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ABSTRACT
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Doctor of Philosophy

by Oluwaseyi Feyisetan

Crowdsourcing has the potential to revolutionise the way organisations carry out tasks

that need to scale out quickly – and indeed this revolution has begun. However, crowd-

sourcing today, and especially paid microtasks, face several technical and socio-economic

challenges that can hamper the realisation of this vision. This work addresses four of

such challenges: workflow design; real-time crowd work; motivation and rewards; and

synchronous collaboration. The thesis describes the use of a bespoke gamified crowd-

sourcing platform Wordsmith, and studies the use of furtherance incentives to tackle

issues at the heart of microtasks that feature monetary payments as the primary source

of incentivisation. Furtherance incentives represent a timely and appropriate reward to

improve task continuance presented when a worker is about to quit a task. As such, the

keys to effectively deploying furtherance incentives lie in: the timely ability to detect

waning worker interest in a task, and, knowledge of the appropriate incentive to offer

the particular worker at that stage of the task.

In understanding how to improve crowdsourcing workflow designs, the thesis presents an

approach that leverages on insights into task features and worker interaction preferences.

The findings illustrate how workers interact with tasks in the presence of choice – thus

offering us an idea into the types of furtherance incentive to offer workers. In the study

on real-time crowd work, microtask contests are introduced as a medium to engage

workers to complete tasks featuring tight time constraints. The results give us a rich

model that we use to predict when workers are likely to exit a task at different stages.

The research into motivation and rewards combines the two components of furtherance

incentives by using gamification elements as an additional source of incentives. This

leads to more tasks carried out and at a higher quality when compare with baseline paid

microtasks. Finally our study on synchronous collaboration offers an additional case

study on the effectiveness of furtherance incentives. Here we use sociality-based features

of social pressure and social flow between interacting workers as furtherance incentives

resulting in improved qualitative and quantitative results.
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Chapter 1

Introduction

This chapter presents an overview of our
work. We begin with a high level intro-
duction to paid microtasks. We then dis-
cuss our research questions, highlighting
the four main challenges this thesis sets
out to address. Subsequently, we list a
summary of our major and additional con-
tributions in line with the aforementioned
challenges. The chapter is concluded with
the organisation structure of the rest of the
thesis.

1.1 Overview

Paid microtask crowdsourcing represent a new frontier in the way organisations carry

out business - a faster, scalable and cheaper alternative to outsourcing. A single task is

broken down into microtasks which can be solved rapidly in parallel by members of the

‘crowd’ who are recruited via an open call (Howe, 2006). Requesters and crowd workers

meet in an online marketplace: the requesters post a task with instructions on how it is

to be completed; and workers solve the tasks independently. The individual results are

aggregated, the workers get paid and the requester gets their result. In most cases, only

the requester has an overview of the purpose and scope of the entire task. Workers only

see a micro-snippet e.g., a paragraph to annotate, a few seconds of transcription, or, a

small block of text for translation. As such, there is a tendency to represent workers as

human processors, one of many cogs in a wheel, or a member of a homogeneous set of

1
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low or static skilled personnel. The requesters could therefore see members of the crowd

as replaceable pieces of machinery, leaving the workers with little incentive to carry out

the task beyond the financial payout at the end of a few seconds of work. This does

not result in the most engaging and rewarding work outlook - leading to widespread

spamming and cheating on the side of the workers, and delayed or reneged payment

on the part of the requesters. Poor incentivisation leads not only to bad task results,

but also undermines the potential to carry out more complex workflows and cognitively

demanding requests on crowdsourcing platforms.

This paints a bleak picture, which fortunately is not the case, as yet (Felstiner, 2011;

Kittur et al., 2013; Martin et al., 2014). Economic forces have gradually pulled the

average payout on crowdsourcing tasks steadily upwards over the last five years (Difallah

et al., 2015), and researchers have been vocal about fair and ethical crowdsourcing (Irani

and Silberman, 2013). This leads to higher financial incentives for workers to partake

in crowd tasks. However, increased monetary payments is just a piece of the incentives

puzzle and many challenges still remain. Microtask crowdsourcing has evolved beyond

simple annotation tasks to complex workflows and creative tasks (Kittur et al., 2011;

Kittur, 2010; Yu and Nickerson, 2011). In addition, crowd work sometimes yields better

output than traditional individual work as it leverages on the wisdom of the crowd,

forcing down prices as many workers vie for available tasks. This further increases

its potential to displace workers in traditional employment as organisations seek to

cut costs and optimise their output – thus leading to socio-economic questions and

concerns akin to the more dystopian view of job losses from AI. Given this potential,

it becomes necessary to design crowdsourcing platforms that are not only profitable to

the requesters, but also provide a rewarding experience to the crowd workers.

1.2 Research Questions

Kittur et al. (2013) presented a research agenda on the future of crowd work that covered

twelve points. In this thesis, we centre on four of the research foci in the context of paid

microtasks that feature monetary payments, layered with other sorts of incentives.

RQ1. Workflow design - Can we understand what tasks (in hybrid human-machine

workflows) are amenable to crowd work and thus route them accordingly?

RQ2. Real-time crowd work - Can we design systems that support timely worker

recruitment and task execution on real-time work streams?

RQ3. Motivation and rewards - Can we leverage on gamification to build systems

that are more rewarding and engaging than traditional crowdsourcing systems?
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RQ4. Synchronous collaboration - Can we harness the power of collaboration to

solve complex tasks?

These research questions are linked by an underlying commonality, which is our research

methodology. We intend to address incentives as the root notion in tackling these

crowdsourcing challenges. Our research hinges on the hypothesis that adopting a system

of incentives – which we termed ‘furtherance incentives’ – is vital in answering each

of the individual questions. As is with crowdsourcing systems, we are also interested

in keeping the financial costs bearable for the requesters and the task quality from

the workers at an acceptable level. Equally important with these challenges, we seek

to design systems that are appealing, engaging and rewarding for crowd workers. As

the debate on ethical crowdsourcing continues (Irani and Silberman, 2013), we deem

it necessary to tow the lines of fairness in our financial compensation strategies and

place worker choice at the centrality of our experiments. For crowdsourcing to become

a fully integrated and cost efficient source of solving complex tasks in organisations,

RQ1, RQ2 and RQ4 serve as vital pieces of an already challenging puzzle. However,

for microtask crowdsourcing to be judged as a ‘morally’ acceptable form of economic

transaction between workers and a requester in the online world (given the tangentially

related context of worker classification lawsuits in the offline world 1), then addressing

RQ3 attracts commensurate consequence.

1.3 Summary of Contributions

The goal of this body of work is therefore to design methods and algorithms that address

challenges in gamified paid microtask crowdsourcing. We implement an overarching

crowdsourcing platform - Wordsmith - as a container for modules that tackle each of

these challenges. Each module represents one of the research questions highlighted

above, which in turn represents individual chapters in the thesis.

Below we detail our contributions and the associated publications.

RQ1. Workflow design

We demonstrate that crowd workers prefer and perform better on certain tasks

when the element of choice is introduced. This allows us to design workflows that

plays to the strength of the crowd, and thus either creates a refining/verification

step in the crowdsourcing process or assigns difficult cases to a mediating team of

experts. Our experiments focused on named entity recognition in microposts. Our

results shed light on specific content features within the tasks, and behavioural

features exhibited by the crowd that can help us decide what assignments would

elicit the best quality response from workers.

1http://uberlawsuit.com/

http://uberlawsuit.com/
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Publication(s)

- Feyisetan, Oluwaseyi, Markus Luczak-Roesch, Elena Simperl, Ramine Tinati,

and Nigel Shadbolt. ‘Towards hybrid NER: a study of content and crowdsourcing

related performance factors.’ In The Semantic Web. Latest Advances and New

Domains, pp. 525-540. Springer International Publishing, 2015.

- Feyisetan, Oluwaseyi, Markus Luczak-Roesch, Elena Simperl, Ramine Tinati,

and Nigel Shadbolt. ‘An extended study of content and crowdsourcing related

performance factors in Named Entity Annotation’ (in submission)

RQ2. Real-time crowd work

We explore the use of cardinal-ordinal contests as a platform for timely comple-

tion of real-time crowdsourcing tasks. Our approach allows us to carry out timely

worker recruitment and collect judgements under tight time constraints with min-

imal loss of quality. We study the exit patterns of crowd workers to understand

what point they drop out of contests. We use this to create an algorithmic predic-

tive model to identify when workers are about to leave the task. The experiments

here also focused on named entity recognition. We also demonstrate how contests

can serve as an incentive beyond baseline financial payments.

Publication(s)

- Feyisetan, Oluwaseyi, and Elena Simperl. ‘Performance and Exit Behaviour in

Real-Time Crowdsourcing Contests’ (in submission)

RQ3. Motivation and rewards

We illustrate the positive impact of gamification in improving the volume and qual-

ity of work undertaken in paid microtask settings. We also show that gamification

leads to increased participation and engagement in tasks that had money as their

primary incentive. We study various gamification elements to understand their

impacts and we introduce the concept of furtherance incentives as a mechanism to

prevent workers dropping off a task. We also create a predictive model to allocate

the optimum furtherance incentive to prevent drop-off. The experiments here used

simple image labelling tasks popular in the crowdsourcing literature.

Publication(s)

- Feyisetan, Oluwaseyi, Elena Simperl, Max Van Kleek, and Nigel Shadbolt. ‘Im-

proving paid microtasks through gamification and adaptive furtherance incentives.’

In Proceedings of the 24th International Conference on World Wide Web, Inter-

national World Wide Web Conferences Steering Committee, 2015.

- Feyisetan, Oluwaseyi, and Elena Simperl. ‘Incentives engineering in online crowd-

sourcing’ (in submission)
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RQ4. Synchronous collaboration

We demonstrate that workers performing paid microtasks would be willing to

engage in collaborative workflows. We also illustrate how socially motivated in-

centives can lead to improved quality and volume of task output. Our results

show that social pressure between workers and the desire to re-experience social

flow, can serve as furtherance incentives to prevent workers dropping off the task.

We provide evidence for empathic collaboration between workers; with workers

willing to carry out extra tasks for free to ensure a fellow worker gets paid. The

experiments here also used image-labelling tasks.

Publication(s)

- Feyisetan, Oluwaseyi, and Elena Simperl. ‘Please Stay vs Let’s Play: Social

Pressure Incentives in Paid Collaborative Crowdsourcing’ In The Proceedings of

the 16th International Conference on Web Engineering, 2016.

- Feyisetan, Oluwaseyi, and Elena Simperl. ‘Social Pressure Incentives in Paid

Collaborative Crowdsourcing’ (in submission)

1.4 Additional Contributions

In addition to the core contributions of this thesis, we also published work on automatic

named entity recognition from large microposts datasets. This informed our study on

RQ1. where we needed to design hybrid workflows that could support human and

machine based annotations. The dataset created a repository from which we sampled

out the corpus for our primary contributions.

Publication(s)

- Feyisetan, Oluwaseyi, Elena Simperl, Ramine Tinati, Markus Luczak-Roesch,

and Nigel Shadbolt. ‘Quick-and-clean extraction of linked data entities from mi-

croblogs.’ In Proceedings of the 10th International Conference on Semantic Sys-

tems, pp. 5-12. ACM, 2014.

1.5 Outline

The remaining chapters of this thesis are organised as follows:

Chapter 2 – Background: in this chapter we give an overview on the concepts that

run throughout the discourse of the thesis. We recall an historical rundown and

synopsis of crowdsourcing, then highlight an overview of related socio-technical

fields (such as human computation and collective intelligence) which influence our

understanding of crowdsourcing. Afterwards, we shape our comprehension further
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by examining the dimensions of crowdsourcing before focusing specifically on paid

microtask crowdsourcing. Subsequently, the chapter presents motivation and in-

centives, shedding light on money as a primary motivator before expounding on

our additional incentive mechanisms. We introduce gamification as a foundational

concept across our incentive studies and finally present background information on

competitions and collaboration in crowdsourcing as these forms the basis for future

specific chapters.

Chapter 3 – Crowdsourcing Challenges: this chapter gives an analysis of the chal-

lenges studied in the thesis. We present issues in workflow design; real-time crowd

work; motivation and incentives engineering; and collaboration in paid microtask

crowdsourcing. For each of the individual challenges, we describe the state of the

art representing how the underlying issues are currently tackled. Given the poten-

tial scope of research questions that can be identified from each item, we outline

the specific parts of the challenge that this work seeks to address.

Chapter 4 – Crowdsourcing Application Scenarios: in this chapter we explore two

broad crowdsourcing application areas which form the basis of all our experiments

in future chapters: text annotation and image labelling. The chapter also serves as a

literature review on two front: (a) it presents related work in the line of our selected

application scenarios and how crowdsourcing techniques have been applied; and (b)

it discusses the state of the art in implementing customised platforms designed to

address specific pain points encountered in crowdsourcing.

Chapter 5 – Wordsmith: in this chapter, we introduce Wordsmith, our bespoke

crowdsourcing platform. We discuss its primary application areas vis-à-vis how it

fits in with the challenges, scenarios and our experiment designs. We list the various

modules that are used to address the different challenges and how Wordsmith’s

interface has been adapted to fit them. The chapter also describes the crowdsourcing

process and how Wordsmith is designed to integrate through project definition,

execution and quality control.

Chapter 6 – Workflow Design: in this chapter we describe the methods, experimen-

tal set-up, and data used to address the challenge of designing a useful workflow for

crowdsourcing named entities. We discuss the potential of building better workflows

for paid microtasks by leveraging on insights into task features and worker prefer-

ences. This chapter also introduces the concept of furtherance incentives, which is

expanded in later chapters. It presents a conceptual approach on how our findings

can be used to re-integrate worker preferences as an incentive mechanism.

Chapter 7 – Real-time Crowd Work: in this chapter we address a specific chal-

lenge in real-time crowd work by using crowdsourcing contests in combination with

individual micro-payments to collect judgements effectively under tight time con-

straints. We present our crowdsourcing contest model followed by our approach at
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predicting worker drop-offs. Following from the previous chapter, we continue our

discourse on furtherance incentives by expounding on the components that afford

for the deployment of furtherance incentives, one of which is predicting potential

task exits.

Chapter 8 – Motivation and Rewards: in this chapter, we build upon, and come full

circle on the concept of furtherance incentives. This chapter examines the potential

of adding gamification to microtask interfaces as a means of improving both worker

engagement and effectiveness. It also defines a predictive model for estimating

the most appropriate furtherance incentive for individual workers, based on their

previous contributions. This allows us to build a personalised game experience,

with gains seen on the volume and quality of work completed.

Chapter 9 – Synchronous Collaboration: in this chapter, we address the fourth

challenge of synchronous collaboration. We also apply the concept of furtherance

incentives in continuance with the insights gained from the previous chapters. In

particular, results from our study on motivation and rewards indicated sociality

based incentives were the most effective drivers of retention and engagement. We

therefore expand our knowledge by experimenting with two sociality-driven fur-

therance incentives – social pressure and social flow in our study of synchronous

collaboration in microtask crowdsourcing.

Chapter 10 – Conclusions and Perspectives: We close this thesis by presenting

a summary of the work done and the contributions made. We also outline future

work in addressing further research areas in paid microtask crowdsourcing and the

potentials of applying furtherance incentives to tackle other issues in crowdsourcing.

Within the thesis, each chapter is preceded by a summary of the chapter highlighting

what it is set to achieve. At the end of each chapter, we also revisit the contributions

made and the lessons learnt.



Chapter 2

Background

In this chapter we present background ma-
terial that form the foundations of the
thesis. We begin with an historical in-
troduction to ‘crowdsourcing’ in general.
Next, we give an overview of related fields
that influence our understanding of crowd-
sourcing. Afterwards, we shape our com-
prehension further by examining the di-
mensions of crowdsourcing before focusing
specifically on paid microtask crowdsourc-
ing. Finally, we introduce the subject of
motivation in paid microtasks, beginning
with the base motivator of monetary pay-
ments, concluding the chapter with addi-
tional incentive mechanisms that make up
constituent components of future chapters.

2.1 Introduction

In 1785 (de Caritat et al., 1785), the Marquis de Condorcet proposed a theory about

the probability of a collective group of error prone decision makers correctly coming to

the right choice on one of two decisions. This theorem, the Condorcet’s jury theorem,

represents one of the earliest postulations on how performance can increase given a

large enough crowd i.e., as the number of people grow, the probability of choosing the

right answer approaches 1. In 1906, Sir Francis Galton (Galton, 1907) carried out an

experiment which demonstrated what he described as Vox Populi – the Wisdom of the

Crowd. A group of 800 people, including butchers and farmers, were drawn into a

8
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competition to guess the weight of a live ox. The final average weight from 787 of them

resulted in a value that was within 0.8% of the correct answer. Despite the contestants

including those who were termed as ‘highly experts at judging the weight of cattle’, no

single individual got the right answer, and the average deviation was between -3.7%

and +2.4% of the actual answer. This ideology was rehashed by Surowiecki (2004) in a

book with a title akin to Galton’s. He identified instances where collective intelligence

trumped individual smartness: for example, in the game show ‘who wants to be a

millionaire’, the audience was right 91% of the time, while the individual expert was

right only 65% of the time.

In creating a historical context for human computation, crowdsourcing, and leveraging

the wisdom of the crowd, we discover that both the principle and practice date back to

the 18th century. In 1783, King Louis XVI of France made an open call for a better way

to produce alkali from sea salt, which was won by Nicolas Leblanc in 1791. In 1714, the

Longitude Prize was offered for a practical method to determine a ship’s longitude at sea

(Moldovanu and Sela, 2001). These two inducement prizes took advantage of the power

of the many to tackle difficult problems. The creation of the Oxford Dictionary in the

1800s also relied on thousands of volunteers from schools and universities, contributing

quotations over four decades. However, these were groups of people working as individ-

uals. Their output was devoid of a notion of the human and the mechanical working in

tandem to achieve a common goal, neither was there an automated way to coordinate

their contributions. In 1769, Baron Wolfgang von Kempelen built the first machine

which could, purportedly beat humans at chess (Levitt, 2000). For over 80 years, ‘The

Mechanical Turk’, as it was called beat several humans at chess – including Napoleon

and Benjamin Franklin. The Turk finally turned out to be a hoax - a clever piece of

machinery, housing an actual chess master. During its time, The Turk was operated

by at least 6 different chess masters – sourcing intelligence from an expert crowd. The

Turk or Automaton Chess Player could probably be termed an early ancestor of Deep

Blue, the computer that went on to actually defeat a human grandmaster, however, the

term ‘computer’ also once referred to a job description of actual humans carrying out

computations. During World War II, there were a number of areas where extensive,

continuous calculations were needed, and, a large pool of women with training in math-

ematics (Erickson et al., 2010). These women became the early ‘computers’, physically

cranking out calculations in what was to be the precursor to the Electronic Numerical

Integrator and Computer (ENIAC) – one of the first electronic computers.

By the time Jeff Howe published his article on ‘The Rise of Crowdsourcing’ in 2006

(Howe, 2006), the groundwork was already laid and ideas had started taking steam;

computers were getting more powerful and the web was part of everyday business. The

article chronicled crowdsourcing systems such as: Threadless, which crowdsourced shirt

designs; iStockphoto, a disruptive marketplace for amateur photographers; and Inno-

Centive, an ideas hub which cut R&D budgets by leveraging on the wisdom of the
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crowd. However, what would turn out to be the leading crowdsourcing platform was

still in its infancy: described as a work in progress without an official launch date – even

though it had been re-inventing how businesses carried out their activities. In 2005,

Amazon launched Mechanical Turk – named after von Kempelen’s automaton. It was

described as ‘artificial artificial intelligence’ – humans working behind the scenes to solve

HITs (Human Intelligence Tasks) that could not presently be carried out by computers.

Today, after over 10 years, Amazon’s Mechanical Turk (or MTurk) has tens of thousands

of ‘turkers’ carrying out HITs daily, over 1,000 new requesters joining per month and

north of 130 million HITs created in the years from 2009 to 2014 (Difallah et al., 2015;

Ipeirotis, 2010a). MTurk represents a class of crowdsourcing – paid microtask crowd-

sourcing – powered by large-scale access to the Internet and the ease of online payment

transactions, serving as a source of cheap (and possibly high quality) data (Buhrmester

et al., 2011). The speed and reach of the Internet makes it possible for a project like

Wikipedia to be undertaken within a time-frame significantly shorter than the Oxford

Dictionary project. What began organically over the centuries as people sought better

ways to harness collective intelligence has now become a global phenomenon powered

by access to the web.

Figure 2.1: Crowdsourcing Landscape (crowdsourcingresults.com)

The web today serves as a symbol of information democratisation and the continued

lowering of barriers to entry within fields that were once siloed in walled enterprises.

Crowdsourcing via the web has found its way gradually over the past 10 years into the

mainstream data pipeline of industries ranging from high technology and government
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agencies to the military and sales agencies. What once started as a phenomenon de-

scribed in the physical world, now finds its quintessential expressions on the web. Crowd-

sourcing, though riddled with its challenges (Kittur et al., 2013) from the technical to

the ethical is here to stay. Even as it morphs continually to the tune of academic and

economic forces, crowdsourcing remains a force for good with ground-breaking discover-

ies being made daily directly and indirectly through the wisdom of the crowd (Cooper

et al., 2010; Kim et al., 2014). Figure 2.1 shows a rich mix of crowdsourcing site types

featuring ideas platforms, innovation prizes, crowdfunding, content and prediction mar-

kets, competition platforms and service marketplaces. The figure also shows popular

crowdsourcing tasks and their corresponding example. Paid microtask crowdsourcing –

identified by its poster child - Amazon’s Mechanical Turk represents but a small sub-

set of the landscape but has grown to be a very vital component in the crowdsourcing

economy. Similarly, Crowdsourcing.org – a website that bills itself as an industry re-

source on crowdsourcing topics, aggregates crowdsourcing platforms into 5 categories:
1 cloud labour, crowd creativity, crowdfunding, distributed knowledge, open innovation

and tools. The directory currently holds close to 3,000 sites (although a large portion

i.e. over 800 are within the crowdfunding and distributed knowledge space). Microtask

crowdsourcing, comprising about 135 sites, sits in the cloud labour category along side

expert tasks and freelancing platforms.

2.2 Related Fields

According to Howe (2006) who is credited for coining the term, ‘crowdsourcing represents

the act of a company or institution taking a function once performed by employees and

outsourcing it to an undefined (and generally large) network of people in the form of

an open call’. Related research include Human Computation – (Quinn and Bederson,

2011), Social Computing – (Parameswaran and Whinston, 2007), Collective Intelligence

– (Weiss, 2005), Social Machines – (Smart et al., 2014) and Technology-Mediated Social-

Participation Systems – (Kraut et al., 2010). While these systems are all similar, with

significant overlapping exemplars, each one has managed to carve out a niche that makes

it slightly different from the others. Figure 2.2 by Shadbolt et al. (2013) shows the

relationship and overlaps between crowdsourcing and other related fields.

2.2.1 Human Computation

Von Ahn (2005) in his 2005 doctoral dissertation defined human computation as ‘a

paradigm for utilising human processing power to solve problems that computers cannot

yet solve’. According to Quinn and Bederson (2011) with human computation, the target

problems are computational (e.g., image and speech recognition) – which might or might

1http://www.crowdsourcing.org/directory

http://www.crowdsourcing.org/directory
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Figure 2.2: Crowdsourcing and related areas by Shadbolt et al. (2013)

not be the case with crowdsourcing. As such human computation generally replaces

computers with humans while crowdsourcing replaces trained experts with members of

the crowd. This of course is a loose generalisation and indeed, there exists overlaps

between crowdsourcing and human computation in instances where crowd workers act

as computation processors (e.g., in translation and text annotation tasks). Quinn and

Bederson (2011) presented a survey on human computation as well as a summary of

definitions from literature. Other fields related to crowdsourcing also find considerable

overlaps with human computation – as can be seen from Figure 2.2.

A unique sub-class of human computation systems are called Games With a Purpose

(GWAP) (von Ahn and Dabbish, 2008). Unlike traditional crowdsourcing (and specifi-

cally paid microtask crowdsourcing), participation in these systems is not motivated by

financial gain, but by the pleasure and enjoyment derived from playing a game. The

computational output of the players is usually derived as a side effect of gameplay. This

concept has been integrated into crowdsourcing systems via gamification (Zichermann,

2011; Feyisetan et al., 2015b) i.e., the use of game mechanics in non-game context. Ex-

amples of GWAPs include Fold.it (a protein folding game) and the ESP Image Tagger

(von Ahn and Dabbish, 2004).

The ESP Image Tagger by von Ahn and Dabbish (2004) (perhaps the most popular

GWAP, and a model for crowdsourcing image labels) is a human computation styled

game used to collect keywords which can suitably describe an image. The game was

designed to harness the instrumentation of human workers to address a problem, which

was difficult (at the time) to be handled by computers. The underlying principle was, by

presenting a task as a game that is both fun and interactive, people would desire to play

while generating useful output. In the ESP Image Tagger, randomly co-assigned paired

players are presented with an image. The objective is to guess what keyword the other

player is typing which depicts the image seen. At any point of agreement, the players
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are advanced onto the next image. Words which both players match on, and indeed

which multiple game player pairs agree on can be presented with certain confidence to

represent characteristic words for the given image.

2.2.2 Social Computing

Definitions of social computing tend to fall into two broad camps with each one leaning

either more to the social or computing side. As noted by Robertson and Giunchiglia

(2013), social computing has historically been used in a broad sense to describe socio-

technical problem solving. Within one sense, such as presented by Ali-Hassan and Nevo

(2009), social computing involves tools that facilitate social interactions such as blogs,

wikis and social networks. This tends to compass technology-mediated communication

processes, which are usually void of computation. In these systems, the natural social

activities of the users, such as information exchange (e.g., via rich multimedia) take

center stage (as against a primary computational requirement in crowdsourcing or human

computation).

A more technical view of social computing such as by Robertson and Giunchiglia (2013),

views social computing as consisting of ‘programs that depend on algorithms that must

run in human society in consonance with the computer systems’. This definition covers

systems like online auctions and prediction markets (e.g., the Hollywood Stock Ex-

change).

2.2.3 Open Innovation

Open Innovation stands in stark contrast to the traditional notion of closed innovation

where companies run their internal research and development teams within their corpo-

rate boundaries. Chesbrough (2006) describes open innovation as: ‘the use of purposive

inflows and outflows of knowledge to accelerate internal innovation, and expand the

markets for external use of innovation, respectively’. This paradigm assumes that firms

can and should use external ideas as well as internal ideas, and internal and external

paths to market, as they look to advance their technology. Similar to crowdsourcing,

open innovation sources the wisdom of the crowd via an open call. Indeed some authors

such as Seltzer and Mahmoudi (2012) class open innovation systems as crowdsourcing

platforms. However, for our discourse, open innovation relates to tasks solved as a

whole unit at the macro level (e.g., a proposal to develop acetone-responsive materials)

as against decomposable crowdsourcing tasks solved in parallel by multiple workers. In

addition, solving open innovation challenges requires specialised knowledge or expertise

in the requester’s domain; as against traditional microtask crowdsourcing where the

scale of workers required usually precludes the need for experts, and contribution from
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the crowd can be reduced to repetition within narrowly prescribed bounds (Seltzer and

Mahmoudi, 2012).

Chesbrough (2006) presented an extensive look at Open Innovation with his eponymous

book. Open innovation as a socio-technical system had its origins in business and man-

agement even though the primary examples of closed and open innovation presented by

Chesbrough were technology companies. Today, systems such as InnoCentive serve as

crowdsourcing platforms for Open Innovation, thus yielding a technology-mediated base.

Open Innovation therefore presents numerous advantages (by leveraging the wisdom of

external crowds) such as a trimmed down cost of research and development, additional

source of free (and potentially viral) marketing of a brand and increased customer tar-

geting. This however does not keep out challenges unique to human systems, in this

case, the potential loss of a competitive advantage by wrongfully disclosing information.

However, ‘open systems’, such as Tesla Motors practice of open sourcing patents (Musk,

2014) and the Open Compute Project by Facebook 2 has proved the benefits of acces-

sible knowledge in an industry. Open Innovation, powered by humans on a technology

platform, thus stands as a precursor to these nascent open movements.

2.2.4 Collective Intelligence

This term covers the most expansive area when compared with other ideas in related

fields. Almost all instances of socio-technical systems described above can be termed

collective intelligence systems in a broad sense. For example, Mataric (1993) described

collective intelligence as a social construct emerging from individual intelligence, thus

extending as far out as collective animal intelligence. Most modern systems termed as

collective intelligence systems are web based e.g., Wikipedia. However, some collective

intelligence projects such as open source developments, do not yield a web based service

even though they are built collaboratively with online tools (e.g., github). Examples of

these include the Linux and Apache Software Projects. Malone et al. (2010) presented

a report on the Collective Intelligence Genome which introduces a taxonomy of these

systems. Also within the collective intelligence space is the notion of the ‘Wisdom of

the Crowd’ by Surowiecki (2004), which is applied in non web based scenarios such as

collective decision making in organisations.

Several other systems can be classed under the umbrella of Collective Intelligence. These

include systems that rely on implicit crowd knowledge or activity, and explicit machine

computation. An example of this would be recommender systems (Resnick and Varian,

1997) such as those on eCommerce sites (e.g., Amazon and eBay). These leverage on our

day to day experiences of making choices based on recommendations from other people

either by word of mouth, movie reviews, book reviews etc. Recommender systems work

by amplifying these natural social processes on web platforms by aggregating user input

2Open Compute Project - http://www.opencompute.org/

http://www.opencompute.org/
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choices, and making suggestions to recipients. The suggestions could be presented based

on relationship degrees of separation or historically similar choices.

Other implicit crowd platforms include social network email filters (Charles, 2010) and

spam/ham classifiers which rely on either a user’s social graph, or on training data

provided by people. Click ranking, upvoting and several search result rankings also

depend on most popular links clicked by users. Figure 2.2 by Shadbolt et al. (2013)

shows the subsuming relationship and overlaps between collective int and other related

fields.

2.2.5 Social Machines

In the book ‘Weaving the Web: The Original Design and Ultimate Destiny of the World

Wide Web’ by Berners-Lee and Fischetti (1999), Berners-Lee and Fischetti state that,

Real life is and must be full of all kinds of social constraint, the very

processes from which society arises. Computers can help if we use them to

create abstract social machines on the Web: processes in which the people

do the creative work and the machine does the administration.

An immediate observation is the clear demarcation of task types – which brings to

mind a hybrid system such as von Kempelen’s Automaton Chess Player (Levitt, 2000)

– humans and machines working in tandem to achieve a common goal. A definition

which extends on Berners-Lee and Fischetti, addressing the limitations imposed on the

constituent actions performed by the composing elements of a Social Machine has been

offered by Smart and Shadbolt (2014). According to them: Social machines are web

based socio-technical systems in which the human and technological elements play the

role of participant machinery with respect to the mechanistic realisation of system level

processes. Another definition by the Social Machines Lab at MIT 3 casts social machines

as ‘digitally mediated human networks – governed by AI and machine learning’.

Social machines therefore encompass a broad spectrum of systems from similar instances

such as GalaxyZoo 4 and PlanetHunters 5 (both part of the Zooniverse Citizen Science

Project) to reCAPTCHA 6 and LinkedIn 7. Several social machines are also mentioned

as examples in Social Computing, Crowdsourcing and Human Computation. Smart

and Shadbolt (2014) include Wikipedia, social networks (Facebook, mySpace), Twitter

and YouTube. Others 8 further note systems as diverse as Uber, Airbnb, Netflix and

3http://socialmachines.media.mit.edu/
4http://www.galaxyzoo.org
5http://www.planethunters.org
6http://www.google.com/recaptcha
7http://www.linkedin.com
8socialmachines.media.mit.edu

http://socialmachines.media.mit.edu/
http://www.galaxyzoo.org
http://www.planethunters.org
http://www.google.com/recaptcha
http://www.linkedin.com
socialmachines.media.mit.edu
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Snapchat, as examples of social machines. An attempt to create a bounding taxonomic

framework for social machines was carried out by Smart et al. (2014).

2.3 Crowdsourcing Dimensions

To leverage on the wisdom of the crowd, either in human computation, collective intel-

ligence or crowdsourcing systems, Surowiecki (2004) posits that deriving benefits from

the crowd requires the following: a diverse group, with minimal cross decision influ-

ence, and a democratic process of maintaining quality. This serves as an initial pointer

to dimensions of crowdsourcing i.e., what to think about and what might constitute a

crowdsourcing campaign. Howe (2008) presented 10 of such rules to consider. Each rule

reveals the potential for different dimensions to crowdsourcing. For example, the first

3 state: pick the right model, the right crowd and the right incentive – hinting at the

existence of different models, crowds and incentive schemes.

Figure 2.3: Crowdsourcing dimensions adapted from the Collective Intelligence
Genome by Malone et al. (2010)

1. Pick the right model

2. Pick the right crowd

3. Offer the right incentives

4. Keep employing people

5. Find benevolent dictators

6. Keep things simple

7. Be prepared for fluff

8. Look for diamonds in the rough

9. The community is always right

10. Give the crowd something

Taxonomy (the practice of classification along dimensions) and taxonomies have surfaced

in crowdsourcing and similar domains including: a categorisation of crowdsourcing sys-

tems on the web by Doan et al. (2011), a survey and taxonomy of human computation



Chapter 2 Background 17

systems by Quinn and Bederson (2011), the Collective Intelligence Genome report by

Malone et al. (2010), taxonomic dimensions in social computing by Ali-Hassan and Nevo

(2009) and a taxonomic framework for social machines (Smart et al., 2014). The Col-

lective Intelligence Genome report by Malone et al. (2010) and as shown in Figure 2.3

presents a simple 4 step approach which we can re-purpose to reason about crowdsourc-

ing dimensions:

1. What (goals)

2. Who (staffing)

3. Why (motivation)

4. How (structure/process)

Dimension Values / Characteristics Example

What
Create creating a new a e.g., artefact,

transcription, summarization
Decide evaluating existing material

e.g., reviewing, verification

Who
Crowd parallelizable tasks to be

solved independently
Experts tasks that create ambiguity

with no crowd consensus

Why
Money (Pay) microtask crowdsourcing e.g.,

MTurk, CrowdFlower
Love (Enjoyment) gamified systems e.g., The

ESP Game, Phetch
Glory (Reputation) crowdsourcing contest plat-

forms e.g., TopCoder

How - Create
Collection parallelizable tasks to be

solved independently
Contest tasks requiring a few correct

answers
Collaboration tasks requiring continuous

consensus

How - Decide

Group decision everyone in the group needs to
abide by the same decision

Voting important for the crowd to be
committed to the decision

Averaging crowd has no systematic bias
about estimating the number

Consensus group is small enough or has
similar views

Table 2.1: Crowdsourcing dimensions adapted from Malone et al. (2010)
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2.3.1 What

The ‘what ’ refers to what is outsourced to the crowd and what is the goal to be achieved.

This highlights tasks suitable for crowdsourcing i.e., processes based on human skill

which cannot be satisfactorily undertaken by machines. This is related to the ‘human

skill’ dimension in the human computation taxonomy by Quinn and Bederson (2011)

which lists visual recognition, language understanding and basic human communication

as some aspects where humans traditionally excel beyond machines – thus representing

suitable task types for crowdsourcing. Malone et al. (2010) divides what is being done

into two: creating and deciding. This is identical to two of the dimensions presented

by Doan et al. (2011) as building artefacts and evaluating things. When creating or

building, workers generate something new: such as textual knowledge (e.g., a Wikipedia

entry), structured knowledge (e.g., Wikipedia infoboxes) or a piece of software (e.g.,

Apache projects). On the other hand, workers decide, evaluate or refine tasks by voting,

tagging or reviewing existing material.

Gadiraju et al. (2014) presented six top-level classes of tasks which are carried out on

crowdsourcing platforms. This gives insight into the ‘what ’ of crowdsourcing:

1. Information finding (IF): refers to tasks that require workers to source infor-

mation on the web for a specific question. For example, ‘find the names of all the

c-level executives in a list of companies’.

2. Verification and validation (VV): refers to tasks that require content veri-

fication, content validation, spam detection and data matching. For example,

validating web domains or checking Twitter for spam accounts.

3. Interpretation and analysis (IA): leverages on the subjective wisdom of the

crowd to carry out classification, categorization, ranking, sentiment analysis, con-

tent moderation and quality assessment – which are areas human are good at.

4. Content creation (CC): involves tasks that require workers to generate new

content such as transcription an audio file, translation a document, text summa-

rization, data enhancement and data annotation.

5. Surveys (SU): refers to tasks that require workers to give their opinion on a

product, or give feedback on a service. It also includes collection of customer

satisfaction data or demographic information.

6. Content access (CA): requires workers to access some content. For example,

workers might be required to watch an online video. This could be to test a

service or to promote its presence.

A longitudinal analysis carried out by Difallah et al. (2015) on the six top-level task

types discussed in Gadiraju et al. (2014) (and illustrated in Figure 2.4) showed that
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Figure 2.4: Popularity of HIT types over time by Difallah et al. (2015)

content creation tasks (such as data annotation and transcription) are the most popular

while content access tasks are the least requested.

The social machines framework by Smart et al. (2014) give further insight into decom-

posing the ‘what’ of crowdsourcing. They list a set of dimensions and characteristics for

goals, tasks and processes in social machines. Of importance here are the characteristics

that relate to goals and tasks in crowdsourcing i.e., the goal variability and visibility.

The goal variability refers to the possibility of the task goal to change. Most crowd-

sourcing goals are fixed per task for each user, however, in complex workflows such as

the find-fix-verify model by Bernstein et al. (2010), workers might perform a single task

with multiple objectives. For example, a worker might annotate an image, then verify

an annotation on another. The goal visibility is usually hidden from the workers as a

unit task e.g., a paragraph to be translated, does not reveal the entire scope and goal of

the task.

2.3.2 Who

The ‘who’ represents the type of crowd. This corresponds to rule 2/10 presented by

Howe (2008) above. Although the crowd is sourced via an open call to an anonymous set

of people, several platforms (e.g. CrowdFlower and Mechanical Turk) offer some degree

of profiling e.g., based on language skills or geography. The profiling offers limited in-

sight compared to what might be obtainable in traditional work settings, however, being

able to target a large set of speakers of a particular esoteric language for example, is

sufficient in specialised requests such as translation or annotation. Some crowdsourcing

tasks might also require a pool of people with a certain expertise – an approach described

by De Boer et al. (2012) as nichesourcing. Other crowdsourcing requests ascertain the

suitability of the crowd by using qualifying questions to determine skill level. Finally,
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crowdsourcing systems also track the ratings and reputation of workers, allowing re-

questers to target their tasks to workers who have consistently produced high quality

output.

Figure 2.5: The number of crowd workers per country by Pavlick et al. (2014)

Figure 2.5 shows the number of crowd workers per country from a study by Pavlick et al.

(2014). The results geo-locate 4,983 workers with the circles representing the number

of workers in each country. The countries with the two highest worker counts are India

and the United States. Other demographic studies by Ross et al. (2010) and Ipeirotis

(2010b) shed more light on the characteristics of the two dominant countries (India and

the United States) by reporting findings on the gender distribution, age and occupation

of workers as well as their derived income. Difallah et al. (2015) also reported analysis

which shows that certain tasks are restricted on a geographic basis – for example, surveys

are assigned mostly to workers from the United States.

Figure 2.6: Self-reported native language of 3,216 bilingual Turkers by Pavlick et al.
(2014)
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Pavlick et al. (2014) further presented demographic results (illustrated in Figure 2.6) on

the self-reported native language of 3,216 bilingual workers on Mechanical Turk. Their

results indicate at least 35 languages spoken by over 20 workers each.

2.3.3 Why

The ‘why ’ attempts to answer the question: why would anyone be willing to take part

as a worker in a crowdsourcing exercise. This corresponds to rule 3/10 (incentivising the

crowd) and rule 10/10 (keeping the crowd motivated) presented by Howe (2008) above.

Addressing the motivations of the crowd serves as a research topic in its own right and

we would attempt to give a brief introduction here, to be expanded in further sections

beginning from section 2.4.1 below.

Malone et al. (2010) and Quinn and Bederson (2011) both mention money/pay and

enjoyment/love as two motivating factors for working on crowdsourcing tasks. However,

in their paper aptly titled ‘more than fun and money’, Kaufmann et al. (2011) argue

that motivations of crowd workers extend beyond monetary payment and the desire

to be entertained. Modern motivation theories have evolved from the initial models

by Deci and Ryan (1985b) to encompass richer models built on intrinsic and extrinsic

motivation.

Even though it might appear that ‘financial payouts’ aptly represent extrinsic motiva-

tions, and the desire to have ‘fun’ fit intrinsic motivation, Kaufmann et al. (2011) and

others such as Archak (2010) and Rogstadius et al. (2011), present the motivation of

the crowd in terms of more complex parameters.

2.3.4 How

The ‘how ’, closely related to the ‘what ’, refers to the processes of carrying out the

crowdsourcing task. This depends on whether the task refers to creating or evaluating

something. The Collective Intelligence genome by Malone et al. (2010) highlights 3

methods of ‘creating’: (a) collection, (b) collaboration and (c) contests. These were the

3 approaches we adopted in our experiments detailed from Chapter 6 to 9.

1. Collection: In a collection approach to crowdsourcing, a task is broken down

into small parallelizable pieces of work which can be carried out independently by

multiple workers. For example, to create a volume of 1,000 articles, or to annotate

1,000 images (as in our experiments), an individual worker might be assigned to

undertake just between 1-10 pieces of work. Chapter 6 and 8 employ a collection

approach to crowdsourcing.
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2. Collaboration: With collaboration, multiple workers are assigned to carry out a

unit task i.e., rather than a single worker completing a piece of work, several people

either pass the task around for incremental refinement, or work towards consensus.

For example, Kittur (2010) describes a translation task collaboratively carried out

by multiple workers. We describe a collaborative approach in detail in Chapter 9

while discussing the challenge of synchronous collaboration in crowdsourcing.

3. Contest: Another approach to the ‘how’ of crowdsourcing is to use contests. Con-

tests are used either when only a few good results are required, e.g., the Netflix

prize to create a better recommendation algorithm (Bennett and Lanning, 2007);

or when an aggregated task needs to be solved as quickly as possible e.g., crowd-

sourcing for disaster relief. We describe a contest approach to addressing the

challenge of real-time crowdsourcing in Chapter 7.

These three categories describe the process in crowdsourcing tasks that ‘create new

artefacts. However, some other tasks simple decide, refine or evaluate existing results.

Similarly, some ‘creation tasks might require an intermediary refinement step to evaluate

or aggregate results before the final output is produced. Methods used to achieve this

include voting, averaging and by consensus.

2.3.5 Quality Control

Besides the four dimensions discussed, i.e. goals (what), staffing (who), motivation

(why) and structure/process(how), Smart et al. (2014), Allahbakhsh et al. (2013) and

Quinn and Bederson (2011) present an additional dimension which is especially pertinent

to crowdsourcing systems. This is the quality control or quality assurance mechanism.

Cheating and spamming were reported by Difallah et al. (2012) as one of the main issues

with crowdsourcing. This is especially the case in paid microtask crowdsourcing (prop-

erly introduced in Section 2.4 below) where the primary incentive mechanism is financial

payments. They reported several adversarial techniques employed by individual mali-

cious workers to bypass the task requirements and receive the monetary reward. This

includes submitting random, automated or semi-automated answers. This submissions

are usually either artificially generated, or duplicated from an existing task. A group

of workers could also collude maliciously in tasks that require consensus thus leading to

false agreements on answers or answer sharing.

Apart from dishonest submissions, quality control is also essential to accommodate for

answers submitted as a result of workers not fully comprehending the task instructions.

Some approaches to addressing quality control issues in paid microtask crowdsourcing

adapted from Quinn and Bederson (2011) and Allahbakhsh et al. (2013) include:
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• Redundancy: this is one of the most common approaches which comes by de-

sign with crowdsourcing platforms such as Mechanical Turk and CrowdFlower. By

employing multiple workers, and based on the research by Difallah et al. (2012)

which shows that malicious workers are in the minority, requesters can use a vot-

ing system to identify possibly correct answers while weeding out workers who

consistently diverge from the wisdom of the crowd.

• Output agreement: In tasks that rely on output agreement, workers are paired

(at the minimum), and their responses are only accepted as valid if they attain

joint consensus. This is the approach popularised by von Ahn and Dabbish (2004)

in the ESP game. Output agreement requires synchronicity between workers to

advance between tasks. Carvalho et al. (2014) also showed that output agreement

could induce honest behaviour when workers believe their submission is the correct

one which other workers must agree with.

• Multi-level review: With multilevel review, a unit task goes through a sequen-

tial set of incremental refinement or verification processes before the final output

is produced. This approach is employed in workflows such as ‘find-fix-verify by

Bernstein et al. (2010) where the output of one worker becomes the input for the

next. Multilevel review can occur synchronously, in a collaborative fashion simi-

lar to output agreement such as described by Kittur et al. (2009) where workers

collaboratively and incrementally refined a translation task output.

• Gold standards: CrowdFlower and Mechanical Turk support the ability to seed

task units with pre-curated answers known as the ground truth. The ground truth

is interspersed with the required task questions and task requesters can either

monitor workers who deviate from the gold standard, or automatically discard

their results. This potentially prevents submissions from malicious workers as well

as surfacing possible issues with the task instructions.

• Expert review: Mechanical Turk allows task requesters to review submissions

from workers before they are accepted and before payment is made. This poten-

tially deters malicious submissions which would not receive compensation. Unlike

Mechanical Turk, CrowdFlower does not allow requesters to review tasks before

payments are made, however, requesters can flag workers and remove them from

their present and future tasks due to the quality of their submissions. The down-

side with expert review occurs when requesters flag workers who genuinely did

not understand the task instruction. This has led researchers such as Irani and

Silberman (2013) to build tools whereby workers can also review requesters who

post tasks with unclear guidelines.

• Reputation: closely linked with expert reviews is the reputation system built

around crowdsourcing platforms. Workers build their reputation by submitting
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high quality answers which in turn gives them access to higher paying tasks. Plat-

forms such as Mechanical Turk and CrowdFlower employ a reputation system and

offer requesters the ability to restrict their tasks to top performers. Requesters

can also restrict their tasks by IP addresses thus limiting flagged workers from

re-opening new accounts after stacking up a bad reputation.

2.4 Paid Microtask Crowdsourcing

Money is a natural incentive for carrying out work, hence paid crowdsourcing remains

probably the most prominent form of crowdsourcing (Frei, 2009). Paid microtasks differ

in not relying primarily on the goodwill, altruistic nature, love for science or fun factor

that other crowdsourcing models tap into (e.g., citizen science projects). A survey

of 50 paid crowdsourcing platforms was presented by Frei (2009) where they split up

the systems along the lines of work type and work category. Complex projects were

carried out on platforms such as InnoCentive, simple projects on eLance, macro tasks

on LiveWork, and microtaks on Mechanical Turk. The platforms represented a thriving

diverse economy, with over $1 billion paid out to over 1 million workers over a 10 year

period (between 1999 and 2009). They also presented the volume to payment landscape,

with open innovation platforms such as InnoCentive making very few payments valued in

tens of thousands of dollars, while Mechanical Turk making millions of payments valued

at less than a dollar. Our work however is primarily concerned with the microtask

market place, currently dominated by Amazon’s Mechanical Turk, but also featuring

players such as CrowdFlower, which was used for all our tasks and experiments. Figure

2.7 presents a snapshot of microtask crowdsourcing platforms from crowdsourcing.org.

The platform lists about 135 microtask sites (45 of which are displayed in the figure)

out of a directory listing of about 3,000 sites.

Microtasks are deployed on highly parallelizable work pieces that can be solved at the

micro level and re-aggregated to a useful piece for the requester. The classes of tasks

amenable to paid microtask crowdsourcing generally involve: information finding; verifi-

cation and validation; interpretation and analysis; content creation; surveys and content

access presented earlier in Section 2.3.1. These are tasks that can be easily broken down

into small pieces, and as such; requesters can deploy units at scale by leveraging on an

increased budget and a large pool of available workers. This has led to a number of

studies to understand the effect of financial incentives on task completion rates, volume

of work done and quality of submissions. Research has shown that increased payment

leads to faster task completion, howbeit, not at a higher quality (Mason and Watts,

2010). The dynamics of finding a balance between speed and quality has caused payouts

on MTurk for example, to steadily rise from $0.10 in 2011 to about $0.50 in 2015 based

on longitudinal research carried out by Difallah et al. (2015). A number of other factors

however also play a role in obtaining task results at a high quality such as: bonuses,

crowdsourcing.org
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Figure 2.7: A snapshot from a crowdsourcing directory (crowdsourcing.org)

worker perception, and the variation of payment sizes across tasks (Mason and Watts,

2010). The drive to engineer optimal quality, speed and volume with minimal financial

payments has made paid microtasks the subject of numerous discourses on the ethics of

compensation (Irani and Silberman, 2013).

While monetary payments can be seen as an extrinsic motivator, other intrinsic factors

have been known to contribute to sustained participation in crowdsourcing settings.

Furthermore, certain tasks have been known to be more enjoyable than others: e.g.,

locating a celebrity Twitter handle vs. locating a journalist’s Twitter handle; writing a

review on an iPhone game vs. a review on a cisco router; and writing a 10 page paper

on celebrity pets vs. a paper on a health reform bill (Frei, 2009). The question then was

how do we expand the currency of transactions on paid microtask platforms to transcend

monetary payments, and encompass tasks that have an intrinsic appeal. Framing tasks

this way would be more attractive to workers, cost less for requesters, and potentially
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be solved quicker and at a higher quality. This led us to research into the gamification

of paid microtasks.

Research area Reference Findings

Motivation & Incentives Rogstadius et al. (2011) intrinsic factors, such as framing a task as help-
ing others – improves output quality where ex-
trinsic motivators such as increased pay do not.

Gamification Feyisetan et al. (2015b) gamification leads to better accuracy and lower
costs. It also makes paid microtask work more
rewarding and engaging, with sociality features.

Collaboration Kulkarni et al. (2012); Kittur (2010) there is potential for gains in effort, motivation,
coordination, and quality that can be achieved
by letting people work together collaboratively.

Contests Zheng et al. (2011) intrinsic motivation is important than extrinsic
in inducing participation. Autonomy and vari-
ety are associated with intrinsic motivation.

Cheating & Spamming Difallah et al. (2012) adversarial techniques include random answers,
automated and semi automated answers, agree-
ment on answers and answer sharing.

Quality control Allahbakhsh et al. (2013) quality control approaches include input and
output agreement, consensus, expert review,
ground truth and real-time support.

Demographics Ross et al. (2010); Ipeirotis (2010b) population has changed over time, from a pri-
marily U.S. workforce to an increasingly inter-
national group of young, well-educated Indians.

Wages & Compensation Horton and Chilton (2010) the reservation wage – the smallest wage a
worker is willing to accept for a task are ap-
proximately log normally distributed.

Legal & Ethics Felstiner (2011) why workers in particular subsections of the paid
crowdsourcing industry may be denied the pro-
tection of employment laws.

Task routing Bragg et al. (2014) iterative methods for dynamically allocating
batches of tasks that make near-optimal use of
available workers in each round.

Workflows Kittur et al. (2011, 2012) by using coordination between workers, complex
artifacts can be effectively produced by individ-
uals contributing small amounts of time and ef-
fort.

Gold standards Aroyo and Welty (2013) perfect gold standards are a myth, there is not
only one universally constant truth, disagree-
ment should be embraced.

Performance Mason and Watts (2010) increased pay increase workers’ willingness to
accept a task or the speed of task completion,
but do not improve the work quality.

Delivery speed Bernstein et al. (2011) With synchronous crowds, systems can dynami-
cally adapt tasks by leveraging available workers
who can be recruited within two seconds.

Future directions Kittur et al. (2013) research challenges in twelve major areas includ-
ing workflows, real-time response, synchronous
collaboration and motivation.

Table 2.2: A Few Research Areas in Paid Microtask Crowdsourcing

Table 2.2 presents a list of active research areas in paid microtask crowdsourcing. In

the next few sub sections, we expand on the first four research areas (motivation, gam-

ification, collaboration and contests) which are directly relevant to our approach to

address challenges in crowdsourcing. Motivation in crowdsourcing had earlier been in-

troduced in Section 2.3.3, while collaboration and contests were presented in Section

2.3.4 as approaches to carrying out crowdsourcing. These three topics are expanded

in the following sections 2.4.1, 2.4.3 and 2.4.4. Collaboration serves as the basis for

Chapter 9 on synchronous collaboration in crowdsourcing; while contests serve as the
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background on which Chapter 7 on real-time delivery is built. We also introduce the

concept of gamification in crowdsourcing, which together with the earlier background

on motivation, serves as background specifically for Chapter 8 and generally for much of

the thesis. Some other research areas listed in Table 2.2 include quality control, cheat-

ing and spamming introduced earlier in Section 2.3.5 and demographics discussed in the

‘who’ of crowdsourcing in Section 2.3.2.

2.4.1 Motivation in crowdsourcing

Understanding human motivation has a long history of research in the social sciences and

psychology. The Cognitive Evaluation Theory (CET) (Deci and Ryan, 1985a) described

motivation to execute a task as being dependent on context factors of the task fulfilling

basic psychological needs. The psychological needs highlighted were the need for auton-

omy, competence and social relatedness. This theory provides explanations for intrinsic

motivations (Deci and Ryan, 1975) but misses some factors that cause people to engage

in tasks. The Self Determination Theory (SDT) (Ryan and Deci, 2000) was proposed

by the same authors as an extension to the Cognitive Evaluation Theory. Whereas CET

focused on intrinsic motivation SDT extended to extrinsic motivation which serves on

a continuum of bringing the individual to intrinsic self-motivation. Other theories from

psychology include the General Interest Theory (GIT) (Eisenberger et al., 1999) which

emphasises the relevance of the task as the core motivator to its successful performance.

GIT also presented a breakaway from CET/SDT, which posited that external incentives

and rewards hampers intrinsic autonomy, hence negatively affecting performance. GIT

argues that rewards can positively affect performance by increasing intrinsic motivation,

however, financial rewards act more as a two-edged sword – having either positive or

negative consequences. Positive when rewards affirm competence; and negative when

individuals are not clear on how to attain the reward i.e., the reward criteria is vague.

This leads into the work by Kerr (1975) which stresses the importance of rewarding in-

dividuals for clearly defined and expected behavioural outcomes. Kerr (1975) presented

a management perspective to motivation and rewards with examples from politics, busi-

ness and medicine, illustrating how rewards should be aligned with desired behaviour.

Table 2.3 and 2.4 presents constructs of intrinsic and extrinsic motivations from a study

by Kaufmann et al. (2011).

Within the context of community driven circles, several researchers have sought to un-

derstand why individuals take part in certain tasks. The obvious answer is – they are

paid to do it. This has led to a number of studies on the role of financial rewards in

incentivising workers such as Mason and Watts (2010); Rogstadius et al. (2011); Horton

and Chilton (2010); Yin et al. (2013); Harris (2011) and Ho et al. (2015). However, ac-

cording to research such as by Kaufmann et al. (2011), money is but a piece of the puzzle.

For example, Wikipedia is currently the worlds largest encyclopedia – built up from the
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Construct Example

Skill variety A worker picks a translation task because he likes
translating and wants to use his skills in his fa-
vorite foreign language.

Task identity A worker picks a task because it allows him to
see how the result of his work will be used – e.g.
writing a product description for a website

Task autonomy A worker who is motivated because a certain task
allows him to be creative – e.g. designing a logo
or a website.

Job direct feedback A worker who is motivated because a task pro-
vides the opportunity to check if his result is cor-
rect – e.g. a programming task.

Past-time A worker who uses the platform or works on var-
ious random tasks because he has nothing better
to do.

Community identification A worker, who only accepts tasks from requesters
with a good reputation, because they are known
as valuable supporters of the platform and its
community.

Social contact A person is active on a crowdsourcing platform
just to meet new people

Table 2.3: Constructs of Intrinsic Motivation Kaufmann et al. (2011)

ground by unpaid contributing individuals. The motivation of Wikipedia contributors

have also been studied extensively in a bid to understand, and possibly replicate its

success (Kuznetsov, 2006; Nov, 2007; Schroer and Hertel, 2009; Rafaeli and Ariel, 2008).

However, with these studies, it has been difficult to re-engineer a Wikipedia-styled suc-

cess story. Similar to Wikipedia would be understanding the motivations of software

developers that contribute numerous hours into open source software – notably the Linux

OS and Apache projects. Several motivators have been suggested such as altruism, com-

munity identification, enhanced status, intellectual stimulation, future rewards, learning

and personal beliefs (Lakhani and Wolf, 2005; Hertel et al., 2003; Roberts et al., 2006;

Hars and Ou, 2001; Ye and Kishida, 2003; Bitzer et al., 2007). Individuals also volun-

tarily assume roles (devoid of financial compensation), including project leaders, core

members, active developers, peripheral developers, bug fixers, bug reporters, readers and

passive users – in decreasing order of involvement (Ye and Kishida, 2003). These show

the variegated nature of what might motivate and incentivise participation in tasks.

Table 2.5 from Smart et al. (2014) presents dimensions and corresponding characteristic

values in defining motivation among crowd workers. Apart from the intrinsic and extrin-

sic motivation types early decribed by Kaufmann et al. (2011), Smart et al. (2014) also

lists different forms of motivation which are applicable to crowdsourcing. These include

economic forms (which are the most common incentives used in paid microtasks); altru-

istic incentives (such as disaster relief tasks or malaria test annotations); hedonic (which
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Construct Example

Payment A worker is active on a crowdsourcing platform
as a form of primary or secondary income.

Signaling A worker who joins a platform or selects tasks in
order to show presence and advance his chance of
being noticed by possible employers.

Human capital advance-
ment

A worker picks translation tasks because he or
she wants to improve language skills for a new or
better job.

Action significance by ex-
ternal values

A worker joins a platform and participates be-
cause the values it stands for are important to
him as well (e.g. freedom of speech).

Action significance by ex-
ternal obligations

A student working on scientific survey tasks on a
crowdsourcing platform because he is obliged to
do so by his professor / tutor.

Job indirect feedback A worker is very committed because he seeks
commendation.

Table 2.4: Constructs of Extrinsic Motivation by Kaufmann et al. (2011)

Dimension Values / Characteristics Example

Motivation type
Intrinsic Bitzer et al. (2007)
Extrinsic Rogstadius et al. (2011)

Form of motivation

Economic Mason and Watts (2010)
Altruistic Mavandadi et al. (2012)
Hedonic von Ahn and Dabbish (2004)
Reputational Archak (2010)
Instrumental Brabham (2013)
Other Howe (2006)

Reward type

None Poesio et al. (2015)
Monetary payment Horton and Chilton (2010)
Prize Rokicki et al. (2014)
Other Howe (2006)

Reward variability
Fixed Kaufmann et al. (2011)
Variable Mao et al. (2013a)
None Mason and Watts (2010)

Table 2.5: Dimensions of motivation and incentives by Smart et al. (2014)

features in gamified systems – more details in the next section); reputational incentives

(which were described earlier in Section 2.3.5 as a form of quality control); instrumental

and all other forms. The reward types could be none (for example in game based crowd-

sourcing systems such as Phrase Detectives by (Poesio et al., 2015); monetary payment;

or prize based such as in crowdsourcing contests such as TopCoder (Archak, 2010). The

rewards could also be variable based on the volume of work done or fixed.
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2.4.2 Gamification in Crowdsourcing

Gamification is the use of game design elements in non-game contexts in order to achieve

the effects of fun and engagement that derives from playing a game (Zichermann, 2011).

This include systems that build a complete game narrative around a task (e.g., FoldIt9

and EyeWire10); those that employ tactics such as micro-diversions to fend off boredom;

tasks designed to further a noble cause or stoke curiosity; and systems that engineer game

elements into tasks. The idea of using gameful tactics to spur productivity is not a new

idea. According to Nelson (2012), in the early to mid 20th century, the Soviet Union

created games to increase productivity, via experiments ranging from purely competitive

games directly tied to productivity, to attempts at morale-building via team games and

workplace self-expression. Badges have also been handed out as a symbol of achievement

in the Boy Scouts of America since the early 20th century (Deterding, 2012). McGonigal

(2011) traces the utility of games even further down an earlier time in history where

alternating one day of playing games and one day of eating, sustained a nation through

eighteen years of farming. McGonigal (2011) also estimates that there are over 5 million

‘extreme’ gamers in the US playing over 45 hours of games every week – detached from

the reality of the world and immersed in the virtual world of games. If games have

such a great appeal, then the desire to harness the potential power gameplay becomes

apparent: either convert current gamer output into useful work, or design entire tasks

around a game narrative, or adopt the game elements that afford for engagement into

non gaming contexts.

Table 2.6 presents a hierarchical abstraction of layers in gamification. It starts with the

abstract game design methods such as play-centric design and value conscious design; to

various game models such as challenge, curiosity and fantasy games. The next layer lists

various principles, followed by design patterns and game mechanics. Zichermann (2011)

lists twelve mechanics. The final layer consists of the actual game elements visible on the

interface. A run through of game elements by Seaborn and Fels (2015) is listed in Table

2.7. The twelve game design patterns and mechanics by Zichermann (2011) include:

• Pattern recognition

• Collecting (e.g. badges)

• Surprise (e.g. easter eggs)

• Organising (e.g. time challenge)

• Gifting (e.g. karma points)

• Flirtation (e.g. poking)

• Recognition (e.g. trophies)

• Leading others (e.g. teams)

• Fame (e.g. leaderboards)

• Being the hero (e.g. missions)

• Status (e.g. public badges)

• Nurturing (e.g. tamagotchi)

9Foldit – https://fold.it/
10EyeWire – http://eyewire.org/

https://fold.it/
http://eyewire.org/
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Level Description Examples

Game interface de-
sign patterns

Common, successful inter-
action design components
and design solutions for a
known problem in a con-
text, including prototypi-
cal implementations

Badge, leaderboard, level cu-
riosity.

Game design pat-
terns and mechanics

Commonly reoccurring
parts of the design of
a game that concern
gameplay

Time constraint, limited re-
sources, turns.

Game design princi-
ples and heuristics

Evaluative guidelines to
approach a design problem
or analyze a given design
solution

Enduring play, clear goals, va-
riety of game styles.

Game models Conceptual models of the
components of games or
game experience

Mechanics Dynamics Aesthet-
ics (MDA); challenge, fantasy,
curiosity; game design atoms;
Core Elements of the Gaming
Experience (CEGE).

Game design meth-
ods

Game design-specific prac-
tices and processes

Playtesting, playcentric de-
sign, value conscious game de-
sign.

Table 2.6: Levels of game design elements by Deterding et al. (2011a)

Term Definition Alternative

Points Numerical units indicating progress Experience points; score.

Badges Visual icons signifying achievements. Trophies.

Leaderboards Display of ranks for comparison. Rankings, scoreboard.

Progression Milestones indicating progress. Levelling, level up.

Status Textual monikers indicating progress. Title, ranks.

Levels Increasingly difficult environments. Stage, area, world.

Rewards Tangible, desirable items. Incentives, prizes, gifts.

Roles Role-playing elements of character. Class, character.

Table 2.7: Game element terminology by Seaborn and Fels (2015)

Surveys such as by Hamari et al. (2014) and Seaborn and Fels (2015) paint a picture

of current research trends in gamification. The most popular gamification elements

used are points, leaderboards, badges and levels. Table 2.7 gives a definition of these

elements. However, beyond these game elements, gamification features dynamic mech-

anisms that foster engagement and motivation. Blohm and Leimeister (2013) stated

six of such mechanisms, three of which include collection, collaboration and competition

which were earlier discussed in Section 2.3.4 on the ‘how’ dimension of crowdsourcing.

The gamification mechanisms include:
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1. exploration, which motivates intellectual curiosity;

2. collection of badges and trophies, which brings a sense of achievement;

3. acquisition of status, which makes individuals strive for social recognition;

4. collaborative group tasks, which facilitate social exchanges;

5. time pressure challenges, which engender cognitive stimulation; and

6. organization in virtual worlds that creates a self-determination desire.

Gamification done right is beyond ‘pointsification’ (merely tacking on points, badges

and leaderboards) and is able to withstand scrutiny by notable anti-gamification critics

such as Bogost (2011, 2015).

Game mechanics Game dynamics Motives

Documentation of behaviour Exploration Intellectual curiosity.

Scoring systems, badges, trophies Collection Achievement.

Rankings Competition Social recognition.

Ranks, levels, reputation points Acquisition of status Social recognition.

Group tasks Collaboration Social exchanges.

Time pressure, tasks, quests Challenge Cognitive stimulation.

Avatars, virtual worlds Organization Self-determination.

Table 2.8: Game design elements and motives by Blohm and Leimeister (2013)

Gamification practices have also raised questions about its potential to undermine innate

intrinsic motivation, known as replacement and over-justification (Zichermann, 2011).

For example, a child that naturally loves to play the violin might altogether lose the

desire to play on the introduction and removal of a competitive reward system (Frey

and Jegen, 2001). Other negative outcomes that need to be paid attention to include the

effects of increased competition, task evaluation difficulties, and understanding design

features (Hamari et al., 2014). These downsides have been shown to be task dependent

and can thus be mitigated. The analysis from Hamari et al. (2014) and Seaborn and Fels

(2015) show that majority of the experiments in literature had positive results in terms

of: response speed, quality, enjoyment, learning, compliance, satisfaction, collaboration,

participation and engagement on the introduction of gamification.

2.4.3 Collaboration in Crowdsourcing

Paid microtask crowdsourcing has traditionally been approached as an individualistic

endeavour. Individual workers complete tasks without interacting with others. Even

most interdependent crowdsourcing tasks, such as employ the ‘find-fix-verify’ workflow

pattern, adopt a serial synchronous approach (Bernstein et al., 2010). This can still pass
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as a form of collaboration, albeit, not in a real-time interactive fashion. For example, in

a paragraph-shortening task, one worker might identify an area that can be shortened

without changing the meaning of the paragraph; another edits the highlighted section

to shorten its length; while a final worker verifies the edit. Other platforms such as

CrowdForge by Kittur et al. (2011) also apply a map-reduce approach to splitting up

tasks among workers and re-aggregating a single result. Throughout these workflows, the

workers do not interact directly, despite relying on the output of each other to kick-start

their own sub-task.

On the hand, other forms of crowdsourcing, such as citizen science projects, have em-

braced richer models that feature increased collaboration and interaction between par-

ticipants to great success (Tinati et al., 2015). This is beneficial in complex tasks that

might require self-organization, idea sharing and discussions. It is also more represen-

tative of what obtains in the real world with office workers and academic researchers

interacting and collaborating to achieve a common goal.

Other researchers have attempted other collaboration strategies drawing inspiration from

existing research (Greenberg and Bohnet, 1991). For example, Lasecki et al. (2012b)

demonstrated that crowd workers have the ability to retain knowledge after a task has

ended, and pass on the knowledge to new workers on the task (in a fashion akin to

organisational learning). Rokicki et al. (2015) presented mechanisms for team based

crowdsourcing competitions. In some instances, workers were permitted to self-select

a team – usually joining the leading team or merging smaller teams to challenge the

leading team. Their work also highlighted the importance of team communication,

which was crucial to admitting new members, discussing the overall approach to the

task and clarification of rules.

Anagnostopoulos et al. (2012) also studied team formation dynamics for solving tasks,

however, they designed algorithmic approaches for assigning team members based on

their individual skills. They reported this as having the potential to improve team

coordination and collaboration. Kittur (2010) designed a translation platform which

sourced workers from Mechanical Turk. The workers autonomously collaborated and

coordinated with each other to translate and refine the original text, yielding a result

that was voted better that a professional translation.

2.4.4 Contests in Crowdsourcing

Revisiting the image in Figure 2.1, we observe that one approach to crowdsourcing is via

contests or competitions. Contests is also one of the three methods we discussed in the

‘how’ of crowdsourcing in Section 2.3.4 (alongside collection and collaboration discussed

above). The innovation prizes by Netflix and X-Prize; and competition platforms such

as TopCoder Archak (2010) serve as a medium to elicit the single best response from a
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crowd of participants. One of the best-known crowdsourcing contests in social computing

and crowdsourcing took place in 2009. DARPA set up a challenge to locate 10 red

weather balloons within the continental United States (Tang et al., 2011). The winning

team from MIT employed crowdsourcing strategies to leverage on a multi-level network

of people and their friends. Crowdsourcing contests are traditionally deployed when

the requester seeks one best or final answer (as opposed to an aggregation of worker

results). For example, the Netflix $1million challenge to build a better recommendation

algorithm (Bennett and Lanning, 2007) or the $10million Ansari X Prize 11 both fall in

this category of best response. However, as mentioned in the beginning of this chapter,

taking advantage of the crowd via inducement prizes dates back to the 18th century.

Some of the most notable contests in history 12 are presented in Table 2.9

Prize Definition Year

British Longitude prize Determination of a ship’s longitude at sea 1714

The Alkali Prize Method to produce alkali from sea salt 1775

Food Preservation Prize Preserving food on long military campaigns 1795

Turbine Prize Commercially viable hydraulic turbine 1823

The Rainhill Trials Railway locomotives 1829

Substitute for Guano Prize Alternative to the guano manure 1852

The Billiard Ball Prize Alternative material to elephant ivory 1863

Butter Substitute Prize A cheaper substitute for butter 1869

The Schneider Cup Seaplanes and flying boats 1913

The Orteig Prize Non-stop flight from New York to Paris 1919

Table 2.9: Historical Challenge Prizes

Remuneration in contests range from the winner-takes-all scenario, which compensates

only the best participant; to more relaxed models that pay contributors who make

submissions above a certain threshold. Contests also leverage on the urgency that comes

from a fixed time frame; and the satisfaction that a sense of winning brings. In this

context, one of the most popular crowdsourcing contest platform is TopCoder. TopCoder

hosts weekly algorithms and software design competitions where winners receive financial

remuneration and performance points (Archak, 2010). The contests are time constrained

with the algorithm competitions lasting 2 hours, and the system design lasting one

week. The software generated is licensed for profit to companies while the contestant

are paid and rated. The rating system is of particular importance because it serves as

a recruitment platform for companies to access the best developer talents. One of the

outcomes of the study by Archak (2010) was that the online reputation of individuals in

crowdsourcing contests have significant economic value. Winning for contestants went

beyond the immediate financial payout. Submitting a good enough result beyond a

threshold was enough to boost ratings that would yield future economic dividends.

11http://ansari.xprize.org/
12Nesta-http://www.nesta.org.uk/news/guide-historical-challenge-prizes

http://ansari.xprize.org/
Nesta - http://www.nesta.org.uk/news/guide-historical-challenge-prizes
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As with gamification and collaboration, contests indicate that the motivation and desire

to participate in crowdsourcing tasks transcend monetary compensation. Indeed, studies

and interviews with crowd workers by Felstiner (2011) and Martin et al. (2014) have

shown that many workers perform crowdsourcing tasks to get paid. However, with

gamification, collaboration and contests, the task becomes slightly different. An element

of engagement and enjoyment is introduced which can serve as an additional currency

of transaction in paid microtask crowdsourcing.
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2.5 Summary

In this chapter we presented background
material that formed the foundations of
the thesis. We introduced related socio-
technical fields that helped us better un-
derstand the role of crowdsourcing. We
also took an in-depth look at the state
of the art in crowdsourcing with specific
emphasis on paid microtask crowdsourc-
ing. The last part of the chapter gave
an overview on motivating paid microtask
workers with money and additional incen-
tive mechanisms. We discussed gamifica-
tion, collaboration and contests as three
broad categories of incentives on which we
base future chapters when addressing spe-
cific challenges in the thesis.



Chapter 3

Crowdsourcing Challenges

This chapter gives an in-depth outlook on
the research challenges studied in the the-
sis. We discuss issues in workflow design;
real-time crowd work; motivation and in-
centives engineering; and collaboration in
paid microtask crowdsourcing. We present
introductory background material on each
challenge, discuss the state of the art in
current research and then outline the spe-
cific parts of the challenge that this work
seeks to address.

3.1 Workflow Design

Harnessing the rapid increase in the generation of data has led to advances in the World

Wide Web, the Semantic Web and the Web of Data (Auer et al., 2007) – translating

into the need to crowdsource useful information to fulfil their visions. A first step in

making sense of the data necessitates information extraction and annotation of datasets.

This has led to the availability of training datasets for Natural Language Processing al-

gorithms from research such as ACE (Doddington et al., 2004), MUC (Chinchor, 1998)

and CoNLL (Tjong et al., 2003). An important task in this context is the identifica-

tion of named entities - the people, places, organisations, and dates referred to in text

documents - and their mapping to Linked Data URIs (Usbeck et al., 2014). This im-

portance therefore informed our task selection to address the issue of workflow design in

paid microtask crowdsourcing. State-of-the-art technology in entity recognition achieves

37
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Figure 3.1: Future Model of Crowd Work by Kittur et al. (2013)

near-human performance for many types of unstructured sources; most impressively so

for well-formed, closed-domain documents such as news articles or scientific publications

written in English (Marrero et al., 2009; Nadeau and Sekine, 2007). It has been less

successful so far in processing social media content such as microblogs, known for its

compact, idiosyncratic style (Derczynski et al., 2015). Human computation and crowd-

sourcing offer an effective way to tackle these limitations (Snow et al., 2008), alongside

increasingly sophisticated algorithms capitalising on the availability of huge data samples

and open knowledge bases such as DBpedia and Freebase (Rizzo and Troncy, 2011).

Advances in natural language processing have led to an understanding of textual struc-

ture which can be easily processed by computers (e.g., well formed news-wire articles

with sufficient disambiguation context). Essentially, hybrid workflows have therefore led

to pipelines which first selects text for machine annotation, passing the residue to the

crowd (such as the approach by Demartini et al. (2012). These hybrid approaches to

NER (named entity recognition) (Derczynski et al., 2015) that seamlessly bring together

human and computational intelligence are however far from being the norm. While the

technology to define and deploy them is on its way - for instance, tools such as GATE al-

ready offer built-in human computation capabilities (Sabou et al., 2014; Bontcheva et al.,



Chapter 3 Crowdsourcing Challenges 39

2014a) and CrowdDB attempts crowd powered query engines (Trushkowsky et al., 2013)

– little is known about the overall performance of machine-crowd-expert NER workflows

and the factors that affect them. Besides various experiments reporting on task design,

spam detection, and quality assurance aspects e.g., (Difallah et al., 2012; Snow et al.,

2008; Yuen et al., 2011), at the moment we can only guess what features of a micro-

post, crowd contributor, or microtask platform will have an impact on the success of

crowdsourced NER. The situation is comparable to the early stages of information ex-

traction; once the strengths and weaknesses of particular methods and techniques had

been extensively studied and understood, the research could then focus on overcoming

real issues, propose principled approaches, and significantly advance the state of the art.

Workflows in paid microtask crowdsourcing began as simple parallelised tasks. A large

piece of work was split up among multiple workers who solved individual task pieces.

The need to solve more complex tasks led to more ingenious ways to split the request.

Some approaches include: simple serial pipelines where the output of one worker is

passed on to the next (Little et al., 2010); the find-fix-verify workflow where one worker

identifies a task target, another set of workers carry out the task and a final worker

verifies (Bernstein et al., 2010); and the various workflows inspired by the map-reduce

framework of traditional computing (Dean and Ghemawat, 2008) where parallelised tasks

are aggregated in stages until the final output is resolved (Little et al., 2010; Bernstein

et al., 2010; Kittur et al., 2011).

3.1.1 Existing Workflows

One challenge in workflow design is facilitating coordination within the distributed work-

force. This has been studied by a number of researchers like Kittur et al. (2008, 2009)

some of whom have applied traditional techniques from computing such as van Der Aalst

et al. (2003) and organisational literature such as Stohr and Zhao (2001). Other tech-

niques that can constitute a form of workflow design include crowdsourcing contests

(Cavallo and Jain, 2012; Dechenaux et al., 2014) or adopting some form of collaboration

(Kittur, 2010) – although these would be addressed in details in future chapters.

• CrowdForge (Kittur et al., 2011): represents a framework and toolkit for crowd-

sourcing complex work. The CrowdForge approach is a simplified distributed

computing methodology based on MapReduce introduced by Dean and Ghemawat

(2008). The process consists of three subtasks: the first where a large task is parti-

tioned into subtasks; the second phase where each subtask is ‘mapped’ or assigned

to a worker to be solved; and a final ‘reduce’ phase where the outputs of workers

are merged into a single final output. The process can be used to solve complex

workflows by starting out with a root partition and recursively creating subtasks,

mapping to workers and reducing intermediate stages. CrowdForge is effective
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when a task can be easily broken down into unit subtasks that can be solved in-

dependently – for example, a case study of writing an article was presented where

the unit partitions involved topic sections and paragraphs.

• CrowdWeaver (Kittur et al., 2012): is a system built on CrowdFlower which sup-

ports visually managing complex crowd workflows by the management and reuse

of templates. Task requesters can string tasks together, connected via dataflows

between them. It also allows for monitoring and alerting based on worker task

progress. Requesters are also able to split and merge tasks in a fashion similar to

the previously discussed CrowdForge by Kittur et al. (2011).

• TurkIt (Little et al., 2010): is a set of APIs that allow task requesters to carry out

iterative tasks to workers on Mechanical Turk. Rather than solving tasks in par-

allel, or using a MapReduce methodology, Turkit adopts an imperative approach

where workers act as successive subroutines that change the state of the task until

a final output is produced. An example is a task to decipher ineligible handwrit-

ing wherein workers iteratively solve the part they can with subsequent workers

improving on earlier submissions.

• Turkomatic (Kulkarni et al., 2012): is a system for crowdsourcing complex jobs.

Unlike CrowdForge and CrowdWeaver, Turkomatic engages the crowd in decom-

posing the jobs into multiple tasks which is then solved by multiple workers. The

task requester can monitor the task decomposition process and intervene to im-

prove the entire workflow. It employs a technique similar to the MapReduce ap-

proach from CrowdForge known as price-divide-solve (PDS). With PDS, workers

recursively break down tasks (similar to the multiple partition steps of Crowd-

Forge), then the tasks are solved and combined (similar to the reduce stage in

CrowdForge). Turkomatic includes visualization and editing capabilities for re-

questers – similar to CrowdWeaver but absent from CrowdForge.

• Jabberwocky (Ahmad et al., 2011): is a full fledged crowdsourcing workflow

framework also built on the MapReduce paradigm. It consists of a human and

machine resource management system, a parallel programming framework based

on MapReduce, and a high-level programming language. Unlike CrowdForge where

the requester defines the partition steps, and Turkomatic where workers decide

the divisions, decomposition in Jabberwocky can be either human powered or

automatic.

3.1.2 Challenge

The specific workflow challenge we seek to address involve the design of hybrid systems

for solving crowdsourcing tasks. One use case for crowdsourcing is using humans to
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CrowdForge CrowdWeaver TurkIt Turkomatic Jabberwocky

Definition
language

paradigm configuration imperative, visual imperative,
textual

declarative imperative, tex-
tual

notation wizard, python
for custom procs

custom modeling
language, visual

JavaScript like - Dog language

Task
support

crowd platform
provider

MTurk CrowdFlower MTurk MTurk self

crowd manage-
ment

– – – – profile-based pre-
selection

machine tasks
definition

– generic machine
task

script – script

Control flow
support

task instantia-
tion

X X X X X

sequential
instantiation

X X X X X

parallel execu-
tion

X X – X X

via decision
points

– – X – X

looping / itera-
tive execution

– – X – X

crowd sub-
process

X – X – X

Data
management
support

data hosting
type

data data data data data

data passing
among tasks

by value data flow by value self-managed
data flow

by value

data splitting,
aggregating

by crowd built-in script by crowd script

Development
support

task design sup-
port

manual wizard manual pre-defined manual

task deploy-
ment

automatic automatic automatic automatic automatic

Quality control support voting control questions,
consensus

voting voting –

Public availability open source avail-
ability

– open source
availability

– –

Table 3.1: Analysis of crowdsourcing workflows by Kucherbaev et al. (2016)

perform tasks that computers cannot yet perform well e.g., image recognition. The

data generated by the crowd is then fed back to computers to train them in carrying

out the task, which they gradually get better at undertaking. Consequently after the

training phase, a workflow scenario would attempt to solve a task first with the computer,

passing along the more difficult pieces to the crowd. However, given that the general

crowd is modelled as a homogeneous set of inexpert workers, it might become essential

to further assign more difficult cases to a team of experts - an idea that has been termed

nichesourcing an expert crowd by De Boer et al. (2012). Agreement between the crowd

hence serves as an identifier for simple tasks which yields high consensus; disagreement

on the other hand then serves as a signal source on the more difficult case that would

require expert adjudicators as suggested by Aroyo and Welty (2013).

What we seek to tackle therefore, are methods to identify the tasks that sit in the middle

of the workflow i.e., can we identify task features that make them ideal to be solved by

the general crowd? Apart from the task features, we also seek insight into the behaviour

of the crowd in the presence of task choice i.e., given the opportunity to skip through

a task in lieu of confidence, what sort of sub-tasks would they be inclined to choose?

Observing the behaviour of the crowd, and the features of the task they select, with
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respect to how well they perform the task, would help us decide what tasks they are

best suited for.

In chapter 6 we begin addressing this first selected challenge in paid microtask crowd-

sourcing. We show that even seemingly simple tasks require a degree of intelligent design

in getting the best out of the crowd. We demonstrate the challenge of designing work-

flows to carry out named entity recognition via crowdsourcing. On the surface, crowd

based named entity recognition may seem like a trivial task, one that can be solved

using a simple worklow as shown in the traditional crowdsourcing model in Figure 3.2.

However, our experiments reveal this not to be the case. In fact, a ‘black box’ analy-

sis (without checking the analysis for constituent precision and recall scores on specific

entity types) reveals almost comparable accuracy scores between automatic entity recog-

nition software (Derczynski et al., 2015) and crowdsourced entity recognition (Feyisetan

et al., 2015a).

Figure 3.2: Traditional Crowdsourcing Workflow by Kittur et al. (2013)

A closer analysis of crowdsourced entities however suggests that although the crowd

might be good at performing a task, they might be better at carrying out specific sub-

tasks. Therefore, task decomposition needs to go beyond simplistic parallelisation of

an entire task-set to available workers; and hybrid workflows combining machines and

humans are thus essential to obtain top-percentile results. This approach (of using

hybrid workflows) has been studied by researchers such as Demartini et al. (2012) who

suggested a pipeline with machines carrying out a request and humans picking up tasks

with low confidence results from the machines. However, within the difficult cases passed

to the crowd, it is not unusual to encounter requests that defy traditional agreement and

quality score metrics in terms of the final worker output. We posit that this might be as

a result of one or two things: (i) the ‘byte’ sized nature of microtasks attunes the crowd

to carry out some sub-tasks much easily and with lower cognitive overhead than other
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sub-tasks within the same task; and/or (ii) some sub-tasks might be genuinely difficult,

with the potential to raise conflicting answers between crowd workers. The challenge

then lies in decomposing the task using insights gained from the task type and worker

interactions, as opposed to adopting a generic split approach.

Hybrid annotation techniques have emerged as a promising approach to carry out named

entity recognition on noisy microposts. In chapter 6, we identify a set of content and

crowdsourcing-related features (number and type of entities in a post, average length

and sentiment of tweets, composition of skipped tweets, average time spent to complete

the tasks, and interaction with the user interface) and analyse their impact on correct

and incorrect human annotations. We then carry out further studies on the impact

of extended annotation instructions and disambiguation guidelines on the factors listed

above. These are all done using CrowdFlower and our bespoke crowdsourcing platform

(introduced in chapter 5) on three datasets from related literature and a fourth newly

annotated corpus. Our findings show that crowd workers correctly annotate shorter

tweets with fewer entities, while they skip (or wrongly annotate) longer tweets with

more entities. Workers are also adept at recognising people and locations, while they

have difficulties in identifying organisations and miscellaneous entities, which they skip

(or wrongly annotate). Finally, detailed guidelines do not necessarily lead to improved

annotation quality. These findings lead to the design of more advanced NER pipelines,

informing the way in which tweets are chosen to be outsourced to automatic tools,

crowdsourced workers and nichesourced experts.

3.2 Real-time Crowd Work

An increasing number of application scenarios require microtask platforms to deliver

responses in near real-time. These tasks come with hard deadlines or tight constraints

which diminish the value of result outputs the later they arrive. Longitudinal studies of

crowdsourcing marketplaces such as Amazon’s Mechanical Turk (Difallah et al., 2015)

reveal how microtasks have transitioned from outsourcing platforms where work took

days to complete (Kittur et al., 2008), down to those which took hours to complete

(Ipeirotis, 2010a), finally achieving delivery times in the range of seconds and under

(Bernstein et al., 2011). Surveys such as Mason and Watts (2010) have shown that

increasing the payoff of microtasks results in tasks being completed faster; however,

this does not guarantee the response times required in time-critical scenarios. For near

real-time behaviour to be a reality in microtask crowdsourcing, two components are

critical:

1. Timely worker recruitment – pulling together large flash crowds that arrive

within moments of the task; and
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2. Timely task completion – collective completion of tasks by workers efficiently

within the required constraints.

Figure 3.3: Speed and reliability trade-offs in crowdsourcing by Lasecki et al. (2014)

The real-time speed benefits sometimes come at a cost of accuracy and reliability as

highlighted by Lasecki et al. (2014), and shown in Figure 3.3 with the ultimate desire

to achieve results close to automatic systems (the blue dot in the figure).

3.2.1 Timely Worker Recruitment

Several models have been proposed to ensure timely availability of crowd workers. With

Adrenaline, Bernstein et al. (2011) employed a retainer model to have access to flash

crowds on demand. Workers were paid a retainer fee - between $0.05 to $0.10 per minute

– to be on call in order to respond promptly to a new task. During the wait time, they

are free to take on other tasks. When a new task becomes available, workers are alerted

via an audio chime. They reported response rates within two seconds, with 75% joining

the task in three seconds. Some other researchers have experimented with sending emails

ahead of time, specifying task start times (Kittur et al., 2013). In Viz-Wiz, Bigham et al.

(2010) used the quikTurKit approach to recruit workers in advance. When quikTurkit

detected that a new task might be soon available, it starts recruiting new workers.

The workers are kept busy on previous tasks until the new task arrives. Viz-Wiz also

employs a simple but effective approach of posting tasks repeatedly on the marketplace

platform. Multiple posts ensure that the task remains on the first page of the platform to

ensure prospective workers have it in their view. Other approaches relied on recruiting

a much larger crowd than required. Lasecki et al. (2014) adopted this approach of larger

crowds on the premise that the fastest workers can be recruited - which further speeds
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up the task. Bernstein et al. (2012) used queuing theory with predictive recruitment

(precruitment) to speed up the worker acquisition process. Precruitment is similar to

quikTurkit and the retainer model in that it attempts to contact workers before tasks

arrive. Precruitment however leverages on the retainer model to further drop response

times to 500ms.

3.2.2 Timely Task Completion

However, mobilizing workers does not automatically translate into timely completion

of tasks (Bernstein et al., 2011). Some methods have been presented in literature to

address timely completion. Bernstein et al. (2011) designed Adrenaline as a smart

camera shutter which captures a short video and used the crowd to instantaneously select

the best photo frame. In Adrenaline, rapid refinement is used to cut down crowd latency

by dynamically narrowing the search space following early signs of worker agreement.

It speeds up the task by focusing slower workers on a smaller search space. Stream

parallelism is applied on continuous tasks by dynamically assigning roles to workers

(Lasecki et al., 2014). For example, stream parallelism is used in WeGame by Loparev

et al. (2014) which merges streams of multiple players controlling a single game character

in real-time. A form of stream parallelism is also utilised in Viz-Wiz (Bigham et al.,

2010) and Legion (Lasecki et al., 2011). Most real-time tasks cannot be addressed within

the time frame of its arrival – for example, transcribing or translating a live speech. With

temporal division, the streaming task is divided into small manageable segments (e.g.

a single sentence to transcribe) across the workers. This approach is used in tandem

with stream parallelism to provide for multiple redundant task performance (Lasecki

et al., 2014). This technique can be seen in Scribe (Lasecki et al., 2012a) which provides

real-time captioning of conversations and live events to deaf people. It is also utilised

in Legion:AR (Lasecki et al., 2013b) which provides real-time recognition of activities

to disabled people. In addition to stream parallelism, Scribe (Lasecki et al., 2013a) also

implemented a technique known as warping time which allows workers to listen to audio

streams at reduced speeds to make it easier to carry out transcriptions or translations.

Time warping was shown to improve precision and recall scores in real-time task. Other

approaches in literature include a form of Map Reduce used in CrowdForge (Kittur

et al., 2011) and the use of recursive workflows by Kulkarni et al. (2012). However, one

additional approach which presents significant promise in carrying out paid microtasks

within bounded time constraints is the use of contests.

3.2.3 Crowdsourcing Contests

The history of contests probably dates back to 1714 when the British Parliament ran

one to determine the longitude at sea to within half a degree (Moldovanu and Sela,
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2001). Galton in 1902 (Galton, 1902) then famously posed the problem of optimally

dividing prizes in a competition, which was solved and has been proved theoretically by

Moldovanu and Sela (2001) among others. Other well known competitions such as the

Netflix Challenge (Bennett and Lanning, 2007) have been used to elicit a single best

solution to a requester task. In the following we give an overview of empirical studies

and theory in this space, which informed our model.

Researchers have investigated how contents unfold on existing platforms such as TaskCN

(Liu et al., 2011a) and TopCoder (Yang et al., 2008). These studies have shown the

effects of increased payoff as an indicator of contestant performance. The behaviours

of contestants in TopCoder were analysed, for instance, by Archak (2010). In a related

study Boudreau et al. (2011) considered over 9, 000 contests hosted on the platform in

order to understand the effect of participant numbers on the performance of individuals.

A second group of empirical work focused on bespoke experimental setups. For example,

Rokicki et al. (2014) looked at the effect of varying monetary schemes and information

policies in individual contests, while Rokicki et al. (2015) explored the same problem

alongside team formation strategies in group-based contents. In this chapter we design

and carry out contest experiments on our own platform as well. We study the effects

of competition and exit patterns in order to run more effective paid microtasks projects

that are time-sensitive.

Economists have extensively researched the theoretical foundations of contests. Recur-

ring themes in this context are the optimal design of such contests (Archak and Sun-

dararajan, 2009; Chawla et al., 2015), and the optimal allocation of prizes (Moldovanu

and Sela, 2001). Others have look at payment mechanisms such as lottery contests

(Rogers, 1998) and all-pay auctions (DiPalantino and Vojnovic, 2009). In situating our

work in this space, our contest involved endogenous entry (Ghosh and McAfee, 2012) (as

opposed to pay-to-join contests), and, it was a rank-order contest (Ghosh and Hummel,

2015; Lazear and Rosen, 1981) (as opposed to winner-takes-all contests), wherein we had

access to cardinal information (Ghosh and Hummel, 2015) in the form of an absolute

measure of the quality of each worker’s submission. A survey of experimental research

of contests is available from Dechenaux et al. (2014).

Finally, our work builds on literature which studies the war of attrition. In contests, each

participant enters knowing their own skill and costs, but not that of the other contenders.

Participants consider dropping out when they learn their opponents’ strengths and dis-

cover that staying would be unprofitable. A theory of how this phenomenon operates

in duopolies was presented by Fudenberg and Tirole (1986), while Krishna and Morgan

(1997) presented its relation to an all-pay auction. On another landscape, Norrander

(2006) discussed how strategic considerations such as assets, costs, and initial contest

outcomes, could lead some candidates in political primaries to exit the race early. This

also bears similarities to our scenarios in which contestants strategically decide whether

they continue to take on more tasks or leave Wordsmith. Norrander (2006) introduced a
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duration model, which we also attempt to analyse in our work, which shows the length

of candidacies and factors associated with candidate exits. Moldovanu et al. (2012)

looked at contests with exits where contestants have the option to dropout or not to

participate with the introduction of costless punishments. Since our objective was to

maximise the total utility generated in real-time, we did not use punishments, which

some early experiments we carried out revealed to increase the attrition rate.

3.2.4 Challenge

In our research, we focus on timely task completion, adopting existing methods in lit-

erature to obtain timely worker recruitment. One of the main challenges with ensuring

real-time tasks are completed on time is maintaining and utilising a large workforce.

This is coupled with the design of redundant workflows to ensure that no section of

the task stream gets unaccounted for. In addition to this, crowd workers have vary-

ing task capabilities – most noticeably in real-time tasks – hence techniques like rapid

refinement (Bernstein et al., 2011) make affordances for slower workers. Lasecki et al.

(2014) also encountered this, recruiting a large workforce, but tasking only the fastest

workers. What we seek is an approach to maximise the output of the fastest workers

without the overhead of recruiting and compensating slower workers. Not every worker

would be attuned to carrying out pressure-driven real-time tasks, and it is essential to

match workers to tasks that play on their strengths. Getting slower workers to carry out

real-time tasks would not only affect the quality of the task output, but could also hurt

the worker (for example, they might get flagged or blocked by the requester). There-

fore, we seek to address the challenge of real-time crowdsourcing by designing new or

re-purposing existing techniques that would be attractive to fast workers and not create

a cost burden for the requesters.

3.3 Motivation and Rewards

In this section, we briefly review some of the most relevant prior work pertaining to

maximising the effectiveness of incentivised crowdsourcing. In particular, we focus on

approaches that use game mechanics in human computation, and on methods that aim

to optimize the performance of crowd workers, be that by offering bespoke incentives, or

by assigning tasks to those workers who are likely to be able or willing to complete them

accurately. As much of this background literature is inspired by, and explained using,

theories of human motivation, we touch on fundamental work in that space as well.
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3.3.1 Alternatives to Paid Microtasks

Alternative methods of crowdsourcing judgements have been reported in literature. Ap-

proaches that differ from the traditional methodology of eliciting judgements via an

open call have been studied in a bid to improve paid microtasks, without jeopardising

the quality of the work results.

Paid Microtasks vs Online Staffing

Online staffing platforms such as eLance1 and oDesk2 (recently merged into Upwork 3)

have served as a source of mid-term engagement of workers. Unlike traditional crowd-

sourcing platforms which are well suited to short bursts of microtasks, or open innovation

platforms like InnoCentive 4 (where tasks can run for months), workers in a platform

like oDesk are engaged for a few days (Nickerson, 2013).

An article by Ipeirotis (2012) details a comparative analysis between Mechanical Turk

and oDesk. They highlight the suitability of oDesk to tasks that required longer term

engagement, could be performed by fewer people, contained hard tasks that might be

skipped by turkers, had to be completed within time (avoiding the long tail of MTurk)

and required less anonymous workers.

Paid Microtasks vs Social Networks

Social networks such as Facebook and Twitter have been explored as sources of human

agents for crowdsourcing tasks. Difallah et al. (2013) proposed an approach where work-

ers are known and profiled in advanced (as opposed to the faceless crowd in traditional

systems). Tasks are then pushed to these selected users as opposed to the traditional

pull mechanisms.

Bozzon et al. (2013) considered the problem of choosing the right crowd by ranking the

users of a social network based on their domain knowledge. The top expert users are

then selected to solve the task at hand. Like Difallah et al. (2013), the approach requires

profiling the users to find suitable candidates for the tasks. The Annotation-Validation

(AV) Model: Rewarding Contribution Using Retrospective Agreement (Chamberlain,

2014b)

Paid Microtasks vs Games

Games have increasingly been used as a platform to engage crowd workers. Games With

A Purpose (GWAPs) (von Ahn and Dabbish, 2008) were among the first to systemati-

cally apply game mechanics to create a fun environment for crowdsourcing tasks. The

ESP game, (von Ahn and Dabbish, 2004) for example, motivated players to annotate

images with descriptive tags, through a competitive framework in which they were pit-

ted against other players to try to guess others’ annotations as quickly as possible. Not

1https://www.elance.com
2https://www.odesk.com
3https://www.upwork.com
4http://www.innocentive.com/

https://www.elance.com
https://www.odesk.com
https://www.upwork.com
http://www.innocentive.com/
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only did this framework compel participation through direct competition, but it gen-

erated tags that were of high quality by directly rewarding consensus. Other similar

image annotation gamified task environments included Phetch (Von Ahn et al., 2007)

and Peekaboom (Von Ahn et al., 2006).

Thaler et al. (2012) presented a comparative analysis of user behaviour on MTurk and a

GWAP. They compared the results of conceptual modelling and ontology mapping using

a traditional crowdsourcing approach built on MTurk, and a game based approach using

a custom designed game called OntoPronto. They reported significantly more results

from the game platform at no cost per annotation; however, the average number of

correct answers per participant in the game was significantly less than that in MTurk

(8 vs 45).

Jurgens and Navigli (2014) reported a comparison of image annotation tasks. They

compared the results of mapping senses from WordNet to images using a game called

Puzzle Racer, and a traditional crowdsourcing system built on CrowdFlower. They were

able to achieve comparable quality from both systems while reducing the cost by 63%

by using the game based approach. However, the cost savings were at the expense of

timely completion. Results from CrowdFlower were completed in hours, while results

from Puzzle Racer trickled in over 2 weeks.

Eickhoff et al. (2012) carried out a study of crowdsourced judgements on relevance

assessments and clustering. They presented evaluations using traditional HITs and

gamified HITs on quality (compared against a gold standard), efficiency (time required

to collect judgements) and incentives (financial vs fun). Their results show that with

the gamified HIT, they were able to obtain quicker judgements at a higher quality by

leveraging game flow and immersion as opposed to financial incentives in the traditional

HITs.

Other relevant studies in literature include a comparison of crowd-Based, game-Based,

and machine-based approaches by Harris and Srinivasan (2013).

3.3.2 Motivation and Incentives

The theory of motivation and an understanding of incentives is fundamental in under-

standing the why of worker behaviour in crowdsourcing (see Section 2.3.3).

While efforts at designing successful crowdsourcing projects have considered a variety

of dimensions, including end-user interfaces, spam detection, and quality control, some

of the most influential works in recent crowdsourcing literature have approached this

problem by looking at crowd engagement. This is seen as an effective way to achieve

better productivity and ensure the sustainability of crowdsourcing platforms over time.

Research on crowd engagement covers various aspects, from studies of motivations of
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contributors to specific projects to applications of theoretical models from economics to

the newer scenarios of online labour markets.

Motivation

The concept of intrinsic motivation emanated from the work of White (1959) in 1959.

This was in contrast to the drive (drive-reduction, drive-induction) theory and instinct

theory of that time. Effectance motivation, as it was called, could explain behaviours

that did not require reinforcements and physiological drives, and encompassed learning,

development, play, exploration and volitional behaviour. This was expanded to intrinsic

and extrinsic motivation following the Self Determination Theory in 1985 by Deci and

Ryan (1985b)

In the context of crowdsourcing Kaufmann et al. (2011) presented an extensive work

on constructs of extrinsic and intrinsic motivations in crowd workers. They classified

intrinsic motivation as enjoyment and community based, while extrinsic motivation as

based on payoffs and social motivations. They observed that extrinsic motivation af-

fects the length of time spent on the platform while intrinsic motivation (such as task

autonomy) serves as the dominant factor for most workers.

A study of motivations of citizen scientists by Raddick et al. (2008) yielded 12 core mo-

tivation dimensions including fun, learning and discovery. Another study by Rogstadius

et al. (2011) suggested that intrinsic motivation can increase the quality of workers’

output by presenting tasks as helping others (e.g., helping a non-profit study malaria).

All these works posited that contrary to the presented belief that money drives crowd-

sourcing or fun engages crowd workers, worker motivation transcends fun and money as

aptly titled by Kaufmann et al. (2011).

Incentives

Yet for many classes of tasks, especially paid microtasks, the primary incentive for

getting a crowd worker engaged is through cash payoffs. Optimising crowd payments

have been studied in various forms including quota systems, performance based sys-

tems, studying target earners and using reservation wages (Horton and Chilton, 2010).

However, financial incentives have been shown to improve speed of completion of tasks

and not result quality by several studies including Mason and Watts (2010); Mao et al.

(2013a); Yin et al. (2013). This has also led to studies on the anchoring effect where

workers feel they should be paid more than they actually received (Mason and Watts,

2010; Yin et al., 2013) and the drop-off effect where workers stop working after hitting

specific targets (Mason and Watts, 2010).

An extensive review of 74 experiments by Camerer and Hogarth (1999) present the

effects of financial incentives in experiments, highlighting points where it helps, hurts or

has no effects on mean performance. Their modal result showed that financial incentives

had no effect on mean performance, however higher payments reduced the variance in

results. In other instances such as cognitive tasks which were more responsive to better
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efforts, higher payments led to better judgements i.e., tasks which are easy require little

capital, so paying extra won’t help and vice versa.

Other forms of financial incentives have been adopted in crowdsourcing tasks. These

include negative financial incentives where a portion of income is withheld for inaccurate

results (Shaw et al., 2011; Harris, 2011).

3.3.3 Gamification

According to Zichermann and Cunningham (2011), gamification is ‘the process of game

thinking and game mechanics to engage users and solve problems’. Gamification lever-

ages on and is different from games. The goal of gamification, which is essentially ‘the

use of game design elements in non-game contexts’ (Deterding et al., 2011b), is to achieve

a level of engagement seen in successful video games by transplanting some of the game

elements (as opposed to play which has no formal rules) (McGonigal, 2011), design and

mechanics to non-game tasks (Deterding et al., 2011b). Gamification often includes

adding game-like rewards, and may also include competitive and social elements, such

as leaderboards, explicit competitions, and group and individual performance feedback.

Gamification in Application

Many projects have already demonstrated substantial success in applying this idea to

crowdsourcing settings; for example, the set of projects associated with Games with

a Purpose (GWAPs) (von Ahn and Dabbish, 2008), have included the ESP game (von

Ahn and Dabbish, 2004), a competitive image-tagging game that simultaneously created

useful image labels for large image datasets. Other image labelling games that have

followed include Phetch (Von Ahn et al., 2007) and Peekaboom (Von Ahn et al., 2006).

Perhaps the most salient example of a successful GWAP is Duolingo, a language-learning

game that simultaneously helps players learn a new language, and to translate previously

untranslated texts on the Web to other languages. Duolingo has become one of the top

downloaded mobile apps of all time and still tops the educational apps charts on major

mobile app stores 5. Other highly visible gamified crowdsourcing projects are from

citizen science, in which volunteers help complete large-scale scientific contributions.

Both FoldIt 6 , a protein-folding game, and EyeWire 7 have seen massive sustained

engagement and have contributed to new scientific discoveries more effectively through

the application of gamification.

Gamification and Overjustification

Despite the successes seen with gamification, in some contexts, it has been seen to

undermine intrinsic motivation by subjugating and trivialising contribution into simple

5Duolingo - a Visual History - https://www.duolingo.com/comment/3412629
6FoldIt - http://fold.it
7EyeWire - eyewire.org

https://www.duolingo.com/ comment/3412629
http://fold.it
eyewire.org
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game goals and points 8. This effect has been called overjustification and has been

demonstrated in a few studies, such as by Lepper et al. (1973), an experiment in which

it was demonstrated that children that expected a reward performed more poorly than

those who were not expecting any and were playing for purely intrinsic benefit.

Gamification and Extrinsic Rewards

Nonetheless, the studies of overjustification illustrate that the motivations for partici-

pating in various systems are both many and varied, and the effects of applying extrinsic

rewards in various forms can help or hinder depending on the context. While the effects

of overjustification have been reproduced, its prevalance seems to be highly dependent

on the context; for example, a comprehensive survey by Deci et al. (1999) showed that in

in a majority of cases, extrinsic rewards complemented, rather than undermined intrinsic

motivations for participating. Similarly, another well-cited study showed that blood do-

nations dropped when monetary rewards were introduced; and yet such overjustificaiton

effects once again diminished when participants were allowed to donate their rewards to

charity (Mellström and Johannesson, 2008).

3.3.4 Making Crowdsourcing Effective

While in the previous section we primarily looked at prior studies of motivation and

incentives aspects in particular scenarios, we will now give an overview of methods

which help make crowdsourcing projects more effective by optimizing key components

of such projects. We posit that it is possible to align gamification incentives with gameful

intrinsic motivations to yield maximal player engagement and quality player output.

Incentive Design Mechanisms

A number of descriptive frameworks have been proposed in the literature to capture

the nuances of incentives engineering beyond simplistic ’fun or money’ considerations.

Some of these include MICE (Money, Ideology, Coercion, Excitement) (Burkett, 2013),

RASCLS (Reciprocation, Authority, Scarcity, Commitment, Liking, Social Proof) (Bur-

kett, 2013), and SAPS (Zichermann and Cunningham, 2011). SAPS represents Status,

Access, Power and Stuff, intended to represent a system of incentives from the most

desired to the least desired, and the cheapest to the most expensive. We adopted this

framework in our experiments.

Mechanisms for effective allocation of incentives have been studied in market and auction

platforms, wireless and peer-to-peer networks and corporate organisations. In the con-

text of crowdsourcing, a number of studies have been carried out, applying game-theory

techniques to incentive design (Xie and Lui, 2014; Yang et al., 2012). These two pieces of

work focus on financial incentives and a premise of inter-player strategy dependency. Not

all crowdsourcing tasks can be modelled in this way; we adopt a probabilistic approach

8Criticisms of Gamification - http://radar.oreilly.com/gamification-criticism

http://radar.oreilly.com/ gamification-criticism
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based on prior player behaviours to predict appropriate incentives beyond the purely

financial. Similar techniques are used for various purposes in crowdsourcing design, in

particular to inform the assignment of tasks to workers or to predict task completion

(Demartini et al., 2013; Sheng et al., 2008).

A large body of work has been dedicated to task and workflow design, as well as quality

control (see, for instance, Michelucci (2013) for a recent compilation). We take their

findings into account when implementing the basic interfaces published on CrowdFlower

as well as the means to check quality and validate results.

3.3.5 Challenge

In our research, we seek to tackle the question of motivation and incentives, with partic-

ular interest in the case of worker drop off (Mao et al., 2013b) i.e., why do workers stop

a task, and how can we motivate them to carry on a task after they attempted to quit.

We call this incentive scheme furtherance incentives. Put succinctly, we are interested in

designing furtherance incentive mechanisms that improve worker engagement and task

uptake, while maintaining output quality and cost implications.

3.4 Synchronous Collaboration

Paid microtask crowdsourcing is essentially designed as an individualistic system. Ac-

cording to Gao et al. (2011b), the primary reason why crowdsourcing currently falls

short for disaster relief is because: ‘current applications do not provide a common mech-

anism specifically designed for collaboration and coordination between disparate relief

organizations’. Even though crowdsourcing is meant to leverage on the wisdom of the

crowd, individuals in the crowd are isolated with no platform for group formation or

communication.

If interaction and collaboration yields positive benefits in traditional work and research

contexts, the question from Kittur (2010) then is: ‘would workers participating in a

financial market really help each other without any financial incentives? ’. They carried

out an experiment where a translation task was assigned to crowd workers. The workers

were each paid $0.15, allowed to chat with each other, and permitted to see each persons

translation in real-time. At the end of the task, 14 out of 16 bilingual speakers rated the

crowdsourced translation higher than a published translation. The task also gave insight

into which parts of the text were more difficult to translate – marked by the number

of iterations by individual workers. Most importantly and surprisingly, at the end of

the task, crowd workers set up a new translation task, which other workers joined in to

translate for free. This experiment reflects a clear benefit of adopting collaboration. It

is useful to reiterate that this experiment was carried out in a paid microtask setting
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where money serves as the primary incentive. It can be argued that the experiment task

was creative in nature – and creativity flourishes with interaction and collaboration.

Can collaboration really be integrated into paid microtask crowdsourcing as a way to

harness the potentials of people working together?

3.4.1 Collaborative Crowdsourcing

Microtask crowdsourcing is usually modelled as an aggregation of individuals acting

unilaterally. Workers act alone without interaction with other workers, while their indi-

vidual outputs get assembled into a unit for the requester. This applies to paid scenarios

(e.g., on CrowdFlower), as well as non-paid ones such as citizen science projects or games

with a purpose (GWAPs). Nevertheless, other models have been introduced to build a

community and facilitate crowd learning (Tinati et al., 2015); incentivize participation

(e.g., via contests or social flow) (von Ahn and Dabbish, 2004; Rokicki et al., 2015); or

support more complex types of tasks (Kittur et al., 2011).

Some GWAPs, for example, von Ahn’s ESP game (von Ahn and Dabbish, 2008, 2004)

and TagATune (Law and von Ahn, 2009) have a strong element of interaction among

contributors. These games employ various strategies such as output agreement (ESP

game) or input agreement (TagATune) between players to generate useful work results

and drive engagement. Participants in these systems are primarily intrinsically moti-

vated, either by their love for music, or by their desire to have fun - and not motivated

(primarily) by money as with workers in paid microtask crowdsourcing (von Ahn and

Dabbish, 2008, 2004).

In citizen science the interactive element has mostly a community building function. For

example, Zooniverse projects such as Galaxy Zoo or PlanetHunters use discussion forums

to allow contributors to ask questions, engage with other members of the community,

or autonomously identify new lines of scientific inquiry to pursue based on previous

observations in the data (Raddick et al., 2009; Tinati et al., 2015). Tasks are still carried

out independently, though contributors can add comments and raise questions about a

particular task, which are shared with the community. Answers cannot be revised based

on these interactions.

Just as community spaces in citizen science led to serendipitous discoveries (Raddick

et al., 2009), (Kittur et al., 2011; Kulkarni et al., 2012) demonstrate how involving the

crowd in collaboratively designing the crowdsourcing workflow can have positive results

on task quality and engagement in paid microtask settings. The same trend has been

noted in Rokicki et al. (2015), where the authors present strategies for group formation

in team-based crowdsourcing where members had to work together to perform image

annotation. Finally, collaborative crowdsourcing has been promoted through an event

that has received considerable attention in the mainstream media – the DARPA Red
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Balloon Challenge. In the challenge teams had to find ten red weather balloons spatially

distributed at undisclosed locations around the U.S., with over 4,000 people registering,

extending to a group network size of over 350,000 participants. Tang et al. (2011) dis-

cusses the most successful strategies that were applied by challenge contestants, which,

included, among other things, collaborative elements based on well-aligned incentives.

3.4.2 Factors Affecting Collaborative Participation

In most group settings, there is the potential for problems stemming out of lack of

individual motivation. The free-rider effect (Kandel and Lazear, 1992) and social loafing

(Huang and Fu, 2013) are among the issues which occur when the output of the group is

considered as a whole without evaluating the contribution of individuals. On a positive

note, however, peer dependency can lead to social facilitation and altruism (Huang and

Fu, 2013). Social facilitation generally occurs when the contributions of individuals are

evaluated, and compared with the contributions of other members of the group, while

altruism stems from the desire to collaboratively affect other members of the group

positively.

Social Pressure

Several works have looked at the effect of peer and social pressure in incentivising work

output collaboratively online and in business enterprises. Directly relevant for our ex-

periments were two broad sources of social incentives: empathy, guilt and shame (social

pressure), and the desire to attain and re-experience social flow.

Kandel and Lazear (1992) presented their work on partnerships, and the incentives that

can be generated through peer pressure wherein they highlight the role of empathy, guilt

and shame, as incentive generators. They note that empathy generates incentives when

one individual can positively affect the outcome of another individual’s rewards. Peer

pressure via empathy therefore becomes effective when all team members are either in

shared circumstances - are at similar levels, and have potentially similar payoffs, or a

better off worker can affect the income of another. Guilt and shame on the other hand are

a function of transparency and observability of a worker’s action by other members of the

group, especially when the action has a group effect. More on the role of transparency

was presented by Mohnen et al. (Mohnen et al., 2008) where they pointed out, just like

Kandel and Lazear (Kandel and Lazear, 1992), that unobservability of contributions

yields selfish agents (selfish people). A worker might feel internal guilt at not pulling

their weight when their contribution is not visible to others, however, in a transparent

setting, shame sets in, therefore putting pressure to perform more work. The effects of

peer pressure on contributions to enterprise social media were studied by Brzozowski

et al. (2009) where they observed that, the participation of a worker’s manager is a key

source of social pressure in initiating contribution while, comments fuel the pressure for
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sustained contributions. From their work, we observe that most of the social pressure

effects that are seen in the offline world are present, and amplified in the online world.

Several articles also exist in theoretical economics literature, which model the cost of

one person exerting pressure on another, which could then either lead to a reduction

in the cost of the pressured person taking the action, or increase the cost of their not

taking the action (positive and negative pressure) (Daido, 2004, 2006; Calvó-Armengol

and Jackson, 2010).

Social Flow

Social flow stemmed out of an extension of Csikszentmihalyi’s ‘theory of optimal expe-

rience’ (Csikszentmihalyi, 1991) where flow (or individual/solitary flow), was presented

as an intrinsically rewarding, highly absorbing state, which is attainable when indi-

viduals freely choose an activity with: clear goals, immediate feedback, and a balance

between challenge and skills. Despite the freedom and pleasure that comes from immer-

sive individualistic activities, it has been observed that some of the most gratifying flow

experiences occur in social experiences (Jackson and Csikszentmihalyi, 1999; Mockros

and Csikszentmihalyi, 2014), leading to the concept of social flow.

Conditions

– The unit of performance is a group or team
– The collective competency of the group is sufficient to dispatch challenges
– Group members are uniformly highly competent
– Group members have task-relevant knowledge & skills about each other
– Emergent challenges are important & meaningful to the entire group
– Tasks prescribe interdependence, coordination & cooperation
– Tasks are conjunctive and require complementary participation
– Group members focus on each other as well as the task to receive feedback
– Task feedback is clear & immediate
– Task feedback is primarily cognitive and secondarily affective
– Social process feedback is primarily affective and secondarily cognitive

Indicators

– Shared intense absorption & engagement with the task
– High attention to group members or teammates
– Loss of sense of time
– Less awareness of self
– Surrender of self to the group
– Emotional communication during group work
– Emotional contagion within the group and observers external the group
– Joy, elation and enthusiasm felt and shared throughout group performance
– The experience builds meaning and a collective sense of purpose
– The group desires to the repeat the experience
– Rituals may be established to institutionalise social flow

Table 3.2: Conditions and indicators of social flow by Walker (2010)

Walker (2010) identified instances where co-active and interactive social flow is present

such as: skiing down a mountain in a group and watching TV with buddies (co-active)
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Individual solitary flow

– Doing work on my computer late at night.
– Singing by myself in the car.
– Composing choral music.
– Painting with watercolors.
– Gardening on a Sunday morning.
– Cycling alone over rolling hills.
– Running alone along the river as the sun rises.
– Cooking by myself, home alone.
– Writing a poem in the solitude of my familys cabin.
– Reading a great book and relaxing in a hot bath.

Co-active social flow

– Running a marathon in a pack with others.
– Skiing down a mountain in a group.
– Playing golf with friends.
– Hiking up a mountain with an outdoor club.
– Listening to music with friends.
– Watching TV with buddies.
– Doing errands with friends.
– Just sitting at the mall with friends watching people.
– Cleaning while listening to NPR with my roommates.
– Competing at a swimming meet.

Interactive social flow

– Playing soccer on a great team.
– Joining a jam session at my neighbourhood jazz club.
– Eating, drinking and talking with friends.
– Exchanging funny stories and laughing with friends.
– Having sex anytime with my lover.
– Playing a game of pickup basketball.
– Acting in a play on a night when everyone is on.
– Having a heart-to-heart with a close friend.
– Singing in a choir.
– Ballroom dancing.

Table 3.3: Examples of individual and social flow by Walker (2010)

or playing soccer in a great team and ballroom dancing (interactive) (see Table 3.3).

Walker also presented the conditions and indicators of social flow. Some conditions

stated include: immediate and clear feedback from the task and group members, in-

terdependence and cooperation, and the challenges are important to the whole group.

Some indicators stated include: shared absorption and engagement, less awareness of

self, and the desire to repeat the experience (see Table 3.2). In collaborative microtask

crowdsourcing, the desire to attain and re-experience the social flow from solving a series

of tasks together, serve as an incentive mechanism leading to improved task output.
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3.4.3 Challenge

Our work was informed and inspired by the background literature just discussed. We

developed a paid microtask environment, which recruits participants from platforms

such as CrowdFlower, pairs them randomly as they log in to the system, and asks them

to label images consensually.

The task design bears resemblance with multi-player GWAPs such as the ESP game,

though the motivation of the participants and the aims of our experiments are different.

When creating Wordsmith, our primary focus was not on coming up with a fundamen-

tally novel game experience to collect image labels, but on building an experimental

framework to test our research hypotheses regarding the interplay between monetary

rewards, collaborative task design, and social pressure, and social flow. This is reflected

in the experimental setup, which looks at task accuracy and output in three conditions:

the traditional, single-worker one and two collaborative ones, one with and one without

socially motivated incentives. Compared to previous work in paid microtask groupsourc-

ing, we use a different collaboration model, building pairs of workers who complete tasks

simultaneously, and study the effect of empathy-centric social pressure and social flow

on crowd behaviour.

The challenge we seek to address here is to give a more comprehensive answer to the

question posed by Kittur (2010). This requires further insight into the dynamics within

groups, teams and collaborating workers – especially, to what level one worker can influ-

ence another to carry out a task. However, with all the benefits of group collaboration

and coordination, negative issues such as the free rider problem and social loafing could

still affect teamwork. The free rider problem (Kandel and Lazear, 1992) occurs when

some team members do not play their part in achieving the overall goal, and still partake

in the overall compensation – leading to an eventual decrease in output quality caused

by the dissatisfaction of the contributing members. Similarly, social loafing (Latane

et al., 1979; Karau and Williams, 1993) occurs when individuals exert less effort when

working in a group than they would when performing an individual task.

These issues could be compounded in paid microtask environments where the anonymity

of the crowd could further facilitate a non-chalant attitude to the task at hand. We be-

lieve curbing this, and answering Kittur (2010) question would necessitate studying so-

cially motivated incentives. Social incentives such as peer pressure (Kandel and Lazear,

1992) have been observed to have effects in traditional organisations when applied hori-

zontally between colleagues and vertically from bosses to subordinates. Similarly, social

flow (an extension of Csikszentmihalyi (1991) theory of individual flow) describes how

participating in group tasks could create a level of immersion that could not be attained

alone. In this work, we seek to apply the concepts of social pressure and social flow to

design collaborative crowdsourcing systems that improve worker engagement and task

quality.
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3.5 Summary

In this chapter, we gave a detailed
overview into the four crowdsourcing chal-
lenges that form the basis for this the-
sis: workflow design; real-time crowd
work; motivation and incentives engineer-
ing; and collaboration in paid microtask.
We highlighted the components making up
each high level concept and discussed the
state of the art in current research to iden-
tify gaps where our work builds up on. Fi-
nally, we outlined the specific parts of each
challenge that this thesis seeks to address
in the subsequent chapters.



Chapter 4

Crowdsourcing Application

Scenarios

This chapter extends our introduction to
the crowdsourcing challenges by exploring
two broad application areas which form
the basis of all our experiments in fu-
ture chapters: text annotation and im-
age labelling. The chapter presents related
work in the line of our selected scenar-
ios. It also serves as a literature review
of the state of the art in implementing
customised platforms designed to address
specific pain points encountered in crowd-
sourcing. Later on in Chapter 5, we in-
troduce our own custom built platform –
Wordsmith, drawing ideas from the litera-
ture presented here.

4.1 Overview

Crowdsourcing has come to find application in various industries and across different

scenarios (Brabham, 2013). Since the concept was first introduced by Howe (2006), it

seems to have found global adoption; virtually any industry, science discipline, or public

sector agency could tell a story about how they reached out to the wisdom of the crowds

to improve their services and react more flexibly to customer demand, run comprehen-

sive data collection and analysis projects, or collect ideas and views for a better informed

policy making (Dawson and Bynghall, 2012). In this chapter, we look at two popular

60



Chapter 4 Crowdsourcing Application Scenarios 61

areas of crowdsourcing adoption, i.e., (i) text annotation; and (ii) image labelling. In

each area, we identify different application scenarios: for example, crowdsourced text

annotations (specifically, Twitter annotation) is widely used for disaster relief and crises

management, while crowdsourcing image labels serves as a precursor for training com-

puter vision algorithms. In line with the research agenda for this thesis, we then discuss

challenges faced in these two application areas:

1. Text annotation

• Challenge: Workflow design

• Challenge: Real-time crowd work

2. Image labelling

• Challenge: Motivation and rewards

• Challenge: Synchronous collaboration

4.2 Text Annotation

Text annotation defined broadly would represent any form of explanatory markup at-

tached to a part of the text to denote some referential meaning. For example, a piece of

text in a sentence could either be annotated to represent a verb (part of speech tagging),

or denote it as referring to a company (named entity recognition) such as is illustrated

in Figure 4.1. The entire piece of text could also be annotated, for example, marking

a piece of text as having a positive tone (sentiment analysis). One of the most notable

text annotation projects was the Penn Treebank (Marcus et al., 1993), consisting of 4.5

million English words annotated for part-of-speech information. The initial project took

at least 3 years (from 1989 to 1999). The underlying corpora in the Penn Treebank

consists of well formed (grammatically correct) constructs of English text (e.g., sourced

from the Wall Street Journal of 1987 - 1989). Furthermore, the project was carried

out over a long period of time. However, the advent of the ‘Big Data’ age has made it

essential to harvest, harness and annotate new forms of information – in large volumes

and with speed. One familiar source of such information currently is Twitter.

The semantic analysis of microblog posts (or ’Making sense of microposts’, as a suc-

cessful workshop series calls it)1 has become one of the most active research topics in

the Semantic Web area. With Twitter exceeding all predictions in terms of growth and

influence,2 analysing its vast amounts of user-generated data is essential for anyone aim-

ing to gain a better understanding of how individuals, social groups, governments, and

1http://www.scc.lancs.ac.uk/microposts2014/
2200 billion tweets per day, referenced by more than 1 million third-party websites, yielding over 30

billion impressions, according to their latest SEC filing. See Twitter Inc, form S-1 at http://www.sec.

gov, accessed 2014 − 02 − 17.

http://www.scc.lancs.ac.uk/microposts2014/
http://www.sec.gov
http://www.sec.gov
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Figure 4.1: Named Entity Recognition (http://www.europeana-newspapers.eu)

businesses communicate and interact online. However, it is also a challenging task, pri-

marily due to the nature of the content (limited number of characters per post, extreme

variation in writing styles, out-of-vocabulary words etc.), and the size and dynamicity

of the datasets; all these aspects make the application of off-the-shelf Information Ex-

traction (IE) tools, even when they offer support for semantic technologies or Linked

Data, hardly feasible (Ritter et al., 2011; Finin et al., 2010; Derczynski et al., 2015).

Previous work in IE for microblogs has adapted traditional Natural Language Processing

(NLP) techniques to reflect the specifics of micropost content. This refers mainly to the

removal of stop words, retweets, hashtags symbols, ellipses, links, ’user’ mentions, as well

as out-of-vocabulary words (i.e., ’b4’ or ’shuld’) (Han and Baldwin, 2011). Other com-

mon approaches include text tokenization and optional parts-of-speech (POS) tagging,

which use keyword selection to compute the ’link probability’ (to Wikipedia article titles)

of the tokenized text in order to identify potential entities (Sachidanandan et al., 2013).

Similar methods resort to Wikipedia to match tokenized texts (Genc et al., 2013), as well

as POS tagging to train and identify nouns to be further analysed (Muñoz-Garćıa et al.,

2013). Alternative sources of keyword matching involve Freebase (Laniado and Mika,

2010), DBpedia (Jadidinejad, 2013; Mendes et al., 2013; Muñoz-Garćıa et al., 2013), and

WordNet (Sachidanandan et al., 2013). The CMU POS Tagger has been developed to

handle Twitter-specific vocabulary such as abbreviations (e.g., ’ikr’, ’smh’), emoticons

(e.g., ’:o’, ’:/’), hashtags, and mentions (Das et al., 2013). Oliviera et al. (de Oliveira

et al., 2013) used five filters (Term, Context, Affix, Dictionary, Capitalization) to decide

upon potential entities over continuous Twitter streams. The approaches to building

these automatic annotation tools have generally fallen in three categories (Liu et al.,

2011b): (a) rule based; (b) adopting machine learning and (c) a hybrid of rules and ma-

chine learning. An analysis of the state of the art in named entity recognition and linking

on using 8 tools was also presented by Derczynski et al. (2015). They also highlight the

approaches used by these tools as: (a) using gazetteers (with finite state machines, or

http://www.europeana-newspapers.eu
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rules, or similarity metrics); and (b) using CRF and Machine learning. Building ad-

vanced modern tools using machine learning requires a training set of annotated data

which has been labelled by humans.

However, given the volume of accessible tweet data, it is infeasible (on a time and cost

scale) to have annotations carried out by a few experts. This underscores the case for

leveraging microtask marketplaces and non-expert crowd workers as a scalable source

of manpower to label tweets. One of the earlier works on crowdsourcing annotations in

tweets was carried out by Finin et al. (2010). They used CrowdFlower and Amazon’s

Mechanical Turk as ‘recruitment agencies’ to source crowd-workers who were required

to annotate occurrences of persons (PER), organisations (ORG) and locations (LOC)

in a corpus of 4, 400 tweets.

One of the earlier works focusing on utilising the crowd for annotation tasks was by

Snow et al. (2008) where they used a pre-computed gold standard to improve annotator

quality. Several other approaches has been presented to improve the quality of task

output by crowd workers. These include using detailed annotation guidelines; engaging

multiple annotators (Lawson et al., 2010) and relying on results with high inter-annotator

agreements. A set of guidelines for corpus annotation, distilled from existing literature

was presented by Bontcheva et al. (2014a). Of note are the sections on in-task quality,

contributor evaluation and aggregation where various approaches such as the use of

gold standards, majority voting, active learning and average reliability are mapped to

their adoption in literature. The role of uncertainty arising from worker annotation was

addressed by Plank et al. (2014) by looking at inter-annotator agreement loss. Also

of importance in crowdsourced annotation is the role of worker diversity (Trushkowsky

et al., 2013) which improves recall by unearthing patterns which could not be seen by

a homogeneous set of limited experts. Further factors also affect worker quality beyond

the presence of a diverse crowd. Some extrinsic factors affecting annotation quality were

presented by Cohn and Specia (2013).

In the next sections, we discuss application scenarios for crowdsourcing annotations on

Twitter datasets.

Scenario: Crowdsourcing named entities

Several approaches have been applied to build tools for entity extraction, using rules,

machine learning, or both (Liu et al., 2011b). An analysis of the state of the art in

deploying software tools for named entity recognition and linking on microposts is avail-

able in Derczynski et al. (2015). The authors also discuss a number of factors that affect

precision and recall in current technology - current limitations tend to be attributed

to the manner of text e.g., vocabulary words, typographic errors, abbreviations and

inconsistent capitalisation (Feyisetan et al., 2014; Ritter et al., 2011).

Crowdsourcing has been previously used to annotate named entities in micropost data

in a study by Finin et al. (2010) which was introduced briefly in an earlier paragraph. In
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this study, Finin et al. used CrowdFlower and Amazon’s Mechanical Turk as platforms.

Crowd workers were asked to identify person (PER), location (LOC) and organisation

(ORG) entities. Each task unit consisted of 5 tweets with one gold standard question,

with 95% of the tweets annotated at least twice. The corpus consisted of 4, 400 tweets

and 400 gold questions. Gold questions (gold data, gold standard) are questions with

answers known to the task requester. This is used to evaluate worker performance and

weed out spammers. A review of the results of Finin et al. (2010) was carried out and

reported in Fromreide et al. (2014). They observed annotations that showed lack of

understanding of context e.g., china tagged as LOC when it referred to porcelain. They

also highlighted the issue of entity drift wherein entities are prevalent in a dataset due

to temporal popularity in social media. This adds to the difficulty of named entity

recognition (Derczynski et al., 2015) and highlights the challenge of solving this task

using a simple crowdsourcing workflow.

A similar approach has been used to carry out NER tasks on other types of data. Lawson

et al. (2010) annotated 20, 000 emails using Mechanical Turk. Their approach incorpo-

rated a bonus system which allowed the payment of a bonus in addition to the base

amount contingent on worker performance. The workers were also required to annotate

person (PER), location (LOC), and organisation (ORG) entities. By incorporating a

bonus system based on entities found and inter-annotator agreement, they were able to

improve their result quality considerably. The results were used to build statistical mod-

els for automatic NER algorithms. An application in the medical domain is discussed in

Yetisgen-Yildiz et al. (2010). The crowd workers were required to identify and annotate

medical conditions, medications, and laboratory tests in a corpus of 35, 385 files. They

used a custom interface (just as we do in our experiments) and incorporated a bonus

system for entities found. Voyer et al. (2010) presented a hybrid approach where expert

annotators identified the presence of entities while crowd workers assigned entity types

to the labels. This approach by Lawson et al. (2010) also used a simplified workflow

while relying on the use of bonuses to improve annotation results.

Demartini et al. (2012) proposed a hybrid crowd-machine workflow to identify entities

from text and connect them to the Linked Open Data cloud, including a probabilistic

component that decides which text to be sent to the crowd for further examination.

Using hybrid systems to offer crowd based query processing has also been studied by

Trushkowsky et al. (2013). Their work leveraged on the crowd to improve recall scores in

open-ended questions and how a mixed crowd can help converge on an accurate answer.

Other examples of similar systems are Braunschweig et al. (2013) and Sabou et al. (2014).

Sabou et al. (2014) also discussed some guidelines for crowdsourced corpus annotation

(including number of workers per task, reward system, task quality approach, etc.,),

elicited from a comparative study. A similar set of recommendations based on task

character, human participation and motivation, and annotation quality was presented

by Wang et al. (2013).
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Compared to the works cited earlier, we performed quantitative analysis based on con-

trolled experiments designed specifically for the purpose of exploring performance as a

function of content and crowdsourcing features. The primary aim of our research (i.e.,

those that involved text labelling scenarios, and specifically, the workflow design chal-

lenge) was not to implement a new NER framework, but rather to understand how to

design better hybrid data processing workflows, with NER as a prominent scenario in

which crowdsourcing and human computation could achieve significant impact. In this

context, our purpose built platform (introduced next in Chapter 5) is seen as a means

to outsource different types of data-centric tasks to a crowd and study their behaviour,

including purpose-built features for quality assurance, spam detection, and personalized

interfaces and incentives.

Scenario: Sentiment analysis and opinion mining

Sentiment analysis refers to techniques employed to extract subjective information rep-

resenting the emotional state (affective or intended) of the author of a piece of text. The

sentiment might be represented at a high level as positive or negative, happy or sad; or

in a more nuanced fined grained form as angry, depressed or excited. Understanding the

sentiment in consumer comments has become important in the fields of brand manage-

ment, marketing and public relations. Targeted sentiment analysis (Ghiassi et al., 2013)

reveals opinions held not on the sentence level as a whole, but on a specific entity in the

sentence. For example in the following sentence, the sentiment is negative, and directed

at the entity ‘Apple iPhone 6’:

– My Apple iPhone 6 is all the bad things of all the different phone brands in one.

Two of the earliest works on carrying out sentiment analysis and opinion mining on

Twitter data were carried out by Go et al. (2009) and Pak and Paroubek (2010). Both

approaches recognised the non availability of training data and therefore used emoticons

as ‘noisy labels’ to pre-judge tweet sentiment i.e., tweets with ‘:-(’, ‘:(’, ‘=(’, ‘;(’ were

assigned negative sentiments, while tweets with ‘:-)’, ‘:)’, ‘=)’, ‘:D’ were assigned positive

tweets. These serve as a guesstimate on the sentiment of the tweet in the absence of hand

labelled data. Other approaches such as by Kouloumpis et al. (2011), used word features

to detect sentiment. However, with the growing utility of microtask market places,

recent efforts such as SemEval-2013 Task 2 (Sentiment Analysis in Twitter) by Nakov

et al. (2013) carried out the labelling of tweets via crowdsourcing. The crowdsourced

corpus was then used to train and evaluate automatic sentiment analysis by 44 teams.

The barrier to entry for these teams was therefore lowered by the availability of the

annotated corpus.

Scenario: Breaking news and crises management

After the news of the death of Osama bin Laden leaked on Twitter (Hu et al., 2012) 3

3http://www.huffingtonpost.com/2011/05/02/osama-bin-laden-death-twitter-leak_n_

856121.html

http://www.huffingtonpost.com/2011/05/02/osama-bin-laden-death-twitter-leak_n_856121.html
http://www.huffingtonpost.com/2011/05/02/osama-bin-laden-death-twitter-leak_n_856121.html
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when Keith Urbahn, former Defence Secretary Donald Rumsfeld’s chief of staff posted

a tweet, it became obvious that Twitter could serve as a veritable source of real-time

breaking news. Another compilation of purported breaking news which first appeared

on Twitter 4 includes high profile stories such as the death of Michael Jackson and the

2009 New York plane crash. This has led to numerous studies on Twitter as a source of

breaking news (Phuvipadawat and Murata, 2010; Kwak et al., 2010; Vis, 2013; Hu et al.,

2012; Petrovic et al., 2013) and how it might be harnessed as a journalistic reporting tool.

However, as opposed to newswire outlets, posted tweets are anecdotal and at the very

best, unverified pieces of information which might be downright rumours. For example,

during the 2011 England riots (Vis, 2013), there were tweets of the London Eye being

on fire. This turned out to be false. Studying these phenomena – that is, true and false

news on Twitter, led to the creation of academic projects such as the Pheme Project
5. One of the approaches employed in the project was crowdsourcing the annotation

of rumourous conversations as reported by Zubiaga et al. (2015) which serves as a first

step to detecting false information automatically. Breaking news on Twitter is usually

accompanied by various hashtags, which gradually coalesce to a set which can be used to

monitor events as they unfold. This has led Twitter once to be referred to as a medium

for ‘crowdsourcing the news’ (Vis, 2013).

A specific class of breaking news, which finds particular prominence on Twitter pertains

to natural disasters and national crises. The 2010 Haiti Earthquake was described by

Heinzelman and Waters (2010); Forrest (2010) as the first disaster in which open-source

and online platforms were heavily utilised. Four of such platforms included CrisisCamp

Haiti, OpenStreetMap, Ushahidi (a specialised crowdsourcing platform), and GeoCom-

mons which were reported by Zook et al. (2010). Of primary concern in the wake of

a disaster is who needs help, and where, which informs the ‘how’ of channelling the

help. Given the lack of geospatial information within and around Haiti at the time of

the quake, one of the ways information on how to help spread was via Twitter. The

#Haiti hashtag quickly spread on Twitter as a way to help gather information which

was also further routed on SMS crowdsourcing platforms such as Ushahidi 6. Ushahidi

volunteers manually monitored the hashtag and were able to geolocate help requests on

the ground. Since then, the Ushahidi platform in conjunction with tweet monitoring,

has been deployed during other times of crises such as the 2010 Chile Earthquake and

the 2010 Russian wildfires. Several researchers have looked into the role of Twitter as

a vital tool for mining data during disasters with crowdsourcing as the principal tool of

harnessing relevant information (Gao et al., 2011a; Goodchild and Glennon, 2010; Gao

et al., 2011b; Heinzelman and Waters, 2010; Ortmann et al., 2011; Starbird, 2011). As

with breaking news (of which disasters are a subset), the crowdsourced data can be used

4http://www.techradar.com/news/internet/10-news-stories-that-broke-on-twitter-first-719532
5http://www.pheme.eu/
6https://www.ushahidi.com

http://www.techradar.com/news/internet/10-news-stories-that-broke-on-twitter-first-719532
http://www.pheme.eu/
https://www.ushahidi.com
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to train automatic tools for extracting information in real-time during crises (Kumar

et al., 2011).

A characteristic of breaking news is the flurry of fragmented information that streams

in as the event unfolds. The use of hashtags make it slightly easier to aggregate such

information on Twitter, however, people tend to use different hashtags during the early

and most critical moments of the disaster (e.g. #Haiti, #SaveHaiti, #PrayForHaiti).

Apart from that, it is also essential to separate the commiseratory tweets, from those of-

fering information on the ground which could assist in the relief efforts. Just as Ushahidi

volunteers manually monitored hashtags, scaling out via crowdsourcing would require

constant monitoring and real-time ‘harvesting’ of relevant information.

4.2.1 Challenge: Workflow Design

From the iPhone sentiment example above, we observe multiple steps required to obtain

the final targeted sentiment: first, named entity recognition (NER), then the sentiment

analysis task. How could we design this as a crowdsourcing task to leverage on the

wisdom of the crowd? Given the initial task (named entity recognition), it becomes a

non-trivial task when a group of non-experts attempt to annotate the text entity – is it

Apple iPhone 6 as a product, or Apple as a company and iPhone 6 as the product, or

simply iPhone as the product. A simpler example perhaps would be the sentence:

– President Barack Obama is on his way to London, fun times ahead!

This can easily be annotated by state of the art NER tools – recognising ‘Barack Obama’

as a person, and ‘London’ as a location with high precision and recall. It would thus be

a waste assigning this sentence to be annotated by the crowd. A more tricky example

noted by Derczynski et al. (2015) is:

– Branching out from Lincoln park after dark ... Hello ‘Russian Navy’, its like the same

thing but with glitter!

Despite the capitalisation, ‘Lincoln Park’ does not refer to a location, however the com-

pound phrase ‘Lincoln park after dark’ refers to a nail varnish colour. These 3 examples

shed light on a possible workflow for crowdsourcing named entities on microposts. Cer-

tain tweets are essentially trivial and could be annotated with high accuracy using an

automatic tool. Other tweets yield high consensus and can be outsourced to the crowd.

While a final set generate disagreement and might need to be settled by a team of

experts. Designing a workflow that plays to the strength of the crowd becomes essen-

tial in: minimising costs by annotating appropriate tweets using automatic tools, and

maximising accuracy by utilising experts where necessary.
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4.2.2 Challenge: Real-time Crowd Work

Microtask crowdsourcing has often been praised for its ability to produce results quickly

and accurately. Yet, an increasing number of applications come in with much harder

time constraints, which push the boundaries of the traditional microtask model to deliver

in seconds or less (Bernstein et al., 2011). Examples of such real-time crowdsourcing

applications include machine learning for image recognition (von Ahn and Dabbish,

2004) and text-to-speech conversion (Lasecki et al., 2013a); accessibility design (Bigham

et al., 2010; Lasecki et al., 2012a, 2013a); and disaster management (Gao et al., 2011a).

Timely worker recruitment and task completion are, alongside better crowd engagement,

key to mastering time-critical crowdsourcing scenarios (Lasecki et al., 2014). Several

approaches have been proposed in the literature to address them (Lasecki et al., 2014,

2013a, 2012a; Bernstein et al., 2011; Bigham et al., 2010). However, they tend to use

much larger crowds than necessary (Lasecki et al., 2014) or recruit in advance (Bigham

et al., 2010) – in both cases the costs add up quickly for high volume, high throughput

problem spaces.

The challenge then would be two-fold: (i) to recruit sufficient workers just-in-time at

the outset of a breaking news report and (ii) employ a crowdsourcing design pattern

that would facilitate real-time annotation of the streaming datasets. The difficulty of

recruiting a large crowd on time is equally compounded by the cost of paying them per

unit time as new pieces of work come in (which might not contain useful information

– although, automatic filtering mechanisms can cut down on noisy inputs). The main

challenge therefore involves undertaking real-time annotation, at reasonable accuracy

levels, low cost, and within hard time constraints. Our aim was to come up with a

proposal that is faster than existing approaches, while keeping the costs manageable.

We believe these two aspects are vital in order for microtask crowdsourcing to establish

itself as a data processing component that can be applied to large data sets to enhance

automatic algorithms in real-time.

4.3 Image Labelling

Image labelling is an important pipeline component in artificial intelligence and computer

vision research (Sorokin and Forsyth, 2008). Earlier image datasets were built in-house

either by teams of experts manually assigning labels to images or through automatic

techniques. Some of these include: the Berkeley database (Martin et al., 2001) containing

natural images (a targeted total of 1,000 images), which were segmented by a group

of individuals based on the subjects in the image; the Caltech dataset of 101 image

categories (Fei-Fei et al., 2006; Griffin et al., 2007) which was trained on a few images

labelled by 2 subjects; a dataset of 44,773 faces with an initial training set of 1,000
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faces manually labelled by Berg et al. (2005); and a corpus of 13,233 target faces in

unconstrained environments by Huang et al. (2007). The study by Huang et al. (2007)

further surveys 30 datasets of face images with corpora sizes ranging from 185 (M2VTS

Multimodal Face Database) to 99,000 (CAS-PEAL Face Database) images.

Figure 4.2: The ESP Game (von Ahn and Dabbish, 2004)

However, the practice of manually labelling images in a lab gradually gave way to other

scalable approaches. One of such is LabelMe by Russell et al. (2008). LabelMe was an

early web platform for annotating images to be used in object detection and recognition

research. This helped to scale the labelling process beyond a group of localised anno-

tators. Others were image annotations designed as games, such as the ESP game by

von Ahn and Dabbish (2004) (shown in Figure 4.2) and Peekaboom (Von Ahn et al.,

2006). The ImageNet project 7 (Deng et al., 2009) is an ongoing research project to

organise images according to the WordNet hierachy 8. WordNet is a lexical database

of English words with synonyms grouped into synsets interlinked by semantic relations.

ImageNet contains over 500 images for each noun based WordNet node, with a total of

14,197,122 images (with a target of 50 million) and 21841 synsets indexed at the time of

writing. ImageNet sources its images automatically via search queries to search engines.

However, the verification and annotation of the images into synsets is carried out by

crowd workers on Amazon Mechanical Turk. Together with the work by Sorokin and

Forsyth (2008), this set the scene for large scale, scalable annotation of image data by

leveraging on crowdsourcing.

7http://image-net.org/
8http://wordnet.princeton.edu/

http://image-net.org/
http://wordnet.princeton.edu/
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Building large annotated image banks like ImageNet come with challenges – even moreso

when building an imageset for a targeted domain. ImageNet leverages on the maturity

of existing image search engines, therefore creating a tag bank with low initial cost

overhead. However, in order to build domain specific image annotations, or, for segmen-

tation of image elements at scale, the search engine query would not be an option. In

such cases, the images would have been generated as a result of an earlier domain phe-

nomenon – e.g., medical images or deep space imagery. Annotating these niche images

would require a large and motivated crowd as the first step. Afterwards, the annota-

tions need to be verified to yield accurate labels. In the next sections, we discuss two

application scenarios of image labelling. We also highlight challenges faced in using the

crowd to carry out the annotations in each of the scenarios.

Scenario: Medical imaging

One of the domains where crowdsourcing finds niche application in is the sub-domain

of medical imaging. Images are produced in clinical settings in vast numbers, provid-

ing critical information for diagnosis, treatment planning and other tasks (de Herrera

et al., 2014). Radiology, endoscopy, magnetic resonance and radiography are but a few

sources of images which require interpretation. A study by de Herrera et al. (2014)

demonstrates the suitability of crowdsourcing for medical image classification. By using

workers from CrowdFlower, they demonstrated that crowdsourcing could be used to

improve the quality of an automatic classification task by increasing the amount of the

training set. Crowdsourcing was used to create and correct the training set with strict

quality control parameters at a ‘very limited cost’. Other research works such as Ma-

vandadi et al. (2012) and Luengo-Oroz et al. (2012) describe specialised crowdsourcing

systems (designed as games) for identifying the presence of malaria in infected red blood

cells.

Figure 4.3: MalariaSpot (Mavandadi et al., 2012)

In these games (particularly MalariaSpot shown in Figure 4.3), ‘untrained’ crowd workers

or casual game players are able to achieve annotation accuracies over 99%. This yields

significant cost and time savings translating to actual saved lives. The challenge then is:

how to get enough people to annotate malaria test images (or any other clinical image).
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Scenario: Computer vision

In the book – ‘Computer Vision: A Modern Approach’, Forsyth and Ponce (2003) pre-

sented crowdsourcing as a means of gathering data collections cheaply. The datasets

created manually by researchers in the previous section, were all created to improve the

computer vision capabilities of certain algorithms. According to Wah (2006), crowd-

sourcing finds its application in computer vision in the following respects: large scale

data collection, image annotation, video annotation, investigating deficiencies and per-

forming classification tasks that a difficult for computers.

4.3.1 Challenge: Motivation and Rewards

For domain specific image annotations, one of the primary challenges is attracting enough

participants. For example, under the Zooniverse umbrella of citizen science projects

(Raddick et al., 2008), ranging from astronomy, ecology, cell biology, humanities, and

climate science, some projects have failed to reach critical mass, while others have simply

not taken off as quickly as the more popular Galaxy Zoo projects. These domain specific

labelling projects, just like medical imaging annotation projects, need to be designed in

ways that motivate participation.

4.3.2 Challenge: Synchronous Collaboration

Crowdsourcing for computer vision serves as a first step for building better AI algo-

rithms. As such the training data has to be as accurate as possible. This has led to

the design of various workflows such as ‘find-fix-verify’ (Bernstein et al., 2010) which

use multiple workers in sequence to ensure the quality of the task output. This is not

unusual in actual work and academic circles with collaboration and interaction being a

mainstay of social life. This has informed the idea of adopting synchronous collabora-

tion as a way to improve the quality of crowdsourcing tasks, and serve as an incentive

mechanism in its own right. However, given the individualistic nature of traditional

paid microtask crowdsourcing, designing systems where workers become reliant on one

another (especially for eventual financial payouts) presents unique challenges – including

the potential to be completely boycotted by the workers.

4.4 Background and Related Work

In this section, we present related work in the lines of our two application scenarios i.e.,

text annotation and image labelling. We discuss specific crowdsourcing platforms from

related literature, implemented within the context of the scenarios of interest. In Chapter

5 we introduce a our crowdsourcing platform (Wordsmith) which sources workers from
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existing microtask marketplaces. We designed Wordsmith, gleaning insights from the

systems discussed in the following paragraphs and centering it around the four challenges

we seek to address.

4.4.1 Text Annotation

Phrase Detectives - Poesio et al. (2015)

Phrase Detectives is a single player game for anaphora annotation and resolution.

Anaphora is the linguistic mechanism of identifying an entity already used in a text.

In Phrase Detectives (Chamberlain et al., 2008), players identify text as either referring

to an earlier mentioned entity or a new entity. This is the annotation section of the

game and it is called name-the-culprit. The validation section of the game, called detec-

tives conference, presents a player with an annotation from another player. The player

then either agrees with the submitted choice or switches to annotation mode to enter

a new answer. Phrase detectives consists of a training phase with gold standard ques-

tions shown to new players; it uses a point system to offer feedback on correct answers;

and it awards bonuses for agreeing with the gold standard on subsequent questions. It

also advances players across levels with comparative scores displayed on a global leader-

board. We have also incorporated all these ideas into Wordsmith. Unlike Wordsmith,

Phrase Detectives does not primarily source players from crowdsourcing marketplaces

such as Amazon’s Mechanical Turk or CrowdFlower. However, it has a Facebook version

that sources non-anonymous players from the social network, leading to better quality

control.

PlayCoref - Hladká et al. (2011)

PlayCoref is a single player and two-player game similar to Phrase Detectives. However,

unlike Phrase Detectives which is played in single player mode and focuses on anaphora

detection, PlayCoref focuses on detection of coreference chains. Hladká et al. (2011)

gives 8 further differences between the two systems. In PlayCoref, players read a text

document for 5 minutes and then connect all co-referencing words (as opposed to full

phrases) in as many sentences as possible. During the game session, a player can see the

number of words their opponent has linked into the coreferential pairs. The player also

has access to the number of sentences with at least one coreferential pair marked by the

opponent.

Dr. Detective - Dumitrache et al. (2013)

Dr Detective is a single player game that engages players into solving annotation tasks on

medical case reports. Unlike most crowdsourcing platforms and GWAPs, Dr Detective

players are medical experts (as opposed to untrained annotators), and, it is tailored to

locate disagreements (as opposed to annotator agreement). Dr Detective allows users

to carry out different kinds of annotation tasks on medical case reports including: term

extraction (identifying relevant terms in a text), term categorisation (classifying a term
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into an appropriate category), relation extraction (identifying whether or not a relation

exists) and relation categorisation (classifying a relation into an appropriate category).

It also features game mechanics such as point scores, levels and a leaderboard.

Sentiment Quiz - Rafelsberger and Scharl (2009)

Sentiment Quiz was one of the early games targeted at sentiment detection. It sources

game players (and their social circle) from Facebook, who are required to evaluate

whether sentences and dictionary terms express positive or negative sentiments. Players

select a sentiment on a 5-point scale associated with a given word. The dataset used

consisted of messages surrounding the US Presidential Election 2008 where people and

media outlets expressed different views on contesting candidates. Sentiment Quiz’s scor-

ing is based on annotation agreement with disagreement leading to penalty points. It

leverages on the Facebook platform not only to attract users, but also to promote scores,

levels and leaderboard visibility.

PackPlay - Green et al. (2010)

PackPlay is a collaborative game for annotating semantically rich corpora. It consists

of two games variants: Entity Discovery and Name That Entity. Players are paired

with an anonymous partner (or a bot that mimics a previous player) when they begin

the game. In order to maintain output quality, every player completes part of a 60

sentence pre-test drawn from a gold standard of know answers within the Tjong et al.

(2003) dataset. The Entity Discovery game is a named entity recognition task where

the paired partners are to anonymously and correctly identify as many entities (person,

organisation and location) as possible. Scores are given for overlaps. The Name That

Entity game is the verification stage of the game where players are always paired with a

bot that shows selected entities from previous Entity Discovery game runs. The player

is then required to select the matching entity type.

PhraTris - Attardi et al. (2010)

PhraTris is a game for annotating sentences with syntactic dependencies. The game

bears semblance with the brick assembling game Tetris - hence its name. Rather than

piecing bricks together, a player is required to rearrange blocks of sentences in a logical

manner. PhraTris is a single player game without a strong crowd component. However,

Its core can be re-purposed to build a collaborative or crowd powered game using features

from other surveyed platforms.

4.4.2 Image Labelling

ESP Game - von Ahn and Dabbish (2004)

This is perhaps the most popular annotation platform which popularised the term Games

with a purpose. The ESP game is an interactive two-player game in which two randomly

paired are shown an image. The objective is to guess what labels the partner uses to
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describe the image thereby advancing them to the next image (hence the name extrasen-

sory perception or ESP). As the players advance to new images, they build up scores.

From its launch in 2003, ESP has amassed over 200,000 players, annotating over 50 mil-

lion labels. However according to Deng et al. (2009), in a bid to quickly move through

images, players tend to annotate images with high level constructs such as animal or

dog rather than husky or greyhound. ESP also does not afford for segmentation or iden-

tifying the position of objects in images which was addressed in further work such as

Von Ahn et al. (2006)

Peekaboom - Von Ahn et al. (2006)

Peekaboom is an image annotation game designed by the authors of the ESP game

to address some of its shortcomings especially that of object position identification.

Peekaboom is also an interactive two-player game, however, unlike the ESP game, players

have asymmetric roles. An image is presented to one player (called Boom), while the

other player (called Peek) is to guess the image without initially seeing it. The Boom

player hints the Peek player by clicking on segments of the image which are then revealed.

Once the Peek player guesses correctly, the roles are switched and vice versa continue

for four minutes. Peekaboom improves on the ESP game by providing not only image

identification, but also partial image segmentation and information as to the position of

the object in the image.

LabelMe - Russell et al. (2008)

LabelMe is a database an annotation tool used to carry out detailed annotation and

segmentation of images. The images consist of the MIT CSAIL Database of objects and

scenes 9, and other images taken by the authors, leading to over 14,000 images. LabelMe

allows annotators to identify not only high level captions, but also objects embedded in

a scene. Therefore, unlike the ESP game, and improving on Peekaboom, LabelMe offers

position information, as well as segmentation in form of object shapes. The annotation

incentive is access to the database, i.e., one has to annotate at least 10 images to have

access to the entire dataset. LabelMe features a strong element of choice without being

overly pedantic on the choice of labels used. However, this leads to a bottle neck as label

verification is not done by the crowd, but by the authors. Unlike Wordsmith, LabelMe

does not source its annotators from crowdsourcing marketplaces such as CrowdFlower

or Mechanical Turk.

Phetch - Von Ahn et al. (2007)

Phetch is a multi-player interactive game for annotating images with accurate long form

captions. Unlike the ESP game and Peekaboom, rather than labels such as man or

flute, players come up with descriptive captions such as an abstract line drawing of a

man with a violin and a woman with a flute. The game is played by three to five people,

one Describer and two or more Seekers. The Describer is shown an image, and assigns

a descriptive caption which is broadcast to the Seekers. The Seekers search out the

9http://web.mit.edu/torralba/www/database.html

http://web.mit.edu/torralba/www/database.html
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image from a database of images (e.g., the ESP dataset) and reveal it when they are

confident. The correct Seeker then becomes the Describer. Phetch also extends the ESP

model by introducing penalties for poor descriptions (from the Describer) and selecting

the wrong image (from the Seeker). It also uses automated bots simulating players

replaying decision to other players to improve the quality assurance on captions and

images.

Magic Bullet - Yan and Yu (2009)

Magic bullet is an ESP inspired game consisting of two competing teams of two players

each. As in the ESP game, team players are chosen and assigned to teams at random.

Players are to agree on the textual meaning of a segmented CAPTCHA image. The first

team to agree gets the score. Magic Bullet yielded as high as 98% labelling accuracy in

one of their test studies.

TagCaptcha - Morrison et al. (2009)

TagCaptcha is another CAPTCHA based, image annotation tool. However, unlike Magic

Bullet, the images are not textual images but object images. TagCaptcha works in single

actor mode wherein, a player is shown an image which is meant to have a specific one

word label. The evaluation reported accuracy scores of 70% with players giving high

level conceptual labels to images (e.g., ‘animal’ instead of ‘bear’ or ‘dear’).

SeaFish - Thaler et al. (2011)

SeaFish is a single player game in which a player is to select images that are semantically

related to a concept (represented as an image from DBpedia). For example, distinguish-

ing between an image of a blackberry phone and the blackberry fruit. Unlike the ESP

type games, players do not type in actual labels, however, semantic data is generated

from game play.

MOLT - Mavandadi et al. (2012)

Several studies have been carried out in applying crowdsourcing to the field of medi-

cal imaging. Mavandadi et al. (2012) presented MOLT, an interactive image labelling

game where players are to identify malaria infected red blood cells. Their results reveal

diagnostic accuracy scores within 1.25% of those by an expert medical professional.

MalariaSpot - Luengo-Oroz et al. (2012)

MalariaSpot is a game where players counted the number of parasites in blood smears

to identify cases of malaria. The results yielded over 99% accuracy over 12,000 game

plays in comparison with expert microscopists, which on the average spend 20 minutes

identifying a single case.
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4.5 Summary

In this chapter, we explored two broad ap-
plication areas which form the basis of all
our experiments in future chapters: text
annotation and image labelling. We also
discussed scenarios within each applica-
tion area, before drawing a parallel with
our four crowdsourcing challenges. Sub-
sequently, we presented a literature review
highlighting several bespoke crowdsourcing
platforms which find relevance within each
of the two broad application areas. This
serves as a precursor to the next chap-
ter on Wordsmith, our own custom-built
crowdsourcing system.



Chapter 5

Wordsmith

In this chapter, we introduce Wordsmith
– our gamified platform for carrying out
paid microtask crowdsourcing. We de-
scribe its interface design vis-à-vis each of
the four challenges which we set out to ad-
dress and the two application scenarios;
next we describe our crowdsourcing pro-
cess and how Wordsmith is used to carry
out tasks from project definition to exe-
cution. Finally, we highlight how we im-
prove submission quality by tackling mali-
cious workers and evaluating worker sub-
missions.

5.1 Introduction

Crowdsourcing provides a framework for leveraging on the scale and wisdom of the crowd

to carry out tasks quickly and cost effectively. Paid microtask crowdsourcing operates

via marketplaces where task requesters post tasks and potential workers search for and

solve available tasks. This is different from the GWAP or Citizen Science models, which

involve no financial remunerations. Several challenges arise in deploying paid micro

tasks: from the technical to the ethical. This thesis is an attempt to study some of

these challenges in-depth and to understand specific challenges associated with paid

microtask crowdsourcing. To test our theories, we needed a flexible platform that was

adaptable to our varying needs. We created Wordsmith not as ‘yet another annotation

tool’, but as a system for carrying out experiments in paid microtask crowdsourcing

where we had full control not only of the interface, but of all the incentives that sit on

77
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top of the base financial payments. Wordsmith overcomes limitations of conventional

crowdsourcing marketplaces (such as CrowdFlower and Mechanical Turk) in the power

it affords to design complex gamification interfaces and workflows. It also leverages

on the marketplaces as a large source of available workers, and a medium for worker

compensation.

We implemented Wordsmith to test out theories on addressing four of the twelve chal-

lenges posited by Kittur et al. (2013) in the context of gamified paid microtask crowd-

sourcing. We selected two of the most popular types of crowd task types as reported

by Difallah et al. (2015): text annotation (or specifically Twitter annotation) and im-

age labelling. These two task types were discussed earlier as crowdsourcing application

scenarios in Chapter 4. In this chapter we present Wordsmith in detail, elaborating

design choices and implementation strategies in line with the four challenges and two

application areas.

We also look at the annotation process and how Wordsmith supports each stage of the

crowdsourcing lifecycle from project definition to data evaluation and aggregation. Since

the specific interface design and the underlying design principle varies depending on the

task mode, we leave the in-depth discussion for the related chapters. Figure 5.3 below

shows the Wordsmith interface for labelling images.

5.2 Interface Design

Wordsmith is a gamified platform for carrying out paid microtasks. Unlike most of

the other games surveyed in Chapter 4, Wordsmith sources its players (or workers)

from crowdsourcing marketplaces such as CrowdFlower and Amazon Mechanical Turk.

Wordsmith is used to carry out named entity recognition (NER) tasks on microposts.

In NER tasks, workers are required to identify instances of person (PER), organisation

(ORG), location (LOC) and miscellaneous (MISC) entities in tweets. Wordsmith is also

used to carry out image labelling tasks - albeit at a much higher level (i.e., we do not

carry out positional analysis or image segmentation). Wordsmith’s interface features a

three pane layout: the first pane to the left holds the annotator information and game

state; the second (middle) pane holds the task details and user controls; while the last

pane holds additional information, current leaderboard and global information. This is

the general layout, however, the specific design varies based on the application scenario

and the specific challenge being addressed. In the following sections, we briefly describe

the modifications we made to address the four challenges. From Chapter 6, we describe

the specific platform designs in more details.
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5.2.1 Addressing: Workflow Design

In an earlier work, we described a way to quickly extract entities from large micropost

datasets (Feyisetan et al., 2014). However, some of those tweets cannot be properly

annotated automatically, while others need to be further disambiguated by a team of

experts, hence we introduced a crowd component to carry out named entities on micro-

posts. This version of Wordsmith (standard tweet annotation mode) sits as part of the

design for a hybrid workflow for tweet annotating. As shown in Figure 5.1, workers are

shown tweets with selectable words, which they can identify as instances of entity types.

For example, in the Figure, a crowd worker could select the words ‘Kanye’ then ‘West’

and drag a descriptor to define ‘Kanye West’ as the instance of a person (PER). The task

starts with a training phase after the workers have been sourced from CrowdFlower. In

the training phase, the worker must annotate a tweet with known answers. Afterwards,

the worker annotates a baseline set of tweets as requested by the task designer.

Figure 5.1: Wordsmith Interface Addressing: Workflow Design

The standard tweet annotator mode operates as a single actor platform with minimal

gamification elements (no points, badges, levels or leaderboards). Workers have no

perceivable knowledge of other users and are not given real-time scores based on their

input. The system mirrors a traditional paid microtask platform, however, unlike the

other systems, workers can skip tweets and select only the tasks they can confidently

solve. Workers can also submit more tasks beyond the requested baseline. With these

elements of choice, coupled with the annotation accuracy from the task output, we can

get insight into what tweets the crowd is best at annotating. For example, if tweets

mentioning organisations are continually and consistently skipped, while tweets refer-

ring to people are annotated accurately, then it implies workers are more suited to

carrying out ‘person’ annotations. Piecing the information helps in designing effective

workflows that combine automatic tools, inexperienced crowds and expert annotators.
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The interface design and inner workings of the standard mode are detailed in Chapter

6.

5.2.2 Addressing: Real-time Crowd Work

To carry out real-time annotations, Wordsmith was modified to handle crowdsourcing

contests. Wordsmith’s contest mode for tweet labelling offers a more interactive and

gamified outlook to named entity recognition when compared to the standard tweet an-

notation mode. It works as a multi-player competition for annotating named entities in

tweets. The base interface and annotation layout is identical to the standard annotation

mode. Workers can also skip tweets and annotate as many tweets as possible (within

a fixed time constraint). However, unlike the standard mode, multiple workers connect

to the platform concurrently to annotate a streaming set of tweets. Gamification ele-

ments are also present in the form of instant score computations based on the quality

of individual worker annotations, and a leaderboard, which shows the relative rankings

between connected workers. Figure 5.2 shows the contest layout to support real-time

crowdwork. The middle pane holds the streaming tweets available for annotation for a

set period of time (known as the warping time – more details in Chapter 7). When a

worker selects any of the tweets, they are taken to an annotation interface identical to

that displayed in Figure 5.1 where the tagging process follows the steps in the standard

tweet annotation mode. The left pane displays the number of tweets annotated by the

current worker; while the right pane holds the leaderboard and the number of currently

connected competing workers.

Figure 5.2: Wordsmith Interface Addressing: Real-time Crowd Work

A fixed number of workers (default of 100) connect simultaneously to the platform.

Workers can see the number of other contestants connected to the platform (updated
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constantly as some workers drop off the task). Workers select as many tweets as possible

to annotate while each stream section is visible. The entire contest runs for about 6

minutes. Scores are awarded based on annotation agreements with an existing gold

standard. The contest mode also contains a k-view leaderboard that is updated in

real-time based on worker submissions. The leaderboard displays k workers ahead and

behind the current worker’s ranking. Scores are awarded for correct entity identification

and typing so workers are incentivised to annotate correctly rather than try and make

as many submissions are possible. In the contest mode, only a certain proportion of

annotators are remunerated. To achieve this, Wordsmith generates an exit code, which is

only displayed to workers who are eligible for payment. Eligibility criteria vary depending

on the experiment condition – however, its primarily a function of worker ranking and

the reward spread (i.e., the number of workers to be paid). The contest mode proved

to be an effective way to elicit annotation judgements in near real-time. The interface

design and inner workings are detailed in Chapter 7.

5.2.3 Addressing: Motivation and Rewards

We use Wordsmith’s image labelling capabilities to test out theories of task motivation

and incentives in order to address the challenge of motivation and rewards in paid

microtask crowdsourcing. Just as Wordsmith’s tweet annotator worked in two different

modes, with each mode designed around a specific challenge; Wordsmith’s image labeller

also operates in two modes: (a) Single player mode (detailed in Chapter 8) addressing

the challenge of motivation and rewards; and (b) Two-player mode (detailed in Chapter

9) addressing the challenge of synchronous collaboration. Wordsmith’s single player

image annotator is a fully gamified tool for labelling images as shown in Figure 5.3.

The left pane holds the workers badges, displays the current score and achieved game

level. The middle pane displays the actual image to be annotated, a list of restricted

words, and a free text field to enter descriptive labels. The right pane holds a hourly

leaderboard and an activities widget displaying the achievements of all the participating

players in real-time. A player connected to the platform is shown an image and is

required to provide associated keywords describing the image. Players enter free text,

which is quality checked for correctness (as a valid English keyword) and uniqueness

(the keyword is not repeated on the current or recent image). At later stages of the

game, a restricted list of keywords is presented, and this narrows the word-space of

the player. Several gamification mechanics are employed to keep the players engaged -

such as points, levels, badges and a global leaderboard. Scores are awarded for unique

and valid keywords submitted, while bonus points are awarded for keywords that match

submissions in the gold standard (we describe this as a quasi gold standard as the labels

cannot be regarded as complete descriptions of the images). Players cannot interact

with other players, however, the leaderboard and activities widget keeps players aware

of the presence of other players – this also serves as a source of task motivation.
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5.2.3.1 Game Design

The design was heavily borrowed from the ESP game, with variations described below.

The basic elements consisted of an image frame and text fields for inputting keywords.

We describe Wordsmith in terms of the four defining properties of games introduced by

McGonigal (2011) in her book ‘Reality is Broken’ as follows: its goal, rules, feedback

mechanisms and participation.

Figure 5.3: Wordsmith Interface Addressing: Motivation and Rewards

Game Goal

The goal of the game was to annotate as many images as possible (up to the maximum

in the dataset) with descriptive keywords. In designing Wordsmith, we incorporated

several elements to engage the player in achieving the goal. We added progress timers,

progress bars and feed forward alerts.

1. Progress Timer - we added a colour coded slider which showed the amount of time

left to tag each image. The slider went from blue to green, then orange and red as

the player ran out of time.

2. Progress Bars - a progress bar was included below the player’s level to indicate

how close the player was to advance to the next level.

3. Feed-forward Alerts - when a player was close to attaining a new badge or level,

asides the progress bars, a subtle alert appeared to keep the player engaged with

the system.

Rules and Constraints

Due to the simplicity of Wordsmith as an image labelling game, the rules of Wordsmith

merely consist of constraints designed to prevent cheating and input from spam-bots.

The game elements adopted are summarised as follows:
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1. English Checker - the game made a call to a web service to ensure that the keywords

were genuine English words. This improved the quality of tags submitted.

2. Reserved Words - (also known as taboo words) as players advanced into new levels,

a set of restricted words were assigned to each image. This limited the keywords

the players could use to tag the image.

3. Duplicate Checker - given the potential of players inputting multiple English words

like cat, cat, cat, we checked that the same word wasn’t inputted more than once

before the player submitted.

4. Spam Checker - we alternately asked players to type in the current day of the week

and the current year of the month as a simple human check. This was required

after tagging every 10 images. This was limited as such, so as not to discourage

genuine players.

Feedback Mechanisms

Feedback consists of information provided to players on their progress and current stand-

ing in the game. Providing feedback has been shown to improve player retention and

engagement by enhancing intrinsic feelings of accomplishment as players advance. Some

of the interface elements of Wordsmith are shown in Figure 5.4 below.

Voluntary Participation

The final trait was to present the task within the game as what the player chose to

do rather than what they were mandated to do. In this regard, Wordsmith supported

player freedom in three ways;

1. Optional Participation - players could simply join the game with a unique numeric

ID. They did not need to fill out a registration form, provide any personal details

or select a password.

2. Optional Exit - players could stop playing the game at anytime. In essence, players

could actually tag less images than required or choose not to tag any images at

all.

3. Optional Images - players could freely skip images they were not interested in and

selectively tag images.

For all our image labelling experiments, we use the ESP dataset by von Ahn and Dabbish

(2004) and source our players from CrowdFlower. The challenge being studied with

the single player Wordsmith image labeller is the interplay between paid micro tasks

and gamified platforms. We seek to understand worker motivations beyond financial

payments and fun. We use the SAPS framework (Status, Access, Power and Stuff) to

study the relationships between these high level sources of motivation. We also introduce
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Figure 5.4: Wordsmith Interface Elements

(a) Worker Level and Score (b) Leaderboard and Alert

(c) Worker Badges (d) Activities Widget

and study the concept of furtherance incentives as a way to reduce the drop off rates from

the game. Overall, the single player game mode represents an attempt to understand

the challenge of keeping players engaged on paid microtask platforms. More details are

presented in Chapter 8.

5.2.4 Addressing: Synchronous Collaboration

The Wordsmith two-player image annotator is more reminiscent of the original ESP

game (von Ahn and Dabbish, 2004). A player connecting to the game is paired with
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another available player. Both players are shown the same image and are required to

supply matching keywords to describe the image. The rules are quite similar to the single

player mode, players must submit valid and unique keywords and might be restricted

from using certain labels. Bonus points are also awarded for agreeing with labels in

the gold standard dataset. The paired players cannot interact with each other and

only receive feedback when they supply matching labels. Advancement in the task is

collective (i.e., both players must match on a certain number of keywords to see the

next image), however, scoring is individually based on the quality of submitted labels.

The global leaderboard therefore reflected the individual scores of players (as the players

could switch partners at any point in the game)

Figure 5.5: Wordsmith Interface Addressing: Synchronous Collaboration

The interface design is shown in Figure 5.5 and 5.6. It is almost identical to the single

player annotator from Figure 5.3 sporting the same gamification elements (badges, levels,

leaderboard and activities widget). In addition to these elements, there are additional

notification areas in the middle pane to notify players of their connection to a partner

player, as well as their partner’s annotation activity. The two-player image annotator

is not a new concept as it dates back to the original ESP game. The theory being

understudied here is the impact of social pressure and social flow between the two

collaborating players. As a paid gamified microtask platforms, players do not only

partake in tasks for the fun of it (as with the ESP type games). However, players are

required to complete a baseline set of micro tasks before they are eligible for payment.

In the two player game however, since players can switch partners at any point in the

game, they invariably become eligible for payments at different points in time. It is

therefore inevitable for a player to leave another player who has not been paid in the

middle of the game (however, Wordsmith would attempt to immediately reassign the

unpaid player to a new partner). Our theory of social pressure is that the unpaid player

can exert pressure to request the other player to remain in the game (and tag more
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Figure 5.6: Wordsmith Collaboration Interface (newly paired players)

images than required) for the unpaid player to get paid. More details are presented in

Chapter 9.

5.3 Crowdsourcing stages

Hovy and Lavid (2010) gave an overview of the annotation process. They identified

seven questions that should be answered in the process of annotating corpora for NLP

projects. This process is relevant for our tasks and we present and elaborate on them

below.

• Selecting the corpus

• Instantiating the theory

• Selecting and training the annotators

• Specifying the annotation procedure

• Designing the annotation interface

• Choosing and applying the evaluation measures

• Delivering and maintaining the product
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Figure 5.7: Crowdsourcing process by Geiger et al. (2011)

Geiger et al. (2011) also presented a four step approach to crowdsourcing: preselection,

accessibility, aggregation and remuneration. A guideline on corpus annotation through

crowdsourcing was also presented by Sabou et al. (2014) wherein they highlight four

stages from project definition through to data aggregation. These steps are shown in

Figure 5.8. We now present how Wordsmith works through these four crowdsourcing

stages and through the seven annotation process steps:

Figure 5.8: Crowdsourcing stages (Sabou et al., 2014)

5.3.1 Project Definition

Instantiating the theory

Crowdsourcing in the research community begins with the instantiation of a theory. For

example, in the later chapters of this work, we study challenges in incentives engineering,

collaborative and real-time crowdsourcing. The associated theory determine the selected

corpus (in the presence of several available corpora), task design, annotation categories,
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guidelines and procedures. Complex theories also lead to complex workflows resulting in

iterative annotation instructions and pilot studies. Crowdsourcing task designs remain

an art (as opposed to exact science), therefore, Wordsmith offers a flexible platform for

technical designers to rapidly test and pivot on their initial theories.

Selecting the corpus

In instances where the theory can be studied on different datasets, selecting a suitable

one becomes the next step. In some cases however, the corpus might be the subject of

the theory (especially when it is the only one available). In cases of dataset multiplicity

and availability, it is important to select one that is representative of the phenomenon

to be studied in the theory. For example, in annotating language resources, the dataset

should contain a natural distribution of words. The corpus creation date and sampling

methods are also important as this can lead to variations in annotation results when

the experiments are repeated at a later time (a related phenomenon of entity drift was

reported by Fromreide et al. (2014)).

Specifying the annotation procedure

The annotation procedure is presented as instruction and guidelines for members of the

crowd. In designing the procedure, the requester or team of experts go over the theory

and task design, attempting to carry out the workflow on Wordsmith. This leads to

instruction refinements such as: allowing for multiple option, increasing the context

supporting the annotation decision or changing the sampling method or period of the

dataset.

Once the guidelines are ready, Wordsmith provides interfaces for varying degrees of

information policy adoption. A worker on engaging a task from a recruitment platform

(e.g. CrowdFlower) sees a default set of instructions. Further in-line instructions can

be given during task interaction - some of which are detailed in subsequent chapters.

For example, in named entity recognition tasks, the right side bar is modified to hold

additional information on the definition of entities and how to disambiguate them in one

of our control experiment. In the image labelling tasks, additional guidelines come in

the form of alerts that show how to attain points and why some labels are rejected.

Decomposing and designing the task

The requester determines: the number of workers; number of annotation categories and

worker compensation. Wordsmith is able to programmatically limit the number of con-

nections to one microtask, or set a minimum number of workers required for another.

For named entity recognition tasks, the default is set to 3 workers. Wordsmith also

supports utilising a variable number of workers, which sets it apart from traditional

crowdsourcing platforms. This features prominently in tasks where Wordsmith is used

as a GWAP platform given the differences in intrinsic worker motivation on these tasks.
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This is also essential in choice based tasks where workers are encouraged to skip micro-

tasks that they are not confident about. This can serve as a measure of task ambiguity,

task difficulty or annotator confidence.

Wordsmith supports two broad classes of category numbering: (a) fixed - for example,

in named entity recognition tasks where the entity types are pre-determined by the

task requester; (b) variable - for example, in image labelling tasks, the range of allowed

annotations is limited by the size of valid English words.

The task requester sets and manages the reward amount, however, we always advocate

fair and ethical approaches to crowd work. Wordsmith does not handle reward payments

as this is usually outsourced to the recruitment platform. Wordsmith however supports

bonus strategies which link back to the worker source platform via an API call. Word-

smith provides options for different reward collection strategies. In the pure GWAP

mode, workers can claim their payments at any point in time (even without completing

the task). This is used for ascertaining fun as a primary motive for task engagement

and not merely financial remuneration. In other modes, (for example, Wordsmith has

support to be re-purposed as a contest platform), it might be essential to ensure task

completion before payments are made. In these modes (e.g., the contest and collabora-

tive modes), workers are issued an exit code on task completion. This is then entered

into the recruitment platform which pays the worker.

5.3.2 Data Preparation

Corpus pre-processing

Wordsmith supports data integration in JSON and relational data formats. Wordsmith

adopts a denormalised approach to data storage by ensuring the data is stored as closely

to the required format with minimal number of joins. We run a set of pre-processing

scripts before data is loaded into the datastore. This is usually task specific: for example,

a task requester might need to process only English tweets, or strip out urls, usernames

and #hashtags from microposts. Others might involve excluding certain images from an

image labelling task based on a set of keywords that might render the image unsuitable

for workplace annotation. Other pre-processing steps involve removing duplicates, re-

solving character-encoding issues, cleaning out blanks and setting a sampling mechanism

for tasks which require a subset of the available dataset.

Gold standard creation

Wordsmith supports gold standard creation by simulating the base task at hand to

be performed by a set of experts. To create the gold standard for entity types on

tweets, a group of experts is given the task of annotating the tweets on Wordsmith.

In performing this base task, Wordsmith is stripped of extraneous interface elements

such as gamification mechanisms and time constraints. The annotated result is then
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reformatted and copied over into the gold standard table while the original result set is

emptied. It is also possible to import a preset gold standard, or a quasi gold standard

(as in the case of image labels) to Wordsmith.

Pilot studies

Pilot studies are run on Wordsmith by experts, task designers and initial crowd workers

to test the platform performance and tweak undecided variables. Much understanding

of crowdsourcing has evolved as an art, and sometimes, it is necessary by trial and error

to determine what works and what doesn’t. Pilot studies utilise the full task design (as

opposed to the stripped down base task used for gold standard creation) to understand

how a larger number of crowd workers might interact with the full task. The task

designer can set parameters to exclude and prevent pilot workers from the final study.

Figure 5.9 shows worker satisfaction ratings in a pilot study.

Figure 5.9: Worker satisfaction in pilot study

5.3.3 Project Execution

Worker recruitment

Wordsmith does not source for nor manage the payment of crowd workers, but only

serves as a platform for advanced low level task performance. Crowd workers are re-

cruited from external micro task marketplaces such as CrowdFlower, and then redirected

to Wordsmith where they carry out the task, returning to the originating platform to re-

ceive their compensation. Most crowdsourcing marketplaces afford for high-level worker

filters, for example, people who speak a certain language or from a certain country.

Wordsmith does not store personal identifying information and as a result, is not able

to carry out these filters.

Worker profiling

Wordsmith allows for worker profiling for various requester reasons. For example, a

worker might be carrying out a within-subjects or between-subjects experiment which

requires a set of workers be prevented from undertaking certain experiment conditions.
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Other workers could be excluded because they were part of an initial pilot study, or

the requester is rerunning an experiment due to either a corrupted set of results or

for validation purposes. Malicious workers could also be targeted and blocked, and in

some cases, it might be necessary to exclude power users from creating skewed results -

although this is achieved by various other strategies such as using hourly leaderboards or

post-processing to present a more balanced view. Profiling is done by using the worker

IP address and the recruitment platform id.

Worker training

In crowdsourcing microtasks, workers generally have a small worldview of the overall aim

of the task requester. As a result, worker training is essential to improve result quality

and prevent unintentional errors. Worker training is also important to dispel underlying

biases as to what the task requires - for example in pilot named entity annotation tasks

without training, workers always tended to label house and room as named locations.

In addition to the initial instructions and guidelines from the task recruitment platform,

Wordsmith also displays additional instructions before the task and inline at a side

bar during the task (this is configurable and could be removed to test for experiment

conditions). By default in Wordsmith, the first worker task is always a training task

with a known ground truth response. The task requester can also have know questions

repeated at further instances of the task (the second default is halfway through the

task). Wordsmith also features multiple non obtrusive alerts which do not prevent task

continuance: (a) feedback alerts which inform workers how they achieved a high score

or bonus point; (b) feedforward alerts which inform workers when they are close to a

new level, or badge; (c) general alerts which notify on wrong spellings, duplicate entries

or restricted entries.

Worker scoring

Wordsmith’s scoring philosophy is related to that of Chamberlain et al. (2008). As with

other gamified systems as described by Zichermann and Cunningham (2011), points

serve as a feedback mechanism to keep game players (or workers) aware of their task

progress and relative positioning. The worker’s first correct task is met with a reward

(such as a badge) and a feedback alert on bonus points and valid answers. This serves

as an on boarding mechanism while the worker gets conversant with the task at hand.

After the initial task levels (e.g., newbie and novice in the image-labelling task), the

point system is geared to motivate workers to produce better output by using a more

intricate system of points based on the quality of their results with respect to an existing

gold standard. Wordsmith affords for multiple scores in the form of bonus points and

treasure points which can be configured by the task requester dependent on either hard

or approximate matches with the gold standard.

The workers score represent not only their individual progress, but serves as a measure of

how they stack up against others. Leaderboards are a mechanism to show such relative

positioning. However, leaderboards can also demotivate new workers from performing
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beyond their required output if the scores of others appear unattainable. As a result,

Wordsmith incorporates 3 leaderboard strategies: (a) a global leaderboard which shows

the high scores of all times; (b) an hourly leaderboard which shows the top scores for the

hour; and (c) a k-view leaderboard which shows (as the configurable default), 3 workers

ahead of and 3 workers behind the current worker.

Wordsmith does not include negative scoring nor a zero point system. We sought other

approaches to ensure quality control (detailed in section 5.4) as multiple pilot studies

revealed a significant drop out of workers and multiple negative reviews in discussion

forums.

Task management

Wordsmith includes a command line interface for task management and monitoring.

This gives real time access to worker connections and task submissions. Figure 5.10

shows CrowdFlower’s monitoring dashboard for an ongoing crowdsourcing task.

Figure 5.10: CrowdFlower Task Monitoring Dashboard

5.4 Wordsmith Quality Control

5.4.1 Training and Evaluating Workers

The first line of defence in ensuring quality task submissions is by ensuring some form

of training before task submission starts. As detailed in subsection 5.3.3, Wordsmith’s

worker training comes in form of instructions, guidelines and gold standard questions.



Chapter 5 Wordsmith 93

5.4.2 Worker Mistakes

Not every worker error is a malicious intent to subvert the task system. As a result of

this understanding, Wordsmith incorporates several mechanisms to detect unintentional

errors such as: (a) misspellings - in labelling tasks, Wordsmith connects to a dictionary

web service to validate text input and notify workers of wrong spellings; (b) duplicates

- workers are prevented from applying the same label more than once to a task and a

further number of tasks as defined by the requester; and (c) restrictions -

5.4.3 Malicious Workers

An essential part of attaining and maintaining high quality task output is by preventing

malicious workers from participating. One of the core motivations of workers on paid

microtask platforms is to receive financial compensation for their time. The more tasks

they can complete, the more the potential financial reward. This can lead to mechanised

submissions for tasks with simple workflows (e.g. always selecting the first option or

typing in the same label). Wordsmiths worker profiling system (presented in section

5.3.3 above) helps to filter out workers based on their submission patterns. The profiling

system does not automatically ban suspected input, rather, the alert system notifies

workers about possible mistakes they could have made such as misspellings, duplicate

entries and repeated entries. However, a worker who is suspected of using a task bot, or

script injection of subverting the task input system is marked and banned from further

assignments.

5.4.4 Multiple Judgments

Wordsmith tasks allow for multiple judgement collections. Workers are also allowed to

submit more tasks than the baseline requirement - leading to a potentially richer set of

answers. Handling multiple submissions is important for majority voting and to observe

patterns of player choice. This becomes a quality issue when multiple entries come from

malicious workers in a bid to attain a high score.
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5.5 Summary

In this chapter, we introduced Wordsmith
– our gamified platform for carrying out
paid microtask crowdsourcing. We de-
scribed how its various gamified inter-
face modes were used to address our four
crowdsourcing challenges. Afterwards, we
described our crowdsourcing process and
how Wordsmith fits in from project def-
inition to execution. Finally, we high-
lighted how we improve submission quality
by tackling malicious workers and evalu-
ating worker submissions.



Chapter 6

Workflow Design

In this chapter we describe the methods,
experimental set-up, and data used to ad-
dress the challenge of designing a useful
workflow for crowdsourcing named enti-
ties. We discuss the potential of build-
ing better workflows for paid microtasks
by leveraging on insights into task features
and worker preferences. We then present
our results based on the experiments con-
ducted, and summarise our core findings.
This chapter also introduces the concept of
furtherance incentives which is expanded
in later chapters. We conclude with an
overview of our contributions and an out-
line for future work.

This chapter is adapted from earlier published work 1 titled ‘Towards Hybrid NER: A

Study of Content and Crowdsourcing-Related Performance Factors’.

6.1 Overview

In our work reported in this chapter, we posit that just as certain textual features (such as

proper syntax and sufficient context) make tweets amenable to automatic NER, certain

features also lead to higher quality named entity annotation by crowd workers. This

leads to the design of more advanced workflows as illustrated in Figure 6.1 (as opposed

to the simplistic workflow earlier presented in Figure 3.2) where the initial processing

1This chapter is adapted from work that appeared at ESWC 2015 Feyisetan et al. (2015a)
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divides tweets between automatic tools and the crowd, and subsequently between the

crowd and experts.

6.2 Model

This chapter offers an in-depth study of the factors which influence the performance of

the crowd in hybrid NER approaches for microposts. We categorise these feature factors

in 2 broad classes:

1. Content features – inherent in the tweets such as number of entities, types of

entities (such as persons, organisations, locations), character length of the tweet

and the tweet sentiment; and

2. Crowdsourcing features – observed during annotation such as skipped true-

positive posts, average time spent to complete the tasks, accuracy of the answers

and the worker interaction with the user interface.

We analyse the impact of these features on the accuracy of the results, the timeliness

of their delivery and their distribution in correct and incorrect annotations. In order

to fully understand these factors, we also studied the importance of crowd annotation

guidelines vis-à-vis the debate on the role of detailed guidelines as a means of improving

human annotation (Aroyo and Welty, 2015).

Figure 6.1: Proposed hybrid workflow

We run experiments on three datasets from related literature and a fourth newly anno-

tated corpus using CrowdFlower and Wordsmith. An analysis of the overarching results

reveal that detailed guidelines do not necessarily lead to higher quality annotations. The
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presence of additional disambiguating information however leads to specific annotation

improvements such as annotating #hashtags and @mentions. Further analysis of the

results illustrate that shorter tweets with fewer entities tend to be more amenable to

microtask crowdsourcing. This applies in particular to those cases in which the text

refers to single people or places, even more so when those entities have been subject to

recent news or public debate on social media.

Though recommended by some crowdsourcing researchers and platforms, the use of the

miscellaneous entity type as a NER category seems to confuse the contributors. However,

it is well suited to identify a whole range of entities that were not explicitly targeted by

the requester, from people who are less famous to partial, overlapping and what we call

‘implicitly named entities’.

6.3 Experiment Design

We used CrowdFlower to seek help from, select, and remunerate microtask workers;

each CrowdFlower job included a link to our GWAP, which is where the NER tasks

were carried out. Wordsmith was used to gather insight into the features that affect

a worker’s speed and accuracy in annotating microposts with named entities of four

types: people, locations, organisations, and miscellaneous. The term ‘GWAP’ here is

used lightly – as we did not design Wordsmith within the context of this study to include

features which occur in traditional games (or gamified systems) such as badges, levels

and activity widgets. Wordsmith however supports more bespoke functions which could

not be easily achieved by using CrowdFlower.

6.3.1 Research Questions

Our basic assumption was that particular types of microposts will be more amenable to

crowdsourcing than others; and that this insight can be used to design better crowd-

sourcing workflows to incorporate the crowd and experts. Based on this premise, we

identified two related research hypotheses, for which we investigated two research ques-

tions:

[H1] Specific features of microposts affect the accuracy and speed of crowd-

sourced entity annotation.

RQ1.1. How do the following features impact the ability of non-expert crowd contrib-

utors to recognize entities in microposts:

• the number of entities in the micropost
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• the type of entities in the microposts

• the length of micropost text

• the micropost sentiment

[H2.] We can evaluate crowd worker preferences for NER tasks.

RQ2.1. Can we evaluate crowd workers preferences for certain types of tasks by ob-

serving and measuring

• the number of skipped tweets (with entities that could have been annotated)

• the precision of answers

• the amount of time spent to complete the task

• the worker interface interaction (via a heatmap)

6.3.2 Research Data

We took three datasets from related literature, which were also reviewed by Derczynski

et al. (2015). They evaluated automatic NER tools on these corpora, while we are

evaluating crowd performance. The choice of datasets ensures that our findings apply

to hybrid NER workflow, in which human and machine intelligence would be seamlessly

integrated and only a subset of microposts would be subject to crowdsourcing. The key

challenge in these scenarios is to optimize the overall performance by having an informed

way to trade-off costs, delays in delivery, and non-deterministic (i.e., difficult to predict)

human behaviour for an increase in accuracy. By using the same evaluation benchmarks

we make sure we establish a baseline for comparison that allows us not only to learn

more about the factors affecting crowd performance, but also about the best ways to

combine human and machine capabilities. The three datasets are:

1. The Ritter Corpus by Ritter et al. (2011) which consists of 2, 400 tweets. The

tweets were randomly sampled, however the sampling method and original dataset

size are unknown. It is estimated that the tweets were harvested around September

2010 (given the publication date and information from Derczynski et al. (2015)).

The dataset includes, but does not annotate Twitter @usernames which they

argued were unambiguous and trivial to identify. The dataset consists of ten

entity types.

2. The Finin Corpus by Finin et al. (2010) consists of 441 tweets which was the

gold standard for a crowdsourcing annotation exercise. The dataset includes and

annotates Twitter @usernames. The dataset annotates only 3 entity types: person,

organisation and location. Miscellaneous entity types are not annotated. It is not

stated how the corpus was created, however our investigation puts the corpus

between August to September 2008.
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3. The MSM 2013 Corpus, the Making Sense of Microposts 2013 Concept Extrac-

tion Challenge dataset by Basave et al. (2013), which includes training, test, and

gold data; for our experiments we used the gold subset comprising 1450 tweets.

The dataset does not include (and hence, does not annotate) Twitter @usernames

and #hashtags. All four entity types (person, organisation, location and miscella-

neous) are included in the dataset.

4. The Wordsmith Corpus, we also created and ran an experiment using our

own dataset. In previous work of ours we reported on an approach for automatic

extraction of named entities with Linked Data URIs on a set of 1.4 billion tweets

(Feyisetan et al., 2014). From the entire corpus of six billion tweets, we sampled out

3, 380 English ones using reservoir sampling. This refers to a family of randomized

algorithms for selecting samples of k items (e.g., 20 tweets per day) from a list S

(or in our case, 169 days or 6 months from January 2014 to June 2014) of n items

(for our dataset, over 30million tweets per day), where n is either a very large or

an unknown number.

In creating the fourth gold standard corpus, we used the NERD ontology (Rizzo and

Troncy, 2011) to create our annotations, e.g., a school and musical band are both

sub-class-of NERD:Organisation, but a restaurant and museum, are sub-class-of

NERD:Location.

The four datasets contain social media content from different time periods (2008, 2010,

2013, 2014) and have been created using varied selection and sampling methods, making

the results highly susceptible to entity drift (Fromreide et al., 2014). Furthermore, all

four used different entity classification schemes, which we normalized using the mappings

from Derczynski et al. (2015). Table 6.1 characterizes the data sets along the features

we hypothesize might influence crowdsourcing effectiveness.

Dataset overview

Metric Finin Ritter MSM2013 Wordsmith

Corpus size 441 2,400 1,450 3,380

Avg. Tweet length 98.84 102.05 88.82 97.56

Avg. @usernames 0.1746 0.5564 0.00 0.5467

Avg. #hashtags 0.0226 0.1942 0.00 0.2870

Avg. num of entities 1.54 1.62 1.47 1.72

No. PER entities 169 449 1,126 2,001

No. ORG entities 162 220 236 390

No. LOC entities 165 373 100 296

No. MISC entities 0 441 95 405

#hashtags annotated NO NO NO YES

@usernames annotated YES NO NO YES

Table 6.1: The four datasets used in our experiments
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6.3.3 Experimental Conditions

We performed two experiments for each dataset; this means we evaluated 7, 665 tweets.

Condition 1

For each tweet we asked the crowd to identify four types of entities (people, locations,

organisations, and miscellaneous). We elicited answers from a total of 767 CrowdFlower

workers, with three assignments to each task. Each CrowdFlower job referred the work-

ers to a Wordsmith-based task consisting of multiple tweets to be annotated. Each job

was awarded 0.05 USD to annotate at least 10 tweets with no bonus incentive. We

will discuss these choices in Section 6.5. The workers were provided with annotation

instructions detailing the various entity types and how to identify them. More details

on the annotation guidelines are discussed in 6.5.2.

Condition 2

The second experiment condition built on the first with the same basic setup. For

each tweet we asked the crowd to identify four types of entities (people, locations,

organisations, and miscellaneous). Each CrowdFlower job referred the workers to a

Wordsmith-based task consisting of multiple tweets to be annotated. Each job was

awarded 0.05 USD to annotate at least 10 tweets with no bonus incentive. However, in

the second condition, workers were presented with (i) more annotation instruction; (ii)

entity type disambiguation instruction and (iii) an updated interface which presented

the additional instructions before annotation and inline during annotation. Effectively,

we sought to understand the impact more detailed instructions would have on worker

accuracy (annotation speed, precision and recall).

We also carried out basic sentiment analysis on the tweet corpora, following in the

steps of Saif et al. (2012) and Go et al. (2009). We hypothesized that particularly

polarised tweets might have an effect on the entity annotation (Morris, 2011). For

example, do workers annotate tweets with positive sentiments faster and more accurately

compared to tweets about wars, outbreaks and tragedy. We used AlchemyAPI,2 an

external Web service providing natural language processing capabilities, in order to

calculate the sentiment of each tweet to be annotated. AlchemyAPI was also used to

carry out sentiment analysis on movie reviews from IMDb by Singh et al. (2013). Their

results presented AlchemyAPI with an F1 score of 77.78% on a dataset of 1, 000 reviews.

2AlchemyAPI – http:www.alchemyapi.com

http:www.alchemyapi.com
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6.3.4 Methods of Analyses

The outcome of the experiments was a set of tweets annotated with entities according to

the four categories mentioned earlier. We measured the execution time and compared

the accuracy of the crowd inputs against the four benchmarks. By using a number

of descriptive statistics to analyse the accuracy of the users performing the task, we

were able to compare the precision, recall and F1 scores for entities found within and

between the four datasets. We also aggregated the performance of users in order to

identify a number of distinguishing behavioural characteristics related to NER tasks.

Our outcomes are discussed in light of existing studies in respects to the performance of

the crowd and hybrid NER workflows. For each annotation, we measured data points

based on mouse movements every 10 microseconds. Each point had an x and y coordinate

value which was normalized based on the worker’s screen resolution. These data points

were used to generate the heatmaps for our user interface analysis. For each annotation,

we also recorded the time between when the worker views the tweet to when the entity

details are submitted.

6.4 Entity Types

We understood that the experiment settings would benefit from an harmonisation in the

definitions of the entities. This is necessitated by the disparate nature of the entity type

schemes used in the annotations of the different corpora. The entity type definitions

from Finin et al. (2010) are as follows:

• Person (PER) - entities are limited to humans (living, deceased, fictional, deities,

...) identified by name, nickname or alias. This excludes titles or roles such as

Mr., president or coach.

• Organisation (ORG) - entities are limited to corporations, institutions, govern-

ment agencies and other groups of people defined by an established organizational

structure

• Location (LOC) - entities include names of politically or geographically defined

places (cities, provinces, countries, international regions, bodies of water, moun-

tains, etc.). Locations also include man-made structures like airports, highways,

streets, factories and monuments.

• Miscellaneous (MISC) - entities include other types of named entities, e.g., events

(World War II), products (iPhone), animals (Cheetah), inanimate objects and

monetary units (the Euro) etc.
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6.4.1 Definitions and Mappings

We used the NERD ontology (Rizzo and Troncy, 2011) to normalise these definitions

even though the results were slightly different from the entity mappings adopted by

Derczynski et al. (2015). Our mappings assigned musicartist as person (PER), dis-

tinguishing it from musicband which we assigned as organisation (ORG). The gains

in using the NERD ontology in spite of this slight mismatch meant we could have a

reference baseline when dealing with more ambiguous cases e.g., organisation-location

mismatches.

Entity Mappings

Baseline Finin Ritter MSM2013 Wordsmith

Person person person per person
- musicartist - -

Organisation org company org organisation
- sportsteam - musicalband

Location place facility loc location
- geo-loc - -

Misc - movie - misc
product
tvshow
other

Table 6.2: Entity mappings across the datasets

6.4.2 Difficult Cases

Organisation vs. location

In our preliminary experiments and gold standard creation, we noticed a number of

cases that caused inter-annotator debate and disagreement. For example, given the

tweets, I am on my way to walmart and My local walmart made a lot of money last

thanksgiving, deciding the entity type of Walmart in context becomes difficult, even

for expert annotators. This extends to other classes such as museums, restaurants,

universities and shopping malls.

Organisation Location

University Museum

Education Institution Restaurant

- Shopping Mall

- Hospital

Table 6.3: Adopted Organisation-Location Disambiguation

Software vs. organisation

We also noticed a number of tweets which mentioned software which were eponymous
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with their parent company. For example, ‘Facebook bought the photo-sharing app, Insta-

gram’ and ‘I just posted a photo on facebook :)’. The NERD ontology assigns pieces of

software as a sub-class-of NERD:Product which maps to our miscellaneous (MISC)

class. However, in cases such as these (Facebook, Instagram, Google and Twitter), we

assign such entities as type organisation (ORG). For non-eponymous software or web

applications e.g., microsoft word, gmail, these were mapped to the miscellaneous (MISC)

class.

Typos, abbreviations and colloquialisms

Consider the tweet ‘Road trip to see one of the JoBros’ house w/ friends WHAT!

WHAT! ’. The musical band Jonas Brothers has been replaced with a collapsed ur-

ban form. Other examples which underscore the difficulty of the task are tweets such

as ‘Marry jane is the baby tho’ where ‘Mary’ was misspelled as ‘Marry’ (which is an-

other name for the psychoactive drug, marijuana). Similarly, ‘Jack for Wednesday ’,

considering the capitalisation might refer to a footballer named Jack for the football

club Sheffield Wednesday, or having Jack Daniel’s whiskey for Wednesday night drinks.

Nested entities

Consists of entities which overlap and could potentially be annotated in multiple ways.

For example, consider the following tweet from the Ritter corpus: ‘Gotta dress up for

london fashion week and party in style !’. The correct entity in this case would be

the event london fashion week, whereas, the workers might just annotate London as

a location. This is also similar to identifying partial entity matches. For example,

consider this tweet from the Wordsmith dataset ‘Nice pass over New York City’. The

correct entity identifies New York City as opposed to a partial entity match targeting

just New York.

6.5 Crowdsourcing Approach

In this section, we would present an overview on our crowdsourcing approach. This

includes details on our bespoke platform, our recruitment methodology using Crowd-

Flower, our reasons for not adopting a bonus system, our data and task model as well

as our quality assurance strategy. We also elaborate on the annotation guidelines as

it relates to the 2 experiment conditions, how we created our gold standard, and our

approach to computing inter-annotator agreement scores.

6.5.1 Overview

Crowdsourcing platform: Wordsmith

As noted earlier, we developed a bespoke human computation platform called Word-

smith to crowdsource NER tasks. The platform is designed as a GWAP and sources
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workers from CrowdFlower and has been discussed extensively in Chapter 5. A custom

design approach was chosen in order to cater to an advanced entity recognition experi-

ence, which could not be obtained using CrowdFlower’s default templates and markup

language (CML). In addition, Wordsmith allowed us to set up and carry out the different

experiments introduced in Section 7.5.

Figure 6.2: Wordsmith interface

The tweet under consideration (as depicted in Figure 6.2) is presented at the top of the

screen with each text token presented as a highlight-able span. The instruction to ‘click

on a word or phrase’ is positioned above the tweet, with the option to skip the current

tweet below it. Custom interfaces in literature included radio buttons by Finin et al.

(2010) and span selections by Braunschweig et al. (2013); Lawson et al. (2010); Voyer

et al. (2010). We opted for a click-and-drag approach in order to fit all the annotation

components on the screen, as opposed to Finin et al. (2010), and to cut down the extra

type verification step by Braunschweig et al. (2013). By clicking on a tweet token(s) the

user is presented with a list of connector elements representing the entity text and the

entity types. Contextual information is provided in line to guide the user in making the

connection to the appropriate entity type. When the type is selected, the type definition

is displayed on the right hand side. The left sidebar gives an overview of the number

of tweets the user has processed, and the total number of entities found. Once the

worker has annotated 10 tweets, an exit code appears within the left side bar. This is a

mechanism used to signal task completion in CrowdFlower, as we will explain in more

detail later.

Recruitment

We sourced the workers for Wordsmith from CrowdFlower. Each worker was invited to

engage with a task as seen in Figure 6.3, which redirected him/her to Wordsmith. After

annotating 10 tweets via the game, the worker was presented with an exit code, which

was used to complete the CrowdFlower job. We recruited Level 2 contributors, which are
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top contributors who account for 36% of all monthly judgements on the CrowdFlower

platform (Feyisetan et al., 2015b). Since we were not using expert annotators, we set the

judgement count at 3 answers per unit i.e., each tweet was annotated by three workers.

Each worker could take on a single task unit; once starting annotating in Wordsmith,

they were expected to look at 10 tweets to declare the task as completed. However, they

were also allowed to skip tweets (i.e., leave them unannotated) or continue engaging

with the game after they reached the minimum level of 10 tweets. Independently of the

actual number of posts tagged with entities, once the worker had viewed 10 of them and

received the exit code, he/she receives the reward of 0.05 $.

Bonus system

Unlike Lawson et al. (2010) or Yetisgen-Yildiz et al. (2010), we did not use any bonuses.

The annotations carried out in Lawson et al. (2010) were on emails with an average

length of 405.39 characters while the tweets across all our datasets had an average

length of 98.24 characters. Workers in their case had the tendency to under-tag entities,

a behaviour which necessitated the introduction of bonus compensations which were

limited and based on a worker-agreed threshold. The tasks in Yetisgen-Yildiz et al.

(2010) use biomedical text, which according to them, ‘[is] full of jargon, and finding

the three entity types in such text can be difficult for non-expert annotators’. Thus,

improving recall in these annotation tasks, as opposed to shortened and more familiar

text, would warrant a bonus system.

Figure 6.3: Crowdflower interface



Chapter 6 Workflow Design 106

Input data and task model

Each task unit refers to N tweets. Each tweet contains x = {0, ..., n} entities. The

worker’s objective is to decide if the current tweet contains an entity and correctly

annotate the tweet with their associated entity types. The entity types were person

(PER), location (LOC), organisation (ORG), and miscellaneous (MISC). We chose our

entity types based on the types mentioned in the literature of the associated datasets we

used. Our task instructions encouraged workers to skip annotations they were not sure

of. As we used Wordsmith as task interface, it was also possible for people to continue

playing the game and contribute more, though this did not influence the payment. We

report on models with adaptive rewards elsewhere (Feyisetan et al., 2015b); note that

the focus here is not on incentives engineering, but on learning about content and crowd

characteristics that impact performance. To assign the total set of 7, 665 tweets to

tasks, we put them into random bins of 10 tweets, and each bin was completed by three

workers.

Output data and quality assurance

Workers were allowed to skip tweets and each tweet was covered by one CrowdFlower

job viewed by three workers. Hence, the resulting entity-annotated micropost corpus

consisted of all 7, 665 tweets, each with at most three annotations referring to people,

places, organisations, and miscellaneous. Each worker had two gold questions presented

to them to assess their understanding of the task and their proficiency with the annota-

tion interface. Each gold question tweet consisted of two of the entity types that were

to be annotated. The first tweet was presented at the beginning, e.g., ‘do you know that

Barack Obama is the president of USA’ while the second tweet was presented after the

worker had annotated five tweets, e.g., ‘my iPhone was made by Apple’. The workers

are allowed to proceed only if they correctly annotate these two tweets. We display the

second tweet at a fixed point in order to simplify our analysis and remove bias arising

from workers viewing the tweet at random intervals.

6.5.2 Annotation Guidelines

In each task unit, workers were required to decide whether a tweet contained entities and

annotate them accordingly. As a baseline for both experiment conditions, we adopted

the annotation guidelines from Finin et al. (2010) for person (PER), organisation (ORG)

and location (LOC) entity types. We also included a fourth miscellaneous (MISC) type,

based on the guidelines from Ritter et al. (2011).

In computational linguistics, annotation guidelines present arbitrary and often debatable

decisions (Plank et al., 2014) as seen from the varying choices in our experiment datasets.

The decision to annotate (or not to) #hashtags, @mentions and MISC types represent

the beginning of choices which extends to guidelines on specific entity types. Some

authors have argued that more detailed guidelines do not improve annotation quality
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Aroyo and Welty (2015); while some others skip the guidelines altogether when dealing

with experts (Plank et al., 2014). The latter category relies on the experts to make

adhoc consensual judgements amongst themselves to address hard cases.

In our study, we experimented with 2 guideline conditions to observe the results of vary-

ing the amount of annotation guidelines.

Experiment condition 1

Instructions were presented at the start of the CrowdFlower job via the Wordsmith

interface and in-line during annotation. Whenever a worker is annotating a word (or

phrase), the definition of the currently selected entity type is displayed in a side bar.

These instructions included the following: the task title, stated as Identifying Things in

Tweets; an overview on the definition of entities (with a few examples); a definition of

the various entity types (PER, ORG, LOC, MISC), including examples of what consti-

tutes and does not constitute inclusion into the type categories.

Experiment condition 2

In condition 2, we provided more instructions. This included the title, stated as Iden-

tifying Named Things in Tweets and details on ways to handle 7 special cases. The

special cases were (i) disambiguating locations such as restaurants and museums; (ii)

disambiguating organisations such as universities and sport teams; (iii) disambiguating

musical bands; (iv) identifying eponymous software companies; (v) dealing with nested

entities by identifying the longest entities; (vi) discarding implicit unnamed entities

such as hair salon, the house, bus stop; (vii) identifying and annotating #hashtags and

@mentions. These instructions were placed as in Condition 1, with the addition of an

interface update, which allowed the workers to review the additional instructions during

annotation.

6.5.3 Gold Standard Creation

The gold standard used for our Wordsmith dataset was curated by 3 expert annotators

(PhD and Post Doctoral researchers within the field). We manually tagged the tweet

entity types using the Wordsmith platform. The Wordsmith corpus consisted of 3, 380

tweets, sampled between January 2014 to June 2014. Each tweet was annotated with

the 4 designated entity types (PER, ORG, LOC, MISC). Unlike the other 3 datasets,

we chose to annotate #hashtags. This decision was partially motivated by the nature

of the dataset which had a significant number of event based #hashtags corresponding

to the FIFA World Cup. Similarly, unlike the Ritter and MSM2013 datasets, we also

annotated the @usernames. Our annotation choices comprised of a separation of entity
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types such as musical artists and musical bands as person (PER) and organisations

(ORG) respectively.

6.5.4 Inter-annotator Agreement

The inter-annotator agreement describes the degree of consensus and homogeneity in

judgments among annotators (Nowak and Rüger, 2010) and is seen as a way to judge

the reliability of annotated data (Ramanath et al., 2013). Setting an inter-annotator

threshold can enhance the precision of results from the crowd. It can be further used to

shed light on our research question about crowd worker preferences for NER tasks (H2

RQ 2.1). Various scores such as the Kappa introduced by Cohen in Cohen (1960) have

been used to calculate inter-rater agreement.

The inter-annotator agreement (or degree of disagreement) can also serve as a measure

of the difficulty of the task – and can draw light unto ‘hard cases’ which might require

further attention (Plank et al., 2014) and (Aroyo and Welty, 2013). Annotator disagree-

ment is not limited to crowd workers only but extends to experts also. The authors of

Aroyo and Welty (2013) argue that inter-annotator disagreement is not noise, but signal ;

and, Plank et al. (2014) incorporates it in the loss function of a structured learned for

parts of speech tagging and named entity recognition.

We use the approach by Bhowmick et al. (2008) to determine the pair-wise agreement

on an annotated entity text and types. Given I as the number of tweets in a corpus, K

is the total number of annotations for a tweet, H is the number of crowd workers that

annotated the tweet and S is the set of all entity pairs with cardinality |S| =
(
K
2

)
, where

k1 = k2 ∀ {k1, k2} ∈ S.

Given a tweet i and an annotated entity k where {k, k} ∈ S, the average agreement,

Aik, on the keyword k for the tweet i is given by

Aik =
nik(
H
2

) (6.1)

where nik is the number of human agent pairs that agree that annotation k is in the

tweet i .

Therefore, for a given tweet i the average agreement over all assigned annotations is

Ai =
1

|S|
(
H
2

) S∑
k∈S

nik (6.2)

We presented the average inter-annotator agreement for each corpus in the experiment

in Table 6.13. We also presented the change in precision and recall values based on the

inter-annotator thresholds in Table 6.15.
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Condition 1: Worker annotations Condition 2: Worker annotations

Entity type Precision Recall F1 score Precision Recall F1 score

Finin dataset

Person 68.42 58.96 63.34 43.65 49.36 46.33

Organisation 50.94 27.84 36.00 38.43 33.06 35.54

Location 66.14 60.71 63.31 60.78 47.67 53.43

Miscellaneous - - - - - -

Ritter dataset

Person 42.93 69.19 52.98 32.68 65.72 43.65

Organisation 28.75 39.57 33.30 27.82 42.26 33.55

Location 67.06 50.07 57.33 62.22 51.42 56.31

Miscellaneous 20.04 20.23 20.13 16.06 22.98 18.91

MSM2013 dataset

Person 87.21 86.61 86.91 78.26 80.69 79.46

Organisation 43.27 38.77 40.90 53.10 38.37 44.55

Location 60.57 67.29 63.75 49.35 59.47 53.94

Miscellaneous 10.44 29.11 15.37 5.98 30.11 9.98

Wordsmith dataset

Person 79.23 71.41 75.12 75.95 57.90 65.71

Organisation 61.07 53.46 57.01 35.97 32.30 34.04

Location 72.01 72.91 71.26 63.34 65.17 64.24

Miscellaneous 27.07 47.43 34.47 8.03 19.37 11.35

Table 6.4: Experiment results - Precision and Recall on the four datasets.

6.6 Results

The following sections present an in-depth run through of the results from the two

experiment conditions.

6.6.1 Overview

Overview of Annotations

Table 6.6 gives an overview into how workers performed at the tweet level across the

various datasets. The results suggest consistently that workers correctly annotate tweets

with fewer entities. This result was consistent across the four datasets. We did not see

any strong connection between the length of the tweet and the likelihood of it being

annotated correctly or incorrectly, as the differences were not significant. The length of

the tweet however determines the whether the tweet would be selected for annotation

or not - and we discuss this in detail in a later section.

Correct Annotations

The results of our experiment with condition 1 and 2 are summarised in Table 6.4. The
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Dataset
Experiment Condition 1 Experiment Condition 2

Confusion matrix (vs gold) Confusion matrix (vs gold)
PER ORG LOC MISC PER ORG LOC MISC

Finin

78 1 7 - 498 25 67 -
1 27 5 - 52 334 27 -
1 4 84 - 2 56 431 -
- - - - - - - -

Ritter

765 7 26 20 2112 22 53 61
10 140 62 88 51 503 120 204
9 9 751 22 32 17 1265 30
15 46 29 217 30 106 37 500

MSM2013

3,828 25 8 7 4259 78 4 10
16 299 13 28 23 582 13 12
13 21 321 5 9 23 267 8
12 82 5 91 30 81 7 111

Wordsmith

5,230 34 29 32 1750 11 12 26
93 811 30 46 50 200 21 36
25 58 1,078 8 20 68 439 0
50 113 12 718 218 48 13 102

Table 6.5: Experiment results - Confusion Matrix on the four datasets.

Correct and Incorrect Annotations

Dataset Correct Incorrect

Num of En-
tities

Tweet
length

Num of en-
tities

Tweet
length

Finin 1.17 91.63 1.48 92.53

Ritter 1.24 106.02 1.61 99.02

MSM 1.19 98.95 1.81 97.02

Wordsmith 1.38 97.88 1.70 96.10

Table 6.6: Experiment results - Correct and Incorrect Annotations

first set of results in Table 6.4 contains precision, recall and F1 values for the four entity

types for all four datasets. The results in the 2 experiment conditions (C1 and C2)

indicate the same result patterns with matching entity types yielding the top precision

and recall values. The results also present an average decrease in precision, recall and F1

scores from C1 to C2. This is in spite of the additional annotation guidelines presented

in C2. This result is in line with Myth 3 presented by Aroyo and Welty (2015) which

states that detailed guidelines do not always yield better annotation quality. The results

reveal highest precision scores in identifying PER entities. The only exception to this

was in the Ritter dataset where the highest precision scores were in identifying LOC

entities. The highest recall scores were split in between PER entities in the Ritter and

MSM datasets and LOC entities in the Finin and Wordsmith datasets. However, the

margins were less than 2% with a higher score recorded for PER entities in the C2 for
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the Finin dataset.

Incorrect Annotations

Figure 6.4 illustrates the entity types which were wrongly annotated by workers. Across

all the datasets, we observe that the ORG and MISC entity types were consistently

wrongly annotated. This was the case across the four datasets. This suggests that

workers had the greatest difficulties in either identifying these entity types, or were

wrongly assigning them to other entity types. We therefore computed a confusion matrix

to have a clearer insight into what entity types were wrongly annotated, and how they

were wrongly annotated.

Figure 6.4: Incorrect annotations

Mismatched Annotations

We included a confusion matrix in Table 6.5 highlighting the entity mismatching types

e.g., assigning Cleveland as location when it refers to the basketball team. The re-

sults suggest that the entity type ORG was mostly wrongly annotated as PER (in the

Wordsmith dataset) and as MISC (in the Ritter dataset). The entity type LOC was

most confused as the entity type ORG across all datasets (with the exception of the

Ritter corpus). The typical confusion of the ORG and LOC types is a case of metonymy

where these entities have to be especially handled in context (Maynard et al., 2003).

This is seen where an organisation is associated with its location e.g., Wall Street and

Hollywood. This phenomenon occurred in both experiment conditions even when more

detailed instructions were given. In all dataset results, the MISC type was wrongly as-

signed the ORG entity type. The confusion matrix on the PER entity type was spread



Chapter 6 Workflow Design 112

across all the other entity types. The Finin and Ritter showed the least confusion vari-

ance on the entity types across the two experiment conditions.

Skipped Tweets: Tweet Overview

Our guidelines encouraged workers to skip tweets for which they could not give confident

annotations. Table 6.7 like Table 6.10 gives further insight into the dynamics of skipped

tweets. The table presents, for C1 and C2, and across all datasets, the average number of

entities present in a skipped tweet, as well as in an unskipped annotated tweet. The table

also summarises, for both experiment conditions, and all datasets, the average number

of characters in a skipped tweet and unskipped tweet. The tweets under consideration

in the table are skipped true positive tweets i.e., tweets that were not annotated despite

the presence of at least one entity.

The results highlight across all datasets, that workers skipped tweets that contained

more entities than the ones they annotated on average. The results present evidence

that workers on average skipped longer tweets. The results were consistent across the

four datasets and between the two experiment conditions. The tweet length was least

significant in the MSM2013 experiment (with the number of characters between the

skipped and unskipped tweet differing by less than 1 character), once again due to the

comparatively well-formed nature of the dataset and the least standard deviation in the

tweet lengths. The tweet length feature was most significant in the Ritter dataset, with

workers systematically skipping tweets that were significantly longer than the average

tweet length; it is worth mentioning that this corpus comprised the highest average

number of characters per micropost.

We do not report a high level metric on the number of tweets skipped, as this might

have been misleading. For example, given 10 tweets annotated by 3 workers, the tweets

skipped by each worker might have been annotated by another. We therefore present

fine-grained results on the distribution of entity types present in tweets skipped by

individual workers and the tweet sentiment. We also report aggregate findings on the

average number of entities present in, and the average length of skipped tweets

Skipped Tweets: Entity Types

More results on the skipped true-positive tweets are presented in Table 6.8 and Fig-

ure 6.5. It contains the distribution of the entities present in the posts that were left

unannotated in each dataset according to the gold standard. On average across all four

datasets, people tend to avoid recognizing organisations, but were more keen in identi-

fying locations. In the MSM2013 dataset, person entities were least skipped due to the

features of the dataset discussed earlier (e.g., clear text definition, consistent capitalisa-

tion etc.). The entity types in the Wordsmith dataset (apart from the LOC type) were

all skipped with equal likelihoods.
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Condition 1: Skipped tweets

Dataset Skipped Annotated

Num of En-
tities

Tweet
length

Num of en-
tities

Tweet
length

Finin 1.56 101.39 1.33 94.82

Ritter 1.42 113.05 1.35 104.22

MSM 1.49 98.74 1.30 97.11

Wordsmith 1.62 102.22 1.39 97.84

Condition 2: Skipped tweets

Dataset Skipped Annotated

Num of En-
tities

Tweet
length

Num of en-
tities

Tweet
length

Finin 1.51 102.44 1.20 98.99

Ritter 1.52 112.08 1.00 104.68

MSM 1.50 100.4 1.23 99.51

Wordsmith 1.61 102.70 1.39 98.14

Table 6.7: Experiment results - Skipped true-positive tweets

Figure 6.5: Skipped Tweets: Entity Types in Skipped Tweets

We posit this to be as a result of two factors: our uniform sampling method which

did not bias the presence of a single entity type (e.g., as in the MSM2013 dataset) and

increased use of @mentions and #hashtags in the dataset. This result is also in line

with those presented in Table 6.5 that ORG was the most misidentified entity type.

This result was consistent across both experiment conditions with crowd workers still

skipping tweets with organisation entities when more instructions were given on how to
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disambiguate them.

Condition 1: Skipped true-positive tweets

Dataset PER ORG LOC MISC

Finin 40.91%
(90/220)

50.27%
(93/185)

33.83%
(68/201)

-

Ritter 38.01%
(631/1660)

51.57%
(361/700)

26.83%
(501/1867)

42.95%
(847/1972)

MSM 2013 24.35%
(1200/4928)

38.81%
(437/1126)

30.13%
(185/614)

32.58%
(129/396)

Wordsmith 48.23%
(4423/9170)

48.50%
(796/1773)

30.35%
(448/1476)

48.06%
(869/1808)

Condition 2: Skipped true-positive tweets

Dataset PER ORG LOC MISC

Finin 33.00%
(435/1318)

34.83%
(527/1513)

31.99%
(381/1191)

-

Ritter 34.12%
(1528/4478)

44.00%
(898/2041)

37.11%
(1305/3517)

50.67%
(2067/4079)

MSM 2013 23.57%
(1633/6928)

28.09%
(545/1940)

30.67%
(196/639)

35.99%
(203/564)

Wordsmith 50.86%
(2952/5804)

44.83%
(473/1055)

35.22%
(329/934)

50.05%
(514/1027)

Table 6.8: Skipped Tweets - Skipped tweets containing entities

Skipped Tweets: Sentiment Analysis

Table 6.9 summarises the sentiment distribution of positive, negative and neutral tweets

in the different datasets. The results present the Finin, Ritter and MSM corpora as

having slightly more positive than negative tweets. The Wordsmith corpus had more

tweets with negative sentiments than positive. It is worth noting here that the tweets

marked negative did not necessarily have to be an aggressive or abusive tweet. An

example of a tweet with a negative sentiment from the Ritter dataset is ‘It’s the view

from where I’m living for two weeks. Empire State Building = ESB. Pretty bad storm

here last evening ’. The next set of results in Table 6.10 highlights the relationship be-

tween skipped tweets and their content sentiment. The result reveals marginally that

tweets with a positive sentiment were more likely to be skipped. This is inconclusive

as it does not evidence to a highly polarised set as a result of the sentiment distributions.

Annotation Time: On Correct Annotations

Table 6.11 contains the average time taken for a worker to correctly identify a single

occurrence of the different entity types. The results for the Finin, Ritter and MSM2013

datasets consistently present the shortest time needed corresponds to annotating loca-

tions, followed by person entities. In the Wordsmith dataset, workers correctly identified

people instances in the shortest time overall, however, much longer times were taken to
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Sentiment Analysis

Dataset POS NEG NEU UNK

Finin 41.04%
(181/441)

38.10%
(168/441)

20.63%
(91/441)

00.23%
(1/441)

Ritter 47.12%
(1128/2394)

36.05%
(863/2394)

15.96%
(382/2394)

00.88%
(21/2394)

MSM 2013 40.14%
(582/1450)

34.48%
(500/1450)

24.62%
(357/1450)

00.76%
(11/1450)

Wordsmith 36.69%
(1240/3380)

46.45%
(1570/3380)

16.01%
(541/3380)

00.85%
(29/3380)

Table 6.9: Sentiment Analysis - General distribution

Condition 1: Sentiment Analysis

Dataset POS NEG NEU UNK

Finin 39.75%
(64/161)

36.65%
(59/161)

20.63%
(38/161)

(0/161)

Ritter 38.28%
(694/1813)

46.83%
(849/1813)

14.62%
(265/1813)

(5/1813)

MSM 2013 43.00%
(562/1307)

28.84%
(377/1307)

27.16%
(355/1307)

(13/1307)

Wordsmith 41.98%
(1508/3592)

41.25%
(1482/3592)

16.31%
(586/3592)

(16/3592)

Condition 2: Sentiment Analysis

Dataset POS NEG NEU UNK

Finin 45.89%
(407/888)

33.03%
(293/888)

21.08%
(187/888)

(1/888)

Ritter 49.67%
(1895/3815)

31.66%
(1208/3815)

18.03%
(688/3815)

(24/3815)

MSM 2013 42.16%
(729/1729)

31.52%
(545/1729)

25.45%
(440/1729)

(15/1729)

Wordsmith 43.25%
(1150/2659)

37.57%
(999/2659)

18.65%
(496/2659)

(14/2659)

Table 6.10: Skipped Tweets - Sentiment analysis distribution of skipped tweets

identify places. This result was consistent across the 2 experiment conditions with work-

ers consistently taking shorter times to identify location and person entities. The results

however note that workers took shorter time in identifying all entity types in C2 as com-

pared to C1. Workers took on average 1 second less to identify entities in C2. In both

experiment conditions, the miscellaneous entity type took the longest time to be identi-

fied taking almost 2 seconds longer on the average as compared to location entities. We

posit that the extended annotator guidelines contributed to the decrease in annotation

time. As this was the variable in this condition, our hypothesis is that a more detailed

level of annotation guidelines leads to an anchored and increased confidence amongst

the annotators. This in turn leads to mechanistic annotations – i.e. spotting a text and
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annotating it according to the guideline without discerning the relevant context. This

can explain for the increase in speed which did not necessarily result in an increase in

annotation quality.

Condition 1: Avg. Annotation Time

Dataset PER ORG LOC MISC

Finin 9.54 12.15 8.91 -

Ritter 9.69 10.05 9.35 10.88

MSM 9.54 10.77 8.70 10.35

Wordsmith 8.06 8.50 9.56 9.48

Condition 2: Avg. Annotation Time

Dataset PER ORG LOC MISC

Finin 7.20 7.05 6.94 -

Ritter 8.70 9.01 8.65 10.22

MSM 7.73 8.75 7.76 9.69

Wordsmith 6.88 6.79 6.97 8.72

Table 6.11: Experiment results - Average accurate annotation time

Interface and Heatmaps

Figure 6.6 visualises the result of our datapoint captures via heatmaps. The results

presents mouse movements concentrated horizontally along the length of the tweet text

area. Much activity is also around the screen center where the entity text appears after

it is clicked. The heatmaps then diverge in the lower parts of the screen which indicate

which entity types were tagged. From a larger image of the interface in Figure 6.2, we

can reconcile the mouse movements to point predominantly to PER and LOC entities

in proportions which are consistent with the individual numbers presented in Table 6.4.

Average Position of First Entity

Dataset Gold Entity User Entity

Finin 16.91 22.93

Ritter 34.56 22.81

MSM 2013 35.61 24.77

Wordsmith 14.68 21.33

Table 6.12: Experiment results - Average Position of First Entity

A corollary to the visualisation presented in the heatmaps is the result outlined in Table

6.12. The results contain the average position of the first entity in the dataset gold

standard and the average position of the first entity annotated by the workers. From

the results we note that although the average positions in the gold standards vary from

the 14th character in the Wordsmith dataset to the 35th character in the MSM dataset,

the average worker consistently tagged the first entity around the 21st to 24th character

mark. This result was consistent across all the four dataset and in variance with the

results from the gold standards. We would shed more light into this in the discussion
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section.

Figure 6.6: Wordsmith Heatmaps across the 4 datasets

Inter-Annotator Agreement

Table 6.13 summarises the average inter-annotator agreement scores across the four

datasets. Based on our design choices, workers were allowed to skip tweets which they

could not confidently annotate. Workers were required to annotate at least 10 tweets

and each tweet was annotated by at least 3 annotators. The results presented here

represent the inter-annotator agreement on tweets which were annotated by 3, 4, 5 and

6 workers each. At a high level, the results suggest that agreement begins to break

down as consensus is required amongst more workers. This is not surprising as a base

agreement between 2 out of 3 workers is equivalent to 66.67%. Drawing workers out of

the same distribution on a tweet annotated by 4 workers yields a lower score of 50%. This

interprets the decline in inter-annotator agreement scores as more workers annotated the

same tweet.

Dataset Number of Annotators

3 4 5 6

Finin 62.40 53.84 48.39 49.47

Ritter 62.28 52.84 47.11 39.03

MSM 83.47 83.08 79.80 77.86

Wordsmith 60.28 57.03 50.16 41.90

Table 6.13: Experiment results - Average Inter-Annotator Agreement

The inter-annotator agreement scores were clearly highest in the MSM 2013 dataset

(83.47%). This can be attributed to the relative homogeneity of the dataset and the
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presence of a large number of easily identifiable PER entities. The other 3 datasets

had similar scores with an average inter-annotator agreement of 61.65% and a standard

deviation of 1.19.

Entity Inter-Annotator Agreement

Dataset PER ORG LOC MISC

Finin 51.68 23.07 47.95 18.27

Ritter 68.05 13.67 34.14 14.69

MSM 86.95 13.20 33.72 10.62

Wordsmith 70.68 13.47 40.38 11.42

Table 6.14: Experiment results - Entity Level Inter-Annotator Agreement

In Table 6.14, we drill further into the inter-annotator agreement on the entity level.

The results presented in this table were based on the results of 3 annotators per tweet

(extrapolated from the first column in the results within Table 6.13). The results are in

line with earlier results presented i.e. workers are better at identifying PER and LOC

entities (as these entity types receive the highest scores), and have greater difficulties

with ORG and MISC entities.

An agreement threshold of 2 workers was beneficial for the precision of identifying all the

entity types across all datasets. This effect was strongest in the Wordsmith dataset where

a minimum threshold of 2 raised the precision scores of identifying organisations by 20%.

The least significance of the inter-annotator threshold was in identifying miscellaneous

entity types in the MSM dataset where the precision score moved up by barely 0.5%.

The recall values for identifying locations were the most enhanced by setting a threshold

agreement of at least 2 workers. The raise in recall also signalled the least gain in the

miscellaneous entity types in the MSM dataset.

Increasing the agreement threshold to at least 3 workers marked a further surge consis-

tent with the results from setting a threshold of 2. The highest precision scores are also

from the Wordsmith dataset in identifying organisations which had a boost of 30%.

Precision scores in the MSM and Ritter datasets also went up over 20% by setting the

inter-annotator worker threshold to a minimum of 3. As with the results presented in

the previous paragraph, the lowest precision and recall score enhancements came from

annotating miscellaneous entity types in the MSM dataset.

6.6.2 Summary of Findings

6.6.2.1 Overview

The low performance values for the Ritter dataset can be attributed in part to the an-

notation schema – just as in Derczynski et al. (2015). For example, the Ritter gold

corpus assigns the same entity type musicartist to single musicians and group bands.
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Finin dataset

Inter Annotator ≥ 2 Inter Annotator ≥ 3

Entity Precision Recall Precision Recall

PER 2.77 4.69 2.12 4.61

ORG 7.65 3.33 9.17 5.37

LOC 8.74 9.17 12.45 13.01

MISC - - - -

Ritter dataset

Inter Annotator ≥ 2 Inter Annotator ≥ 3

Entity Precision Recall Precision Recall

PER 5.11 5.17 9.83 7.65

ORG 14.60 4.62 22.85 5.74

LOC 11.58 6.92 16.46 10.52

MISC 14.35 3.79 22.37 2.62

MSM2013 dataset

Inter Annotator ≥ 2 Inter Annotator ≥ 3

Entity Precision Recall Precision Recall

PER 5.38 4.53 6.37 6.10

ORG 15.33 3.66 21.18 4.12

LOC 11.67 8.52 14.72 9.99

MISC 0.49 1.12 0.60 -3.34

Wordsmith dataset

Inter Annotator ≥ 2 Inter Annotator ≥ 3

Entity Precision Recall Precision Recall

PER 11.30 9.09 14.16 13.76

ORG 20.49 2.34 29.69 0.77

LOC 10.15 7.07 13.28 10.06

MISC 10.68 2.64 31.97 0.56

Table 6.15: Inter Annotator Deltas - Change in precision and recall values based on
different inter-annotator thresholds

More significantly, the dataset does not annotate Twitter @usernames and #hashtags.

Considering that most @usernames identify people and organisations, and the corpus

contained 0.55 @usernames per tweet (as listed in Table 6.1), it is not surprising that

scores are rather low. The result also reveals high precision and low confusion in an-

notating locations, while the greatest ambiguities come from annotating miscellaneous

entities.

The Finin dataset has higher F1 scores across the board when compared to the Ritter

experiments. The dataset did not consider any MISC annotations and although it in-

cludes @usernames and @hashtags, only the @usernames are annotated. Here again,

the best scores were in the identification of people and places.

For the MSM2013 dataset highest precision and recall scores were achieved in identi-

fying PER entities. However, it is important to note that this dataset (as highlighted
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in Table 6.1) contained, on average, the shortest tweets (88 characters). In addition,

the URLs, @usernames and #hastags were anonymized as URL , MENTION and

HASHTAG , hence the ambiguity arising from manually annotating those types was

removed. Furthermore, the corpus had a disproportionately high number of PER enti-

ties (1, 126 vs. just 100 locations). It also consisted largely of clean, clearly described,

properly capitalised tweets, which could have contributed to the precision. Consistent

with the results above, the highest scores were in identifying PER and LOC entities,

while the lowest one was for those entities classified as miscellaneous.

Our own Wordsmith dataset achieved the highest precision and recall values in identify-

ing people and places. Again, crowd workers had trouble classifying entities as MISC and

significant noise hindered the annotation of ORG instances. A number of ORG entities

were misidentified as PER and an equally high number of MISC examples were wrongly

identified as ORG. The Wordsmith dataset consisted of a high number of @usernames

(0.55 per tweet) and the highest concentration of #hashtags (0.28 per tweet).

Disambiguating between ORG and LOC types remained challenging across all datasets

as evidenced in the confusion matrices in Table 6.5. Identifying locations such as London

was a trivial task for contributors, however, entities such as museums, shopping malls,

and restaurants were alternately annotated as either LOC or ORG. Disambiguating tech

organisations was not trivial either – that is, distinguishing entities such as Facebook,

Instagram, or Youtube as Web applications or independent companies without much

context. In the Wordsmith dataset, however, PER, ORG, and MISC entity tweets were

skipped with equal likelihood. This is likely due to a high number of these entities arising

from @usernames and #hashtags, as opposed to well-formed names. As noted earlier,

this was a characteristic of this dataset, which was not present in the other three.

6.6.2.2 Analysis of tweet features

We now discuss our results in light of H1 RQ1.1 which states that specific features of

microposts affect the accuracy and speed of crowdsourced entity annotation. We present

these results in light of tweets which were annotated correctly, incorrectly and skipped

tweets. We focus on four main features:

1. the number of entities in the micropost;

2. the type of entities in the microposts;

3. the length of micropost text;

4. the micropost sentiment

Number of entities

From the results in Table 6.7 we see that the number of entities in a tweet affect the
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likelihood of annotation by a worker i.e., regardless of whether the annotations are

accurate or not, a tweet with fewer entities was more likely to be selected. We note that

workers were more likely to annotate tweets which had fewer entities than the dataset

average as contained in Table 6.1. This is further seen in the lower recall scores (as

compared to precision) in Table 6.4; workers are more likely to annotate one entity in

a tweet, or completely ignore tweets which have more entities than the dataset average.

Workers therefore skipped longer tweets more frequently.

The results in Table 6.6 give further insight into the role of the number of entities in

correctly and incorrectly annotated tweets. The results points out consistently across

the 4 datasets that once a tweet has been selected for annotation, it is more likely to

be annotated correctly and completely if it has fewer entities, while tweets with more

entities were wrongly annotated. In summary, skipped tweets (more entities), incorrect

tweets (less than skipped tweets), correct tweets (even less than both).

Types of entities

Table 6.8 and Figure 6.5 give details on skipped true positive tweets and the corre-

sponding entity distributions. The table indicates for each dataset the total entity type

encounters by the crowd workers and how many were skipped. For the first experi-

ment condition C1 with the baseline annotation guidelines, workers skipped tweets that

contained ORG entities with the highest frequency. Comparing this with our dataset

overview in Table 6.1, we observe that even though the ORG type was not the most

common entity type in any of the datasets, yet it was the most skipped. The next most

skipped entity type was the MISC entity type in the MSM and Ritter corpora (there

were no MISC annotations in the Finin gold standard). The Wordsmith dataset had the

PER, ORG and MISC entity types skipped with equal frequency. For the Wordsmith

dataset, as discussed earlier, this can be attributed also to entities arising from @user-

names and #hashtags. The other datasets either exclude them or do not annotate them

in their gold standards.

In the second experiment condition C2, in which workers were given further instructions

on how to disambiguate entity types such as restaurants and museums as LOC; and

universities, sport teams and musical bands as ORG, workers were then less likely to

skip this entity type. Even though this did not raise precision and recall scores (as seen

in Table 6.4), workers did not skip the ORG entity types as often as they did without

the instructions. 3 of the 7 extra instructions explained in some form how to identify

ORG entities and this likely contributed to them being skipped less. In C2, the MISC

entity type was the most skipped on the average. People-related tweets were skipped

more in the Finin and Wordsmith dataset, but this is a function of the high number of

entities of this type (see also Table 6.1) rather than an indicator of crowd behaviour. The

MSM dataset had a high number of PER entities, however, these were not skipped as the
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tweets were from well structured texts e.g., quotes with the author attribution at the end.

Micropost text length

The resuslts presented in Table 6.6 and Table 6.7 suggest that the tweet length was a

factor in determining whether it was selected for annotation or not (since workers were

free to select what tweet they annotated). However, after the tweet has been selected,

there was no strong connection between the length of the tweet and the annotation

accuracy. The standard deviation of the datasets was 5.65 characters, however, the

standard deviation of tweets selected for annotation was 3.41 characters. As a result, at

the selection stage, the tweet length played a role in the likelihood of a worker deciding

to annotate, however, the length did not further matter as most of the tweets were of

similar lengths.

Table 6.7 reveals that workers prefer tweets with fewer characters. The Ritter dataset

with a mean tweet length of 102 characters had workers annotating posts which hovered

slightly above this average length. The MSM2013 dataset had the shortest tweets with

an average length of 88 characters, however, workers were willing to annotate annotate

tweets with up to 9 characters above the corpus average. The Finin and Wordsmith

datasets both had tweets with an average length of ≈98 characters with workers anno-

tating similarly around this average point.

These results are reinforced in C2 with workers annotating tweets in the 98-99 character

length set and discarding tweets over 100 characters. This result was consistent in all

datasets asides the Ritter dataset, which had an overall set of longer tweets. From this

we observe that regardless of the dataset (such as the MSM dataset with an average

length of 88 characters), workers would be willing to annotate up to a certain threshold

before they start skipping.

These results might not be unconnected with the user interface design. Revisiting our

interface in Figure 6.3 gives an insight into how the tweets appear in the annotation

interface. Shorter tweets would fit squarely in the task box with minimal text wrapping.

This layout is similar to Bontcheva et al. (2014b) in that the GATE annotation tool

also lays out the tweet horizontally (for workers to annotate from left to right) unlike

Finin et al. (2010) which lays the tweet vertically (for workers to annotate from top to

bottom). Interpreting this further in the light of the results in Table 6.12 might suggest

that workers were annotating entities immediately within their field of vision since they

consistently started annotating at a given point across all the datasets.

Micropost sentiment

Our experiments indicate marginally that tweets with a positive sentiment were more

likely to be skipped. This is inconclusive, as it does not illustrate a polarised set as a

result of the sentiment distributions. It might be possible to study the effect of tweet
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sentiment in annotations by carrying out granular sentiment analysis, categorising tweets

as nervous, tense, excited, depressed, rather than assigning the generic positive, negative

and neutral labels. Sentiment features might also be prominent in a dataset that features

deleted tweets, flagged tweets or reported tweets. Other potential classes might be tweets

posted to celebrities or tweets during sporting events and concerts.

6.6.2.3 Analysis of behavioural features of crowd workers

We now discuss our results in light of H2 RQ2.1, which states that we can understand

crowd workers preferences based on:

1. the number of skipped tweets (with entities that could have been annotated);

2. the precision of answers;

3. the amount of time spent to complete the task;

4. the worker interface interaction

Number of skipped tweets

Tables 6.7, 6.8, and 6.10 give insights into the skipped tweets. The results indicate that

across the datasets, the number of entities and the length of the tweet were two factors

that contributed to the likelihood of a skipped tweet. Table 6.8 further highlights the

role entity types play on workers choosing to annotate a tweet or not. At this time

we cannot present conclusive remarks on the effect of the tweet sentiment on a workers

probability of annotating it.

Apart from these high level features such as the number and type of entities, and the

micropost length, we also discovered some other latent features which might contribute

to workers skipping tweet. For example, a closer look at the Wordsmith dataset (which

was the most recent corpus) revealed that workers skipped the various entity types

with almost equal likelihoods. We reported this as being tied to an increase in the

use of #hashtags and @mentions. Furthermore, the corpus contained #hashtags ref-

erencing events such as the #WorldCup2014 and #LondonFashionWeek which created

annotation ambiguity. In the second experiment condition C2, workers spent less time

annotating and skipped fewer entities due to the availability of detailed guidelines. As

noted earlier, this helped workers disambiguate some entity types (e.g. handling entities

from #hashtags), however, it did not result in an overall improvement in annotation

quality.

Accuracy of answers

From the results in Table 6.4 we note that the crowd workers were better at identify-

ing PER and LOC entities, and poor at characterizing MISC entity types. Table 6.5
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gives further insights into the mismatching between organisation and locations (e.g.,

restaurants), organisations and persons (e.g., musical bands) and organisations and mis-

cellaneous entities.

Amount of time spent to complete the task

As listed in Table 6.11 locations and people are quickly identified. In addition, the tag-

ging speed goes up with an expansion in annotation guidelines (although the accuracy

remains constant or even declines slightly). Tweets with MISC entities took the longest

time to be annotated.

Worker interface interaction

We presented the findings from our heatmap datapoints in the result section and visu-

alised them in Figure 6.6. Table 6.12 further implies to us that, workers tend to start

annotating around a specific start point. In our experiments, we discovered that re-

gardless of the dataset, workers started labelling entities that occurred around the 21st

to 24th character. The Finin and Wordsmith dataset however had much lower start

points in their gold standard (after 15 characters) while the Ritter and MSM corpora

had much higher ones (after 35 characters). We took into consideration the responsive

nature of the interface which could have presented the annotation text slightly different

on varying screen resolutions and with screen resizing, and ensured that the micropost

texts were presented in the same way on various screens.

Implicitly named entities

In our investigation we paid special attention to those entities that were annotated by

the crowd but that were not covered by the gold standard. As a result of a manual

inspection of these cases one particular category of entities stands out, which we call

implicitly named entities. By that term we mean those entities that were represented in

the text by a proxy phrase that – if the user’s contextual assumptions are known – one

can infer an actual named entity. A particular example for this is the annotated phrase

’last stop’, which, if one would know the place, direction and means of transportation

to contextualize the annotation, could be resolved to one explicit stop or station.

6.7 Discussion

In this final section we assimilate our results into a number of key themes and discuss

their implications on the prospect of hybrid NER approaches that combine automatic

tools with human and crowd computing.
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Crowds can identify people and places, but more expertise is needed to clas-

sify other entities

Our analysis clearly reveals that microtask workers are best at spotting locations, fol-

lowed by people, and finally with a slightly larger gap, organisations. When no clear

instructions are given, that is, when the entity should be classified as MISC, the ac-

curacy suffers dramatically. Assigning entities as organisations seems to be cognitively

more complex than persons and places, probably because it involves disambiguating

their purpose in context e.g., universities, restaurants, museums and shopping malls.

Many of these entities could also be ambiguously interpreted as products, brands, or

even locations, which also raises the question of more refined models to capture diverse

viewpoints in annotation gold standards Aroyo and Welty (2013). To improve the crowd

performance, one could imagine interfaces and instructions that are bespoke for this type

of entities. However, this would assume the requester has some knowledge about the

composition of his corpus and can identify problematic cases. A similar debate has been

going on in the context of GWAPs, as designers are very restricted in assigning questions

to difficulty levels without pre-processing them Simperl et al. (2013). One option would

be to try out a multi-step workflow (such as the hybrid workflow proposed by Sabou

et al. (2013)) in which entity types that are empirically straightforward to annotate are

solved by ‘regular’ workers, while miscellaneous and other problematic cases are only

flagged and treated differently – be that by more experienced annotators, via a higher

number of judgements Snow et al. (2008), or otherwise.

Crowds perform best on recent data, but remember people

All four analysed datasets stem from different time periods (Ritter from 2008, Finin

from 2010, MSM from 2013, and Wordsmith from 2014). Most significantly one can see

that there is a consistent build-up of the F1 score the more recent the dataset is, even

if the difference is only a couple of months as between the MSM and the Wordsmith

cases. We interpret that the more timely the data, the better the performance of crowd

workers, possibly due to the fact that newer datasets are more likely to refer to entities

that gained public visibility in media and on social networks in recent times and that

people remember and recognize easily. This concept known as entity drift was also high-

lighted by Derczynski et al. (2015) and Fromreide et al. (2014). The only exception for

this is the PER entity type, which was the most accurate result for the MSM dataset.

However, in order to truly understand this phenomenon we would need more extended

experiments, focusing particularly on people entities, grounded in cognitive psychology

and media studies (Cheng et al., 2013; Minkov et al., 2005).

Partial annotations and annotation overlap

The experiments hint at a high share of partial annotations by the workers. For ex-

ample, workers annotated london fashion week as london and zune hd as zune. Other
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partial annotations stemmed from identifying a person’s full name, e.g., Antoine De

Saint Exupery was tagged by all three annotators as Antoine De Saint. Overlapping

entities occurred when a text could refer to multiple nested entities e.g., berlin university

museum referring to the university and the museum and LPGA HealthSouth Inaugural

Golf Tournament which was identified as an organisation and an event. These findings

call for richer gold standards, but also for more advanced means to assess the quality

of crowd results to reward partial answers. Such phenomena could also signal the need

for more sophisticated microtask workflows, possibly highlighting partially recognized

entities to acquire new knowledge in a more targeted fashion, or by asking the crowd in

a separate experiment to choose among overlaps or partial solutions.

Spotting implicitly named entities thanks to human reasoning

Our analysis revealed a notable number of entities that were not in the gold standard,

but were picked up by the crowd. A manual inspection of these entities in combination

with some basic text mining has shown that the largest set of these entities suggest that

human users tend to spot unnamed entities (e.g., prison or car), partial entities (e.g.,

apollo versus the apollo), overlapping entities (e.g., london fashion week versus london),

and hashtags (e.g., #WorldCup2014 ). However, the most interesting case were the ones

we call implicitly named entities. Examples such as hair salon, last stop, in store, or

bus stop give evidence that the crowd is good at spotting phrases that refer to real

named entities implicitly depending on the context of the post’s author or a person or

event this one refers to. In many cases, the implicit entities found are contextualised

within the micropost message, e.g., I’ll get off at the stop after Waterloo. This opens

up interesting directions for future analysis that focus only on those implicit entities

together with features describing their context in order to infer the actual named entity

in a human-machine way. By combining text mining and content analysis techniques, it

may be possible to derive new meaning from corpora such as those used within this study.

Closing the entity recognition loop for the non-famous

Crowd workers have demonstrated good performance in annotating entities that were

left out by the gold standards and presented four characteristic classes of such entities:

(i) unnamed entities, (ii) partial entities, (iii) overlapping entities, and (iv) hashtags. It

is noteworthy that we observed an additional fifth class that human participants mark

as entities, which refer to non-famous, less well-known people, locations, and organisa-

tions (e.g., the name of a person who is not a celebrity or a place in a city that would

not fall into the category of a typical point of interest). This is an important finding

for hybrid entity extraction pipelines, which can benefit from the capability to generate

new URIs for yet publicly unknown entities. This can play an important role in modern

(data) journalism (Luczak-Rösch and Heese, 2009) and complements the findings about

the entity annotation behaviour of technical non-experts on longer texts presented in
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Hinze et al. (2012a) and Hinze et al. (2012b).

Wide search, but centred spot

Our heatmap analysis indicated that we had a very wide view along the text axis, and a

consistent pattern that the likelihood of annotating in the centre is higher even though

they seem to search over the entire width of the text field. This correlates with statistics

about the average position of the first annotation, which remained constant in the user

annotations as compared to the varying positions in the gold standard. Workers started

off by annotating entities at the beginning of the tweet then around the middle of the

tweet before the tagging recall dropped. This might mean that people are more likely

to miss out on annotating entities on the right edges of the interface or at the end of

the text. A resolution could be to centralize the textbox and make it less wide hence

constraining the worker’s field of vision as opposed to Finin et al. (2010) where workers

were required to observe vertically to target entities.

Useful guidelines are an art

Our study seems to indicate that additional instructions do not always produce better

tagging quality. We noted, however, that it has the following effects: (i) it speeds up the

annotation process as we noted that workers on the average spent less time annotating

entities; (ii) it makes people more willing to undertake choice-based work – tweets with

ORG entities were less skipped after the introduction of more detailed guidelines. How-

ever, this did not affect the accuracy scores, which were in fact reduced in a few places.

The new guidelines did not remove worker bias towards identifying implicit unnamed

entities. Workers continued to tag concepts such as room, gym and on the road as enti-

ties even when the instructions tried to discourage them to do so. While giving effective

feedback is an ongoing research problem in crowdsourcing, one approach, which we could

investigate more is crowd-based feedback and crowd sociality, using synchronous work

by workers who are completing tasks in the same time. A previous study we carried out

(Feyisetan et al., 2015b) points out that crowd workers appreciate features which offer

continuous feedback mechanisms and a view into how other workers are performing with

the task. Another interesting question would be if we could leverage the efforts people

invested in tagging things we were not looking for. While it is clear that crowdsourcing,

at least on paid microtask platforms, is goal-driven and that the requester is the one set-

ting the goals, it might make sense to consider models of co-creation and task autonomy,

in which as the tasks are being completed, the requester takes into account the feedback

and answers of the crowd and adjusts the goals of the project accordingly. Literature

on motivation tells us that people perform best when they can decide what they are

given the freedom to choose what they contribute, how, and when, and when they feel

they are bringing in their best abilities (Deci and Ryan, 1985b). These aspects might

not be at the core of CrowdFlower and others, which focus on extrinsic motivation and
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rewards, but they are nevertheless important and could make experiments more useful

in several ways.

Revisiting the role of experts

Some of the results presented here might ferment questions on the usefulness of the

crowd in carrying out high quality named entity recognition on noisy microposts. Indeed,

the crowd is but one step in the workflow required to achieve the Web of Data vision

and understanding how to harness their unique capabilities is of utmost importance.

Automatic annotation processes have continued to improve and this has been in part

due to the availability of pre-annotated corpora – carried out by experts and the crowd.

We believe our work would form one of the missing components in addressing the design

of more advanced workflows which could necessitate the reintroduction of experts into

the loop – fitting in to disambiguate where the crowd falls short.

In addition, the crowd helps to shed further light into what might have been overlooked

by a trained set of experts, opening up potentials out of scope of predefined research

questions. For example, in our case, the potentials of implicit entities could help in the

design of conversational AI assistants which could resolve last stop, in store, or bus stop

based on context.

6.8 Introducing Furtherance Incentives

Given the insights we have garnered in the discussion section, it becomes paramount to

leverage on the information to achieve our original intention of building better workflows.

However, beyond building better workflows (which leads to an increase in work quality),

would it be possible to also design a workflow that improves task uptake and engagement

among crowd workers? Can we utilise the insights of what the crowd is good at to design

a more engaging task experience?

We believe the answer to this lies in a concept which we term ‘furtherance incentives’.

(We provide a full description of furtherance incentives in Chapter 8). Simply explained,

furtherance incentives serve as a stimulus to improve task continuance by introducing

it (the incentive) at the point when a worker is about to quit a task. For example,

our experiments reveal workers prefer to annotate tweets with PER entities while they

perform badly on tweets with MISC entity types. In the presence of the element of

choice (as was with our experiments), workers required to annotate successive tweets

containing just MISC entity types would tag only the number of tweets required to

receive their payment. However, workers annotating tweets with PER entities tag more

tweets. Using this insight, tweets with PER entities can be used as a content based

furtherance incentive for workers who are about to drop off from the task.
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In the next chapter on real-time crowdsourcing, we would expand on this concept slightly

– presenting how furtherance incentives can also be introduced to improve real-time

crowd tasks. In Chapter 8 while addressing the challenge of motivation and rewards,

we present a more rigorous definition and experimental study on improving motivation

in microtasks using furtherance incentives. Finally in Chapter 9, we also apply further-

ance incentives of social pressure and social flow while investigating the challenge of

synchronous collaboration in microtask crowdsourcing.

6.9 Conclusion

In terms of the wider impact of our study, we consider that our findings will be useful

for streamlining and improving hybrid NER workflows, offering an approach that allows

corpora to be divided up between machine and human-led workforces (comprising of

generic crowds, and hierarchical mediators or experts), depending on content features

such as the types and number of entities to be identified or the length of the tweets.

Future work in this area includes (i) devising automated approaches to determining when

best to select human or machine capabilities; (ii) examining implicitly named entities in

order to develop methods to identify and derive message-related context and meaning;

as well as (iii) looking into alternative ways to engage with contributors using real-time

crowdsourcing which we present in Chapter 7, crowd feedback, multi-steps workflows

involving different kinds of expertise to improve tagging performance for organizations

and other ambiguous entities, and giving the contributors more freedom and autonomy

in the annotation process.
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6.10 Summary

In this chapter, we studied how under-
standing task content features and crowd
worker abilities and preferences can be
used to design better crowdsourcing work-
flows. We investigated an approach to
finding entities within micropost datasets
using crowdsourced methods. Our exper-
iments, conducted on four different cor-
pora, revealed a number of crowd charac-
teristics with respect to their performance
and behaviour of identifying different types
of entities.



Chapter 7

Real-time Crowd Work

In this chapter we use crowdsourcing con-
tests which, in combination with indi-
vidual micro-payments, allow us to col-
lect judgements effectively under tight time
constraints. We present our crowdsourc-
ing contest model followed by our approach
at predicting worker drop-offs. We de-
tail our experiment setups across differ-
ent reward spreads and task thresholds be-
fore highlighting our findings. Following
from the previous chapter, we continue
our discourse on furtherance incentives be-
fore concluding the chapter.

7.1 Overview

We extended Wordsmith with real-time features that allow multiple workers to compete

against each other while their answers are compared and validated. Each experiment

recruited a fixed number of workers from CrowdFlower, 1 an online paid microtask

crowdsourcing marketplace, and had three specific constraints: time, task threshold and

reward spread. Workers used Wordsmith to annotate tweets for a fixed period of time.

In order to be eligible for payment, they had to complete a minimum number of tasks

(referred to in this chapter as task threshold). They were rewarded only if they were high

enough in the overall ranking; in other words, workers competed against each other, and

only a share of them (the so-called reward spread) received a payoff at the end of the

contest. Rankings were computed and updated on the fly as a function of the number of

1https://crowdflower.com
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tasks completed and a heuristic approximation of their quality, based on previous work

of ours on large-scale automatic named entity recognition for Twitter (Feyisetan et al.,

2014).

When designing the experiments, our primary focus was to create a microtask crowd-

sourcing model which could be applied to different scenarios. Wordsmith as such has

been used for several types of tasks, including image labelling (Feyisetan et al., 2015b)

and named entity recognition (Feyisetan et al., 2015a), both for static and stream-like

data. The choice of task in this chapter was not motivated by the need to design a new

NER algorithm, like we did in Feyisetan et al. (2014) or as we presented previously in

Chapter 6, but as a means to test our novel crowdsourcing model. Our main intuition

was that by designing the crowdsourcing exercise as a live contest, which must be com-

pleted in a relatively short period of time, we create an environment in which results

are delivered both fast and with accuracy. In addition, as we do not pay all workers

upfront or merely for being available, we keep the overall costs lower. In this context,

we hypothesized that the number of workers who would be rewarded and the amount of

work that was necessary to be eligible for payment would have different effects on the

quality and quantity of task output. In order to optimize unit costs further, we went on

and studied exit patterns and attrition; this was very important since we were interested

in the timely completion of the task as a whole, and not just in the top-k contributions,

which is the case in most contests (See section 2.3.4).

We ran experiments with three sets of reward spreads (top worker; top 5 workers; and

top 10 workers), and two task thresholds (low: annotate at least 1 tweet; and high:

annotate at least 10 tweets). As datasets we used four benchmarks from the Twitter

NER literature and previous work of ours (Feyisetan et al., 2015a). These datasets

included gold standards, which were instrumental in computing crowd output quality.

Our findings support our initial hypothesis: the model yields faster results (2x as fast

then a baseline approach from the literature). Increasing the reward spread led to an

increase in task output, while a higher task threshold within each reward spread meant

more work overall, but also a reduction in the contributions of the top contestants.

Rewarding more workers also reduced the rate of worker attrition and kept more workers

engaged.

Examining the results in detail gives an insight into when these patterns break down

i.e., when an increase in reward spread does not imply increased output, or, when it

actually leads to increased attrition. These insights would therefore help in finding the

balance in comparing theoretic guarantees with empirical evidence to select appropriate

reward spreads and task thresholds while scaling to task sizes comparable to real-world

Twitter processing engines. The contest model also proved, apart from its potential

financial compensation, to be an approach with intrinsic motivation. Workers not only

completed more tasks than required, but some of them reported positively about the

experiments on a community forum: for example, one post reads ‘Hello everyone! lately
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I’m hooked on the multiplayer tasks, waiting for 100 people to connect ’, while another

one claims: ‘Hit the top 10 today. I will hunt this problem again’.

To improve engagement and reduce the overall costs, we created a predictive model that

estimates the probability of a worker exiting a contest at a certain point in time given

their current task output and relative rank. This opens up the possibility of applying

furtherance incentives (as introduced in Chapter 6) to discourage workers from leaving

the competition.

7.2 Model

In this section, we introduce a high-level overview of our approach to crowdsource named

entities in real-time. We present our microtask design model and strategies for un-

dertaking crowd work. This involves the use of an external recruitment marketplace,

CrowdFlower, and our bespoke competition platform, Wordsmith.

7.2.1 Task

The task consists of a total of n posts, P = {p1, ..., pn}, each containing m entities

E = {e1, ..., em} to be annotated, where m < Mi!+Mi and Mi is equal to the number of

text tokens in post pi. The posts arrive at a constant rate λ and each has a processing

rate of µ. There are n workers in a pool to serve the task queue such that, to keep

up with the requests, the ingress load (task intensity) L = λ/µ must be less than the

number of workers n, i.e., L < n. Hence, tasks that are not solved are dropped of the

queue as opposed to being kept indefinitely in the buffer (Bernstein et al., 2012). The

tasks are solved using a first-in-first-out scheduling policy and processing scheme, and,

already recruited workers are sought to carry out new tasks (as opposed to recruiting

additional workers). Therefore, the requester is looking for an optimal processing rate

µ, and needs to keep workers motivated to carry out as many tasks as possible.

In our experiments, we modelled the arrival rate λ based on previous work (Feyisetan

et al., 2014) by using the average number of English tweets per second which probably

has a named entity present (we used proper nouns as a signal indicator of the presence

of named entities). We also modelled the processing rate λ using the results of a follow-

up study published in Feyisetan et al. (2015a), which gave insight into the average

completion rates of named entity annotation tasks by crowd workers (the results of this

was reported previously in Chapter 6).
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7.2.2 Constraints

The requester defines (i) a completion time constraint T, which depends on the number

of posts n and their arrival rate λ; and (ii) a quality constraint Q, which denotes the

minimum number of annotations expected from each worker to be eligible for payment.

The latter is essential in hybrid tasks; for example, the task might have been pre-

annotated by a machine to determine the probable number of named entities (this serves

as the quality constraint Q), while the crowd workers identify those entities and type

them (Feyisetan et al., 2015a).

7.2.3 Workers

There is a set of n workers, W = {w1, ..., wn}, each with the ability to carry out entity

annotations, participating in the contest. Each worker w ∈ W has a private skill level

ςi (also known as expertise or ability), and for each post in an annotation task, chooses

to exert a level of effort εi ≥ 0. The skill level is drawn independently of other workers

from the interval ςi v [0, 1],∀w ∈W , according to a distribution function F with density

f(ς) = dF (ς) > 0. The effort exerted is drawn from the interval εi v [0, ε], in which the

maximum effort expendable is constrained by the running time t of the contest, which

in turn is a function of posts per unit time and total number of posts. The quality qi of

each worker wi is determined by the skill level ςi, the effort exerted εi, and a requester

variable δi. The requester variable δi is a function of the requester’s review process and

perception of quality, in comparison with the worker’s internal tagging bias, which is

markedly present in human judgement tasks. This value is constant across annotation

posts ∀pi ∈ P ; therefore, two workers exerting the same effort to tag the same post would

differ only on their skill, since the requester’s variable is constant for that post. The

quality of a submission is thus given as qi = ςiεi +δi. In our experiments, the requester’s

variable was a measure of results in a pre-computed gold standard set (Feyisetan et al.,

2015a).

Each worker wi seeks to maximise their expected utility. This depends on the number

and value of prizes, and the number of contestants and value of their efforts. A worker’s

utility Ui is given by Ui = Vi − c(εi) if the worker wi wins prize Vi, or Ui = −c(εi)
otherwise, where Vi is one of k prizes to be awarded by the requester, and, c(εi) is the

worker’s cost function, which is a strictly increasing function dependent on exerted effort

where c(0) = 0. Each prize Vj above threshold k is positive, or zero otherwise; we did

not model negative rewards (punishments), as they did not seem to have the desired

effects in early experiments we carried out.
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7.2.4 Requester

The requester asks the crowd to complete a series of tasks in real-time. The requester

needs to determine the experiment setup: number of contestants, number and size of

prizes, and contest constrains to maximise the effort exerted by all contestants
∑n

i=1 εi.

This is different from contests such as the Netflix Challenge (Bennett and Lanning,

2007), where the principal’s objective was to elicit a single best response to a task. In

our case the requester does not only desire to maximise total exerted effort, but also

to maximise some utility function of output qualities
∑n

i=1 qi. The requester therefore

needs to maintain incentives for highly skilled workers, and, motivate low skilled workers

to exert more effort while adjusting the prize spread.

7.2.5 Mechanism

The requester is able to observe the baseline quality of each worker’s output (based

on: the pre-computed number of entities, and the number of entities submitted by the

worker. He/she is then able to use this information to construct a mixed cardinal-ordinal

contest (Ghosh and Hummel, 2015) by assigning a quality score to every crowd answer

– therefore, contestants are ranked not only based on their effort (number of posts

annotated), but also on the quality of their output. The reward mechanism awards a

prize Aj to an worker wj within a reward spread (e.g., the worker was within the top

5 or top 10) if their effort level surpassed a pre-defined threshold (e.g., the worker had

annotated a minimum of 5 or 10 posts).

7.2.6 Worker Exit

A worker would always seek to maximise their expected utility given the number and

value of prizes, and the number of contestants and the value of their efforts. In our

experiments, it was possible for workers to view their ranked position in real-time with

respect to their closest contenders using a k neighbours leaderboard view as presented

in the medium information policy contest strategy by Rokicki et al. (2014). A worker

far outside the reward spread might inadvertently decide to exit the contest to avoid

further loss of utility. The worker close to the reward spread might, however, decide to

remain in the contest in the hopes of displacing a close contender. Queue theory tell us

that the probability that all the workers are busy due to their fellow workers exiting is:

Pr = B(L, n) =
Ln/n!∑n
i=0 L

i/i!
(7.1)

where L = λ/µ is the ingress load (task intensity based on the task arrival rate λ and

the agent processing rate µ); and n is the number of agents. From our experiments (see

Section 8.4), we observe the effect of varying the reward and reward spread not only
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on the task quality and output, but also on agent exit (given that a new agent is not

recruited to replace an exiting one).

7.3 Crowdsourcing Design

In this section, we introduce our contest-based real-time crowdsourcing design approach.

We first define the task and then present the task platform.

7.3.1 Task Description

The task consists of a total of n posts (tweets), P = {p1, ..., pn}, each containing m

entities E = {e1, ..., em} to be annotated. During the contest, crowd workers are shown

a list of tweets and they are to annotate as many of them as possible before the next

set of tweets come in.

7.3.1.1 Entity Types

The required entity types were person (PER), organisation (ORG), location (LOC) and

miscellaneous (MISC). These are the most common types of entities used in the NER

literature from Finin et al. (2010) and Ritter et al. (2011). These were also the four

named entity types reported previously in the named entity recognition task in Chapter

6, Section 6.4.

7.3.1.2 Annotation Guidelines

We presented the workers with basic information on what named entities are, and,

some additional information on how to disambiguate between difficult entity classes

e.g., organisations, which could be classed as locations (e.g., restaurants and museums),

typos, abbreviations, colloquialisms, nested entities and software that references the

name of the creating company (e.g., Instagram).

7.3.1.3 Dataset

We selected four datasets from existing literature, which we used to simulate a real-time

influx of streaming tweets. More details are given in Section 7.5.
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7.3.1.4 Gold Standard

Each dataset comes with an annotated gold standard which we used for evaluation

purposes. The gold standard was also used to compute a contestant’s accuracy on an

annotation task.

7.3.2 Task Platform

The annotations were carried out on Wordsmith (see more details in Chapter 5) using

the contest platform configuration. This setting allowed for multiple workers to connect

to the system at once and carry out entity annotations simultaneously.

7.3.2.1 Input and Output

The system takes in a raw input of streaming posts and performs an initial sequence

of processing on it. For our studies, we focus on filtering out non-English tweets using

the language tag of the incoming tweets. We then carry out parts-of-speech tagging to

recognise tweets with proper nouns. This is used to build a pseudo-quality score for

each annotation (presented earlier as the requester’s variable δi) i.e., if our POS tagger

detects 2 different contiguous proper noun sets, we can expect an annotation result of

at least 2 entities (although this does not hold strictly if there are no proper nouns e.g.,

entities might be recognised as noun phrases by some taggers).

The system outputs a processed stream of English tweets, (tweet1, ..., tweetN) where

each tweet is represented as a tuple containing a reference ID, the tweet string and an

associated requester’s variable. Each tweet in the stream advances in linear discrete time

at a constant rate with each time point represented as unique integer value in seconds

(although, worker annotation and exit is represented in milliseconds).

7.3.2.2 Temporal Division and Stream Parallelism

Streaming tweets are bucketed into distinct time intervals using windows. A window

consists of a constant number of tweets which is then emitted per unit time. (which

may or may not have been built over a buffer depending on varying throughput levels).

Within each window task slice, tweets are clustered and parallelized to different workers.

Each cluster is a task unit consisting of a list of tweets which is allocated to each worker

for annotation. This follows a Map Reduce paradigm wherein each worker has a small

task unit to solve which is recursively built up to the final solution for the requester.

The map process involves local processing on individual nodes (individual annotating
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contestants), while the reduce process involves the merging of results to select best

responses for overlapping task annotations.

7.3.2.3 Interface

The task interface consisted of a central annotation panel, in which a worker saw the

current list of tweets as described in Feyisetan et al. (2015a). After selecting a tweet, a

worker could either mark it as having no entities, skip it or go back to the list or annotate

the entities in the tweet. The worker received a baseline score x for annotating a tweet

with an arbitrary number of entities and a higher score 5x for correctly annotating the

pre-computed number of entities (based on the gold standard tags). These figures were

drawn from a series of observations and preliminary experiments, which also ruled out

the use of negative scores and qualifying questions, as both led to a very sharp rate of

exits.

Figure 7.1: Wordsmith Interface

7.3.2.4 Configuration

On the requester side, a number of configuration settings are afforded for.

• Number of workers (W ): the maximum number of workers who could connect

to the platform.

• Leaderboard view: this sets the way a worker sees other contestants on the

leaderboard: top k, which lists the top workers on the leaderboard; or k neighbours,
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which indicates the k contenders above and below the worker. Our experiments

adopted the k neighbours leaderboard view based on findings from Rokicki et al.

(2014).

• Number of tweets (P): this represents the total number of tweets to be pro-

cessed.

• Window size (w): the number of tweets which is sent out to all workers per

time slice.

• Task unit time (µ): the delay time, for which a list of tweets remains available

for annotation to a worker before the next set of tweets arrive.

• Task arrival rate (λ): the number of tweets which were channelled to the plat-

form per unit time computed as w/µ.

• Task unit size: the number of tweets that a worker actually sees on screen at

any given time, which is a fixed percentage of the window size.

• Total task time (T): represents how long the contest would take. This is com-

puted as:

T =
Pµ

w
(7.2)

For example, in our experiments, the number of agents was 100; the number of

tweets desired to be processed was 7, 600; the window size was 200; the task unit

time was 10 seconds (more details under time warping), while the task unit size

was 10 i.e., a worker was shown 10 tweets out of the current stream of 200 tweets

for a period of 10 seconds (during which the worker is to annotate as many as

possible before the next set of tweets arrive). The task arrival rate was 200/10

which is 20 tweets per second and the total contest time was (7, 600 ∗ 10)/200 =

380 seconds (6 minutes 20 seconds).

7.3.2.5 Warping Time

Warping time is a strategy, in which a worker’s task slice in a real-time assignment

is deliberately slowed down to afford for maximal worker cognition in undertaking the

required task. For example, Lasecki et al. (2013a) used time warping to slow down audio

playback so crowd workers could effectively transcribe a given portion of speech. This is

illustrated in Figure 7.2 below. This was recursively done for each worker, after which

the individual results were successively merged to create a single result. Following our

stream parallelism approach to dividing up the incoming microposts, a window of 200

tweets was presented to 20 workers. We adopted the approach by Lasecki et al. (2013a)

denoting an in-period Pi where the annotation stream for a worker group comes in, a

speed reduction rate r and the compensating out-period Po where the worker group N
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rejoins the live real-time stream. We used a speed reduction rate r of 10 i.e., the 20

workers experienced a streaming rate of 1/r = 0.10 (i.e., one tenth speed, 10 seconds

rather than 1 second) during that annotation period. During these 10 seconds, the

workers previewed a static list of tweets, from which they can select individual entities

to annotate. The stream of tweets in the buffered out period were then emitted at a

speed of:
N − 1

N − r
(7.3)

In our experiments we made certain assumptions, which would be handled differently

on the live data feed. For example, all members of a worker group (20 workers in our

case) were presented with the annotation tasks at the same input period Po, which was a

function of our streaming methodology. We re-purposed existing datasets from literature

into a streaming API. In actual practice, each worker would have a unique input period

Po similar to Lasecki et al. (2013a).

Figure 7.2: Warping time in a transcription task by Lasecki et al. (2013a)

7.3.2.6 Task Allocation

The problem of task allocation or task routing constitutes a research topic in its own

right. There are several approaches to distributing the incoming stream of tasks to

the available workers in parallel. In a random assignment strategy, every available

contestant is assigned a random task unit slice from the window of current tweets, e.g.,
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in our experiments, a random strategy would assign each worker 10 tweets from 1 out of

20 bins derived from the streaming window of 200 tweets. In a round robin assignment

strategy, each bin would be sequentially assigned to the next available worker. Other task

allocation strategies attempt to optimise the output by assigning tasks based on worker

skill and task difficulty, by routing tasks to potentially obtain the highest information

gain (Bragg et al., 2014), or by implementing it as a Markov decision process (Kobren

et al., 2015). In our experiments, we adopted a random task allocation strategy.

7.4 Predicting Contest Exit

We adopt a Bayesian probabilistic reasoning approach to determine if a worker would

exit the contest given the time spent and the worker’s expected utility. Using this, we

can create a model, which we use to predict the probability of (a number of) workers

exiting at various reward spreads, at different task thresholds, and at various times in

the contest. This model is computed from:

Result: Contest exit: arg maxx Pr(x|U)
Parameter: U = utility;
Task threshold: v = {1, 10};
Reward spread: s = {1, 5, 10};
for time t > 0 do

Count entity annotations ε as f(A);
Compute quality q ∀ ai ∈ A ⇒ f(ai, δi, ςi);
Compute cost c = f(ε, q, v);
Update position p = f(r, s) where r = f(ε, q);
Worker Utility U = f(c, p, t);
if U > 0 and U ∈ s then

return 0;
else

return Pr(U |x) Pr(x) at t ;
end

end
Algorithm 1: Contest Exit at utility U

• The prior probability of workers exiting the contest at various time points.

This was collected empirically from the exit distributions from our experiments

and presented in Figure 7.12.

• The likelihood probability of workers exiting the contest given their current

expected utility at a given time t. This is built from a joint probability of the

various parameters which comprise the worker’s utility at any given time, details

of which are presented below.
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Beginning with simple Bayesian reasoning, we have the posterior proportional to the

likelihood and the prior, where we have earlier stated that, the likelihood is a joint

probability of the utility variables:

Pr(x|U) =
Pr(U |x) Pr(x)

Pr(U)
∝ Pr(U |x) Pr(x)

given the worker’s expected utility U = f(c, p, t) and

the worker’s cost c = f(ε, q, v)

ε represents the worker’s effort in terms of annotation counts

q represents the task quality score in terms of correct annotations

v represents the task threshold i.e., min annotations required

the worker’s position p = f(r, s)

r represents the worker’s rank based on ε and q

s represents the reward spread, i.e., the total workers to be paid

the elapsed time t > 0

Pr(x|t, c, p) =
Pr(p, c, t|x) Pr(x)

Pr(p, c, t)
∝ Pr(c, p, t|x) Pr(x) (7.4)

where:

Pr(x|t, c, p) is the posterior of the worker’s exiting the contest, given the time spent, the

worker’s expended cost and current position

Pr(x) is the prior probability of worker’s exiting the contest at this particular time

Pr(p, c, t|x) is the likelihood at the current time that the worker would exit the contest.

Predicting the probability for a workers exit then is:

Pr(x) =

ˆ
u

Pr(x|U)P (U)dU (7.5)

For each variable in the joint probability Pr(U) = Pr(p, c, t), computing the likelihood

probability conditioned on a worker’s exit is calculated empirically at each time point by

comparing the parameter value at that time, with all the values observed over the entire

contest period. For example, the likelihood at time t, that a worker that has incurred

cost c would exit the contest, is the integral (over all worker participation) of a unit cost

observation at that time t divided by the sum of all cost incurred for the contest span,

simplified as:

Pr(c|x, t) =
Pr(c|x, t)∑T
t=0 Pr(c|x, t)

(7.6)
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7.5 Experiment Design

We used CrowdFlower to source and remunerate workers crowd workers. Each Crowd-

Flower job included a link to Wordsmith.

7.5.1 Research Questions

We sought to answer four research questions:

1. Can the contest model be adapted to solve timely task completion component in

near real-time crowdsourcing tasks?

2. How does a change in reward spread and task threshold affect the worker’s effort

(number of annotations) and worker’s output quality (quality score)?

3. How does a change in reward spread and task threshold affect the exit behaviour

of workers (that is, how quickly do they exit)?

4. Can we predict when a worker would leave a crowdsourcing contest given their

current performance?

7.5.2 Research Data

Our experiment dataset consisted of 7, 600 aggregated from four existing corpora from

the literature. These datasets were from different time frames and had published gold

standards, which we could use to perform quality checks and compute contest scores.

• The Ritter corpus by Ritter et al. (2011) which consists of 2, 400 tweets. The

tweets were randomly sampled, however the sampling method and original dataset

size are unknown. It is estimated that the tweets were harvested around September

2010.

• The Finin corpus by Finin et al. (2010) consists of 441 tweets which was the

gold standard for a crowdsourcing annotation exercise. It is not stated how the

corpus was created, however our investigation puts the corpus between August to

September 2008.

• The MSM 2013 corpus, the Making Sense of Microposts 2013 Concept Extrac-

tion Challenge dataset by Basave et al. (2013), which includes training, test, and

gold data; for our experiments we used the gold subset comprising 1450 tweets.
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• The Wordsmith corpus, reported in one of our previously published works

(Feyisetan et al., 2015a). From the corpus of six billion tweets, we sampled out

3, 309 English ones using reservoir sampling – a family of randomized algorithms

for sampling k items from a list S of n items.

7.5.3 Worker Recruitment

We recruited our contestants from CrowdFlower, a marketplace for paid microtasks in

which requesters posts tasks and crowd workers select tasks to work on. In order to

achieve timely worker recruitment, we adopted a combination of strategies:

• We posted our tasks repeatedly in order to maintain visibility within the recent

tasks view of workers;

• We created multiple tasks that pointed to our Wordsmith platform, but ensured

that workers could connect only once by keeping track of the connection IP address;

• We attempted to recruit, on the average, 10 times the number of workers than we

required (≈ 1, 000 workers);

• We posted the tasks in bits as a work around for the scheduling mechanism which

CrowdFlower uses in displaying unfinished tasks to new workers; and finally,

• We used an audio alert to notify workers once the requisite number of contestants

had connected to the system.

Workers could see in real-time how many more contestants were required to connect

before the task started. We also ensured that impatient workers were reconnected when-

ever they refreshed their screens, however, once the required number of workers were

connected, no further connection was allowed.

7.5.4 Reward Spread

The reward spread represented the number of workers who were going to be paid for a

given contest. A reward spread of 1 stands for a winner-takes-all condition, in which

only the top worker gets paid. Our model rewarded each winner with the same payment,

as opposed to other variants which take into account the ranking of the participants or

implement some other form of reward sharing. As a result, in a reward spread of 10, the

top-10 workers are paid $x each for the work they have carried out, while in a reward

spread of 5, only the top-5 would have this benefit. We experimented with three different

reward spreads:



Chapter 7 Real-time Crowd Work 145

• Top 1: 1 worker gets paid

• Top 5: 5 workers get paid

• Top 10: 10 workers get paid

7.5.5 Task Threshold

The task threshold represents the minimum number of tweets which contestants were

required to annotate. We experimented with two task thresholds:

• Low threshold condition, contestants were required to exert the minimal amount

of effort (equivalent to annotating 1 tweet) to qualify for the available reward(s)

• high threshold condition, contestants were asked to put in more effort, in our

case 10 tweets i.e., 9 more tweets than in the low threshold condition.

No matter what the task threshold, if the worker was among the top contributors ac-

cording to the reward spread (the first, in the top 5, or in the top 10, respectively), they

would get paid the amount that was agreed as payment for the specific task (annotate

one tweet; or ten).

7.5.6 Experimental Conditions

We carried out a within-subjects study, in which a number of workers were recruited from

a large pool to participate in 6 different contests, taken into account the two parameters

(reward spread and task threshold) discussed earlier. These were:

C1: pay top worker, at least one tweet per task;

C2: pay top worker, at least 10 tweet per task;

C3: pay top 5 workers, at least one tweet per task;

C4: pay top 5 workers, at least 10 tweet per task;

C5: pay top 10 workers, at least one tweet per task;

C6: pay top 10 workers, at least 10 tweet per task.

Within each experiment sub-condition, we recruited 100 contestants. Each contest had

a payoff of $0.10 for each prize payment, replicating Feyisetan et al. (2015a) and the

experiments from Chapter 6.
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7.6 Results

We recruited 100 microtask workers from CrowdFlower for each of the six experimental

conditions. Table 7.1 lists how many workers carried out annotations on at least one

tweet; as workers were allowed to skip tweets or exit the contest all together, in each of

the six cases fewer than the 100 recruited workers actually ended up delivering on their

tasks. In order to ascertain the consistency of the results, we repeated the experiments

twice.

The findings confirmed the viability of the model for completing microtasks in near real-

time and faster and cheaper than other approaches. In the following sections we will

outline the effects of the two experimental parameters, reward spread and task threshold

on delivery time, output accuracy, output volume, and contest exit behavior.

Experiment Pay top 1 Pay top 5 Pay top 10

LT HT LT HT LT HT

Participants 80 73 70 77 86 67

Table 7.1: Number of workers that carried out at least 1 annotation

7.6.1 Delivery Time

In Figure 7.3 we compare the time spent annotating an entity in the different contests

vs. a baseline entity annotation task (on the same datasets) (Feyisetan et al., 2015a).

In the baseline experiments, workers were not placed under any specific time constraint,

however, inherent timely completion was required to receive their task compensation -

therefore, they still had an incentive to complete the annotations without any delay. In

experiments C1 to C6, workers needed on average 4.70 seconds to recognize and type an

entity, vs. 9.70 seconds in the baseline experiment. This is equivalent to an annotation

speed factor of 2x across all the contests. Workers spent an average of 5.6 seconds

annotating one tweet (at 1.2 entities per tweet). The top delivery time was at 2.69

seconds per entity, equivalent to a speed factor of 3.6x. Workers in the low threshold

condition with ‘pay top 5 ’ (condition C3) achieved the highest annotation speed at 4.33

seconds per entity.

Varying how many workers potentially received a reward did not yield a significant trend

in how fast or slow workers carried out the annotation task. As noted earlier, the ‘pay

top 5 ’ experiments (conditions C3 and C4) resulted in the quickest annotations, followed

by the ‘pay top 1 ’ (C1 and C2), then the ‘pay top 10 ’ workers (C5 and C6).

However, higher task thresholds did yield a trend in annotation delivery. When workers

were required to hit a higher threshold before they could potentially get paid, they were

slightly faster - this was consistent across all the experiment conditions.
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Figure 7.3: Average annotation time per entity

7.6.2 Annotation Quality

Faster results did not come without quality compromises. Figures 7.4 and 7.5 present a

fine grained summary, evaluating the annotation quality with respect to the associated

dataset gold standards. The experiment quality results are illustrated side-by-side with

the results from the baseline experiments. We look at precision, recall, and F1 scores

for the baseline, and each experiment condition C1 to C6 for each type of entity.

Figure 7.4: Annotation accuracy compared with baseline highlighting precision, recall
and F1 score breakdown

Figure 7.4 reveals that the experiments which rewarded only the top worker (in the low

threshold condition C1) produced the F1 score with the highest aggregated value. As

the reward spread increased to conditions where 5 workers, and 10 workers were eligible

to be paid, the quality dropped and then flat-lined across the other four conditions (C4

to C6).

Figure 7.4 further suggests that varying the task threshold only effects a significant

change in the condition where in a winner-takes-it-all condition. The aggregated F1
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Figure 7.5: Annotation accuracy compared with baseline highlighting only F1 scores

score was higher for low threshold tasks. In the subsequent experiments, varying the

task threshold did not result in an improvement or reduction in the average F1 score.

7.6.3 Task Output

Figures 7.6 to 7.11 illustrates how much effort was exerted by the workers across exper-

imental settings. Figure 7.6 shows the total output numbers, i.e., the distinct and total

number of annotations carried out for each experiment, while Figure 7.7 presents the av-

erage number as a function of the number of workers who carried out actual annotations.

Figure 7.8 then displays the output by the top annotator in each of the experiments,

while Figure 7.9 is about the total annotations by the top 10 workers in all experiments.

Figure 7.6: Total distinct annotations by workers
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Figure 7.7: Average annotations per worker

Figure 7.8: Number of annotation by top worker

The results demonstrate that being willing to reward more workers increases the overall

efforts exerted by the crowd. In Figure 7.6, changing the reward spread from 1 to 5 to

10 led to more annotations overall. Figure 7.7 presents a similar trend, with the average

number of annotations increasing with the reward spread. We also note an increase in

the number of annotations by the top workers from the first two sets of experiments,

where the output was fairly constant, to the third condition (with 10 workers were

eligible for payment), where there was a significant increase in the number of tasks

performed (Figure 7.8). Figure 7.9 exhibits a similar pattern with more output of the

top performers across the experiment conditions.

Varying the task thresholds within each reward spread category presented, however, a

slightly different set of results. From Figure 7.6 and Figure 7.7, we see that the total
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Figure 7.9: Annotations by top 10 workers

Figure 7.10: Average quality score per worker

and average number of annotations go up from the low threshold, where workers were

required to mark entities in just one tweet, to the high threshold, where they had to

complete 10 tweets. This is unsurprising as the high threshold conditions required more

effort to receive a potential payoff. In C5 and C6, however, there was a significant drop

in the values of these metrics (despite these experiments leading to a high number of

tasks completed by the top performers). We re-ran the experiments to check for any

external factors that might have caused this effect and the same results were observed.

From Figure 7.8 and Figure 7.9, we observe that increasing the task threshold (within

the same reward spread condition) consistently leads to a reduction in the output of the

top performers i.e., even though the overall effort exerted by all workers in higher, top

contributors engage less.
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Figure 7.11: Number of contestants

Figure 7.12: Exit distribution

7.6.4 Contest Exit Behaviour

Only a subset of contestants received a monetary payoff. The longer a worker engaged

with a task, the more utility they potentially lost given their ranking relative to the

reward spread. Some workers therefore opted to leave the contest. Figure 7.12 presents

the exit behaviour of workers in all experiments. The results imply that the beginning

of the contests sees fewer exits with most of the contestants choosing to continue for

up to 90% of the total time period. The exit rates increase towards the end. This

behaviour would be peculiar to microtask contests unlike much longitudinal contests such

as presidential elections (studied by Norrander (2006)), in which most contenders exit

at the beginning of the race leading up to much fewer participants at the final elections.

Figure 7.12 illustrates this phenomenon by presenting the percentage of workers that



Chapter 7 Real-time Crowd Work 152

Figure 7.13: Pay top 1 worker

Figure 7.14: Pay top 5 worker

exit the contests before and after the 90% time cutoff. This aspect is presented in Figure

7.12 for the six experiments. Figure 7.13, 7.14, and 7.15 on the other hand focus on the

last moments of the contest - the final 10% time stretch. The figures present the exit

distribution, i.e., the number of workers quitting the contest at various discrete time

spots leading to the end of the task.

Figure 7.12 reveals a slight continuous increase in the number of workers staying past the

the 90% threshold from conditions C1 and C2, to C3 and C4. Consequently, in these four

conditions, the percentage of workers exiting the contest early reduced gradually. The

final two experiment conditions C5 and C6 present an opposing result, with a decline in

the total number of workers making it to the 90% threshold. As has been seen from the

results discussed so far, the top performers in these conditions (who stay up until the
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Figure 7.15: Pay top 10 worker

end), go on to annotate more tweets than the preceding scenarios. Similarly, looking at

the details of exit behaviour in conditions C1 to C4 in Figure 7.13 and 7.14, we observe

similar exit patterns leading up to a sharp mass exodus at about the same time. The

area under the curves in the two figures is proportional to the numbers illustrated in

the ‘exit after 90%’ bars in Figure 7.12. Contrasting the two result sets, we note that in

Figure 7.14 (conditions C3 and C4), there is a more gradual buildup of workers exiting,

up to the peak (98% contest time), when over 25% of workers pulled out. In Figure

7.13 (conditions C1 and C2), the buildup occurs slightly later leading to a larger exit of

over 30% of workers at the 98% peak. From Figure 7.15 (conditions C5 and C6), we see

more workers staying longer all the way almost to the end i.e., despite having a higher

initial attrition rate before the 90% threshold, more workers stayed on in attempts to

qualify for the top 10 spots.

The results of C1 through to C4 displayed in Figures 7.13 and 7.14 demonstrates that

increasing the task threshold results in workers remaining longer in the contest, which

is also due to an increased task baseline. This is seen from the area under the curves

and the corresponding result in Figure 7.12. As with our previous findings, the inverse

was the case in the final two experiment conditions (C5 and C6). Increasing the task

threshold and potentially paying more people not only led to fewer participation from

the outset (67 workers in C6), but it also led to more workers exiting the contest sooner.

7.6.5 Predicting Contest Exit

We evaluated our predictive model by carrying out a 6-fold cross-validation on our 6

experiment result sets. The training data consisted of the state of each worker at every

time point (such as number of tweets annotated so far, etc., see section 7.4). All the
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result sets were randomly split into 6 parts of equal sizes; 5 of the sample parts were

then used to train the model and the last to evaluate. This process was then repeated

6 times. This gave scores of 71.95, 71.96, 71.96, 71.96, 72.22, 72.22 for an average of

72.04%.

Correctly predicting 7 out of 10 exits, especially at the early stage can potentially lead

to significant increase in task output by applying appropriate furtherance incentives

(introduced previously in Chapter 6 and expanded later on in Chapter 8). We can even

increase the accuracy of the prediction by creating a finer grained model around the

worker e.g., taking each time state and examining the worker’s annotation rate up to

that point.

7.7 Discussion

In this section, we revisit the main findings in the context of the research hypotheses

introduced earlier, and discuss their implications for this line of work and for microtask

crowdsourcing in general.

7.7.1 Towards Real-Time Annotations

The results presented lend support to our hypothesis that the microtask contest model

leads to timely task completion without the associated overhead costs. Our results

indicate an increase in speed by an average factor of 2x, and up to 3x more among

the top performers. These metrics could be used to inform decisions on the number of

workers that would be needed to annotate the entire dataset of 7, 600 tweets in real-

time - taking into consideration the total number of non-unique annotations e.g., in

experiment C5, workers annotated 1981 tweets, equivalent to 384 workers required to

make one pass at the entire stream.2 Our experiments were carried out on a stream of

20 tweets per second; the live Twitter stream is currently estimated at 6, 000 tweets per

second3 or 2, 400 English tweets per second (40% of the full stream) (Feyisetan et al.,

2014). Annotating 10% of the live stream could be potentially carried out by designing

a contest for ≈4, 600 workers i.e.,

4, 600 workers ← 384 workers ∗ 10% of 2, 400 tweets

20 tweets per second
(7.7)

2This figure includes consideration of worker exit.
3http://www.internetlivestats.com/twitter-statistics/

http://www.internetlivestats.com/twitter-statistics/
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7.7.2 Reward Spreads and Task Thresholds

We investigated the interplay between the reward spread, task threshold, and crowd

behavior. Allowing more workers to be eligible for payment improved the overall per-

formance. With more winning spots came an increase in the total and average task

output by all participants. Having a higher reward spread also ensured that workers

stayed in the context and did not drop out early, thus leading to more tasks completed.

This further meant that more effort was required to achieve one of the top spots in the

ranking, which would receive a payment.

Delivery times remained fairly stable across the experiments, hence an important factor

required was reducing the worker attrition in the contest, which was achieved by increas-

ing the reward spread. High threshold tasks improved the amount of work produced;

even though the top performers weighed their contributions more carefully, the workers

at the lower end of the leaderboards evened out this shortfall by doing more annotations.

However, indefinitely increasing the reward spread would defeat the purpose of adopting

a contest model, converging towards a traditional microtask system. Our results suggest

that the linear result growth begins to break down as expected at some point. It is

important to note that the motivation of crowd workers covers a wide spectrum of

intrinsic and extrinsic factors, hence, having a wider reward spread (and a higher task

threshold as seen in C6) led to a plummet in task output (over repeated experiment

runs). An investigation into the discussion forums indicated that this experiment was

probably less challenging – as stated by one worker, ‘... to get into the top 10 is not

too difficult ...’ – and hence might not have been as attractive to top performers.

Understanding where to draw the line would be the subject of further empirical studies

paired up with theoretical analysis.

7.7.3 Payments and Ethical Considerations

Crowd worker motivation remains a constant research area in understanding why people

partake in microtasks. This is essential in order to design systems which are fair and

rewarding to the workers. A requester would always seek to minimise cost, however,

a worker’s complete range of motivations is not yet fully understood. Our investiga-

tions revealed that the task model was relatively well received: in one of the baseline

experiments, 87 workers rated the payment of $0.10 as 4 out of 5, while in one of our

contests, 49 workers rated it as 3.5 on the same scale despite only 9 of them receiving

an actual payout. Furthermore, workers seemed to be eager to return – as stated in a

crowd discussion forum, one of the participants posted ‘Hit the top 10 today. I will hunt

this problem again’, while another one felt let down when they couldn’t be among the

100 contestants: ‘Yesterday I came across this, but [they] recruited 100 people, [I] was

not allowed to play ’.
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On task payment, we favoured a higher than average payment of $0.10 as against the

annotation averages reported by Difallah et al. (2015), however, it would be interesting

to see the effects of increased payments on the results. In a related set of experiments we

noted that raising the reward to as much as $0.25 rather created an anchoring effect than

a trend in results. We would like to investigate this further and also analyse the effect of

task payment ordering. A greater understanding of worker intrinsic motivations would

help in the design of better payment schemes, wrapped around task models that workers

find inherently engaging and rewarding; and lend insights into the ongoing debate on

ethical and fair crowdsourcing (Irani and Silberman, 2013).

7.7.4 Limitations

In this chapter we did not focus on advanced task allocation mechanisms, however

our results can be extrapolated to what the results might look like. The experimental

findings presented the distinct and total number of annotations by workers, which both

give an idea of the number of workers that would be required to attain complete task

coverage, within the given time constraint using an optimal task allocation strategy.

Furthermore, the experiments were run on a named entity recognition task. While we

tried not to focus on task specificity and present a model that could be generalised to

different task scenarios, it would be interesting to explore how this model would perform

in other task settings.

7.8 More on Furtherance Incentives

In Chapter 6, we introduced the concept of furtherance incentives and how they could

potentially be used to design better crowdsourcing workflows by engaging workers who

are about to quit the task with sub-tasks that they are good at solving. Earlier on also in

Section 7.6.5, we have similarly alluded to the potential of using furtherance incentives

to improve real-time crowdsourcing contests by predicting workers who are about to quit

and pre-emptively engaging them.

We therefore broadened our discourse on the potentials of furtherance incentives in this

chapter. The keys to effectively deploying furtherance incentives come in two folds:

1. we should be able to detect when workers are about to quit a task. This has

been identified as a possibility in this chapter by employing predictive analytic

capabilities which observe worker contest and exit patterns to create a picture of

when workers would likely quit the task; and
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2. we should have an idea of ‘tipping point’ incentives which can effectively keep a

worker engaged i.e. switch a disinterested worker to a sub-task (or set of sub-tasks)

that the worker would be more likely to engage with.

In the previous chapter, we presented possible furtherance incentives in the way of tweets

which had been demonstrated to be quickly and correctly annotated by the crowd i.e.

fulfilling step (2) above; while in this chapter, we provided a way to detect or predict

when a worker is about to quit a task, therefore addressing point (1) above. In the

next chapter, i.e., Chapter 8, while discussing the challenge of motivations and rewards

in crowdsourcing, we would bring these two components together thereby painting a

more rounded picture of how to deploy furtherance incentives. We would discuss dif-

ferent incentive types in a gamified paid microtask setting and present analysis on the

effectiveness of using the various incentives as furtherance incentives.

7.9 Conclusion

We demonstrated that designing tasks as contests can speed up the completion factor by

an average of 2x, making them suitable for real-time crowdsourcing. Furthermore, we

demonstrated that increasing the reward spread and task threshold increases the overall

task output up to a certain point after which, the result size begins to decline. Our

results illustrate that increasing the reward spread prevents early exit of workers. We also

reported a rather positive impression from task workers based on the satisfaction scores

(even of unpaid workers) and forum posts which suggests a motivation factor beyond the

baseline payment. These results could be used to inform better real-time crowdsourcing

systems within budget constraints without sacrificing the intrinsic benefits workers might

derive from the platforms.
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7.10 Summary

The results in this chapter illustrated
the viability of applying a contest model
to carrying out crowdsourcing tasks with
time constraints. We presented a predic-
tive model that was used to suggest when
a worker wanted to quit the task. After-
wards, we gave empirical results to show
crowdsourcing settings that yield useful re-
sults under time constraints using the con-
test model. Following from the previous
chapter, we expanded our understanding
of furtherance which leads squarely to the
central theme of the next chapter.



Chapter 8

Motivation and Rewards

In this chapter, we address the challenge
of motivation and rewards in paid mi-
crotask crowdsourcing; building upon, and
coming full circle on the concept of fur-
therance incentives. This chapter exam-
ines the potential of adding gamification
to microtask interfaces as a means of im-
proving both worker engagement and ef-
fectiveness. It also defines a predictive
model for estimating the most appropri-
ate furtherance incentive for individual
workers, based on their previous contribu-
tions. This allows us to build a person-
alised game experience, with gains seen on
the volume and quality of work completed.

This chapter is adapted from earlier published work 1 titled ‘Improving Paid Microtasks

through Gamification and Adaptive Furtherance Incentives’.

8.1 Overview

We run a series of experiments in image labelling, and analyse worker behaviour in

terms of number of images completed, quality of annotations compared against a golden

standard, as well as monetary and game-specific rewards. Each experiment studies these

parameters in two settings: one based on a state-of-the-art, non-gamified ‘job’ on Crowd-

Flower (i.e., the unit of work on this platform); and another one using an alternative

1This chapter is adapted from work that appeared at WWW 2015 Feyisetan et al. (2015b)
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interface incorporating several game elements. The second setting uses CrowdFlower as

well, but only to seek contributors; it offers the same reward for the same amount of

work as the baseline task, but points to an external page where the gamified version of

the task is deployed. More specifically, in the second condition, CrowdFlower workers

are asked to engage with Wordsmith.

Our basic hypothesis is that by designing a playful interface for the image labelling

task - as opposed to the functional style common to most microtask platforms - we will

encourage workers to engage with the task more, independently of the actual monetary

reward. This hypothesis was confirmed by our findings, which revealed better accuracy

(an improvement of almost 10% compared to the baseline condition) and significantly

lower costs per annotated image (5,708 unique labels collected via the game vs. 111

unique labels contributed through equivalent, non-gamified microtasks, see Experiment 1

in Section 8.4). We tested this hypothesis on different variations of image labelling tasks,

in which we increased the complexity of the task and adjusted the prices accordingly,

observing a similar trend.

Then we looked into the impact of different game elements and related incentives on

the behaviour of the workers, following the SAPS framework (Status, Access, Power,

Stuff) presented by Zichermann and Cunningham (2011). Besides studying how people

responded to the primary gamification components (leaderboard, levels, points, and

badges), we also introduced a sociality aspect, which was originally missing from the

game and allowed contributors to view each other’s achievements. Our final incentive

dimension was additional cash payment for more work, once the goals of the initial task

had been achieved.

These new experiments produced clear evidence of the positive effects of game mechanics

on both task performance and crowd engagement; up to five times more unique labels

were generated while preserving a comparable level of accuracy (see Experiment 2 in

Section 8.4). This is true particularly for sociality features, which are largely absent on

microtask platforms.

Following these insights, we went on to create a predictive model that estimates the most

suitable set of incentives for individual workers, based on their previous contributions.

This allowed us to build a personalized game experience, with positive results on the

volume and quality of work completed. With this model, we were able to obtain 19%

more concordant image keywords (4849 vs. 4091) while maintaining the same average

pair-wise agreement score. We also recorded a significant uptake in image tagging (with

77% of players tagging an extra image when confronted with targeted incentives against

27% in the experiments using a randomly selected incentive).

Overall, the results of these experiments shed light on possible design improvements of

paid microtasks environments in order to achieve better task performance and make the

overall experience more fair and rewarding for the workers. While we are not necessarily
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arguing for a fully-fledged gamification of microtask platforms, considering specific game

mechanics (Zichermann and Cunningham, 2011), or in fact, any social design features

that are widely discussed on online communities literature (Kraut et al., 2012) is worth

further investigations. This is important not just for purely utilitarian motives on the

side of the task requesters, but also in the context of the ongoing debate on ethical and

fair crowdsourcing (Irani and Silberman, 2013).

Previous work has approached such aspects through studies of crowd motivations (Kauf-

mann et al., 2011), discussing the rich repertoire of extrinsic and intrinsic reasons that

drive people to contribute to microtask projects. Our experiments quantify some of

these insights. We deliberately chose a task that is well-known in the crowdsourcing

literature, as we were aiming for task-independent findings, which were only minimally

influenced by interface or quality control aspects. For the same reasons, we opted for av-

erage market prices to reward participation; lower pays would have been less attractive

(and unfair) for workers, higher ones might have appealed to people who were primarily

financially incentivised. We believe more research needs to be done to build microtask

platforms that reflect and support the values and motivations of the crowd as an inte-

gral part of their functionality. Our experiments give evidence that such efforts could

be beneficial both workers, and for requesters.

8.2 Model

In this section, we introduce a high level overview of our approach to crowdsource image

labelling. We present our microtask design model and strategies for undertaking crowd

work. This involves the use of an external platform, CrowdFlower, and our bespoke

game Wordsmith.

8.2.1 Task

We now describe our model for maximising the output from crowd assigned tasks while

maintaining quality. Each HIT (Human Intelligence Task) consists of n images, x =

{x1, ..., xn}, which can each be described by a set of m keywords k = {k1, ..., km}, where

m is a large unknown number. Each task seeks to capture new keywords that correctly

describe each image.

Requester. The requester desires to have as many image annotations as possible,

without compromising on the quality of the describing keywords. The requester requires

the help of human agents to carry out the tasks.

Strategy. We define two requester strategies for presenting tasks. The crowd strategy

relies on traditional crowdsourcing techniques in a standard ‘image field - text fields’
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layout. The game strategy employs game mechanisms, and a game based interface to

capture keywords. Our nomenclature defines human agents in the crowd strategy as

workers, and those in the game as players.

Crowd→Worker. Each worker provides judgement on a task by assigning m keywords

{k1, ..., km} to n images {x1, ..., xn} in a traditional crowdsourcing system. We used

CrowdFlower as our crowdsourcing platform, presenting each task using the standard

image annotation template provided. In this strategy, n and m are defined and fixed by

the requester.

Game → Player. Each player provides judgements on a task in a fashion similar to

workers in the crowd strategy. However, in the game strategy, players can tag a variable

number of images as they progress through more levels.

Quality. Is defined by consensus. The number of keywords matching a quasi-gold

standard bank, gives an overview of the quality of annotations. This was extended to

also cover consensual annotations within workers and players - as this suggests probable

new keywords for the image.

Figure 8.1: CrowdFlower Task Interface

8.2.2 Worker Recruitment

We sourced all our human agents from CrowdFlower. For each experiment, we created

2 jobs which channelled task resources to the crowd strategy and game strategy. We

used identical settings for each experiment set, consisting of the following parameters:
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1. Geography - limited to the top 15 English speaking countries, and the top Crowd-

Flower contributor countries.

2. Skills - we chose Level 2 Contributors, which account for 36% of monthly judge-

ments.

3. Judgements - 3 per unit, which meant each image would be annotated by at least

3 human agents.

4. Behaviour - each human agent was paid for 1 task, i.e., paid to tag m images, with

n keywords, each as determined by the requester. For this, CrowdFlower tracks

the IPs and aliases created by the agents.

5. Reward/Time Limits - reward payment and completion time limits were experi-

mentally set as described later.

8.2.3 Game Design

Apart from the baseline gamification elements, additional feedback mechanisms consist-

ing of information were provided to players on their progress and current standing in

the game. Both social and non-social feedback elements were added to Wordsmith as

follows:

1. Leaderboard - showed the hourly scores and level of the top 5 players as opposed

to an all time leaderboard which might discourage newer joiners.

2. Badges - were awarded based on the number of images tagged. The first set of

badges are listed below:

• Take Off Badge - tag 1 image

• Second Shot Badge - tag 2 images

• Steady Progress Badge - tag 5 images

• Premier Cup Badge - tag 8 images

• Premier Crown Badge - tag 13 images

3. Feedback Alerts - informed a player how a bonus point or badge was attained and

how it can be re-attained. The alert messages displayed were as follows:

• Badges - You are close to a badge ... Just a few more images and you will

unlock an exciting new badge - you’re almost there.

• Bonus points - You earned bonus points! Typing in the right words earn you

either single, double and triple bonus points

• Treasure points - You earned treasure points! Earning multiple bonus points

(10, 20, 30) stack up to earn you extra treasure points
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4. Bonus Points - were awarded when players submitted keywords that matched 1,

2, or 3 known images tags.

• single point - match 1 gold label

• double points - match 2 gold labels

• triple points - match 3 gold labels

5. Treasure Points - were awarded when players got multiples of 10 bonus points.

There were 9 levels of treasure points; the first 3 are shown below:

• bronze points - match 10 gold labels

• silver points - match 20 gold labels

• gold points - match 30 gold labels

6. Activities Widget - displayed in real-time, what other players were doing in the

game. The categories of messages displayed were as follows:

• Has unlocked - a badge, an avatar

• Has earned - bonus points or treasure points

• Climbed up - the leaderboard

• Is now on - the global leaderboard

7. Levels - the game consisted of a total of 9 levels from Newbie to Wordsmith. A

player’s level advancement was a function of how many images were tagged.

Level name Time al-
lowed

Unit
points

Min
points

Max
points

Reserved
words

Required
labels

Newbie 120 250 0 0 0 2

Novice 100 260 1 10 2 2

Competent 80 275 11 99 2 3

Master 70 295 100 199 3 3

Champion 65 320 200 299 3 3

Maestro 60 350 300 499 4 3

Commander 55 385 500 999 4 4

Grand Duke 50 425 1000 1499 5 5

Wordsmith 45 470 2000 ∞ 5 6

Table 8.1: Level Design

8.2.4 Furtherance incentives

In Experiment 2, we introduce ‘furtherance incentives’ to Conditions 3 and 4, which

is a reward or concession presented to a player when they attempt to exit the game to
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induce them to stay and play more levels. We selected our incentives based on the SAPS

framework presented by Zichermann and Cunningham (2011).

In our experiment, we expanded Status from SAPS to encompass the 3 game status

elements mentioned by Zichermann and Cunningham (2011), i.e., badges, leaderboard

and levels. We interpreted the SAPS incentives as a popup messages presented to the

player at the point of attempted exit. Each incentive began with the message: Would

you like to tag the next ‘target number ’ images? If the player had tagged less than 21

images, the ‘target number ’ of additional images was 5, otherwise it was 11.

The specific messages appended to each incentive is as follows:

• Badges - You would automatically be rewarded with The ’Ultimate’ Badge. Get

upgraded to a shiny new avatar

• Leaderboard - You would automatically be advanced on The Global Leader-

board. Get seen globally on the leaderboard

• Levels - You would automatically be advanced to The Next Level. Advance to

the next level.

• Access - You would be given quicker access to Treasure Points. Get more treasure

in half the time.

• Power - You would be rewarded with the power to View Other Players Tags.

Power to see other players image tags.

• Stuff - You would be rewarded with a bonus of 5 cents extra. More cash for your

effort.

At each point of attempted exit, a player was shown one of the 6 furtherance incentives

V = {badges, leaderboard, levels, access, power,money}

The choice of the incentive to be shown was decided by drawing a random variable

V v U([0, 1])

At the moment of incentive offer, we record the incentive offered, the requested target

number, the number of images tagged so far (as start tags and end tags) and the current

timestamp. We then recorded the player’s game state after the incentive was presented

i.e., the player could ignore the incentive and exit the game (state=out), or the player

could go on playing the game (state=in).

If the player remains in state = in, we keep track of game play (updating the number of

images tagged as end tags) until the player has tagged an additional ‘target images’. At

this point, the offered incentive is activated. Players can then transition into state in or
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Figure 8.2: Furtherance incentive presented when a player attempts to exit Word-
smith

out. If a player attempts to exit the game at this point, we do not show any furtherance

incentive. However, if the player remains in the game, we continue to keep track of the

number of images tagged, and therefore update the value for end tags.

8.2.5 Adjusting Incentives Probabilistically

In the final condition (Experiment 2 C4), we posit that certain furtherance incentives

are more effective at different stages of gameplay. To test this hypothesis, we computed

a probabilistic model that estimates, at every potential game exit point, the incentive

that would maximize the probability of the player remaining in the game. To do this,

our probabilsitic model computes a priori state transitions at previous attempted exit

points, to predict what incentive a player would accept given the number of images they

have tagged. This model is computed from:

1. the prior probability of the incentive given the incentive distribution obtained

from the results of the random incentives condition (Experiment 4 Condition 3)

2. the likelihood probability of the player remaining in the game after tagging the

current number of images given a certain offered incentive and

3. the likelihood probability of the player remaining in the game after tagging a

set of images (defined over a numeric range), given a certain offered incentive.

The details of the reasoning approach is detailed in the next few sections.



Chapter 8 Motivation and Rewards 167

Our probabilistic reasoning approach to computing the maximum a posteriori incentive

given our selected feature (the number of tagged images) is similar to the method of

determining the correctness of worker results by Demartini et al. (2013).

We compute the posterior as the maximum conditional probability of the incentive v at

a given point x using Bayesian inferencing as shown in the equation below:

Pr(v|x) =
Pr(x|v) Pr(v)

Pr(x|v) Pr(v) + Pr(x|¬v) Pr(¬v)
(8.1)

Pr(v|x, s = in) =
Pr(x|v, s = in) Pr(v|s = in)

Pr(x|s = in)
(8.2)

where:

v is a potential incentive to be shown to the player.

x is the number of images a player has tagged so far.

s is the state of a player being in or out of the game.

Pr(v—x,s=in) is the posterior of the incentive given the number of images the player

has tagged.

Pr(v—s=in) is the prior probability of the incentive i.e., the probability of any player

at any given point accepting this incentive.

Pr(x—v,s=in) is the likelihood at the current game point that the player would accept

the given incentive.

8.2.5.1 Definitions

Image point

x ∈ X = {1, ..., N}whereN = 2, 200.

Represents the number of images a player has tagged at the point of an attempted game

exit.

Game states

s ∈ S = {out, in}
Represents the state a game player is in after attempting to exit the game at an image

point.

Incentive

v ∈ V = {badges, leaderboard, levels, access, power,money}
Represents the set of incentives from which v is drawn to be presented to the player at

the point of attempted exit.

Image Band

b = (xi, xj) = {b ∈ R | xi < b < xj}
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Represents a range over image points xi to xj over which players exhibit similar exit

pattern behaviours.

8.2.5.2 Prior Distributions

Our prior distributions come from the results of random incentives presented to players.

We compute the objective prior of the incentive v as given by the sum and product rule

in Bayes Theorem:

Pr(v) =
N∑

x=1

Pr(v, x) (8.3)

Pr(v, x) = Pr(v) Pr(x|v) = Pr(x) Pr(v|x) (8.4)

Pr(v|s = in) =

N∑
x=1

Pr(s = in|v, x)

N∑
x=1

V∑
v∈V

Pr(s = in|v, x)

(8.5)

This represents the number of players that remained in state s = in, at image point x

after being shown incentive v over all image points x ∈ X, compared with all the players

that remained in state s = in, at image point x after being shown any incentive v in the

set of all incentives V over all image points x ∈ X.

As an example, given that 100 players remained in state s = in after they were shown

any incentive v ∈ V over all image points x ∈ X = {1, ..., 2,200}. If 29 of such players

(who remained in the game) were shown incentive v = ‘power ’, then the prior of the

incentive ‘power ’ over all image points is 29/100 or 29%.

8.2.5.3 Likelihood Distributions

We also compute the likelihood at each image point x, of a worker remaining in state s

= in given an incentive v. The likelihood represents the conditional probability

P (x|v, s = in)

at image point x. Our likelihood function was a product of 2 variables: (a) the image

point likelihood and (b) the image band likelihood.

Image Point Likelihood

For each incentive v, we calculate the image point likelihood at point x as:

Pr(x|v, s = in) =
Pr(s = in, x|v)

S∑
s∈S

Pr(s, x|v)

(8.6)
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This represents how many players remained in state s = in, at image point x after being

shown incentive v at image point x, compared with all observations of state changes at

image point x after being shown incentive v.

As an example, given that 3 players attempted to stop playing the game after tagging 11

images (image point x = 11) and the 3 players were all shown the incentive v = ‘power ’.

If 2 of the players go on to tag the 12th image, then we calculate the likelihood of a

player remaining in state s=in, at the 11th image, when shown ‘power’ as 2/3.

For image points where we do not have any observed behaviours, i.e., where no player

had attempted to exit the game at a certain image point x, we apply the principle of

indifference (principle of maximum entropy) to accommodate these latent variables.

P (x|v, s = in) = 1/N ∀ x ∈ N = {1, ..., N} (8.7)

The variable x here represents the image point while N = 2, representing 2 possible

states s = {in, out}. Therefore, for unobserved image points,

P (x|v, s = in) = P (s = in) = P (s = out) = 0.5 (8.8)

Image Band Likelihoods

To further accommodate for latent variables and present an expressive picture of how

players behave after tagging a certain numbered range of images, we introduced image

band likelihoods.

Image Band

b = (xi, xj) = {b ∈ R | xi < b < xj}
Represents a range over image points xi to xj over which players exhibit similar exit

pattern behaviours.

The image bands b ∈ B were elicited by observations over the results from the randomised

incentive condition and they are:

B = {0− 11, 12− 60, 61− 100, 101− 200, 201− 2200}

The image band likelihoods were computed on an incentives basis, as such:

B∑
b∈B

Pr(s = in, b|v) = 1 (8.9)

For each incentive v, we calculate the image band likelihood over band b as:

Pr(b|v, s = in) =
Pr(s = in, b|v)

S∑
s∈S

Pr(s, b|v)

(8.10)
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This represents how many players remained in state s = in, within image band b, after

being shown incentive v, compared with all players who remained in state s = in, over

all image bands b ∈ B, after being shown incentive v.

As an example, given that 100 players remained in state s = in after they were shown

incentive v = ‘power ’ over all image points x ∈ X = 1, ..., 2,200. If 16 players go on to

tag 1 more image within the range of image points xi, xj = (12,60) = 12 ¡ b ¡ 60, then

the image band likelihood of ‘12-60’ given incentive v = ‘power ’ is 16/100 or 16%.

8.2.5.4 Updating the Likelihoods

As the experiment runs, we continuously take into account the behaviour of players at

each image point. With each new observation at an image point, we recalculate the

likelihood of remaining in state s = in, at image point x after being shown incentive

v. Therefore, our probabilistic model iteratively updates the likelihoods by constantly

learning and taking into account new data based on player interaction. This is of partic-

ular importance in filling in revised parameters for the earlier unobserved image points.

As an example, given an image point x = 20, where there had been no earlier observations

in experiment 4 of a player exit after being shown incentive v = ‘power ’. The image

point likelihood would be assigned the default of 0.5 (principle of maximum entropy),

computed as 2 observations with 1 observation at state s = in. If a new observation

occurs (for any given player) at the image point x = 20 for incentive v = ‘power ’ and the

player transitions to state s = out, the image point likelihood is updated to 3 observations

with 1 observation at state s = in = 0.33.

8.2.5.5 Computing the Posteriors

Given the incentive prior P(v—s=in) when a player remains in the game, the image

point likelihood Pr(x|v, s = in) and the image band likelihood Pr(b|v, s = in), we are

able to compute the best incentive to offer a player at image point x as the incentive

that maximizes the posterior given as

arg max
v

Pr(v|x) = Pr(j|v, s = in) Pr(v|s = in) (8.11)

where the joint likelihood of the image point and the image band is given as:

Pr(j|v, s = in) = Pr(x|v, s = in) Pr(b|v, s = in)

The incentive is then offered to the player and the ensuing state transition is recorded

as a new observation point to update the image point likelihood given that incentive.
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8.2.5.6 Algorithms

We now present the algorithm for the image point likelihoods for an incentive and the

algorithm for calculating the incentive posteriors at any given image point.

Result: Likelihood P(x—v) = inx/obv
Parameter: v = incentive;
Initialize Latent Variables;
Image Points: x = {1,...,N};
Observations at x: obv = 2;
State = in at x: inx = 1;
for x in Image Points do

if state = in at x then
obv += 1;
inx += 1;

else
obv += 1;

end

end
Algorithm 2: Image point likelihoods for incentive v

Result: Posterior Incentive: arg maxv Pr(v|x)
Parameter: x = image point;
Initialize Latent Variables;
Incentive v at x: vx = {};
Posteriors Tracker: pt = {levels = 0, ..., power = 0};
Min Tags: min = 11;
Max Tags: max = 2,200;
for image tag x from min to max do

Pr(v|x) ∀ v ∈ V ;
Pr(v|x) = Pr(v).Pr(b|v).Pr(x|v);
Incentive Identifier iid = 0;
Selected Incentive vx = Pr(v|x) at iid;
Update Posteriors Tracker ptatvx+ = 1;
Max Incentive Assignment mia = Pr(v) ∗ (max−min) if pt at vx ¡ mia then

return vx;
else

return vx = Pr(v|x) at iid + 1;
end

end
Algorithm 3: Incentive posteriors at image point x
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8.3 Experiment Design

This section details the experiments we carried out. We ran 2 experiments. Experiment

1 had 2 conditions - (a) CrowdFlower (non gamified) condition; (b) Wordsmith (gami-

fied) condition. Experiment 2 had 4 conditions - (a) Non-gamified condition; (b) Gam-

ified condition (without furtherance incentives); (c) Gamified condition (with random

furtherance incentives); (d) Gamified condition (with targeted furtherance incentives).

8.3.1 Research Questions

Our work was centered around 3 potential ways in which gamification can be used to

improve paid microtasks:

1. Gamifying paid micro-tasks leads to increased worker engagement, culminating in

more work done for less cost.

2. Gamifying paid micro-tasks leads to higher inter-annotator agreement, yielding

higher quality results than without.

3. Targeting incentives when a player attempts to quit the task leads to increased

engagement.

To test these hypothesis, we carried out 2 experiments in image labelling. Workers were

presented with an image, and asked to assign keywords that describe the image. To test

the first two hypotheses, we chose a between-subjects design where the control condition

consisted of a standard, non-gamified interface, using CrowdFlower’s image labelling job;

while the experimental condition, consisted of a gamified interface incorporating several

game elements. Both conditions relied on CrowdFlower for worker recruitment, but

while workers performed tasks directly within CrowdFlower for the control condition,

workers assigned the experimental were redirected to an external game site. Participants

in both setups were paid the same amount.

To test the 3rd hypothesis, we carried out 2 additional condition setups on our gamified

interface, again with players sourced and redirected from CrowdFlower. In the control

condition, workers were presented with a randomly-selected incentive to stay when they

attempted to leave the game. In the experimental condition, an incentive was shown,

selected based upon a predictive model constructed from the previous worker’s task

history. The details of this predictive model was described earlier in Section 8.2.5.

8.3.2 Research Data

For our experiments, we used the ESP game dataset from von Ahn and Dabbish (2004).

This comprises of 100,000 images and about 1.4 million image tags. For each experiment,



Chapter 8 Motivation and Rewards 173

we selected the images in the dataset which had the highest number of keyword tags

associated with it. This was used as a sort of quasi-ground truth, for checking basic

tagging quality and assigning bonus points.

8.3.3 Evaluation Metrics

To evaluate worker performance, we measured both the volume of work completed and

work quality. To assess the volume of work completed, we simply measured the average

number of keywords provided per image. To assess work quality, we used two measures:

overlap with the gold standard keywords in the dataset, and a standard measure of

inter-annotator agreement from Bhowmick et al. (2008) to determine the degree of the

pairwise consensus of image labels which were not in the gold standard datset.

We use the approach by o determine the pair-wise agreement. Given I as the number of

images, K is the total number of annotations for an image, H is the number of human

agents (crowd workers or game players) that annotated the image and S is the set of all

keyword pairs with cardinality |S| =
(
K
2

)
, where k1 = k2 ∀ {k1, k2} ∈ S.

Given an image i and an assigned keyword k where {k, k} ∈ S, the average agreement,

Aik, on the keyword k for the image i is given by

Aik =
nik(
H
2

) (8.12)

where nik is the number of human agent pairs that agree that keyword k describes image

i .

Therefore, for a given image i the average agreement over all assigned keywords is

Ai =
1

|S|
(
H
2

) S∑
k∈S

nik (8.13)

For Experiment 2 condition 4, we sought to evaluate the effectiveness of targeted incen-

tives over random ones. To do this, we used as a measure the number of players that

tagged at least 1 more image after they were presented with each particular incentive.

The incentive was shown when they attempted to stop playing the game.

8.3.4 Experimental Conditions

In this section, we summarise both experiments and their conditions in detail.

Experiment 1: Task: Tag 1 Image with at least 2 keywords; Source dataset size: 200

images; Workers: 600; Payment: $0.02; Platforms: CrowdFlower and Wordsmith. In



Chapter 8 Motivation and Rewards 174

the first experiment, workers in either condition were required to tag 1 image with 2

keywords. In Wordsmith, the gamified condition, this corresponded to advancing 1 level

into the game. Players in Wordsmith could continue playing the game (tagging more

images) after completing the required annotation. There were 200 images in the dataset.

Participants were paid 2 cents for the image tagged.

Experiment 2: Task: Tag 11 images with at least 2 images each; Source dataset size:

2,200; Workers: 600; Payment: $0.10; Platforms: Crowdflower and Wordsmith; Fur-

therance Incentives:none, random or targeted. In experiment 2, workers were required

to tag 11 images with keywords. However, the dataset size was increased 11 fold (from

200 to 2,200) to allow players to play for longer without seeing repeated images. Inter-

mediate results had revealed that a certain number of players tagged the entire dataset

of 200 images. This experiment consisted of 4 conditions detailed below. In addition,

for conditions 3 and 4, furtherance incentives, defined in Section 8.2.4 are introduced

when players attempt to quit.

Experiment 2 - Condition 1: Platform: CrowdFlower; Furtherance Incentives: none.

This was a non-gamified setup where workers were required to tag 11 images from a

dataset of 2,200 images for 10 cents.

Experiment 2 - Condition 2: Platform: Wordsmith; Furtherance Incentives: none.

In this gamified setup, players were required to tag 11 images from a dataset of 2,200

images for 10 cents. This advanced them 2 levels into the game. The players could

continue tagging (playing the game) if they wished.

Experiment 2 - Condition 3: Platform: Wordsmith; Furtherance Incentives: Ran-

dom. Identical to Condition 2, except a random furtherance incentive is presented when

a player attempted to exit the game.

Experiment 2 - Condition 4: Platform: Wordsmith; Furtherance Incentives: Tar-

geted. Identical to Condition 3, except that the furtherance incentive was selected accord-

ing to the maximum likelihood of user retention using the probabilistic model presented

in Section 8.2.5.

8.4 Results

The result of Experiment 1 is summarised in Table 8.2. The results illustrate that players

(participants in the game condition) supplied more keywords than those in the Crowd-

Flower condition on average (97 per image vs. 2), and labelling more images overall (32

per worker vs. 1), resulting in an overall yield of 41,206 total keywords vs. 1,200 in the

control condition. We note that, since the control condition restricted workers to supply

up to two keywords for a single image, it is unsurprising that individuals in the control

condition provided only two keywords for a single image. However, in both conditions,
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individuals were rewarded only up through the same amount of work (completing the

task of supplying 2 keywords for a single image), and thus the additional work done in

the Wordsmith condition was not financially incentivised and done for free. Moreover,

compared to the control, the experimental condition yielded significantly more new key-

words, which we define to be keywords that were not in the original gold standard seed,

but achieved the requisite threshold of inter-annotator agreement. The average inter-

annotator agreement, computed as described in 8.3.3 over all images for the control

condition was also much less than that of the experimental condition (5.72% vs. 37.7%).

The control condition achieved 42.9% coverage of the original gold standard label set,

while the experimental condition covered 52.5%.

Table 8.3 summarises the results for Experiment 2. Again, compared with the Crowd-

Flower interface, all game conditions saw much greater output, both in terms of labels

per image (average 40,510 keywords across game conditions vs. 13,200 in the control

condition) and number of images tagged (30 images labeled per worker across game con-

ditions vs. 11) despite monetary compensation being held constant between conditions

(10 cents to complete 11 images with 2 labels each). Examining the game conditions

only, conditions 3 and 4 which featured furtherance incentives on exit attempt resulted

in players performing more labels on average (31.5 vs. 27) than condition 2, which had

no furtherance incentives. We note that due to the much larger source dataset of im-

ages, the likelihood that two workers would be presented the same image is much lower,

resulting overall in noisier inter-rater agreement and lower coverage of gold-standard

labels.

To analyse player response to furtherance incentives, Table 8.6 lists the number of players

who responded to each furtherance incentive stimulus type at various levels of play

(image bands). To clarify, we considered a player to be responding to the incentive

stimulus when, upon attempting to quit the game and being presented with a furtherance

incentive, decided to tag at least 1 extra image prior to exiting. The table indicates the

number of responses of the number of presentations of each stimuli for each (C3 random

and C4 targeted) condition at 5 image image bands, corresponding to the number of

images previously tagged when attempting to exit. Comparing randomised to targeted

incentive, the results point to greater response to furtherance incentives when delivered

in the targeted incentive condition (C4) than randomised (C3). In the targeted incentives

condition, 77% of players went on to tag at least 1 more image, compared with only 27%

in the randomised condition.

With respect to furtherance incentive type, direct comparison is in Table 8.6 due to the

fact that the number of stimulus presentations differ for different types and conditions.

We constructed Table 8.4 to make this comparison further, which simply presents a

breakdown, by type, of all successful furtherance incentive stimulus responses. As can

be seen, in both C3 (Randomised) and C4 (Targeted), the Power and Money incentives
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made up the top two successful incentives, with Money comprising the largest share of

the targeted successes. We discuss these results in the next section.

Experiment 1

Metric CrowdFlower (control) Wordsmith (experimen-
tal)

Total workers 600 423

Total keywords 1,200 41,206

New keywords 111 5,708

Avg. agreement 5.72% 37.7%

Gold keywords 42.92% 52.53%

Mean Imgs/person 1 32

Max Imgs/person 1 200

Table 8.2: Experiment 1 Results - High level results for Experiment 1, comparing
number of keywords and images tagged in the gamified (Wordsmith) condition com-

pared to the standard CrowdFlower interface.

Experiment 2

CrowdFlower Wordsmith (Gamified)

C1: No fur-
therance

C2: No fur-
therance

C3: Random
furtherance

C4: Targeted
furtherance

Total workers 600 514 543 454

Total keywords 13,200 35,890 47,418 38,223

New keywords 1,323 4,091 5,435 4,849

Avg. agreement 6.32% 10.90% 10.16% 9.86%

Gold keywords 48.42% 45.02% 41.21% 47.10%

Mean Imgs/per-
son

11 27 33 30

Max. Imgs/per-
son

11 351 501 540

Table 8.3: Experiment 2 Results - High level summary of work output and quality
comparing non-gamified (C1) and gamified (C2, C3, C4) conditions.

Incentive C3: Randomised C4: Targeted

Power 26.09% 30.16%

Money 19.65% 46.17%

Leaderboard 16.59% 5.71%

Levels 13.01% 7.34%

Badges 13.04% 5.98%

Access 11.61% 4.35%

Table 8.4: Incentive Response Distribution - Successful furtherance incentives stimuli
broken down by type, for both C3 (randomised) and C4 (targeted) conditions.
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Figure 8.3: Incentive Type Distribution in Random Furtherance Incentives Condition

Condition Uptake

Random Incentives 27.43%

Targeted Incentives 76.55%

Table 8.5: Incentives Uptake
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Metrics Access Badges LeaderboardLevels Money Power

Total results

Observations 61 49 61 68 48 62

State=in at x 12 11 17 15 16 23

Band 11

Observations 17 0 14 23 17 15

State=in at x 2 0 3 3 4 4

Band 12 - 60

Observations 29 18 30 33 23 27

State=in at x 5 4 3 6 8 9

Band 61 - 100

Observations 9 6 3 4 3 9

State=in at x 3 1 1 3 2 5

Band 101 - 200

Observations 5 6 10 6 5 8

State=in at x 1 4 7 1 2 2

Band 201 - 2200

Observations 1 3 4 2 0 3

State=in at x 1 2 3 2 0 3

Table 8.7: Incentives Distribution in Image Bands based on the results of the ran-
domised furtherance incentives condition (Experiment 2 Condition 3)

8.5 Discussion

In this section, we first briefly re-visit our results in the context of the research hypothe-

ses, discussing limitations in the process. We then discuss implications of our findings

to crowdsourcing, and conclude with a summary of ongoing and future work.

The results demonstrate support for all three of our research hypotheses. With respect to

H1, players in the game condition unilaterally performed more tasks even when they were

not explicitly incentivised with monetary reward to do so. In addition, output was of

higher quality, indicating support for H2, both when measured in terms of diversity (new

words with high agreement) and achieved consistent coverage of the gold standard labels

than the control condition. In particular, we saw no support for overjustification in these

results, which would have been manifest in reduced productivity with the introduction

of game elements.

One limitation of our experimental design is that, since the number of contributions in

the control interface was clamped while the game condition was not (meaning they could

contribute indefinitely), it is not meaningful to quantify the increased volume of work

between the control and gamification conditions. However, we can compare quality

differences (which signalled significant gains), and volume differences among just the
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game conditions in Experiment 2, when targeted furtherance incentives were shown to

yield higher volumes of work than randomised ones (H3).

However, perhaps more significantly, this study demonstrated that even simple further-

ance incentivisation methods do work towards getting players to complete more tasks.

In all but the Money furtherance incentive condition, such methods worked to increase

output at no extra cost. Moreover, we found that among furtherance incentivisation

strategies, those that were more social generally fared better than those that were per-

sonal; for example, the Power incentive was presented ‘You would be rewarded with the

power to view other players tags’, while the Leaderboard incentive promised partici-

pants a higher place on the leaderboard, which was visible to everyone. This agrees

with previous work in GWAPs such as the ESP Game, in particular von Ahn and Dab-

bish (2004)) in which social incentives were evidenced to be among the most powerful.

Most human computation environments, like Mechanical Turk, CrowdFlower and citi-

zen science projects still lack elements that promote social visibility that might improve

engagement.

The effectiveness of money as an effective furtherance incentive was somewhat surprising,

given the fact that most participants already performed free labour, that is, work beyond

the minimum that was asked of them to get their initial reward. Therefore, it could be

concluded that these participants were motivated to do this additional work for other

reasons. However, when financial reward is re-introduced as a furtherance incentive,

it effectively motivated people to complete more work. Further analysis is required to

understand to what extent such monetary rewards could compel continued participation,

and the optimal amounts of reward for doing so.

As our experiments only tested one type of crowdsourced task and GWAP, namely image

labelling, the results may not necessarily apply to all task types. In particular, tasks that

require high cognitive load, require significant time investment or creative thought may

not benefit from game mechanics due to their intensive nature. Moreover, those kinds

of crowdsourced tasks driven by strong intrinsic motivations (such as citizen science,

disaster relief, and so on) are unlikely to substantially benefit from these results because

such motivations will probably overshadow the simpler incentives tested here. Moreover,

such intrinsic motivation settings have been shown to be more prone to overjustification

effects, and thus may result in actually reduced participation. We wish to test whether

such effects will become present in such settings in future experiments.

Among our ongoing efforts, we wish to better understand how and why the incentives

work in the ways and to the extent that they do. In particular, we believe that further-

ance incentives could be more effective if carefully distributed within the game mechanics

so that they appear at appropriate intervals when motivation begins to wane, not only

after the participant has initiated an attempt to leave.
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Second, we wish to the improve the probabilistic model to take into account other aspects

of players’ performance, task history and demographic, and to understand the ways in

estimating appropriate rewards. In particular, we wish to run further experiments to

determine whether incentives are more effective for particular demographics than for

others, or for workers at particular skill levels or task completion histories.

In addition, we would like to investigate further social effects of furtherance incentives.

In this experiment, levels and badges were merely to mark a player’s own progress;

however, these might be made more effective if such rewards were made visible to other

players and seen as a form of status. Such status has been shown to effectively encourage

participation in online communities (Kraut et al., 2012) and may translate well to micro-

task environments as well. Moreover, all of the incentives we applied in this experiment

were positive, individual incentives; we next wish to explore the effectiveness of other

types of incentives such as positive social incentives (e.g., members of an entire group

get a reward), as well as negative incentives both as in-game elements and furtherance

incentives. Finally, we would like to understand the span of furtherance incentives, and

potential avenues for extending the effects of such incentives in various ways.

8.6 Conclusion

In summary, our results have illustrated that by adding gamification to crowdsourced

micro-tasks that already have external incentives, we can improve the quality and quan-

tity of work completed. Our results complement previous work comparing purely gami-

fied and paid crowdsourcing, and extend previous results with a look at multiple kinds

of furtherance incentives, combined with reward adaptation. Although we have shown

social incentives and supplemental monetary rewards outperform other such incentives,

and demonstrated a simple probabilistic model able to outperform a randomised strat-

egy, we believe that we have only begun to understand the relationships that such

incentives have on subjective worker experience and sustained engagement in the long

term, and plan to continue to pursue such investigations in the future.
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8.7 Summary

In this previous chapter, we discussed
the challenge of motivation and rewards
in gamified paid microtask crowdsourcing.
The chapter studied the effects of different
gamification mechanisms layered on micro
payments as a tool to improve worker en-
gagement and increase task quality. The
chapter also completed our understanding
of furtherance incentives by demonstrating
how to combine the two components that
make furtherance incentives possible i.e.,
predicting worker exit and applying appro-
priate incentives.



Chapter 9

Synchronous Collaboration

In this chapter, we address the fourth chal-
lenge of ‘synchronous collaboration’. In
this chapter, we also apply the concept
of furtherance incentives in continuance
with the insights gained from the previous
chapters. In particular, in the last chap-
ter (Chapter 8), we observed that social-
ity based incentives were the most effective
drivers of retention and engagement. We
therefore expand our knowledge by experi-
menting with two sociality-driven further-
ance incentives – social pressure and social
flow in our study of synchronous collabo-
ration in microtask crowdsourcing.

This chapter is adapted from earlier published work 1 titled ‘Please Stay vs. Lets Play:

Social Pressure Incentives in Paid Collaborative Crowdsourcing’.

9.1 Overview

In this chapter we continue our discussion by experimenting with a new model of ’group-

sourcing’ (Chamberlain, 2014a), which relies on financial rewards paired with social flow

and social pressure as drivers for more accurate answers, improved engagement, and

cost savings. In the experiments we use Wordsmith which supports both a ’traditional’

(single-worker) and a collaborative microtasking model. In the latter, each task is ex-

ecuted synchronously by a pair of workers, who have to agree on the solution without

1This chapter is adapted from work that appeared at ICWE 2016 Feyisetan and Simperl (2016)
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communicating with each other. Rewards are granted individually; however, task com-

pletion, and hence being paid, depends on the willingness of peer workers to continue

to engage. Workers receive a payment as long as they complete a minimum number of

tasks. In the same time, they are free to leave before reaching their pre-defined targets

or continue annotating after achieving them. Workers are recruited from existing paid

microtask platforms; the experiments reported in this chapter are using CrowdFlower.

Our basic hypothesis was that Wordsmith’s collaborative model is attractive for a com-

munity of image labelling workers who are used to solving tasks on their own and being

rewarded based on individual performance. To test this hypothesis we ran experiments

in which we compared the behaviour of the crowd when carrying out tasks the tradi-

tional (non-collaborative) way or in pairs seeking consensus. The results were extremely

encouraging. The collaborative condition attracted a significant number of CrowdFlower

workers - we put out a call for 600 workers and received over 2000, which were paired into

more than 9000 teams that labeled 4500 images, 233% more than the targets we asked

for. We worked with two variations of image labelling tasks, in which we increased the

complexity of the task (low threshold, LT : one image vs. high threshold, HT : 11 images)

and adjusted the prices accordingly, observing a similar trend. In addition, we studied

whether a task design which enforces consensual answers will increase task accuracy and

output within the same budget. The experiments revealed significant increase in the

latter (measured by the average number of tags annotated and the average number of

new tags generated) by microtask workers engaging collaboratively than individually.

This result was consistent in the two task conditions (LT = 132 vs 54 tags per person;

HT = 218 vs 54). Collaborative workers also recorded higher inter-annotator agreement

scores (LT = 35%; HT = 26%) than those annotating alone (LT = 29%; HT = 14%).

Figure 9.1: CrowdFlower Request Interface

Finally, we went on and looked at the effects of socially motivated incentives on workers

behaviour. To do so, we ran a new round of experiments in which a worker who is about

to leave can be prompted by their co-worker to stay and continue to tag images. This

might be helpful, among other things, if one of the collaborators has not yet reached

their target in terms of number of tasks completed, and risks missing the reward; or

if the co-tagging experience is so entertaining that people would prefer to enjoy it a
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bit longer. Our results indicate the importance of these social incentives, particularly

empathic social pressure, wherein a worker continues the task, despite receiving their

own payment, in order to help their partner complete enough task to receive their own

payment. We also recorded an increase in task output (312 vs. 218 tags per person) and

inter-annotator agreement (29% vs. 26%) when these incentives were present compared

to when they were not.

9.2 Model

In the collaborative mode of Wordsmith, a worker’s advancement is tied to the coop-

eration and effort of their partner. At the first launch of the task, the initial cohort of

workers join at the same level: newbies with zero points; hence, workers are incentivised

to help each advance to the next levels which result in individual payoffs. This is in line

with incentives generated by people having shared circumstances (i.e., the need to get

paid), as stated by Kandel and Lazear (1992). However, as existing workers transition to

higher levels, and partner switching becomes more frequent, they (the existing workers

who have almost completed their task) might be oblivious or less inclined to help new

workers advance through the task.

Figure 9.2: Wordsmith Partner Alert

When the social incentive setting is activated in the collaborative mode in Wordsmith,

a worker is given a heads up when their partner is about to quit the task. The worker

can then select one of two options: tell them to stay or allow them to go. Choosing

to request their partner to remain in the task represents the cost of exerting the social

pressure as presented by Calvó-Armengol and Jackson (2010). The message which is
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then automatically conveyed to the partner is dependent on the sending worker’s current

level in the task: the message either appeals to the partner to continue till the requesting

worker reaches the level where they receive a payoff (please stay) or, the message requests

that both workers continue annotating for fun if the payoff has been received by the

requesting worker (let’s play).

9.2.1 Task

The participants were required to annotate a given image with a set of descriptive

keywords. In the traditional single worker mode, workers simply needed to input a set

of valid labels, while in the collaborative mode, workers were paired, and required to

correctly guess and match on a set of keywords. We selected this task because the task

domain had been well studied in literature, and we had access to a sizable dataset.

9.2.2 ’Please Stay’: The Role of Social Pressure as an Incentive

There are two broad possible scenarios in which a worker sends a please stay message to

their partner: the worker is at the same level with their partner (shared circumstances in

which neither worker has been paid for completing the task), or, the worker is at a lower

level than their partner (in the scenario where the partner has been paid and is just

annotating for fun). In either case, the immediate continuity of the requesting worker,

and their potential to get paid, is dependent on their partner deciding to remain in the

task. Kandel and Lazear (1992) stated that, incentives are generated when an individual

empathizes with those whose income he affects. In addition, according to Eisenberg

and Miller (1987), empathy is an affective state the stems from the comprehension of

another’s emotional condition, which is in harmony with it (i.e., my emotional state is

congruent with yours). They demonstrated empirically that empathy could have positive

associations with pro-social behaviour.

The partner receiving the request: ‘Please stay, I have not yet tagged x images, Don’t

leave me yet’; is then presented with a set of options: ‘OK, I will stay ’, or ‘NO, I will

go’. The subsequent actions of the receiving partner are not globally observable, and

this underscores the interplay and difference between guilt and shame (Tangney and

Dearing, 2003) as sources of social pressure. For example, a partner who has been paid,

and selects ‘NO, I will go’, leaving the original worker without a partner, feels no external

shame since the action was not observable by all other workers. Without observability,

only the internal guilt of leaving a fellow worker unpaid, or empathy stemming from

recently being in the same situation, serve as a form of social pressure.

A receiving partner that chooses to opt out of the task before receiving their own reward

might feel less guilt in leaving the requesting worker hanging, afterall, they haven’t been
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Figure 9.3: Wordsmith Please Stay Alert

paid also. Furthermore, according to Kandel and Lazear (1992), guilt may require a

greater amount of past investment than shame. A worker who therefore decides very

early on to abandon the task, loses very little utility even in the absence of observability,

and thus feels minimal guilt in leaving the requesting worker. The partner also possibly,

might feel less empathy since they also were not going to get paid.

9.2.3 ’Let’s Play’: The Role of Social Flow as an Incentive

When Wordsmith detects a worker’s partner is about to exit the task, the worker can

be prompted to send a message which says: ‘Hi there, this is your partner, let’s stay

and tag a few more images’. This message is sent only if the requesting worker has

been paid for tagging the requisite number of images, signifying a continuance for fun

and pleasure. In the single worker mode of Wordsmith (Feyisetan et al., 2015b), we

recorded scenarios where a worker who was paid to annotate eleven images, annotated

over two hundred images. One of the factors that can be responsible for this, which is

observed not only in games, but in everyday activities is flow or individual flow. The

factors that make for individual flow, such as, clear goals, immediate feedback, and a

balance between challenge and skills are present in the traditional single worker mode

of Wordsmith, and are also present to a certain extent, in paid tasks. However, it might

seem that the sense of personal control which characterizes individual flow is absent in

the collaborative mode.

Social flow, on the other hand, could be identified in the collaborative theme of Word-

smith. Social flow builds on the experiences derived from solitary flow with additional

conditions such as immediate and clear feedback from the task and group members,
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interdependence and cooperation, and conditions where the challenges are important to

the whole group (Walker, 2010) and (Salanova et al., 2014). Social flow in the collabora-

tive mode of Wordsmith could lead to shared absorption and engagement, and the desire

to repeat the flow experience. The desire to repeat the experience represents the cost

of exerting pressure on the partner who is about to exit the task. A worker therefore

desiring to re-experience the flow might prompt their partner to stay for a few more

rounds.

9.3 Experiment Design

In order to gain insight into the effect of collaboration in gamified paid microtasks, and

specifically on the effects of social pressure, we performed a series of experiments on

the Wordsmith platform, sourcing crowd workers from CrowdFlower. We carried out a

within-subjects study in which a number of workers were recruited from a large pool,

and required to annotate images either in the traditional single worker mode (SP) or the

collaborative mode (MP). A crowd worker could participate in both studies. Within

each task mode, workers were required to annotate a certain number of images in order

to get paid: annotate 1 image (LT - low threshold) or annotate 11 images (HT - high

threshold). Finally, in the collaborative, high-threshold mode (MP-HT), we carried

out sub studies as follows: in one condition, a partner attempting to exit the task was

allowed to, in another condition, a partner attempting to exit the task could be presented

with a please stay, or let’s play message.

9.3.1 Research Questions

We sought to answer the following research questions with our studies:

1. Does collaboration work as an effective model for paid microtask crowdsourcing?

2. Does the model work as quality assurance i.e., do answers converge faster?

3. What is the role of social incentives in collaborative crowdsourcing tasks?

9.3.2 Research Data

We utilised the image bank and keyword sets generated from the ESP game experiments

(von Ahn and Dabbish, 2004). The dataset comprises of 100,000 images and about 1.4

million image tags. We screened out images with keywords which we deemed might

be unsuitable for work environments, and selected a subset of images which had the

highest number of keywords associated with them. We used the keywords as a sort of
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quasi ground truth to award bonus points within the task. In the LT (low threshold)

conditions, we used a dataset size of 200 images, while in the HT (high threshold)

conditions, we used a dataset of 2,200 images.

9.3.3 Worker Recruitment

We recruited all our participants primarily directly from CrowdFlower. We created sep-

arate tasks on CrowdFlower for the traditional and collaborative tasks. Crowd workers

accessing the tasks were redirected to the Wordsmith platform where they carried out

the annotation. In the traditional mode, we recruited 600 workers, assigning 3 workers

to annotate each image, and in the collaborative mode, we also recruited 600 workers.

For the LT (low threshold) conditions, workers were paid $0.02 each, while in the HT

(high threshold) conditions, workers were paid $0.10 each.

9.3.4 Parameter 1: Wordsmith Task Mode

In our experiments, we studied the qualitative (match overlap with the ESP dataset

keywords) and quantitative (number of labels generated) outputs between traditional

single worker and collaborative multi-worker crowdsourcing modes.

Traditional (Single Worker) Mode In the traditional mode, workers individually

tagged images without interaction or dependence on other workers. Workers could freely

skip images which they were not interested in annotating.

Collaborative Mode In the collaborative mode, workers were paired up and required

to guess keywords for the given image. When both participants matched on a set of

labels, they were advanced to the next image. Even though the advancement of each

worker was co-dependent on the effort of their partner, partners could be matched at

different stages and therefore be eligible to receive their payoffs at different times.

9.3.5 Parameter 2: Task Threshold

We experimented with varying task thresholds which workers needed to attain before

they got paid. The workers could then continue annotating further images at will after

crossing the threshold.

Tag 1 Image Workers were required to tag one image to receive a payment of $0.02.

This corresponded to advancing into the first level of the task.

Tag 11 Images Workers were required to tag eleven images to receive a payment of

$0.10. This corresponded to advancing into the second level of the task.
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9.3.6 Parameter 3: Social Incentives

We also experimented with two different forms in which a worker exerts social pressure

on their partner in order to get them to remain in the task. When Wordsmith senses

that a worker’s partner is about to exit the task, the worker is alerted. They can then

in turn opt to send a message requesting their partner to stay in the task. One of two

messages could be sent:

Please Stay (social pressure): If the requesting worker had tagged less than the req-

uisite number of images to get paid, the following message gets sent to their partner:

‘Please stay, I have not yet tagged x images, Don’t leave me yet’.

Let’s Play (social flow): If the requesting worker had tagged more than the requisite

number of images to get paid, the following message gets sent to their partner: ‘Hi there,

this is your partner, let’s stay and tag a few more images’.

9.3.7 Experimental Conditions

Experiment 1 - Condition 1 (SP-LT): Platform Mode: Traditional; Task: Tag

1 Image with at least 2 keywords; Source dataset size: 200 images; Workers: 600;

Payment: $0.02. In the first experiment, workers were required to tag 1 image with 2

keywords in the traditional mode.

Experiment 1 - Condition 2 (MP-LT): Platform Mode: Collaborative; Task: Tag 1

Image with a paired partner with at least 2 keywords; Source dataset size: 200 images;

Workers: 600; Payment: $0.02. In the first experiment, paired workers were required

to tag 1 image with 2 keywords in collaborative mode.

Experiment 2 - Condition 1 (SP-HT): Platform Mode: Traditional; Task: Tag 11

Images with at least 2 keywords each; Source dataset size: 2,200 images; Workers: 600;

Payment: $0.10. In the experiment, workers were required to tag 11 images with 2

keywords each.

Experiment 2 - Condition 2 (MP-HT): Platform Mode: Collaborative; Task: Tag

11 Images with a paired partner with at least 2 keywords each; Source dataset size: 2,200

images; Workers: 600; Payment: $0.10; Social incentives: None. In the experiment,

workers were required to tag 11 image with 2 keywords each in collaborative mode.

Experiment 2 - Condition 3 (MP-HT-SP): Platform Mode: Collaborative; Task:

Tag 11 Images with a paired partner with at least 2 keywords each; Source dataset size:

2,200 images; Workers: 600; Payment: $0.10; Social incentives: Please Stay and Let’s

Play. In the experiment, workers were required to tag 11 image with 2 keywords each

in collaborative mode and could be subject to social incentives.
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9.4 Results

We recruited 600 workers for the single worker experiments modes and 600 workers for

the collaborative experiments. In order to ascertain the veracity of our findings and the

integrity of our results, we repeated the experiments twice and report here a contiguous

set of results from one of the experiment runs. Table 9.1 summarises the results. The

following sections describe tem along the lines of the different experimental condition

parameters.

9.4.1 Wordsmith Task Mode: Traditional vs. Collaborative

We now present a summary of the results from the traditional and collaborative game

modes from the experiments.

Participants

In the single worker mode, we put out a call for 600 workers. In the low threshold

condition, we had a total of 416 annotating workers, while we had a total of 515 workers

in the high threshold condition. Two factors contribute to the variance between these

figures and the required value of 600, and between these figures compared with each

other: (i) The single worker mode had a strong element of voluntary participation which

allowed workers to skip images or ignore the task altogether, hence, fewer than the 600

participants recruited remained in the task and (ii) The high threshold condition paid

more than the low threshold condition, which attracted more workers to the task. In

the collaborative condition, we put out a call for 600 workers and received over 2, 000

workers assembling over 9, 000 teams and annotating over 4, 500 images across various

experiment conditions.

Task Output

In the low threshold condition, when workers were to annotate one image, we recorded

a higher number of annotations (avg images tagged / person) in the traditional mode

(Avg. = 26.68 images; SD = 38.21) than in the collaborative mode (Avg. = 9.77 images;

SD = 13.23). The total number of tags (total tags) and average number of tags (avg

tags / person) per person in the collaborative mode (Total = 48, 171; Avg. = 131.97),

was however significantly more than the total and average number of tags per worker

in the traditional mode (Total = 21, 538; Avg. = 53.57). The collaborative mode also

generated more new tags, (avg new tags / person) than the traditional mode: new tags

are labels which were not present in the ESP dataset but had a requisite threshold

of inter-annotator agreement. There were 3, 172 new tags (8.69 new tags generated

per worker) in the collaborative mode, versus 1, 117 new tags (2.78 per worker) in the

traditional single worker mode.
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Similarly, in the high threshold condition, when workers were to annotate eleven im-

ages, we recorded a slightly higher number of annotations (avg images tagged / person)

in the traditional mode (Avg. = 26.75 images; SD = 42.07) than in the collaborative

mode (Avg. = 25.05 images; SD = 17.92 for the sub condition without social incentives).

The total number of tags (total tags) and average number of tags (avg tags / person)

per person in the single worker mode however (Total = 27, 652; Avg. = 53.80), was

orders of magnitude less than the total and average number of tags per worker in the

collaborative mode (Total = 108, 950; Avg. = 218.34). Even though workers annotated

more individual images in the traditional as in the low threshold condition, they out-

putted on average, less tags than the collaborative mode. This is unsurprising, due to

the fact that participants in the collaborative mode need to generate more guess tags to

match with their partner. The collaborative mode also generated more new tags (avg

new tags / person) than the traditional mode. There were 4, 677 new tags (5.90 new

tags generated per worker) in the collaborative mode, versus 1, 166 new tags (2.26 per

worker) in the traditional mode.

Comparing the task threshold conditions within the individual task modes reveals some

further insights: within the traditional mode, there was no considerable difference in the

average task output between the low (SP-LT - tag 1 image condition) at 26.68 images

per person, and the high (SP-HT - tag 11 images conditions) at 26.75 images per person.

Similarly, the output in the average number of tags within these conditions were almost

the same with SP-LT at 53.57 tags per person, and SP-HT at 53.80 tags per person.

This indicates that the task threshold does not essentially result in a significant change

in the overall task output per worker, although it affects other dynamics e.g., the task

covers a wider spectrum of image annotations in the high threshold. In the collaborative

task however, we see a clear variance (with higher results in the high threshold) in the

task output as a result of the task payment cutoff, with an average of 9.77 images and

131.97 tags per person in the low (MP-LT), and an average of 25.05 images and 218.34

tags per person in the high (MP-HT).

Task Quality

In the low threshold condition, when workers were to annotate one image, they at-

tained a higher inter-annotator agreement (Nowak and Rüger, 2010), in the collaborative

mode (A = 34.55%), than in the traditional mode (A = 29.44%). We also computed

the ESP agreement score, which was the agreement between a worker’s annotation for

a particular image, and the annotations for that image in the ESP dataset. The ESP

agreement scores of each worker in the traditional (ESP = 41.26%) and collaborative

modes (ESP = 25.39% when analysed individually), differed, with the traditional mode

having a higher score. The collaborative mode however complemented this shortfall by

having a higher number of new tags which were agreed on by workers from different

teams, and which were not in the original ESP dataset.
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Similarly, in the high threshold condition, when workers were to annotate eleven

images, they attained a higher inter-annotator agreement, in the collaborative mode (A

= 25.82%), than in the traditional mode (A = 14.26%). The ESP agreement scores of

each worker in the traditional (ESP = 43.96%) and collaborative modes (ESP = 37.94%

when analysed individually), displayed less variance than in the low threshold condition.

This is due to the fact that workers in the high threshold condition, collaboratively

annotated on the average, as many images as participants in the low and high condition

of the traditional setting (i.e., 25.05 images per person vs 26.68 and 26.75 images per

person)

9.4.2 Wordsmith Incentives: With vs. Without Social Incentives

In this section, we present the results from the experiment conditions involving the

multi-player game mode, with and without the social incentives of social pressure and

social flow.

Task Output

In the collaborative, high threshold conditions (MP-HT), our results reveal that workers

generated a higher number of total tags (total tags) and average tags per worker (avg

tags / person) when they were subjected to social pressure (MP-HT-SP) from their

partner (Total = 158, 716; Avg. = 312.43) than when they were not (Total = 108, 950;

Avg. = 218.34). Workers annotated significantly more than the required number of

images (29 images vs 11 required), exceeding the baseline averages ( 26 images) set in

both the high and low threshold conditions of the traditional single worker setting. As

a result of creating more tags overall, workers also generated a higher number of new

labels between paired partners, and across teams annotating the same image (avg new

tags / person) when their partners exerted social pressure and kept them in the task

(Total = 8, 236 tags; Avg. = 16.21 tags) than when they didn’t (Total = 5, 903 tags;

Avg. = 11.83 tags).

Task Quality

Our results indicate a higher degree of agreement amongst the worker within the so-

cial pressure condition (MP-HT-SP) than those without (MP-HT). When compared

with the ESP dataset, workers who could request their workers to stay and continue

playing, achieved a slightly higher degree of quality, as a measure of agreement when

each individual is assessed uniquely, (ESP = 40.11%) than those who couldn’t (ESP =

37.94%). The inter-annotator scores between workers annotating the same image (with

their partner and other workers who annotated the same image) were also higher with

workers in the social pressure condition achieving a slightly greater inter-annotator score

(A = 29.35% without social pressure; A = 25.05% with social pressure). This is also as

a result of the social pressure condition incentivising a greater number of annotations.
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Task Completion

When workers could request their partners to remain in the task, they were able to

complete the task faster. As a result, the experiment condition that involved social

pressure (MP-HT-SP) completed quicker (Time = 93hr 57min 31s) than the one (MP-

HT) that didn’t (Time = 131hr 57min 56s). Even though in both conditions, workers

were explicitly alerted when their partner had left the task, workers who could not exert

social pressure had to wait either for a new partner, or for their current partner to return

after an extended break.

Team Switching

Workers in the social pressure condition formed fewer teams, stayed longer with their

partners and switched teams less frequently when compared to those whose partners

could leave at will. There were a total of 2, 401 teams created by 792 workers in the

condition without social pressure (MP-HT), leading to an average switching rate of 3

teams per worker. In the social pressure condition (MP-HT-SP), workers formed fewer

teams, 1, 855 by 810 workers, yielding resulting in a lower switching rate of 2.3 teams

per worker.

9.4.3 Social Incentives: Please Stay vs. Let’s Play

When Wordsmith senses that a worker’s partner is about to exit the task, the worker is

alerted. The worker can then request their partner to remain in the task. If the worker

has tagged less than the requisite number of images in order to get paid, the worker can

send a please stay request, else, the worker can send a let’s play request. The receiving

worker can then decide to stay (i will stay) or to leave the task (i will go).

Social Incentive Requests

From the results in Figure 9.4 with its accompanying table, we observe that workers are

more likely to initiate a request of any kind when they have not been paid. When a

worker has not yet been paid, they are more likely to request that their partner stay

(please stay request) than permitting their partner to leave. After the workers had been

paid, they were also more likely to request their partner to stay (let’s play request) than

permitting them to leave. The please stay requests (Requests = 1, 023) were used more

frequently as a social incentive than the let’s play request (Requests = 151), suggesting

that workers are more inclined to put pressure on their partners when there is financial

reward at stake than just fun. Figure 9.4 also reveals that some workers would actually

release their partner to leave and wait to be connected to another partner. It indicates

that on the average, as expected, fewer workers (20% vs 35%) who haven’t been paid

would opt for this option .

Figure 9.5 presents the distribution of please stay requests by workers at various image

tag points. It illustrates clearly from the results, and from linear prediction trendlines,
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Figure 9.4: Social pressure requests made by workers before and after payment

that, the more a worker has invested into a task session, and as the reward of payment

gets closer, a worker would be more reluctant to let their partner leave and would rather

request that they stay. About 79% would request their partners to stay at the early

stages of the task (the first 3 images), compared to 84% at the later stages (the last 3

images).

Figure 9.5: Distribution of please stay requests (with linear forecast trendlines) made
by a worker after tagging specific number of images

Social Incentive Responses

Figure 9.6 summarises the results (in a logarithmic scale) of a worker’s responses to

both please stay and let’s play requests. When a worker receives a please stay request

(signifying that the requesting partner has not yet been paid), they can respond by
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choosing either to stay (I will stay) or to leave (I will go). The choice to stay or to leave

also varies depending on whether the receiving worker has been paid or not. The results

indicate that, a worker who has not been paid, receiving a please stay message from a

fellow unpaid is more likely to stay, with 95% probability, than to exit the task (760 vs

41). This is in line with workers being incentivised by having shared circumstances (i.e.,

the need to both get paid), as stated by Kandel and Lazear (1992). Similarly, a worker

receiving a please stay request from an unpaid worker, after they have been paid, is also

likely to respond by staying, albeit, with a slightly less probability of 75% (92 vs 30).

Furthermore, a worker receiving a let’s play request (from a worker that has been paid)

can also choose to stay or to leave, depending on whether the receiving worker has been

paid or not. The results illustrate that, a worker who has not been paid, previously

intending to exit the task, would almost certainly remain in the task after being sent a

let’s play message with 97% probability (32 vs 1). The result also reveals the response

to social flow incentives: a worker who has been paid would return to continue playing

with another worker with 80% certainty, even more likely than they would help a partner

get paid (although, the results suggest that these requests occur less frequently). This

is also another form of incentivisation by having shared circumstances (i.e., the desire

to re-experience social flow).

Figure 9.6: Worker responses to please stay and let’s play requests (on logarithmic
scale)

Figure 9.6 also gives insights into when workers decide to leave their partners, despite

receiving either a please stay or let’s play request. The results reveal that, after receiving

a please stay request from a worker who has not been paid, a receiving worker is more

likely to leave if they have not been paid also. Hence they do not feel any guilt from

leaving their partner hanging since they haven’t been paid also. Similarly, after receiving

a let’s play request from a partner who has been paid, the receiving worker is more likely

to decline the offer and choose to exit the task if they have also been paid.
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Social Incentive Limits

Our results and Figure 9.7 indicate that paid microtask workers are more receptive to

empathic social pressure incentives than social flow, although this is also as a result

of this incentive being directed towards a larger base of actors. Workers responded

positively more times to please stay requests (Mean = 1.95; SD = 1.80; Max = 19) than

to let’s play requests (Mean = 1.16; SD = 0.52; Max = 4).

Figure 9.7: Distribution of i will stay responses: showing how many times a worker
chose to stay after each request type

9.5 Discussion

Making Microtasks More Collaborative

Despite the individualistic nature of most paid microtask environments, our results

reveal that collaborative multi-worker tasks are indeed attractive to members of this

community. A worker posted on a discussion forum after one of our experiments: ‘Hello

everyone! lately I’m hooked on the multiplayer tasks, but are labor intensive’ (trans-

lated from Spanish). Our analysis indicate an improvement (represented by the total

and average number tags as well as the number of new tags per person) in task output

within the collaborative setting over the traditional (single worker) theme, at no addi-

tional costs. The results also suggest a higher quality output (from the inter-annotator

agreement) by the fact that the collaborative mode requires consensus for task contin-

uance. In all, workers were attracted to, willing to work collaboratively and exceeded

baseline results in task output and quality. The findings suggest that adding support

for more collaborative task design models into existing platforms, in addition to the

community features which most of them have started to offer, may prove beneficial for

requesters, and for workers. Such elements would also be beneficial for crowd training,

allowing motivated participants to improve their performance. The experiments in Dow
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et al. (2012), for example, have looked at peer learning aspects, using workflows similar

to ours; they suggest, for instance, to allow workers to be able to revise their answers

based on the feedback they receive. While this might not be a practicable option in all

scenarios, it could help train newcomers and the pair-based image labelling approach

we introduced in this chapter could be one simple way to realize it. In Feyisetan et al.

(2015b) the authors noted that one of the most effective furtherance incentives besides a

financial reward was the ability to learn by studying the answers given by other people.

While the feature they implemented did not offer much context (i.e., workers could see

the answers of workers, but no explanations or validation), it suggests how popular these

measures could be, and the effect reported was stronger for top contributors whom one

can assume are driven by a desire to get better at the job.

Collaboration Must Pay Off

The benefits of collaborative participation in the image labelling task were more visible

in the high threshold conditions. In the traditional mode, workers annotated, on average,

the same number of images (and generated the same number of tags) in the high and

low threshold conditions. In other words, without the restriction of partner agreements,

the task threshold did not really make a difference. In the low task threshold condition

of the collaborative mode, workers tagged more than the requisite number of images,

nevertheless, this positive delta was not sufficient to match up to the individual freedom

afforded in the traditional mode. The high task threshold on the other hand indicates in

the collaborative setting, how the power of (and aspiration towards) social concordance,

propped up by a higher payment cutoff can be leveraged to generate more and better

results. Workers in this condition, initially motivated by the need to get paid, worked

together to realise improved results. This finding contributes to the larger discussion

around motivation and paid microtask crowdsourcing. Surveys such as Feyisetan et al.

(2015b); Kaufmann et al. (2011); Mason and Watts (2010) have observed that financial

incentives are just one, though important, part of a much more refined story of motiva-

tion of workers. The present work offers evidence on the effects of social pressure and

social flow, but it also raises new questions regarding the implications of the findings for

incentives design that take into account particular types of workers (e.g., top contribu-

tors vs. casual visitors).

Workers Behave Empathically

Social pressure incentives could be harnessed to attain speedy task completion and en-

courage empathic collaboration. Our analysis revealed that workers on realising that

their partners have not reached the task threshold for payment, would be willing to

annotate a few more images to help them get paid. This is in contrast to the individu-

alistic thinking model which has been enshrined in traditional paid micro task platform

settings. Our results demonstrated that paid workers would be willing, not only to work
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together, but to go the extra mile to ensure that their partner also gets paid. Workers

respond not only to the need to help their partner get paid, they also respond to their

partner’s desire to continue annotating just for the fun of it. As noted earlier, while

these results are encouraging, to develop a theory of incentives for paid microtask plat-

forms, one would need additional experiments that take into account worker behaviour

patterns, as well as other tasks and possibly more complex collaboration models.

9.6 Limitations

The experiments are run on image labelling tasks. While they could be easily adapted to

similar task types, in particular to output-agreement ones (von Ahn and Dabbish, 2004),

they are less suitable for settings in which a diversity of answers is sought. The same

would apply for more complex tasks following, for instance, a ’fix-find-verify’ (Bernstein

et al., 2010) workflow. It would be interesting to explore how social pressure incentives

would work in those settings, building on top of studies such as Kittur (2010).

The interplay between selected gamification features and the two types of incentives we

have looked at has not yet been studied in detail. As such, the appeal the tasks had

could be partially due to the use of gamification features, which are not common in

paid microtask environments. Adding a single-worker condition to the experiments was

meant to compensate for that, though a more thorough consideration of the alignment of

specific game elements with social pressure and social flow has not yet been investigated.

9.7 Conclusion

The results shed light to our research questions by revealing collaboration as a viable

means of undertaking paid microtask crowdsourcing. We demonstrated that paid micro-

task workers would be willing to undertake collaborative tasks, and generate significantly

more useful output even at higher task requirements. Our results also show that this

increased output does not result in a degradation, but rather an improvement of task

quality. Furthermore we indicated that social incentives could be used to boost the

performance of participants in this collaborative model. These results are in line with

findings from GWAPs and multi-actor crowdsourcing systems, and could be used to

inform the re-design of paid microtask platforms such as CrowdFlower and Mechanical

Turk which do not integrate collaborative workflows as first-class citizens.
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9.8 Summary

This chapter concluded our survey of the
four challenges in paid microtask crowd-
sourcing. It brought a culmination to our
understanding of furtherance incentives as
a broad medium of improving quality in
paid microtasks. Our approach in this
chapter expanded the single worker gam-
ified mode presented previously in chapter
8 with an collaborative approach enhanced
via social pressure and social flow as the
furtherance incentive mechanisms.



Chapter 10

Conclusions and Perspectives

In this chapter, we summarise the results
and contributions of our work and its im-
plications for crowdsourcing research. We
highlight the findings from our studies into
applying furtherance incentive techniques
to address four crowdsourcing challenges,
and present a list of future research areas
along these lines. This brings to a close
our work over the previous chapters and
gives insight into pathways to create a vi-
able and sustainable crowdsourcing ecosys-
tem.

10.1 Summary

Crowdsourcing remains a mechanism with tremendous potential to grow economies by

engaging a large workforce on demand and at scale. This translates into improved pro-

ductivity and significant benefits for task requesters and crowd workers alike. Requesters

gain task scalability, quick completion and lower price margins for their projects; while

workers achieve additional income and a chance at social mobility. However, the ob-

stacles to crowdsourcing, in particular, online paid microtask crowdsourcing, is equally

well known and well studied. In addressing crowdsourcing as a socio-technical construct,

we can also view its issues along these lenses: i.e., technical ones such as dealing with

spam; and social issues requiring the evolution of crowdsourcing into a system which

can support the future of (crowd) work.

202
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This thesis focused on four core crowdsourcing challenges from a list of twelve high-

lighted by Kittur et al. (2013). The four crowdsourcing challenges discussed in this

thesis were: (a) workflow design; (b) real-time crowd work; (c) motivation and rewards;

and (d) synchronous collaboration. Although the thesis attempted to address the issues

from a technical standpoint, two of the challenges had strong social components (mo-

tivation and rewards; and synchronous collaboration), while the other two had strong

technical components (workflow design; and real-time crowd work). In order to adopt

a well rounded methodology to tackle the challenges, over the chapters of this thesis we

created a crowdsourcing tool, and progressively developed a methodology of addressing

the selected issues. Our tool, Wordsmith, was a gamified microtask crowdsourcing plat-

form which recruited crowd workers from existing marketplaces; while our methodology

was the use of furtherance incentives which identified waning task participation and

presented a means of re-engaging workers. We selected two broad application scenarios

where crowdsourcing finds widespread applications: text processing and image labelling.

These scenarios formed the basis of our experimentation in our core chapters.

Wordsmith served as a platform for carrying out microtasks, giving us the power to carry

out the targeted experiments that gave us insights into our desired issues. Our work on

workflow design presented an approach to improve microtask workflows by leveraging

on task features and worker preferences. It also describes a way to potentially use our

findings to afford for greater improvement by applying the task features to predict when

workers would potentially quit a task, and then using the worker preferences as the

furtherance incentive mechanism to re-engage workers.

Our work on real-time crowd work described an approach of using microtask contests

to carry out judgements under tight constraints. This approach of using competitions

naturally engenders worker exit given the varying utilities gained by individual workers

during the contest. We presented a formal description into predicting when workers

would quit a task (in this case, the contest) and described how we could then shore

up appropriate incentives to workers who were about to quit the contest. This two

pronged approach of detecting worker exit and presenting appropriate incentives form

the framework for deploying furtherance incentives.

Our discussion on motivation and rewards completed our knowledge of furtherance in-

centives by putting the two building blocks together and presenting a theoretical model,

and empirical evidence on the effectiveness of furtherance incentives. Our experiments

on motivation and rewards highlighted some results crucial to the overall thesis: gam-

ification, deployed appropriately, serves as a useful framework for improving worker

engagement and task uptake; incentives deployed randomly presents a reasonable im-

provement to task performance than utilising plain task setups; and targeting further-

ance incentives based on knowledge derived from worker behaviour, leads to significant

engagement yielding higher quantity and quality metrics.



Chapter 10 Conclusions and Perspectives 204

Finally, our work on synchronous collaboration built on our investigations into motiva-

tion and rewards by extending the Wordsmith platform to cater to paired collaborating

workers. Our approach embraced a multiplayer methodology, which is prevalent in other

crowdsourcing systems (such as GWAPs and citizen science projects) but has failed to

attain a ‘first class’ role in crowdsourcing marketplaces. We also tested the full spec-

trum of furtherance incentives on this challenge area by using incentives designed around

social constructs (social pressure and social flow).

Our results reinforced the role of furtherance incentives as a means of solving a wide

range of crowdsourcing challenges which featured cash payments as the primary means

of remuneration and incentivisation. The thesis also gave us first hand experience into

crowdsourcing as a fully fledged socio-technical construct with challenges requiring as

much a social touch as the technical. Crowd worker motivations especially, cover a

wide spectrum which extends beyond the simplistic spectrum of ‘fun and money’, and,

understanding how to keep them engaged is essential not just to yield superior returns

for requesters, but also to create a more humane platform as crowdsourcing continues

to take its place as the model for the future of work.

10.2 Future Work

From all our findings distilled into the past few chapters, we intend to continue our

research path around the following directions:

Wordsmith: we intend to extend the research on our crowdsourcing platform primarily

to accommodate other application scenarios. Currently, Wordsmith was designed

to handle one of the six broad categories of crowdsourcing task types highlighted by

Gadiraju et al. (2014) (i.e., content creation in the form of data annotation). Even

within the narrow context of content creation, there remain other task types such

as transcription, translation and text summarisation which could benefit from our

furtherance incentive techniques. Additionally, we intend to carry out experiments

into other broad task types including information finding, content access and anal-

ysis based tasks in order to gain an understanding into how crowd workers adapt or

behave when faced with cognitively heavy tasks. Secondly, in order to make the tool

more accessible for use by potentially non-technical users, we intend to integrate

Wordsmith with configurable admin interfaces which would help with tasks such as

to swap leaderboard strategies or select a different crowdsourcing marketplace (e.g.,

CrowdFlower vs Mechanical Turk).

Workflow design: in the light of our task and experiments into workflow design in

microtasks, we intend to fill in several knowledge gaps to create a holistic frame-

work that can be used to deploy end to end solutions for data annotation (as a

starting point which could then be extended to other scenarios). First, we would



Chapter 10 Conclusions and Perspectives 205

devise automated approaches to determining when best to select human or machine

capabilities – this is currently done in two separate strands of previous work which

we would adequately integrate. Next, we would extend theory into practice by de-

ploying workflow design tasks which use the entire furtherance incentives scheme:

i.e., predicting when workers want to quit the task based on the implicit task and

worker features, and then selecting furtherance incentives based on the type of tasks

that the workers perform well. We would also carry out more research into implicit

named entities which we uncovered as a medium to potentially target actual named

entities in a sort of fashion carried out in anaphora detection research. Finally we

would like to investigate the role of furtherance incentives in workflows involving

experts as a final step to completing the machine – crowd – expert pipeline.

Real-time crowd work: in extending our research on real-time crowd work, we would

like to carry out further study on the theoretical underpinnings of our work. Sub-

stantial theoretic research has been previously carried out on crowdsourcing contests

in the field of economics and game theory and we would seek to extend such knowl-

edge with our empirical experiments to design better systems. Specifically as a

starting point, we would address one of the limitations of our current experiment

setup: our task scenario of labelling entities relies on an assumption that we can

correctly verify a worker’s annotation in real-time – however, this is not foolproof

and is a best-case event. However, some tasks, such as protein folding (such as

in the Foldit project), can be easily carried out by the crowd and automatically

verified by computers, making them a prime candidate for automatically verified

real-time crowd work. Furthermore, we can model each worker state transition dur-

ing the experiments using Markov chains to build a richer exit predictor. We would

also experiment with varying payment methods as well as using other incentive

mechanisms (such as gamification elements) in the contests.

Motivation and rewards: our future research into motivation and rewards serves as

the central point where we would advance our knowledge on the core concepts of

furtherance incentives. Among our ongoing efforts, we wish to better understand

how and why the gamified incentives work in the ways and to the extent that they

do. Our current study of furtherance incentives target workers at the potential

point of impending exit. In particular, we believe that furtherance incentives could

be more effective if carefully distributed within the game mechanics so that they

appear at appropriate intervals when motivation begins to wane, not only after

the participant has initiated an attempt to leave. Second, we wish to improve the

probabilistic model to take into account other macro realities that exist in crowd-

sourcing e.g., other aspects of players performance, task history and demographic,

and to understand the ways in estimating appropriate rewards. In particular, we

wish to run further experiments to determine whether incentives are more effective
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for particular group settings than for others, or for workers at particular skill levels

or task completion histories.

Synchronous collaboration: we would like to extend our work on synchronous col-

laboration to feature ideas present in other groupsourcing platforms. Some of these

include affording for larger teams (currently limited to paired teams of two) and cre-

ating a platform for team dynamicity featuring self-selection and automatic group

assignment. Research into dynamic multi-actor teams would give us further in-

sight into ideal team sizes for different task types which would feature full scale

collaboration and interaction between team members. We would also experiment

with different payment structures as the team size grows – this is to observe for,

and prevent social loafing which can creep in as the number of workers increase.

Furthermore, we would carry out cross studies between synchronous collaboration

and real-time crowd work, and how the former can be used to facilitate the later.

Finally, we would investigate how crowd IQ, speed of decision-making and task

consensus changes with crowd size and other macro and micro features.

This thesis focused on four out of an initial selection of twelve crowdsourcing challenges.

As we seek to apply our methods to other broad crowdsourcing task types, we would

also investigate the suitability for some of the other challenges.
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O. Feyisetan, M. Luczak-Rösch, E. Simperl, R. Tinati, and N. Shadbolt. Towards Hybrid

NER: A Study of Content and Crowdsourcing-Related Performance Factors. In The

Semantic Web. Latest Advances and New Domains, pages 525–540. Springer, 2015a.

O. Feyisetan, E. Simperl, R. Tinati, M. Luczak-Rösch, and N. Shadbolt. Quick-and-
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M. Salanova, A. M. Rodŕıguez-Sánchez, W. B. Schaufeli, and E. Cifre. Flowing together:

A longitudinal study of collective efficacy and collective flow among workgroups. The

Journal of Psychology, 148(4):435–455, 2014.

J. Schroer and G. Hertel. Voluntary engagement in an open web-based encyclopedia:

Wikipedians and why they do it. Media Psychology, 12(1):96–120, 2009.

K. Seaborn and D. I. Fels. Gamification in theory and action: A survey. International

Journal of Human-Computer Studies, 74:14–31, 2015.

E. Seltzer and D. Mahmoudi. Citizen participation, open innovation, and crowdsourcing:

Challenges and opportunities for planning. Journal of Planning Literature, pages 1–16,

2012.

N. R. Shadbolt, D. A. Smith, E. Simperl, M. Van Kleek, Y. Yang, and W. Hall. Towards

a classification framework for social machines. In Proceedings of the 22nd International

Conference on World Wide Web, pages 905–912, 2013.

A. D. Shaw, J. J. Horton, and D. L. Chen. Designing incentives for inexpert human

raters. In Proceedings of the ACM 2011 Conference on Computer Supported Cooper-

ative Work, pages 275–284. ACM, 2011.



REFERENCES 226

V. S. Sheng, F. Provost, and P. G. Ipeirotis. Get another label? improving data quality

and data mining using multiple, noisy labelers. In Proceedings of the 14th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, pages

614–622. ACM, 2008.

E. Simperl, R. Cuel, and M. Stein. Incentive-centric semantic web application engineer-

ing. Synthesis Lectures on the Semantic Web: Theory and Technology, 3(1):1–117,

2013.

V. K. Singh, R. Piryani, A. Uddin, and P. Waila. Sentiment analysis of movie reviews:

A new feature-based heuristic for aspect-level sentiment classification. In Proceedings

of the International Multi-Conference on Automation, Computing, Communication,

Control and Compressed Sensing (iMac4s), pages 712–717. IEEE, 2013.

P. R. Smart and N. R. Shadbolt. Social machines. In M. Khosrow-Pour, editor, Ency-

clopedia of Information Science and Technology. IGI Global, January 2014.

P. R. Smart, E. Simperl, and N. Shadbolt. A Taxonomic Framework for Social Machines.

Springer, 2014.

R. Snow, B. O’Connor, D. Jurafsky, and A. Y. Ng. Cheap and fast – but is it good?:

evaluating non-expert annotations for natural language tasks. In Proceedings of the

Conference on Empirical Methods in Natural Language Processing, pages 254–263.

Association for Computational Linguistics, 2008.

A. Sorokin and D. Forsyth. Utility data annotation with Amazon Mechanical Turk.

2008.

K. Starbird. Digital volunteerism during disaster: Crowdsourcing information process-

ing. In Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, pages 7–12, 2011.

E. A. Stohr and J. L. Zhao. Workflow Automation: Overview and Research Issues.

Information Systems Frontiers, 3(3):281–296, 2001.

J. Surowiecki. The Wisdom of Crowds: Why the Many Are Smarter Than the Few and

How Collective Wisdom Shapes Business, Economies, Societies and Nations. Double-

day, May 2004.

J. C. Tang, M. Cebrian, N. A. Giacobe, H. Kim, T. Kim, and D. B. Wickert. Reflecting

on the DARPA red balloon challenge. Communications of the ACM, 54(4):78–85,

2011.

J. P. Tangney and R. L. Dearing. Shame and guilt. Guilford Press, 2003.

S. Thaler, E. Simperl, and S. Wölger. An experiment in comparing human-computation

techniques. IEEE Internet Computing, 16(5):52–58, 2012.



REFERENCES 227

S. Thaler, K. Siorpaes, D. Mear, E. Simperl, and C. Goodman. Seafish: a game for

collaborative and visual image annotation and interlinking. In The Semantic Web:

Research and Applications, pages 466–470. Springer, 2011.

R. Tinati, M. Van Kleek, E. Simperl, M. Luczak-Rösch, R. Simpson, and N. Shadbolt.
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