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Abstract: Latent semantic analysis (LSA) and correspondence analysis (CA) are two tech-
niques that use a singular value decomposition (SVD) for dimensionality reduction. LSA
has been extensively used to obtain low-dimensional and dense vectors that capture re-
lationships among documents and terms. In this article, we present a theoretical analy-
sis and comparison of the two techniques in the context of document-term matrices. We
show that CA has some attractive properties as compared to LSA, for instance that effects
of margins arising from differing document-lengths and term-frequencies are effectively
eliminated, so that the CA solution is optimally suited to focus on relationships among
documents and terms. A unifying framework is proposed that includes both CA and LSA
as special cases. We empirically compare CA to various LSA based methods on two tasks,
a document classification task in English and an authorship attribution task on historical
Dutch texts, and find that CA performs significantly better. We also apply CA to a long-
standing question regarding the authorship of the Dutch national anthem Wilhelmus and
provide further support that it can be attributed to the author Datheen, amongst several
contenders.
Keywords: Latent semantic analysis; Correspondence analysis; Singular value decompo-
sition; Authorship attribution; Text classification.

1 Introduction

Latent semantic analysis (LSA) is a well-known method used in computational linguistics
that uses Singular Value Decomposition (SVD) for dimensionality reduction in order to ex-
tract contextual and usage-based representations of words from textual corpora. Amongst
many other tasks, LSA has been used extensively for information retrieval, by using asso-
ciations between documents and terms (Deerwester, Dumais, Furnas, Landauer, & Harsh-
man, 1990; Dumais, 1991; Dumais, Furnas, Landauer, Deerwester, & Harshman, 1988). The
exact factorization achieved via SVD has been shown to achieve solutions comparable in
some ways to those obtained by modern neural network based techniques (Levy & Gold-
berg, 2014; Levy, Goldberg, & Dagan, 2015), commonly used to obtain dense word repre-
sentations from textual corpora.

Correspondence analysis (CA) is a popular method for the analysis of contingency
tables (Greenacre, 1984, 2017). More specifically, it provides a graphical display of depen-
dence between rows and columns of a two-way contingency table (Greenacre & Hastie,
1987). Like LSA, CA is a dimensionality reduction method. The methods have much in
common as both use a singular value decomposition (SVD). In both cases, after dimen-
sionality reduction, many natural language processing or text mining tasks, such as text
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clustering or document classification, amongst many others, may be performed in the re-
duced dimensional space rather than in the higher dimensional space provided by the raw
document-term matrix.

While a few empirical comparisons of LSA and CA, with mixed results, can be found
in the literature, a comprehensive theoretical comparison is lacking. For example, Morin
(1999) compared the two methods in the automatic exploration of themes in texts. Séguéla
and Saporta (2011) compared the performance of CA and LSA with several weighting
functions in a document clustering task, and found that CA gave better results. On the
other hand, Séguéla and Saporta (2013) compared the performance of CA and LSA with
TF-IDF on a recommender system, but found that CA performs less well.

The present article presents a theoretical comparison of the two techniques, and places
them in a unifying framework. We show that CA has some favourable properties over
LSA, such as a clear interpretation of the distances between documents and between terms
of the original matrix, and a clear relation to statistical independence of documents and
terms. Second, we empirically evaluate and compare the two techniques, by applying
them to two tasks in two languages. The first is an authorship attribution task in Dutch,
where we evaluate the two techniques on a large set of historical Dutch texts written by six
well-known Dutch authors of the 16th century. Here, we additionally use CA to determine
the unknown authorship of Wilhelmus, the national anthem of the Netherlands, whose
authorship is controversial: CA attributes Wilhelmus to the author Datheen, out of the six
contemporary contenders. To the best of our knowledge, this is the first application of CA
to the Wilhelmus. The second task is a document classification task in English, using the
BBCSport dataset. In both cases, we find that CA performs better.

The rest of the article is organized as follows. In section 2, we introduce terminology
and illustrate relevant properties of interest of a document-term matrix on a toy dataset.
Section 3 and Section 4 elaborate on the techniques LSA and CA in turn and apply them
to the toy dataset. A unifying framework is proposed in Section 5. Section 6 evaluates the
performance of LSA and CA for authorship attribution of documents where the author is
known, and of the Wilhelmus, whose author is unknown. In Section 7 a second study is
described that concerns document classification of the BBCSport dataset. The article ends
with a conclusion.

2 A Toy Dataset

In areas of computational linguistics, information retrieval, and text mining, a document-
term matrix is commonly used to represent documents and terms. 1 Here we start with
a discussion of its properties, using a toy dataset for illustration. We discuss the types of
information available in such matrices so that, later on, when we introduce LSA and CA,

1A document-term matrix is similar to a word-context matrix, commonly used to represent word meanings,
in the sense that it is also a matrix of counts. However, in the context of word-context matrices the ways
in which the counts are transformed are different from the way they are transformed for document-term
matrices, and therefore, due to space limitations, we defer a comparison of CA and LSA of word-context
matrices to future work.
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it is better appreciated what information is actually analysed by these methods. For LSA
this discussion is valuable, as for LSA different solutions can be found depending on the
way the original matrix is transformed before it is analysed. For CA there is only one type
of analysis but in this analysis specific aspects of the matrix are ignored.

Suppose F = [fij ] is a document-term matrix of size m× n, in which rows correspond
to documents, columns are associated with terms, and an element is the frequency of oc-
currence of a term in a particular document. The matrix P = [pij ] is the matrix of joint
observed proportions, where the element in the ith row and the jth column is given by
pij = fij/f++ and

∑
i

∑
j pij = 1. The marginal proportions are denoted by ri and cj for

the ith row and jth column respectively, where ri =
∑n

j=1 pij , cj =
∑m

i=1 pij .
For row i, the vector of n conditional proportions pij/ri is called a row profile. Sim-

ilarly, for column j the vector of m conditional proportions pij/cj is the column profile.
The vector with elements cj is called the average row profile, and similarly, the vector with
elements ri is the average column profile.

Table 1: A document-term matrix F : size 6×6

lion tiger cheetah jaguar porsche ferrari
doc1 2 2 1 2 0 0
doc2 2 3 3 3 0 0
doc3 1 1 1 1 0 0
doc4 2 2 2 3 1 1
doc5 0 0 0 1 1 1
doc6 0 0 0 2 1 2

Consider the 6 × 6 document-term matrix F in Table 1 containing 6 documents and
6 terms, with the frequency of occurrence of terms in each document (Aggarwal, 2018).
Based on term-frequencies in each document, the first three documents can be considered
to primarily refer to cats, the last two primarily to cars, and the fourth document to both.
The fourth term, jaguar, is polysemous because it can refer to either a cat or a car.

Table 2 shows the matrix P of joint observed proportions. Here, the average column
profile is r = [0.171, ..., 0.122]T and the average row profile is c = [0.171, ..., 0.098]T . Table 3
shows the matrix E = [ricj ] of expected proportions under independence. Under indepen-
dence, all row profiles are identical as eij/ri = ricj/ri = cj , and similarly for the column

Table 2: The matrix P of joint observed proportions

.

lion tiger cheetah jaguar porsche ferrari total
doc1 0.049 0.049 0.024 0.049 0.000 0.000 0.171
doc2 0.049 0.073 0.073 0.073 0.000 0.000 0.268
doc3 0.024 0.024 0.024 0.024 0.000 0.000 0.098
doc4 0.049 0.049 0.049 0.073 0.024 0.024 0.268
doc5 0.000 0.000 0.000 0.024 0.024 0.024 0.073
doc6 0.000 0.000 0.000 0.049 0.024 0.049 0.122
total 0.171 0.195 0.171 0.293 0.073 0.098 1.000
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Table 3: The matrix E of expected proportions under independence

lion tiger cheetah jaguar porsche ferrari total
doc1 0.029 0.033 0.029 0.050 0.012 0.017 0.171
doc2 0.046 0.052 0.046 0.079 0.020 0.026 0.268
doc3 0.017 0.019 0.017 0.029 0.007 0.010 0.098
doc4 0.046 0.052 0.046 0.079 0.020 0.026 0.268
doc5 0.012 0.014 0.012 0.021 0.005 0.007 0.073
doc6 0.021 0.024 0.021 0.036 0.009 0.012 0.122
total 0.171 0.195 0.171 0.293 0.073 0.098 1.000

profiles. Comparing the joint proportions in Table 2 with these expected proportions in
Table 3 reveals how documents are related to terms. For instance, the joint proportions for
document 1 and lion and document 1 and tiger are (0.049, 0.049) and are higher than their
expected proportions (0.029, 0.033), which means that the terms lion and tiger appear more
often than average in document 1. However, for document 1 and porsche and document
1 and ferrari, the joint proportions are 0.000 and 0.000 and are lower than their expected
joint proportions (0.012,0.017), which indicates that the terms porsche and ferrari appear less
often than average in document 1.

Table 4: Row profiles of F

lion tiger cheetah jaguar porsche ferrari total
doc1 0.286 0.286 0.143 0.286 0.000 0.000 1.000
doc2 0.182 0.273 0.273 0.273 0.000 0.000 1.000
doc3 0.250 0.250 0.250 0.250 0.000 0.000 1.000
doc4 0.182 0.182 0.182 0.273 0.091 0.091 1.000
doc5 0.000 0.000 0.000 0.333 0.333 0.333 1.000
doc6 0.000 0.000 0.000 0.400 0.200 0.400 1.000

average row profile 0.171 0.195 0.171 0.293 0.073 0.098 1.000

Table 4 shows the row profiles of the original matrix F . Here, the average row profile
shows which terms are more and which are less often used over all documents: jaguar is
used the most and porsche is used the least over all the documents. Differences in row
profiles between documents can be interpreted by comparing the elements of their row
profiles with the average row profile. For example, document 1 has proportions (0.286,
0.286) for (lion, tiger) and these are higher than the averages (0.171, 0.195); on the other
hand, document 5 has proportions (0.000, 0.000) for (lion, tiger) lower than the averages
(0.171, 0.195). This shows that the terms lion and tiger appear more often than average in
document 1 but less often than average in document 5. For a matrix of column profiles, a
similar interpretation can be made.

After establishing this dataset, the various matrices of interest, and the terminology
used, we next examine LSA and CA in the following two sections, in turn.
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3 Latent Semantic Analysis

Latent Semantic Analysis (LSA) has been extensively used for improving information re-
trieval by using the associations between documents and terms (Deerwester et al., 1990;
Dumais et al., 1988), amongst many other tasks. Since individual terms provide incom-
plete and unreliable evidence about the meaning of a document, in part due to synonymy
and polysemy, individual terms are replaced with derived underlying (latent) semantic
factors. Although LSA is a very well-known technique, we first present a detailed analysis
of the mathematics involved in LSA here as this is usually not found in the literature, and
in a later section, it will help in making the comparison between LSA and CA explicit. We
start with LSA of the raw document-term matrix and then discuss LSA of weighted matri-
ces, namely a matrix with row-normalised elements with L1, with L2, and a matrix that is
transformed by TF-IDF. The discussion is illustrated using the toy data from §2, with the
aim to present a clear view of the properties of the dataset captured by the LSA analysis.

3.1 LSA of Raw Document-Term Matrix

LSA is an application of the mathematical tool SVD, and can take many forms, depending
on the matrix analysed. We start our discussion of LSA with the SVD of a raw document-
term matrix (Berry, Dumais, & O’Brien, 1995; Deisenroth, Faisal, & Ong, 2020). SVD can be
used to decompose F into a product of three matrices: U f , Σf , and V f , namely

F = U fΣf (V f )T (1)

Here, assuming F has sizem×n and n > m and F has full rank, U f is am×mmatrix with
orthonormal columns called left singular vectors (that is, (U f )TU f = I), V f is a n ×m
matrix with orthonormal columns called right singular vectors (that is, (V f )TV f = I),
and Σf is a m × m diagonal matrix with singular values on the diagonal in descending
order.

We denote the first k columns of U f as the m× k matrix U f
k , the first k columns of V f

as the n× k matrix V f
k , and the k largest singular values on the diagonal of Σf as the k× k

matrix Σf
k (k ≤ m). Then U f

k Σf
k(V

f
k )T provides the optimal rank-k approximation of F

in a least-squares sense. That is, X = U f
k Σf

k(V
f
k )T minimizes the matrix in Equation (2)

amongst all matrices X of rank k:

||F −X||2 =
∑
i

∑
j

(fij − xij)2 (2)

The idea is that the matrix U f
k Σf

k(V
f
k )T captures the major associational structure in the

matrix and throws out noise (Dumais, 1991; Dumais et al., 1988). The total sum of squared
singular values is equal to tr((Σf )2), where tr is the sum of elements on the main diagonal
of a square matrix. The proportion of the total sum of squared singular values explained
by the rank k approximation is tr((Σf

k)
2)/tr((Σf )2).
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SVD can also be interpreted geometrically. As F is of size m × n, each row of F can
be represented as a point in an n-dimensional space with the row elements as coordinates,
and each column can be represented as a point in anm-dimensional space with the column
elements as coordinates. In a rank-k approximation, where k < (m,n), each of the original
m documents and n terms are approximated by only k coordinates. Thus SVD projects
the sum of squared Euclidean distances from these row (column) points to the origin in
the n (m)-dimensional space as much as possible to a lower, a k-dimensional space. The
Euclidean distances between the rows of F are approximated by the Euclidean distances
between the rows of U f

k Σf
k from below, and the Euclidean distances between the rows of

F T are approximated by the Euclidean distances between the rows of V f
k Σf

k from below.
The choice of k is crucial in many applications (Albright, 2004). A lower rank approx-

imation cannot always express prominent relationships in text, whereas the higher rank
approximation may add useless noise. How to choose k is an open issue (Deerwester et
al., 1990). In practice, the value of k is selected such that a certain criterion is satisfied,
for example, the proportion of explained total sum of squared singular values is at least a
pre-specified proportion. Also, the use of a scree plot, showing the decline in subsequent
squared singular values, can be considered.

As it turns out, the raw document-term matrix F in Table 1 does not have full rank; its
rank is 5. The SVD of F in Table 1 is

F = UfΣf (V f )T

=



−0.411 0.175 0.825 0.252 −0.239

−0.646 0.314 −0.562 0.301 −0.279

−0.232 0.127 0.034 −0.099 0.503

−0.562 −0.203 0.044 −0.603 0.333

−0.099 −0.456 −0.024 −0.404 −0.672

−0.186 −0.778 −0.034 0.556 0.223




8.425 0 0 0 0

0 3.261 0 0 0

0 0 0.988 0 0

0 0 0 0.574 0

0 0 0 0 0.272




−0.412 0.214 0.655 −0.344 0.486

−0.488 0.311 0.087 0.180 −0.540

−0.440 0.257 −0.748 −0.259 0.339

−0.611 −0.369 0.039 0.366 −0.148

−0.101 −0.441 −0.014 −0.783 −0.426

−0.123 −0.679 −0.048 0.186 0.392



T

.

(3)

For the raw matrix, LSA-RAW in Table 5 shows the singular values, the squares of the
singular values, and the proportions of explained total sum of squared singular values
(denoted as PSSSV). Together, the first two dimensions account for 0.855 + 0.128 = 0.983

of the total sum of squared singular values. Therefore, the documents and the terms can
be approximated adequately in a two dimensional representation using U f

2 Σf
2 and V f

2 Σf
2

as coordinates. As the Euclidean distances between the documents and between the terms
in the two-dimensional representation, i.e., between the rows of U f

2 Σf
2 and the rows of

V f
2 Σf

2 , approximate the Euclidean distances between rows and between columns of the
original matrix F , such a two dimensional representation simplifies the interpretation of
the matrix considerably.

On the other hand, it is somewhat more difficult to examine the relation between a
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Dimension 1: 141.088 (78.6%)
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Figure 1: A two-dimensional plot of documents and terms (a) for raw matrix F ; (b) for
row-normalized data F L1; (c) for row-normalized data F L2; (d) for matrix F TF-IDF.
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Table 5: The singular values, the squares of singular values, and the proportion of ex-
plained total sum of squared singular values (PSSSV) for each dimension of LSA of F , of
F L1, of F L2, and of F TF-IDF.

methods items dim1 dim2 dim3 dim4 dim5

LSA-RAW
singular value 8.425 3.261 0.988 0.574 0.272
square of singular value 70.985 10.635 0.976 0.330 0.074
PSSSV 0.855 0.128 0.012 0.004 0.001

LSA-NROWL1
singular value 1.070 0.692 0.123 0.114 0.046
square of singular value 1.146 0.479 0.015 0.013 0.002
PSSSV 0.692 0.289 0.009 0.008 0.001

LSA-NROWL2
singular value 2.095 1.228 0.239 0.198 0.092
square of singular value 4.388 1.507 0.057 0.039 0.009
PSSSV 0.731 0.251 0.009 0.007 0.001

LSA-TFIDF
singular value 11.878 5.898 1.565 1.017 0.449
square of singular value 141.088 34.782 2.451 1.034 0.202
PSSSV 0.786 0.194 0.014 0.006 0.001

document and a term. The reason is that, by choosing a Euclidean distance-representation
both for the documents and for terms, the singular values are used twice in the coordinates
U f

2 Σf
2 and V f

2 Σf
2 , and the inner product of coordinates of a document and coordinates

of a term does not approximate the corresponding value in F . Directions from the origin
can be interpreted, though, as the double use of the singular values only leads to relatively
reduced coordinates on the second dimension in comparison to the coordinates on the first
dimension.

The two-dimensional representation of LSA-RAW is shown in Figure 1(a). From Fig-
ure 1(a), we see that documents 5 and 6 are close and therefore they appear to be similar.
There is an order of 5, 6, 3, 1, 4, and 2 on the first dimension. This order is related to the
row margins of Table 1, where 2 and 4 have the highest frequencies and therefore are fur-
ther away from the origin. Overall the two-dimensional representation of the documents
reveals a mix of the row margins and the profiles of terms used by the documents, namely,
the row profiles of Table 1. This mix makes the graphic representation difficult to interpret.
Similarly, porsche and ferrari are lower left but close to the origin, tiger, cheetah, and lion are
upper left and further away from the origin, and jaguar is far away at the lower left. Also
here there is a mix of the column margins and the column profiles of Table 1. The terms
porsche and ferrari are related to documents 5 and 6 as they have the same position w.r.t.
the origin, and similarly for tiger, cheetah, and lion to documents 1, 2, and 3, and jaguar to
document 4.

Although the first dimension accounts for 85.5% of the total sum of squared singular
values, it provides little information about the relations among documents and terms. In
particular, from Table 1 we expect that documents 1 to 3 are similar, documents 5 and 6 are
similar, and document 4 is in-between; term jaguar is between cat terms (tiger, cheetah, and
lion) and car terms (porsche and ferrari), but we cannot see that from the first dimension.
This is because the margins of Table 1 play a dominant role in the first dimension.
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3.2 LSA of Weighted Document-Term Matrix

Weighting can be used to prevent differential lengths of documents from having differ-
ential effects on the representation, or be used to impose certain preconceptions of which
terms are more important (Deerwester et al., 1990). The frequencies fij in the raw document-
term matrix F can be transformed with the aim to provide a better approximation of
the interrelations between documents and terms (Nakov, Popova, & Mateev, 2001). The
weight wij for term j in document i is normally expressed as a product of three compo-
nents (Ab Samat, Murad, Abdullah, & Atan, 2008; Kolda & O’leary, 1998; Salton & Buckley,
1988)

wij = L(i, j)×G(j)×N(i) (4)

where the local weighting L(i, j) is the weight of term j in document i, the global weight-
ing G(j) is the weight of the term j in the entire document set, and N(i) is the normaliza-
tion component for document i.

When L(i, j) = f(i, j), G(j) = 1, and N(i) = 1, the weighted F is equal to F . In matrix
notation, Equation (4) can be expressed as W = NLG, where N is a diagonal matrix with
diagonal elements N(i) and G is a diagonal matrix with diagonal elements G(j). Notice
that pre- or post-multiplying by a diagonal matrix leaves the rank of the matrix L intact.

We examine two common ways to weight fij . One is row normalization (Ab Samat
et al., 2008; Salton & Buckley, 1988) with L1 and L2. The other is term frequency-inverse
document frequency (TF-IDF) (Dumais, 1991).

3.2.1 SVD of Matrix with Row-Normalized Elements with L1

In row-normalized weighting with L1, we use Equation (4) with L(i, j) = fij , G(j) = 1,
and N(i) = 1/

∑n
j=1 fij , and apply an SVD to this transformed matrix that we denote as

F L1, which consists of the row profiles of F shown in Table 4.
We perform LSA of Table 4 and find Table 5, part LSA-NROWL1. This shows that a

rank 2 matrix approximates the data well as 0.692 + 0.289 = 0.981 of the total sum of
squared singular values is explained by these two dimensions. The first two columns of
LSA of F L1 can be used to approximate F L1, see Equation (5).

F L1 ≈ UL1
2 ΣL1

2 (V L1
2 )T

=



−0.423 0.327

−0.415 0.332

−0.408 0.349

−0.401 0.097

−0.384 −0.575
−0.417 −0.567


[

1.070 0

0 0.692

]


−0.347 0.374

−0.382 0.417

−0.326 0.350

−0.692 −0.174
−0.232 −0.428
−0.310 −0.592



T

(5)

Documents and terms can be projected on a two dimensional space using UL1
2 ΣL1

2 and
V L1
2 ΣL1

2 as coordinates, see Figure 1(b). In this representation documents 1, 2, and 3 are
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quite close, and so are 5 and 6. Also, the terms ferrari and porsche are close and related to 5
and 6, tiger, lion, and cheetah are close and related to 1, 2, and 3.

Although the first dimension accounts for 69.2% of the total sum of squared singu-
lar values, this dimension does not provide information about different use of terms by
the documents as all documents have a similar coordinate. This is caused by the same
marginal value 1 for each of the documents in Table 4, which leads to almost the same
distance from the origin. Also, we would expect jaguar to be in between cat terms (tiger,
cheetah, and lion) and car terms (porsche and ferrari), but on the first dimension it appears as
a separate, third group. This is caused by the high values in its column in Table 4, which
lead to a larger distance from the origin.

3.2.2 SVD of Matrix with Row-Normalized Elements with L2

In row-normalized weighting with L2, we use Equation (4) with L(i, j) = fij , G(j) = 1,
and N(i) = 1/

√∑n
j=1 f

2
ij . The transformed matrix, denoted as F L2, is shown in Table (6).

We then perform LSA on (6). Table 5, part LSA-NROWL2, indicates that a rank 2 matrix
approximates the data well, as the sum of the PSSSV of the first two dimensions 0.731 +

0.251 = 0.982 contributes to 98.2% of the total sum of squared singular values. The first
two columns of LSA of F L2 can be used to approximate F L2, see Equation (6).

F L2 ≈ UL2
2 ΣL2

2 (V L2
2 )T

=



−0.443 0.259

−0.445 0.271

−0.444 0.295

−0.476 0.017

−0.293 −0.635
−0.310 −0.608


[

2.095 0

0 1.228

]


−0.394 0.323

−0.432 0.362

−0.374 0.304

−0.659 −0.263
−0.178 −0.460
−0.227 −0.625



T

(6)

Table 6: A row-normalised document-term matrix F L2

lion tiger cheetah jaguar porsche ferrari
doc1 0.555 0.555 0.277 0.555 0.000 0.000
doc2 0.359 0.539 0.539 0.539 0.000 0.000
doc3 0.500 0.500 0.500 0.500 0.000 0.000
doc4 0.417 0.417 0.417 0.626 0.209 0.209
doc5 0.000 0.000 0.000 0.577 0.577 0.577
doc6 0.000 0.000 0.000 0.667 0.333 0.667

Documents and terms can be projected on a two dimensional space using UL2
2 ΣL2

2 and
V L2
2 ΣL2

2 as coordinates, see Figure 1(c). In this representation documents 1, 2, and 3 are
quite close, and so are 5 and 6. Also, the terms ferrari and porsche are close and related to 5
and 6, tiger, lion, and cheetah are close and related to 1, 2, and 3.

Although the first dimension accounts for 73.1% of the total sum of squared singular
values, and so, a major portion of the information in the matrix, we do not find the impor-
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tant aspect in the data that document 4 should be in between documents 1-3 on the one
hand and documents 5-6 on the other hand on this dimension. This is caused by the high
values in the row for doc4 in Table 6, which lead to a larger distance from the origin than
the other documents have. Also, we would expect jaguar to be in between cat terms (tiger,
cheetah, and lion) and car terms (porsche and ferrari), but on the first dimension it appears as
a separate, third group. This is caused by the high values in its column in Table 6, which
lead to a larger distance from the origin.

3.2.3 SVD of the Term Frequency-Inverse Document Frequency Matrix

Table 7: A document-term matrix F TF-IDF

lion tiger cheetah jaguar porsche ferrari
doc1 3.170 3.170 1.585 2 0 0
doc2 3.170 4.755 4.755 3 0 0
doc3 1.585 1.585 1.585 1 0 0
doc4 3.170 3.170 3.170 3 2 2
doc5 0.000 0.000 0.000 1 2 2
doc6 0.000 0.000 0.000 2 2 4

TF-IDF is one commonly used vector space representation of text data. We use Equa-
tion (4) with L(i, j) = fij , G(j) = 1 + log(ndocs

dfj
), and N(i) = 1, one form of TF-IDF,

where ndocs is the number of documents in the set and dfj is the number of documents
where term j appears, and then apply an SVD to this transformed matrix that we denote
as F TF-IDF, see Table 7. As is common in the literature, here we choose 2 as the base of the
logarithmic function.

We perform LSA of Table 7 and find Table 5, part LSA-TFIDF. This shows that a rank
2 matrix approximates the data well as 0.786 + 0.194 = 0.980 of the total sum of squared
singular values is explained by these two dimensions. The matrix F TF-IDF in Table 7 is
approximated in the first two dimensions as follows:

F TF-IDF ≈ UTF-IDF
2 ΣTF-IDF

2 (V TF-IDF
2 )T

=



−0.411 0.175

−0.654 0.296

−0.239 0.112

−0.563 −0.245
−0.086 −0.469
−0.148 −0.768


[

11.878 0

0 5.898

]


−0.466 0.151

−0.554 0.231

−0.499 0.184

−0.429 −0.236
−0.134 −0.502
−0.159 −0.763



T

(7)

Figure 1(d) is a two-dimensional plot of the documents and terms using UTF-IDF
2 ΣTF-IDF

2

and V TF-IDF
2 ΣTF-IDF

2 as coordinates for the 6×6 sample document-term matrix F TF-IDF. The
configuration of documents in Figure 1(d) is very similar to that in Figure 1(a). The config-
uration of terms in Figure 1(d) is different from that of terms in Figure 1(a). In Figure 1(d),
there is an order of porsche, ferrari, jaguar, lion, cheetah, and tiger on the first dimension,
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whereas in Figure 1(a), there is an order of porsche, ferrari, lion, cheetah, tiger, and jaguar on
the first dimension. Compared with Figure 1(a), the first dimension of Figure 1(d) shows
that jaguar is in between cat terms (tiger, cheetah, and lion) and car terms (porsche and ferrari).

3.3 Conclusions regarding LSA of Different Matrices

The relationships among the documents and terms in the raw document-term matrix can
be blurred due to differences in margins arising from differing document-lengths and
term-frequencies. LSA of the raw matrix leads to a mix of relationships among documents
and terms, and margins. In order to provide a better approximation of the interrelations
between documents and terms, the weighting schemes can be used.

We conclude that normalizations of the documents have a beneficial effect. Yet, the
properties of the frequencies that are evident from Table 1 where we expect, for example,
that jaguar lies in between porsche and ferrari on the one hand and tiger, cheetah, and lion
on the other hand, are not fully represented on the first dimension. This is due to the fact
that the column margins of Tables 4 and 6 still play a role on the first dimension. The TF-
IDF matrix also has a positive effect. LSA is not successful, for example, in representing
the expected relationships between documents on the first dimension that documents 1
to 3 are similar, 5 and 6 are similar, and document 4 is in-between. This is due to the
fact that the row margins of Table 7 still play a role on the first dimension. We can try to
repair this aspect as well, by applying a transformation of the rows and columns of Table 1
simultaneously. However, the transformations appear ad hoc. Instead we present in the
next section a different technique, which better fits the properties of the data: CA.

4 Correspondence Analysis

CA provides a low-dimensional representation of the interaction or dependence between
the rows and columns of the contingency table (Greenacre & Hastie, 1987), which can be
used to reveal the structure in the data (Hayashi, 1992). CA has been proposed multi-
ple times, apparently independently, emphasizing different properties of the technique.
Some important contributions are provided in the Japanese literature, by Hayashi (1956,
1992), who emphasizes the property of CA that it maximizes the correlation coefficient be-
tween the row and column variable by assigning numerical scores to these variables; in
the French literature, by Benzécri (1973), who emphasizes a distance interpretation, where
Greenacre (1984) expressed Benzécri’s work in a more conveniential mathematical nota-
tion; and in the Dutch literature, by Gifi (1990); Michailidis and De Leeuw (1998), who
emphasize optimal scaling properties. We present CA here mainly from the French per-
spective.

The aim of CA as developed by Benzécri is to find a representation of the rows of
frequency matrix F in such a way that Euclidean distances between the rows in the rep-
resentation correspond to so-called χ2-distances between rows of F (Gifi, 1990). As in
Section 2, we work with P with elements pij = fij/f++. In the χ2-distance profiles play an
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important role. The squared χ2-distance between the kth row profile with elements pkj/rk
and the lth row profile with elements plj/rl is

δ2kl =
∑
j

(pkj/rk − plj/rl)2

cj
(8)

Thus the difference between the jth elements of the two profiles is weighted by column
margin of Table 2, cj , so that this difference plays a relatively more important role in the
χ2-distance if it stems from a column having a small value cj .

A representation where Euclidean distances between the rows of the matrix are equal to
χ2-distances is found as follows. In matrix notation, the matrix whose Euclidean distances
between the rows are equal to χ2-distances between rows of F is equal to D−1r PD

− 1
2

c ,
where Dr is a diagonal matrix with ri as diagonal elements and Dc is a diagonal matrix
with cj as diagonal elements. Suppose we take the SVD of

D
− 1

2
r PD

− 1
2

c = U spΣsp(V sp)T (9)

Here D
− 1

2
r PD

− 1
2

c is a matrix with standardized proportions, hence the superscripts sp on
the right hand side of the equation. Then, if we pre-multiply both sides of the Equation (9)

with D
− 1

2
r , we get:

D−1r PD
− 1

2
c = D

− 1
2

r U spΣsp(V sp)T (10)

Thus a representation using the rows of D
− 1

2
r U spΣsp as row coordinates leads to Euclidean

distances between these row points being equal to χ2-distances between rows of F . Sim-
ilar to Equation (8) we can also define χ2-distances between the columns of F , and in

matrix notation this leads to the matrix D
− 1

2
r PD−1c . Then, in a similar way as for the χ2-

distances for the rows, Equation (9) can be used as an intermediate step to go to a solution

for the columns. Post-multiplying the left and right hand sides in Equation (9) by D
− 1

2
c

provides us with the coordinates for a representation where Euclidean distances between

the column points (the rows of D
− 1

2
c V spΣsp as coordinates for these columns) are equal to

χ2-distances between the columns of F . Notice that Equation (9) plays the dual role of an
intermediate step in going to a solution both for the rows and the columns.

The matrices D
− 1

2
r U spΣsp and D

− 1
2

c V spΣsp have a first column being equal to 1, a so-
called artificial dimension. This artificial dimension reflects the fact that the row margins
of the matrix D−1r P with the row profiles of Table 1 are 1 and the column margins of the
matrix PD−1c with the column profiles of Table 1 are 1. This artificial dimension is elimi-

nated by not taking the SVD of D
− 1

2
r PD

− 1
2

c but of D
− 1

2
r (P −E)D

− 1
2

c , where the elements
of E are defined in Table 3 as the product of the margins ri and cj . Due to subtracting E

from P , the rank of D
− 1

2
r (P −E)D

− 1
2

c is m− 1, which is 1 less than the rank of F . Notice

that the elements of D
− 1

2
r (P −E)D

− 1
2

c are standardized residuals under the independence
model, and the sum of squares of these elements yields the so-called total inertia, which
is equal to the Pearson χ2 statistic divided by sample size f++. By taking the SVD of the
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matrix of standardized residuals, we get

D
− 1

2
r (P −E)D

− 1
2

c = U srΣsr(V sr)T (11)

and
D−1r (P −E)D−1c = ΦsrΣsr(Γsr)T (12)

where Φsr = D
− 1

2
r U sr and Γsr = D

− 1
2

c V sr. We use the abbreviation sr for the matrices on
the right hand side of Equation (11) to refer to the matrix of standardized residuals on the
left hand side of the equation. CA simultaneously provides a geometric representation of
row profiles and column profiles of Table 1, where the effects of row margins and column
margins of Table 1 are eliminated. Φsr and Γsr are called standard coordinates of rows
and columns respectively. They have the property that their weighted average is 0 and
weighted sum of squares is 1:

1TDrΦ
sr = 0T = 1TDcΓ

sr (13)

and
(Φsr)TDrΦ

sr = I = (Γsr)TDcΓ
sr (14)

Equation (13) reflects the fact that the row and column margins of P −E vanish (Van der
Heijden, De Falguerolles, & De Leeuw, 1989).

We can make graphic displays using Φsr
k Σsr

k and Γsr
k Σsr

k as coordinates, which has
the advantage that Euclidean distances between the points approximate χ2-distances both
for the rows of F and for the columns of F , but it has the drawback that Σsr

k is used
twice. We can also make graphic displays using Φsr

k Σsr
k and Γsr

k , or Φsr
k and Γsr

k Σsr
k .

Thus, from Equation (12), this has the advantage that the inner product of the coordi-
nates of a document and the coordinates of a term approximates the corresponding value
in D−1r (P −E)D−1c .

If we choose ΦsrΣsr for the row points and Γsr for the column points, then CA has
the property that the row points are in weighted average of the column points, where
the weights are the row profile values. Actually, Γsr can be seen as coordinates for the
extreme row profiles projected onto the subspace. The extreme row profiles are totally
concentrated into one of the terms. For example, [0, 0, 1, 0, 0, 0] represents the row profile
of a document that is totally concentrated into cheetah. At the same time, if we choose
Φsr for the row points and ΓsrΣsr for the column points, column points are in weighted
average of row points, where the weights are the column profile values. In a similar way
as for the rows, Φsr provide coordinates for the extreme column profiles projected onto the
subspace. The relationship between these row points and column points can be shown by
rewriting Equation (11) and using Equation (13) as

D−1r PΓsr = ΦsrΣsr (15)
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and
D−1c P TΦsr = ΓsrΣsr (16)

These equations are called the transition formulas. In fact, this is one of the ways in which
the solution of CA can be obtained: starting from arbitrary values for the columns, one
first centers and standardizes the column coordinates so that the weighted sum is 0 and
the weighted sums of squares is 1, next places the rows in the weighted average of the
columns, then places the columns in the weighted average of the rows, and so on, until
convergence. This is known as reciprocal averaging (Hill, 1973, 1974).

The origin in the graphic representation for the rows stands for the average row profile,

which can be seen as follows. Let D−1r PD
− 1

2
c be the matrix where Euclidean distances

between the rows are χ2-distances between rows of F . Assume we plot the rows of this
matrix using the n elements of each row as coordinates. Then, eliminating the artificial

dimension in D−1r PD
− 1

2
c leads to the subtraction of the average row profile from each

row, as D−1r E is a matrix with the average row profile in each row. In other words, the
cloud of row points is translated to the origin, with the average row profile being exactly
in the origin (compare Equation (13): 0T = 1TDcΓ

sr). When two row points are departing
in the same way from the origin, they depart in the same way from the average profile,
and when two row points are on opposite sides of the origin, they depart in opposite
ways from the average profile. If the documents and terms are statistically independent,
then pij/ri = cj , and all document profiles would lie in the origin. Thus comparing row
profiles with the origin is a way to study the departure from independence and to study
the relations between documents and terms (see Section 2). Similarly, the origin in the
graphic representation for the columns stands for average column profile.

We now analyse the example discussed in the LSA section. Table 8 shows the matrix

D
− 1

2
r (P − E)D

− 1
2

c of standardized residuals (in lower-case notation, the elements of the
matrix are (pij − eij)/

√
eij).

Table 8: The matrix D
− 1

2
r (P −E)D

− 1
2

c of standardized residuals

lion tiger cheetah jaguar porsche ferrari
doc1 0.115 0.085 -0.028 -0.005 -0.112 -0.129
doc2 0.014 0.091 0.128 -0.019 -0.140 -0.162
doc3 0.060 0.039 0.060 -0.025 -0.084 -0.098
doc4 0.014 -0.016 0.014 -0.019 0.034 -0.011
doc5 -0.112 -0.119 -0.112 0.020 0.260 0.204
doc6 -0.144 -0.154 -0.144 0.069 0.164 0.338

We perform an SVD of D
− 1

2
r (P−E)D

− 1
2

c in Table 8 and find Table 9. Due to subtracting
E from P , the rank of the matrix in Table 8 is 4, which is 1 less than that in Table 1. The
proportion of the total inertia explained by only the first dimension accounts for 0.932 of

the total inertia. The matrix D
− 1

2
r (P −E)D

− 1
2

c in Table 8 is approximated in the first two
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Table 9: The singular values, the inertia, and the proportions of explained total inertia for
each dimension of CA.

dim1 dim2 dim3 dim4
singular value 0.689 0.131 0.124 0.044

inertia 0.475 0.017 0.015 0.002
the proportion of inertia 0.932 0.034 0.030 0.004

dimensions as follows:

D
− 1

2
r (P −E)D

− 1
2

c ≈ U sr
2 Σsr

2 (V sr
2 )T

=



−0.286 0.789

−0.368 −0.517
−0.231 −0.025
0.007 −0.138
0.547 −0.206
0.656 0.220


[
0.689 0

0 0.131

]


−0.301 0.544

−0.338 0.090

−0.303 −0.761
0.102 0.152

0.512 −0.275
0.656 0.136



T

(17)

Figure 2(a) is the map with a symmetric role for the rows and the columns, having
Φsr

2 Σsr
2 and Γsr

2 Σsr
2 as coordinates. The larger the deviations from document (term) points

to the origin are, the larger the dependence between documents and terms. Looking only
at the first dimension and document profiles’ positions, we can see that the groups furthest
apart are documents 1-3 on the left-hand side, opposed to documents 5-6 on the right-hand
side. They differ in opposite ways from the average row profile that lies in the origin.
Document 4 lies between documents 1-3 and documents 5-6. For the term points on the
first dimension, the cat terms (tiger, cheetah, and lion) lie on the left, and car terms (porsche
and ferrari) on the right. They differ in opposite ways from the average column profile.
Importantly, notice that the term jaguar lies between cat terms and car terms, unlike all
four of the LSA based analyses presented in Figure 1.
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Figure 2: The data of Table 1 using CA for (a) symmetric map; (b) asymmetric map.
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Figure 2(b) is the asymmetric map with documents in the weighted average of the
terms (Φsr

2 Σsr
2 and Γsr

2 as coordinates, notice that the position of the documents is identical
as in Figure 2(a)). From this graphic display we can study the position of the documents as
they are in the weighted average of the terms, using the row profile elements as weights.
For example, document 1 is closer to lion and tiger than to porsche and ferrari, because it
has higher profile values than average values on terms lion and tiger (both 0.286 in com-
parison with the average profile values 0.171 and 0.195) and lower profile values on the
terms porsche and ferrari (both 0.000 in comparison to 0.073 and 0.098), see Table 4. Thus
document 1 is pulled into the direction of lion and tiger.

4.1 Conclusions regarding CA

In CA, an SVD is applied to the matrix D
− 1

2
r (P −E)D

− 1
2

c of standardized residuals. Due to
E, in CA the effect of the margins is eliminated—a solution only displays the relationships
among documents and terms. In CA all points are scattered around the origin and the
origin represents the profile of the row and column margins of F .

In comparison, LSA tries to capture the relationships among documents and terms,
which is not easy. The reason is that these relations are blurred by the effect of the margins
that are also displayed in the LSA solution. CA does not have this property. Therefore it
appears that CA is a better tool for computational linguistics, information retrieval, natural
language processing, and text mining.

5 A Unifying Framework

Here we present a unifying framework that integrates LSA and CA. This section also serves
the purpose of showing their similarities and their differences.

To first summarize LSA (see section 3.2 for details), a matrix is weighted, and the
weighted matrix is decomposed. Assume we start off with the document-term matrix
F , the row weights of F are collected in the diagonal matrix N , the column weights in the
diagonal matrix G, and there may be local weighting of the elements fij of F leading to
a locally weighted matrix L. Thus the weighted matrix W can be written as the matrix
product

W = NLG. (18)

Subsequently, in LSA the matrix W is decomposed using SVD into a product of three
matrices: the orthonormal matrix U , the diagonal matrix Σ with singular values in de-
scending order, and the orthonormal matrix V , namely

W = UΣV T (19)

with
UTU = I = V TV . (20)
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Graphic representations are usually made using as coordinates UΣ for the rows and V Σ

for the columns.
In contrast, in CA (see section 4 for details) we take the SVD of the matrix of standard-

ized residuals. Let P be the matrix with proportions pij = fij/f++, where f++ is the sum
of all elements of F ; let E be the matrix with expected proportions under independence
eij = ricj , where ri and cj are the row and column sums of P respectively; let Dr and Dc

be diagonal matrices with row and column sums ri and cj respectively. Thus the matrix of

standardized residuals is D
− 1

2
r (P −E)D

− 1
2

c . If we take the SVD of this matrix we get (11),

D
− 1

2
r (P −E)D

− 1
2

c = UΣV T . (21)

In CA the matrices U and V are further adjusted by

Φ = D
− 1

2
r U ,Γ = D

− 1
2

c V (22)

so that we can write
D−1r (P −E)D−1c = ΦΣΓT (23)

with
ΦTDrΦ = I = ΓTDcΓ. (24)

Graphic representations are usually made using ΦΣ and ΓΣ for as coordinates for the
rows and columns respectively.

This brings us to the point where we can formulate a unifying framework. We distin-
guish the matrix to be analysed and the decomposition of this matrix. For the matrix to be
analyzed the weighted matrix defined in (18) can be used by LSA as well as by CA. Equa-

tion (18) is sufficiently general for LSA. For CA, using (23), we set N = D
− 1

2
r , L = (P −E)

and G = D
− 1

2
c . This shows that the matrix decomposed in CA in (21) can be formulated in

the LSA framework in (18).
The decomposition used in LSA leads to orthonormal matrices U and V used for coor-

dinates, see (20), whereas in CA the decomposition leads to weighted orthonormal matri-
ces Φ and Γ , see (24). If we rewrite (20) as UT IU = I = V T IV , we see this is a difference
between using an identity metric I and a metric defined by the margins that are collected
in Dr and in Dc. The influence of this metrics used in CA is most clearly visible in the
definition of the chi-squared distances (8), that makes that, for example, for row profiles
i and i′, equally large differences between columns j and j′ are weighted by the margins
of j and j′ in such a way that a column with a smaller margin takes a larger part in the
chi-squared distance between i and i′.

6 Authorship Attribution using LSA and CA

In this section we examine the performance of LSA and CA on a dataset originally set
up for authorship attribution. We first use the dataset to see how well LSA and CA are
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able to assign documents with a known author to the correct author. Second, we assign a
document with unknown author to one of the known authors.

Authorship attribution is the process of identifying the authorship of a document; its
applications include plagiarism detection and resolving of authorship disputes (Bozkurt,
Baghoglu, & Uyar, 2007), and is particularly relevant for historical texts, where other his-
torical records are not sufficient to determine authorship. Both LSA and CA have been
used for authorship attribution before. For example, Soboroff, Nicholas, Kukla, and Ebert
(1997) applied LSA with n-grams as terms to visualize authorship among biblical Hebrew
texts. McCarthy, Lewis, Dufty, and McNamara (2006) applied LSA to lexical features to au-
tomatically detect semantic similarities between words (Stamatatos, 2009). Satyam, Dawn,
and Saha (2014) used LSA on a character n-gram based representation to build a similarity
measure between a questioned document and known documents. Mealand (1995) studied
the Gospel of Luke using a visualization provided by CA. Mealand (1997) also measured
genre differences in Mark by CA. Mannion and Dixon (2004) applied CA to study author-
ship attribution of the case of Oliver Goldsmith by visualization.

The Wilhelmus is the national anthem of the Netherlands and its authorship is unknown
and much debated. There is a substantive amount qualitative research attempting to deter-
mine the authorship of the Wilhelmus, with quantitative or statistical methods being used
relatively recently. To the best of our knowledge, the authorship of the Wilhelmus was first
studied by statistical methods and computational means in Winkel (2015), whose results
on authorship attribution were inconclusive. After that, Kestemont, Stronks, De Bruin,
and Winkel (2017a, 2017b) studied the question using PCA and the General Imposters (GI)
method, attributing the Wilhelmus to the writer Datheen. Vargas Quiros (2017) used the
data of Kestemont et al. (2017a, 2017b), and applied the KRIMP compression algorithm
(van Leeuwen, Vreeken, & Siebes, 2006) and Kullback-Leibler Divergence — they tended
to agree with Kestemont et al. (2017a, 2017b), even though the KRIMP attributed the Wil-
helmus to another author when a different feature selection method was used. Thus, the
results were inconclusive, with a tendency to prefer Datheen. Our paper provides further
evidence in favour of attributing the authorship to Datheen.

6.1 Data and methods

We use a total of 186 documents by six writers, consisting of 35 documents written by
Datheen, 46 by Marnix, 23 by Heere, 35 by Haecht, 33 by Fruytiers, and 14 by Coornhert.
These documents contain tag-lemma pairs as terms, obtained through part-of-speech tag-
ging and lemmatizing of the texts, and are made publicly available by Kestemont, Stover,
Koppel, Karsdorp, and Daelemans (2016); Kestemont et al. (2017a, 2017b). Following
Kestemont, we use the 300 most frequent tag-lemma pairs, thus the document term ma-
trix has size 186 x 300. The average marginal frequencies range from 406 for documents by
Fruytiers to 545 for documents by Haecht. See Kestemont (2017) for more details regarding
the dataset.

We use two approaches to compare LSA and CA. One is visualization, where we use
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LSA and CA to visualize documents by projecting them onto two dimensions. The other
is to apply LSA and CA, along with distance measures (described in detail in section 6.3).
In line with the foregoing sections, we denote the raw document-term matrix by F . In the
case of LSA we examine four versions: LSA of F (LSA-RAW), LSA of the row-normalized
matrices F L1 (LSA-NROWL1) and F L2 (LSA-NROWL2), and LSA of the TF-IDF matrix
F TF-IDF (LSA-TFIDF). In addition, we also compare performance with the raw document-
term matrix, denoted as RAW, where no dimensionality reduction has taken place.

6.2 Visualization

We first examine all documents of two authors Marnix and Dathleen2, along with the Wil-
helmus document, using the 300 most frequent tag-lemma pairs. These form a document-
term matrix of size 82× 300.

Figure 3 shows the results of analysing this document-term matrix using the four
LSA based methods (LSA-RAW, LSA-NROWL1, LSA-NROWL2, LSA-TFIDF), and CA. As
seen in Figure 3, all four varieties of LSA fail to show a clear separation, while CA sep-
arates documents by the two authors clearly, even though the first 2 dimensions for CA
(11.2%+8.6% = 19.8%) account for a much smaller percentage of the total sum of squared
singular values than the first 2 dimensions for LSA-RAW (67.6% + 12.2% = 79.8%), LSA-
NROWL1 (67.6% + 12.3% = 79.9%), LSA-NROWL2 (67.8% + 11.7% = 79.5%), and LSA-
TFIDF (53.8% + 11.1% = 64.9%). This is because the margins play an important role in
the first two dimensions for LSA-RAW, LSA-NROWL1, LSA-NROWL2, and LSA-TFIDF
and the relations between documents are blurred by these margins. We also see that the
Wilhelmus (shown as w, in red) is clearly attributed by CA to Datheen.

Given the effectiveness of CA and the attribution of the Wilhelmus to Datheen in the
above analysis, we now show visualisations of CA for documents by Datheen and four
other authors in turn (Figure 4). For three out of four authors, there is a clear separation
between that author and Datheen. In the case Haecht however (sub-figure (b)), there is
no clear separation from Datheen. In all three cases where there is a clear separation,
Wilhelmus is attributed to Datheen, as before.

Finally, we apply all four varieties of LSA and CA to all documents of the six authors,
and the Wilhelmus, which form a document-term matrix of size 187× 300. Figure 5 shows
the results of the analysis of this matrix by LSA-RAW, LSA-NROWL1, LSA-NROWL2,
LSA-TFIDF, and CA. As seen in the figure, the LSA methods cannot separate the authors
of our dataset well, but CA does a reasonably good job. Again we find that, although
the percentage of the total sum of squared singular values in the first two dimensions
for CA (8.6% + 5.7% = 14.3%) is lower than LSA-RAW (64.1% + 11.1% = 75.2%), LSA-
NROWL1 (63.5% + 10.9% = 74.4%), LSA-NROWL2 (64.1% + 10.0% = 74.1%), and LSA-
TFIDF (48.7% + 10.5% = 59.2%), CA separates the documents quite well. For instance,

2We chose these two authors specifically, out of our dataset, as they are the two main contenders for the
authorship of Wilhelmus – Marnix has been the most popular candidate from qualitative analyses, and since
the work of Kestemont et al. (2017a, 2017b) Datheen is also a serious candidate.
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Figure 3: The first two dimensions for each document of author Datheen and author
Marnix, and the Wilhelmus (in red) by (a) LSA-RAW; (b) LSA-NROWL1; (c) LSA-NROWL2;
(d) LSA-TFIDF; (e) CA.
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Figure 4: The first two dimensions for each document of author Datheen and another
author, and the Wilhelmus (in red) using CA: (a) Heere; (b) Haecht; (c) Fruytiers; (d) Coorn-
hert.
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documents written by Marnix are effectively separated from the documents written by
other authors. The documents of the other authors also seem to form much more distin-
guishable clusters, as compared to LSA, except for Datheen and Haecht.

6.3 Distance Measures

In this section, we use distance measures to quantitatively evaluate and compare perfor-
mance on the authorship attribution problem. We use four different methods based on
Euclidean distance for measuring the distance from a document to a set of documents
(Guthrie, 2008; Kestemont et al., 2016; Koppel & Seidman, 2013). We choose the Euclidean
distance because it plays a central role in the geometric interpretation of LSA and CA (see
section 3 and 4).

Centroid Euclidean distance between the document and the centroid of the set of docu-
ments. The centroid for a set of documents is calculated by averaging the coordinates
across all these documents.

In the other three methods we first calculate the Euclidean distance between the document
and every document of the set of documents.

Average average of these Euclidean distances

Single the minimum Euclidean distance among the Euclidean distances

Complete the maximum Euclidean distance among the Euclidean distances.

These four methods are similar to the procedures of measuring the distance between clus-
ters in hierarchical clustering analysis, using the centroid, average, single, and complete
linkage method respectively (Jarman, 2020).

It is crucial to optimise dimensionality for each of the distance measures. For choos-
ing optimal dimensions for each, we use leave-one-out cross-validation (LOOCV) (Kuzi,
Shtok, & Kurland, 2016; Wong, 2015) in combination with accuracy. For each distance mea-
sure we determine the number of dimensions that provide the highest accuracy in LOOCV.
The 186 documents of six authors form a document-term matrix with 186 rows and 300
columns. We perform LSA-RAW, LSA-NROWL1, LSA-NROWL2, LSA-TFIDF, and CA on
the document-term matrix to obtain the coordinates of the 186 documents in a lower di-
mensional space. Using LOOCV, each time we discern the following three steps. At the
first step, we select one of the 186 documents. At step two, using the centroid, average, sin-
gle, and complete linkage method, the distance is computed between the single document
and the six author groups of documents. For this single document, the predicted author of
the document is the author with the smallest distance. At the final step, we compare the
predicted author with the true author of the single document. We repeat this 186 times,
once for each single documents. The accuracy is calculated by the ratio: number of times
an author is correctly predicted divided by 186.

Table 10 shows the maximum accuracy for LSA-RAW, LSA-NROWL1, LSA-NROWL2,
LSA-TFIDF, and CA for the four distance measures, along with the optimal dimensions k
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Figure 5: The first two dimensions for each document of six authors, and the Wilhelmus (in
red) by (a) LSA-RAW; (b) LSA-NROWL1; (c) LSA-NROWL2; (d) LSA-TFIDF; (e) CA.
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Table 10: The optimal dimensionality k and the accuracy in k for LSA-RAW, LSA-
NROWL1, LSA-NROWL2, LSA-TFIDF, and CA, and the accuracy for RAW using different
distance measurement methods.

Centroid Average Single Complete
k Accuracy k Accuracy k Accuracy k Accuracy

RAW 0.720 0.516 0.672 0.177
LSA-RAW 34–186 0.720 60;71–90 0.554 13–15 0.715 1 0.301

LSA-NROWL1 30–37; 54–186 0.731 71–186 0.640 21; 22 0.699 36; 77; 82–85; 87–91 0.220
LSA-NROWL2 45; 46; 49–64 0.747 40 0.704 20 0.699 30; 63–186 0.296

LSA-TFIDF 45; 47; 52–57 0.737 19 0.543 24; 25 0.737 1 0.231
CA 56–75; 89; 90 0.941 12 0.823 14 0.780 7 0.457

where this maximum accuracy is reached. First, in the optimal dimensionality, CA yields
the maximum accuracy for all distance measurement methods, over the RAW (i.e. without
dimensionality reduction) matrix, as well as over all four LSA methods. Second, among
all distance measurement methods, the centroid method always has the highest accuracy
indicating that the centroid method is preferable over the other distance measurement
methods.

6.3.1 Further study of centroid method

In order to further explore the centroid method, Figure 6 shows the accuracy with differ-
ent numbers of dimensions for CA, RAW, LSA-RAW, LSA-NROWL1, LSA-NROWL2, and
LSA-TFIDF. Figure 6(a) displays all dimensions on the horizontal axis, and Figure 6(b) fo-
cuses on the first 10 dimensions. CA in combination with the centroid method performs
better than the other methods almost irrespective of dimension, except for the very first
ones.
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Figure 6: Accuracy versus the number of dimensions (centroid method) for CA, RAW,
LSA-RAW, LSA-NROWL1, LSA-NROWL2, and LSA-TFIDF.
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6.3.2 A further study of CA

In order to further explore CA, Figure 7 shows the accuracy with different numbers of
dimensions for the four distance measurement methods. In Figure 7(a), the dimensions
are ranked from 1 to 185, and in Figure 7(b), we focus on dimensions 1 to 15. We can
see that, for CA, the centroid method is best among all distance measurement methods
from dimension 8 to dimension 185, where the accuracy of the centroid method is much
higher than the maximum accuracy of the other methods starting at dimension 11 and the
accuracy is very high over a large range.
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Figure 7: Accuracy versus the number of dimension for CA.

6.4 Authorship attribution of the Wilhelmus

Since CA in combination with the centroid method appears to be the best overall, we use
them to determine the authorship of the Wilhelmus. In the 22 optimal dimensions (dimen-
sions 56–75, 89, and 90), we find that the Wilhelmus is attributed to the author Datheen,
while Haecht is the second most likely candidate. The distance of the Wilhelmus to the
centroid of Datheen averaged across 22 optimal dimensions is 0.893, to Haecht is 0.951, to
Marnix is 0.998, to Heere is 1.065, to Fruytiers is 1.122, and to Coornhert is 1.303. Thus, CA
attributes Wilhelmus to Datheen, and provides more weight using an independent statisti-
cal technique, to prior results by Kestemont et al. (2017a, 2017b) in resolving this debate.

7 Document Classification: BBCSport

We next perform an evaluation on document classification on an English dataset, BBC-
Sport, described below.
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Table 11: The minimum optimal dimensionality k and the accuracy in k for LSA-RAW,
LSA-NROWL1, LSA-NROWL2, LSA-TFIDF, and CA, and the accuracy for RAW using
different distance measurement methods.

Centroid Average Single Complete
k Accuracy k Accuracy k Accuracy k Accuracy

RAW 0.904 0.452 0.822 0.137
LSA-RAW 74 0.904 8 0.849 41 0.952 6 0.486

LSA-NROWL1 66 0.952 11 0.945 51 0.959 5 0.658
LSA-NROWL2 83 0.959 62 0.966 22 0.959 6 0.884

LSA-TFIDF 100 0.911 7 0.815 25 0.979 6 0.144
CA 146 0.986 30 0.973 21 0.986 1 0.404

7.1 Data

The BBCSport dataset consists of 737 documents and is divided into five categories: ”ath-
letics” (101 documents), ”cricket” (124 documents), ”football” (265 documents), ”rugby”
(147 documents), and ”tennis” (100 documents). The BBCSport dataset (Greene & Cun-
ningham, 2006) have previously been used in the evaluation of text classification, for ex-
ample Barman and Chowdhury (2020); Bounabi, El Moutaouakil, and Satori (2017, 2018),
and is available online at http://mlg.ucd.ie/datasets/bbc.html.

To pre-process this dataset we project all characters to lower case, remove punctuation
marks, numbers, and stop words, and apply lemmatization. Subsequently, terms with
frequencies lower than 10 are ignored. This gives us a document-term matrix of size 737×
2071.

7.2 Visualization

Figure 8 shows the results of an analysis of this document-term matrix by LSA-RAW, LSA-
NROWL1, LSA-NROWL2, LSA-TFIDF, and CA. On this dataset as well, we find that the
LSA methods do not separate the classes well, but CA does a reasonably good job.

7.3 Distance measures

We use a random seed to divide the BBCSport dataset into 80% training set documents
and 20% test set documents to calculate the accuracy of classifying the test set documents
correctly. We calculate accuracy on the test set under different dimensions, and chose the
maximum accuracy, along with the optimal dimensions. Table 11 shows the maximum
accuracy for RAW, the four LSA methods, and CA for the four distance measures, along
with the minimum optimal dimensions k where this maximum accuracy is reached 3. For
all distance measures except complete, CA yields the maximum accuracy for the optimal
dimensionality. CA with centroid and single measure gives the best accuracy overall.

3The optimal dimensions that obtain the maximum accuracy are not just one; for reasons of space, we show
only the minimum optimal dimension in Table 11.
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Figure 8: The first two dimensions for each document of BBCSport dataset by (a) LSA-
RAW; (b) LSA-NROWL1; (c) LSA-NROWL2; (d) LSA-TFIDF; (e) CA.
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8 Conclusion

LSA and CA both allow for dimensionality reduction by the SVD of a matrix; however
the actual matrix analysed by LSA and CA is different, and therefore LSA and CA capture
different kinds of information. In LSA we apply an SVD to F , or to a weighted F . In CA,

an SVD is applied to the matrix D
− 1

2
r (P −E)D

− 1
2

c of standardized residuals. The elements

in D
− 1

2
r (P − E)D

− 1
2

c display the departure from the margins, that is, departure from the
expected frequencies under independence collected in E. Due to E, in CA the effect of
the margins is eliminated — a solution only displays the dependence between documents
and terms. Concluding, in LSA, the effect of the margins as well as the dependence is part
of the matrix that is analysed and these margins usually play a dominant role in the first
dimension of the LSA solution as usually on the first dimension all points depart in the
same direction from the origin. On the other hand, in CA all points are scattered around
the origin and the origin represents the profile of the row and column margins of F .

In summary, although LSA allows a study of the relations between documents, be-
tween terms, and between documents and terms, this study is not easy. The reason is that
these relations are blurred by the effect of the margins that are also displayed in the LSA
solution. CA does not have this property. Therefore it appears that CA is a better tool for
studying the relations between documents, between terms, and between documents and
terms. Also, discussed in Section 4, CA has many nice properties like providing a geomet-
ric display where the Euclidean distances approximate the χ2-distances between the rows
and between the columns of the matrix, and the relation to the Pearson χ2 statistic. Over-
all, from a theoretical point of view it appears that CA has more attractive properties than
LSA. Empirically, we evaluated and compared the two methods on two different tasks in
two languages, authorship attribution in Dutch, and document classification in English,
and found that CA can both separate documents better, and obtain higher accuracies on
the tasks as compared to LSA based techniques.

In future work, we would like to extend our analysis to include other transformations,
e.g., those based on point-wise mutual information and on word-context matrices, as well
as to evaluate the performance of CA and LSA on other natural language processing tasks.
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