Picophotonics: Visible Invisible

Giorgio Adamo², Eng Aik Chan², Jinxiang Li¹, Tongjun Liu¹, S. Kurdumov¹, Kevin F. MacDonald¹, Jun-Yu Ou¹, Nikitas Papasimakis¹, Eric Plum¹, Tanchao Pu¹, Carolina Rendon-Barraza², Yu Wang¹, Nikolay I. Zheludev^{1,2}

¹ University of Southampton, UK ² Nanyang Technological University, Singapore

The resolution of conventional microscopy is limited to a half of the wavelength of light. We report on recent advances in applications of deep learning and topologically structured light to far-field non-destructive imaging with deep subwavelength resolution and to picometric metrology.