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ABSTRACT
As the statistical power of galaxy weak lensing reaches per cent level precision, large, realistic, and robust simulations are
required to calibrate observational systematics, especially given the increased importance of object blending as survey depths
increase. To capture the coupled effects of blending in both shear and photometric redshift calibration, we define the effective
redshift distribution for lensing, nγ (z), and describe how to estimate it using image simulations. We use an extensive suite of
tailored image simulations to characterize the performance of the shear estimation pipeline applied to the Dark Energy Survey
(DES) Year 3 data set. We describe the multiband, multi-epoch simulations, and demonstrate their high level of realism through
comparisons to the real DES data. We isolate the effects that generate shear calibration biases by running variations on our fiducial
simulation, and find that blending-related effects are the dominant contribution to the mean multiplicative bias of approximately
−2 per cent. By generating simulations with input shear signals that vary with redshift, we calibrate biases in our estimation
of the effective redshift distribution, and demonstrate the importance of this approach when blending is present. We provide
corrected effective redshift distributions that incorporate statistical and systematic uncertainties, ready for use in DES Year 3
weak lensing analyses.

Key words: gravitational lensing: weak – large-scale structure of Universe.

1 INTRODUCTION

While weak gravitational lensing of galaxies has enormous potential
as a cosmological probe (e.g. Albrecht et al. 2006; Weinberg et al.
2013), measurements of the weak lensing shear have proven to be
extremely difficult in practice (e.g. Mandelbaum et al. 2014). The
shear manifests as a small distortion in the observed shape of a galaxy.
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Its measurement is subject to numerous biases, and requires accurate
calibrations of many properties of the input images. Typically, these
biases have been quantified by assuming a linear relation between
component x of the measured shear ḡobs

x (averaged over an ensemble
of galaxies), and component y of the true shear gtrue

y (e.g. Heymans
et al. 2006)

ḡobs
x = (1 + mxy)gtrue

y + cx, (1)

where mxy is known as the multiplicative bias, and c is known as
the additive bias. This linear relation is expected to hold in the weak
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lensing regime, where gtrue
y is small [and so contributions of order

(gtrue
y )2 can be neglected]. One can also consider the multiplicative

term as quantifying the linear response, Rxy ≡ 1 + mxy of the shear
estimate to a change in the input shear i.e.

Rxy ≡ ∂ḡobs
x

∂gtrue
y

. (2)

The off-diagonal elements of mxy (and Rxy) are often assumed (and
empirically found) to be zero, allowing for the more common notation
where mx ≡ mxx. In the following, we will usually drop the shear
component subscripts for brevity, with expressions involving ḡobs

and gtrue generally holding for either component of the shear.
The most thoroughly studied biases in weak lensing measurements

have mainly been performed with simulations of isolated objects.
These include noise bias (e.g. Kacprzak et al. 2012; Refregier et al.
2012), model bias (e.g. Voigt & Bridle 2010), selection biases (e.g.
Kaiser 2000; Bernstein & Jarvis 2002; Hirata & Seljak 2003), and
biases from miscorrecting for the image point spread function (PSF;
e.g. Paulin-Henriksson et al. 2008). These problems were tackled
by community-driven efforts like the STEP (Heymans et al. 2006;
Massey et al. 2007) and GREAT (Bridle et al. 2010; Kitching
et al. 2013; Mandelbaum et al. 2015) challenges, and aided by the
development of the widely used GalSim1 software for simulation of
astronomical images (Rowe et al. 2015). For isolated objects, the
aforementioned biases have largely been solved by methods like
METACALIBRATION (Huff & Mandelbaum 2017; Sheldon & Huff
2017) and ‘Bayesian Fourier Domain’ (BFD; Bernstein et al. 2016),
at least for sufficiently well-understood data (i.e. with accurately
characterized noise and background levels and PSF). The METACAL-
IBRATION method is particularly powerful because it does not rely on
calibration simulations, which inevitably rely on assumptions about
the properties of the faint, often poorly resolved galaxies used in
weak lensing analyses.

More recently, some studies have begun to study shear calibration
biases in the context of multiple objects and blending. It has generally
been assumed that in this case the use of image simulations will be
essential, and these have been used for the calibration of recent
weak lensing cosmology analyses, for example by Fenech Conti
et al. (2017), Kannawadi et al. (2019) (for the Kilo-Degree Survey2),
Mandelbaum et al. (2018) (for the Hyper Suprime-Cam Subaru
Strategic Program3), and Samuroff et al. (2018), Kacprzak et al.
(2020) (for Dark Energy Survey, DES, Year 1 analyses). Works such
as Hoekstra, Viola & Herbonnet (2017) and Euclid Collaboration
(2019), with an eye to deeper upcoming data sets, have used image
simulations to study effects such as the impact of undetected galaxies
on the shear calibration.

In parallel to these simulation-based calibration efforts, Sheldon
et al. (2020) developed new measurement methodology, METADE-
TECTION, which corrects for much of the impact of blending, in
particular the significant shear biases imparted by detection and
deblending algorithms, as well as the impact of blending at the shape
measurement stage. The METADETECTION method does not require
simulation-based calibration, and exhibits extremely low levels of
shear calibration bias even on (constant shear) simulations designed
to match the depth of Rubin Observatory Legacy Survey of Space
and Time4 (LSST) data.

1https://github.com/GalSim-developers/GalSim
2http://kids.strw.leidenuniv.nl/index.php
3https://hsc.mtk.nao.ac.jp/ssp/
4https://www.lsst.org/

Current and future surveys will have large amounts of blending
of objects at different redshifts (e.g. Dawson et al. 2016). The com-
ponent galaxies in blended systems will therefore often experience
different shears. As we will discuss in Section 2, the impact of this
on weak lensing statistics cannot be fully accounted for by the use
of simplified constant shear simulations used thus far in the field to
calibrate shear measurements, or corrections from shear estimation
methods like METADETECTION. In order to gain intuition into the
possible effects, consider the following simplified situation, shown in
Fig. 1. In both panels, we input a pair of galaxies at different redshifts;
for the sake of illustration we arbitrarily set one at low redshift (z =
0.25) and one at high redshift (z = 0.75). The high redshift galaxy is
placed at the centre of the stamp in both panels. For simplicity, we
have fixed both galaxies to be round before lensing. In the top panels,
the galaxies are not blended together, and in the bottom panels they
are. In both cases, we assume we can unambiguously detect two
separate objects and precisely know their centroids.

Let us consider the response to shear of the central (z = 0.75)
object in each stamp. We can apply shear separately at the two
redshifts from which the light in the image is sourced (which in this
case just means applying shear separately to the two galaxies present
in the stamp). The right-hand panels of Fig. 1 show the response to
shear of the measured shape of the central galaxy, as a function of the
redshift of the applied shear. The response is defined here as above,
as R = (∂ḡobs/∂gtrue). We estimated these responses numerically from
our simple simulations using the METACALIBRATION method. In the
top right panel, we see that the high redshift object does not respond
to the shear of the low redshift one (it is zero at z = 0.25) and has a
unit response to a shear applied at its own redshift (the peak at z =
0.75). This result makes sense since METACALIBRATION is known to
be unbiased at high precision for idealized cases such as this, and the
objects do not overlap.

The more interesting case is when the galaxies are blended, shown
in the lower panels of Fig. 1. In this case, we see that the high redshift
object responds to the shear of the low redshift object (the small peak
at z = 0.25). It also has an apparent greater than unity response to the
shear applied at its own redshift (the peak at z = 0.75 that is greater
than one). Both of these effects are due to the galaxy being blended
with the low redshift neighbour. The latter effect is likely due to the
positioning of the neighbouring galaxy in the positive g1 direction,
which is the shear component for which we compute the response.

However, the response of the high redshift object to a low
redshift shear is a qualitatively different effect, distinct from standard
multiplicative biases due to blending or detection; it is a bias that
depends not only on the presence of the neighbour, but also on
the shear applied to the neighbour. This indicates that the shape
measurement of the high redshift object is carrying information about
the low redshift shear.

In fact, we assert that it is the response to shear that defines how we
should weight the redshifts to which we assign the shear information
for a given object in a weak lensing analysis. This insight is a key
subject of this work, where we will definitively measure these effects
in simulations of the DES Year 3 (Y3) analysis (note that ‘Year 3’
includes the first three years of DES observations). There are also
important implications for analysis of future surveys. As the amount
of blending increases with increased depth, inferring the redshift
distribution relevant for lensing and the shear calibration biases will
be a joint analysis task. In the example above, we have described
how a single detected object can have a (non-unity) response to
shear at multiple redshifts. This effect cannot be fully described by
the traditional multiplicative bias, m. The shear calibration and the
effective redshift distribution cannot be fully decoupled.
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Figure 1. Simple example of the interplay between blending, shear calibration, and photometric redshift distributions. In both rows, the left-hand panel shows
an image of a pair of simulated galaxies, with the central object at higher redshift, z = 0.75, and a neighbouring object at low redshift, z = 0.25. The right-hand
panels show the response of the shape measurement of the central (z = 0.75) object, to applied shear, as a function of the redshift at which that shear is applied.
In the top-row, where the objects are not blended, the high-redshift object only responds to a shear at its own redshift, and since we use METACALIBRATION shear
estimation, the response is unity (i.e. the shear estimation is unbiased) to very high precision. In the bottom right panel, we show the response when the objects
are blended. We see two effects here. First, due to blending, the METACALIBRATION estimator is now biased (the right peak at z = 0.75 has non-unit height).
Secondly, the high-redshift object now responds to input shears at other redshifts (the small peak at z = 0.25). We show in this work that these responses define
the effective redshift distribution for lensing predictions, in addition to quantifying the multiplicative bias of the measurements.

In this work, we expand upon the ideas from this simple example
and apply them to the DES Year 3 shear analysis. We introduce our
formalism for accounting for blending in Section 2. In Section 3, we
describe realistic simulations of the DES Year 3 survey, validating
them against the data. Then in Section 4, we describe and investigate
the source of the traditional shear calibration biases estimated from
constant shear simulations. In Section 5, we show that the biases
described above, due to blended sources with different applied shears,
are present in these DES Y3 simulations. We then present a method
to combine mean shear measurements from the simulations with
estimated redshift distributions in order to jointly infer corrections
to both the shear calibration and the redshift distributions. We apply
this method to the DES Year 3 simulations, producing a parametrized
model of these effects that can be used to interpret the DES Year 3
shear catalogues, which we describe in Section 6. We summarize and
discuss directions for future work in Section 7.

2 QUANTIFYING SHEAR CALIBRATION
BIASES FOR WEAK LENSING SHEAR
STATISTICS

In the following, we describe our formalism and methodology of
using image simulations to calibrate gravitational lensing measure-
ments. To this end it is useful to distinguish galaxies from detections.
We take a galaxy to be emitting light of fixed redshift z, with a
particular surface brightness profile local to a position � on the sky.
A detection on the other hand is, simply put, a thing identified by an
algorithm designed to detect and deblend astronomical sources, such
as that employed by SEXTRACTOR (Bertin & Arnouts 1996). Due to
blending, measurements made on a detection may be affected by light
from multiple galaxies or stars and therefore multiple redshifts. We
only have access to detections in an imaging survey, and we measure
statistics averaged over ensembles of detections. We thus must
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