,
critical internal drive amplitude γc = 0.93 and damping factor δ = 0.5. Input S/N is
the same for all ROC curves. Minimum input sine wave amplitude to trigger transition
is Am = 0.02, with input noise deviation σ = 0.30. Input sine wave amplitude for
maximum detection performance is A = 0.04 with noise σ = 3.45. Frequency f0 = f =
489.92Hz, phase difference φ = 0, solver initial conditions (x0 = 0, ẋ0 = 0).

distribution has become almost symmetrical and Gaussian like, with a smaller

variance. The mean is approximately the same for both distribution types.

The ROC analyses for the final configuration set ‘E’ are shown in Figure 4.14. The

Duffing ‘best’ and ‘minimum’ ROC curves are better than their corresponding curves

found for configurations ‘B’, ‘C’ and ‘D’. They are also better than set ‘A’ but not as

good as the baseline configuration.

The strategy of selecting a better parameter configuration for the Duffing

pre-processor based on a more abrupt transition between states as seen in the

parameter space investigations, is shown by these results to be flawed. The baseline

configuration generated the best detection performance results but even those do not
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Figure 4.14: Basic detection performance ROC curves, configuration SET ‘E’: Single
tone in white Gaussian noise. Parameter configuration: Coupling α = 0.7 and β = 1.15,
critical internal drive amplitude γc = 0.812 and damping factor δ = 0.5. Input S/N is
the same for all ROC curves. Minimum input sine wave amplitude to trigger transition
is Am = 0.07, with input noise deviation σ = 0.80. Input sine wave amplitude for
maximum detection performance is A = 0.04 with noise σ = 0.46. Frequency f0 = f =
489.92Hz, phase difference φ = 0, solver initial conditions (x0 = 0, ẋ0 = 0).

outperform the conventional processing using FFT-only detection.

4.6 Impulsive noise input

The aim in this section is to understand the impact on detection performance with

the Duffing pre-processing stage, when the input signal contains impulsive noise. The

performance of the Duffing limit cycle mechanism is assessed using simulated input

noise that is more representative of a type of underwater noise, specifically impulsive

noise is considered. The motivation for investigating impulsive noise remains the same

as was described in the previous chapter in Section 3.5.2. The Duffing model of

Equation (4.1) is modified with an additional forcing term. The ‘internal’ periodic
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force term is retained γ cos (2πft), as before, however in this section the input signal

is now simulated by three further additive terms; a sine wave A cos (2πft), impulsive

noise and Gaussian noise. These three terms represent; the signal to be detected, an

impulsive background noise source in the sea such as snapping shrimp and the

background ambient sea noise modelled as Gaussian white noise. As before the

internal periodic force term continues to act as part of the Duffing pre-processor

configuration.

Two axes of investigation are considered; different configurations of the Duffing

system (as used in previous sections), and different variance ratios for the Gaussian to

impulsive input noise mixture. The detection performance is measured using ROC

analysis, and all measured ROC curves are also compared to the performance without

the Duffing system. ROC analysis in all cases is achieved by fast Fourier transforming

into the frequency domain and then by collecting amplitude statistics only from the

fixed bin of the input sine wave frequency, with and without the sine wave component

present at the input.

Parameter Baseline Set A Set B

High S/N noise deviation σg 0.0716308 0.1611694 0.2865234

Low S/N noise deviation σg 0.1432616 0.3223388 0.5730468

Sine wave amplitude A 0.04 0.09 0.16

Table 4.4: Summary of the input signal amplitude and noise deviation settings for the
three Duffing configurations used to generate Figures 4.16, 4.17 and 4.18. The three
Duffing configuration settings are summarised in Table 4.3. In all cases the initial
conditions were x = ẋ = 0 and phase φ = 0. The high input SNR is −21.25dB and the
low SNR is −27.25 dB, in all cases.

The impulsive noise used here was generated in the same way as described in Section

3.5.2 of the previous chapter. The position of the impulsive noise excursions (spikes)

and the variation in spike peak amplitude, were randomised using a uniform

distribution. The spike density in the input signal time series was fixed at 165, and

the fixed overall spike amplitude multiplier fixed at 56. These values were held the

same for all tests in this section, as was the simulated input signal time length. The

140



noise deviation value was used to control the overall variance of the impulsive noise

component by acting as a second multiplier on its overall amplitude. The same

deviation value was also used to generate the zero mean Gaussian noise component as

well, but there are no other multipliers on Gaussian noise amplitude. The impulsive

noise excursions followed the same form as before, one positive going spike closely

followed by a negative going spike. The two noise components and the sine wave were

added together to form the simulated input signal. Figure 4.15 shows a) a typical

impulsive input signal, and b) one of the impulsive noise spikes.

In the first sequence of three tests, ROC analyses were conducted with the normalised

Duffing configured according to three of the parameter value sets shown in Table 4.3

(Baseline, ‘A’ and ‘B’). The aim was to investigate the detection performance at two

different input S/N for each of the three configurations, using highly impulsive noise

noise in all setup cases. In order to make the input noise ‘highly impulsive’ the

variance of the impulsive component was set to be approximately 40 times larger than

the variance of the Gaussian white noise component. This was achieved by setting the

spike density, noise deviation and multiplier. Here the input snr value was calculated

from the peak-to-peak input sine wave amplitude A and the total of the two input

noise variances σ2T = σ2i + σ2g so that snr = A2/σ2T . The ratio of the variances of the

two input noise components σ2g/σ
2
i , and the sine wave amplitude A, were both held

constant for the two input S/N regimes and for all three Duffing configurations.

The internal periodic force frequency was set to be bin-centred in the frequency

domain, and set the same as the simulated input sine wave, at f = f0 = 324.5614 and

the input sine wave amplitude was set for each configuration as; baseline A = 0.04,

‘A’ A = 0.09 and ‘B’ A = 0.16. These values were chosen to be the same as was used

in Section 4.5 and for the same reasons. The noise deviation σg used also had to vary,

in order to maintain the required input S/N. A summary of these setup values is

given in Table 4.4, for each Duffing configuration.

The input (calculated) SNR values achieved were ≈ −21.25 dB and ≈ −27.25 dB for
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the low and high values used in all three Duffing setups. There was a maximum

variation of approximately 0.15dB on these values caused by the randomisation of the

spike size in the finite length input signal time-series, affecting the overall noise

variance value σ2T = σ2i + σ2g used in the snr calculation (A2/σ2T ).

(a) (b)

Figure 4.15: Typical simulated ‘highly impulsive’ input signal. The three additive
components combined (two noise and the sine wave). (a): Input signal. Excess kurtosis
as defined in Equations (3.5) and (3.6) ye = 21.75. (b): An example of one impulse
spike.

The ROC analysis results using the baseline Duffing system configuration are shown

in Figure 4.16. Two pairs of ROC curves are show, one pair at high S/N and the

other at low S/N. Within each pair one curve was generated using the Duffing

pre-processor (solid line labelled as ‘Duff’) and the second curve without (dotted line

labelled as ‘FFT’). For the high S/N the detection performances with and without the

Duffing pre-processor are almost identical. For the low input S/N case the detection

performance with Duffing pre-processing is much better than the measured

performance without.

The ROC analyses results for Duffing configurations ‘A’ and ‘B’ are shown in Figures

4.17 and 4.18. The detection performance at low input S/N, using the Duffing

pre-processor is better than without in both configuration cases. At high input S/N

the performance with and without Duffing system are no longer close. The Duffing
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Figure 4.16: Duffing configuration type ‘Baseline’. ROC curves at two S/N regimes,
with (‘Duff’) and without (‘FFT’) Duffing pre-processing. Sine wave in impulsive noise.
Amplitude statistics collected from 1400 realisations. Excess kurtosis ye = 19.80 at
lower S/N, and ye = 2.73 at the higher S/N

case is now comparatively worse than without pre-processing and also worse than the

equivalent situation in the baseline configuration.

The area-under-curve (AUC) values given on Figures 4.16, 4.17 and 4.18 quantify the

variation in detection performance. AUC is calculated here, by integrating the ROC

curve between 0 and 1.0 false positive rates, and dividing by 2. The AUC values for

symmetric ROC curves generated from unimodal distributions, calculated in this way

always fall in the range 0.0 6 AUC 6 0.5. The AUC values calculated from the results

shown in Figures 4.16, 4.17 and 4.18 are summarised in Table 4.5 below.

The AUC data clearly indicate that the baseline Duffing configuration generates the
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Figure 4.17: Duffing configuration type ‘A’. ROC curves at two S/N regimes, with
(‘Duff’) and without (‘FFT’) Duffing pre-processing. Sine wave in impulsive noise.
Amplitude statistics collected from 1400 realisations. Excess kurtosis ye = 117.93 at
lower S/N, and ye = 34.22 at the higher S/N.

Input S/N Baseline Set A Set B

High (≈ −21.25dB) 0.4946 0.4660 0.4646

Low (≈ −27.25dB) 0.4516 0.4097 0.4027

Table 4.5: Summary of the AUC results for the Duffing pre-processor ROC curves only,
for the three configuration cases; ‘baseline’, ‘A’ and ‘B’.

best detection performance compared to configurations ‘A’ and ‘B’, for both S/N

cases investigated.

The impact of impulsive noise on detection performance was investigated in the

previous chapter on Stochastic Resonance, Section 3.5.2. Exploiting the SR

mechanism provided no improvement in performance, in fact the performance was

degraded. The findings shown in this chapter show that the chaos-to-stable transition

mechanism does show detection performance improvement for the conditions

investigated. The results show that performance using the Duffing chaos-to-stable
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Figure 4.18: Duffing configuration type ‘B’. ROC curves at two S/N regimes, with
(‘Duff’) and without (‘FFT’) Duffing pre-processing. Sine wave in impulsive noise.
Amplitude statistics collected from 1400 realisations. Excess kurtosis ye = 421.39 at
lower S/N, and ye = 88.30 at the higher S/N.

transition mechanism is better than a representative ‘conventional’ detection

processing scheme, at low input S/N when the noise component is highly impulsive.

At the higher input S/N the performance increases as expected, both with and

without Duffing pre-processing. However, the increase is less marked with the Duffing

system than without. For the configurations tested, the ‘Baseline’ configuration

provides the best detection performance, matching the ‘conventional’ detector (no

Duffing pre-processing) at high input S/N and significantly outperforming the

‘conventional’ detector by the largest margin, at low S/N.
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4.7 Discussion

Configuring a nonlinear system using an internal periodic force to place the system

close to transition to a stable state may impose a narrow bandwidth on the system.

Only input signals having a frequency close to the ‘internal’ drive frequency will

initiate transition. This is not a feature of the nonlinear system but is simply the

linear combination of two periodic forces. The notion that a Duffing pre-processor

may have narrow bandwidth has significance in the development of a wideband

detection system based on Duffing oscillators. This is explored in the next chapter.

A Duffing system parameter space investigation was carried out by varying selected

pairs of Duffing configuration control parameters. Strategies to select parameter pairs

with the potential to improve the detection performance were examined. These

included increasing the abruptness and size of the transition to stable behaviour, and

selecting a very large transition from very low amplitude to the higher amplitude

limit cycle (periodic to periodic). ROC analysis has shown that the baseline

configuration outperforms the other Duffing system configurations examined.

However, none of the configurations were observed to outperform a simple benchmark

linear detection scheme based on amplitude thresholding in the frequency domain

without nonlinear pre-processing.

Increasing the amplitude of the simulated input sine wav signal of interest by a small

amount over an above Am results in marginally improved ROC curves, and therefore

improved detection performance. All the ROC analyses in Section 4.5 exhibit this

small change, which is in agreement with the results shown in Figure 4.2. A single

periodic force term was used to generate that figure, however a linear addition of two

in-phase and identical frequency force terms, which is the case for the ROC analyses,

would generate the same result as Figure 4.2. The marginal improvement converges

to a point where no further detection performance can be had.

The baseline Duffing configuration appears to perform almost as well, at high S/N, as
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the benchmark linear detector, when the input signal contains a dominant component

of simulated highly impulsive noise. The simulated noise was constructed to mimic

the time domain form of a single percussive snap made by many species of snapping

shrimp. Colonies of these shrimp can produce extremely loud impulsive noise that

linear detectors usually fail to penetrate to detect the SoI. The ROC analysis at low

S/N shows the Duffing system clearly outperforming a linear detector. This result is

very significant, snapping shrimp are a common problem for underwater detection of

acoustic signals. However, this single result for a simulated case would need further

close examination before it can be regarded as a robust outcome that might be

exploited. Impulsive noise is re-examined in the next chapter.
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Chapter 5

Further Development, and

Applications

5.1 Introduction

Two mechanisms found in many nonlinear system models, stochastic resonance (SR)

and a particular chaos-to-stable transition mechanism were introduced and explored

in Chapters 3 and 4 respectively. No improvement to detection performance was

found when using SR as a pre-processing stage, for the scenarios were considered.

Similar scenarios were investigated using the Duffing chaos-to-stable transition

mechanism as a pre-detection processor. Several different Duffing configurations

considered. Significant improvement in detection performance was only found for a

small group of configurations and only when the noise components of the input signal

were dominated by highly impulsive noise.

A common theme in this thesis of the SR investigation and the transition mechanism

investigations is the use of simulated data. The purpose was to ensure all aspects

affecting performance were fully controllable, including the content of the simulated

input signal and the quantities that defined it. The step taken in this chapter is to

focus on real data by developing the transition mechanism into a form that can be
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used on real input signals.

The goal of this chapter is to demonstrate the application of nonlinear pre-processing

before detection, including a wideband implementation that presents output in the

form of a time-frequency visualisation. First it is necessary to investigate some

nonlinear system behaviours further, building on the the initial behaviours work

described in Chapter 4. The outcome of this is then used to develop some

modifications to the processing, that enable detection of real signals wideband and

narrowband.

5.2 Methods

5.2.1 The model

It was shown in Chapter 4 that the transition to stable motion mechanism had some

potential to improve detection performance in highly impulsive noise. The positive

result provides the motivation to discard SR and continue using the Duffing transition

in this chapter. Therefore the same model used in Chapter 4 will be used in all the

investigations discussed in this chapter. The majority of the investigations in this

chapter will use the frequency normalised version of the Duffing system set up as the

baseline configuration, unless otherwise stated. The model was defined in detail, in

Section 4.2.1 and Section 2.3.3 of the previous chapter and the full baseline

configuration is given in Table 4.3.

The output from the Duffing nonlinear systems used in this chapter are found in the

same way as was used in Chapter 4. The fixed step size four stage Runge-Kutta

solver was introduced in Section 4.2.1 and the method is described in Appendix A.
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5.2.2 Performance measures

As in previous chapters Receiver Operating Characteristic (ROC) analyses will be the

sole measure of detection performance used throughout this chapter. ROC analysis

normally requires the detector to be a binary classifier, in other words the detector

can have only two outcomes or ‘classes’. It will be shown in this chapter that the

output from the Duffing filter can present three regions in its probability density and

so the most common form of ROC analysis cannot be used unless this issue is

managed. It is worth noting at this point that research into developing ROC analysis

methods for three or more decision classes is ongoing, see for example [32, 33],

multi-class ROC analysis will not be used in this thesis. It will be shown later in this

section that the multi-class issue manifests in some cases as bi-modal output

probability distributions. The problem of establishing meaningful binary decision

ROC analyes on bi-modal pdf’s is solved in two ways in this chapter, as a fortunate

bi-product of the new processing introduced in the following sections, four-phase

processing and correlation detection.

The range of testable scenarios generated by; different input data types, performance

improvement measures and other configuration changes, is too large for a full

pair-wise comparative ROC analysis to be carried out. The scale of the assessment

task is further compounded by the selected approach of comparing each scenario with

a conventional detection scheme. In fact there are two benchmark detection schemes

used in this chapter. The first is the same as has been used in all previous chapters,

which is to fast Fourier transform (FFT) the time-series data output from the

nonlinear pre-processing stage and detect using amplitude thresholding, either in a

fixed frequency bin or by maximum spectral peak picking. The second benchmark is a

variant of this and used for the first time in this chapter, the four-phase processing

(described in detail in Section 5.2.5 and Section 5.2.6) is applied, and the amplitude

of the largest peak of the four resulting spectra is selected as the detection statistic.
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It is necessary to define the comparison metric by which one ROC curve is quantified

to be better or worse than another. The region bounded by the ROC curve and the

equal probability line (true positive rate (TPR) = false positive rate (FPR)) is known

as the half-area under curve (AUC). As a general measure the largest value for AUC

is used as the comparison quantity, the larger the value the better the detection

performance. However, if the curves are not symmetrical this single measure may no

longer be suitable as a comparator even though the calculated value of AUC will still

be accurate. This is because different areas within the area AUC may have different

impact on detection performance. Often the lower false alarm rate regions are of more

interest than the higher false alarm rate areas, a situation which can generate

misleading comparison outcomes when only considering the AUC value without

viewing the shape of the ROC curves. Fortunately most of the ROC curves generated

in this chapter are visually symmetric, apart from a few significant examples where

AUC is not used.

Most analyses presented in this chapter use simulated data as the input signal,

comprised of a single periodic tone and additive Gaussian distributed noise. The

ROC analysis models used were configured as a two-pass process. On each iteration

the first pass used the noise alone and the second pass used the noise and tone. For

each such two-pass iteration identical Gaussian noise data were used, but each

subsequent two-pass iteration used a completely fresh noise data set,

pseudo-randomly re-seeded from the computer clock second value.

5.2.3 Initial transient

The Duffing system will almost never transition to the stable limit cycle at the same

time the periodic force term is applied. There is almost always a time lag marked by

an initial non-periodic or chaotic motion sequence. A model for the time length of

this initial transient was introduced in the previous chapter in Section 4.3.1.

It is not possible to discriminate between the system dynamics during an initial
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transient, and the chaotic motion of the system in the absence of a periodic signal.

The low amplitude of this transient can form from 3% to 15% of the total time-series

output from the Duffing system, for the investigations and tests described in this

chapter. Therefore a FFT of the output will exhibit reduced S/N as a result of the

reduced apparent output signal power over the time length of the output time-series.

This is mitigated by discarding the initial transient before any further signal

processing is carried out.

A series of tests were carried investigating how many points of the initial transient

need to be discarded given the narrow range of sample rates and input time-series

lengths used. It was found that discarding the first 200 points of Duffing output was a

suitable compromise, the size of the discard was therefore fixed at 200 points for all

runs in this chapter, unless otherwise stated.

5.2.4 Replica correlation detection

The investigations carried out in Chapter 3 and Chapter 4 used the same simple

detection scheme in all cases, and where detection formed part of the analyses. The

output of the nonlinear system was fast Fourier transformed and detection

(measurement) performed on the fixed frequency bin corresponding to the known

input sine wave used to simulate an input signal. Observation of the phase space

dynamics or the time-series output from the Duffing system in limit cycle stable

motion shows that the periodic output is not sinusoidal, it has some harmonic

content. A single binary decision threshold detection scheme operating in the

frequency domain will not take account the information contained in the harmonics of

the output signal. Given that the Duffing system is configured to improve detection

performance, ignoring harmonic content that only appears in response to the input

sine wave may be producing sub-optimal detection performance. Since the aim of this

chapter is to move towards the demonstration of a practical detector using real data,

a different detector that exploits the harmonics may offer improved performance in a

153



real system.

To exploit the harmonic content in the output a matched filter detection approach is

used through out this chapter instead of frequency domain threshold detection.

Matched filtering here is achieved by generating a noise free replica of the stable limit

cycle and using this to perform replica correlation on the output of the Duffing

system. Detection is still a binary decision scheme however the detection threshold is

set on the output of the correlation process. The viability of matched filtering as a

detection scheme at the Duffing output depends on two properties of the Duffing

system, these are described below.

One of the properties of the Duffing system in stable (limit cycle) motion is that

provided the input signal amplitude is at or very near the minimum detectable

amplitude Am, the position of the the limit cycle is almost constant. This is

illustrated in Figure 4.2 of Chapter 4. The stable motion corresponds to the plateau

region from 0.9 to 0.94 periodic drive term amplitude, where the variation in output

amplitude is about 2%. The displacement variable x of limit cycle trajectory as seen

in phase space will therefore vary by approximately 2% or 3% for the range of Duffing

configurations and input signal amplitudes considered in this chapter.

A second useful property of the normalised Duffing system is that the position of the

trajectory of the limit cycle for the frequency normalised Duffing system does not

vary in size with frequency. The generation of a pre-formed replica limit cycle viable

across all frequencies is therefore trivial. This is achieved by numerically solving a

separate replica generating Duffing system without the additive noise or input force

terms (noise variance and input amplitude both set to zero). The remaining internal

force term is configured with a fixed amplitude value large enough to cause transition

to stability. The amplitude of the force term used to generate the stable replica limit

cycle is always the same no matter what the internal force frequency (ω0) is set to.

Therefore the generation of the replica limit cycle is fully controllable and requires no

prior knowledge of the input to the system. The output of the detection Duffing
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system with an unknown and noisy input is correlated with the output of the replica

generating Duffing system. In fact, a replica is generated for both the displacement

and velocity components output (xr and ẋr).

Figure 5.1: The two phase space states for the Duffing system; LEFT: with no periodic
input, the system is in chaos. RIGHT: with a periodic input of sufficient (minimal)
amplitude to cause transition to stability.

It is noted here that matched filtering is not the only approach to improving detection

performance at the Duffing output. An alternative explored by some researchers is to

use Lyapunov exponents as the detector stage [93, 97, 99]. The first or largest

Lyapunov exponent is a widely accepted indicator of the onset of chaos (noting that

noisy systems can generate ambiguous values). The Lyapunov exponent is a measure

of the average rate of divergence between two adjacent trajectories in phase space.

The assumption is that a large rate is associated with quickly diverging paths and

therefore indicative of chaos (see for example Figure 4.1), and a slow or negative

divergence indicates a probable stable trajectory or limit cycle, or at least the absence

of chaos. The known susceptibility of Lyapunov exponents to noise is the main reason

for rejecting the use of this approach in the analyses described in this thesis.

However, a comparison of detection performance for the Lyapunov and matched filter

methods is noted as potential future work.
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5.2.5 Phase behaviour

The discussions in Chapter 4 only considered simulated input where the periodic

component of the input was fully controllable and the phase difference between the

input sine wave and the Duffing ‘internal’ sine wave was always set to zero. The

impact of the unknown phase difference between an unknown input signal and the

internal periodic control is investigated in this section. A modification to the nonlinear

pre-processing was developed and implemented prior to detection processing, into the

analyses models, to mitigate the unknown phase difference problem.

The Duffing system will only transition to the stable state when the total periodic

forcing amplitude AT equals or exceeds the minimum necessary. Considering a trivial

case where the phase difference φ has a constant fixed value and there is no noise.

The total amplitude is found from the two periodic forcing terms of equal frequency

as follows:

AT = γc cos (ωt) +A cos (ωt+ φ)

When φ = 0 the two forces are in phase the system will transition, in accordance with

the definitions of critical internal amplitude γc and provided A > Am discussed in

Section 4.2.3. When the phase difference φ = π no transition can occur. As φ

increases from zero to π, the precise value at which transition fails and the system

remains in chaotic motion, is weakly dependent on how much A exceeds Am. With no

transition the probability of detection reduces to that of the toss of a fair coin. The

problem is further complicated by the fact that for a real signal the phase difference

may not be constant over time.

When the frequencies of the two sinusoidal terms are different then the behaviour of

intermittent chaos emerges, which results in a small finite bandwidth associated with

the Duffing pre-processor. Bandwidth and intermittent chaos were first introduced in

Sections 4.3.3 and 4.3.2. However, the impact of the bandwidth of an individual

pre-processor stage will be an important consideration during the construction of an
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array of Duffing pre-processors, which is demonstrated in Section 5.6. Consequently

bandwidth is re-visited in Section 5.5 below where an appropriate definition is

developed followed by a measurement of its size for the Duffing system.

To enable detection of real signals for a wide range of possible phase differences a

simple mitigation was implemented consisting of four uncoupled paralleled Duffing

systems, each with one of the following starting phases for the internal periodic force

term
{
φ : 0, π2 , π,

3π
2

}
. The four-phase approach is clearly a crude solution to the

problem of unknown and possibly, varying input phase. Finding a more elegant

strategy, robust to computational load, accuracy and type of input signal, is left to

future research.

5.2.6 The complete processing chain

The complete detection system based on four Duffing nonlinear pre-filters each of

different phase, and the separate replica correlation generating Duffing, can now be

summarised as shown in Figure 5.2.

Some additional explanation of Figure 5.2 is required including aspects of the coded

implementation used in the analyses described later in in this chapter. The strategy is

to find the maximum value from the convolution of the input signal time-series with a

time-series replica of the noise free sine wave required to be detected. Convolution of

two time-series signals in the time domain is equivalent to multiplying the FFT of one

signal with the complex conjugate of the second and finding the inverse fast Fourier

transform of the result. It is that equivalent calculation, that is referred to as

correlation in the frequency domain, in this chapter.

Five parallel branches to the processing chain are shown in Figure 5.2. Four represent

the equi-spaced four-phase processing and the fifth (at the bottom of the diagram)

represents the noise free replica generating function. The amplitude of the single

periodic forcing term used in the replica generator becomes a system configuration
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Figure 5.2: Signal processing path: Note that all outputs {xa, xb, xc, xd} and

{ẋa, ẋb, ẋc, ẋd} are zero padded. The⊗ symbol represents cross correlation in the fre-
quency domain. The input data is represented by s (t) where s (n) = A cos (ωt) + n (t)
(wanted signal component plus a noise term).
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parameter, and is set to any fixed value guaranteed to cause transition to the limit

cycle. In most cases examined in this chapter the replica amplitude is set to A = 1.0

unless otherwise stated. Note this approach is valid for the normalised version of the

Duffing oscillator, used throughout this chapter. The displacement and velocity

time-series replicas are both generated (and shown in the figure).

The input signal is represented by s (t) and is assumed to be an additive combination

of one or more noise terms plus a periodic component for real input signals. s (t)

corresponds to a short-hand representation of the input forcing components shown in

Equation (4.2). Another short-hand is used to represent the Duffing system, f (x, t),

which is numerically solved in all examples in this chapter using the standard

(canonical) RK4. The solution produces two time-series’ outputs corresponding to

displacement (x) and velocity (ẋ).

The replica generating function incorporated into the coded analyses models is

implemented to allow user selection of the whole number of replica cycles to be used

in the correlation. The strategy is select a low number of cycles so that the replica is

always significantly shorter (in the time domain) than the signal. Correlation occurs

in the frequency domain in the following steps:

• Truncate both replicas to the pre-set number of required replica periodic cycles

• Zero-pad all eight solutions (four velocity and four displacement).

Zero-padding is used both at the front and the back of each solution time

series, both to the same length as the original data length. The resulting eight

time series’ are now each about three times their original length

• Zero-pad both replicas to the same overall length as the zero-padded Duffing

output data lengths. The replica should also be padded front and back.

• Fast Fourier transform eight solutions and two replicas

• Find complex conjugates of both FFT’d replicas
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• Find the element-wise product of each transformed displacement solution

vector, with the transformed conjugated single displacement replica vector

• Similarly, find the element-wise product of each transformed velocity solution

vector, with the transformed conjugated single velocity replica vector

• Find absolute of the Inverse FFT of the four displacement element wise

product data vectors

• Find absolute of the Inverse FFT of the four velocity element-wise product

data vectors

• Normalise all the resulting correlation functions’ coefficients, by the length

(number of points) of the truncated replica without the additional zero padding

• Find the maximum single scalar value from the eight resulting correlation

functions’ coefficients

Zero-padding is required to reduce the likelihood of errors in the correlation output.

Correlation is a shift-multiply-and-sum process producing one coefficient at each shift.

The process wraps the end sample back to the beginning to complete the shift

sequence. Zero-padding ensures the basic resolution of any signal is revealed so that

the calculated correlation coefficient is accurate.

The frequency bandwidth of a single Duffing was discussed in the previous chapter in

Section 4.3.3, where the qualitative discussion hinted at the possibility that a single

Duffing oscillator used as a transition pre-processor may have a relatively narrow

bandwidth. A method of performing detection over a very wide bandwidth using a

bank or array of Duffing oscillators is investigated later in this chapter in Section 5.6.

In fact the entire structure shown in Figure 5.2 will be used as a single pre-processing

element in the array, where each element is configured for a different (incremental)

frequency. It is more convenient to use a label for the complicated array element
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structure, in the rest of this thesis it will be referred to as a Duffing Array Element

(DAE). Before the array of DAE’s is demonstrated however, it is necessary to

understand the impact on detection performance, and this is briefly investigated in

the next section.

5.3 Performance of the modified detector

There are two broad concepts that have been introduced in this chapter so far;

improving the detection stage by exploiting behaviours specific to the nonlinear

system, and the walk towards a system that can detect real signals. Both aspects

introduce a number of new parameters, each of which could affect detection

performance. The overall aim of this section is to isolate and compare the impact of

these parameters. A brief summary of each assessment step is given below:

The four-phase mitigation was developed for a detector of real signals where no prior

knowledge of the phase behaviour would be known. Four-phase processing will be

used in conjunction with the replica correlation process, and its performance will be

compared in two ways; four-phase to one-phase, and DAE with four-phase to the

conventional fixed frequency bin FFT and threshold detector with no phase

processing. The phase difference was randomised in this analysis, the investigation is

described in Section 5.3.1.

The comparative performance at different input S/N’s was shown to vary for the

impulsive noise case, in the previous chapter. Some of the comparisons investigated

here will also be carried out at different S/N regimes. The main place this analysis

occur is in Section 5.3.2.

The correlation part of the detection stage will be isolated from the four-phase stage,

and its performance compared to the same benchmark detection process that has

been used in previous chapters, the FFT with amplitude detection threshold.

Four-phase processing will still be used, but it will also be applied to the linear FFT
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with amplitude detection scheme. In other words the ‘isolation’ of the correlation

process is not achieved by removing the four-phase component from the DAE, but by

adding a four-phase stage to the comparator detection scheme. This analysis is

carried out in Section 5.3.3.

5.3.1 Benchmarking a single DAE

A method of detecting sine wave signals suitable for a realistic situation was developed

in the preceding sections, however before applying it to real data some assessment of

the behaviour of a DAE is required. The DAE method incorporates additional signal

processing designed to improve detection performance as much as possible, by

exploiting the output harmonic content as well as the fundamental and by managing

the problem of unknown input signal phase. The expected improvement in detection

performance, resulting from these changes, can now be quantified using ROC analysis.

The essential variable in the analysis in this section is that the phase difference

between the input sine wave and internal drive is randomised between ROC

iterations. The approach is to compare the ROC curves derived from the DAE system

configured with and without, the four-phase scheme. Replica correlation was used in

both these cases. ROC analysis was carried out on the output from one DAE. The

statistics were collected in the same way as in previous ROC analyses, except here the

maximum correlation coefficient is collected instead of the amplitude of the output

displacement. The final step in the DAE processing is to select the maximum

correlation coefficient from the four phase branches of the process. The second case,

with replica correlation but without four-phase, is configured by forcing the collection

of the coefficient from the same phase branch at each ROC iteration.

The input signal is simulated Gaussian white noise with an additive single tone sine

wave of fixed amplitude. The sine wave part of the input signal is generated using

fixed phase. The simulation of a signal with unknown phase is simulated by randomly

varying the phase of the internal forcing term instead. This method was adopted
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because it was easier to vary the internal drive phase, than the input sine wave phase

in the coded implementation of the DAE and RK4 solver model used here. This is

safe to do because the important parameter is the relative phase between the two

linearly additive periodic force terms. Fixing the phase of one and varying the other

is identical to the converse. In addition to the baseline configuration, the extra set up

values used here for the DAE are shown in Table 5.1. Simulating randomised phase in

the input data is one step towards a more stressing test of nonlinear detection

algorithms, by approximating the assumed behaviour of real signals with unknown

starting phase

An additional comparison was also made by collecting ROC statistics on the

conventional detection scheme that uses the amplitude data in a fixed frequency bin,

which is the same method used in all ROC analyses of all previous chapters. The

output from a single Duffing oscillator is Fourier transformed, and the same input

data used as described above. Also as earlier, the essential variable is that the phase

difference was randomised over the ROC iterations. It is recognised this is not strictly

a like for like comparison because the detection performance resulting from using the

a priori knowledge of the correct frequency is artificially high. However, if the replica

correlation method provides a detection performance better than this fixed bin

detection threshold method, then it will also therefore be better than a more

representative amplitude threshold detection method. The single Duffing system used

here was also in baseline configuration. All three ROC curves; four-phase, one-phase

and amplitude threshold, are shown in Figure 5.3. All three data sets were collected

using the same input S/N, quoted in the figure as a calculated value (rather than

measured) using 10 log10
(
A2
m/σ

2
)
.

Figure 5.3 shows the ROC curve for the replica correlation with four-phase detection

scheme, is both symmetrical and in a higher position than the other curves. Both of

the other two cases fail to manage the randomised phase variation, the four-phase
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Parameter Symbol Value

phase difference φ randomised

Runge-Kutta step h 0.000093

Drive frequency 617.7

Input frequency 617.7

Sample rate 6000

Number of initial points 1000

ROC iterations 1600

Noise deviation σ 0.1131648

Sine wave amplitude (minimum) Am 0.0201

Replica: Number of cycles 15

Replica: Internal force amplitude γ 1.0

Table 5.1: Duffing oscillator and DAE configured with the benchmark set up. Some
additional configuration values are shown here.

Figure 5.3: ROC curves comparing the four-phase replica correlation approach to one-
phase replica correlation, and the fixed frequency bin amplitude threshold method.
Duffing baseline configuration used with additional set up values shown in Table 5.1.
Phase difference was randomised.
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approach shows some success. The asymmetry of the ROC curves results from the

bimodal distribution of the output from the detector with Duffing (or DAE)

pre-processing. The two peak positions occur either side of the noise-only mean

position. With one-phase processing the two peaks are of similar size, with four-phase

processing the lower peak is greatly reduced. The ‘S’ shaped ROC curves are

generated by applying a binary decision threshold to bimodal distribution functions.

As the bimodal structure becomes dominated by the signal-plus-noise higher peak, as

in the four-phase case, the ROC asymmetry disappears.

5.3.2 Variation with S/N

It was shown in the previous chapter that the performance of a detector using Duffing

pre-processing relative to a conventional benchmark detection scheme, can vary for

different input S/N. Although the evidence was collected during the investigation of

impulsive noise, it is sufficient motivation to establish whether such a variation might

exist under different conditions. Following on from the previous section, a second

investigation of the replica correlation process using simulated input data comprising

of a sine wave and Gaussian white noise was carried out. However, in this test the

phase difference between the input sine wave and the internal drive was not

randomised but fixed at zero. The comparison was made between one DAE

pre-processor with replica correlation, and amplitude threshold detection on the

output of a single Duffing oscillator. This comparison was carried out at two input

SNR values −13dB and −17dB (using SNR = 10 log10
(
A2
m/σ

2
)
).

All configurations were as for the baseline set up, with the additional configurations

shown in Table 5.1, with the exception that the two input SNR values were obtained

by setting the input Gaussian noise deviation value to σ = 0.2536449 and 0.5060880

respectively. Importantly, the phase difference was not as shown in Table 5.1

randomised but fixed at zero. The four-phase processing was dropped and one-phase

processing used instead, for both the DAE and the single Duffing oscillator. The aim
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here is not to measure the performance under the conditions of ‘realism’, but to

control the parameters and test variations with input S/N. The resulting four ROC

curves are shown in Figure 5.4.

Figure 5.4: ROC curves comparing the replica correlation detection, to the amplitude
threshold detection scheme. Comparison carried out at two input SNR values; −16dB
and −22dB. Three curves sets at each S/N: Correlation detection with one-phase fixed,
amplitude detection with fixed frequency bin and maximum amplitude detection. Phase
difference φ fixed at zero, 2600 iterations for each ROC curve, frequency of input sine
wave and internal force sine wave are both f = 625.6Hz, 0.075 seconds of input data
at a sample rate of 1600 samples per second.

5.3.3 Benchmarking the correlation process

The aim of the final performance assessment section is to make a partial return to

‘realism’ by configuring the input with randomised phase difference but retain the

fixed bin in the FFT with threshold detection scheme. In other words no prior

knowledge of the phase of an input sine wave is assumed, but prior knowledge of the
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frequency is known. The essential change in this section is to add four-phase

precessing to the FFT and threshold detection scheme, by constructing four parallel

single Duffing oscillators with equi-spaced phases. A comparison is made between this

set up and the DAE set up. Since both use four-phase processing this is effectively an

investigation of the isolated correlation process alone.

The approach is to use ROC analysis at the output of the detection stage as before. A

simulated single tone (with and without Gaussian noise) is used as the input to the

Duffing system, followed by the detector stage applied to the output from the Duffing

system. ROC measurements were collected for four separate runs each with a

different input signal to noise ratio. The four runs were repeated for the two detection

configurations, the measured parameters being amplitude (in the frequency domain)

in one set of runs and correlation coefficient for the other set. In both cases the phase

of the input tone was randomly varied with a uniform distribution, relative to that of

the ‘internal’ periodic force tone.

(a) (b)

Figure 5.5: Duffing ROC analysis at four S/N’s and two detection schemes: (a): FFT
with threshold, and four-phase processing. (b): Replica correlation, and four-phase
processing.
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It is immediately apparent the ROC analysis comparing frequency domain amplitude

thresholding to maximal correlation coefficient detection, at the output of the Duffing

system, that the replica correlation detection method provides a better detection

performance. This is based on the calculated half area under ROC curve values shown

in Figure 5.5. As stated earlier, note that a single measure such as area under ROC

curve should be used with caution, because the performance region of most

significance is often the very low false positive rates (FPR) and the ROC curves

themselves may not necessarily be symmetrical. However, most of the remaining

analyses presented in this chapter will be on the basis that replica correlation is used

as the detector at the output of the nonlinear system.

5.4 Short input data lengths

If a practical implementation of a Duffing detector uses buffered data segments at

both input and output then it is reasonable to ask how short can the data section

input be and what is the relation between buffer length and detection performance.

The assertion that the detection performance of a Duffing system does not reduce

with reducing input data length but that of a conventional matched filter does [20],

was mentioned earlier in Section 4.2. The behaviour of the Duffing as a detector of

very short input data lengths is briefly investigated here, simply by providing a

sequence of output time series and phase space plot pairs as the input signal

A cos (2πft+ φ) data length is shortened.

The sequence of phase space plots shown in Figure 5.6 indicate that in this simple

demonstration at least, the transition to the stable limit cycle is unaffected by the

shortening input data length until it becomes shorter than the initial transient length

inherent in the Duffing system.

The output displacement solution from a Duffing system almost always starts with an

initial chaotic transient sequence before attaining the limit cycle and stable periodic
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Figure 5.6: The evolution of Duffing output; phase space (BOTTOM ROW) and time
series (TOP), with shortening input sinusoid signal data length (zero noise). All Duffing
configuration values are as the baseline in Table 4.1 except the following: The input
signal and internal drive frequency were both 179 Hz, the input data lengths (number
of points) took one of four values [704, 503, 184, 90] corresponding to the four plot pairs
shown. The sample rate was set at 7200 Hz.

dynamics. For a given configuration and initial conditions the length of the transient

does not change significantly between repeated simulations. As the output data length

shortens, the proportion of the output time-series solution that is periodic becomes

smaller, with the consequence that detection performance must degrade because

effectively there is no stable signal. The problem can be solved by discarding the

initial transient. It was shown in Chapter 4 that the transient length is predictable. A

practical detection scheme can therefore exploit this to discard an optimal length of

the initial transient without requiring prior knowledge of the input signal.

Parameter Symbol Value Value
(short input) (long input)

Runge-Kutta step h 0.00004 0.00004

Drive frequency 647.03741 647.03741

Input frequency 647.03741 647.03741

Sample rate 18533 18533

Number of initial points 300 800

Noise deviation σ 0.0799247 0.0799247

Initial transient points discarded 80 120

FFT only ROC: peak track or fixed
bin

fixed fixed

Table 5.2: Duffing parameter configuration values used in the ROC analysis in this
section.
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The impact of transient discard can be assessed using ROC analysis. A single DAE

was configured as a baseline system, with some additional set up parameters as shown

in Table 5.2. Two input data lengths were considered, each with a different amount of

the initial transient discarded. ROC curve data were collected to form a comparison

between correlation detection using four-phase processing in one DAE with a short

input, with and without discard. A third curve representing the FFT and threshold

detection scheme was also generated. The same method was then repeated to create a

second set of three ROC curves, this time using a longer input data length. The

results are shown in Figure 5.7.

(a) (b)

Figure 5.7: ROC analysis for one DAE: With and without initial transient discard,
replica correlation detection using maximal output, compared to FFT and threshold
detection. Using either very short input length (300 data points of single tone and
additive Gaussian noise), or long input (800 points). All curves at −15 dB input SNR.
The ROC curves for FFT detection use the same input data length and S/N. (a):
Maximal correlation with and without discard compared to FFT. Short input. (b):
Maximal correlation with and without discard compared to FFT. Long input.

The conclusion that can be drawn from the results shown in Figure 5.7 is that the

effect on detection performance of discarding the initial transient is almost

insignificant, under the conditions of the investigation carried out in this section.

However, if the ratio of transient length to input data total length were to be larger
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than the ∼ 1/3 used here, the outcome may be different.

5.5 Quantifying bandwidth

The bandwidth of the Duffing pre-processor can be measured, both for a single

Duffing oscillator and for an array of DAE’s. It is important to emphasise here that

the objective of this section is not to fully characterise all aspects of the behaviours of

a nonlinear pre-processing scheme that affect bandwidth. The main purpose is to find

a reasonable estimate of the bandwidth in order to understand some of the issues

associated with an array of Duffing pre-processing units, that will be discussed later

in Sections 5.6 to 5.6.2.

The bandwidth of a single Duffing oscillator, and one DAE, forced by one internal

periodic component and two external components that represent the input signal

model of noise and sine wave, is primarily determined by two factors. These are the

behaviour of intermittent chaos as the frequencies of the two periodic force terms

become further apart, and the length of the time-series input discrete data segment.

Two sets of bandwidth measurement data were collected, one for a ‘short’ input signal

length and one for a ‘long’ input.

A single Duffing oscillator was set up with the baseline configuration. The input

signal was configured with an arbitrarily high S/N, the noise deviation set constant

for all runs, at � 0.00003. The strategy was to apply positive increments of the input

sine wave frequency, in steps of 0.1Hz, starting at the same frequency as the internal

drive. The corrected output power spectral density was found and the peak power

value collected at the internal drive frequency bin, for each frequency increment of the

input signal frequency. Internal drive frequency, critical internal amplitude and input

sine wave amplitude were all held constant, at f0 = 305.1265Hz, γc = 0.812 and

A = 0.04. Phase difference between input and internal sine waves was fixed constant

at zero. The sample rate for these tests was set very high at 26613, so that there were
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more than 70 samples per cycle at the highest input frequency increment, to eliminate

any possibility of output amplitude ‘roll off’ as the aliasing, or Nyquist, frequency is

approached. The results are shown in Figure 5.8 (a).

A second bandwidth set of measurements were then made, replacing the single

Duffing oscillator with one DAE. The DAE was configured in the same way as the

single oscillator, with the additional set up values of; number of replica cycles 15,

fixed replica amplitude 0.84. The input signal was the same as before. The variation

of output correlation coefficient with difference frequency was measured, at two

different input data lengths. The first data length corresponds to the short length of

0.75 seconds used in the previous test. The length of the second data set was set even

shorter at 0.057 seconds. The results are shown in Figure 5.8 (b).

(a) (b)

Figure 5.8: Half sided bandwidth estimation. (a) A single Duffing oscillator, maximal
PSD peak power variation with frequency difference, at two input data lengths: 2.27
seconds and 0.75 seconds. (b) A single DAE, maximal replica correlation coefficient
from DAE four-phase processing, at two input data lengths: 0.75 seconds and 0.057
seconds.

Figure 5.8 shows that the output detection (measured) parameter, which is either

maximum PSD value or maximal correlation coefficient value, reduces as the

difference frequency increases from zero. The reduction has cyclic structure in all
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cases, similar to an under-damped sine wave, however the cyclic structure is much

more marked for the single Duffing oscillator. The reduction appears to eventually

reach a semi-stable plateau; at an approximate factor of 0.55 of the peak in plot (a)

the single Duffing oscillator, and approximately 0.86 of the peak for the DAE.

Bandwidth is traditionally measured at the half power (or half amplitude) points,

however Figure 5.8 (a) and (b) show this metric is not meaningful because the half

power points are not reached. An alternative bandwidth definition point is selected

here, such that all plots achieve the level, and it is higher than any side-peak values in

all cases. The arbitrary factor of 0.9 of the main peak is chosen as the bandwidth

definition point for the estimates used in this thesis.

Two important observations from Figure 5.8 are noted here. Firstly, the bandwidth

does not appear to change significantly with input data length for a single DAE,

however for a basic Duffing oscillator bandwidth increases with increasing input data

length. Secondly, the bandwidth, for a given input data length, is much larger for a

DAE compared to that of a single Duffing. For 0.75 seconds of input data, the DAE

has a bandwidth at the 0.9 point of ∼ 34 Hz compared to one basic oscillator, which

has a bandwidth of ∼ 0.4 Hz.

The nature of intermittent chaos in terms of its characterising metrics such as

amplitude and intermittent period, is not affected by the subsequent detection

processing. The choice of the subsequent detection scheme, such as replica correlation

or amplitude thresholding, can not have any effect on the nature of the time-series

passed into it. Such a time-series, exhibiting intermittent chaos, will do so irrespective

of the detection scheme. Therefore the different bandwidths for identical length and

S/N input data, measured using the two detection methods, must be partly

determined by the detection processing itself.
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5.6 An array of nonlinear detectors

A practical detection system will need to cover a wide frequency spectrum, however it

has been shown that a single Duffing oscillator system using the transition mechanism

has a very narrow bandwidth. It is possible to make a time-frequency like

spectrogram visualisation of an output signal from an array of Duffing oscillator

detectors, each with a fixed internal force frequency that is incremental across the

desired spectrum. The idea was first proposed in 1999 [4], and then implemented by

Bermudez-Gomez et al. in 2012 [118]. Bermudez-Gomez et al. demonstrate the

technique and make a comparison to other conventional spectrographic techniques

such as the short time Fourier transform. However no comprehensive characterisation

or performance measure was made. In this section the technique is extended to

realistic and stressing signals and some of the behaviours of an array are investigated

and discussed. The concept is further extended by constructing the array using

multiple DAE’s rather than basic Duffing oscillators. Significantly fewer elements are

needed, which reduces the computation time.

The effective bandwidth of a single Duffing oscillator is governed by the difference in

frequency between the internal force term and the input. The onset of intermittent

chaos, and the pre-selected and fixed input data length can combined to vary the

bandwidth significantly. However, even though a shortened fixed length time-series

could potentially hide intermittent behaviour by having a stable periodicity shorter

than the onset time, as the difference frequency increases intermittency will occur

earlier and re-appear within the same data length. However it is possible this

advantage may not manifest if there is a variable and unknown phase difference

between any input sine wave and the internal drive.

Even if an attempt were made to exploit the difference frequency (beat frequency)

itself by developing difference frequency (‘demodulation’) detection processing to

fine-tune the classification of the actual frequency of the unknown input signal, a
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single ‘wider-band’ Duffing oscillator will eventually fail. As the difference frequency

grows still larger the periods of stability become shorter and eventually degrade

altogether, often well before their time length becomes similar to the inverse of the

internal drive frequency. The conclusion is that an array comprised of basic Duffing

oscillator systems is unlikely to perform well as a wide band detector across the range

of frequencies that would be required in a practical detection system.

It was shown earlier that the bandwidth of the DAE appears to be constant with

input data length, and generally much wider than the bandwidth of a single Duffing

oscillator. The replica correlation with four-phase processing has a bandwidth at its

output of about 34 Hz as compared to about 0.4 Hz measured for the same input data

length. The computational load of Duffing pre-processing and detection is estimated

to be about one fifth that of one DAE, because the Duffing solver forms the majority

of the load and there are five solvers operating in one DAE processing scheme.

However, a factor of about 85 times the number of single oscillators would be required

to cover the same given bandwidth as an array using DAE’s. An estimated

computational load approximately 10− 17 times faster should be expected using

DAE’s, compared to single oscillators.

Based on the preceding arguments an array of normalised Duffing DAE’s was

constructed, with the internal periodic force term in each DAE incrementing in

constant frequency steps. So far the discussion has concentrated on the frequency

bandwidth of each element, along the frequency axis of the time-frequency

visualisation. It was shown in Section 5.4 that very short input data lengths still

successfully trigger a Duffing oscillator to transition to the stable limit cycle.

Consequently very short input data lengths can be used as an investigation tool in an

array of DAE, therefore two further processing steps were added, placed before the

input to each DAE in the array. The length of the the input time-series data was

shortened and overlapped, which enables an understanding of the time axis resolution

that may be attainable, without introducing ‘edge‘ artefacts between time step cells
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in the final time-frequency visualisation.

Shorten-and-overlap was implemented in the coded model by cutting a long input

time-series data vector into several shorter sections, where each short section

contained a repeat of a proportion of the tail end of the previous section. A data

matrix was then built using the sections, with each row representing one time-series

section. The overlap proportion therefore became a control within the array overall

configuration. The time-frequency visualisation is therefore derived from a great

many time and frequency ‘cells’, where the cell width along the time axis is controlled

by the shortened data length and the RK4 step size. The number of time cells is

controlled by the number of shortened data vector rows in the data matrix. Along the

frequency axis the number of frequency cells is set as a control in the array set up,

and the frequency increment is implemented as frequency step parameter added to

the internal drive frequency at each iteration. These two therefore combine to define

the total bandwidth of the array. A copy of the same re-shaped input data matrix for

the same long time period, is passed to to each DAE in the array.

Two demonstrations of the array of DAE’s are presented in Figures 5.9 and 5.10, and

briefly described in Sections 5.6.1 and 5.6.2 respectively. The approach taken was to

perform a series of trial-and error array modelling runs where several controls were

varied to generate a qualitative understanding of how the visualisation generated by

the models and the array output, behaves. The amount of overlap at the input was

varied from zero to about 0.8, but in general a good compromise was to use a factor

of 0.66 as the proportion of overlap. The frequency step size was also investigated and

found to generate clearest output for a value from 1Hz to about 40 Hz. Model run

time was a major factor, and largely dictated the number of samples to be used at the

input prior to re-shaping and overlap.
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5.6.1 Frequency modulated chirp input

The first results shown in Figure 5.9 were generated using a simulated linear

frequency modulated ‘chirp’, with no added simulated noise. The output across all

time and frequency cells was normalised to a range of zero to unity.

Figure 5.9 demonstrates that the principle that a spectrogram style visualisation of

the time-frequency behaviour of an array of Duffing based pre-processors is viable.

The results in Figure 5.9 plots (b) and (d) demonstrate that the resolution in both

frequency and time, cannot be increased simply by using finer frequency steps or

shorter re-shaped input data chunks. The earlier bandwidth investigation showed an

apparent bandwidth for one DAE, constant with input data length, of about 34Hz.

Plots (b) and (d) agree well with the earlier result. Both show an apparent

bandwidth of between 25 and 30Hz. Plot (a) differs from (b) and (d) in that only

one-phase processing was used, an artefact pattern is clearly visible. The four-phase

processing appears to destroy this pattern. The precise cause of the pattern is left to

future work, however it appears to be closely linked with the phase mitigation

processing and the bandwidth of the correlation detection process.

5.6.2 The ‘hello’ voice data

A further more stressing demonstration of the DAE array is described in this section.

The input data in this case uses a recording of a few seconds of voice data of the

spoken word ‘hello’. The recording was made in a small well furnished room with

little background noise and no noticeable reverberation. The recording was made

using the built in sound card on a low specification laptop computer, using a very

inexpensive microphone. The time series recording has not been analysed for noise

content, type or S/N, however it is speculated that the noise that is present is most

likely to be electrical rather than room noise, because of the inexpensive recording

equipment used. Observation of the time-series showed there to be some clipping for
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(a) (b)

(c) (d)

Figure 5.9: Detection of a simulated up-sweep linear chirp signal using an array of
DAE’s. Configuration common to all plots: Individual Duffing systems use baseline
configuration, DAE shortened data length re-shaping with no overlap. Input sine wave
amplitude A = 0.026, RK4 step 0.00008, linear chirp start frequency 406Hz. Input
sample rate 9091 samples per second, input data original length 8000 samples. Plots
(a), (b) and (d) use DAE array, maximal output correlation coefficient detection. (a):
Without four-phase processing (one-phase). Re-shaped input chunk length 40 samples,
frequency cells 80, frequency step 3Hz. (b): With four-phase processing. Re-shaped
input chunk length 40 samples, frequency cells 80, frequency step 3Hz. (c): Conven-
tional FFT time frequency spectrogram for comparison. (d): Finer frequency and time
steps, with four-phase processing. Number of frequency cells 240, frequency step 1Hz,
short input chunk length 20 samples.
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the very loudest part of the recording, however this does not alter the outcome of the

demonstration.

Figure 5.10 shows the output time-frequency visualisation results for an array of

DAE’s processing an input of recorded voice real data (the hello signal). The

individual Duffing systems comprising the each DAE were configured as the baseline.

The re-shaped and overlapped input data were configured so that each data row in

the data matrix was 230 samples long. The findings of Section 5.4 suggested that

discarding the chaotic transient had little impact on detection performance provided

the ratio of transient length to the data length was > 1/3. This condition was not

met by the set up used here, where the ratio was found to be v 1/2. The choice was

made to exploit transient discard for the demonstration shown in Figure 5.10.

Finally, the use of real data such as that used here, presented an additional problem

not encountered so far in the thesis. Generally, real data will have variable amplitude

or power, including any component of the input data that is the signal to be detected.

It was therefore necessary to include an additional processing step before the data

was passed into the array of DAE’s. The overall variance of the data was measured

and the overall amplitude scaled accordingly so that the signal component had an

amplitude sufficient to trigger transition in the Duffing systems. In other words the

aim is to scale the input so that the wanted signal has an amplitude > Am. This is

always going to be a trial and error process. If the S/N happens to be very low it may

take several scaling attempts before the signal manifests in the Duffing array

visualisation.

The configuration used in the voice data example shown above was selected on the

basis of a trial-and-error approach. There are several parameters that affect the visual

quality of the result including, frequency step size, RK4 step size, data matrix

dimensions, overlap, replica amplitude, the coarse nature of adopting only four phase

steps, the input signal scaling and the number of cycles in the limit cycle replica.
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(a) (b)

Figure 5.10: One second of recorded voice data (saying the word ’hello’ ), truncated to
about 0.6 seconds in length. All plot axes: First TIME (seconds), second FREQUENCY
(Hz) and third unscaled value for either; amplitude or correlation (a): Conventional
PSD spectrogram using Hamming windowed FFT overlapped 0.666, size 1024, of the
input data, 10 × log10 scale. (b): Array of DAE’s at 25 Hz step, 200 initial transient
points discarded in all time-frequency cells, time axis chunks 230, points overlapped
0.666.

The test simulations used to optimise the configuration in order to produce the figure

shown above revealed a consistent problem with the method. There is severe roll off

in the spectrogram at very low frequencies, which in this configuration meant no

detections were seen below approximately 500Hz. There is known to be significant

signal content below this frequency, in the ‘hello’ voice data used here. Identifying

the cause and developing a solution is left to future work, along with further

investigation into the underlying factors determining the bandwidth of a DAE, and

therefore the resolution of the data shown above.

It is thought that there are several mechanisms that may affect the success of the

DAE array approach. These are catalogued below:

1 If the chunk of data presented to the Duffing filter is too short, the

correlation fails and signal content is lost.

2 If the input sample rate is too high this requires the chunk length to

much longer in order to pass enough cycles to the correlator for it to

produce a meaningful value. A high sample rate therefore has a similar
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effect as passing chunk of data to the correlator that is too short.

Unless the chunk length is increased as the sample rate is increased, to

ensure enough cycles are generated, the correlation will fail.

3 If the Runge-Kutta step size is too wide the phase space trajectories

become corrupted and any meaningful output from the correlation

processing breaks down.

4 A robust understanding of appropriate data compression/scaling

methods needs to be developed. This is not so trivial as might be

expected given the nonlinear behaviour of the spectrogram method,

across the frequency axis.

5 The zero padding used in the replica correlation detection severely

affects the spectrogram resolution.

6 The frequency normalised Duffing configuration renders the limit cycle

trajectory size almost invariant with frequency. Any signal

components that cause full transition could therefore potentially

destroy the amplitude variation seen in the basic FFT spectrogram.

The monotonic amplitude variation is potentially converted almost

into an on/off nonlinear discontinuity.

5.7 Snapping shrimp

Much of this chapter has been devoted to building towards the construction of a

practical pre-processing scheme and detection stage, that can be applied to real data.

The development of a wideband version of the nonlinear pre-processing scheme, with

a novel detection stage, and shown in the previous section, was successful in

demonstrating the principle can work. In this final section another application to real

data is discussed, here the focus is not detection over a wide frequency band but

detection in the presence of loud biological noise.

A single DAE was used in the analysis here, ROC analysis was the metric used to
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quantify detection performance. The input data was an additive mixture of noise and

a single sine wave tone, however the noise used here is real underwater biological data

taken from a wav file recording of the impulsive noise produced by a colony of

snapping shrimp recorded near the Hopkins Marine Station in Monterey Bay (USA)

[119]. The recording was originally made and saved as an ‘aiff’ file. A necessary

conversion to ‘wav’ format, at a sample rate of 44100 samples per second per channel,

was carried out after downloading because the simulation tools used here do not read

‘aiff’ formatted sound files.

The ROC analysis aim is to compare the detection performance of a four-phase DAE

unit using correlation detection, with that of a linear FFT and amplitude threshold

detector with no nonlinear pre-processing. The simulated sine wave input signal

samples were added to a new section of the real snapping shrimp data samples, at

each ROC iteration. The original recording is approximately 3 to 4 minutes long,

which meant that short sections were able to be selected at random at each ROC

iteration without repetition. The noise data were scaled separately to the added sine

wave signal, in order to set a desired input S/N. In these test the SNR was set to

−21dB with the sine wave signal amplitude set to the minimum detectable

Am = 0.0201. The randomly selected short data lengths of noise were 1500 samples

long. Apart from these modifications to the ROC analysis process, the procedure is

identical to that used elsewhere in this thesis. The ROC curve results from 1500

realisations are shown in Figure 5.11.

The four-phase DAE using replica correlation detection applied to highly impulsive

noise is successful in detecting the added sine wave. The ROC curve for the DAE test

(dashed line, cross marks) is significantly higher at low false alarm rates than the

directly comparable FFT with amplitude threshold linear detection scheme at the

same input S/N (solid line, cross marks). The FFT only curve is highly asymmetric,

the TPR falls sharply at FPR values less than about 0.25.
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Figure 5.11: ROC curves using Monterey Bay snapping shrimp impulsive noise with
an additive simulated sine wave. Two solid line curves: Basic FFT with no nonlinear
pre-processing and using amplitude threshold detection. Sine wave in Gaussian white
noise and sine wave in snapping shrimp impulsive noise. Dashed line ROC curve: Sine
wave in snapping shrimp impulsive noise, using DAE with four-phase pre-processing
and detection. RK4 solver step 0.00004, internal and input sine wave frequencies f0 =
f = 628Hz, internal and input sine wave amplitudes γc = 0.812 and Am = 0.0201,
replica amplitude 1.0 using 3 cycles, 200 initial transient points discarded.

It was shown earlier using a similar analysis with simulated impulsive noise and sine

wave input (no real data), that the FFT only detection scheme had a symmetric ROC

curve. The result that is comparable in set up to the one shown in Figure 5.11, is

discussed in Section 4.6 and shown in Figure 4.16. In both cases the baseline Duffing

configuration was used, however there are two main differences. Firstly, in the earlier

result a single Duffing oscillator was used with amplitude threshold detection on a

fixed bin in the frequency domain, whereas a full DAE unit was used for the result

shown in this section. Secondly, the input impulsive noise used in the earlier result

was constructed from multiple versions of the modelled finite length impulse spike,
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shown in Figure 4.15 (b). Both sets of results agree in that both nonlinear

pre-processing and detection schemes outperform a simple FFT based linear detection

scheme. However, the disagreement between the two sets of results on the shape of

the curves (asymmetrical versus symmetrical) may be because the impulse spike

model is not sufficiently representative of real snapping shrimp impulse spike. More

specifically, a time-series comprised of modelled spikes may be less impulsive than

than the real biological data.

Figure 5.12: ROC curves using simulated impulsive noise with an added simulated
sine wave. Dashed line curve: Basic FFT with no nonlinear pre-processing and using
amplitude threshold detection. Sine wave with simulated power eleven impulse noise.
Solid line ROC curve: Sine wave with simulated power eleven impulse noise, using DAE
with four-phase processing and replica correlation detection. RK4 solver step 0.00004,
internal and input sine wave frequencies f0 = f = 630.24Hz, internal and input sine
wave amplitudes γc = 0.812 and Am = 0.0201, replica amplitude 0.84 using 15 cycles,
200 initial transient points discarded.
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The proposed explanation offered above, for the difference in ROC curve shapes is

explored in Figure 5.12. Here, the real biological noise data is replaced with fully

simulated impulsive noise. The noise was generated by producing Gaussian white

noise with a noise deviation set to 0.34, and raising the noise time-series to the

eleventh power. The sine wave signal was added as before, and the combined input

comprised of 5250 samples of impulsive noise and tone. The advantage of this

approach is that the large excursions of each impulse spike in the input time-series are

much shorter in time-length than the impulses modelled in the earlier results.

Using simulated noise that is far more impulsive than the models used in Chapter 4

produces the asymmetry in the ROC curve for the FFT only detection scheme, as

shown in Figure 5.12. This evidence supports the conclusion that the more impulsive

the input noise is, the worse a linear detection scheme based on FFT and amplitude

thresholding, performs. As the impulsiveness increases, the performance of the linear

detector falls below that of the nonlinear DAE scheme at low FPR values. It is left to

future work to explore this result further to test its robustness.

5.8 Discussion

The aim of this chapter was to complete the analysis of a range of behaviours found

in the Duffing transition mechanism, and to use those properties to develop a

detection scheme that could be applied to real data. Some of the properties offered

only marginal benefit to a practical nonlinear detector. For example, discarding the

initial chaotic transient that occurs at the output from a transitioned nonlinear

system, only improves performance by a small amount for extremely short output

data lengths. In contrast, the nonlinear DAE system with correlation and four-phase

processing has the property that its detection performance does not appear to vary

significantly with an increasingly impulsive input signal. A linear system however,

does appear to lose performance for highly impulsive input.
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The DAE approach was found to increase the computation time, however it showed

that it is possible to build a wideband array to detect sine waves and other input

signals, over wide frequency bands. It is recognised that the four-phase approach is a

simple solution to the problem of unknown phase at the input. There is scope to

improve this aspect. A complex version of the Duffing system was chosen by Deng et

al. [8] to form a detector of weak complex signals. Although Deng et al. continue the

erroneous claim of noise immunity for nonlinear system detectors in their 2012 paper,

this does not detract from the potential of their complex form Duffing system to

provide an alternative mitigation of the problem of unknown phase of an input

periodic signal. The benefit postulated in this thesis, is that as a minimum such a

system could be implemented as a much faster algorithm. This is because the

complex form can easily be cast as a first order system, so that two quadrature

Duffing systems can be used instead of four separate Duffing oscillators, to detect the

signal of unknown phase.
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Chapter 6

Conclusions

6.1 Introduction

Two nonlinear mechanisms commonly found in models of nonlinear systems have

been investigated for their potential to improve detection performance for a set of

different types of input signal. The main goal of the work presented here was to apply

nonlinear processing techniques to specific underwater acoustic detection problems,

and to comprehensively and robustly measure the performance of these systems in

terms of the impact on detection.

The first nonlinear mechanism examined was Stochastic Resonance (SR), which was

the subject of Chapter 3. The next two chapters explored the mechanism of transition

from chaos to stable motion. In both these cases, and for the first time, a

comprehensive detection performance quantification was carried out using Receiver

Operating Characteristics (ROC) analysis. The results of this analysis have generated

the most comprehensive set of performance measures, and firmly establishes the real

status of whether nonlinear systems can be usefully exploited in underwater detection

problems. These results have the advantage that the quantified performances can be

safely compared to any future detection performance ROC analysis, on any type of

detector operating on the same input data. This is novel, and in contrast to the
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majority of the performance measures in the literature, such as output S/N [4] or gain

[25], which are poorly defined and cannot safely be used in comparisons.

6.2 Stochastic resonance

The configuration of the nonlinear system is crucial in enabling the stochastic

resonance effect to manifest. It has been shown that only a part of the total

configuration space available for a normalised system, will enable the resonant effect

to appear. Assuming any exploitable improvement in detection performance can only

reside in the stochastic resonance region then the usefulness of nonlinear systems in

that respect is therefore constrained to a subset of combinations of system parameter

values that generate SR.

Unfortunately there are a number of partially inter-dependent nonlinear system

parameters that require adjustment to meet the conditions for SR and to optimise the

detection of the wanted part of any input signal. In particular the optimal detector

configuration for best performing detection using SR, depends on the input S/N, the

input overall energy level (variance) and on the frequency of the wanted component.

The upper bound on frequency (imposed via the Kramers rate condition) can be

easily be extended however this requires adjustment of two additional system

parameters, the two factors controlling the size of the linear and nonlinear

displacement terms. The system is no longer normalised but is now

parameter-adjusted in order to optimise the SR effect for the particular input S/N

value. The optimal stochastic resonance based detector is dependent on knowledge of

the input signal, which further reduces the usefulness of SR to improve detection.

An appropriately configured Langevin system stimulated by an appropriate input sine

wave will become stochastically resonant provided the conditions for SR are met.

These conditions were detailed in Section 2.4.3. The output is periodic with a

fundamental frequency identical to the input frequency, but at some input S/N
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regimes the output exhibits additional harmonics. The shape of the periodic

component of the timeseries output from a nonlinear system, changes as the system’s

overall energy content increases past that required for SR. The shape morphs from a

single sinusoid, to a summed sequence of a small number of higher frequency

harmonics, and back to a sinusoid. This change offers a possible explanation for the

shape of the classic SR indication, the non-monotonic output S/N curve.

Signal-to-noise ratio measured on only the fundamental frequency and ignoring the

harmonics may present a falsely low S/N value in the nonlinear regime. The total

signal power is divided amongst the fundamental and its harmonics. However the

share of the energy retained in the fundamental varies.

It was shown in Section 3.4 that the damping factor in a Duffing system can affect the

onset of SR, without changing the size of the SR peak. Higher input S/N (lower noise

for the same signal amplitude) bring about SR for increased damping. This means it

becomes possible to add more noise as a method of optimising the input S/N for the

SR peak, where the assumed detection benefit will occur.

The detection performance was quantified for a small number of cases, using ROC

analysis. The amplitude variation statistics with signal present and absent in one

frequency domain bin were collected to generate the ROC curves. Comparison of the

detection performance was made, with and without, the nonlinear pre-processing

stage. The three cases are represented by Figures 3.7 (sinusoid in white noise), 3.9

(sinusoid in mixed white and impulsive noise) and 3.14 (square wave harmonic input

in white noise).

In general the qualitative form of the variation of detection performance with

decreasing input S/N, agreed with the form of the variation in output S/N from the

nonlinear system. The ROC curves indicated a fall and then a rise in detection

performance up to the SR peak. However even at the assumed optimum stochastic

resonance, detection performance in all three test cases was significantly lower than

the linear comparison case (no nonlinear pre-processing). In fact there was no
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improvement found for any tested input S/N case, the greatest underperformance was

found as expected at the dip in output S/N point.

The SR peak in output S/N is therefore confirmed as the optimum point at which to

operate a nonlinear pre-processor for weak signal detection, even though it was found

to offer no benefit over the linear case. In order to exploit SR in this way it would be

necessary to mitigate the apparent frequency dependence of the position of the SR

peak.

It is suggested that the term stochastic resonance is misleading, when considered as a

mechanism with potential to improve the performance of signal detectors. As the SR

mechanism is evoked some sense of the onset of a region of increased benefit could be

inferred from the label ‘resonance’. A better description would to consider a so-called

stochastic resonant system as a conventional linear system that suffers from a

catastrophic nonlinear reduction or collapse in output S/N over a limited range of

input S/N values, where the SR ‘peak’ is a recovery back to linear behaviour.

6.3 Transition and correlation detection

The transition mechanism explored in Chapters 4 and 5 was more successful in

improving detection performance than SR. Yet the transition pre-processor did not

outperform a conventional detector, for the Gaussian noise case. The most significant

finding was the improvement in detection performance against highly impulsive noise.

At low false positive rates, a single Duffing Array Element (DAE) outperforms a

conventional detector in the impulsive noise case. However, the differential between

nonlinear and linear may depend on input S/N. At high input S/N the benefit over

the linear detector is marginal, and may increases at lower S/N. The finding is

tentative but may be highly significant in underwater acoustic signal detection, where

snapping shrimp produce impulsive noise that often leaves sonar systems unable to

detect anything.
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It was confirmed in Chapter 5 that it is possible to build a wideband sensor based on

Duffing transition pre-processing. The demonstration presented in this thesis used an

array of DAE’s, each of which included the novel replica correlation detection process

and a novel, but crude, mitigation for input signals of unknown phase.

One potential advantage of using the DAE in a wideband array is that there is no

inherent (significant) inverse dependency between time and frequency as is found with

other more conventional time-frequency transform methods. The use of the qualifier

‘significant’ is intended to convey that these findings are here considered tentative

because the earlier bandwidth investigations were not comprehensive in the sense that

all possible factors affecting bandwidth were explored. The implication that the

resolution of the time and of the frequency axes can be fully independently set using

an array of DAE’s, to any desired value is not valid. The results presented later in

this section tentatively support the notion of the independence of the two resolutions,

but provide a qualitative demonstration of the limitations in both time and frequency

resolution inherent in the data and in using the DAE detection approach itself.

Immunity to noise claims in some of the literature initially provided a strong

motivation to apply the transition mechanism to detection of underwater signals. In

underwater applications the noise problem is relatively severe compared to other

detection problems such as non-destructive testing, where the technique has been

applied. The extensive detection performance analyses conducted in this thesis clearly

show the progressive degradation in performance, as the ratio of input noise power

increases compared to signal power. This result is true for both SR and the transition

mechanism. It is not an entirely unexpected outcome, however the results here are

believed to be the most comprehensive produced to date, and robust enough to assert

that these nonlinear systems are not immune to noise.
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6.4 Recommendations for future work

Throughout the thesis several suggestions for future work have been made. These are

summarised in this section and an assessment of their likely importance or necessity

or impact is offered. As might be expected, there are great many potential avenues of

research branching from the work presented in this thesis. Only those assessed as

showing potential to make the most significant advances are addressed here.

It was shown in Chapter 5 that the Duffing system as a pre-processor can outperform

the benchmark linear detector, when the input is dominated by highly impulsive

noise. This positive result is very encouraging but it cannot be exploited until its

robustness has been better established. The result requires thorough testing; by

direct repetition, by repetition in some orthogonal fashion, by examination of the

causes, by model development and finally by testing model predictions.

The demonstration of the wide frequency band spectral visualisation based on an

array of Duffing Array Elements, was shown in Section 5.6. The demonstration was

qualitatively successful, the same spectral components for real data input, could be

seen in the visualisation and in the conventional spectrogram. However, a number of

issues with the Duffing array concept were identified including the following:

1 A reduction in output with changing frequency either side of a peak

output at one frequency. The reduction either side of the peek is very

asymmetrical Starting at the peak, as frequency increases the reduction

is very slow. In the other direction as frequency reduces, the reduction is

very steep. All transition and therefore spectral content is completely

lost.

2 A fundamental frequency axis resolution limit. The bandwidth

investigation showed this resolution is poor for the replica correlation

process, compared to nonlinear pre-processing with a benchmark

conventional detector stage.
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Future work should explore the causes of these issues, and propose improvements.

Probably the most important aspect of this future work would be to establish further

confirmation of a new finding presented in this thesis, relating to time/frequency

resolution. The first indication of the de-coupling of the inverse relation between time

and frequency resolution, as is normally found in conventional linear Fourier

transform based spectrograms, was presented in Section 5.6.1.

SR was not found to offer any detection benefit when used as a pre-processor, in the

scenarios presented in this thesis. However, the work presented here has highlighted

the idea that descriptions of SR enhancing the output S/N are misleading. It is

certainly the case that for a properly configured stochastically resonant system, the

output S/N will fall, then rise and then fall again, as input S/N is decrease

monotonically. However, the peak in output S/N attributed to SR was found to be no

higher than an equivalent linear system would exhibit. Future work might concentrate

on confirming this result in order to alter the general perception that adding noise

can be beneficial, over an above that of an equivalent linear system. Clearly this is

not directly related to the aim of this thesis, but it nevertheless might become a

useful result elsewhere, if it is repeatable.

The concept of coupled nonlinear systems was introduced in Chapter 2. Although the

idea did not form part of the work presented in this thesis, sufficient background

research was carried out to indicate the large amount of literature on the subject.

Many methods of coupling the systems are described in the literature, using from two

up to quite large numbers of identical nonlinear systems. Many categories of coupling

are also described in the literature, such as lag or lead coupling, phase coupling etc.

The implication is there is a large number of additional ways of configuring nonlinear

systems that might be explored for their impact on the detection problem. In

particular, coupling several different types of system of different dimension (for

example the third order Lorenz model to the second order Duffing model), appears to

be completely unexplored.
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The four-phase approach to managing a SoI of unknown phase is rather crude. A

much more elegant linear algebraic approach using a phasor vector, similar to the

steering vector used in delay-and-sum beamforming, might offer faster calculation

times. Such an approach may also remove the ‘holes’ in performance where the phase

of the input just happens to fall between the pre-set phases of the internal drive terms

in the four-phase Duffing oscillator system. A step further on from this would be to

explore phase locking, where the multiple Duffing systems currently used, could be

reduced back to one system.
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Appendix A

Normalisation and the

Runge-Kutta implementation.

A.1 Duffing system frequency normalisation

Frequency normalised Duffing system used in this thesis is derived following the

procedure of Wang et al. [4], the derivation is repeated here in greater detail for

clarity. The time step is re-assigned so that in effect a new time step parameter τ

becomes the variable rather than frequency, t = ω0τ so that dt = ω0dτ .

dx (t)

dt
=
dx (ω0τ)

dτ
.
dτ

dt

=

(
1

ω0

)
.
dx (ω0τ)

dτ

=

(
1

ω0

)
.
dx∗ (τ)

dτ

d2x (t)

dt2
=

d

dt

(
dx (t)

dt

)
.
dτ

dt
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=

(
1

ω0

)
.
d

dt

[(
dx (ω0τ)

dτ

)(
1

ω0

)]
=

(
1

ω2
0

)
.
d2x (ω0τ)

dτ2

=

(
1

ω2
0

)
.
d2x∗ (τ)

dτ2
(A.1)

The x∗ subscript is dropped but note that the displacement ’x’ is now redefined. The

time is also redefined by re-labelling τ as ’t’, this is safe to do since the original

definition of ’t’ is never used again. The new values of velocity and acceleration are

substituted back into the original Duffing Equation 4.1 to produce the frequency

normalised version of Equation A.2 (recast in ‘engineering’ notation).

(
1

ω2
0

)
ẍ = −δ

(
1

ω0

)
ẋ+ αx− βx3 + γcos (ω0t+ φ) +Acos (ωt) + n (t)

letting

f (x, t) = ẍ

f (x, t) = ω2
0

[
γcos (ω0t+ φ) + n (t) +Acos (ωt)− δ

(
1

ω0

)
ẋ+ αx− βx3

]
(A.2)

A.2 Fixed step Runge-Kutta solver implementation

Generalised analytic solutions to the Duffing equation are not currently available.

Local linearisation techniques based on a Taylor expansion and taking the Jacobian of

the system (Lyapunov’s First Method,chapter 6 [111]) can provide analytic solutions

over a very small region about selected fixed points. Other methods based on a

Volterra series expansion [112, 110] have also been studied. However the work in this

thesis is restricted to solving the Duffing nonlinear system using a numerical method,

a fixed step fourth order Runge-Kutta (RK4) solver is used.

Two of the three forcing terms in the Duffing system are realised as a time-series of
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discrete samples, separately simulated and input to the system. The third forcing

term is the ‘internal’ periodic term and part of the configuration of the Duffing

system. It is realised also as a set of discrete samples however these are generated as

part of the numerical solver. A coded implementation of RK4 must therefore operate

on a mixture of input samples and internally generated samples. This functionality is

not available in standard numerical solver functions built into modelling languages

such as Scilab or Matlab, a new implementation of the RK4 algorithm was required.

This approach also allows the solver to operate on real data obtained from (for

example) a ‘wav’ file. Provided the sample rate indicated in the wav file header is

accurate the new RK4 solver will generate the correct output. It was also necessary to

ensure the separately obtained input data set matched the sample rate of the internal

data, the new RK4 implementation incorporated re-sampling to achieve this.

Using a fixed step size of h the function to be solved is set as f (t, x) from Equation

A.2, the constant step RK4 generic scheme that calculates the xn+1 displacement

solution point from the previous nth sample (tn, xn) is as follows.

K1 = h f (tn, xn)

K2 = h f

(
tn +

(
h

2

)
, xn +

(
h

2

)
K1

)
K3 = h f

(
tn +

(
h

2

)
, xn +

(
h

2

)
K2

)
K4 = h f (tn + h, xn + hK3)

xn+1 = xn +
1

6
(K1 + 2K2 + 2K3 +K4) (A.3)

The Duffing system to be solved is a second order system. In this thesis it is reduced

to a coupled system of two first order equations to make implementation in the coded

model easier, and to make the code easier to read.
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Letting: x1 = x and x2 =
1

ω0
ẋ

ẋ1 = ẋ = ω0x2

ẋ2 =
1

ω0
ẍ (A.4)

Substituting A.2 into A.4 generates the following coupled system:

ẋ1 = ω0x2

ẋ2 = ω0

[
γcos (ω0t+ φ) + n (t) +Acos (ωt)− δx2 + αx1 − βx31

]
(A.5)

With t and x now as discrete data representing the nth point generated from the

solver, the first order coupled system is implemented in the RK4 solver in iterative

matrix form as follows (two-element column vectors in bold font):

K1,n = h F (tn,xn)

K2,n = h F

(
tn +

(
h

2

)
,xn +

(
h

2

)
K1,n

)
K3,n = h F

(
tn +

(
h

2

)
,xn +

(
h

2

)
K2,n

)
K4,n = h F

(
tn + h,xn + hK3,n

)
xn+1 = xn +

1

6

(
K1,n + 2K2,n + 2K3,n + K4,n

)
(A.6)

where xn =

x
ẋ

 =

x1,n
x2,n

 and F (tn,xn) =

ẋ1,n
ẋ2,n



=

 ω0x2,n

ω0

[
γcos (ω0tn + φ) + n (tn) +Acos (ωtn)− δx2,n + αx1,n − βx31,n

]


The input data represented by the terms Acos(ωtn) + n (tn) and generated separately

can now be replaced by an array of sample points ak , and so the RK4 solver of A.6
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above can be modified as follows:

With re-sampling such that (2n− 1) = k

then Acos(ωtn) + n (tn)⇒ ak =

 0

ak


Separating out the input terms from the earlier definition of xn allows a re-definition

of the function as: F (t,xn)⇒ F (t,xn,ak). The function the new RK4 algorithm

operates on is therefore defined as:

F (t,xn,ak) = ω0


 x2,n[
γcos (ω0tn + φ)− δx2,n + αx1,n − βx31,n

]
+

 0

ak


 (A.7)

The RK4 solver algorithm therefore becomes:

K1,n,k = h F (tn,xn,ak)

K2,n,(k+1) = h F

(
tn +

(
h

2

)
, xn +

(
h

2

)
K1,n,k , ak+1

)
K3,n,(k+1) = h F

(
tn +

(
h

2

)
, xn +

(
h

2

)
K2,n,(k+1) , ak+1

)
K4,n,(k+2) = h F

(
tn + h , xn + hK3,n,(k+1) , ak+2

)
(A.8)

The input data points are now separated out from the xn values. The input data

points increment to the next value through the four Runge-Kutta stages whereas x

and t do not. Provided the re-sampling of the input perturbation has been carried out

correctly so that it generates twice as many input data points at half the time step,

then the (k + 2)th input point should always coincide in time with the (n+ 1)th point.
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