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Increased flooded area 
and exposure in the White Volta 
river basin in Western Africa, 
identified from multi‑source 
remote sensing data
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Accurate information on flood extent and exposure is critical for disaster management in data-
scarce, vulnerable regions, such as Sub-Saharan Africa (SSA). However, uncertainties in flood extent 
affect flood exposure estimates. This study developed a framework to examine the spatiotemporal 
pattern of floods and to assess flood exposure through utilization of satellite images, ground-based 
participatory mapping of flood extent, and socio-economic data. Drawing on a case study in the 
White Volta basin in Western Africa, our results showed that synergetic use of multi-temporal radar 
and optical satellite data improved flood mapping accuracy (77% overall agreement compared with 
participatory mapping outputs), in comparison with existing global flood datasets (43% overall 
agreement for the moderate-resolution imaging spectroradiometer (MODIS) Near Real-Time (NRT) 
Global Flood Product). Increases in flood extent were observed according to our classified product, 
as well as two existing global flood products. Similarly, increased flood exposure was also observed, 
however its estimation remains highly uncertain and sensitive to the input dataset used. Population 
exposure varied greatly depending on the population dataset used, while the greatest farmland and 
infrastructure exposure was estimated using a composite flood map derived from three products, 
with lower exposure estimated from each flood product individually. The study shows that there is 
considerable scope to develop an accurate flood mapping system in SSA and thereby improve flood 
exposure assessment and develop mitigation and intervention plans.

Flood events occur frequently in many regions of SSA due to high climate variability and associated extreme 
precipitation events1. Growing population along with continued socio-economic changes such as urbanisation 
and farming expansion increase exposure to flooding2–5 and result in large increases in flood risk6–8. Flooding 
poses long-term challenges to livelihoods in SSA, not only through loss of lives, destruction of farmlands and 
infrastructure6, but also disease outbreaks and worsened food and water security1.

The damaging impacts on livelihoods can be reduced by proper flooding mitigation strategies that are guided 
by sufficient flood hazard assessment, monitoring, and early warning. However, lack of monitoring and infor-
mation on flood extent and flood exposure hampers spatial targeting of effective mitigation strategies. Flood 
exposure, defined as population and assets located in flood-prone areas9, however has received little attention 
to date (Smith et al. 201910). The few flood exposure assessment studies either mainly assess broad land cover 
classes such as ’urban area’11 or only use population map layers10, whilst very few focus on infrastructures such as 
roads and water supplies. A comprehensive flood exposure assessment is fundamental for flood risk assessment 
and key for developing flooding mitigation strategies, but also particularly crucial in data-scarce SSA, the only 
global region showing increasing flood mortality rates since 199012. Accurate flood mapping and flood exposure 
assessment can help address this increase in mortality rates13.

The availability of accurate historical and current information on flood hazard events is particularly limited 
in SSA14. Flood hazard models have been implemented for flood forecasting and monitoring15,16. However, the 
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accuracy of model-based flood hazard maps is restricted as it depends on the accuracy of various input data 
such as meteorological and topography data, thereby leading to greater uncertainty from error propagation11. 
In addition, these flood hazard models tend to focus on the national or regional scale that is not designed for 
local-scale estimation where the impacts are experienced and local-level decisions are required11. Global-scale 
flood datasets derived from satellite data are available, such as the MODIS NRT Global Flood Product17, the 
MODIS Global Flood Database18, and the Global Flood Detection System19. These datasets again have coarse 
spatial resolution and validation of them is highly challenging, particularly in data-sparse regions such as SSA14 
where accurate data on flood extent at the local scale is greatly needed for risk management20,21.

Progress has been made to monitor flood inundation at the local scale and over the long term, particularly 
with the development of Earth Observation (EO) systems with increased revisit frequency and higher spatial 
resolution that are increasingly used in operational disaster monitoring systems22. Synthetic Aperture Radar 
(SAR) is particularly useful for flood mapping since it can provide frequent observations23,24 thanks to its capa-
bility to monitor land in almost any weather conditions25,26. Flooded areas generate a low backscatter signal and 
appear to be dark in SAR images, which makes them distinguishable from other land cover classes such as agri-
cultural land or built-up areas. Many studies have used SAR images to map flood inundation27, using algorithms 
such as histogram thresholding or clustering28, change detection29,30, and time series analysis26. To successfully 
map inundation areas using such algorithms, defining a robust and objective threshold is critical as results can 
be sensitive to the thresholds used31. Currently, most studies are either based on a universal threshold value that 
may be unsuitable for specific sub-regions, or dependent on user-defined empirical analysis, which makes it dif-
ficult to apply in different study regions. Our study, however, proposes an approach that defines a threshold in an 
objective way, that is, use optical satellite images to define thresholds for SAR-based flood mapping techniques 
(Sect. 3.1.1). Optical images can detect water bodies32–34, but tend to underestimate flooded areas as they are 
subject to cloud cover during the rainy and flood season20. Spatial overlap of water bodies detected from optical 
images with SAR images can demonstrate the range of backscatter signal in SAR images, and can therefore be 
used to define thresholds objectively that are tailored for local scale application (Sect. 3.1.1). Alongside using a 
combination of optical images and SAR images to improve existing algorithms for flood mapping using SAR data, 
our study also derived flood extent and calculated total inundation area from both optical and SAR images, which 
provide benefits of long-term coverage of optical imagery while addressing cloud cover issues via the use of SAR.

In addition, the lack of local ground data that can be used to evaluate the accuracy and limitations of satellite 
data-derived flood extent has been another major drawback in previous studies. Most studies assess accuracy 
via inter-comparison of satellite-based flooding maps20,22, for example, by using optical images to evaluate the 
accuracy of flood mapping from radar images20. However, this approach carries limitations as optical imagery 
may be affected by high cloud occurrence. Alongside using high-resolution satellite data for assessing accuracy, 
this study also collected ground data through participatory mapping to assess the accuracy of satellite-based 
flood maps. Participatory mapping, which engages local knowledge and expertise and allows local communi-
ties to delineate flood-affected extent on provided basemaps, has been widely recognized as an effective tool 
to collect and understand flood extent on the ground35. Involving communities’ knowledge of floods through 
participatory mapping is critical in the data-scarce SSA context as communities experience flooding first hand. 
Despite the value of local experience and knowledge, very few attempts have been made to combine flood extent 
derived from satellite data and through participatory mapping1,36,37 for evaluating satellite-derived flood extent 
accuracy. Such a comparison can not only enable accuracy assessment of satellite-derived flood extent, but also 
indicate flood-prone areas associated with high impacts for local communities.

This research, for the first time, employed a combination of top-down approaches based on multi-source 
satellite images and a consultative approach via participatory mapping to map flooded areas and their dynamics. 
Further, it investigates the scale and severity of population, infrastructure and farmland exposure to flooding in 
the White Volta basin in Ghana. Specifically, this study aims to:

•	 Map flood area at fine spatial scale (i.e., 10 m) using multi-source satellite images (including Sentinel-1, 
Sentinel-2 and Landsat-8) and analyse flood area dynamics through comparison with existing global flood 
datasets (e.g., MODIS NRT Global Flood Product, The European Commission’s Joint Research Centre (JRC) 
Global Flood Database, and JRC Global Surface Water dataset) over 2000–2020.

•	 Evaluate the accuracy of satellite-derived flood extent (from this study and the existing global flood datasets), 
through comparison with participatory mapping outputs.

•	 Estimate flood exposure by combining the satellite-derived flood datasets with socio-economic data including 
high-resolution population density (100 m and 30 m), land use (30 m) and key infrastructures.

Study design and study area
This study is a component of a wider program that employed a mixed-methods monitoring flooding events and 
examining its impacts on livelihoods, healthcare utilisation, and water point quality38 in White Volta catchment 
in Western Africa. The study area White Volta catchment is located in Ghana (Fig. 1), a subbasin of the Volta 
river basin with most of the population relying on rain-fed agriculture39. The region is prone to floods from 
torrential rainfall, potentially coupled with scheduled overspill from the Bagre Dam, Burkina Faso40 with dev-
astating effects on the livelihoods of the poor communities living in the basin. Flood risk affects particularly the 
North-eastern, Northern and Savannah regions of the White Volta Basin39. Floods along the main course of the 
White Volta river have been a recurrent annual phenomenon from August to October in the recent decade41. 
Communities in northern Ghana are more vulnerable to flood hazards, with lower adaptive capacity and severer 
food insecurity than those in other parts of Ghana40. The region, however, has seldom been studied to under-
stand flood hazards and develop adaptation measures appropriate to local conditions40. The current flood early 
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warning system operated by the National Disaster Management Organization (NADMO) has not been informed 
by comprehensive data on flood extent at a high spatial resolution41.

Data and methods
Mapping the spatial and temporal distribution of flooding.  We firstly mapped the monthly maxi-
mum flood extent at a fine spatial scale (10 m) during the wet season (July–September) using Sentinel-1 radar 
data available from 2016 to 2020 and optical satellite data from Sentinel-2 and Landsat-8. Secondly, we assessed 
the spatiotemporal flood dynamics by combining outputs from this study with existing flood datasets (the JRC 
Global Surface Water dataset, MODIS NRT Global Flood product, and MODIS Global Flood Database). Thirdly, 
we used the high-resolution PlanetScope dataset and collected ground data through participatory mapping to 
evaluate the accuracy of flood extent from the satellite data, and finally assess flood exposure through integration 
with land use, population and infrastructure map layers.

Flood mapping using Sentinel‑1 data, Sentinel‑2 and Landsat‑8 data.  We used the Sentinel-1 Synthetic Aper-
ture Radar (SAR) C-band (5.4 GHz) data provided by the European Space Agency (ESA)42. This global dataset 
has a 12 or 6 day revisit cycle depending on the availability of Sentinel-1B imagery43 with a spatial resolution of 
10 m. The level-1 Ground Range Detected (GRD) pre-processed product in Google Earth Engine was accessed 
and processed for the White Volta Basin, comprising 2148 scenes from 2016–2020. Only descending pathways 
were available in the study area and VV polarized data were used because of higher accuracy in detecting floods 
compared to VH, based on previous studies20,44,45.

We examined the combination of three algorithms to map flooded areas, namely image thresholding 
method46,47, the Change Detection and Thresholding (CDAT)44,48 and the Normalized Difference Flood Index 
(NDFI) algorithms26. The flooded areas identified consistently from both the CDAT and NDFI detection algo-
rithm was found to achieve higher flood mapping accuracy than alone20. The CDAT algorithm uses multi-
temporal SAR imagery and classifies flooded areas based on difference in backscatter between flood/post-flood 
and reference non-flooded images44,48. The NDFI also implements change detection principles, but combines a 
time series of images to compensate for changes in land cover and soil moisture, defined as in Eq. (1) below26. The 
image thresholding method was also examined in this study, as it is a straightforward approach based on a single 
image and setting pixels as flooded when the backscatter coefficient is lower than a certain threshold value46,47.

Figure 1.   Location of the study area and maximum flood extent in September 2020 retrieved using Sentinel-1 
data (blue) and MODIS NRT flood dataset (green) and identified by local participants (red boundary) using 
participatory mapping. The map was made with QGIS.
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Selecting non-flood reference images is key for change detection techniques49. We selected images in June 
given that this is a dry month with no flooding recorded in this area during 2016–2020 according to visual 
inspection of Sentinel-1 images. In addition, vegetation phenology in June is close to that in the flooding season 
starting from July, which minimizes the impact of seasonal variation in vegetation on backscattering. Mean value 
composites were generated for the reference month of June and a monthly minimal value composite image was 
generated for post-flood scenes to capture the maximum flood extent area.

Defining threshold values is another critical step for accurately mapping flood extent using the above three 
methods. For the change detection and NDFI methods, threshold values are normally determined by analysing 
a histogram of the distribution of backscatter difference or the NDFI index. The threshold criterion is defined 
based on various empirical analyses26,44. Normally, the threshold criterion is used to classify flooding when the 
values are less than the mean pixel value minus the standard deviation of the entire image, times a coefficient of 
1.526,44. We examined the feasibility of this commonly used threshold in our study area, as well as proposed a new 
approach to objectively retrieve threshold fit to local case studies. We firstly introduced sub-basin boundaries, 
as our study area covers a relatively large spatial domain with heterogeneous land cover types. We then calcu-
lated the thresholds described above at sub-basin level for each month. In addition, to define a more objective 
threshold appropriate to this study, water bodies identified via optical satellite images Sentinel-2 and Landsat-8 
indices, and the JRC Global Surface Water dataset (Pekel et al. 201650) were used to define the thresholds for the 
Sentinel-1 images. Water bodies were classified using an algorithm with three widely used indices: Normalized 
Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI) and the Modified Normalized Difference 
Water Index (mNDWI): Water = (mNDWI > EVI or mNDWI > NDVI) and EVI < 0.151. We calculated the distribu-
tions of these indices for detected water bodies for each of the three flood detection methods (i.e., backscatter 
coefficient, backscatter coefficient difference between pre-flood and post-flood, and NDFI). For each index, the 
95th percentile (5% percentile for NDFI distribution) was used as a threshold because this threshold enables 
the detection of 95% of water bodies derived from optical images. We examined histogram threshold criteria 
from previous studies26,44, as well as our own criterion based on optical images.

We applied a median 3 × 3 pixel filter to remove speckle effects in SAR images for a smoother image20. In addi-
tion, all clusters smaller than 10 pixels are excluded to reduce spurious flooded areas as the minimum mappable 
unit is clumps of approximately 10 pixels. Finally, any pixels falling on a slope of > 5° via NASA’s Shuttle Radar 
Topography Mission (SRTM) elevation dataset52, where a flood would be unlikely, were excluded18. Flood map-
ping in urban areas, dense forest is challenging with Sentinel-1 data because of double-bounce effects, however, 
as the White Volta basin is dominated by savanna and crop fields that were normally submerged under floods, 
and flooded forest and urban area is not extensive therefore was not considered in this study.

Existing global flood datasets and CHIRPS precipitation data.  Existing global satellite-derived flood datasets 
were compared with our Sentinel-1-derived flood extent data, firstly to evaluate their accuracy in flood detec-
tion in the White Volta basin, secondly to examine flood extent trends, and thirdly to generate a composite map 
based on the maximum flood extent from Sentinel-1 and global flood datasets. In addition, precipitation trends 
were analyzed to understand whether precipitation alone can explain the dynamics of changing flood extent. The 
global flood datasets are the JRC Global Surface Water dataset (Pekel et al. 201650), and two datasets based on 
the moderate-resolution imaging spectroradiometer (MODIS) images: the MODIS NRT Global Flood Product17 
and the MODIS Global Flood Database18. The MODIS-based datasets both used the band ratio water detection 
algorithms to map flood area18. The MODIS NRT product is available daily from 2000–2020 at 250 m spatial res-
olution, however only data for 2016–2020 could be accessed for the White Volta Basin. Since the MODIS Global 
Flood Database mainly maps large flood events documented by the Dartmouth Flood Observatory (DFO) from 
2000 to 201818, this dataset is available on an event basis. In this study, monthly and yearly maximum flood 
extent was generated using the MODIS NRT product from 2016–2020, while yearly maximum flood extent was 
generated using the MODIS Global Flood Database from 2000–2018. The JRC Global Surface Water dataset was 
generated using Landsat 5, 7, and 8 satellite imagery from 2000–2019 at a higher spatial resolution of 30 m (Pekel 
et al. 201650). It maps the location and temporal distribution of seasonal surface water over this 20-year period 
at monthly level, forming a proxy for monthly flood extent. Yearly maximum flood area was also calculated 
based on this dataset for a longer period (2000–2020). We compared monthly and yearly maximum flood extent 
derived from the above flood products with the Sentinel-1 flood extent from this study, and further estimated 
changes in flood extent over 2000–2020. The statistical significance of flood extent trends at the basin level was 
assessed using the Mann–Kendall (MK) test53. The Climate Hazards Group InfraRed Precipitation with Station 
data (CHIRPS) dataset was used to examine the correlation between precipitation and flood extent. This dataset 
is a quasi-global rainfall dataset with a spatial resolution of 0.05° covering over 30 years, derived from satellite 
imagery and combined with in-situ station data54. Specifically, yearly daily maximum precipitation summed 
over the White Volta basin was calculated, and a linear regression was fitted to quantify the relationship between 
flood extent and precipitation.

Accuracy evaluation.  Our flood extents delineated using Sentinel-1 data were validated through two differ-
ent datasets: (1) participatory flood mapping outputs; (2) flooded and non-flooded extent classified using the 
PlanetScope dataset. A participatory mapping campaign for flood map accuracy assessment was conducted in 
September 2020 during the flood period in Northern Ghana. Eight severely flood-affected sites were selected 
based on consultation with the Disaster Management Organisation’s (NADMO) district office during the pre-

Equation (1) : NDFI =
mean σ0("reference")−min σ0("reference+ flood")

mean σ0("reference")+min σ0("reference+ flood")]
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field survey period (Fig. 1). These sites were located in the Talensi and Savelugu districts in the Upper East and 
Northern regions of Ghana. Basemaps, generated from high-resolution Google satellite imagery with acquisition 
dates between 2016 and 2019, were created for each site. Map scales varied between communities from 1:5000 
to 1:20,000, following recommended practice for participatory mapping55. In total, 10 hardcopies of basemaps 
covering a total area of 19 km2 were used for participatory mapping, with more than one map covering some 
sites. In each of the eight sites, the local assembly men/women were invited to draw the flooding extent. Assem-
bly men/women are elected politicians familiar with the local environment and flood situation through interac-
tion with the populations they represent. They were firstly asked to identify key facilities such as hospitals and 
schools on the hardcopy basemaps, so that they could familiarize themselves with the map. They were then asked 
to delineate the extent of the maximum and the most recent flooded area they had experienced. The hardcopy 
basemaps were then scanned, georeferenced and digitized using QGIS56. All digitized maps were converted 
into binary maps depicting flooded and non-flooded areas. As participatory flood mapping outputs represent 
maximum flood extent in September 2020, we therefore compared this output with monthly maximum flood 
extent in September 2020 derived from Sentinel-1, MODIS and Landsat satellite data for accuracy assessment. 
For the participatory mapping, informed consent was sought from all human subjects, followed ethical guide-
lines and regulations from the  Faculty of Environmental and Life Sciences, University of Southampton, UK 
and University of Ghana. In addition, ethical approval was obtained from the two institutions (University of 
Southampton, approval date: 25/07/2020, Reference 54,506.A2, University of Ghana, approval date: 04/03/2020, 
Reference NMIMR-IRB CPN 062/19–20).

Furthermore, PlanetScope surface reflectance data, which contain four bands (blue, green, red, near infra-red 
(NIR)) with a spatial resolution of 3 m, were used as reference data to evaluate the accuracy of flood extent clas-
sified by Sentinel-1. Cloud-free PlanetScope images covering the Talensi site were acquired on 25th September 
2020 and compared with a contemporary Sentinel-1 scene acquired on 22nd September 2020. PlanetScope images 
were classified into the flooded and non-flooded areas using an algorithm with three spectral indices described 
above51. Stratified sampling of flooded and non-flooded locations within the participatory mapping sites and 
area covered by PlanetScope were conducted for accuracy assessment. A total of 2000 sample points for each 
validation dataset was collected for accuracy assessment, calculating the kappa coefficient, producer and user 
accuracy for our Sentinel-1 flood extent and global flood datasets separately. When comparing participatory 
maps with satellite flood extent, the participatory maps were resampled to match the spatial resolution of satel-
lite data. Similarly, the PlanetScope image was resampled to 10 m to match the spatial resolution of Sentinel-1.

Flood exposure estimation.  Spatial overlay between flood extent and map layers of population den-
sity, land use and key infrastructures were analyzed to estimate flood exposure. Two different gridded popula-
tion density maps were used in this study: the High Resolution Settlement Layer (HRSL) and the WorldPop 
dataset57,58. The HRSL dataset is based on the identification of individual buildings from high-resolution satellite 
imagery and distribution of population census data among these buildings to produce population density maps 
at a spatial resolution of 30 m for the year 201559. The WorldPop dataset is based on multi-variate random forest 
models that disaggregate areal head counts of census data at a spatial scale of 90 m. WorldPop population layers 
from 2016–2020 were intersected with flood extent data for the same period, while fixed HRSL population data 
in 2015 were overlaid with flood maps. The spatial distribution of urban and agricultural land use was identified 
as follows (see Table 1). (1) The extent of land use for cities, towns, villages, farmland and others were retrieved 
from OpenStreetMap, a global crowdsourced database of buildings and infrastructure60. (2) Rural, semi-urban 
and urban land use areas were obtained from the Global Human Settlement Layer (GHSL), produced by JRC. 
(3) Cropland and urban classes for 2020 were derived from the Globeland30 global land cover dataset, which 
has relatively good accuracy over Africa61,62. Similarly, the spatial distribution of key infrastructures was also 
used to map flood exposure including: (1) roads, dams, and water points obtained from OpenStreetMap; (2) 

Table 1.   Socio-economic variables and datasets used for flood exposure analysis.

Socio-economic variables Dataset Variable retrieved Spatial resolution Year Reference

Population
High-Resolution Settlement 
Layer (HRSL) Population density 30 m 2015 59

WorldPop Population density 90 m 2020 57,58

Land use

OpenStreetMap

Urban area Building footprints, residen-
tial, cities, etc

– – 60
Rural area Villages, towns

Farm Farm

Global Human Settlement 
Layer (GHSL) Rural, semi-urban, urban areas - 66

Globeland30 Croplands, built-up area 30 2020

Key infrastructures

OpenStreetMap Roads, schools, hospitals,dams, parking, water wells, boreholes, 
etc – – 60

HeathSites Pharmacy, hospital, clinic – 2020 https://​healt​hsites.​io/

Domestic water points (Poten-
tial geographic occupancy) Boreholes Water wells 1 km 2020 63

https://healthsites.io/
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potential geographic occupancy of domestic water points of boreholes and water wells, produced using a maxi-
mum entropy modeling technique combining observational water point data with environmental covariates to 
adjust for incomplete feature coverage63; (3) health facilities of clinics and hospitals based on the dataset from 
the HealthSites initiative (https://​healt​hsites.​io/), though this dataset’s coverage might not be comprehensive. To 
examine the impact of using different flood datasets on exposure assessment, flood maps derived from Senti-
nel-1 and existing global flood datasets were intersected with population, land use, and key infrastructure map 
layers separately. To preserve spatial heterogeneity and give flood maps a common spatial domain, Landsat 
satellite data (30 m) and the MODIS flood product (250 m) were resampled to match the finest spatial resolu-
tion dataset, namely the 10 m resolution of Sentinel-1. Similarly, when estimating flood exposure, population, 
land use and key infrastructure layers and flood datasets were resampled to match the finest spatial resolution 
of any input dataset. All satellite data, population data, land use dataset were accessed and processed in the 
Google Earth Engine cloud-computing platform (Gorelick et al., 201764) while further statistical analyses were 
performed in R version 4.1.2(R Core Team, 201865).

Results
Flood area delineation from multi‑source satellite data.  Flood mapping using Sentinel‑1.  When 
we implemented the NDFI and CDAT algorithms and histogram thresholds from previous studies29,44, we found 
that standalone implementation of the NDFI and CDAT algorithms gave larger flood extent estimates than com-
bined algorithms, with a particularly high false detection rate for the NDFI algorithm (Fig. S1). Considering the 
high false detection rates for these existing algorithms, we therefore only present flood mapping outputs hereaf-
ter based on the thresholds defined using optical satellite images. For defining thresholds, we firstly present the 
frequency distribution of three indices (i.e. Sentinel-1 backscatter coefficient, backscatter coefficient difference 
(pre-flood and post-flood), and NDFI) within water bodies detected by optical satellite images (Fig. 2). We found 
that the highest pixel counts for floodwater were shown in September, followed by October and August in 2020. 
The backscatter coefficient of water bodies ranged from -13 to -30, and the backscatter coefficient difference 
between pre-flood and post-flood imagery ranged from -20 to 0.5, whilst the NDFI of water bodies ranged from 
0.0625–0.5. Using 95th percentile as a threshold, a value of -15 for backscatter coefficient, -1.1 for backscatter 
coefficient difference and 0.14 for NDFI was identified as threshold for classifying flood extent using Sentinel-1 
images (Fig. 2). When we apply these three thresholds to the image thresholding, NDFI and CDAT algorithms 
respectively, inconsistencies relative to topography in mapped flooded areas were reduced for all three methods 
(Fig. S1). Combining the image thresholding method with the CDAT and NDFI change detection algorithms 
particularly reduced the false detection of flooding (Fig. S1). Therefore, only areas identified as flooded by all 
three methods were used in subsequent flood product comparisons, accuracy assessment and flood exposure 
assessment.

Comparison with MODIS and JRC datasets.  When we mapped flood extent during the wet season from July to 
October 2016–2020 using Sentinel-1 imagery (Figs. 1, 3), flooding was absent in some months. When all data 
products were considered, the smallest flooded area was observed in 2017 with inundation only in August, while 
the largest area occurred in September 2020 (Fig. 3a). The timing of the most extended flood extent within year 
shifted from August–September in 2016–2018 to September–October in 2019 and 2020 (Fig. 3a). Sentinel-1 
data with the highest resolution produced larger flood area estimates than MODIS NRT products for all but one 
month (September 2018) (Fig. 3a, b). The JRC Global Surface Water dataset estimated the smallest flooded area 
despite its finer spatial resolution (Fig. 3a). The MODIS Global Flood Database, however, only captured flood 
events in three years (2003, 2007, 2018) from the past 19 years (Fig. 3c). Combining the advantages of each 
dataset, a composite of our Sentinel-1 based flood extent and existing global flood datasets generated the largest 
flood area estimate (totaling 3251 km2 between 2016–2020) compared to each dataset separately, but still showed 
similar yearly variation (Fig. 3b). The different datasets all show a temporal trend of increasing flooded area over 
2016–2020 (Fig. 3b). Over the longer-term period of 2000–2020, there is an increasing trend in flooded area 
(with an MK test of P < 0. 01), based on the JRC Global Surface Water dataset (Fig. 3c). This trend in flood extent 

Figure 2.   Histograms showing the distribution of backscatter coefficient (left) of water bodies, backscatter 
coefficient difference (middle), and NDFI (right) between pre-flood (June) and post-flood periods identified 
using optical satellite data (Sentinel-2 and Landsat-8) for August, September and October 2020. Dashed line 
indicates 95th percentile of backscatter coefficient distribution, 5% percentile of NDFI distribution.

https://healthsites.io/
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could be explained partly by increasing precipitation since precipitation alone explained 46.3% of variation in 
yearly flood extent from 2000–2020 (Fig. 3d).

Accuracy assessment of satellite‑derived flood extent.  When local participants delineated the maximum and 
most recent flood extent, the most recent flooding extent was in September 2020 when the field campaign was 
taking place. This was also noted by participants to be the maximum flood extent they had experienced. Floods 
normally start to recede after 5–7 days according to participants. We found Sentinel-1-derived flood extent most 
closely matched the participatory mapping output, with an overall agreement of 0.77 (kappa = 0.55), while the 
agreement was lower for the MODIS NRT flooding dataset (0.43, kappa: 0.16) and lowest for the Global Surface 
Water data (0.3, kappa:0.008) (Table 2). Flood extent from all datasets combined shows a marginal gain in accu-
racy (overall agreement: 0.78, kappa = 0.57) in comparison to the participatory mapping (Table 2). When the 
participatory mapped flood extent was superimposed on those derived from satellite data, in all eight selected 
communities, local participants identified a larger flooded area extending beyond the area identified by each 
satellite-derived product (Fig. 2). Comparing the elevation of flooded areas identified by satellite data versus par-
ticipatory mapping, the latter were on average 12 m higher than those identified by satellite data (Fig. 4). When 

Figure 3.   Comparison of flooded area estimated using Sentinel-1 from this study and existing global flood 
datasets (MODIS NRT Global Flood Dataset, MODIS Global Flood Database, JRC Global Surface Water 
dataset). (a) Maximum flood area for wet seasons from 2016–2020. (b) Yearly maximum flood area comparison 
between MODIS NRT datasets, Sentinel-1 and composite flood dataset from 2016–2020. (c) Flood area 
dynamics based on the JRC Global Surface Water dataset from 2000–2020 and MODIS Global Flood Database. 
(d) Correlation between flood area based on JRC datasets and yearly precipitation.

Table 2.   Accuracy assessment of flood extent in September 2020 classified using Sentinel-1 imagery and via 
existing global flood datasets (MODIS NRT Global Flood Dataset and JRC (Landsat) Global Surface Water 
dataset) versus flooding delineated via participatory mapping.

Sentinel-1 MODIS NRT Landsat Composite

Overall accuracy 0.77 0.43 0.3 0.78

Kappa 0.55 0.16 0.008 0.57

User accuracy 0.57 0.36 0.3 0.58

Producer accuracy 0.7 0.25 0.14 0.71
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comparing flooded extent derived from Sentinel-1 with flooded area classified using PlanetScope data, a better 
agreement was achieved with 92% overall agreement and a Kappa index of 0.84 (Table 3).

Flood exposure assessment.  Population exposure.  We estimated that around 32,555—87, 378 people 
(about 4.4–15.4% of the total population) have been exposed to at least one Sentinel-1 observed event since 
2016, based on the WorldPop and HRSL datasets (Fig. 5). Since population exposure increases with flood area 
(Fig. S3 and Fig. S4), the population exposure estimated from the MODIS NRT Global Flood Dataset was lower 
(19,920–52,246 people or 2.42%-9.6%) than that using Sentinel-1, whilst the greatest population exposure of 
around 42,272—117,717 people (5.46–20.8% of total population) was estimated using the composite flood maps 
(Fig. 5). Population exposure estimated using the HRSL dataset is lower than that estimated using WorldPop, 
however the proportion of population is higher when using HRSL data. Although the population estimates vary 
markedly based on the population density dataset and flood dataset, total population exposure increased over 
2016–2020, with the highest population exposure in 2020 and the lowest in 2017, corresponding to the highest 
and lowest flood extent respectively (Fig. 5).

Exposure of land use types and key infrastructure.  Analysis of land use (urban, semi-urban and rural land use) 
and key infrastructure exposure for the largest flooding year 2020 showed that rural and farming areas are the 
most exposed to flooding, with 138.5 km2 of rural area (7.12%) and 81.42 km2 of farmland (1.05%). Hotspots of 
flood exposure of urban areas (1.2 km2, 0.06%) and key infrastructure such as schools and hospitals (0.06 km2, 
1.2%) were also detected, together with roads (75.6 km, 0.5%) and potential occupancy area of water points (169 
km2, 1.6%). These estimates are based on flood extent from the Sentinel-1 dataset, which are lower than using the 

Figure 4.   Elevation difference between flood area identified by local respondents using participatory mapping 
versus that identified by Sentinel-1 satellite data.

Table 3.   Accuracy assessment of flood extent in 25th September 2020 classified using Sentinel-1 imagery 
versus flood extent derived from PlanetScope data in 22nd Sep 2020. The accuracy of flood extent from 
MODIS and Landsat images was not performed as only monthly flood extent dataset available while acquiring 
PlanetScope images for whole September is challenging due to high cloud cover.

Overall accuracy Kappa User accuracy Producer accuracy

0.92 0.84 0.91 0.92
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Figure 5.   Total and proportion of population exposed to flooding from 2016–2020 estimated through spatial 
overlay of two population datasets (WorldPop, HRSL) with flood datasets.
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composite flood map, which generates the highest flood exposure (Fig. 6). Exposure estimates were the lowest 
using the MODIS flood dataset: no infrastructure exposure was detected using this dataset (Fig. 6).

Discussion
Spatially detailed mapping of flood extent and exposure assessment is generally challenging for data-poor areas 
such as SSA. Efficient and pragmatic methods are critical for flood mapping and helping to mitigate flood impacts, 
but the validation of the available data is also necessary. This study, for the first time, combines participatory 
mapping and multi-source satellite and socio-economic data to investigate flood extent dynamics and evaluate 
flood exposure in the White Volta basin in Ghana. Our results reveal both opportunities and challenges for 
monitoring floods using satellite data and suggest areas for further investigation. Our results further stress the 
need for implementing flood management strategies as we observed increasing flood hazards and exposures.

Accuracy of flood mapping using multi‑source satellite data.  Flood monitoring either from opti-
cal or radar satellite data has strengths and limitations. We proposed a transferable and objective approach for 
flood mapping combining both radar and optical satellite images, by applying a threshold identified from optical 
images and a combination of algorithms including CDAT, NDFI and image thresholding of radar images. Using 
Sentinel-1 SAR data, estimated flood area depended on the selected threshold values, which however are very 
sensitive to land cover and seasonal vegetation phenological variations, leading to differences in the SAR signals 
for the same inundated location at varying time periods through the season and from year to year20. Most stud-
ies defined the threshold based on either empirical analysis or applying values from other studies’ distributional 
analyses26,44. This criterion is suitable when a large part of the study area is flooded. However, where flooding is 
limited, it tends to overestimate flood extent in a relatively large spatial domain with heterogeneous land cover 
types, such as for the White Volta basin (Fig. S1). Our study demonstrates a more objective threshold by using 
optical satellite data to define thresholds for SAR-based flood mapping techniques (Fig. 2). We further demon-
strated that the combined use of three existing SAR-based algorithms (image thresholding, CDAT and NDFI) 
provides greater accuracy in flood mapping, reducing errors such as those from radar shadow in hilly terrain 
(Fig. S1). In addition, image thresholding could minimize the effects of land cover changes when using change 
detection algorithms, enabling detection of additional floods and exclusion of permanent water bodies (Fig. S1). 
The approach demonstrated in this study is not case-specific and therefore could be further tested and applied 
in other regions of the world.

Our study shows the potential of flood mapping using Sentinel-1 data, as well as the integration of multi-
source satellite imagery and global flood datasets for greater accuracy in flood area estimation than when using 
a single optical satellite-based dataset (Table 2). Our results showed a comparable or even greater accuracy 
compared with existing studies20,22 when evaluated against satellite-based flood maps (PlanetScope images in 
this study). Our study further suggests that many global scale flood estimates using Landsat and MODIS images 
underestimate flood area and exposure (Fig. 3, Tables 2, 3). For example, the Global Surface Water dataset using 
Landsat images is not sufficient to assess specific flooding events as it estimates the lowest area of flooding com-
pared with other datasets and it provides a low accuracy (0.33) in delineating flooding. The low accuracy might 
be related to cloud cover and coarse revisit time (16 days). However, this dataset could still provide insights into 
yearly variations and long-term dynamics (Fig. 1). In addition, the coarser spatial resolution of MODIS data 
generally captures large flood events but cannot detect small flooded areas due to its coarse spatial resolution 
(Fig. 1) and the MODIS Global Flood Database18 detected very few flood events in Northern Ghana. Our study 
showed that combining flood map layers from multiple sources including Sentinel-1-derived and existing flood 
datasets allows for more samples in time and therefore provides more complete monitoring of flood events, as 
a composite map showed a slight improvement in accuracy (0.78) (Fig. 4, Table 2). We therefore recommend 
combining existing global flood and Sentinel-1 datasets following the approach piloted in Ghana for future 
flood mapping, which has the potential of mapping near real-time flooding at continental or even global scale67.

When evaluating the accuracy of flood extent derived from this study using the Sentinel-1 dataset, we found 
a lower agreement between flood extent derived from satellite data and via participatory mapping than inter-
comparison of satellite-based flooding maps. This low agreement indicates both strengths and limitations of satel-
lite monitoring and participatory mapping. First of all, as a widely-used approach for environmental monitoring 
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such as monitoring forest plantations68 and degradation69, and ecosystem services70, participatory mapping has 
been proven as an effective tool for flood risk assessment35 and enhancing community resilience by integrating 
their knowledge on the causes and mitigation strategies of flooding. In this study, local key participants tend 
to delineate a larger flood extent with a higher elevation than that detected via satellite imagery (Fig. 3). This 
indicates that Sentinel-1 data might not capture shallow inundated areas at a higher elevation, which however 
were identified by participants. This could further show that Sentinel-1 data might underestimate flood area, 
potentially because of the satellite’s revisit frequency. Even though Sentinel-1 has a revisit period of 6 days, it could 
still underestimate flood area, given that flooding receded within 5–7 days according to mapping participants. 
More frequent satellite observation is critical for flood mapping, underlining the argument above for combining 
flood maps from both optical and radar satellite images with different revisit patterns, so as to compensate for 
the limitations of each data stream and provide a denser, more complete picture of flood events. On the other 
hand, the participatory mapping outputs cannot be considered as a definitive measure of flood extent given the 
uncertainties associated with respondent perception and recall. For example, studies have shown that com-
munities with direct flood experience tend to overestimate danger71,72. If such communities also over-estimate 
flood extent, this could account for greater flood coverage in the participatory mapping outputs compared to 
satellite-derived products. Indeed, we observed disagreements in drawing exact inundated boundaries between 
individuals during the field campaign, although final maps were created by selected key representatives best 
informed of their local environments and flood situations. Flooding could also have restricted participants’ 
movements and thus limited their knowledge of its spatial extent despite participatory mapping taking place 
immediately after the flood season. Participatory mapping is inherently local in scope and carries limitations for 
accuracy assessment across a larger region.

Increasing flood exposure and uncertainties in its assessment.  Existing global crowdsourced data-
bases of OpenStreetMap and recently updated land cover and population datasets provide a high potential of 
assessing comprehensive and spatially detailed flood exposure, while also revealing the sensitivity of exposure 
assessment to input flood extent and socio-economic dataset used. We found that the number of people exposed 
to flooding increased from 2016 to 2020 irrespective of the population or flood dataset used. Increased popula-
tion exposure mainly resulted from increasing flood extent (Fig. S3 and S4), so similar increases in infrastructure 
and land use exposure would also be expected. However, we found that flood exposure is dependent on the flood 
extent and population density dataset used, suggesting large uncertainties persist in flood exposure estimates, 
as also noted in another study10. For example, the large difference in population exposure is related to the way 
populations are mapped. WorldPop data models non-zero population density across almost the entire region, 
such that population is present in all flooded areas (Fig. S2). In contrast, the HRSL dataset is based on classifying 
building footprints from optical satellite data, thereby distributing populations across a smaller and concen-
trated area. Considering uncertainties persist in flood area and exposure assessment, future studies should also 
provide accuracy and sensitive assessment in spatial information of flood exposure estimation, which is critical 
for end-users looking to use emerging flood risk data sets to inform decision-making. This assessment can have 
implications for adopting such estimates as a scenario planning tool for decision-making. Moving forward, not 
only are accurate and spatially detailed datasets representing flood extent required, but also similar data sets 
representing people and assets. In addition, flood forecasting is critical for mitigating and managing flood risk, 
particularly under the projection of increased rainfall and thereby flood events in the White Volta region, as we 
observed that increased flood extent was closely related to greater precipitation (Fig. 3). However, predicting 
flooding is challenging as it involves complex processes and interactions among geomorphological, hydrologi-
cal, climatic, and anthropogenic drivers73. Flood inundation areas derived from satellite data could be used for 
calibrating flood forecasting models. In addition, long-term monitoring of flooding from satellite observations 
could identify flood-prone areas and evaluate flood duration, which can be used for forecasting flooding using 
machine learning algorithms74.

Conclusions
Although there are several global flood monitoring programs delivering flood locations and flooded areas near 
real-time, these flood products are available at a coarse resolution and their accuracy in SSA is rather limited. 
Since increased flood events and increased flood mortality rates have been observed in SSA, further flood extent 
monitoring and exposure evaluation are merited. This study developed a framework for mapping flood extent 
and exposure using multi-source data in the White Volta basin in Ghana. Our results showed that the combined 
usage of optical and radar satellite data produced better flood mapping accuracy (77% overall agreement with 
participatory mapping outputs) than existing global flood product (i.e., 43% overall agreement for MODIS 
NRT Global Flood Dataset). Our results showed that existing global flood datasets (e.g., MODIS NRT Global 
Flood Product and MODIS Global Flood Database), however, underestimated flood extent, indicating there is a 
considerable scope to develop an accurate flood mapping system in SSA. Using flood extent maps developed at 
fine resolution, we also demonstrated flood exposure assessment in the White Volta Basin in Ghana. We found 
increased population exposure and identified rural areas, farmland, and infrastructure that are prone to flooding 
where flood mitigation and adaptation should be prioritized. Our localized flood extent maps and flood exposure 
monitoring could help with flood risk assessment in SSA.

However, satellite data could underestimate inundation area depending on the revisit frequency of satellite 
observation and recession day of flooding. In addition, we found flooding exposure assessments are sensitive 
to input datasets used, such as flood extent data and population layers. Moving forward, more frequent satellite 
observation is critical for flood mapping. Flood maps from both optical and radar satellite images with different 
revisit patterns, as well as flood maps from existing flood datasets should be combined for flood monitoring as 
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it allows for more samples in time and therefore provides more complete monitoring of flood events. In addi-
tion, flood exposure uncertainty assessment should be considered for future studies that can guide end-users 
for decision-making.

Data availability
Satellite imagery from Landsat-8 and Sentinel-2, Sentinel-1, the Global Surface Water dataset; The Shuttle Radar 
Topography Mission digital elevation data, WorldPop population dataset were accessed and processed through 
the Google Earth Engine platform (https://​devel​opers.​google.​com/​earth-​engine/​datas​ets/​catal​og). OpenStreet-
Map road network data were accessed through https://​downl​oad.​geofa​brik.​de/​africa.​html. Catchment bound-
ary data were accessed through the World WildLife Fund (WWF) HydroSHEDS web site https://​www.​hydro​
sheds.​org/​downl​oads. Health facilities data were accessed through HealthSite initiative https://​healt​hsites.​io/. 
The MODIS flood product is based on: NRT MODIS/Aqua + Terra Global Flood Product MCDWD_L3_NRT 
distributed from NASA LANCE. Available on-line [https://​earth​data.​nasa.​gov/​earth-​obser​vation-​data/​near-​real-​
time/​mcdwd-​nrt]. https://​doi.​org/​10.​5067/​MODIS/​MCDWD-​L3-​NRT.​061. The population dataset is accessed 
through www.​world​pop.​org. The High Resolution Settlement Layer (HRSL) is available at: http://​ciesin.​colum​
bia.​edu/​data/​hrsl/#​ackno​wledg​ements [Facebook Connectivity Lab and Center for International Earth Science 
Information Network—CIESIN—Columbia University. 2016. Source imagery for HRSL © 2016 DigitalGlobe. 
Accessed 25th June 2021]. The participatory mapping output generated in this study are available on https://​
doi.​org/​10.​5258/​SOTON/​D1956, including digitalized flooded polygon, detailed field protocol and informed 
consent that was sought from all human subjects.
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