
UNIVERSITY OF SOUTHAMPTON

Faculty of Engineering and Physical Sciences

EPSRC Centre for Doctoral Training in Next Generation Computational

Modelling

Uncertainty quantification and

propagation through complex

chains of computational models

by

Stephen Gow

Thesis submitted for the degree of Doctor of Philosophy

January 2021

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND PHYSICAL SCIENCES

EPSRC Centre for Doctoral Training in Next Generation Computational Modelling

Doctor of Philosophy

Uncertainty quantification and propagation through complex chains of computational

models

by Stephen Gow

There are many fields in which it is of interest to make predictions from a chain of

computational models or simulators, in which the output of one simulator in the chain

forms one of the inputs to the next simulator. In order to make reliable predictions from

the chain, it is necessary to understand how uncertainty in the individual models will

propagate through the chain. Each simulator will often be computationally intensive,

and for computational feasibility must be approximated; we use a Gaussian process

emulator to do this. This thesis focuses on a “linked” emulator, in which each model is

emulated separately and the emulators are linked to make predictions from the chain

as a whole.

We present two methods to make predictions from a chain of linked emulators. Both

have precedent in previous research, but are fully formalised and extended in our work.

One method uses simulation and Monte Carlo integration to make empirical predictions

from the chain; this is extremely flexible and can be applied to a wide class of emulators,

but can be computationally intensive and is open to Monte Carlo error. The second

method uses theoretical results for the mean and variance of the linked emulator under

certain restrictive conditions on the emulators of the individual models in the chain;

this is fast and provides exact or near-exact results, but is possible only for a very

limited set of emulators.

Related problems include experimental design and sensitivity analysis for chains of

models. We present an algorithm for single-stage design, and discuss approaches to

sequential design strategies. We also propose methods for sensitivity analysis on the

final model of a chain, and develop techniques towards sensitivity analysis for the chain

as a whole.

The above methodology is demonstrated on a chain to assess the impact of a chemical,

biological or radiological release which combines a model for atmospheric dispersion

with a model for the probability of casualty.

Contents

Declaration of Authorship ix

Acknowledgements xi

Glossary of symbols xiii

1 Introduction 1

2 Emulation 7

2.1 Overview . 7

2.2 Gaussian Process emulation . 8

2.3 Unknown parameters of the Gaussian process emulator 17

2.3.1 Plug-in approach . 17

2.3.2 Markov chain Monte Carlo . 20

2.4 Extensions of the GP emulator . 24

2.5 Conclusions . 26

3 Emulation for chains of multiple models 29

3.1 Introduction . 29

3.2 Approximating the linked emulator output by Monte Carlo integration . 33

3.3 The mean and variance of the linked emulator 35

3.4 Extending the simulation-based linked emulator to longer chains 42

3.5 Extending the theoretical linked emulator to longer chains 43

3.6 Conclusions . 47

4 Experimental design for chains of multiple models 49

4.1 Review of existing methods for experimental design 49

4.2 Single-stage design for chains of emulators 53

4.3 Sequential design for chains of emulators 58

4.4 Conclusions . 61

5 Sensitivity analysis 63

5.1 Introduction . 63

5.2 Probabilistic sensitivity analysis . 64

5.3 Sensitivity analysis using emulation . 68

iii

5.4 Practical issues . 72

5.5 Example: CBR modelling . 74

5.6 Sensitivity analysis for multiple models 86

5.6.1 Sensitivity analysis for the final model in a chain with respect to

the model’s inputs . 86

5.6.2 Sensitivity analysis for the final output of a chain with respect to

the controllable inputs . 89

5.7 Conclusions . 92

6 Software implementation 95

6.1 Introduction . 95

6.2 Details of usage . 96

6.2.1 Prediction from a linked emulator using simulation 96

6.2.2 Prediction from a linked emulator using the theoretical method . 97

6.2.3 Sensitivity analysis for the final model in a chain 98

6.2.4 Sensitivity analysis for the output of a chain in terms of the

directly controllable inputs . 100

6.3 Examples . 102

7 Application: casualty prediction from a CBR release 109

7.1 Dispersion model . 109

7.2 Casualty model . 113

7.3 Prediction from the chain . 114

7.3.1 Direct simulation on the dose-response model 115

7.3.2 Composite emulator . 116

7.3.3 Theoretical linked emulator . 118

7.3.4 Simulation-based linked emulator 120

7.4 Sensitivity analysis . 121

7.5 Conclusions . 124

8 Simulation study 127

8.1 Introduction . 127

8.2 Simulation setup . 128

8.3 Results . 131

9 Conclusions and future work 135

9.1 Conclusions . 135

9.2 Future work: experimental design . 136

9.3 Future work: sensitivity analysis . 137

9.4 Future work: other areas . 142

Bibliography 150

iv

List of Figures

1.1 Chain of models for casualty prediction for a CBR release 3

2.1 GP emulator in one dimension . 16

3.1 Diagram of a chain of two models . 30

3.2 Prediction from the first two-model example chain 34

3.3 Prediction from the second two-model example chain - theoretical method 42

3.4 Prediction from the second two-model example chain - simulation method 43

3.5 Prediction from the three-model example chain - simulation method . . 44

3.6 Prediction from the three-model example chain - theoretical method . . 47

4.1 Example maximin Latin hypercube design 50

4.2 Experimental design effect on prediction in a three-model chain 55

4.3 A two-model chain with space-filling design on model 1 but not on model 2 56

4.4 Prediction from the new three-model chain with space-filling designs at

each stage . 59

4.5 Variance of the linked emulator for y2 given x1,1 and x2,1 under the first

initial design. 60

4.6 Variance of the linked emulator for y2 given x1,1 and x2,1 under the

second initial design. 60

5.1 Posterior expectation of Y given each xi in the test example 74

5.2 Posterior expectation of Y given each xi in the full CBR model 76

5.3 ±2 s.d. bounds on E(Y |x6) in the full CBR model 77

5.4 Contour plot of E(Y) against x1 and x6 in the full CBR model 78

5.5 E(Y |xi) for each xi in the full CBR model with new input distributions 79

5.6 Contour plot of E(Y) against x1 and x6 with new input distributions . . 80

5.7 E(Y |xi) for each xi in the CBR model with fixed radius 81

5.8 ±2 s.d. bounds on E(Y |x1) iwith fixed radius 82

5.9 ±2 s.d. bounds on E(Y |x3) with fixed radius 82

5.10 Contour plot of E(Y) against x1 and x3 with fixed radius 83

5.11 E(Y |xi) for each xi with fixed radius and new input distributions 84

5.12 Contour plot of E(Y) against x1 and x3 with fixed radius and new input

distributions . 84

v

5.13 Contour plot of E(Y) against x1 and x2 with fixed radius and new input

distributions . 85

5.14 Contour plot of E(Y) against x2 and x3 with fixed radius and new input

distributions . 85

5.15 E(y3|y2) and E(y3|x3,1) in a simple three-model chain 87

5.16 E(y2|x1,1) and E(y2|x2,1) in a two-model chain 91

7.1 HYSPLIT output at the 20 design points against release rate 110

7.2 HYSPLIT output at the 20 design points against release duration 111

7.3 HYSPLIT output at the 20 design points against release time 111

7.4 Mean emulator prediction for the HYSPLIT output at the 200 prediction

points against release rate . 112

7.5 Mean emulator prediction for the HYSPLIT output at the 200 prediction

points against release duration . 112

7.6 Mean emulator prediction for the HYSPLIT output at the 200 prediction

points against release time . 113

7.7 Mean prediction of probability of casualty at the prediction points against

release rate, duration, time and D50 - direct simulation model 116

7.8 Prediction variance of probability of casualty at the prediction points

against release rate, duration, time and D50 - direct simulation model . 117

7.9 Mean prediction of probability of casualty at the prediction points against

release rate, duration, time and D50 - composite emulator 118

7.10 Prediction variance of probability of casualty against D50 - composite

emulator . 119

7.11 Mean prediction of probability of casualty at the prediction points against

release rate, duration, time and D50 - linked emulator, theoretical method120

7.12 Mean prediction of probability of casualty at the prediction points against

release rate, duration, time and D50 - linked emulator, theoretical method121

7.13 Prediction variance of probability of casualty against D50 for both linked

emulators . 122

7.14 Posterior expectation of probability of casualty given the two inputs to

the dose-response model. 123

7.15 Posterior expectation of probability of casualty given each input to the

linked emulator. 124

vi

List of Tables

4.1 Initial experimental design for the three-model example. 54

4.2 Experimental design for the three-model example using Algorithm 2. . . 58

5.1 Assumed ranges and units for the inputs to the CBR model 75

5.2 Estimates of Ŝi for each input in the full CBR model 76

5.3 Estimates of Ŝi,j for each pair of inputs in the full CBR model 77

5.4 Estimates of each Ŝi with new input distributions 79

5.5 Estimates of each Ŝi,j with new input distributions 79

5.6 Estimates of Ŝi for each input in the CBR model with fixed radius . . . 80

5.7 Estimates of each Ŝi,j with fixed radius 81

5.8 Estimates of each Ŝi with fixed radius and new input distributions . . . 83

5.9 Estimates of each Ŝi,j with fixed radius and new input distributions . . 83

7.1 Ranges and units for the inputs of interest to the HYSPLIT model . . . 110

8.1 Experimental design for the complete chain of models for the composite

emulator . 129

8.2 Experimental design for the first model in the chain for the linked emulator130

8.3 RMSE and coverage for the simulation (S) and theoretical (T) linked

emulators, for the composite emulator (C), and for the linear regression

model (L). 131

vii

viii

Declaration of Authorship

I, Stephen Gow, declare that the thesis entitled “Uncertainty quantification and prop-

agation through complex chains of computational models” and the work presented in

the thesis are both my own, and have been generated by me as the result of my own

original research. I confirm that:

• this work was done wholly or mainly while in candidature for a research degree

at this University;

• where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated;

• where I have consulted the published work of others, this is always clearly at-

tributed;

• where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself;

• none of this work has been published before submission.

Signed:

Date:

ix

x

Acknowledgements

First and most importantly, I wish to thank my main supervisor, Professor David

Woods, for his advice and guidance during the course of this PhD. Completing this

thesis would not have been possible without the time and effort he provided to point

me in the right direction, which must have required an extraordinary amount of patience

at times. Thank you also to my secondary supervisor Jon Forster for his support, and

to all those in the Mathematics department and in particular Southampton’s design

group who provided much-needed help.

I am also grateful to the team behind the Centre for Doctoral Training in Next Gen-

eration Computational Modelling (NGCM) - in particular Hans Fangohr, Ian Hawke

and Susanne Ufermann - whose help during the taught year of the PhD and beyond

made the coding side of my research much less daunting.

I must also acknowledge the Engineering and Physical Science Research Council

(EPSRC) and the Defence Science and Technology Laboratory (Dstl) for the funding

contributions that made this project possible. Special thanks to Veronica Bowman and

Paul Westoby of Dstl, who provided valuable advice and assistance with the real-life

applications of our work.

Finally, I would like to thank my family and friends for their support over the years.

xi

xii

Glossary of symbols

Symbol Meaning

y Output of a single-output computational model

q Number of inputs to a computational model

xq Input q to a computational model

x = (x1, x2, ..., xq)
T Vector of inputs to computational model

η(x) Model function (simulator) for computational model

Rq q-dimensional real number space

X Space on which the model inputs are defined (subset of Rq)
n Number of design points for a computer experiment

ξ = (x1, ...,xn)T Experimental design with n design points

y1, ..., yn Outputs of a computer experiment with n design points

Z(x) Gaussian process

k Dimension of any subset of X in GP definition

µz(x) Mean function of a Gaussian process

Cz(x1,x2) Covariance function of a Gaussian process

h = x1 − x2 Vector of distance between two points

C(h) Stationary covariance function of a GP

σ2z (Constant) process variance of a GP

R(h) = C(h)/σ2z Correlation function of a GP

bj Scale parameter of power-exponential correlation function in

dimension j

α Shape parameter of power-exponential correlation function

θj Scale parameter of Matérn correlation function in dimension j

ω Smoothness parameter of Matérn correlation function

p Number of regression terms in GP emulator

f(x) = [f1(x), ..., fp(x)] Vector of regression functions for GP emulator

β = (β1, ..., βp)
T Vector of regression coefficients for GP emulator

µ Mean of ordinary GP emulator

xn+1 New input vector at which we wish to predict from GP emu-

lator

Yn+1 Unknown simulator output at new input vector

Yn Vector of results of a computer experiment

xiii

F Matrix of regression functions for the elements of ξ

fn+1 Vector of regression functions for xn+1

C Matrix of correlations among the elements of ξ

cn+1 Vector of correlations between xn+1 and ξ

θ = (θ1, ..., θq)
T Vector of correlation parameters

b0 Mean of normal prior on β|σ2z or β

V0 Variance matrix of normal prior on β|σ2z or β

ν0 Degrees of freedom of scaled-inverse-chi-squared prior on σ2z

c0 Parameter used in definition of scaled-inverse-chi-squared prior

on σ2z

T1 Univariate non-standardised t-distribution

ν Degrees of freedom of non-standardised t-distribution

µ Location parameter of multivariate non-standardised t-

distribution

Σ2 Scale parameter matrix of multivariate non-standardised t-

distribution

ν∗ Scale parameter of non-standardised t-distribution for predic-

tion from GP emulator

µ∗ Location parameter of normal or non-standardised t-

distribution for prediction from GP emulator

σ∗2 Scale parameter of normal or non-standardised t-distribution

for prediction from GP emulator

β̂ Posterior estimate for an unknown β

τ2 Parameter used in definition of Normal prior on β

δ Nugget of a GP emulator

I Identity matrix

σ̂2z Maximum likelihood estimator for σ2z

S State space of a Markov chain

A Subset of S

θ(j) Value of θ in a Markov chain after j timesteps have elapsed

ψ State of a Markov chain

φ State of a Markov chain not equal to ψ

π Stationary distribution of a Markov chain

M Monte Carlo sample size

t(θ) Function of θ we wish to approximate using Markov chain

Monte Carlo sample

t′M Approximation to t(θ) of size M

D(θ) Target distribution of a Markov chain Monte Carlo simulation

q(ψ) Transition kernel in a Markov chain Monte Carlo simulation

wj Movement term in a random walk transition kernel

fw Probability density function of wj

xiv

fD(θ) Function proportional to target density D(θ)

Θ Sample matrix from D(θ) obtained using Markov chain Monte

Carlo

λi ith eigenvalue of a matrix Λ

yk Output of model k in a chain of models

qk Number of inputs to model k in a chain, excluding those which

depend on a previous model

x̃k = (xk,1, ..., xk,qk)
T Vector of inputs to model k in a chain, excluding inputs which

depend on a previous model

ηk(x̃k, yk−1) Model function (simulator) for model k in a chain

βk Vector of regression coefficients for GP emulator of model k in

a chain

σ2z,k Process variance of GP emulator of model k in a chain

θk Vector of correlation parameters for GP emulator of model k

in a chain

Fk Matrix of regression functions at the design points for model k

in a chain

Ck Matrix of correlations among the design points for model k in

a chain

Yn,k Vector of results of a computer experiment for model k in a

chain

x̃k,n+1 Vector of directly controllable inputs to model k at an untested

input configuration

xk,n+1 Vector of inputs to model k in a chain at an untested input

configuration

fn+1,k Vector of regression functions for xk,n+1

cn+1,k Vector of correlations between xk,n+1 and the design points for

model k

f∗(y2) Product of conditional densities for y1 and y2 in a two-model

linked emulator

d(xi,xj) Distance between the points xi and xj in χ

φMm(ξ) Maximin distance design criterion

φmM (ξ) Minimax distance design criterion

Ck,l(ξ) Coverage design criterion for parameters k and l

S Set of candidate points in χ

nk Number of design points in computer experiment for model k

in a chain

ξk Experimental design for model k in a chain

Lk Matrix of limits for controllable inputs to model k in a chain

Ly,k Vector of length 2 containing limits for yk−1 based on simulator

runs at points in ξk−1

xv

ynew1 Value of y1 at a newly added design point in x̃1 in sequential

experimental design

κ Set of indices in q

xκ Subvector of x containing the elements with indices in κ

x−κ Subvector of x containing elements with indices not in κ

G(x) Probability distribution for x

E(Y |xκ) Expectation of model output when the inputs in the subvector

xκ are fixed

zi(xi) Main effect of input xi

zi,j(xi,j) Second-order interaction between the inputs xi and xj

Vκ Expected reduction in the variance of Y when xκ is fixed

Sκ Sobol’ index for subset of inputs xκ

VTκ Expected uncertainty when all inputs other than xκ are fixed

STκ Total effect index for subset of inputs xκ

Gκ(xκ) Marginal distribution of xκ

G−κ|κ(x−κ|xκ) Conditional distribution of x−κ given xκ

EEi Elementary effect of input xi

ρ Number of levels in the discretisation of the input space for

elementary effect analysis

∆ Value in the set
[

1
ρ−1 ,

2
ρ−1 , ..., 1 −

1
ρ−1

]
used in elementary ef-

fects analysis

µ∗i Measure of the sensitivity of Y to the input xi using elementary

effect analysis

χκ Design space of the inputs xκ

χ−κ Design space of the inputs x−κ

Rκ(xκ) Integral of fn+1 with respect to G−κ|κ(x−κ) across χ−κ

Tκ(xκ) Integral of cn+1 with respect to G−κ|κ(x−κ) across χ−κ

R Special case of Rκ(xκ) where κ is the empty set

T Special case of Tκ(xκ) where κ is the empty set

R∗(x,x′) Posterior correlation between x and x′

υ Set of indices in q which are not identical to κ

Uκ,υ(xκ,x
′
υ) Integral of R∗(x,x′) with respect to the conditional distribu-

tions of two distinct sets of unknown inputs

E Triple integral of the product µ∗(x)µ∗(x∗) with respect to the

marginal distribution Gκ(xκ) and the conditional distributions

G−κ|κ(x−κ|xκ), G−κ|κ(x′−κ|x′κ)

M Monte Carlo sample size

Sκ(xκ) Distribution used in importance sampling for Gκ(xκ)

S−κ|κ(x−κ|xκ) Distribution used in importance sampling for G−κ|κ(x−κ|xκ)

Cov∗(Y2, Y
′
2) Covariance between two independent realisations of a two-

model linked emulator given the directly controllable inputs

xvi

c∗(Y2, Y
′
2) Covariance between two independent realisations of a two-

model linked emulator given all inputs

xvii

xviii

Chapter 1

Introduction

A computational models is a complex mathematical model implemented via a com-

puter program to simulate a real-life process. Computational models are commonplace,

being used in “almost all fields of science and technology” according to O’Hagan (2006).

The method of constructing a mathematical model for a real process predates comput-

ers, and allows the modeller to gain insight into the behaviour of the process without

the need for potentially difficult or expensive real-world testing. Implementing the

model as a computer program allows more complex models to be considered than could

be done by hand. In this thesis, we consider computational models which return a

single output value, which we call y. A single-output model may nonetheless depend

on multiple inputs, say q, which we group into a vector x = (x1, x2, ..., xq)
T . We work

with models of the form

y = η(x) ,

where η(x) is a deterministic function. The model function η(x) is the core of the

computational model itself. Following the terminology of O’Hagan (2006), we call the

model a simulator. This form of model does not include a random term; the output

y is entirely determined by the inputs x and the function η(x), so the same output is

obtained any time the model is run with the same inputs. Uncertainty in the simulator

output thus arises only from uncertainty in its input variables.

These restrictions on the type of model we work with are somewhat limiting, as

a deterministic model with a single output will not always be an appropriate choice.

For some real-life applications, computational models with multiple outputs are more

useful than single-output models. These will be not be dealt with here. Additionally,

it is highly unlikely that a computational model is exactly equivalent to the real-life

process it is designed to replicate, so a deterministic model is not necessarily the best

approximation. A model which attempts to quantify the uncertainty in its own out-

put via a probability distribution may provide a better reflection of the real process

being modelled. Despite this, deterministic models are widely used across many appli-

cation areas, and form the basis of a large body of statistical literature on the topic of

1

computational models.

When the behaviour of a process across the entire space of its inputs is of interest,

the simulator must be run many times for different input configurations. This can be

computationally infeasible if the simulator is expensive to run. Computer experimen-

tation provides a solution to this: the simulator is run for a few input configurations,

called training or design points, and the outputs are treated as data from an exper-

iment, which is then used to construct a statistical approximation to the simulator.

The approximation is called an emulator, and the technique - which was first applied

to computational models by Sacks et al. (1989) - is called emulation. Predictions at

other inputs can then be made quickly from the emulator. This approach does however

introduce uncertainty into the predictions made; to quantify this, the emulator returns

a probability distribution instead of a single value. Analysis of uncertainty in the com-

putational model must thus take account of not only the uncertainty arising from the

inputs, but also the uncertainty in the emulator at input configurations where the sim-

ulator has not been run directly. The most common emulator uses a combination of

a regression model and a stationary Gaussian process to approximate the simulator.

Emulation for a single model is discussed in Chapter 2.

The overall aim of this thesis is to explore how predictions can be made and assessed

through chains of computational models, in which the output of one model in the chain

is then used as an input (potentially one of several) to the next model until a final model

is reached. The models may be extremely complex and computationally intensive, so

emulation will be required. Each link in the chain is thus subject to two sources of

uncertainty: uncertainty arising from the inputs to the model, and uncertainty arising

from the emulator. These individual sources of uncertainty will propagate and combine

through the model chain, affecting our ability to understand and quantify the reliability

and accuracy of overall predictions from the full chain.

Motivation for the project comes from the multi-modal chains of computational mod-

els used by our research partners, the Defence Science and Technology Laboratory

(Dstl), for hazard prediction and management. For example, consider the prediction

of casualties from a chemical, biological or radiological (CBR) release. An illustration

of this process can be seen in Figure 1.1. One output of interest is the probability of ca-

sualty for an affected individual. This output depends on several linked processes which

would each need to be approximated by separate models which would then be linked

together. The probability of casualty is a function of the properties of the released con-

taminant and the dosage received by the individual; this would constitute final model in

the chain. The dosage received is itself a function of several other variables determining

how the contaminant reaches the individual following its release. These variables could

include the location of the release, the release mass and duration, and the wind speed

and direction both at and after the time of release. At least one further model would

be needed to capture this variation, and potentially another to account for changes

2

in meteorological conditions across time. For a fuller picture of the effects of such a

release on the population as a whole, the probability of casualty at each location in

the potentially affected area would itself be an input into a final model for the number

of casualties due to the release. This model could also include other variables such as

the population density at each location, placement of sensors to detect the release and

factors relating to the strategy chosen to mitigate the effects of the release, allowing

the effects of different mitigation strategies to be modelled.

Figure 1.1: Diagram of the steps in a chain of models to predict the casualties from a
CBR release. (Source: Dstl)

There are two alternative methods by which emulation for chains of models can be

conducted. The first is to approximate the entire chain via a single emulator, referred

to in previous work on the topic as the composite emulator. This has the advantage of

in effect reducing the problem to one which has already been solved, as the theory for

single-model emulation is extremely well-developed. However, if the input space of the

chain of models is large, this approach may be computationally expensive; knowledge of

the chain of models effectively defines a form of dimension reduction on the full chain.

Additionally, information can be lost by performing only one emulation, both in terms

of understanding the behaviour of subsets of the models in the chain and - as in an

example in the work of Kyzyurova et al. (2018) - in terms of the performance of the

composite emulator.

The second approach, which is taken during our work, is to emulate each model

independently and link the results together to produce a final approximation called the

linked emulator. This introduces additional challenges, since one of the inputs to the

later models in the chain is not known exactly but only up to a probability distribution.

Approaches exist to deal with this uncertainty for a chain of two models using either

Monte Carlo methods (Kyzyurova et al., 2018) or theoretical results concerning inputs

to a Gaussian process emulator which follow a normal distribution (Candela et al.,

2003; Kyzyurova et al., 2018). Chapter 3 reviews the existing methods and extends

them to chains of more than two models.

3

There is a relationship between this approach and the field of deep Gaussian pro-

cesses. A deep Gaussian process is a form of neural network based on a Gaussian

process prior distribution, with its origins in the work of Neal (1996), Chapter 2, which

focuses on priors for Bayesian neural network. More recently, Damianou and Lawrence

(2013) developed a framework for deep learning in which the observed data is treated as

the output of a multivariate Gaussian process, and the inputs to this Gaussian process

are themselves controlled by another Gaussian process. This can be thought of a form

of latent variable modelling in which the Gaussian process controlling the inputs to the

second Gaussian process adds an additional layer of understanding to the behaviour

of the system as a whole. Damianou and Lawrence (2013) go on to use variational

marginalisation to remove all of the intermediate layers from the system, with some

level of approximation required to do this.

The structure of this hierarchy can be viewed as similar to that of a chain of models.

There are however some noteworthy differences between the deep Gaussian process

setup and the chain of models as defined in this thesis. Firstly, each model in a chain

takes only one input as an output from a previous model, instead of an entire layer at a

time being defined through latent variables. More importantly, every input and output

to any model in the chain corresponds directly to a quantity of interest, and their

definition comes directly from the real-world process being modelled. The number

of intermediate inputs is fixed by the nature of the problem. In a deep Gaussian

process, the latent variables are typically artificial, and the number of intermediate

inputs can be chosen for the purposes of improving predictive performance. Our work

is nonetheless similar in spirit to the method of Damianou and Lawrence (2013), but

differs significantly in its approach.

A further problem of interest is that of how the design points for the chain of computer

experiments required to build each emulator should be chosen. There is a large body

of theory for how this can be done for a single model. One popular approach is space-

filling design, in which the points are chosen to fill the input space based on either a

Latin hypercube principle (McKay et al., 1979), or to satisfy an optimality criterion

based on the distances between the points (Johnson et al., 1990). A second method

is sequential design, in which the model is run for a reduced set of design points and

the remaining points are allocated using information gained from the runs which have

already been made (Sacks et al., 1989; Gramacy and Lee, 2009). Extending either

of these methods to models in a chain faces challenges not seen in the single-model

case. Both the existing methods and our proposals for experimental design for chains

of models are discussed in Chapter 4.

The quantification and understanding of uncertainty in statistical models forms the

basis of the field of sensitivity analysis. When applied to a deterministic model, sensi-

tivity analysis is based upon apportioning the uncertainty in the simulator output to its

inputs (Saltelli et al., 2008). Several techniques exist to do this; the approaches we are

4

most interested in are based on decomposing the model into a sum of the main effects

of each input and the interactions between them, and on quantifying the effect of each

input (or set of inputs) in terms of the proportion of the total output variance explained

by the input(s). However, traditional sensitivity analysis relies on an extremely large

number of model runs at different input configurations, so it is often necessary to use

emulation to build an approximation to the simulator for sensitivity analysis to proceed

(Oakley and O’Hagan, 2004). Sensitivity analysis for a chain of emulators is thus of

interest. Chapter 5 focuses on both existing methods for sensitivity analysis for a single

model, including an example from Dstl based on CBR modelling, and their potential

extensions to the case of a chain.

The methods developed in the early chapters of the report are implemented in the

R programming language, with some use of C++ for reasons of execution speed. Our

code includes functions for prediction from linked emulators using both the theoretical

and the Monte Carlo method, methods for sensitivity analysis for the final model of a

chain given its own inputs, and some limited sensitivity analysis for the output of the

chain with respect to the directly controllable inputs. This software implementation is

introduced in Chapter 6.

The techniques we present for prediction and analysis of chains of computational

models are demonstrated on a real-life example from Dstl in Chapter 7. The study

concerns a chain of two models for dispersion and casualty estimation from a CBR

release. We construct a linked emulator for the chain using both the Monte Carlo and

the theoretical method and review the performance of both, together with that of a

composite emulator. Sensitivity analysis for the CBR chain is also considered.

It is of interest to make comparisons between the different methods considered in

this thesis. In Chapter 8, a simulation study is conducted to investigate the differences

in behaviour between the two forms of linked emulator and the simpler methods of a

composite emulator and linear regression, and to determine which settings the different

approaches are best suited to. Finally, the main conclusions of our work and ideas for

relevant future research directions are presented in Chapter 9.

5

6

Chapter 2

Emulation

2.1 Overview

Emulation is a technique which attempts to reduce the time and cost associated with

prediction from a computationally expensive simulator. In theory, the output of the

simulator can be determined for any choice of inputs we wish to make; if, as we assume

to be the case throughout, the model is deterministic, this output does not change

should we run the simulator multiple times with the same inputs. In practice, for many

real-world problems the simulator is computationally expensive or time-consuming to

run, and it is therefore infeasible to perform a large number of runs of the simulator.

But there are several situations in which a large number of simulator runs would be

required. It may be necessary, for example, to make predictions at a large number of

input configurations relating to different real-world conditions. Additionally, sensitivity

analysis for a computational model can require many thousands or even millions of

model runs; this shall be discussed further in Chapter 5.

When using the simulator directly is infeasible, the most practical alternative is to

construct an approximation to the simulator using a computer experiment. Let X ⊂ Rq

be the space on which the q inputs to the simulator are defined; in the context of a

computer experiment, X is called the design space. The simulator is run at a relatively

small number of input settings, ξ = (x1, ...,xn)T ,x1, ...,xn ∈ X , called design points or

training points. The (scalar) outputs, y1, ..., yn, are treated as data from an experiment.

This data is then used to build a statistical approximation to the simulator, called an

emulator, which can then be used to make predictions of the simulator output for

untested input values. The key advantage of this method is to substantially reduce the

computational cost associated with prediction from the original model.

The simulator itself is a function of its inputs x which returns a single value, y = η(x).

For a sufficiently good approximate function η̂ of η, it would be possible to take the

point approximation ŷ = η̂(x) as a surrogate for y and perform any desired analysis

on this approximation. This approach is sometimes taken in previous literature: a

recent example is the work of Joseph et al., 2019 on model-based optimal experimental

7

design, where it is used due to its computational simplicity. However, this approach

does not reflect the fact that we cannot be sure of the accuracy of a point approximation

where the true simulator output is unknown. It is therefore preferable to quantify the

uncertainty in the estimate. For this reason, the most common emulators return a

probability distribution for the true output y given the inputs x instead of a single

value. Bayesian methodology can be used to construct an emulator from the training

data.

There are two properties which a good emulator typically obeys. At the design points,

where the true output is known, we would expect the emulator to return the known

output with probability one. Elsewhere, the probability distribution returned by the

emulator should have a mean which is a plausible estimate for the true output, and

should provide a reasonable expression of the uncertainty associated with this estimate.

The first property can be easily checked, but the second is somewhat more difficult; one

common approach, as discussed by Bastos and O’Hagan (2009), is to run the model at

some previously-untested inputs and compare the true output at these points to the

emulator output.

The most common form of emulator in use is the Gaussian process emulator, which

we discuss in Section 2.2; it is based upon a stochastic process called the Gaussian

process. This can be interpreted within a Bayesian framework: the simulator is treated

as an unknown function, with a prior distribution given by a Gaussian process. When

combined with the data obtained from the simulator runs, this leads to a posterior

distribution for the simulator output at any point. The resulting posterior distribution

is also Gaussian, with a mean and covariance which depend on both the data and the

parameters of the prior distribution.

The choice of the points at which the true model is run, called the experimental

design, is important: a well-chosen set of design points allow much more information

to be gained from the simulator runs than a poorly-chosen set. Several methods exist

to choose the points well for a single model. These are reviewed in Section 4.1 in the

context of extending the process to multiple linked models.

2.2 Gaussian Process emulation

Using the notation followed by Santner et al. (2003), let Z(x),x ∈ X , be a stochastic

process. Z(x) is a Gaussian process if Z(x1), ..., Z(xk) follows a k-dimensional multi-

variate normal distribution for any subset (x1, ...,xk) of X . The alternative nomen-

clature Gaussian random function or Gaussian random field is used in some literature,

but we will use the more common term Gaussian process (GP). A GP is defined by its

mean function,

µz(x) = E[Z(x)] ,

8

for x ∈ X , and by its covariance function ,

Cz(x1,x2) = Cov[Z(x1), Z(x2)] ,

for x1,x2 ∈ X . Both µz and Cz may be parametric functions with an additional

dependences on unknown parameters. A covariance function is defined as stationary

if, where x1 − x2 is the distance between x1 and x2, the covariance is given by

Cov[Z(x1), Z(x2)] = C(x1 − x2) ,

for some function C. For ease of notation, we write h = x1−x2, with hj being the jth

element of the vector h. A stationary covariance function C(h) thus depends on h and

any other parameters of the function. GPs with stationary covariance functions have

many useful properties regarding inference based on data from a single sample path;

details are given by Adler (1981).

The process variance of a GP is defined as

σ2z(x) = V ar[Z(x)]

= Cov[Z(x), Z(x)] .

An additional assumption which is usually made is that the process variance is a

constant value σ2z . This variance must be greater than zero for the GP to be non-

degenerate. For a stationary GP, the process variance can be written as

σ2z = C(0) .

It is often more convenient, and substantially more common in the literature, to work

with the correlation function of a stationary GP instead of the covariance function. This

is defined as:

R(h) = C(h)/σ2z .

For the GP to be non-degenerate, the correlation function must satisfy R(0) = 1;

for stationarity, we additionally require that R(h) = R(−h), and that R is positive

semi-definite. It is useful to note that the product of several correlation functions with

these properties is itself a valid correlation function with the same properties. This is

referred to as separability, and means that it is possible to create multi-dimensional

correlation functions by taking the product of several independent one-dimensional

correlation functions meeting the required conditions. This is useful, as for the purposes

of building a GP emulator, the correlation function must be of dimension q, where q is

the number of inputs to the computational model.

9

Santner et al. (2003), Chapter 2, presents several families of multi-dimensional cor-

relation functions which meet the conditions required for non-degeneracy and station-

arity, of which two are of particular interest to us. The power-exponential family of

correlation functions in q dimensions has the form

R(h) = exp

(
−

q∑
j=1

bj |hj |α
)
. (2.1)

This is a parametric function: each bj > 0 is a scale parameter for the jth dimension,

while α is a shape parameter which is consistent across dimensions, and must satisfy

0 < α ≤ 2. The most commonly used value for this parameter is α = 2, the Gaussian

correlation function,

R(h) = exp

(
−

q∑
j=1

bjh
2
j

)
, (2.2)

or equivalently

R(h) =

q∏
j=1

exp(−bjh2j) .

This has been used in prior work on emulation and sensitivity analysis, notably

by Oakley and O’Hagan (2004), and is the basis of previous work on linking Gaussian

process emulators in a chain by Girard et al. (2002) and Kyzyurova et al. (2018). A

Gaussian process with this correlation function is infinitely differentiable, and tends to

produce extremely smooth sample realisations (Stein, 1999).

Another common choice is the Matérn correlation function, introduced in the PhD

thesis of Matern (1960), which has the form

R(h) =

q∏
j=1

1

Γ(ω)2ω−1

(
2
√
ω|hj |
θj

)ω
Kω

(
2
√
ω|hj |
θj)

)
, (2.3)

in q dimensions. Each θj > 0 is the jth-dimensional scale parameter. ω > 0 is a

smoothness parameter; the smoothness parameters could also be dimension-specific,

but authors such as Santner et al. (2003) use a common smoothness parameter in their

definitions. Kω is the modified Bessel function of the second kind of order ω. If ω is

an integer multiple of 1/2, the Bessel function reduces to a much simpler form. The

most common choices for the smoothness parameter are ω = 5/2 and ω = 3/2. The

alternative ω = 1/2, which in one dimension leads to a GP which is equivalent to the

Ornstein-Uhlenbeck process, is generally too rough for computer experiments; ω ≥ 7/2

gives very smooth realisations similar to that of the squared exponential, which is

itself a limiting case of the Matérn correlation function as ω →∞ per Rasmussen and

Williams (2006), Chapter 4.

For the purposes of emulation, we could use a Gaussian process to approximate a

simulator. However, more flexibility is often required than can be provided by a GP

10

in isolation. This can be achieved by considering the output of the simulator as a

realisation of a stochastic process, and fitting a regression model to this stochastic

process; instead of modelling the error term as a series of independent and identically

distributed random variables, it is modelled as a zero-mean stationary Gaussian process.

This leads to the model

Y (x) =

p∑
i=1

fi(x)β(i) + Z(x)

= fT (x)β + Z(x) ,

where p is the the number of regression terms in the model, f(x) = [f1(x), ..., fp(x)]T

is a vector of regression functions, β = (β1, ..., βp)
T is a vector of regression coefficients

and Z(x) is a stationary Gaussian process with zero mean. Since Z has mean 0,

its behaviour is determined entirely by the choice of the process variance and the

correlation function. We shall refer to this technique as Gaussian process emulation; it

is also called Kriging by authors including Fang et al. (2006), after a similar and longer-

established technique from mining and geostatics. It was first applied to computer

experiments by Sacks et al. (1989).

The choice of regression component of the Gaussian process emulator is an important

one. Intuitively, it is tempting to choose a model with several terms, as a well-fitted

regression model can explain much of the variation in the simulator output. In practice,

however, it is rare to perform regression using an order higher than linear; this is

justified by O’Hagan (2006), who states that practical experience suggests that the

additional complexity of a higher-order model does not lead to a substantial enough

improvement in the fit to be worthwhile. In the literature, the most common model

consists of a constant regression term (the mean) plus the stationary Gaussian process,

Y (x) = µ + Z(x) .

This is equivalent to setting the number of regression terms p = 1, and is referred

to by some authors, including Fang et al. (2006), as the ordinary Kriging model; the

sample mean is used as a point estimate for µ. A common alternative is p = 2, a linear

regression component, used for example by O’Hagan (2006).

To predict the simulator output, Yn+1 = η(xn+1), for an untested input vector, xn+1,

given the known vector Yn = [η(x1), ..., η(xn)]T of the simulator output at the training

points, we must use the posterior predictive distribution for Yn+1. This is identical to

the conditional distribution of the unknown simulator output given the training data,

so we must derive the density f(Yn+1|Yn).

As before, let n be the number of design points for the emulator and p be the

number of regression terms. We define F as an n× p matrix of regression functions for

11

the elements of the experimental design ξ, fn+1 = f(xn+1) as a p×1 vector of regression

functions for xn+1, C = R(xi − xj) as an n × n matrix of correlations amongst the

elements of ξ, and cn+1 = R(xi−xn+1) as an n×1 vector of correlations between xn+1

and the elements of ξ.

The parameters β and σ2z , which are defined above, and the q × 1 vector of corre-

lation parameters θ = (θ1, ..., θq)
T are unknown. We first obtain a joint conditional

distribution for Yn+1 and Yn given these unknown parameters:

f

(
Yn+1

Yn

) ∣∣∣∣ (β, σ2z ,θ) ∼ Nn+1

[(
fTn+1

F

)
β, σ2z

(
1 cTn+1

cn+1 C

)]
.

If all three of β, σ2z and θ are unknown, the posterior predictive distribution cannot

be determined analytically. If, however, the correlation parameters θ are treated as

being known, the predictive distribution can be derived. This is done by finding the

conditional density,

f(Yn+1|σ2z ,β,Yn) ,

and integrating out the two unknown variables. To obtain this we need a conjugate

prior distributions for β|σ2z : a multivariate normal with known mean b0 and variance-

covariance matrix σ2zV0. A conjugate prior is also required for σ2z : this is a scaled-

inverse-chi-squared distribution with parameters (ν0, c0/ν0), where ν0 is the degrees of

freedom and c0 is a constant. This can equivalently be viewed as an inverse-gamma

(ν0/2, c0/2) distribution, with density given by

f(σ2z) =
(c0/2)(ν0/2)

Γ(ν0/2)
(σ2z)

−(ν0/2)−1 exp

{
− c0

2σ2z

}
.

The details of the derivation of the posterior predictive distribution are given in

Chapter 5 of Santner et al. (2003), with the result that the posterior predictive dis-

tribution is a non-standardised t-distribution. In one dimension, this is a function of

three parameters: the degrees of freedom ν, location parameter µ, and scale parameter

σ2. It is denoted as T1(ν, µ, σ
2) and has the density function

f(w) =
Γ[(ν + 1)/2]

Γ(ν/2)π(1/2)
√
νσ2

(
1 +

(w − µ)T (σ2)−1(w − µ)

ν

)(ν+1)/2

.

The posterior predictive distribution for Yn+1 has the form

f(Yn+1|Yn) ∼ T1(ν∗, µ∗, σ∗2) , (2.4)

where ν∗ = ν0 + n,

µ∗ = fTn+1β̂ + cTn+1C
−1(yn − Fβ̂) , (2.5)

12

and

σ∗2 =
Q1

ν∗

{
1− (fTn+1, c

T
n+1)

[
−V−10 FT

F C

](
fn+1

cn+1

)}
.

In the above equations, we have

β̂ = (V−10 + FTC−1F)−1(V−10 b0 + FTC−1yn) , (2.6)

a Bayesian form of the generalised least squares regression estimator for the unknown

regression coefficients β. We also have

Q1 = c0 + yTn

[
C−1 −C−1F(FTC−1F)−1FTC−1

]
yn +H1 ,

where

H1 = (b0 − β̂)T (V0 + [FTC−1F]−1)−1(b0 − β̂) .

The conjugate prior distributions require several parameters to be estimated, and

choosing any specific value for them can be thought of as an informative decision. The

information required to make sensible informative choices for the prior distributions

is rarely available in advance. A more practical alternative is to use non-informative

or weak priors instead. For the regression coefficients β, a non-informative conjugate

prior is the constant

f(β|σ2z) = 1 .

The weak prior for the process variance σ2z is the Jeffreys prior, introduced by Jeffreys

(1961):

f(σ2z) =
1

σ2z
.

Per Rasmussen and Williams (2006), Chapter 2, these distributions can be viewed

as limiting cases of their strong counterparts as the prior variance of the parameters

is infinitely large. Neither of these prior distributions is a proper distribution, but

this is not a concern as the resulting posterior distribution is proper; further details

can be found in Santner et al. (2003), Chapter 5. Using these priors, the posterior

predictive distribution is again gives a non-standardised t-distribution, but now with

the parameters ν∗ = n− p,

µ∗ = fTn+1β̂ + cTn+1C
−1(yn − Fβ̂) , (2.7)

and

σ∗2 =
Q2

ν∗

{
1− (fTn+1, c

T
n+1)

[
−0 FT

F C

](
fn+1

cn+1

)}
,

13

where

Q2 = yTn

[
C−1 −C−1F(FTC−1F)−1FTC−1

]
yn ,

and

β̂ = (FTC−1F)−1(FTC−1yn) . (2.8)

Also of interest is the simpler case in which the process variance σ2z is treated as

known. In this case, a conjugate prior distribution is required for β only; this is, as in

the case of unknown process variance, a multivariate normal distribution with mean b0,

but its variance-covariance matrix is now τ2V0 for a constant τ2. Following a method

presented by several authors including Santner et al. (2003), Chapter 5, the resulting

posterior predictive distribution is a one-dimensional normal distribution,

f(Yn+1|Yn) ∼ N(µ∗, σ∗2) , (2.9)

with parameters

µ∗ = fTn+1β̂ + cTn+1C
−1(yn − Fβ̂),

and

σ∗2 = σ2z

{
1− (fTn+1, c

T
n+1)

[
−σ2

z
τ2

V−10 FT

F C

](
fn+1

cn+1

)}
.

The posterior estimate of the regression coefficients, β̂, is now given by

β̂ =

(
V−10

τ2
+

FTC−1F

σ2z

)−1(V−10 b0

τ2
+

FTC−1yn
σ2z

)
,

Again, the choice of the parameters of the prior distribution imposes strong infor-

mation on the posterior predictive distribution, so a non-informative approach is also

possible by setting the distribution for the regression coefficients to f(β) = 1. This

again yields a normal distribution for the emulator output, with parameters

µ∗ = fTn+1µβ + cTn+1C
−1(yn − Fβ̂)

and

σ∗2 = σ2z

{
1− (fTn+1, c

T
n+1)

[
−0 FT

F C

](
fn+1

cn+1

)}
, (2.10)

where β̂ is defined in (2.8).

14

In the simplest case, the regression coefficients β can also be considered to be known,

meaning that no prior distributions are required. Then, the posterior predictive distri-

bution is a normal distribution with mean

µ∗ = fTn+1β + cTn+1C
−1(yn − Fβ) ,

and variance

σ∗2 = σ2z(1− cTn+1Ccn+1) . (2.11)

It is useful to demonstrate prediction from a GP emulator using a simple one-

dimensional example. Consider a simulator defined by the function

y = x4e−x + sin(2x) ,−3.5 ≤ x ≤ 6.5 . (2.12)

We assume that the equation which defines the simulator is unknown, and construct

a GP emulator based on four simulator runs for different values of x, with the design

ξ being defined by the vector ξ = (3.5, 4.5, 5.5, 6.5)T . A constant regression term

and a Matérn correlation function with smoothness parameter ω = 5/2 are used in

the emulator. The GP emulator is then used to predict the simulator output at 200

equally-spaced prediction points across the range of x.

The resulting predictions are plotted in Figure 2.1. The true simulator output is

shown in the plot as a solid black line, the design points in red, the mean prediction from

the emulator in blue, and the bounds of a 95% prediction interval from the emulator in

green. The plot demonstrates that the emulator mean is identical to the true simulator

output at the design points, but may differ from it at untested inputs. The uncertainty

in the emulator estimates is zero at the design points where the simulator output is

known, and increases with the distance from the nearest design point.

Computational issues can arise when C, the matrix of correlations between the design

points, is inverted. If the correlation between any pair of design points is very large,

or if the correlation between all pairs of design points is very small, C can be close to

singular. To overcome this, it is common to add a small error term δ, called a nugget,

to the diagonal of the matrix:

C = C + δI .

This definition of the nugget follows that of Andrianakis and Challenor (2012). Other

authors, including Gramacy and Lee (2012), define the nugget as a random term with

variance δ/σ2z . We can interpret the use of a nugget as introducing a small amount of

uncertainty into the simulator output at the design points. This ensures that C can

be inverted without difficulty. In Figure 2.1, the green lines would no longer meet at

the design points, but would lie a very small distance away from the true value. A

15

Figure 2.1: Prediction from a Gaussian process emulator for the simulator defined in
equation (2.12).

fuller treatment of the use of a nugget was conducted by Andrianakis and Challenor

(2012), considering its effect on prediction from the resulting emulator under various

conditions. In addition, Gramacy and Lee (2012) show that using a non-zero nugget

in a GP emulator can have a positive effect on statistical properties including coverage

and predictive accuracy. For computational reasons, we makes use of a nugget in most

of the emulators constructed in our work.

GP emulation can occasionally produce poor predictions for the true simulator out-

put. The use of a stationary Gaussian process prior assumes that the correlation in

each dimension depends only on distance, not on location; that the simulator is smooth

and continuous; and that the residuals from our emulator estimate are equally likely

to lie on either side of the estimate in each dimension. These assumptions may not be

true for some simulators. The emulator also requires several parameters to be chosen,

either directly or through the specification of prior distributions for Bayesian inference,

which can introduce a conflict with the data. These issues are discussed in detail by

O’Hagan (2006), and diagnostics which can be used to test the performance of an emu-

lator are introduced in the same paper; more recently, Bastos and O’Hagan (2009) also

considered diagnostics for a GP emulator.

Several software implementations for Gaussian process emulation exist in the R lan-

guage. The most popular package is ‘DiceKriging’ (Roustant et al., 2012), which in-

cludes many methods for fast calculation of emulators using a partially Bayesian frame-

work, with maximum likelihood estimation for the correlation parameters. ‘DiceKriging’

supports two families of correlation functions: Matérn with ω = 5/2 or ω = 3/2, and

power-exponential with 0 < α ≤ 2, including the special case of the Gaussian corre-

lation function. Another package, ‘mlegp’ (Dancik and Dorman, 2008), implements

16

the same methods for the Gaussian correlation function only.

2.3 Unknown parameters of the Gaussian process emula-

tor

It is not usually possible to know in advance which parameter values will lead to an

appropriate GP emulator. As demonstrated above, it is possible to integrate out some

of these parameters for certain choices of prior distribution, but this cannot be done

for the correlation parameters, and it is sometimes desirable to estimate the process

variance and regression coefficients directly. Additionally, the appropriate size of the

nugget of the Gaussian process cannot typically be determined until the emulator is

fitted. There are two main ways to estimate the unknown parameters.

2.3.1 Plug-in approach

The simpler method is a plug-in approach, in which a single value of each unknown

parameter is found and used throughout the following analysis in place of the full

distribution of the parameter(s). This has the advantage of being able to treat the

parameter as a single known value, allowing the theoretical results derived above to be

used directly. It is also less computationally intensive than other approaches.

A common method to estimate the unknown parameters by a single value is maxi-

mum likelihood estimation (MLE) , in which the value of the parameters is chosen to

maximise their joint likelihood given the observed data. This is an intuitively sensible

choice, since it ensures that the parameters are chosen in a way which makes the ob-

served data most likely to have been reached. Its use in GP emulation for computer

experiments dates to the beginnings of the field itself, including in the work of Sacks

et al. (1989), and it remains the most widespread choice.

In practice, maximising the joint likelihood of the parameters is difficult, so they

are typically estimated separately (see Chapter 5 of Fang et al., 2006). Maximum

likelihood estimation of the of the regression coefficients, β, and process variance, σ2z ,

is particularly straightforward as the MLE for these parameters is available in closed

form. For the regression coefficients, the MLE is the generalised least-squares regression

estimator introduced in equation (2.8). The MLE of the process variance is

σ̂2z =
1

n
(yn − Fβ̂)TC−1(yn − Fβ̂) .

The MLE of the correlation parameters θ is not available in closed form, so this must

be found using an iterative numerical method. The matrix C, which appears in the

MLEs for β and σ2z , depends on θ; it is thus necessary to update the estimates of β

and σ2z after updating θ using the chosen numerical method. An algorithm to do this

is presented in Chapter 5 of Fang et al. (2006) .

17

Alternative approaches to simple maximum likelihood estimation also exist. The

restricted maximum likelihood (REML) method, introduced by Patterson and Thomp-

son (1971) for incomplete block design experiments, computes less biased estimates for

variance and covariance/correlation parameters than MLE. This is achieved by max-

imising the likelihood of a set of linearly independent combinations of the observed

data instead of the data itself. As for MLE, the REML estimate of σ2z is available in

closed form, while the estimate of θ is not. Chapter 3 of Santner et al. (2003) provides

further details.

The likelihood function for the correlation parameters θ can often be very flat in

practice, meaning there is a large variance in the maximum likelihood or REML esti-

mates. This can occur even in very simple examples, for example the one-dimensional

sinusoidal function given by Li and Sudjianto (2005). The same authors proposed

a solution using a penalised likelihood, in which a penalty function is added to the

likelihood before maximisation takes place. This can have the effect of increasing the

variation around the maximum, reducing the variance of the resulting estimate. The

suggested penalty function is the smoothly clipped absolute deviation (SCAD) penalty

(Fan, 1997).

From a Bayesian perspective, MLE can be viewed as a special case of the more general

maximum a posteriori estimation (MAP). Instead of just maximising the likelihood,

this method maximises a posterior distribution derived from both the likelihood and a

prior distribution. This is also referred to as posterior mode estimation, and has been

considered as a method to obtain the parameters of a GP emulator by several authors

including Santner et al., 2003, Chapter 3, and Gu et al., 2018. The choice of the prior

distribution for the parameters is an important one, since this will significantly effect the

posterior distribution to be maximised. Maximum likelihood estimation corresponds

to the use of a uniform prior distribution on the parameters of interest. This is in

some ways a natural choice for parameters of a GP emulator, about which little may

be known in advance. When non-uniform conjugate priors are chosen to allow the

regression coefficients and process variance to be integrated out, however, these should

be taken account of in the estimation of the correlation parameters. In addition, Gu

et al. (2018) presented an argument for using non-uniform priors on the correlation

parameters based on the robustness of the parameter estimates, as this is less likely to

lead to C being close to singular or to the identity matrix I.

It is worth reviewing parameter estimation in existing R packages for GP emula-

tion, since our code makes use of these packages in places. ‘mlegp’ uses exclusively

maximum likelihood estimation for all of the unknown parameters of the emulator.

‘DiceKriging’ also supports this approach, but provides additional options. Penalised

maximum likelihood estimation with a SCAD penalty function is also offered. The pa-

rameters may also be entered by the user directly, which allows other methods to be

used.

18

One oddity concerning the two packages is the scaling of the correlation parameters of

the power-exponential correlation function. While ‘mlegp’ requires α = 2 and uses the

form given in equation (2.2), ‘DiceKriging’ allows α to vary and uses the alternative

parameterisation

R(h) = exp

[
−

q∑
j=1

1

2

(
hj
bj

)α]
.

In our work, the form given in equation (2.1) is used. However, since we use the

‘DiceKriging’ package to estimate correlation parameters in some of our examples,

the values returned by the package must first be transformed to our preferred scale.

Parameter estimation in the following chapters is conducted using MLE where applica-

ble, and MAP with conjugate priors for the regression coefficients and process variance

where these parameters are integrated out. It should be noted that if MAP with a non-

uniform reference prior on the correlation parameters is considered, Gu et al. (2018)

suggest avoiding the parameterisation given in equation (2.1), but this is not an issue

for us as reference priors are not used in this thesis.

None of the plug-in estimation methods described above allow the form of the max-

imiser for the correlation parameters to be determined analytically, so this requires

numerical optimisation. This can be a difficult problem, as the function to be opti-

mised may be either extremely flat or have many local maxima. There are several

algorithms which could be used, many of which are listed in Chapter 3 of Santner

et al. (2003). The approach taken by ‘DiceKriging’ is based on a combination of the

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, an iterative method based on

local search and gradient descent, and a genetic algorithm for global search; it is de-

scribed in further detail by Roustant et al. (2012). Even with this combined method, it

is still common for only a local optimum to be found, but this can be partially overcome

by running the optimisation algorithm from many different starting locations within

the space of the correlation parameters.

The main weakness of a plug-in approach to the unknown parameters is that it

ignores a source of uncertainty in predictions from the emulator. By treating the

unknown parameters as single values instead of a distribution of possible values, the

uncertainty in them is not captured in the analysis that follows, leading to potentially

low variance bounds and overconfidence in the resulting predictions. In the case of the

nugget, which exists only for computational purposes, this is not a problem provided

a reasonable value is chosen. For the correlation parameters, and (where relevant) the

process variance and regression coefficients, it is more of a concern. Despite this, due to

its computational simplicity and widespread prior use in both literature and software

implementation, a plug-in method based on maximum likelihood estimation forms the

basis of our work in the remainder of the thesis. The following subsection discusses

an alternative approach which accounts for the uncertainty in the estimates of the

19

parameters in its predictions, but which was not taken forward due to the increased

computational resources required.

2.3.2 Markov chain Monte Carlo

A more complex alternative is a Bayesian approach in which a sample of values

for the parameters is generated using Markov chain Monte Carlo (MCMC). This is

typically done only for the correlation parameters θ, as the regression coefficients and

process variance can instead be integrated out as described in Section 2.2. MCMC

is a set of methods which are designed to sample from a probability distribution by

constructing and sampling from a Markov chain with the target probability distribution

as its limiting distribution. Using this approach, it is possible to sample from the

distribution without knowing its constant of proportionality; we require only a density

proportional to that of the target. Detailed coverage of the topic can be found in books

by several authors, including Gamerman and Lopes (2006).

For a Markov chain with a continuous state space S, let A be a subset of S. Let

θ be the vector of parameters of interest, and θ(j) be the value of the parameters of

interest after j timesteps. A Markov chain is called time-homogeneous if its transition

probabilities do not depend on the number of steps made so far; the equality

P [θ(M+1) ∈ A|θ(M),θ(M−1), ...,θ(0)] = P [θ(1) ∈ A|θ(0)]

holds for all M ∈ 0, 1, 2, ... , and A ∈ S. It is then possible to define a transition

function P (φ,A), called the kernel of the chain, which states the probability of moving

from a state φ to a subset A ∈ S in a single step. We require that the kernel is

a probability distribution over S for any φ, and that it is possible to evaluate it for

any choices of φ and A. The kernel can be used to generate the next state of the

chain. For two states ψ, φ we may choose to split the kernel P (ψ, φ) into a transition

kernel q(ψ), which determines a proposal φ for the next state from the kernel, and an

acceptance probability a(ψ, φ), which determines how often the proposal is accepted.

If the proposal is rejected the chain remains in the current state for a further timestep.

A Markov chain is irreducible if it is possible to reach any subset of the state space

from any other in a finite number of steps. The expected number of steps in which the

chain will return to the subset is called the mean recurrence time; a subset is positive

recurrent if its mean recurrence time is finite.

The stationary distribution, π, of a Markov chain is a distribution over its state space

such that if the probability of being in each state of the chain follows the distribution

π at any timestep of the chain, it will still follow π at the next timestep. This can be

expressed mathematically as ∫
π(ψ)P (ψ, φ)dψ = π(ψ) .

20

Consider an irreducible, time-homogeneous Markov chain in which every subset of the

state space is positive-recurrent. A result given in several sources including Nummelin

(1984) states that if this chain has a stationary distribution π, the distribution of the

states converges to π as the number of steps increases, irrespective of the initial state.

π is called the limiting distribution (sometimes equilibrium distribution or invariant

distribution) of the Markov chain.

A time-homogeneous Markov chain with limiting distribution π is reversible if

π(ψ)P (ψ, φ) = π(φ)P (φ, ψ) ∀φ, ψ ∈ S (2.13)

which is called the detailed balance equation, and implies that the probability of making

a transition from ψ to φ is the same as that of transitioning from φ to ψ under the

limiting distribution. The converse is also true: if a distribution D satisfies equation

(2.13) for a Markov chain with kernel P (ψ, φ), then D is the limiting distribution of

the chain.

MCMC methods exploit this to create a Markov chain with the probability distri-

bution we wish to sample from as its limiting distribution. To be certain that the

properties of the chain approximate those of the target distribution, we require the

chain to be aperiodic. The period of a subset A of S is the greatest common divisor

of all possible numbers of steps in which the chain can return to A. A subset A is

aperiodic if it has period 1; a Markov chain is aperiodic if this is true for all A ∈ S.

Under the conditions of irreducibility, aperiodicity and positive recurrence of states, a

sample approximation to a function t(θ),

t′M =
1

M

n∑
j=1

t[θ(j)] ,

converges with probability 1 to the expectation of t(θ) as M → ∞. This means that

for a sufficiently large sample size M , per sources such as Gamerman and Lopes (2006),

the sample average t′M can be used as an estimate for t(θ).

To use MCMC to sample from the distribution D(θ) of the parameters of interest,

we must construct a chain with D(θ) as its limiting distribution. This is achieved by

choosing a kernel P (ψ, φ) which satisfies (2.13) for D(θ). The longest-established and

most common choice is the Metropolis-Hastings algorithm , which in its earliest form

was proposed by Metropolis et al. (1953) and was later generalised by Hastings (1970).

The transition kernel φ = q(ψ) is a random walk transition,

φ = ψ + w , (2.14)

where w is a randomly generated vector with probability density fw. A Markov chain

with a random walk transition kernel is reversible if fw is symmetric about 0, so sev-

eral options for this density are possible; the most common is a multivariate normal

21

distribution. The acceptance probability a(ψ, φ) is

a(ψ, φ) = min
{

1,
D(φ)q(φ)

D(ψ)q(ψ)

}
= min

{
1,
D(φ)

D(ψ)

}
,

where the second equality holds since q(ψ) is reversible. This is equivalent to

a(ψ, φ) = min
{

1,
fD(φ)

fD(ψ)

}
, (2.15)

where fD(θ) is a function proportional to the target density D(θ), as the normalising

constant in the density appears in both the numerator and denominator of the second

term of the acceptance probability and thus cancels out. Algorithm 1 sets out the steps

of the Metropolis-Hastings algorithm formally.

Algorithm 1: Metropolis-Hastings algorithm

Input: Initial value θ(0); target sample size M

Output: Sample matrix Θ = (θ(1), ...,θ(M))T from target density D(θ)

begin

for j ← 1 to M do

φ← sample (q(θ(j−1))) ; // q() defined in (2.14)

p← a(θ(j−1), φ) ; // a() defined in (2.15)

u← sample (unif(0, 1)) ;

if u < p then θ(j) = φ;

else θ(j) = θ(j−1);

end

end

When a multivariate normal distribution is used to generate the proposals, the choice

of the covariance matrix can have a large effect on the algorithm’s performance. The

covariance matrix can be either a scalar multiple of the identity matrix or of an esti-

mated matrix of correlations between the dimensions of the target density. In either

case the scalar which multiplies this matrix, called the variance parameter or v, must

be carefully chosen. If it is too large, the transitions proposed are also large and are

thus unlikely to be accepted as they will frequently take the chain to regions of the

state space where the target density is very low. Equally, a very small choice for v

means that the proposed transitions are also small, so the chain will take a long time to

explore the whole of the space. In extreme cases, the chain can remain in one region of

the state space where the density is high while failing to reach another similar region,

as few or no proposals will be large enough to make this jump. These issues were

discussed in detail by Roberts et al. (1997), with the conclusion that a good value for

v can be determined from the probability of a transition being accepted. The paper

22

demonstrates that, as the dimensionality of the state space tends to infinity, the opti-

mal acceptance probability under certain conditions tends to 0.234. In one dimension,

the optimal acceptance probability was found to be close to 0.5.

Instead of a random walk, other transition kernels are possible. For example, Hamil-

tonian Monte Carlo (HMC) has a structure similar to that of the Metropolis-Hastings

algorithm, but the Markov chain used is defined differently (Neal, 2011). Proposed tran-

sitions are generated using random sampling from a multivariate distribution defined by

a process called Hamiltonian dynamics, which originated in physics as a 19th-century

reformulation of classical mechanics. This technique, introduced by Duane et al. (1987)

in the field of molecular simulation, allows much larger transitions to be made than

random walk proposals.

For MCMC sampling to take place for the correlation parameters, we require a

density proportional to that of f(θ|Yn). Using the same informative conjugate prior

distributions for β|σ2z and σ2z as in Section 2.2, and following a method based on deriving

marginal distributions using integration presented in the context of Bayes linear models

by Banerjee (2010), the proportional density can be derived to be

f(θ|Yn) ∝ [c0 + eT (C−1 −C−1F(V−10 + FTC−1F)−1FTC−1)e]−
ν0+n

2

|V−10 + FTC−1F|1/2|C|1/2
,

where

e = yn − Fb0 .

If non-informative priors are instead chosen for β|σ2z and σ2z (again as in Section 2.2),

the result is

f(θ|Yn) ∝ [(yn)T (C−1 −C−1F(FTC−1F)−1FTC−1)(yn)]−n/2

|FTC−1F|1/2|C|1/2
.

Computing the actual value of these densities can be a challenge: as the number of

design points n increases, the power −(ν0 + n)/2 or −n/2 becomes large and negative,

with the result that any value raised to this power is extremely close to zero, causing

computational difficulties. This obstacle can be removed by working with the log-

likelihood instead of the density function of the pure likelihood. With informative

priors on β|σ2z and σ2z , this is given by

l(yn) ∝K1 −
1

2
log
∣∣∣(C + FV0F

T)
∣∣∣

−
(ν0 + n

2

)
log
[
1 +

1

c0
eT (C + FV0F

T)−1e
]
,

23

where K1 is a constant with respect to θ. Similarly, with non-informative priors on

β|σ2z and σ2z , the log-likelihood is

l(yn) ∝K2 −
1

2
log |FTC−1F| − 1

2
log |C|

− n

2
log
[
(yn)T (C−1 −C−1F(FTC−1F)−1FTC−1)(yn)

]
,

with K2 constant with respect to θ.

In practise, the determinants in these equations can be small enough to be computa-

tionally zero, leading to problems when their logarithm is taken. This can be overcome

by recalling that the determinant of a matrix is the product of its eigenvalues, which

we denote by λ1, ..., λn. Since the logarithm of a product of terms is equal to the sum-

mation of the logarithms of these terms, the logarithm of the determinant of a matrix

Λ can thus be rewritten as

log |Λ| =
n∑
i=1

log λ(i) ,

which is more computationally stable as it does not involve the product of the eigen-

values.

Using MCMC for the correlation parameters of the GP emulator allows a fully

Bayesian analysis which captures all sources of uncertainty in an emulator, leading to

more robust predictions. It is however more computationally intensive, and reduces the

use that can be made of theoretical results, instead requiring large simulations from the

emulator using the MCMC sample for the correlation parameters. In the early stages

of our work, MCMC was considered as the better approach and was implemented for

emulators for a single computational model. For chains of models, this was not taken

forward for two reasons: speed of execution of the linked emulator, and the wish to

make use of theoretical results which will be presented in Chapter 3. Incorporating

MCMC into the construction and analysis of linked emulators nonetheless remains a

potentially valuable avenue for future research.

2.4 Extensions of the GP emulator

Although Gaussian process emulation is a powerful modelling tool, there are cases

it cannot cover without further extension. The assumption of stationarity in the GP

emulator is a strong one, which will often not be met in the real world; it is common

to encounter models with much larger variation (and thus lower correlation) between

nearby points in some parts of the input space than others. One solution to this is the

use of a treed Gaussian process, in which treed partitioning is used to determine regions

of approximate stationarity, allowing the fitted emulator to use different stationary

GPs in different regions of the design space. Gramacy and Lee (2008) provides further

24

details on this approach. The R package ‘tgp’ (Gramacy and Taddy, 2010) provides

a software implementation of this approach. Unlike the packages for standard GP

emulation discussed above, it allows the use of Markov chain Monte Carlo to obtain a

sample for the correlation parameters.

Categorical input variables are another complicating factor for GP emulation due

to their effect on the correlation function of the Gaussian process. If a model with

one or more continuous inputs also takes an input with only two levels, any two input

configurations with different levels of the binary variable are a fixed distance apart in

the space of this input, at the maximum possible distance. A standard multiple-input

correlation function such as the product power-exponential or product Matérn will give

a scale parameter in this dimension which returns correlations close to zero if the input

has a substantial effect on the output, rendering correlations in the other dimensions

irrelevant and the overall correlation obtained not particularly meaningful. Qian et al.

(2009) attempt to address this by developing bespoke correlation functions to handle

a mixture of categorical and continuous input variables.

In many real processes to which fitting an emulator would be useful - and, increas-

ingly, in many computational models - repeating a measurement at the same input

configurations will not return the same output. Such a model is called stochastic ;

if the variance depends on the inputs, the model is additionally heteroscedastic. A

standard GP emulator is not appropriate for such a model, since it will assume that

the variance at a design point is only that of the nugget (which may be unrealistically

low), and that the variance is the same at every design point (when it is likely to vary

across the input space). Instead, the stochasticity and heteroscedasticity in the output

should be accounted for directly.

Goldberg et al. (1998) propose a way to do this: fit a stationary GP emulator to

the mean of the simulator response, and a second independent stationary GP emulator

to the variance of the response, with MCMC sampling for both the parameters of the

Gaussian processes and the posterior distribution of the variance. Kersting et al. (2007)

follow a similar approach, but with maximum likelihood estimation instead of MCMC,

and demonstrate that the method is effective for several data sets. More recently, the R

package ‘hetGP’ has provided a software implementation of this; the associated paper

of Binois et al. (2018) considers in detail the problem of experimental design for a

heteroscedastic GP emulator, which is more complicated than for the traditional case

as replication is required to determine the nature of the variance of the response.

Finally, the framework described above holds only if the computer model of interest

returns a single output. Simulators with multiple outputs can be handled in a variety

of ways. If the number of outputs is small, a separate emulator may be built for each

output; this is done by Kyzyurova et al. (2018) among others. For high-dimensional

outputs, this becomes very computationally intensive. A specific example of relevance

25

to our application is dispersion modelling. The output in this case is typically the

concentration of a contaminant across a two-dimensional grid, often over time. Several

approaches have been suggested to deal with this by various authors.

In addition to several separate emulators, Conti and O’Hagan (2010) consider two

methods to deal with a simulator which returns a vector of outputs over time. The first

is to explicitly build an emulator for all of the outputs simultaneously. The output of

the computer experiment is now multi-dimensional, and the joint posterior predictive

distribution for the simulator output at an arbitrary point in the input space given

the parameters of the Gaussian process is shown in the paper to follow a multivariate

normal distribution. Analogously to the univariate case, if the regression parameters

and the process variance are integrated out, the predictive distribution is multivariate

t. Treating time as an input to the model, and building a standard single-output

emulator based on this reformulation, is also considered. The multi-output emulator is

found to perform better than the time-input emulator or several separate emulators in

several examples. However, the computational cost of such an approach can be large,

as many model runs may be required before the behaviour of the true model is properly

understood.

Another alternative is to perform dimension reduction on the output. Instead of

building an emulator for the simulator output directly, a set of basis functions are

constructed which can be used to estimate the true output anywhere on a grid of points

in time. This requires the number of basis functions to be determined, which can be

done by considering the percentage of the variance explained by the approximation.

Univariate Gaussian process emulators are then used to emulate the coefficients of

the basis functions, and the simulator output at an untested point is predicted using

a combination of the GP emulator and the basis function approximation. An early

example of this method, in which much of the underlying theory is developed, is found

in Higdon et al. (2008), where a principal component basis is used. Bowman and

Woods (2016) take a similar approach but consider a thin-plate spline basis in addition

to principal components; the thin-plate spline basis is found to perform better for

dispersion modelling on a grid in time.

2.5 Conclusions

This chapter reviews the existing theory behind the process of approximating a com-

plex computational model by means of a Gaussian process emulator. We reviewed

possible correlation functions and regression components of the GP emulator, and pre-

sented posterior predictive distributions in a variety of cases from a partially Bayesian

perspective. Methods to determine the unknown parameters of the emulator using

either plug-in estimation or Markov chain Monte Carlo sampling were also reviewed,

together with extensions of the GP emulator to properly handle a wider class of under-

lying computational models. Many of the ideas presented here will be taken forward

26

in the context of chains of models in Chapter 3.

27

28

Chapter 3

Emulation for chains of multiple

models

3.1 Introduction

A chain of multiple models is defined for the purposes of our work as a series of

computational models with univariate output but potentially several input variables,

in which the output of one model in the chain is used as an input variable to a second

model and so on. We assume that the models are deterministic, so that the only

uncertainty arises from the values of the input variables, and that the models are

computationally expensive to run and must be approximated as described in Chapter

2.

There is a noteworthy body of literature on chains of computational models. The re-

view paper of Stevens and Atamturktur (2016) considers several established approaches

for verification and validation of predictions from a chain of models using real-life data.

Examples of fields in which verification and validation processes for chains of mod-

els have been considered include anisotropic contact surfaces in material science by

Konyukhov et al. (2008), and motion in a moored system in fluid dynamics by Lin

and Yim (2006). In the context of Gaussian process emulation for chains of models,

Damianou and Lawrence (2014) presented an approach to uncertainty propagation us-

ing variational inference. This approach expands on the work of Titsias and Lawrence

(2010), and takes the output of the earlier model as an uncertain input to the next

model, which is then treated as a latent variable. A prior distribution is then chosen

for the latent space of the input, which allows it to be variationally integrated out using

an approximation to its true posterior distribution.

The most relevant prior work is that of Kyzyurova et al. (2018), which developed

methods to predict from a set of linked models in which the final model may take

multiple inputs derived from distinct earlier models. This is a closely related problem

to the one which forms the basis of this thesis, but is not identical in its formulation: it

does not consider chains with more than two steps, while we do not allow more than one

29

input per model to arise from earlier models. The related problem of Gaussian process

emulation with an input known only up to a probability distribution is considered by

Girard et al. (2002) and Candela et al. (2003), with a specific focus on time series

forecasting. All of these papers are based on a theoretical result for the mean and

variance of a linked emulator for a chain of two models, which we consider further in

Section 3.3.

Before presenting our approach to the problem of emulating multiple models in a

chain, we must define some notation. Let yk be the output of the kth model in the

chain, and let

x̃k = (xk,1, ..., xk,qk)
T

be a vector of qk distinct inputs to model k. We use this notation since (for example)

x1 is potentially ambiguous given the existence of the inputs x1,1, x1,2, ..., x2,1, x3,1,

Each model in the chain does not necessarily takes the same number of inputs, so each

qk and thus the length of x̃k may differ for distinct value of k.

For illustrative purposes, consider the simplest case: a chain of two models. The first

model in the chain is defined by the equation

y1 = η1(x̃1) .

The second model in the chain is defined by the equation

y2 = η2(x̃2, y1) ,

as it depends not only on its own direct inputs x̃2 but also on the additional input y1

which is the output of model 1. Such a chain is depicted in Figure 3.1.

Figure 3.1: Diagram of a chain of two models

In order to make probabilistic predictions from multiple models in a chain, we need to

understand how uncertainty in the models will combine. As discussed in Chapter 1, our

30

work is based on emulating each model individually and linking the chain of emulators

together, instead of building a composite emulator for the chain as a whole. The use of

an emulator to approximate the first model in the chain introduces uncertainty in our

predictions of the output, y1, of model 1, which is then carried forward into the second

model since y1 is also an input to model 2. In longer chains, the same applies to the

inputs y2 to model 3, y3 to model 4 and so on.

We define βk as the vectors of regression coefficients for the emulator of model k, σ2z,k
as the prior variance for the emulator of model k, and θk as the vectors of correlation

parameters for the emulator for model k. The matrix of regression functions for the

design points of the computer experiment for model k are denoted as Fk, and the

matrix of correlations between the design points as Ck. The vector of observed outputs

of the computer experiment at the n design points for model k is denoted by Yn,k.

We also require notation for prediction at an unknown set of inputs, analogous to the

vector xn+1 in the single-model case. Let x̃k,n+1 be the vector of directly controllable

inputs to model k at an untested input configuration, so that for a chain of r models,

the set of all choosable inputs is (x̃1,n+1, x̃2,n+1, ..., x̃r,n+1). Similarly, let xk,n+1 be the

vector of all inputs to the model k at an untested input configuration, including both

the directly controllable inputs x̃k and the unknown output yk−1 of the previous model

in the chain. We define the vector of regression functions at xk,n+1 as fn+1,k, and the

vector of correlations between xk,n+1 and the design points for model k as cn+1,k

We shall begin by simplifying the problem. Assume that weak priors are used

throughout, and that the process variances and correlation parameters of every model

in the chain are known. The emulator for model 1 is a standard GP emulator for a

single model, as none of the inputs to the first model in the chain depend on the out-

put of another model. Following equations (2.9) and (2.10), the posterior predictive

distribution of y1 is

f(Y1|x̃1,Yn,1) ∼ N(µ1, σ
2
1) ,

where

µ1 = fTn+1,1β̂1 + cTn+1,1C
−1
1 (yn,1 − F1β̂1) ,

and

σ21 = σ2z,1

{
1− (fTn+1,1, c

T
n+1,1)

[
0 FT

1

F1 C1

](
fn+1,1

cn+1,1

)}
.

The estimate β̂1 of the unknown regression coefficients β1 is the generalised least

squares regression estimator,

β̂1 = (FT
1 C−11 F1)

−1(FT
1 C−11 yn,1) .

31

The emulator for a model k > 1 which occur later in the chain could still be treated as

standard GP emulator if the input yk−1 is conditioned on. This would lead to posterior

predictive distribution

f(Yk|x̃k, y1,Yn,k) ∼ N(µk, σ
2
k) ,

where

µk = fTn+1,kβ̂k + cTn+1,kC
−1
k (yn,k − Fkβ̂k) ;

σ2k = σ2z,k

{
1− (fTn+1,k, c

T
n+1,k)

[
0 FT

k

Fk Ck

](
fn+1,k

cn+1,k

)}
;

β̂k = (FT
kC−1k Fk)

−1(FT
kC−1k yn,k) .

For simplicity, we shall now consider a chain of two models only. The predictive dis-

tribution for y2 depends on y1. At an untested input configuration x1,n+1 of the inputs

to the first model x̃1, the value of y1 is known only up to its predictive distribution.

The predictive distribution for y2 thus depends on an uncertain input.

The ideal situation would be to integrate out y1 altogether to obtain a predictive

distribution which depends only on the directly controllable inputs to the chain of

models:

f(y2|x̃2, x̃1) =

∫
f(y2|x̃2, y1)f(y1|x̃1)dy1 . (3.1)

Let

f∗(y2) = f(y2|x̃2, y1,Yn,2)f(y1|x̃1,Yn,1)

be the product of the conditional densities for y1 and y2 given the outputs of the

computer experiments for model 1 and model 2. This is given by

f∗(y2) =
1√

2πσ21
exp

{
− (y1 − µ1)2

2σ21

}
× 1√

2πσ22
exp

{
− (y2 − µ2)2

2σ22

}
=

1

2πσ1σ2
exp

{
− (y2 − µ2)2

2σ22
− (y1 − µ1)2

2σ21

}
. (3.2)

In general, this is not integrable analytically, since µ2 and σ22 depend on y1 in a

complex, nonlinear way through fn+1,2 and cn+1,2:

fn+1,2 = [f2,1(x2,1), f2,2(x2,2), ..., f2,q2(x2,q2), f2,q2+1(y1)]
T ; (3.3)

cn+1,2 = [R(x2,1 − x2,n+1), ..., R(x2,n − x2,n+1)]
T . (3.4)

32

A natural approach to consider so that the integral in (3.1) can be calculated exactly

is to simplify the problem by constraining the form of fn+1,2 and cn+1,2. Assume a

constant regression term such that every entry of fn+1,2 and F2 is equal to 1, and a

squared exponential correlation function as defined in (2.2). Then,

R(x2,1 − x2,n+1) = exp
{
−

q2∑
j=1

bj(x
(j)
2,1 − x

(j)
2,n+1)

2 − by1(x(q2+1)
2,1 − y1)2

}
= exp

{
−

q2∑
j=1

bj(x
(j)
2,1 − x

(j)
2,n+1)

2
}

exp
{
− by1(x(q2+1)

2,1 − y1)2
}
, (3.5)

where by1 is the correlation parameter in the input corresponding to the output y1 of

the first model, and x
(j)
2,1 is the jth entry of x2,1. Identical results are obtained for

R(x2,2−x2,n+1), ..., R(x2,n−x2,n+1) up to different indexing. However, even after this

simplification, it is still not possible to solve (3.1) analytically as the form of the integral

is too complex. The remainder of this chapter considers two possible routes to make

predictions from a chain of emulators despite this restriction.

3.2 Approximating the linked emulator output by Monte

Carlo integration

Given the lack of an analytical solution to the integral of (3.2), a natural alternative is

to approximate it using a numerical approach. We choose to use a simple form of Monte

Carlo integration. For a given prediction point (x̃1,n+1, x̃2,n+1)
T , we draw a sample of

fixed size from the predictive distribution for y1 given x̃1,n+1. We then draw a single

value from the predictive distribution for y2 given x̃2,n+1 and y1 for each realisation of

y1. The generated values of y2 then form an unbiased sample from the true posterior

predictive distribution for y2, which can be used to make inferences about the true

value of y2 at the prediction point.

In practise, the prior variances of the two Gaussian processes, σ2z,1 and σ2z,2, will not

usually be known. A Bayesian approach is to condition on these quantities as well,

leading to a different form for the integrand in (3.1). Following equations (2.4) and

(2.7), the density that we wish to integrate with respect to y1 is thus a product of

two conditional t densities instead of normal densities. In the case of Monte Carlo

integration, this does not change the approach described above. This approach still

requires estimation of the correlation parameters of the GP emulators to the models in

the chain, but could if desired be made fully Bayesian using MCMC.

As an example of the Monte Carlo strategy, we consider a chain of two models which

are composed of known deterministic functions:

y1(x1,1, x1,2) = {sin(2πx31,1)}3 ,−0.8 ≤ x1,1 ≤ 0.8 ;

33

y2(x2,1, y1) = sin(πy1) + exp(y1) . (3.6)

Since this system is defined entirely by its first input, we can compare the true value

of the target output, y2, at a given value of x1,1 to the predictions made by the emulator

to test that the emulator’s behaviour is reasonable.

Figure 3.2: Prediction for y2 against x1,1 using the simulation method from the chain
of emulators in the two-model example.

For our emulation, we use a Gaussian correlation function in both models, with a

constant regression term and a nugget δ = 10−7. 20 design points are chosen, which

are equally spaced in the critical input x1,1 and randomly spaced in the trivial inputs

x1,2 and x2,1. This would not be a feasible design for an unknown model, but is useful

as an illustrative exercise to test that our predictions are reasonable. The outcome of

interest is prediction from the posterior predictive distribution for y2 across the range

−0.8 ≤ x1,1 ≤ 0.8; the same ranges are used for x1,2 and x2,1, which assuming a

reasonable correlation structure should have no impact on the predictions made.

The results of this are shown in figure 3.2. The true function is shown in black, the

design points in red, the mean of the emulator at each x1,1 in blue, and the upper and

lower bounds of an empirical 95% prediction interval in green. These predictions tally

well with what we would expect. The emulator mean tracks the true function well, and

the uncertainty is at its largest away from the design points, pinching to virtually zero

where the true output is known.

34

3.3 The mean and variance of the linked emulator

Although it is not possible to solve (3.1) analytically, which would produce a full

distribution for the linked emulator, it is possible to obtain theoretical expressions for

its mean and variance under certain conditions. This approach follows from the early

work of Girard et al. (2002) and Candela et al. (2003) on Gaussian process emulation

with uncertain inputs, and was developed in full for a chain of two models by Kyzyurova

et al. (2018). Assume that all of the parameters of each emulator are obtained by a plug-

in method, including the regression coefficients β1 and β2. The posterior predictive

distributions on y1 and y2 given their GP emulators are found from equation (2.11);

they are normal distributions, with means and variances

µ1 = fTn+1,1β1 + cTn+1,1C
−1
1 (yn,1 − F1β1) ;

σ21 = σ2z,1(1− cTn+1,1C1cn+1,1) ;

µ2 = fTn+1,2β2 + cTn+1,2C
−1
2 (yn,2 − F2β2) ;

σ22 = σ2z,2(1− cTn+1,2C2cn+1,2) .

Assume a squared exponential correlation functions on the GP emulators for y1 and

y2, and assume the regression term of the GP emulator is constant. Under these

conditions, the following theorem holds for the output of a linked emulator for the

model 2 output y2:

Theorem 3.1. Let

E∗(y2) = E(y2|x̃2, x̃1,Yn,2,Yn,1)

and let

V ar∗(y2) = V ar(y2|x̃2, x̃1,Yn,2,Yn,1)

be the mean and variance of the posterior predictive distribution for y2 under the linked

emulator. Let a(i) be entry i of

a = C−12 (yn,2 − β2,0) .

Then, the posterior predictive distribution for y2 under the linked emulator has expec-

tation

E∗(y2) = β2,0 +
k∑
i=1

a(i)
q2∏
j=1

exp
{
− bj(x(j)

2,i − x
(j)
2,n+1)

2
}
Ii (3.7)

35

and variance

V ar∗(y2) =σ2z,2 −
[k∑
i=1

a(i)
q2∏
j=1

exp{−bj(x(j)
2,i − x

(j)
2,n+1)

2}Ii
]2

+
k∑
i=1

k∑
j=1

(a(i)a(j) − σ2z,2C
(i,j)
2)

q2∏
d=1

exp{−bd[(x2,i,d − x
(d)
2,n+1)

2 + (x
(d)
2,j − x

(d)
2,n+1)

2]}Ii,j ,

(3.8)

where

Ii =
1√

1 + 2σ21by1
exp

{
−

(µ1 − x
(q2+1)
2,i)2

1
by1

+ 2σ21

}
and

Ii,j =
1√

1 + 4σ21by1
exp

{
−

(µ1 −
x
(q2+1)
2,i +x

(q2+1)
2,j

2)2

1/2by1 + 2σ21
−
by1(x

(q2+1)
2,i − x

(q2+1)
2,j)2

2

}
.

Proof. Using the law of total expectation, the expectation of Y2 can be expressed as

E∗(y2) = E{E(y2|x̃2,Yn,2,Yn,1, y1)}

= Ey1(µ2)

= Ey1[β2,0 + cTn+1,2C
−1
2 (yn,2 − β2,0)]

= β2,0 +

∫
f(y1)c

T
n+1,2C

−1
2 (yn,2 − β2,0)dy1

= β2,0 +

∫
1√

2πσ21
exp

{
− (y1 − µ1)2

2σ21

}
cTn+1,2C

−1
2 (yn,2 − β2,0)dy1 (3.9)

where cn+1,2 is defined in (3.4). Let

a = C−12 (yn,2 − β2,0)

and let a(i) and c
(i)
2 (i = 1, ..., k, where k is the number of design points to model 2) be

the ith entry of a and cn+1,2 respectively. We may then write

cTn+1,2C
−1
2 (yn,2 − β2,0) = cTn+1,2 a

=

k∑
i=1

c
(i)
2 a(i) ,

36

which is equivalent to

cTn+1,2C
−1
2 (yn,2 − β2,0) =

k∑
i=1

a(i) exp{−by1(x(q2+1)
2,i − y1)2}

q2∏
j=1

exp{−bj(x(j)
2,i − x

(j)
2,n+1)

2} .

This gives

E∗(y2) =β2,0 +

∫
1√

2πσ21
exp

{
− (y1 − µ1)2

2σ21

}
k∑
i=1

a(i) exp{−by1(x(q2+1)
2,i − y1)2}

q2∏
j=1

exp{−bj(x(j)
2,i − x

(j)
2,n+1)

2}dy1 ,

which may be written as

E∗(y2) = β2,0 +
k∑
i=1

a(i)
q2∏
j=1

exp{−bj(x(j)
2,i − x

(j)
2,n+1)

2}Ii , (3.10)

where

Ii =
1√

2πσ21

∫
exp

{
− (y21 − 2y1µ1 + µ21)

2σ21
− by1([x(q2+1)

2,i]2 − 2x
(q2+1)
2,i y1 + y21)

}
dy1 .

This is equivalent to

Ii =
1√

2πσ21

∫
exp

{
−

(1 + 2σ21by1)y
2
1 − 2y1(µ1 + 2σ21by1x

(q2+1)
2,i)

2σ21

−
µ21 + 2σ21by1[x

(q2+1)
2,i]2

2σ21

}
dy1 .

Completing the square and moving constants outside the integral gives

Ii =
1√

1 + 2σ21by1
exp

{
−
µ21 + 2σ21by1[x

(q2+1)
2,i]2 − (µ1+2σ2

1by1x
(q2+1)
2,i)2

1+2σ2
1by1

2σ21

}
ι ,

where

ι =

∫
1√

2πσ21/(1 + 2σ21by1)
exp

{
−

(1 + 2σ21by1)

[
y1 −

µ1+2σ2
1by1x

(q2+1)
2,i

1+2σ2
1by1

]2
2σ21

}
dy1 .

37

The integrand in this expression is the density of a normal distribution with mean
µ1+2σ2

1by1x
(q2+1)
2,i

1+2σ2
1by1

and variance
σ2
1

1+2σ2
1by1

. This integrates to 1, so ι = 1 and therefore

Ii =
1√

1 + 2σ21by1
exp

{
−
µ21 + 2σ21by1[x

(q2+1)
2,i]2 − (µ1+2σ2

1by1x
(q2+1)
2,i)2

1+2σ2
1by1

2σ21

}

=
1√

1 + 2σ21by1
exp

{
−

2σ21by1[x
(q2+1)
2,i]2 + 2µ21σ

2
1by1 − 4µ1σ

2
1by1x

(q2+1)
2,i

2σ21(1 + 2σ21by1)

}

=
1√

1 + 2σ21by1
exp

{
−

[x
(q2+1)
2,i]2 + µ21 − 2µ1x

(q2+1)
2,i

1
by1

+ 2σ21

}

=
1√

1 + 2σ21by1
exp

{
−

(µ1 − x
(q2+1)
2,i)2

1
by1

+ 2σ21

}
, (3.11)

which leads to the expression for E∗(y2) given in Theorem 3.1.

The variance of Y2 can be expressed in terms of Y1 using the law of total variance as

V ar∗(y2) = V ar(E[Y2|x̃2,x1,Yn,2,Yn,1, y1]) + E(V ar[Y2|x̃2, x̃1,Yn,2,Yn,1, y1])

= V ary1(µ2) + Ey1(σ
2
2) . (3.12)

The second term of (3.12) is

Ey1(σ
2
2) = Ey1[σ

2
z,2(1− cTn+1,2C2cn+1,2)]

= σ2z,2 − σ2z,2
∫
f(y1)c

T
n+1,2C2cn+1,2dy1

= σ2z,2 − σ2z,2
∫

1√
2πσ21

exp

{
− (y1 − µ1)2

2σ21

}
cTn+1,2C2cn+1,2dy1 (3.13)

We have

cTn+1,2C2cn+1,2 =

k∑
i=1

(c
(i)
2

k∑
j=1

C
(i,j)
2 c

(j)
2)

=

k∑
i=1

k∑
j=1

c
(i)
2 C

(i,j)
2 c

(j)
2 ,

where C
(i,j)
2 is the (i, j)th entry of C2. From the definition of cn+1,2 in equation (3.4)

and the form of the Gaussian correlation function in equation (2.2), we can express c
(i)
2

and c
(j)
2 as the products of several exponential functions:

38

c
(i)
2 = exp{−by1(x2,i,p+1 − y1)2}

q2∏
d=1

exp{−bd(x
(d)
2,i − x

(d)
2,n+1)

2} ,

with an identical expression for c
(j)
2 except that every subscripted i is replaced with a

j. Substituting this into (3.13) and grouping exponential terms gives

Ey1(σ
2
2) = σ2z,2 − σ2z,2

k∑
i=1

k∑
j=1

C
(i,j)
2

q2∏
d=1

exp{−bd[(x
(d)
2,i − x

(d)
2,n+1)

2 + (x
(d)
2,j − x

(d)
2,n+1)

2]}Ii,j ,

where

Ii,j =
1√

2πσ21

∫
exp

{
− (y1 − µ1)2

2σ21

}
exp{−by1(x(q2+1)

2,i − y1)2}

exp{−by1(x(q2+1)
2,j − y1)2}dy1 .

This can be rewritten as

Ii,j =
1√

2πσ21

∫
exp

{
−

(1 + 4σ21by1)y
2
1 − 2y1(µ1 + 2σ21by1x

(q2+1)
2,i + 2σ21by1x

(q2+1)
2,j)

2σ21

+
µ21 + 2σ21by1[x

(q2+1)
2,i]2 + 2σ21by1[x

(q2+1)
2,j]2

2σ21

}
dy1 .

Completing the square and moving terms which do not depend on y1 outside the integral

leads to

Ii,j =
1√

1 + 4σ21by1
exp

{
−
µ21 + 2σ21by1([x

(q2+1)
2,i]2 + [x

(q2+1)
2,j]2)

2σ21

}

exp

{
−

(µ1 + 2σ21by1x
(q2+1)
2,i + 2σ21by1x

(q2+1)
2,j)2

2σ21(1 + 4σ21by1)

}
ιi,j ,

where

ιi,j =

∫
1√

2πσ21/(1 + 4σ21by1)
exp

{
−

(1 + 4σ21by1)

[
y1 −

µ1+2σ2
1by1x

(q2+1)
2,i +2σ2

1by1x
(q2+1)
2,j

1+4σ2
1by1

]2
2σ21

}
dy1 .

The integrand is the density of a normal distribution with mean
µ1+2σ2

1by1x
(q2+1)
2,j +2σ2

1by1x
(q2+1)
2,j

1+4σ2
1by1

and variance
σ2
1

1+4σ2
1by1

, which integrates to 1 and therefore gives ιi,j = 1. The expression

for Ii,j therefore becomes

39

Ii,j =
1√

1 + 4σ21by1
exp

{
−
µ21 + 2σ21by1([x

(q2+1)
2,i]2 + [x

(q2+1)
2,j]2)

2σ21

−
(µ1 + 2σ21by1x

(q2+1)
2,i + 2σ21by1x

(q2+1)
2,j)2

2σ21(1 + 4σ21by1)

}
,

which can be rewritten and simplified to give

Ii,j =
1√

1 + 4σ21by1
exp

{
−

(µ1 −
x
(q2+1)
2,i +x

(q2+1)
2,j

2)2

1/(2by1) + 2σ21
−
by1(x

(q2+1)
2,i − x

(q2+1)
2,j)2

2

}
. (3.14)

Returning to equation (3.12), we must also find an expression for the first term. This

can be rewritten as

V ary1(µ2) = Ey1(µ
2
2)− [Ey1(µ2)]

2

and since we have already determined Ey1(µ2) = E∗(y2) earlier in the theorem, only

Ey1(µ
2
2) remains to be found. This can be written as

Ey1(µ
2
2) = Ey1{[β2,0 + cTn+1,2C

−1
2 (yn,2 − β2,0)]2}

= Ey1[β
2
2,0 + 2β2,0c

T
n+1,2C

−1
2 (yn,2 − β2,0) + {cTn+1,2C

−1
2 (yn,2 − β2,0)}2]

= β22,0 + 2β2,0Ey1[c
T
n+1,2C

−1
2 (yn,2 − β2,0)] + Ey1[{cTn+1,2C

−1
2 (yn,2 − β2,0)}2] .

(3.15)

An expression for Ey1[c
T
n+1,2C

−1
2 (yn,2 − β2,0)] was derived in (3.9) and (3.10):

Ey1[c
T
n+1,2C

−1
2 (yn,2 − β2,0)] =

k∑
i=1

a(i)
p∏
j=1

exp{−bj(x(j)
2,i − x

(j)
2,n+1)

2}Ii ,

where Ii is given in (3.11). To deal with the final term of (3.15), we first note that

{cTn+1,2C
−1
2 (yn,2 − β2,0)}2 = (cTn+1,2 a)2

=

k∑
i=1

k∑
j=1

c
(i)
2 c

(j)
2 a(i)a(j) ,

so

Ey1[{cTn+1,2a)}2] =

∫
f(y1)

k∑
i=1

k∑
j=1

c
(i)
2 c

(j)
2 a(i)a(j) dy1 .

Expressing c
(i)
2 and c

(j)
2 as the products of several exponential functions as above, and

collecting exponential and product terms, this is equal to

40

Ey1[{cTn+1,2a)}2] =

k∑
i=1

k∑
j=1

a(i)a(j)
q2∏
d=1

exp{−bd[(x
(d)
2,i − x

(d)
2,n+1)

2 + (x
(d)
2,j − x

(d)
2,n+1)

2]Ii,j ,

where Ii,j is defined in (3.14). Combining the terms of (3.12) calculated above, and

substituting in the expression for E∗(y2) found in (3.10), gives the final result

V ar∗(y2) =σ2z,2 −
[k∑
i=1

a(i)
q2∏
j=1

exp{−bj(x(j)
2,i − x

(j)
2,n+1)

2}Ii
]2

+

k∑
i=1

k∑
j=1

(a(i)a(j) − σ2z,2C
(i,j)
2)

q2∏
d=1

exp{−bd[(x
(d)
2,i − x

(d)
2,n+1)

2 + (x
(d)
2,j − x

(d)
2,n+1)

2]}Ii,j

For an example of this approach, we consider a chain of two models each taking a

single input. This example first appeared in Kyzyurova et al. (2018). The models are

defined by the known deterministic functions

y1 = 3x1,1 + cos(5x1,1) ,−0.85 ≤ x1,1 ≤ 1 ,

and

y2 = cos(
7y1
5

)− y1 .

As in the original paper, six equally-spaced design points on x1,1 are used to build

the first emulator, with the output values of y1 then taken as the design points for the

second emulator. Prediction across the space of x1,1 was then attempted using both the

Monte Carlo method with a sample size of 10,000, and the theoretical approximation.

The plot obtained from the theoretical approximation is shown in Figure 3.3; this is

virtually identical to those obtained in the previous research. It is also useful to compare

this plot to that obtained using the Monte Carlo method, which can be seen in Figure

3.4. This produces a plot which is almost indistinguishable from the theoretical method,

with one exception: while the empirical variance bands are continuous and noiseless

in Figure 3.3, the corresponding Monte Carlo result in Figure 3.4 has variance bands

which are not completely smooth but instead have small but visible additional peaks

and troughs, in particular when x1,1 is between -1 and 0.5. This suggests that even a

sample size of 10,000 is not sufficient to ensure that there is no noticeable Monte Carlo

error in the results obtained.

41

Figure 3.3: Prediction from the chain of emulators for y2 against x1,1 using the theo-
retical approximation.

3.4 Extending the simulation-based linked emulator to

longer chains

To extend the simulation framework to chains of more than two models, we can apply

the process described in Section 3.2 iteratively. For example, the posterior predictive

distribution for the third model in the chain can be found from

f(y3|x̃3, x̃2, x̃1) =

∫ ∫
f(y3|x̃3, y2)f(y2|x̃2, y1)f(y1|x̃1)dy2dy1 . (3.16)

This result can be further generalised to chains of any length. The integrals can

be done using a Monte Carlo method as in the two-model case with few changes: one

implementational difference concerns the way in which variables must be stored within

our code, since we now have multiple emulator outputs over which we must integrate.

We can test the Monte Carlo method on a chain of three closed-form deterministic

functions which depend on a single input:

y1(x1,1) = x1,1 + sin(3πx1,1) , 0 ≤ x1,1 ≤ 1 ;

y2(y1) = y1 − log(1 + y1) ;

y3(y2) = y2 + exp(−2y2) . (3.17)

42

Figure 3.4: Prediction from the chain of emulators for y2 against x1,1 using the Monte
Carlo method.

A Gaussian correlation and constant regression function are used in the three em-

ulators, with nuggets of δ = 10−7 and ten design points spaced equally on x1,1. The

predictions from the chain for y3 given x1,1 are shown in Figure 3.5. Note that in this

plot, the legend is omitted for clarity; the black, blue and green lines and the red circles

have the same meaning as in Figure 3.4. The results appear reasonable, with largely

accurate predictions across the input space, and uncertainty typically higher away from

design points.

3.5 Extending the theoretical linked emulator to longer

chains

Consider now a chain of three models in which Y3 is a function of Y2 and some x̃3,

and Y2 is a function of Y1 and some x̃2. For ease of notation, let

E∗(y3) = E(y3|x̃3, x̃2, x̃1,Yn,3,Yn,2,Yn,1)

be the posterior expectation of y3 given the directly controllable inputs, observed data

and the linked emulator. Applying the law of total expectation gives

E∗(y3) = E[E(y3|x̃3,Yn,3,Yn,2,Yn,1, y2)]

= Ey2(µ3)

=

∫
f(y2)µ3dy2 .

(3.18)

This cannot be solved directly, since the full distribution f(y2) cannot be obtained in

closed form. A seemingly natural alternative is to apply the law of total expectation

43

Figure 3.5: Prediction from the chain of emulators for y3 against x1,1 in the three-model
example - simulation method.

again, giving

E∗(y3) = Ey2(µ3)

= Ey1{Ey2[µ3|y1]}

= Ey1{Ey2[µ3|y1]}

= Ey1{Ey2[(β3,0 + cTn+1,3C
−1
3 (yn,3 − β3,0)]}

where the final equality holds since, if y1 is conditioned upon, y2 follows a normal

distribution with known mean and variance; this in turn implies that y3 is the output

of a GP emulator in which one input, y2, is known only up to a normal distribution.

The inner expectation is therefore identical to that in (3.9) with the model numbers

within the chain increased by one, so its form is known from (3.7). Substituting this

result gives

E∗(y3) = Ey1

[
1√

1 + 2σ22by2
exp

{
−

(µ2 − x
(q3+1)
3,i)2

1/by2 + 2σ22

}]

=

∫
f(y1)

1√
1 + 2σ22by2

exp

{
−

(µ2 − x
(q3+1)
3,i)2

1/by2 + 2σ22

}
dy1 . (3.19)

This is still, however, analytically intractable - both the mean µ2 and the variance σ22
of the model 2 output y2 depend on y1 in complex ways. Their combined presence in

three separate locations in the integrand of (3.19) means that the approach taken in

the two-model case to reduce the integral to one which can be solved are not applicable

44

here. Nor does this result naturally “scale up” to longer chains of models - even if

(3.19) could be solved analytically, this would not mean that a four-model chain could

be handled in the same way, since another application of the law of total expectation

would be required. The same problems apply to calculating the variance of the linked

emulator output, V ar∗(y3), given the directly controllable inputs and the simulator

runs.

A solution to this is provided by using an approximation to the distribution of y2.

When the theoretical results for the mean and variance of a GP emulator with an input

known only up to a normal distribution were introduced in Girard et al. (2002), they

were intended for use in time series analysis for multiple-step ahead forecasting - the

same emulator would be used for each step in the chain. The problem of approximating

the uncertain input at time steps later than the second was the reason for the use of

the normal approximation on the linked emulator output. By Lemma 3.2, we can use

this approach for predictions from chains of three or more models.

Lemma 3.2. Let yr be the output of a chain of r models, where the final model is

defined by the equation

yr = ηr(x̃r, yr−1) .

Let the distribution f(yr−1) be approximated by a normal distribution with mean

µr−1 = βr−1,0 +

k∑
i=1

a(i)
qr−1∏
j=1

exp{−bj(x(j)
r−1,i − x

(j)
r−1,n+1)

2}Ir−1i

and variance

σ2r−1 =σ2z,r−1 −
[k∑
i=1

a(i)
qr−1∏
j=1

exp{−bj(x(j)
r−1,i − x

(j)
r−1,n+1)

2}Ii
]2

+
k∑
i=1

k∑
j=1

(a(i)a(j) − σ2z,r−1C
(i,j)
2)

qr−1∏
d=1

exp{−bd[(x
(d)
r−1,i − x

(d)
r−1,n+1)

2 + (x
(d)
r−1,j − x

(d)
r−1,n+1)

2]}Ir−1i,j ,

where

Ir−1i =
1√

1 + 2σ2r−2byr−1

exp

{
−

(µr−2 − x
(qr−1+1)
r−1,i)2

1/byr−2 + 2σ2r−2

}
and

45

Ir−1i,j =
1√

1 + 4σ2r−2byr−2

exp

{
−

(µr−2 −
x
(qr−1+1)

r−1,i +x
(qr−1+1)

r−1,j

2)2

1/(2byr−2) + 2σ2r−2

−
byr−2(x

(qr−1+1)
r−1,i − x

(qr−1+1)
r−1,j)2

2

}
.

Then, yr has expectation

E∗(yr) = βr,0 +
k∑
i=1

a(i)
q2∏
j=1

exp{−bj(x(j)
r,i − x

(j)
r,n+1)

2}Iri

and variance

V ar∗(yr) =σ2z,r −
[k∑
i=1

a(i)
qr∏
j=1

exp{−bj(x(j)
r,i − x

(j)
r,n+1)

2}Ii
]2

+
k∑
i=1

k∑
j=1

(a(i)a(j) − σ2z,rC
(i,j)
2)

qr∏
d=1

exp{−bd[(x
(d)
r,i − x

(d)
r,n+1)

2 + (x
(d)
r,j − x

(d)
r,n+1)

2]}Iri,j ,

where

Iri =
1√

1 + 2σ2r−1byr−1

exp

{
−

(µr−1 − x
(qr+1)
r,i)2

1/byr−1 + 2σ2r−1

}
and

Iri,j =
1√

1 + 4σ2r−2byr−1

exp

{
−

(µr−1 −
x
(qr+1)
r,i +x

(qr+1)
r,j

2)2

1/(2byr−1) + 2σ2r−1
−
byr−1(x

(qr+1)
r,i − x

(qr+1)
r,j)2

2

}
.

Proof. Follows directly from the application of Theorem 3.1.

It is informative to examine how this approach compares to the simulation method

for the three-model example in Section 3.4. Using the same experimental design as

before, we evaluate the chain as described above using a Normal approximation to y2

given its theoretical mean and variance. The final output y3 is plotted against x1,1 in

Figure 3.6. Again the legend is omitted for clarity; the black and blue lines and red

circles have the same meaning as Figure 3.4. Here, however, the green lines for the error

bounds are the mean plus or minus two standard deviations instead of an empirical

95% prediction interval.

46

Figure 3.6: Prediction from the chain of emulators for y3 against x1,1 in the three-model
example - theoretical method.

The results are similar to those seen in Figure 3.5. In particular, the mean of the

linked emulator is extremely similar in both cases. There are however some noteworthy

differences in the behaviour of the green lines. In general, we would expect that the

prediction interval in the simulation method would be wider than the ± 2 s.d. bands in

the theoretical method, since it takes account of the uncertainty in the process variances

for each of the GP emulators in the chain by integrating them out; the theoretical

method, by contrast, uses plug-in estimates for these parameters, which could have

the effect of underestimating the true prediction variance. While this does occur in

places, there are several locations in the prediction space where the bounds are in fact

wider for the theoretical approach. This could be a result of the simulation method

using a relatively small sample size of 1000 repetitions per prediction point, and the

samples involved happening by chance to contain fewer extreme predictions than would

be expected in general.

3.6 Conclusions

In this chapter, we have presented two methods to make predictions from a chain

of computational models where emulation is required on the individual models in the

chain. Neither approach is entirely new, but both are developed further here than in

previous published work: earlier work on the simulation method has never been for-

malised to the extent presented in Section 3.2, while previous research on the theoretical

method has been focused on the narrower problems of two-model chains or time series

forecasting.

47

The methods introduced here form the basis of the remainder of this thesis. Chapters

4 and 5, dealing with experimental design and sensitivity analysis respectively, are both

built around the requirements and capabilities of the theoretical and simulation-based

linked emulators, which differ greatly from those of a single emulator in isolation. It

is these methods which are implemented in code in Chapter 6, and which are demon-

strated on a real problem in Chapter 7 and in a simulation study in Chapter 8. The

alternative of a composite emulator for the entire chain is also considered in later chap-

ters, but for reasons which will become clear when direct comparisons are available, we

do not consider this to be a viable alternative in practice.

The two forms of linked emulator have very different properties. The theoretical

method offers exact results for the expectation and variance of the posterior predictive

distribution for the final model output under the linked emulator in a two-model chain,

and near-exact results for longer chains - the normal approximation to the outputs of

the intermediate models in Lemma 3.2 is the only reason why the results are not exact.

It has the added benefit of being extremely fast to execute; this is discussed further in

Chapter 6. Its main weakness is the highly restrictive set of assumptions under which

it is valid. Only a Gaussian correlation function may be used, and plug-in estimation

is required for a wide range of parameters of the individual emulators.

The simulation method offers more flexibility. It can be applied to emulators with any

correlation function; different models in the chain could even use different correlation

functions if desired. The variation arising from the process variance may be taken into

account using a conjugate prior. The correlation parameters could in theory be handled

using MCMC sampling, although this has not been implemented in our research. This

form of linked emulator is however significantly more computationally intensive than

the theoretical approach, since it requires a large number of runs from the chain of

emulators. For a long chain with many inputs, very large Monte Carlo sample sizes

may be required. The simulation method is also open to Monte Carlo error if the

sample size chosen is too small, and it is not always possible to know in advance what

sample size is appropriate for a given chain.

The differences between the two methods will be considered further in Chapter 8,

where we shall demonstrate that even for short chains of relatively simple functions,

the behaviour exhibited by the methods can vary greatly.

48

Chapter 4

Experimental design for chains of

multiple models

4.1 Review of existing methods for experimental design

Experimental design for computer experiments concerns the choice of the design

points at which the simulator is run to produce the training data. Choosing the design

points effectively is especially important if the simulator is expensive or time-consuming

to run, as it is then both impractical to run a large experiment and difficult to add

additional design points if the result obtained is unsatisfactory. Intuitively, we would

like the design points to cover the range of the input variables as well as possible, as

for emulation our ability to predict at an unknown point is better the closer the point

is to a design point. This approach is called space-filling design, and is widely used in

previous literature. There are several techniques to achieve this goal.

The Latin hypercube design (LHD) was proposed by McKay et al. (1979). Given n

design points, the design space χ is divided into n equally-sized intervals for each input

variable , and the points are chosen such that exactly one point lies within each of these

intervals. Such designs are very easy to create; Chapter 3 of Fang et al. (2006), for

instance, described a simple algorithm to do so. Latin hypercube designs are popular

for their good one-dimensional projection properties: Sacks et al. (1989) interprets the

LHD as an extension of stratified sampling which ensures that the entire range of each

input variable is covered by the design. However, this does not by itself guarantee that

the points will cover the design space well; it is easy to generate an LHD which leaves

areas of the design space poorly covered by the design points.

Another popular approach is to use an optimality criterion to generate a space-filling

design. The two most common criteria were both proposed in Johnson et al. (1990)

. Let ξ be any possible experimental design in χ, and let d(xi,xj) be the distance

between two points xi, xj . A maximin distance design maximises the criterion

φMm(ξ) = mini 6=j d(xi,xj) , xi,xj ∈ ξ .

49

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

Figure 4.1: A maximin Latin hypercube design with 20 design points in two dimensions.

This is equivalent to maximising the minimum distance between any pair of design

points, with the effect of spreading the design points as far across the design space as

possible. This ensures that the design points do not cluster together.

A minimax distance design minimises the criterion

φmM (ξ) = maxx′mini=1,...,n d(x′,xi) , xi ∈ ξ, x′ ∈ χ .

In contrast to the maximin criterion, this minimises the maximum of the distance

between every point in the design space and the nearest design point. This would

appear useful for emulation, as an emulator can make better predictions at points

close to a design point, so the minimax approach means that we can make reasonable

predictions everywhere in the design space. However, minimax designs can be very

computationally expensive to generate: instead of a single optimisation over a discrete

region, we now require two optimisations, one of which is over a continuous space. For

this reason they are less commonly used in practise.

An alternative is the coverage criterion, which is described in more detail by Nychka

et al. (1997). A coverage design minimises the criterion

Ck,l(ξ) =
{ ∑

x′∈S
dk(x

′, ξ)
}(1/l)

,

where

dk(x
′, ξ) =

{ n∑
i=1

d(x′,xi)
k
}(1/k)

,

50

k and l are tunable parameters and S is a set of candidate points in χ. The coverage

criterion is much simpler to optimise than the minimax criterion, and can be made to

approximate it: as k → −∞ and l→∞, Ck,l(ξ)→ φmM (ξ).

It is possible to combine the use of an optimality criterion and a Latin hypercube

design: the class of designs which are considered is restricted to the set of possible LHDs,

and the chosen criterion is considered only over this reduced set. The most frequently

used example, primarily for reasons of ease of generation in practise, is the maximin

LHD. Figure 4.1 shows an example of a 20-point maximin LHD in two dimensions.

The ease with which these forms of optimal design can be computed in practice varies

widely between the specific designs. In general, coverage designs and Latin hypercube

designs can be generated with relatively little computational effort and scale with in-

creasing dimensionality. Maximin and especially minimax designs are significantly more

computationally intensive. Nonetheless, there are pre-existing R packages which can

generate all of these designs: coverage designs are supported by the ‘fields’ package,

presented by Nychka et al. (2016); maximin LHDs by the ‘SLHD’ package, presented

by Ba (2015); and maximin and minimax designs by the package ‘minimaxdesign’,

presented by Mak and Joseph (2018).

The designs discussed above require that the number of design points is known in

advance. It is possible that we would instead prefer to increment the number of design

points after observing the results of an experiment for some initial set of points.

This is called sequential or adaptive design, and was recommended for use in computer

experiments in the pioneering paper of Sacks et al. (1989). The major advantage of

such an approach is that the locations of the later design points can be chosen based

on what is already known about both the true function and our initial emulator for

it. For a large number of design points in many dimensions, sequential design may

also be less computationally intensive than optimal single-stage design, since single-

stage methods can suffer from the “curse of dimensionality” and become slow for large

problems. Sequential design procedures may still make use of the space-filling designs

described above, as a space-filling approach is a natural way to choose the initial set of

design points.

The early work of Sacks et al. (1989) suggests three potential criteria by which the

optimal location for a new design point may be determined, which remain the basis

of many modern sequential design algorithms. Two are based on the Mean Square

Prediction Error (MSPE). For a Gaussian Process emulator this is identical to the

predictive variance, σ∗2(x) (defined in Section 2.2), at an untested input point. The

Maximum Mean Square Prediction Error (MMSPE) is defined as

max
x∈X

σ∗2(x) ,

51

the maximum predictive variance of the GP emulator. The Integrated Mean Square

Prediction Error (IMSPE) criterion is defined as

∫
X
σ∗2(x)dx ,

the integral of the predictive variance across the design space χ. Both of these measures

would be minimised by a good choice of design point. Also considered is a criterion

based on maximising the expected entropy change as a result of a new design point,

an idea which in the field of traditional statistical experimentation dates to Lindley

(1956).

The MMSPE forms the basis of a method derived in MacKay (1992), and nowadays

commonly known as Active Learning - MacKay (ALM). For an interpolating model to

a true simulator, of which a GP emulator is an example, MacKay (1992) shows that

- up to a quadratic approximation - the expected total gain in information about the

simulator is maximised by placing a new design point at the location in the design space

where the MSPE is highest. This supports the intuitive argument that determining the

true value at the location where our knowledge about it is lowest is a good design

principle. However, more recent authors including Beck and Guillas (2016) have noted

that ALM’s tendency to place many points on the boundaries of the experimental design

region can be a weakness of the method, especially in high-dimensional problems.

An alternative algorithm proposed by Cohn et al. (1996), known as Active Learning

- Cohn (ALC), places the new design point at location in the design space which

minimises the expected IMSPE, thereby achieving the greatest expected reduction in

the variance across the design space. For stationary Gaussian process emulators, Seo

et al. (2000) compares the ALM and ALC algorithms, and concludes that ALC is

generally preferable in terms of the fit of the emulator across the design space. The

main drawback of ALC, as highlighted by Billonis and Zabaras (2012) and Jun and

Horace (2009) amongst others, is its high computational cost.

Another approach to sequential design is based on the mutual information of two

random variables, which was first used for experimental design by Caselton and Zidek

(1984). The aim is to choose the design points such that the mutual information is

maximised. For use in computer experiments, Krause et al. (2008) introduces an algo-

rithm to maximise the mutual information sequentially; Beck and Guillas (2016) adapt

this to deal with the case where a nugget is used in the Gaussian process, in the pro-

cess introducing a new criterion named Mutual Information for Computer Experiments

(MICE).

52

4.2 Single-stage design for chains of emulators

The design phase for multiple computer models faces additional challenges to that for

a single model. When only one model is used, the space for each of the model inputs is

known, and the value of the inputs at the design points can be directly chosen. Neither

of these properties is true for variables such as y1 and y2, which - while acting as inputs

to later models in the chain - depend on the values of the earlier inputs x1,1, x1,2, x2,1

and so on. This leads to difficulties in adapting existing design methods to our new

framework.

A natural first step in design for a chain of computer experiments is to use a space-

filling design on the inputs to each model which we can choose directly, and use the

outputs of the simulator runs for the earlier models as the design points for the inputs

y1, y2, ... which come from earlier models in a chain. Since the space of y1 is unknown,

it appears intuitively sensible to use the output of y1 at each of our design points for

model 1 as our design points for y1 in model 2. A first issue encountered with this

approach is that, if the second simulator takes more than one input, the values of

the other inputs at the design points must be chosen to avoid clashing with the pre-

determined values of y1. This can be done by generating a space-filling design on the

new inputs, and permuting the values of y1 to minimise the rank correlation with the

other inputs, which ensures that the effect of y1 is not confounded with that of other

variables. This technique bears some resemblance to the work of Iman and Conover

(1982), which considers inducing desired correlations onto the inputs of a computer

model using rank correlation.

There is however a more significant issue with the principle of using the simulator

runs from the first model as the design points for y1 and so on. Space-filling design on

a single model is largely used because it ensures that the input space is relatively well

covered by the design points. When working with multiple models, however, space-

filling on the inputs which we can choose directly does not guarantee a good spread of

design points on the inputs we cannot directly control. In the simple two-model example

in Section 3.2, the design points were chosen to be space-filling on the important input

x1,1 and random on the trivial input x1,2, which ensured both that the GP emulator

for the first model was able to identify that x1,1 was a significant input and that we

were able to make reasonable predictions across the space of x1,1.

This does not, however, translate in general to a space-filling design for the second

model. Consider a chain of three models defined by the functions

y1(x1,1) = x1,1 + {sin(2πx31,1)}3 ,−0.5 ≤ x1,1 ≤ 0.5 ;

y2(y1) = {sin(2πy31)}3 ;

53

and

y3(y2) = sin(πy2) + exp(y2) .

We again use a Gaussian correlation function, constant regression term and nuggets

δ = 10−7, and use the output of y1 and y2 as the design points for these variables when

building emulators for the models to which they are inputs. 20 design points are chosen

for x1,1. These, and the corresponding values of y1 and y2 which go on to form the

designs for the second and third models, are given in Table 4.1 to four decimal places.

x1,1 y1 y2
-0.5 -0.8536 0.3328

-0.4474 -0.5991 -0.9296
-0.3947 -0.4483 -0.1542
-0.3421 -0.3575 -0.0227
-0.2895 -0.2930 -0.0039
-0.2368 -0.2374 -0.0006
-0.1842 -0.1843 0
-0.1316 -0.1316 0
-0.0789 -0.0789 0
-0.0263 -0.0263 0
0.0263 0.0263 0
0.0789 0.0789 0
0.1316 0.1316 0
0.1842 0.1843 0
0.2368 0.2374 0.0006
0.2895 0.2930 0.0039
0.3421 0.3575 0.0227
0.3947 0.4483 0.1542
0.4474 0.5991 0.9296

0.5 0.8536 -0.3328

Table 4.1: Initial experimental design for the three-model example.

Unlike in the examples in the previous chapter, this design is not satisfactory for this

chain of models. As seen in Figure 4.2, while the predictions are good for much of the

design space (with extremely low uncertainty over a large region), there is a noticeable

problem at each extreme of the design space for x1,1. The true function changes quickly

in these regions and there are no more design points than in the rest of the space, with

the result that our predictions are less accurate here. The estimate of the uncertainty

is also lower than it should be, with a 95% prediction interval failing to include the

true value in places.

In this chain, model 2 has large flat regions, and - as can be seen in Table 4.1 - many

of the twenty design points lead to very similar values of y2 ≈ 0. This means that

very little of the space of y2 is covered by the design points. The result is the poor

54

Figure 4.2: Prediction from the chain of emulators for y3 against x1,1 in the new three-
model example, highlighting the experimental design issue.

predictions seen in Figure 4.2. Even greater issues could arise if more than one input

existed to the chain as a whole.

In fact, the second function in this chain is so flat that this issue would arise even if

the first model did not exist. Suppose the chain instead consisted of the true functions

y1(x1,1) = {sin(2πy31)}3,−0.5 ≤ x1,1 ≤ 0.5 ;

y2(y1) = sin(πy1) + exp(y1) .

Figure 4.3 plots the values of y1 arising from the 20 design points of x1,1 given

in Table 4.1, and the spacing of these points across the space of y1, in this simpler

case. Instead of 20 distinct design points, the design on y1 for the second computer

experiment is effectively based on only 11 points, and there are some large gaps between

them. This demonstrates that the output of the simulator runs is not necessarily a good

set of points to use for experimental design in future emulators.

Assuming it is possible to directly choose y1, y2, ... , yn−1 at which we test the

next model in the chain, a simple remedy for this problem exists. A new set of design

points can be constructed for these inputs to later models. This allows y1, y2, ... ,

yn−1 to be treated identically to the other inputs in terms of design, and means that

existing space-filling design can be used on the later models without difficulty. The

interpretation of the process is a little more complex, since the values of yn obtained

from the final computer experiment will not necessarily correspond to a specific set of

inputs x̃1, x̃2, ..., but this does not hinder the creation of the linked emulator. The only

problem remaining is to determine the range of the input. This can be done by using the

55

Figure 4.3: Example of a two-model chain in which space-filing on the input x1,1 does
not lead to a space-filling design on y1.

largest and smallest values of the output for the previous model as an approximation

to the boundaries of the variable, while constructing a new set of design points.

An additional benefit of this form of experimental design is that we are no longer

forced to choose the same number of design points for each model in the chain. The

models may have vastly different computational costs and numbers of inputs, and

instead of fixing the number of design points d for every model, the available resources

may thus be better used by allocating a different number of model runs, n1, n2, ...nr

to each of the r models in the chain. A formal method for computer experimentation

using this experimental design approach is given in Algorithm 2.

The stronger performance of this method relative to the naive approach of reusing

the outputs can be seen by applying it to the three-model example presented above. For

simplicity, we keep the number of design points for each model in the chain unchanged

at 20. The new approach nonetheless leads to very different designs on y1 and y2.

Together with the design points for x1,1, these are given in Table 4.2.

The results, which can be seen in Figure 4.4, are also substantially different. The

uncertainty in the predictions near the middle of the input space is larger, and there

is new uncertainty at the x1,1 design points arising from the design points in the later

emulators no longer necessarily being at the values of y1 and y2 implied by the values

of x1,1 at which the first model was run. More importantly, the predictions at the

fast-changing extremes of the true function have improved dramatically. Allowing the

56

Algorithm 2: Algorithm for computer experimentation using single-stage ex-
perimental design for a linked emulator

Input: Number of models, r; models in chain, η1, ..., ηr; design for model 1, ξ1;
number of design points for each model, n1, ..., nr; number of inputs to
each later model, q2, ..., qr; matrix of limits for controllable inputs to
each later model, L2, ...,Lr

Output: Experimental designs ξ1, ...ξr for each model in the chain; vector of
outputs y1, ...,yr at the design points identified for each model in
the chain

begin
y1 ← vector of length n1 ;
for i← 1 to n1 do

y
(i)
1 ← η1(ξ

(i)
1) ;

// y
(i)
1 element i of vector y1; ξ

(i)
1 row i of design matrix ξ1

end
for k ← 2 to r do

Ly,k ← vector (min(yk−1),max(yk−1)) ;
ξk ← design of size nk in qk dimensions scaled by relevant values of Lk
or Ly,k ;

yk ← vector of length nk ;
for j ← 1 to nk do

y
(j)
k ← ηj(ξ

(j)
k) ;

end

end

end

whole space of y1 and y2 to be covered equally by design points means that the true

shape of the function can be picked out more accurately by the chain of emulators, and

with reduced uncertainty. This is largely because the behaviour of the third model at

values of y2 far away from 0 is better understood, leading to better predictions at the

values of x1,1 which give extreme values of y2.

The method of experimentation presented in Algorithm 2 clearly offers many benefits

when compared to naively using the output values as design points for later models. It

is not, however, the final word on experimental design for chains of models. Single-stage

design does not allow us to adapt our designs based on the results of the initial simulator

runs. This is more relevant for a chain of models than for a single model, since the

models may differ in several respects, including computational intensity and the size

of the output variation with respect to their inputs. If this variation is understood in

advance, single-stage design can take account of it, for example by allocating more runs

to the less computationally intensive model. It is perhaps more likely that the variation

will not be understood in advance. For this reason, sequential design is potentially more

useful than single-stage design.

57

x1,1 y1 y2
-0.5 -0.8536 -0.8559

-0.4474 -0.7637 -0.7658
-0.3947 -0.6739 -0.6757
-0.3421 -0.5840 -0.5856
-0.2895 -0.4942 -0.4955
-0.2368 -0.4043 -0.4054
-0.1842 -0.3145 -0.3153
-0.1316 -0.2246 -0.2252
-0.0789 -0.1348 -0.1351
-0.0263 -0.0449 -0.0450
0.0263 0.0449 0.0450
0.07894 0.1348 0.1351
0.1316 0.2246 0.2252
0.1842 0.3145 0.3153
0.2368 0.4043 0.4054
0.2895 0.4942 0.4955
0.3421 0.5840 0.5856
0.3947 0.6739 0.6757
0.4474 0.7637 0.7658

0.5 0.8536 0.8559

Table 4.2: Experimental design for the three-model example using Algorithm 2.

4.3 Sequential design for chains of emulators

There are several new challenges introduced to sequential design by the linking of

multiple models. Firstly, methods for a single model rely on a closed-form expression

of the variance of the emulator output at a given set of inputs, which is only available

if the conditions imposed in Section 3.3 are applied here. The remainder of this section

assumes that this is the case. A simple approach to sequential design for multiple

models is to apply the ALM algorithm to the linked emulator: find the maximum value

of the variance of the linked emulator, and add a design point at this location. The

new design point returned will be a point in the space of all of the inputs to any model

which do not depend on an earlier model. For example, in a chain of two models with

inputs x̃T1 and (y1, x̃2)
T , the design point proposed will be a set of values for x̃1 and x̃2.

This will therefore require both simulators to be run - the first at the set x̃T1 proposed

by the sequential design algorithm, and the second at the value of y1 obtained from

this run and the value of x̃2 found by the algorithm.

The problem can be visualised by considering the variance of the linked emulator

in an example with two models. The first model takes a single input x1,1 and returns

output y1. The second model takes two inputs, y1 and x2,1, and returns output y2. We

are interested in the variance of the emulator for y2 given (x1,1, x2,1)
T . We consider the

system defined by the functions

y1 = 3x1,1 + cos(5x1,1),−1 ≤ x1,1 ≤ 0.85 ;

58

Figure 4.4: Prediction from the chain of emulators for y3 against x1,1 in the new three-
model example with space-filling designs on each input. Note that here the red points
are only the design points used for x1,1; the resulting values of y1 and y2 may not
correspond to design points for those variables.

y2 = [sin(2πy31)]3 + sin(πx2,1),−2.5 ≤ x2,1 ≤ 0.9 .

The emulators use a Gaussian correlation function, with the regression coefficients and

process variance estimated using maximum likelihood estimation and plugged in di-

rectly. This allows the theoretical method to obtain the variance of the linked emulator

to be used.

For illustrative purposes, we consider two different initial design strategies. Six design

points are chosen for model 1, using equal spacing on x1,1. First, the outputs y1 are

used as the design points for the second model, combined with six equally spaced values

of x2,1 on the same range; of the 720 ways in which the two sets of values could be

combined, the one with the least correlation between the two inputs is chosen. The

variance of the linked emulator is plotted as a function of x1,1 and x2,1 in Figure 4.5,

with the design points for x1,1 (in the first computer experiment) and x2,1 (in the

second experiment) marked in black. This is similar to a standard plot of the variance

of a single Gaussian process emulator in two dimensions, with a variance of zero at the

design points, and much larger values as the distance from the design points increases.

Away from the design points, parts of the variance surface is relatively flat, with many

values close to the maximum value of 1.4695. This could make optimisation somewhat

difficult, but suggests that many possible locations for a new design point would be of

roughly equal value.

In the second instance, a maximin Latin hypercube design is used on for the second

computer experiment, with the ranges of the two inputs taken from the output of the

59

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

−1.0 −0.5 0.0 0.5

−2

−1

0

1

2

x11

x2
1

Figure 4.5: Variance of the linked emulator for y2 given x1,1 and x2,1 under the first
initial design.

simulator runs from model 1. The variance is given in Figure 4.6. No design points

are marked here, since there is no unique pair of inputs (x1,1, x2,1)
T at which the full

chain of models has been run; rather, we have an equally spaced set of values of x1,1

at which the first model was run, and a set of values of x2,1 at which the second model

was run in tandem with values of y1 which do not necessarily correspond to the values

of y1 obtained when the first model was run.

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

−1.0 −0.5 0.0 0.5

−2

−1

0

1

x11

x2
1

Figure 4.6: Variance of the linked emulator for y2 given x1,1 and x2,1 under the second
initial design.

In general, the variances are much lower than in the previous plot, with the largest

observed variance now below 0.07 - less than 5 % of the maximum variance under the

previous design. This is a result of the new design strategy, which allows for much more

information about the behaviour of the second model to be obtained. However, this

change also makes the plot more difficult to analyse, as the areas of lowest variance do

60

not always correspond to the locations of design points in the space of x1,1 and x2,1

space. This is understandable: for example, a value of x1,1 at which a design point

was located may have led to a a value of y1 which lies a relatively large distance from

its nearest design points for the second experiment, so there may be relatively large

uncertainty about the behaviour of the linked emulator at this point.

Finding the maximum predictive variance can be done relatively easily using the

"optim" function in R, although care must be taken to ensure that the number starting

points for the optimisation is large enough that the global optimum is found. Doing this

for the example shown here results in a maximum of x1,1 = 0.8500, x2,1 = 0.5468 with a

variance 0.0686. A simple sequential design method would now run the first simulator

at x1,1 = 0.8500, store the result ynew1 obtained from this model run, and run the

second model at the pair (ynew1 , 0.5468)T . It is clear that a set of linked simulator runs

at this point would have a beneficial effect on the quality of the linked emulator, since

the variance of the emulator output would be reduced at the point where it is highest.

In the following section, we discuss possible ways to improve upon this approach by

taking account of the potential differences between the simulators in the chain.

4.4 Conclusions

In this chapter, we have reviewed methods for experimental design for computer

experiments, and considered how they could be extended to deal with the additional

challenges posed by the framework of a chain of computer models. We have discussed

the reasons why using the output of earlier simulator runs as design points for later ex-

periments is not in general a sensible strategy, and proposed an alternative with respect

to single-stage designs. We also considered the more complex but potentially more re-

warding case of sequential design for chains of computational models, and presented an

example of what a simple approach to this could look like.

There are still significant weaknesses associated with the sequential design method

considered above, however. If a very large proportion of the variance in the linked

emulator at the point comes from variance in one emulator in the chain, the method

may lead to resources being used for simulator runs which have little effect on the

linked emulator. In the most extreme example, the value of y1 may be known exactly

at every point in x̃1, with all of the uncertainty in y2 at any set of inputs arising from

the second emulator. Unlikely though this case is, the principle it illustrates is likely

to occur in practice for some chains: if one of the simulators is much more complex

than the other and the number of initial design points is chosen to be the same for

each model, the emulator of the more complex simulator is likely to have much greater

uncertainty associated with its predictions.

One solution to this concern is to consider the variance in the individual emulators

at the relevant inputs before running the associated model. The variance in the first

61

emulator at the proposed set x̃1 would be evaluated first; if it was now decided not to

run the model, the mean of the emulator output for y1 at this point would be used as

the value of y1 for the next model in the chain. The same process would be performed

for each model in the chain sequentially. This would in theory remove the unnecessary

simulator runs, allowing the available budget to be used to greater effect elsewhere.

The method to determine if the model should be run would reject a model run if the

variance is below a certain threshold. Ideally, this should be chosen as a proportion

of the total variance of the emulator, but it is unclear how this would be done for the

earlier models in the chain, since there is no obvious general relationship between the

variation in y1 and the variation in y2 when the model which links them is unknown

away from its design points.

A related issue is that choosing the point in x̃1 which reduces the variance in y2 the

most does not guarantee that the implied value of y1 has the same property. Running

the first model to obtain an exact value of y1 given x̃1 may remove much of the variance

in y2 immediately, and it is not clear that the obtained y1 is necessarily the most effective

value at which the second model can be run to achieve the maximum reduction of the

variance of the linked emulator. It may instead be more beneficial to choose a new

point in the design space of all of the inputs to model 2, (x̃2, y1)
T , after running the

first model.

Further complexities arise when the computational cost of the individual simulators

is taken into account. If one model in the chain is ten times more expensive to run

than another, for instance, a good method for sequential design would not assume that

all of the models should be run equally often. For example, it may be more useful to

run the cheaper model eleven times and the expensive model once than to run both

models twice; the computational cost in both scenarios would be the same.

It may appear that simply looking at the individual emulators instead of the linked

emulator would solve the problems, but this is not the case. This is because improve-

ments to the separate emulators do not translate directly to the linked emulator. An

extreme example occurs in a two-model chain in which y1 is a complex function of x̃1,

and y2 is a function of y1 and x̃2 in which y1 plays little or no role in the value of y2. If

the second emulator is able to detect from its initial runs that y1 is not an important

input, then reducing the uncertainty in y1 will have no effect on the linked emulator;

the only way to improve the performance of the linked emulator is to add design points

to the second emulator which improve our understanding of the effect of varying x̃2 on

y2. The individual emulators therefore cannot safely be used as an analogue for the

linked emulator.

62

Chapter 5

Sensitivity analysis

5.1 Introduction

Sensitivity analysis is defined by Saltelli et al. (2008), Chapter 1, as “the study of

how uncertainty in the output of a model can be apportioned to different sources of

uncertainty in the model input”. This is distinct from uncertainty analysis, which seeks

only to quantify the uncertainty instead of attribute it to its sources, although the two

are often run in conjunction. Sensitivity analysis is useful for a number of reasons: it

allows us to better understand the nature of a complex model, can help to reveal errors

in the model formulation, establish which factors are most worthy of further research

and may be used for model simplification. It is important to determine which of these

is the main focus of a sensitivity analysis beforehand, as the failure to do so can lead

to an unclear outcome of the analysis.

Our work is interested in extending the above definition of sensitivity analysis to

encompass chains of models in addition to the single-model case. There are two related

problems in the field sensitivity analysis for chains of linked models. The first concerns

sensitivity analysis for the final model in a chain with respect to its own inputs, which

is complicated by the fact that the distribution of the input yn−1 which arises from the

output of an earlier model cannot be chosen directly. The second (and more complex) is

that of sensitivity analysis for the output of the final model with respect to the directly

controllable inputs to all of the model in the chain. Before considering these problems,

however, it is necessary to review existing sensitivity analysis techniques for a single

model.

Sensitivity analysis can be subdivided into local and global analysis. Local analysis

uses the partial derivatives of the model to investigate the effect of small changes to

the model inputs. Assuming the derivatives exist, this is computationally simple, but

provides only limited insight into the effects of the inputs. The changes to the inputs

that are of most interest are typically too large for local sensitivity analysis to capture.

Global sensitivity analysis, which we shall focus on, provides much more information

in this respect, but is less straightforward to perform. (Saltelli et al., 2008)

63

In its broadest sense, sensitivity analysis encompasses a very wide range of techniques.

For instance, a simple visual representation of the effect of an input variable upon

the model output can be obtained using a scatter plot of the input variable against

the output variable. Performing this for multiple inputs allows us to qualitatively

characterise the relative importance of the input variables (although care must be taken

to account for changes in the other inputs, which may be difficult). This approach is

used on many occasions by Saltelli et al. (2008) as a first step before attempting a more

formal sensitivity analysis. Scatter plots however have only limited use for sensitivity

analysis: they require a large amount of interpretation on the part of the researcher

performing the analysis, provide no quantifiable measure of uncertainty and cannot

account for the effects of interactions between the inputs.

More formal approaches towards sensitivity analysis aim to quantify the effect of

an input (or set of inputs) numerically. There are still simple methods to do this:

regression analysis, one of the most fundamental methods of applied statistics, can be

viewed within this framework. Standardised regression coefficients provide a measure of

the proportion of variability explained by each input. The problem with this, however,

is that it depends on the relationship between the inputs and the output following pre-

defined structure. If some of the variance explained by the inputs differs in scope from

the assumed relationship, the regression coefficients may fail to give an accurate picture

of the importance of each input. We would prefer our analysis to be independent of

any assumed model.

Functional analysis of variance (FANOVA) extends traditional ANOVA methods to

computational models. The strength of the relationship between the inputs and the

output is quantified in terms of the effect of the input on the output variance. The

effect of an input or set of inputs is defined by integrating out the other variables; under

certain relatively relaxed conditions, this allows a simple decomposition of the output

variance into the variance of the marginal effects of the inputs and their interactions

(Schonlau and Welch, 2006). Probabilistic sensitivity analysis, which we use as the

basis for our work, follows similar principals to FANOVA - although as we shall see,

this comes with its own challenges.

5.2 Probabilistic sensitivity analysis

Probabilistic sensitivity analysis has been discussed by various authors including

Oakley and O’Hagan (2004); the same approaches are covered by Saltelli et al. (2008),

although the name is not used explicitly. First, we define some notation. As before,

the inputs to a computational model consist of the vector x = (x1, ..., xq)
T . Given a set

of indices κ, the subvector of x containing the elements with these indices is written as

xκ; x−κ is a subvector of x containing all elements not in the set κ. In the applications

we discuss here, κ is the empty set, a single index i or a pair of indexes i, j. The

uncertainty in the input vector x is defined in terms of a probability distribution G(x).

64

We treat the simulator output as a random variable Y with expectation E(Y). The

conditional expectation E(Y |xi) is the expectation of Y when the input xi is fixed;

for two fixed inputs xi and xj , the conditional expectation is E(Y |xi,j), and so on for

larger sets of fixed inputs.

If we wish to understand how a model behaves with regards to its inputs, an impor-

tant step is to decompose the model’s output into a sum of main effects and interactions:

η(x) = E(Y) +

q∑
i=1

zi(xi) +
∑
i<j

zi,j(xi,j) + ...+ z1,2,...,d(x) ,

where

zi(xi) = E(Y |xi)− E(Y) , (5.1)

and

zi,j(xi,j) = E(Y |xi,j)− E(Y |xi)− E(Y |xj) + E(Y) ,

with higher-order terms defined similarly. The value of these functions depend, as we

would expect, on the choice of the distribution G. The function zi(xi) is called the main

effect of xi; zi,j(xi,j) is the second-order interaction between xi and xj . Higher-order

interaction terms are similarly defined, although these terms are usually of less interest

in sensitivity analysis. The main effects and second-order interactions, however, provide

useful information on how the model output responds to the inputs. Welch et al. (1992)

were an early example of authors considering this approach.

It can also be useful in probabilistic sensitivity analysis to characterise the sensitivity

of the model output to its inputs in terms of the reduction in the variance of the output

when some of its inputs are fixed. This approach is covered in detail by Chapter 4 of

Saltelli et al. (2008). In general, for a subset of inputs κ, we define:

Vκ = var{E(Y |Xκ)} , (5.2)

where we treat the non-fixed inputs, denoted as x−κ, as a random variable X−κ. Vκ is

based on the variance of the main effect of the subset of inputs xκ; it is the expected

reduction in the variance of Y when xκ is known. The measure can be normalised to

be scale-invariant by dividing by the total variance var(Y). The normalised index, Sκ,

is usually referred to as a sensitivity index or Sobol’ index.

For a single input, two special cases of equation (5.2) have been considered to quantify

the reduction in variance associated with the input:

Vi = var{E(Y |Xi)} , (5.3)

65

and

VT i = var(Y)− var{E(Y |X−i)} ,

which can be normalised to give the scale-invariant measures

Si =
var{E(Y |Xi)}

var(Y)
,

and

ST i =
var(Y)− var{E(Y |X−i)}

var(Y)

= 1− S−i .

The measure Vi is based on the variance of the main effect of xi; it is the expected

reduction in the variance of Y when xi is known. In contrast, VT i is the remaining

uncertainty when we know everything other than xi. A larger value of Vi or VT i (or their

scaled equivalents) indicates that the relevant xi has a larger role in the uncertainty in

Y . Dividing by the total variance var(Y) transforms the absolute reduction in variance

to a proportion, with the result that

q∑
i=1

Si +
∑
i<j

Si,j + ...+ S1,2,...,q = 1 ,

since the variance in the output of a deterministic model is explained entirely by its

inputs. The sum of the total effect indices ST i must be at least 1, and is equal to 1

only if the model is perfectly additive; if any interaction exists between any subset of

the inputs, the sum will be greater than 1. It is also true that ST i ≥ Si for any i.

When the aim is to establish which factors should be focused on in future with the

aim of reducing uncertainty, Oakley and O’Hagan (2004) state that Si provides the

best measure of this; if precisely one factor could through some method be determined

exactly, the factor with the largest Si should be chosen. This does not necessarily extend

to multiple factors, as the reduction in total variance then depends on the interaction

between the factors as well as their main effects; the second-order interactions Si,j

would also need to be considered.

It is possible to view model decomposition and variance-based sensitivity methods as

complementary tools. Both exist within the same framework, and can thus convey sim-

ilar information in different ways. Variance indicators provide a quantifiable measure

of the proportion of the output variance explained by an input or set of inputs, which

allows us to easily identify important inputs, but they cannot be used to determine how

the model responds to these inputs. Model decomposition, by contrast, can be used for

66

this: by plotting the expected output of the simulator given a fixed input at a range of

values across the input’s range, we can visualise the effect of the input on the output

graphically. This can also be done for pairs of inputs using either three-dimensional

plotting or contour plots, although it is more difficult for higher-order interactions. It

can sometimes be difficult, however, to interpret these plots to determine which in-

puts or interactions are most important; this, together with dealing with higher-order

interactions, is where the Sobol’ indices are most powerful.

To actually compute either Sobol’ indices or model decomposition measures requires

several integrals to be calculated, since a number of expectations and variances are

needed. For instance, to calculate Vi for an input i using equation 5.3, we need to

calculate both the inner expectation (with respect to the other inputs x−i) and the

outer variance (with respect to the input xi). In general, these will not be available an-

alytically, so numerical integration must be used. An adapted Monte Carlo integration

method is typically chosen. Naively, this could be done as follows: a set of points is

chosen from the marginal distribution on the input xi, which we denote as Gi(xi), and

another set of points are chosen from the conditional distribution of the other inputs

x−i given each xi, which we denote as G−i|i(x−i|xi). The inner expectation E(Y |xi)
can then be estimated for each xi, and the variance across these estimates calculated

to give us the final indicator.

A weakness of this approach, however, is its computational feasibility. Accurate

estimation of even a single indicator requires a large number of runs of the simulator

at different input values. Saltelli et al. (2008), Chapter 4, provides a more efficient

approach which substantially reduces the number of runs required, but even this is not

always sufficient: O’Hagan (2006) describes a case in which variance-based sensitivity

analysis requires several million runs, which is prohibitive even for a model of only

moderate computational complexity.

For a complex model which cannot feasibly be run enough times to perform classical

sensitivity analysis, several techniques are suggested by Saltelli et al. (2008), depending

on the nature of the model. If the complexity in the model stems from an extremely

large number of inputs, group sampling can be used: the inputs are grouped together

into a relatively small number of blocks, and the effect of each block is investigated

using the methods described above. This is far more computationally feasible, but can

miss important inputs: if two variables in the same block have effects of similar size

and opposite sign, their combined effect will be small, so the size of the effect of the

block may not accurately reflect the importance of the inputs contained within it.

A more nuanced approach is the elementary effects (EE) method, introduced by

Morris (1991) and refined by Campolongo et al. (2007). First, the space for each input

is discretised to ρ levels. The elementary effect of the input xi is defined as

67

EEi =
(Y |x1, ...xi−1, xi + ∆, xi+1, ..., xk)− (Y |x1, ...xk)

∆
,

where ∆ is a value in the set
[

1
ρ−1 ,

2
ρ−1 , ..., 1 −

1
ρ−1

]
; x must be chosen in such a way

that the transformed point x + ∆xi is within the input space for every i. A measure of

the sensitivity of the model output to each input can be obtained by calculating EEi

for each i at a set of l points across the input space and taking the mean of the absolute

value of the elementary effects for i:

µ∗i =
1

l

l∑
j=1

|EEji | .

If an efficient sample of points is chosen, the number of model runs required in

the EE method is far lower than in variance-based sensitivity analysis. Campolongo

et al. (2007) demonstrated that µ∗i is an effective proxy to ST i. Saltelli et al. (2008)

recommend the use of the EE method for input screening for models where the number

of inputs is sufficiently large that variance-based methods are impractical, but not so

large that group sampling is required. Most authors are wary of using it as a method

for sensitivity analysis in its own right, however: it can only measure the total effect of

an input, not its main effect or the effect of specific interactions, and the discretisation

step introduces some error into the calculation. It is usually performed as a first step

to identify a subset of important inputs, which will then be the subject of a fuller

sensitivity analysis.

While these methods may be very helpful when the number of inputs is very large,

they cannot deal with the case of a model with a relatively small number of inputs which

is extremely computationally intensive to run: neither group sampling nor screening

using the EE method will be an effective method to reduce the number of simulator

runs required. Emulation provides a possible solution.

5.3 Sensitivity analysis using emulation

Based on a small number of simulator runs, we can build a Gaussian Process emulator

using the methods described in Chapter 2, with the correlation parameters estimated

from the data. For the rest of this section, we assume that the regression coefficients

and process variance are integrated out. This emulator can then be used to predict

the simulator output at the much larger number of input configurations required to

perform sensitivity analysis, overcoming many of the computational issues discussed

above. This approach is presented in detail by Oakley and O’Hagan (2004).

Since a GP emulator provides as its output not a single value but a probability

distribution for the true simulator output for a given set of inputs, the quantities

of interest in sensitivity analysis also take the form of a distribution. We will denote

68

expectations, variances and covariances with respect to the posterior distribution for the

GP emulator by E∗, V ar∗ and Cov∗ respectively. We denote by χκ the space of possible

values for xκ, and by χ−κ the space of possible values for x−κ. The marginal distribution

of xκ is called Gκ(xκ); similarly, G−κ|κ(x−κ|xκ) is the conditional distribution of x−κ

given xκ.

The main effects and interactions of the input variables, which are linear functions

of the GP emulator, a posteriori follow non-standardised t-distributions with ν0 + n

degrees of freedom (or n degrees of freedom when a non-informative prior is used).

The means of these posterior distributions for the main effects and interactions can be

found from a general result, given by Oakley and O’Hagan (2004):

E∗[E(Y |xκ)] = Rκ(xκ)β̂ + Tκ(xκ)C−1(yn − Fβ̂) , (5.4)

where β̂ is defined for strong prior distributions in (2.6) and for weak prior distributions

in (2.8). Rκ(xκ) is defined as

Rκ(xκ) =

∫
χ−κ

fn+1(x)dG−κ|κ(x−κ|xκ) , (5.5)

the integral of the vector of regression functions at an unseen input configuration with

respect to the distribution of the unknown inputs across the space of these inputs.

Similarly, Tκ(xκ) is the integral of the vector of correlations between the unseen input

configuration and the design points of the computer experiment with respect to the

same distribution and space:

Tκ(xκ) =

∫
χ−κ

cn+1(x)dG−κ|κ(x−κ|xκ) . (5.6)

The fact that the vectors fn+1 and cn+1 are functions of the configuration of model

input The special cases of (5.5) and (5.6) where κ is the empty set are denoted as R

and T respectively, and are defined as

R =

∫
χ

fn+1(x)dG ,

and

T =

∫
χ

cn+1(x)dG .

The posterior expectation of the function when no inputs are fixed then follows from

(5.4) as

E∗[E(Y)] = Rβ̂ + TC−1(yn − Fβ̂) . (5.7)

The posterior mean of the main effect of an input xi can be calculated as

69

E∗[zi(xi)] = [Ri(xi)−R]β̂ + [Ti(xi)−T]C−1(yn − Fβ̂) , (5.8)

where zi(xi) is defined in (5.1). For the second-order interaction between inputs xi and

xj , we obtain:

E∗[zi,j(xi,j)] = [Ri,j(xi,j)−Ri(xi)−Rj(xj)−R]β̂

+ [Ti,j(xi,j)−Ti(xi)−Tj(xj)−T]C−1(yn − Fβ̂) .
(5.9)

A useful graphical summary of the effect of each input variable on the output can

be obtained by plotting E∗[zi(xi)] against xi for i = 1, ..., q. It is tempting to assume

that the input showing the most variation in this plot is the most important. However,

Oakley and O’Hagan (2004) warn against this interpretation: the input showing the

most variation has the largest value of V ar{E∗[zi(xi)]}, but this is not the same as

E∗{V ar[zi(xi)]}. For this reason it can be useful to also consider the standard deviation

of the posterior distribution for each input. Standard deviations of the t-distributions

for the main effects and interactions can be calculated from another general result of

Oakley and O’Hagan (2004). First, let

R∗(x,x′) = R(x− x′)− cn+1(x)TC−1cn+1(x) + [fn+1(x)T

− cn+1(x)TC−1F](FTC−1F)−1[fn+1(x
′)T − cn+1(x

′)TC−1F] ,

This is sometimes referred to as the posterior correlation between x and x′, and unlike

the correlation function R(x− x′), it may depend on the locations of the points x and

x′ as well as the distance between them. Given the values of two different sets of fixed

inputs, xκ and x′υ, let

Uκ,υ(xκ,x
′
υ) =

∫
χ−κ

∫
χ−υ

R∗(x,x′)dG−κ|κ(x−κ|xκ)dG−υ|υ(x′−υ|x′υ)

be the integral of R∗(x,x′) with respect to the conditional distributions of the two sets

of unknown inputs. The posterior covariance between the expectation of the simulator

output given the two sets of fixed inputs is then

cov∗[E(Y |xκ), E(Y |x′υ)] = σ̂2[Uκ,υ(xκ,x
′
υ)−Tκ(xκ)C−1Tυ(x′υ)T + {Rκ(xκ)

−Tκ(xκ)C−1F}(FTC−1F)−1{Rυ(x′υ)−Tυ(x′υ)C−1F}T] ,

(5.10)

where the estimate σ̂2 of the unknown process variance σ2 is

σ̂2 =
c0 + bT0 V−10 b0 + yTnC−1yn − β̂

T
(V−10 + FTC−1F)−1β̂

n+ ν0 − 2
, (5.11)

70

and β̂ is defined in equation (2.6). Equation (5.11) reduces when weak prior distribu-

tions are used to

σ̂2 =
yTnC−1yn − β̂

T
(FTC−1F)−1β̂

n− 2
,

where β̂ takes the simpler form seen in equation (2.8).

In practice, we would generally prefer to plot E∗[E(Y |xi)] (a simple rescaling of

E∗[zi(xi)] in which the mean is not subtracted) to see how the fixed input changes the

expected output in absolute terms instead of in isolation. Similarly, a two-dimensional

contour or level plot can be used to display the shape of the function E∗[E(Y |xi, xj)]
and thus investigate how changing two factors in tandem affects the expected output.

The Sobol’ index Si and the total effect index ST i are quadratic functions of the GP

emulator, so their posterior distributions are not t-distributions; indeed, they cannot be

derived analytically. We can, however, obtain the posterior means of the unnormalised

quantities Vi and VT i. In theory, their posterior variances could also be calculated, but

the formulae required to do this are extremely complicated and are omitted by existing

literature on the topic such as the important papers of Haylock and O’Hagan (1996)

and Oakley and O’Hagan (2004).

The posterior means of Vi and VT i, which we denote by E∗(Vi) and E∗(VT i), can be

found from a result - again given by Oakley and O’Hagan (2004) - for the more general

case of E∗(Vκ) = E∗{V ar[E(Y |xκ)]}. We note as an intermediate step that

Vκ = E[E(Y |xκ)2]− E[E(Y |xκ)]2

= E[E(Y |xκ)2]− E(Y)2 ,

and that we can already calculate E∗[E(Y)2] from the results given in equations (5.7)

and (5.10), since

E∗[E(Y)2] = {E∗[E(Y)]}2 + V ar∗[E(Y)] . (5.12)

Thus E∗(Vκ) can be calculated if we can find an expression for E∗{E[E(Y |xκ)2]}. This

is given by

E∗{E[E(Y |xκ)2]} =

∫
χκ

∫
χ−κ

∫
χ−κ

[σ̂2R∗(x,x∗) + µ∗(x)µ∗(x∗)]

dG−κ|κ(x−κ|xκ)dG−κ|κ(x′−κ|x′κ)dGκ(xκ) ,

(5.13)

where x∗ is a vector containing the elements of xκ and x′−κ (this is not usually equal

to x, as x and x′ are distinct), and µ∗ is given in equation (2.4) for strong prior

distributions and in equation (2.7) for weak priors. Where previously µ∗ was defined

71

implicitly in terms of xn+1, in this chapter, we treat µ∗ explicitly as a function, as we

are interested in the posterior mean at multiple untested input configurations.

Having obtained estimates for E∗(Vκ) and E∗(VTκ), we can divide them by E∗[var(Y)]

for inference about Sκ and STκ (although it should be noted that this does not give

E∗(Sκ) and E∗(STκ), which cannot be derived analytically). To obtain E∗[var(Y)], we

use a similar approach to that used to obtain E∗(Vκ):

E∗[V ar(Y)] = E∗[E(Y 2)]− E∗[E(Y)2] .

Equation (5.12) gives us an expression for the second term, so again we need only the

first, which can be found from a result from Haylock and O’Hagan (1996):

E∗[E(Y 2)] =

∫
χ
E∗[η2(x)]dG(x)

=

∫
χ
[σ̂2R∗(x,x) + µ∗(x)2]dG(x) . (5.14)

5.4 Practical issues

There are several practical considerations relating to the calculation of the indices

described above. An in-depth discussion of several of these can be found in Le Gratiet

et al. (2014). This paper recommends the use of a Monte Carlo method for numeri-

cally evaluating the multi-dimensional integrals required for emulation-based sensitivity

analysis instead of a quadrature-based method. This is due to the lower computational

resources required as the dimensionality of the input space increases, the natural exten-

sion of the calculation of the Sobol’ indices to multiple inputs instead of just one, and

the ability to take account of the numerical error arising from the numerical integration

estimates.

Some sensitivity analysis techniques have already been implemented in R. In particu-

lar, the package ‘sensitivity’ (Pujol et al., 2017) includes functions to estimate the

Sobol’ indices Ŝκ using a range of methods - including those based on GP emulation -

in a highly efficient manner based on the work of Le Gratiet et al. (2014). The package

‘tgp’ (Gramacy and Taddy, 2010) also contains functions for both Sobol’ indices and

model decomposition using GP emulation and Monte Carlo methods. However, we

decided not to utilise this existing work but to write our own code instead. The main

reason for this is that the extension to the case of multiple linked models can be more

effectively done using bespoke code. This will be discussed further in Chapter 6.

Following Le Gratiet et al. (2014), we use a numerical method based upon multi-

dimensional Monte Carlo integration (see for example Press and Farrar 1990). The

integration method chosen requires only a sample from the distribution we wish to

72

integrate with respect to (for double and triple integrals, two and three samples are

required respectively).

An example of this approach to Monte Carlo integration can be seen in our method

of calculation for the second term of equation (5.13),

E =

∫
χκ

∫
χ−κ

∫
χ−κ

µ∗(x)µ∗(x∗)dG−κ|κ(x−κ|xκ)dG−κ|κ(x′−κ|x′κ)dGκ(xκ) , (5.15)

for which we apply Algorithm 3.

Algorithm 3: Algorithm to calculate an approximate value of (5.15) using
Monte Carlo integration

Input: Monte Carlo sample size, M ; marginal distribution Gκ for inputs xκ;
conditional distribution G−κ|κ for inputs x−κ given xκ

Output: Estimate Ê for the value of E in (5.15)
begin

R← vector of length M ;
xκ ← sample of size M from Gκ ;
x−κ ← sample of size M from G−κ|κ given xκ ;

x′−κ ← sample of size M from G−κ|κ given xκ ; // x−κ,x
′
−κ independent

samples

for i← 1 to M do

x(i) ← (x
(i)
κ ,x

(i)
−κ)T ;

x∗(i) ← (x
(i)
κ ,x

′(i)
−κ)T ;

R(i) ← µ∗(x(i))µ∗(x∗(i)) ; // µ∗() defined in (??)

end

Ê ← mean (R) ;

end

In practice, we assume that the distributions on the inputs are independent. This

allows Algorithm 3 to be simplified by drawing two samples from the full distribution

G of all the inputs x before any sensitivity analysis is performed, and partitioning these

into samples for xκ, x−κ and x′−κ as required.

To demonstrate our methods in action, we recreate an example given in Oakley

and O’Hagan (2004). This example has 15 inputs split into three categories: the

inputs x1, ..., x5 play very little role in explaining the variance in the model; the inputs

x6, ..., x10 make a small contribution; and the inputs x11, ..., x15 explain the majority

of the variance. Following the original paper, we used 250 design points to fit the

Gaussian process. The expected output E∗[E(Y |xi)] for each xi on the range (−2, 2)

is shown in Figure 5.1.

73

-2 -1 0 1 2

5
10

15

xi

E
(Y
|x
i)

Figure 5.1: Posterior expectation of Y given xi for i = 1, ..., 5 (black lines), i = 6, ..., 10
(red lines), i = 11, ..., 15 (green lines) in the test example.

This plot is extremely similar to that obtained in the original paper. The three sets of

inputs can be clearly distinguished. We also calculated estimates of the Sobol’ indices

Si for each xi; in every case, our result was within 1% of that obtained in the original

paper. The paper does not include content on sensitivity indices or posterior means for

interaction effects, or on uncertainty in the estimates of the posterior means.

Via a small alteration to Algorithm 3, it is also possible to encompass the case where

it is not possible to sample directory from the marginal and conditional distributions

Gκ and G−κ and must instead use importance sampling. If, instead of samples from

the distributions Gκ and G−κ, we have samples from importance distributions Sκ and

S−κ, only one line of Algorithm 3 would change: where µ∗(x(i))µ∗(x∗(i)) is calculated

and stored in R, this would be replaced with

[
Gκ(x

(i)
κ)G−κ(x

(i)
−κ)G−κ(x

′(i)
−κ)

Sκ(x
(i)
κ)S−κ(x

(i)
−κ)S−κ(x

′(i)
−κ)

]
µ∗(x(i))µ∗(x∗(i)) .

5.5 Example: CBR modelling

We present here a relevant example of sensitivity analysis for a single model. The

model considered is an illustrative example model provided by Dstl which has been

simplified for release to academia. The model predicts the casualty rate in the case

of a hazardous chemical, biological or radiological (CBR) release. It takes ten inputs

including four categorical variables; as these lie outside of the framework introduced in

previous sections, we will take these input to be fixed throughout. The six remaining

inputs which we investigate are: time of release after vaccination, mass of release, wind

74

speed, wind direction, number of people in the area, and the radius of the region in

which the people are contained. The units in which these inputs are measured and

the assumed lower and upper bounds on these inputs are given in Table 5.1. These

ranges are identical to those used in earlier work on this model in a Masters thesis by

Plumb (2008); the choice of the lower and upper bounds is explained in this work with

reference to real examples.

Input Units Lower bound Upper bound

Release time seconds 0 72000
Release mass kilograms 0 10000
Wind speed metres per second 0 10

Wind direction degrees 0 360
People - 0 1000
Radius metres 0 2000

Table 5.1: Assumed ranges and units for the inputs to the CBR model, chosen for
consistency with previous research

Additionally, the model requires that release time, wind direction and number of

people are integers. The other three inputs of interest are defined as floating point

numbers. Wind direction has the additional property of existing on a circle: its lower

and upper bounds are identical in the real world as they correspond to precisely the

same direction. Ideally, we would take account of this in our modelling, but this was

not investigated here.

The output of the model is the predicted casualties as a percentage of the number

of people, rounded to an integer value. Since the output is a percentage, it exists on

a bounded scale. This would pose problems when using a Gaussian process to model

the output, because the assumption that the residuals from the regression are equally

likely to be positive or negative would be violated close to the extremes of the scale.

To overcome this, we rescale the output to a [0, 1] scale instead of [0, 100] and apply

a logit transform, which maps the [0, 1] interval to the entire real line; we then fit a

Gaussian process emulator to the logit of the model output, and rescale our emulator

estimates by applying the inverse transform where necessary.

The experimental designs used for each of the settings described below are maximin

Latin hypercube designs with 50 points, and are obtained using the R package ‘SLHD’

(Ba, 2015). We fit a Gaussian process emulator with a constant mean instead of a

more complex regression term. When fitting the GP emulator to the logit of the model

output, we first scale the inputs to the [0, 1] interval. This should have no effect on the

emulator we arrive at, but avoids the computational difficulties which can arise should

the correlation parameter for a variable on a large scale (the release mass input, for

instance) be small; it also ensures that the correlation parameters of the GP are on the

same in each dimension, which makes them easier to interpret. A nugget of δ = 10−7

is used in the emulator to provide computational stability.

75

Since our inputs lie in a bounded region, the distribution G on these inputs must

respect these constraints. In the case of a distribution for which some or all of the

inputs follow a normal or gamma distribution, for instance, we must use truncated

versions of the standard distribution. The R package ‘truncdist’ (Novometsky and

Nadarajah, 2016) allows us to do this without difficulty.

We begin by considering the CBR model with all six inputs of interest as potential

sources of uncertainty, and first set the inputs to be identically distributed. The dis-

tribution we choose is a truncated normal distribution with mean 0.5 and variance 0.2.

The first-order Sobol’ indices for this model are given to four decimal places in Table

5.2.

Input Ŝi

x1 0.2051
x2 0.0075
x3 0.0343
x4 0.0008
x5 0.0010
x6 0.7053

Table 5.2: Estimates of Ŝi for each input in the full CBR model

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

0
0.

5
1.

0

xi

E
(Y

|x
i)

x1

x2

x3

x4

x5

x6

Figure 5.2: Posterior expectation of Y given each xi in the full CBR model

The sixth input, radius of the region, appears to explain by far the largest proportion

of the variability. There is also a significant contribution from x1, the release time. To

see the effects of the inputs more clearly, we can look at the plot of the posterior

expectation of main effects (Figure 5.2). It is again clear that x1 and x6 are the most

significant variables; the average effect of increasing each of these is to reduce the

expected value of the proportion of casualties, although the behaviour at the extremes

of radius is less clear. We can also now more clearly distinguish the effects of the other

inputs: the curve for x3, wind speed, displays a generally negative trend as the value

76

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

0
0.

5
1.

0

x6

E
(Y

|x
6)

Figure 5.3: ±2 s.d. bounds on the posterior expectation of Y given x6 in the full CBR
model

of the input is increased, while x2, release mass, has the opposite effect. Fixing inputs

x4 or x5 appears to tell us little about the average value of the output beyond what

is already known from the emulator mean, which is consistent with the extremely low

Sobol’ indices obtained for these two inputs.

It is also useful to consider the uncertainty in our estimates for the expected output

given a fixed input. In this case, there is relatively little variance in the estimates: in

Figure 5.3, we plot the upper and lower bounds of a region within two standard devi-

ations of the expected value of the output given x6. While there is a little uncertainty,

in particular at the extremes of the region, the shape of the function is clear.

The sum of the first-order Sobol’ indices is around 0.955, meaning that around 4.5%

of the output variance is not explained by main effects but by higher-order terms.

We can investigate this further by looking at the sensitivity indices for the two-factor

interactions directly; these are given in Table 5.3.

Ŝi,j x2 x3 x4 x5 x6
x1 0 0.0063 0 0 0.0209
x2 - 0 0 0 0.0060
x3 - - 0 0 0.0063
x4 - - - 0 0
x5 - - - - 0

Table 5.3: Estimates of Ŝi,j for each pair of inputs in the full CBR model

The sum of these effects is slightly under 0.04, so the main effects and two-factor

interactions together explain nearly all of the output variation. Of the interaction

effects, only the interaction between x1 and x6 appears to be of any real importance.

This can be investigated by a two-dimensional level plot, which can be seen in Figure

77

5.4. This plot is not easy to interpret, but the behaviour is more complex than a simple

combination of their main effects.

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x6

Figure 5.4: Contour plot of the posterior expectation of Y as the inputs x1 and x6 are
varied in the full CBR model

The choice of normal distributions for the six inputs is perhaps unrealistic. There is

no reason, for instance, to think that release time, release mass or radius should be less

likely to take extreme values than they should to be in the middle of their respective

ranges; uniform distributions may therefore be more appropriate. Wind speed is likely

to follow a skewed distribution, with low values making up more of the mass of the

distribution than high ones.

Following this reasoning, we rerun the above example with a different set of input

distributions. The existing truncated normal distributions are maintained on inputs

x4 and x5. Inputs x1, x2 and x6 are given uniform distributions. The distribution

for input x3, wind speed, is a truncated gamma distribution with shape parameter 0.4

and scale parameter 2. This distribution is strongly positively skewed; the mean and

median of a truncated gamma distribution with these parameters on the [0, 1] interval

are around 0.25 and 0.13 respectively.

Table 5.4 gives the Sobol’ index for the main effect of each input, and Table 5.5

the Sobol’ index for each two-factor interaction. Little appears to have changed as a

result of this new approach, although there are some differences. The proportion of the

variance explained by x6 is somewhat reduced, and that explained by x1 and the x1-x6

interaction has increased. Perhaps surprisingly, the Sobol’ index for x3, which now has

a truncated gamma distribution, is also lower than in the previous example. The main

effect plot (Figure 5.5) shows very little change in the curve for x6, while the curves

for the other inputs are similar in shape to those in Figure 5.2 but with their values

increased throughout. This is explained by the uniform distribution on x6, which gives

78

more weight to points at the lower extreme of the distribution, where the output is

generally high. The interaction plot for x1 and x6 (Figure 5.6), is similar to that seen

previously (Figure 5.4).

Input Ŝi

x1 0.2396
x2 0.0077
x3 0.0074
x4 0.0009
x5 0.0009
x6 0.6672

Table 5.4: Estimates of Ŝi for each input in the full CBR model with new input
distributions

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

0
0.

5
1.

0

xi

E
(Y

|x
i)

x1

x2

x3

x4

x5

x6

Figure 5.5: Posterior expectation of Y given each xi in the full CBR model with new
input distributions

Ŝi,j x2 x3 x4 x5 x6
x1 0.0005 0.0067 0 0 0.0440
x2 - 0 0 0 0.0041
x3 - - 0 0 0.0073
x4 - - - 0 0
x5 - - - - 0

Table 5.5: Estimates of Ŝi,j for each pair of inputs in the full CBR model with new
input distributions

Under both sets of input distributions, the relationship between the significant inputs

and the output in this example is mostly linear in nature, with little role played by

interactions between the inputs. Indeed, a multiple linear regression model with the

79

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x6

Figure 5.6: Contour plot of the posterior expectation of Y as the inputs x1 and x6 are
varied in the full CBR model - new input distributions

six input variables as predictors is sufficient to explain over 90% of the variance in the

output. There is thus little need for the emulator-based sensitivity analysis we apply

here, since a much simpler and faster method is adequate.

Previous research into this model by Plumb (2008) focused on the case where the

radius input is fixed, which produces more complex structures than the ones seen so

far. Following this approach, we fix the radius input to the middle of its range -

1000 metres - and rerun the model with a 50-point maximin Latin hypercube design

on the remaining five dimensions. As we would expect, the posterior variance in the

output falls dramatically when this is done (to around 30% of its previous value), but

there remains enough variability that sensitivity analysis is both meaningful and useful.

There is still a significant linear relationship between the inputs and the output - linear

regression explains slightly under 80% of the total variance - but there is also evidence

of more complex patterns.

Input Ŝi

x1 0.7939
x2 0.0608
x3 0.0918
x4 0.0010
x5 0.0053

Table 5.6: Estimates of Ŝi for each input in the CBR model with fixed radius

With the variable responsible for the majority of the variance in the output no longer

playing a part, new patterns can be observed in the behaviour of the model with respect

to the other inputs. Again beginning with truncated normal (0.5, 0.2) distributions on

each of the five remaining inputs, the Sobol’ indices for the main effects (Table 5.6)

80

Ŝi,j x2 x3 x4 x5
x1 0.0068 0.0110 0 0.0023
x2 - 0.0051 0 0.0008
x3 - - 0 0.0063
x4 - - - 0

Table 5.7: Estimates of Ŝi,j for each pair of inputs in the CBR model with fixed radius

suggest that a large majority of the output variance is explained by input x1, with

smaller contributions from x2 and x3 and the effects of x4 and x5 being negligible.

From Table 5.7, the only interaction term to account for more than 1% of the output

variance is the interaction between inputs x1 and x3, the two variables with the largest

main effects.

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

4
0.

0
0.

2
0.

4

xi

E
(Y

|x
i)

x1

x2

x3

x4

x5

Figure 5.7: Posterior expectation of Y given each xi in the CBR model with fixed
radius

The main effects plot (Figure 5.7) displays a largely linear negative trend as x1 is

increased, with a somewhat non-linear positive trend for x2 and a more complex effect

as x3 is varied in isolation. Looking at the uncertainty in these estimates for the

two most significant variables, we observe somewhat disparate results: there is little

uncertainty in the effect of fixing x1 (Figure 5.8), but substantially wider uncertainty

bounds on x3 (Figure 5.9). This is likely to be a result of the differing amounts of

uncertainty remaining in the output when the two inputs are fixed: around 21% of the

output uncertainty is unexplained once x1 is known, but around 91% is unexplained

when x3 is fixed. The uncertainty in the effect of x3 is enough to make the true shape of

the curve in Figure 5.7 unclear: the turning point in the centre (and to a lesser extent

the increase at the upper extreme of the input range) may not in fact accurately reflect

the effect of the input.

81

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

6
−

0.
2

0.
2

x1

E
(Y

|x
1)

Figure 5.8: ±2 s.d. bounds on the posterior expectation of Y given x1 in the CBR
model with fixed radius

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2

x3

E
(Y

|x
3)

Figure 5.9: ±2 s.d. bounds on the posterior expectation of Y given x3 in the CBR
model with fixed radius

The effect of the varying x1 and x3 in tandem can be seen in the contour plot in

Figure 5.10. The behaviour of the output here is much more complex than in previous

examples, reflecting both the strong (and, in the case of x3, non-linear) main effects

of both inputs and the significance of the interaction between them. There can be

little uncertainty associated with this plot, since almost 90% of the output variance is

explained by the two inputs.

In this more nuanced example, the choice of input distributions can have a significant

effect on the apportioning of the output uncertainty. To demonstrate this, consider

again the second set of distributions used in the previous case: uniform distributions on

x1 and x2, a truncated gamma distribution on x3 and truncated normal distributions on

x4 and x5. The sensitivity indices associated with this choice of distributions for the case

where radius is fixed can be seen in Tables 5.8 (for main effects) and 5.9 (interactions).

82

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x3

Figure 5.10: Contour plot of the posterior expectation of Y as the inputs x1 and x3 are
varied in the CBR model with fixed radius

These are very different to those seen with truncated normal distributions on all of the

inputs: the Sobol’ index for the main effects of inputs x1 and x2 are reduced, while

that associated with the main effect of x3 increases dramatically. There are also small

but noticeable increases in the indices for the x1-x2 and x2-x3 interactions.

Input Ŝi

x1 0.6572
x2 0.0454
x3 0.1985
x4 0.0000
x5 0.0000

Table 5.8: Estimates of Ŝi for each input in the CBR model with fixed radius - new
input distributions

Ŝi,j x2 x3 x4 x5
x1 0.0366 0.0113 0 0.0037
x2 - 0.0191 0 0.0026
x3 - - 0 0.0030
x4 - - - 0

Table 5.9: Estimates of Ŝi,j for each pair of inputs in the CBR model with fixed radius
- new input distributions

Considering the substantial nature of these changes, the main effects plot (Figure

5.11) is surprisingly similar to the previous plot in Figure 5.7. While the scale on

which the curves move is substantially different for all inputs bar x3, their shapes

do not differ much from the previous case, with the exception of that for x2. The

83

uncertainty bounds on the curves for x1 and x3 are so similar to those in Figures 5.8

and 5.9 respectively that there is little need to include them here.

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

4
0.

0
0.

2
0.

4
0.

6

xi

E
(Y

|x
i)

x1

x2

x3

x4

x5

Figure 5.11: Posterior expectation of Y given each xi in the CBR model with fixed
radius - new input distributions

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x3

Figure 5.12: Contour plot of the posterior expectation of Y as the inputs x1 and x3 are
varied in the CBR model with fixed radius - new input distributions.

The interaction between x1 and x3, investigated in the contour plot in Figure 5.12,

is also much the same as that seen before (Figure 5.10). However, the two newly-

significant interactions display extremely complex patterns which were not previously

present. Figure 5.13 is a contour plot of the combined effect of varying x1 and x2. This

gives us substantial insight into the behaviour of the model which could not be seen

from the main effects plot or Sobol’ indices. While the main effect of x1 is roughly

linear, when viewed in conjunction with x2, new complexity emerges: the reduction in

expected output as x1 is increased is more pronounced when x2 is close to its extreme

84

values, and less so when x2 is nearer to the middle of its range. The curvature in

the effect of x2 can also be seen clearly. The effect of varying x2 and x3 in tandem

(Figure 5.12) is equally complex, although this may be more a result of these two

inputs’ complex main effects than the interaction between them.

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x2

Figure 5.13: Contour plot of the posterior expectation of Y as the inputs x1 and x2 are
varied in the CBR model with fixed radius - new input distributions.

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x2

x3

Figure 5.14: Contour plot of the posterior expectation of Y as the inputs x2 and x3 are
varied in the CBR model with fixed radius - new input distributions.

Finally, we should note that there is some evidence that the Gaussian process emula-

tor does not entirely capture the underlying nature of the true model. Cross-validation

was performed on the two Gaussian process emulators used so far by fitting a GP em-

ulator to 49 points in the design, predicting the output at the remaining point and

comparing this to the true output. While the emulator is usually able to predict the

missing point well, it struggles when the number of people is extremely low. Additional

85

model runs reveal that the expected casualty proportion is consistently high when num-

ber of people is low, and consistently lower once it increases beyond a certain threshold

(approximately 50, or 5% of the way into its range). An emulator based upon a sta-

tionary Gaussian process struggles to capture this as it assumes that the correlation

in each dimension depends only on the distance between a pair of points, not on the

actual values of the variable at the two, which does not appear to be the case for this

input. Number of people (input x5 in the above example) was deemed to explain a

trivial proportion of the output variance in all scenarios considered here, which may

not reflect its true effect on the simulator output.

5.6 Sensitivity analysis for multiple models

We now return to the two related problems in sensitivity analysis for a chain of

models introduced at the beginning of this chapter, namely sensitivity analysis for the

final model in a chain with respect to its own inputs, and sensitivity analysis of the full

chain of models with respect to the directly controllable inputs only.

5.6.1 Sensitivity analysis for the final model in a chain with respect

to the model’s inputs

Sensitivity analysis on the final model is in principle the same as for a single-model

case. The final model is known up to a standard Gaussian process emulator, so posterior

estimates of the main effects, interactions and Sobol’ indices for each of its inputs can

in theory be determined using the methods described above. All of these approaches,

however, require integration with respect to the distribution of the inputs to the final

model. This means that there is an additional complication arising from the nature of

the input yn−1. While the distributions on the other inputs can be chosen using any

means discussed earlier in this chapter, we have less freedom to do this for yn−1, since

its distribution is determined by the earlier models in the chain (and, implicitly, by the

distributions of the controllable inputs to the earlier models).

This apparent stumbling block can, however, be overcome using methods already

discussed in this thesis. First, we recall that the Monte Carlo integration approach

introduced in Section 5.4 requires only a sample from the joint distribution of the

inputs to the model; we are not required to have an analytical form for this distribution.

Assuming that the inputs to the final model are independent, and that the distributions

for its controllable inputs are known, sensitivity analysis can therefore be conducted if

we can obtain a sample from the distribution of yn−1.

In Chapter 3, we introduced two methods for prediction from a chain of multiple

models. This chain can be of any length, so these methods can be applied to a chain

of n − 1 models instead of n. Thus, it is possible to predict for yn−1 given the inputs

to the first n − 1 models. This can be used to generate a sample from the empirical

86

distribution for yn−1. First, draw a sample from the joint distribution of x̃1, ..., x̃n−1; as

in previous sections, this can be simplified by assuming the inputs are independent. For

each input configuration, draw a single value for yn−1. For the simulation method, this

means running each input configuration once and storing the result. For the theoretical

method, the mean and variance should be calculated, and a single value drawn from the

implied approximate normal distribution. The result is a sample from the distribution

of yn−1, which can then be used for sensitivity analysis on yn given the inputs to model

n.

A simpler result holds in the case of a chain of two models. Here, to conduct sensitiv-

ity analysis for model 2, a distribution is required for the uncontrollable input y1. Since

y1 is the output of a model which can be approximated directly by a Gaussian process

emulator, a probability distribution for y1 is available at each possible configuration of

its inputs x̃1. A distribution for y1 can therefore be constructed directly if the joint

distribution of its inputs is known.

While the inputs to the first n− 1 models in the chain, x̃1, ..., x̃n−1, do not appear in

the final sensitivity analysis for yn, they nonetheless play a significant role in its results.

The implied distribution on yn−1 depends strongly on the choices of the distributions

from which the samples of x̃1, ..., x̃n−1 are drawn. As seen in Section 5.5, changing

the input distributions in a single model can significantly affect the sensitivity analysis

results, so obtaining a reasonable empirical distribution for yn−1 is extremely important.

It is therefore crucial that the distributions of the controllable inputs to earlier models

are chosen in a way which reflects their true behaviour.

0.0 0.2 0.4 0.6 0.8 1.0

0.
85

0.
95

1.
05

1.
15

xi

E
(Y

|x
i)

y2
x3,1

Figure 5.15: Posterior mean for y3 given y2 (black) and x3,1 (red) in the simple three-
model example chain

87

To test this technique, consider the three-model chain introduced in equation (3.17).

This chain is a function of a single input x1,1, so sensitivity analysis is not meaningful

as all of its variation is explained by this single input. However, the chain could be

rewritten to include several dummy inputs which do not affect the final output:

y1(x1,1) = x1,1 + sin(3πx1,1) , 0 ≤ x1,1 ≤ 1 ;

y2(y1, x2,1) = y1 − log(1 + y1) ;

y3(y2, x3,1) = y2 + exp(−2y2) . (5.16)

Sensitivity analysis on model 3 can be conducted with respect to its inputs, y2 and

x3,1, using the technique described above. For simplicity, we assume a uniform distri-

bution on each of the controllable inputs to the chain. For x1,1, the upper and lower

bounds of the uniform distribution are 0 and 1 respectively. For x2,1, the range is taken

to be same as that seen in the output of the simulator runs for y1; this avoids biasing

our results by having the two variables be on vastly different scales, since we do not

use scaled inputs for this chain (as will be done in Chapter 7 for the real example).

Similarly, the range for x3,1 is chosen using the simulator runs for y2.

We fit emulators with constant regression terms and Gaussian correlation functions

to the three models, and use the theoretical method for prediction from a two-model

chain to obtain a sample from the distribution of y2. 10 design points for each model

are chosen from a maximin Latin hypercube design, with algorithm 2 applied to ensure

the designs for y1 and y2 are reasonable. Standard results from Sections 5.3 and 5.4

then allow posterior estimates of the main effects, interaction and Sobol’ indices to be

determined.

The posterior means of the main effects of the two inputs can be seen in Figure 5.15.

The results conform entirely to what would be expected for a model in which only one

input has an effect. Fixing the input x3,1 provides no information about the expected

output of y3, thus producing a flat line at the unconditional expected value of y3, while

fixing y2 recreates exactly the shape of the true function given in equation (5.16). The

Sobol’ index for y2 is Sy2 = 1 to five decimal places, while the index for x3,1 is Sx31 = 0,

and index for the interaction between the two inputs is zero to five decimal places. This

tells us that all of the variation in y3 is explained by y2, which we know is true for this

model.

This form of sensitivity analysis is limited, however, as it tells us little about the

effects of the inputs x1,1, x1,2 and x2,1 on y3. It is useful to know that x3,1 plays no

role in explaining the variation in y3, and it is useful to know (through the posterior

expectation of the main effect) the relationship between y2 and y3, but this is by no

88

means the full story. From this analysis alone, it would not be possible to determine that

x1,1 explains all of the variation in y3, and that x1,2 and x2,1 play no role. The same issue

applies for chains in which more than one (and potentially all) of the controllable inputs

have an effect on the final output; analysis of the final model provides no information

about the relative importance of the inputs to earlier models. For this reason, a full

sensitivity analysis for the chain as a whole is more informative.

5.6.2 Sensitivity analysis for the final output of a chain with respect

to the controllable inputs

When sensitivity analysis is required on the entire chain, the situation becomes signif-

icantly more complex. We are still interested in many of the same quantities as for the

single-model case, but the results described in the above sections no longer hold. Let E∗

denote an expectation with respect to the linked emulator, and x = (x̃1, x̃2, ..., x̃n)T be

the set of all directly controllable inputs to the chain of models. To assess, for example,

the main effects and interaction effects of the input variables, we are still interested in

E∗[E(Y |xκ)] = E∗
∫
χ−κ

η(x)dG−κ|κ(x−κ|xκ) (5.17)

but the result given in equation (5.4) for a single GP emulator no longer holds. The

additional complexity of a linked emulator framework - in which there are, for example,

multiple correlation matrices coming from each individual emulator, all of which refer to

different sets of inputs - means that no simple closed-form expression for E∗[E(Y |xκ])

can be found, as the outer expectation E∗ is now with respect to a much more compli-

cated function.

Clearly, the only solution to this is to estimate the integral in (5.17) using another

method. The most natural way to do this is a numerical approximation by direct

simulation from the linked emulator. Since the linked emulator is substantially quicker

to run than the chain of models, this is more computationally feasible than running

the models themselves, and is a sensible choice where no theoretical results about the

linked emulator exist. For long chains with relatively large input spaces, however, this

method quickly becomes infeasible, as simulation from the linked emulator is slower

than that for a single GP emulator.

The theoretical results for the mean and variance of the linked emulator output

introduced in Chapter 3 provide a partial alternative. Using our notation for sensitivity

analysis, the posterior mean of the emulator output at an input set x can be written

as E∗[η(x)]. Let F [η(x)] be the distribution of Y = η(x) under the linked emulator.

We have

89

E∗[E(Y |xκ)] = E∗
∫
χ−κ

η(x)dG−κ|κ(x−κ|xκ)

=

∫ ∞
−∞

∫
χ−κ

η(x)dG−κ|κ(x−κ|xκ)dF [η(x)]

=

∫
χ−κ

∫ ∞
−∞

η(x)dF [η(x)]dG−κ|κ(x−κ|xκ)

=

∫
χ−κ

E∗η(x)dG−κ|κ(x−κ|xκ)

= E[E∗(Y |xκ)] . (5.18)

where the third equality holds because, as in the single-emulator case (see for example

Oakley and O’Hagan, 2004), the distribution of Ŷ (x) is independent of that of x−κ|xκ
so the order of integration can be changed by a special case of Fubini’s theorem. We

can thus use the theoretical value for E∗[η(x)] to calculate the posterior expectations

of the main effects and interactions of the inputs to a linked emulator. A numerical

method is still required for the integral over χ−κ, but this can be done using essentially

the same method described in Section 5.4. Similarly, we can obtain the expectation of

Y with no fixed inputs by

E∗[E(Y)] =

∫
χ
E∗[η(x)]dG(x) .

Consider a two-model chain consisting of the models

y1(x1,1) = x1,1 + sin(3πx1,1) , 0 ≤ x1,1 ≤ 1 ;

y2(y1, x2,1) = y1 − log(1 + y1) ;

This is a subset of the chain defined in equation (5.16) in which the third model has

been removed. It depends only on its first input x1,1; the input x2,1 does not affect the

output y2. Using the method described above, we can generate a plot of the posterior

mean of y2 given x1,1 and x2,1 with respect to the linked emulator. This is shown in

Figure 5.16.

The plot demonstrates that fixing x2,1 provides no information about y2, and shows

the relationship between x1,1 and y2 exactly. For a model with multiple important

inputs, however, the plot may be less easy to interpret, and could be misleading as the

variance is not taken into account.

The situation for the variance of the main effect or interaction,

V ar∗[E(Y |xκ)], is more complicated. Since

V ar∗[E(Y |xκ)] = E∗{[E(Y |xκ)]2} − {E∗[E(Y |xκ)]}2 ,

90

0.0 0.2 0.4 0.6 0.8 1.0

1.
0

1.
5

2.
0

2.
5

xi

E
(Y

|x
i)

x1,1
x2,1

Figure 5.16: Posterior mean with respect to the linked emulator for y2 given x1,1 (black)
and x2,1 (red) in a subset of the three-model example chain containing only the first
two models

and the second term is the square of what was already calculated in (5.18), we require

an expression for E∗{[E(Y |xκ)]2}. This is equivalent to

E∗{[E(Y |xκ)]2} = E∗
{[∫

χ−κ

η(x)dG−κ|κ(x−κ|xκ)

]2}
,

but here the outer expectation with respect to the linked emulator cannot be taken

inside the integral due to the presence of the squared term. An alternative would be

to note that

[E(Y |xκ)]2 = V ar(Y |xκ)− E[(Y |xκ)]2

and attempt to obtain expressions for E∗[V ar(Y |xκ)] and E∗{E[(Y |xκ)]2}. The same

problem arises again, however, and no theoretical result for these expressions is possible

given only E∗[η(x)] and V ar∗[η(x)].

In Section 5.3, the variance of the main effect or interaction was found using the

general result in (5.10), attributable to Oakley and O’Hagan (2004). This result requires

knowing the covariance between the output of two independent realisations of the GP

emulator, so a similar approach could in theory be used for a linked emulator. A

derivation of the same covariance for the case of a linked emulator has to date not been

possible; this is discussed further in Chapter 9.

To obtain an estimate of the posterior expectation of the sensitivity indices for a set

of inputs xκ, we require

Ŝκ =
E∗{V ar[E(Y |xκ)]}

E∗[V ar(Y)]
.

91

As was the case for a single GP emulator, this is not an exact expression for Sκ since

the ratio of an expectation does not equal the expectation of a ratio. To calculate the

denominator, note that

E∗[V ar(Y)] = E∗[E(Y 2)]− E∗{[E(Y)]2}

= E[E∗(Y 2)]− E∗{[E(Y)]2}

= E[V ar∗(Y)] + E{[E∗(Y)]2} − E∗{[E(Y)]2}

= E[V ar∗(Y)] + E{[E∗(Y)]2} − V ar∗[E(Y)]− {E∗[E(Y)]}2

= E[V ar∗(Y)] + V ar[E∗(Y)]− V ar∗[E(Y)] (5.19)

Again, however, this is dependent on V ar∗[E(Y)], for which no result is currently avail-

able. Similar issues arise when attempting to derive an expression for the numerator,

and no result for this currently exists. The case of sensitivity analysis for a chain of

emulators which do not satisfy the constraints required for the theoretical means and

variances to be calculated also remains open unless direct simulation can be used.

5.7 Conclusions

This chapter reviews existing approaches to sensitivity analysis for a single compu-

tational model, and presents approaches to extend these to a chain of models. We

begin with a broad view of sensitivity analysis in its many forms, before focusing on

the specifics of model decomposition and variance-based sensitivity analysis, and how

they can be used within the framework of Gaussian process emulation. These tech-

niques were then applied to a model for casualties of a CBR release, demonstrating the

valuable insights which can be provided by sensitivity analysis in understanding the

behaviour of a model with respect to its inputs. This example is directly relevant to

our eventual research goals: Chapter 7 also deals with casualties from a CBR release,

but using a chain of models instead of a “one-hit” setup.

Our attempts to create methods for sensitivity analysis for a chain of models were

only partially successful. Nevertheless, a concrete method for sensitivity analysis for

the final model in the chain is a valuable tool. It is noteworthy that this method is

only possible when combined with Monte Carlo integration for a single emulator; the

use of an alternative numerical method such as quadrature would complicate matters

significantly, since only an empirical distribution is available for the input yn−1. As

discussed in Section 5.4, however, there are already several practical advantages to the

use of a Monte Carlo approximation to the unknown integrals even for the simpler

single-model case.

With regards to sensitivity analysis for the chain as a whole, there is still much work

to be done. Posterior estimates of the main effects and interactions of the directly

92

controllable inputs are undoubtedly useful, but limited in scope. No quantification of

the uncertainty in these estimates is possible, and reliable estimates of the Sobol’ indices

cannot be derived from them; the naive approach of simply estimating the Sobol’ index

of an input i by

E∗(Vi) ≈ V ar{E∗[E(Y |xi)]}

is not recommended since it takes no account of the variance in the estimate of the main

effect. A full derivation would appear to depend on a theoretical result for the posterior

covariance between two outputs from the final model under the linked emulator, which

has not so far been possible to determine, although the beginnings of a derivation are

given in Chapter 9.

Additionally, the posterior estimate of the main effects and interactions presented

here is only possible when closed-form expression for the mean and variance of the final

model output under the linked emulator are available, which is only the case under

the fairly restrictive set of assumptions given in Theorem 3.1. In terms of sensitivity

analysis for chains of emulators which do not satisfy these assumptions, there are several

ideas which may be of interest, but these require substantial further theoretical and

practical development. They are discussed further in Chapter 9.

93

94

Chapter 6

Software implementation

6.1 Introduction

The computer code associated with this research project, which was developed inde-

pendently, is written predominantly in the R programming language. Its chief function

is to provide methods for prediction from a chain of Gaussian process emulators. (Meth-

ods for a single GP emulator are also implemented, but these are not discussed here

as their primary use is as part of the process used for a chain.) Both the Monte Carlo

integration-based methods for chains of arbitrary length (see Sections 3.3 and 3.5) and

the theoretical methods to obtain the mean and variance of the linked emulator (see

Sections 3.4 and 3.6) are supported in our code.

The Monte Carlo method is computationally expensive to conduct, and an imple-

mentation entirely in R was found to be infeasibly slow even for relatively small prob-

lems. For this reason, much of the linear algebra and basic calculations required were

moved to the faster C++ language. The R packages ‘Rcpp’ (Eddelbuettel, 2013) and

‘RcppArmadillo’ (Eddelbuettel and Sanderson, 2014) are used to interface between

the two languages. The code requires that the vector of regression coefficients in each of

the emulators is integrated out, and that the correlation parameters are estimated using

a plug-in method. The process variance may be dealt with in either manner; although

these two cases lead to substantially different distributions on the emulator output at

each stage, our code was developed to support both methods. The correlation function

may be one of three standard types: Gaussian, Matérn with smoothness parameter

ω = 5/2 and Matérn with smoothness parameter ω = 3/2. These were chosen due to

their prior use in single-model emulation packages such as ‘DiceKriging’ (Roustant

et al., 2012).

The theoretical approximation to the linked emulator also makes use of C++, despite

being relatively fast to calculate, as this allows large problems to be tackled in reason-

able time. Separate functions are used for the mean and variance at a prediction point,

and are both called by another function which calculates both. Due to the assumptions

required for the theoretical results to hold, only a Gaussian correlation may be specified

95

, and the regression coefficients and process variance must be single values specified by

the user.

In addition, our code also includes methods for sensitivity analysis for the final

model in a chain. This combines the multiple model prediction methodology (to obtain

a sample from the distribution for the input yn−1) with traditional emulation-based

sensitivity analysis for a single model.

The full set of functions used in our work are available on Github at https://

github.com/StephenGow/Thesis-Code.

The remainder of this chapter focuses on the practical uses of the code. The vast

majority of the 23 R and 34 C++ functions used are intended for “behind-the-scenes”

calculations, and should not need to be called directly by an end user. There are

four R functions which should be used directly - one each for prediction from a linked

emulator using simulation, prediction from a linked emulator using the theoretical

method, sensitivity analysis for the final model in a chain, and posterior expectations

of the final output of a chain given the directly controllable inputs. These are described

in detail in Section 6.2, with the code required for their usage in an example chain

presented in Section 6.3.

6.2 Details of usage

6.2.1 Prediction from a linked emulator using simulation

Function Name

MM pred simu

Description

Prediction from a linked emulator via the simulation method.

Arguments

• sampsize: Monte Carlo sample size.

• predpts: List of matrices of the prediction points for the controllable inputs to

each model.

• loc vec: Vector of locations of the variable yk−1 in the emulator for yk.

• designs: List of design matrices for the individual emulators.

• b vecs: List of vectors of correlation parameters for the individual emulators.

• res vecs: List of vectors of results from the simulator runs for each computer

experiment.

96

https://github.com/StephenGow/Thesis-Code
https://github.com/StephenGow/Thesis-Code

• F mats: List of matrices of regression functions for the individual emulators.

• corr mats: List of correlation matrices for the individual emulators.

• cov type: String determining the correlation function of the emulators. Op-

tions are a Gaussian correlation (“Gaussian”), Matérn correlation with ω = 3/2

(“Matern 32”), and Matérn correlation with ω = 5/2 (“Matern 52”).

• scale params: Optional list of location and scale shift parameters for the second

and later emulators in the chain.

Notes

This function assumes that the regression coefficients and process variance are inte-

grated out, and thus samples from a t-distribution for the output of each model in the

chain.

For the predpts input, entry k of the list should be a matrix containing the prediction

locations for the inputs x̃k. If model k takes no inputs except yk−1, entry k of the list

should be set to null.

For a chain consisting of r models, the loc vec input is a vector of length r − 1

containing the locations of the variable yk−1 in the emulator for yk. For example, “1”

corresponds to a two-model chain in which y1 is the first variable in the emulator for

y2.

The scale params input should be used when the output yk is on a different scale

to the one used in the emulator for yk+1. Default corresponds to a location shift of 0

and a scale shift of 1.

Value

A matrix of outputs from the linked emulator, where each row corresponds to a

distinct prediction point.

6.2.2 Prediction from a linked emulator using the theoretical method

Function Name

MM pred theory

Description

Prediction from a linked emulator via the theoretical method.

97

Arguments

• predpts: List of matrices of the prediction points for the controllable inputs to

each model.

• designs: List of design matrices for the individual emulators.

• b vecs: List of vectors of correlation parameters for the individual emulators.

• res vecs: List of vectors of results from the simulator runs for each computer

experiment.

• inv corrmats: List of inverted correlation matrices for the individual emulators.

• beta0s: List of regression coefficients for the individual emulators.

• sig2s: List of process variances for the individual emulators.

• nuggets: List of nuggets for the individual emulators.

• scale params: Optional list of location and scale shift parameters for the second

and later emulators in the chain.

Notes

The correlation functions of all of the individual GP emulators are required to be

Gaussian. The regression components of the emulators must be constant terms instead

of linear. Each yk−1 must be the first variable in the emulator for yk.

For the predpts input, entry k of the list should be a matrix containing the prediction

locations for the inputs x̃k. If model k takes no inputs except yk−1, entry k of the list

should be set to null.

The scale params input should be used when the output yk is on a different scale

to the one used in the emulator for yk+1. Default corresponds to a location shift of 0

and a scale shift of 1.

Value

List of two elements: the mean of the output under the linked emulator at each

prediction point, and the corresponding variance at each prediction point.

6.2.3 Sensitivity analysis for the final model in a chain

Function Name

SensFinal

98

Description

Sensitivity analysis on the final model in a chain using the theoretical method for

prediction.

Arguments

• designs: List of design matrices for the individual emulators.

• b vecs: List of vectors of correlation parameters for the individual emulators.

• res vecs: List of vectors of results from the simulator runs for each computer

experiment.

• inv corrmats: List of inverted correlation matrices for the individual emulators.

• beta0s: List of regression coefficients for the individual emulators.

• sig2s: List of process variances for the individual emulators.

• nuggets: List of nuggets for the individual emulators.

• samples1: List of matrices containing samples from the distribution for the con-

trollable inputs to each model.

• samples2: List of matrices containing samples from the distribution for the con-

trollable inputs to each model.

• seq length: Number of points in each variable to evaluate the main effects and

(if specified) bounds and interactions at. Default is 200.

• bounds: Optional numeric vector containing the variable(s) for which posterior

variance bounds of ±2 standard deviations on the expected output across the

range of the variable(s) should be plotted.

• ints: Optional matrix containing the pairs of variables for which the two-way

interaction between them should be plotted.

• lim low: Optional vector of lower limits for the variables of the final model. If

not supplied, defaults to 0 for all variables.

• lim up: Optional vector of upper limits for the variables of the final model. If

not supplied, defaults to 1 for all variables.

• varnames: Optional vector of variable names.

99

Notes

This function works by using MM pred theory to obtain a sample for the input to

the final model which arises as the output of the previous model in the chain, then

applying standard techniques for sensitivity analysis on a single emulator using Monte

Carlo integration. It assumes independence between the variables in the final model,

so that their joint distribution is a combination of their one-dimensional distributions.

A Gaussian correlation function and constant regression component for the individual

GP emulators in the chain is required.

By default, the function plots the posterior mean of the expected output across the

range of each variable in the final model, and calculates Sobol’ indices for each main

effect and two-way interaction. The user may specify additional plots using the bounds

and ints arguments. The bounds input is a vector containing the location of the

relevant variable(s) in the emulator for the final model. If s interactions are required,

the dimension of the matrix input ints should be s × 2, where each row contains the

locations of the relevant pair of variables in the emulator for the final model. When

multiple plots are requested, they are separated by a user prompt to press the return

key.

The matrices of samples contained within the list arguments samples1 and samples2

must be independent. If model k takes no inputs except yk−1, entry k of these lists

should be set to null.

The scale params input should be used when the output yk is on a different scale

to the one used in the emulator for yk+1. Default corresponds to a location shift of 0

and a scale shift of 1.

The varnames argument controls the names used for each variable in plots of the main

effects and (if specified) bounds and interactions. The default is x1, x2, ..., xq∗, where

q∗ is the number of variables in the final model and consists of qr directly controllable

inputs plus yr−1.

Value

List of two elements: a vector of the Sobol’ indices for the individual variables, and

a matrix of Sobol’ indices for the two-way interactions.

6.2.4 Sensitivity analysis for the output of a chain in terms of the

directly controllable inputs

Function Name

Multimod calcME

100

Description

Posterior means of the expected output of a chain of two models as each of the

directly controllable inputs to the chain is fixed to multiple values across its range.

Arguments

• samples: Matrix containing a sample from the joint distribution of all controllable

inputs to the chain.

• xn 1: Design matrix for the first emulator.

• xn 2: Design matrix for the second emulator.

• y1: Vector of results from the simulator runs for the first computer experiment.

• y2: Vector of results from the simulator runs for the second computer experiment.

• beta0 1: Regression coefficient for the first emulator.

• beta0 2: Regression coefficient for the second emulator.

• inv corrmat1: Inverted correlation matrix for the first emulator.

• inv corrmat2: Inverted correlation matrix for the second emulator.

• b1: Vectors of correlation parameters for the first emulator.

• b2: Vectors of correlation parameters for the second emulator.

• sig2 1: Process variance for the first emulator.

• sig2 2: Process variance for the second emulator.

• nugget 1: Nugget of the first emulator.

• nugget 2: Nugget of the second emulator.

• seq length: Number of points in each variable to evaluate the main effects and

(if specified) bounds and interactions at. Default is 200.

• lim low: Optional vector of lower limits for the variables of the final model. If

not supplied, defaults to 0 for all variables.

• lim up: Optional vector of upper limits for the variables of the final model. If

not supplied, defaults to 1 for all variables.

• varnames: Optional vector of variable names.

• scale params: Optional vector of location and scale shift parameters for the

second emulator in the chain.

101

Notes

Independence between the controllable inputs of the chain is assumed, so that their

joint distribution is a combination of their one-dimensional distributions. A Gaussian

correlation function and constant regression component for the individual GP emulators

in the chain is required.

In addition to its value, this function plots the posterior mean of the expected output

across the range of each variable.

The scale params input should be used when the output y1 is on a different scale

to the one used in the emulator for y2. Default corresponds to a location shift of 0 and

a scale shift of 1.

The varnames argument controls the names used for each variable in plots of the

main effects and (if specified) bounds and interactions. The default is x1, x2, ..., xq,

where q = q1 + q2 is the total number of directly controllable inputs to the chain.

In the longer term, it is hoped to extend this function to support chains of more

than two models, and to bring its inputs into line with the previous three functions

described.

Value

Matrix of expected outputs across the range of each variable to the chain. Each row

corresponds to a variable; each column corresponds to the location of the fixed value

for each variable within the sequence.

6.3 Examples

We present in this section an example of how the functions described in Section 6.2

can be used for prediction and sensitivity analysis for a chain of models. The chain

we shall demonstrate our R code on is the three-model example presented in equation

(5.16), with a single important input and two dummy inputs which have no effect on

the output y3. Note that where it is necessary to break a single line of code across

multiple lines of text, we shall use a tab at the beginning of the second and later lines

to indicate that these should be read as part of the preceding line of code.

We begin by inputting the three models into R.

t e s t f u n c 1 <− f unc t i on (x1){
re turn (x1 + s i n (3 ∗ pi ∗ (x1)))

}

102

t e s t f u n c 2 <− f unc t i on (x1 , x2){
re turn (x1 − l og (1 + x1))

}

t e s t f u n c 3 <− f unc t i on (x1 , x2){
re turn (x1 + exp(−2∗x1))

}

We now need to run computer experiments for each of these models, and extract the

relevant values for use in the linked emulator. Before doing this, however, we define a

function to set up the matrix of correlations between the design points of a computer

experiment, as this will be useful later.

co r r mat se tup <− f unc t i on (co r r func , des ign , b , nugget){
des ign <− as . matrix (des ign)

npts <− nrow (des ign)

corr mat <− matrix (nrow=npts , nco l=npts)

f o r (i in 1 : npts){
f o r (j in 1 : npts){

corr mat [i , j] <− c o r r f u n c (b , des ign [i ,] − des ign [j ,])

}
}
corr mat <− corr mat + diag (nugget , npts)

re turn (corr mat)

}

To allow the theoretical linked emulator to be used, a Gaussian correlation function

and a constant regression term are used. The experimental designs are chosen as

described in Section 5.6. A nugget δ = 10−7 is used in each emulator. The mlegp

package is used to fit the emulators. For the first model, the code required to run the

computer experiment, set up the matrix of regression functions and nugget, build the

GP emulator, extract the correlation parameters and populate the matrix of correlations

is as follows:

l i b r a r y (mlegp)

npts 1 <− 10

xn 1 <− seq (0 , 1 , l en=npts 1)

y1 <− vec to r (l ength=npts 1)

f o r (i in 1 : npts 1){
y1 [i] <− t e s t f u n c 1 (xn 1 [i])

103

}

F mat1 <− matrix (rep (1 , npts 1))

nugget 1 <− 1e−7

GP 1 <− mlegp (xn 1 , y1)

b1 <− GP 1$beta

corr mat1 <− cor r mat se tup (corrfunc Gauss Cpp , xn 1 , b1 ,

nugget 1)

The function corrfunc Gauss Cpp is a C++ function to calculate the correlation be-

tween two points under a Gaussian correlation model, which is not repeated here for

reasons of space. With some slight alterations to account for the second and third

model being (nominally) functions of two inputs, and an adaptation in the experimen-

tal design procedure as described in Algorithm 2, the code for the remaining two models

is broadly similar.

y1 des i gn <− seq (min (y1) , max(y1) , l ength=npts 1)

x21 des ign <− r u n i f (npts 1 , min (y1) , max(y1))

xn 2 <− cbind (y1 des ign , x21 des ign)

y2 <− vec to r (l ength=npts 1)

f o r (i in 1 : npts 1){
y2 [i] <− t e s t f u n c 2 (xn 2 [i , 1] , xn 2 [i , 2])

}

F mat2 <− matrix (rep (1 , npts 1))

nugget 2 <− 1e−7

GP 2 <− mlegp (xn 2 , y2)

b2 <− GP 2$beta

corr mat2 <− cor r mat se tup (corrfunc Gauss Cpp , xn 2 , b2 ,

nugget 2)

y2 des i gn <− seq (min (y2) , max(y2) , l ength=npts 1)

x31 des ign <− r u n i f (npts 1 , min (y2) , max(y2))

xn 3 <− cbind (y2 des ign , x31 des ign)

y3 <− vec to r (l ength=npts 1)

f o r (i in 1 : npts 1){
y3 [i] <− t e s t f u n c 3 (xn 3 [i] , xn 3)

}

F mat3 <− matrix (rep (1 , npts 1))

nugget 3 <− 1e−7

GP 3 <− mlegp (xn 3 , y3)

104

b3 <− GP 3$beta

corr mat3 <− cor r mat se tup (corrfunc Gauss Cpp , xn 3 , b3 ,

nugget 3)

Since this chain is a function of x1,1 only for a known set of functions, it can be

visualised by plotting the linked emulator predictions and the true value of y3 across

the range of x1,1, as in Figures 3.5 and 3.6. We therefore set up two functions to do

this, one for the simulation-based linked emulator and one for the theoretical linked

emulator, which differ based on how the upper and lower bounds of the credible interval

for y3 are calculated.

p lotemutest s imu <− f unc t i on (GP sample , x seq , true y , xn , vn){

mean <− apply (GP sample , 1 , mean)

boundlow <− apply (GP sample , 1 , quant i l e , 0 . 025)

boundup <− apply (GP sample , 1 , quant i l e , 0 . 975)

p l o t (x seq , true y , type=” l ” , yl im=c (min (boundlow , t rue y) ,

max(boundup , t rue y)) , x lab=vn [1] , y lab=vn [2])

l i n e s (x seq , mean , c o l=”blue ”)

l i n e s (x seq , boundlow , c o l=”green ”)

l i n e s (x seq , boundup , c o l=”green ”)

}

p lo temutes t theory <− f unc t i on (means , vars , x seq ,

true y , xn , vn){

sds <− s q r t (vars)

boundlow <− means − 2 ∗ sds

boundup <− means + 2 ∗ sds

p l o t (x seq , true y , type=” l ” , yl im=c (min (boundlow , t rue y) ,

max(boundup , t rue y)) , x lab=vn [1] , y lab=vn [2])

l i n e s (x seq , means , c o l=”blue ”)

l i n e s (x seq , boundlow , c o l=”green ”)

l i n e s (x seq , boundup , c o l=”green ”)

}

We now need to set up the set of prediction points for the linked emulator. A set

of 201 points are chosen in a sequence between 0 and 1 for the first input x1,1, with

random values drawn for x2,1 and x3,1. Since the true form of the chain is known, we

can also calculate the actual value of y3 at each of the prediction points.

105

n p t s t e s t <− 201

x1 pred <− seq (0 , 1 , l ength=n p t s t e s t)

x2 pred <− r u n i f (np t s t e s t , min (y1) , max(y1))

x3 pred <− r u n i f (np t s t e s t , min (y2) , max(y2))

t rue y1 <− apply (as . matrix (x1 pred) , 1 , t e s t f u n c 1)

t rue y2 <− apply (as . matrix (t rue y1) , 1 , t e s t f u n c 2)

t rue y3 <− apply (as . matrix (t rue y2) , 1 , t e s t f u n c 3)

Inputs for the function MM pred simu are then set up as described in Section 6.2,

with a sample size of 1000 repetitions at each prediction point.

predpts <− l i s t (x1 pred , x2 pred , x3 pred)

de s i gn s <− l i s t (xn 1 , xn 2 , xn 3)

b vecs <− l i s t (b1 , b2 , b3)

r e s v e c s <− l i s t (y1 , y2 , y3)

F mats <− l i s t (F mat1 , F mat2 , F mat3)

corr mats <− l i s t (corr mat1 , corr mat2 , corr mat3)

GP sampsize <− 1000

l o c v e c <− c (1 , 1)

We are now in a position to use the MM pred simu function to obtain a sample of

1000 values for y3 from the simulation-based linked emulator at each prediction point.

The plot generated is the same as in Figure 3.5, but with the red dots for the design

points removed, as the experimental design procedure introduced in Algorithm 2 does

not allow for the design points in x1,1 to be associated with a specific value of y3.

y3 samples s imu <− MM pred simu (GP sampsize , predpts , l o c vec ,

des igns , b vecs , r e s v e c s , F mats , corr mats ,

cov type =‘Gaussian ’)

The output of the simulation-based linked emulator can be visualised and compared

to the true value of y3 at the prediction points using the function we set up earlier for

this purpose. We use the expression function to generate the correct variable names

in the plot labels.

p lotemutest s imu (y3 samples s imu , x1 pred , true y3 , xn 1 ,

c (exp r e s s i on (‘ x ’ [’ 1 , 1 ’]) , e xp r e s s i on (‘ y ’ [3])))

106

The additional inputs required for the MM pred theory function are set up as follows.

beta0 1 <− mean(y1)

beta0 2 <− mean(y2)

beta0 3 <− mean(y3)

beta0s <− l i s t (beta0 1 , beta0 2 , beta0 3)

s i g 2 1 <− var (y1)

s i g 2 2 <− var (y2)

s i g 2 3 <− var (y3)

s i g 2 s <− l i s t (s i g2 1 , s i g2 2 , s i g 2 3)

inv corrmat1 <− cho l2 inv (cho l (corr mat1))

inv corrmat2 <− cho l2 inv (cho l (corr mat2))

inv corrmat3 <− cho l2 inv (cho l (corr mat3))

inv cor rmats <− l i s t (inv corrmat1 , inv corrmat2 , inv corrmat3)

nuggets <− l i s t (nugget 1 , nugget 2 , nugget 3)

MM pred theory can now be used to generate the mean and variance of y3 under the

theoretical linked emulator at each prediction point. These are again visualised and

compared to the true values using the relevant function defined earlier in this section.

MM pred theory returns a list containing the means and variances of y3, so these must

be passed to the plotting function separately. The plot is that seen in Figure 3.6 with

the red dots for the design points removed as described above.

y 3 r e s u l t t h e o r y <− MM pred theory (predpts , des igns , b vecs ,

r e s v e c s , inv corrmats , beta0s , s i g2 s , nuggets)

y3 means <− y3 re su l t theory$means

y3 vars <− y 3 r e s u l t t h e o r y $ v a r s

p lo t emutes t theory (l inked means , l i nked va r s , x1 pred , true y3 ,

xn 1 , c (exp r e s s i on (‘ x ’ [’ 1 , 1 ’]) , e xp r e s s i on (‘ y ’ [3])))

We now move on to sensitivity analysis. As in Section 5.6, we assume a uniform

distribution on each of the controllable inputs to the chain. A sample size of 10000 will

be used. We require two sets of samples, which are generated using the in-built runif

function.

SA sampsize <− 10000

sample x11 1 <− r u n i f (SA sampsize)

107

sample x11 2 <− r u n i f (SA sampsize)

sample x21 1 <− r u n i f (SA sampsize , min (y1) , max(y1))

sample x21 2 <− r u n i f (SA sampsize , min (y1) , max(y1))

sample x31 1 <− r u n i f (SA sampsize , min (y2) , max(y2))

sample x31 2 <− r u n i f (SA sampsize , min (y2) , max(y2))

Given these samples, we can conduct a complete sensitivity analysis on the third

model in the chain given the inputs y2 and x3,1 using the SensFinal function. The

samples must be formatted into two lists for use in the function. SensFinal generates

a main effects plot of each input, and returns the Sobol’ indices for the main effects

and second-order interaction term. In this example, we do not specify any plots of

bounds on the main effects, nor a contour plot of the interactions, but these can easily

be added if desired. The plot generated can be seen in Figure 5.15.

samples1 <− l i s t (sample x11 1 , sample x21 1 , sample x31 1)

samples2 <− l i s t (sample x11 2 , sample x21 2 , sample x31 2)

SensFina l (des igns , b vecs , r e s v e c s , inv corrmats , beta0s ,

s i g2 s , nuggets , samples1 , samples2 ,

varnames=c (exp r e s s i on (‘ y ’ [‘ 2 ’]) , e xp r e s s i on (‘ x ’ [‘ 3 , 1 ’])))

We are also able to generate a plot of the main effect of each directly controllable

input to a two-model chain using the Multimod calcME function. We therefore use this

to generate such a plot for y2 against x1,1 and x2,1. Only one sample for the controllable

inputs is required, which must be structured as a matrix instead of a list.

sample 2mod <− cbind (sample x11 1 , sample x21 1)

Multimod calcME (sample 2mod , xn 1 , xn 2 , y1 , y2 , beta0 1 ,

beta0 2 , inv corrmat1 , inv corrmat2 , b1 , b2 , s i g2 1 ,

s i g2 2 , nugget 1 , nugget 2 ,

varnames=c (exp r e s s i on (‘ x ’ [‘ 1 , 1 ’]) , e xp r e s s i on (‘ x ’ [‘ 2 , 1 ’])))

This code generates the plot seen in Figure 5.16, and returns the numerical values

which make up the plot in case these are required for further use. At present, our code

does not allow us to generate a main effects plot for each controllable input to a chain of

three models or more, hence why the final output y3 is not considered in this example.

108

Chapter 7

Application: casualty prediction

from a CBR release

To demonstrate the methods introduced above, we consider a chain for CBR mod-

elling. The chain is designed to predict the probability of casualty from a CBR release,

and consists of two models. It can be viewed as a simplified version of the chain intro-

duced in Figure 1.1. The second model in the chain is a dose-response model for the

probability of casualty. This takes two inputs, one of which is dosage. This input is not

of direct interest in research terms, since it is itself influenced by many other factors.

The first model in the chain deals with atmospheric dispersion. The model provides

its output on a grid of points in the form of either the concentration of the contaminant

at specified time intervals, or the average concentration per hour across the simulation

period. The latter value multiplied by the number of seconds in the simulation period

gives the dosage of the pollutant received by a person at each point on the grid over

the simulation period. This model can therefore be used to generate the dosage input

for the casualty model, leading to a chain of two models. The models themselves are

described in detail in Sections 7.1 and 7.2 respectively.

7.1 Dispersion model

The first model in the chain deals with the dispersion of a contaminant such as a

chemical or biological agent. The Hybrid Single Particle Lagrangian Integrated Trajec-

tory Model (HYSPLIT) model was developed by the Air Resources Laboratory of the

National Oceanic and Atmospheric Administration in the United States of America,

and is available for download publicly. Details of the model are available in Stein et al.

(2015). The model is relatively computationally intensive, and has a high overhead in

terms of setting up new runs, so is one which benefits significantly from emulation.

The inputs to the HYSPLIT model consist of meteorological data on a geographical

grid, and the physical and emission properties of the contaminant. The model has an

extremely large number of inputs, many of which are either not suitable (due to being

109

categorical instead of continuous) or not of interest for our purposes. It was therefore

decided to focus only on varying three of the inputs, while keeping the others fixed.

The three inputs chosen were release rate, release duration and release time. Ranges

and units for these inputs are given in Table 7.1.

Input Units Lower bound Upper bound

Release rate units of contaminant / hour 0 2
Release duration hours 0 12

Release time minutes 0 360

Table 7.1: Ranges and units for the three inputs to the HYSPLIT model which are
allowed to vary in our example

A single contaminant from a single release location was assumed. The simulation

time was fixed at 12 hours. The release location is fixed at latitude 40 degrees north,

longitude 90 degrees west, with an elevation of 10 metres. This is the default release

location in the HYSPLIT program, and corresponds to a location in central Illinois,

United States. The default meteorology file and default values for other inputs such as

the half-life and diffusivity of the pollutant were also used.

0.0 0.5 1.0 1.5 2.0

0e
+

00
2e

−
11

4e
−

11
6e

−
11

HYSPLIT output

Release rate (units/hour)

D
os

ag
e

Figure 7.1: HYSPLIT output at the 20 design points against release rate

While the output is given on a grid, we are less interested in considering the effect

across space and more concerned with the effect of the three inputs of interest. For this

reason, a single point is chosen for analysis: the point with latitude 39.95 degrees north,

longitude 90 degrees west. This is very close to the release location, differing only in

being slightly further south. Since the wind direction specified in the meteorology file

includes a strong northerly component, this location thus receives a relatively large dose

of the pollutant over the course of the simulation compared to most on the measurement

110

0 2 4 6 8 10 12

0e
+

00
2e

−
11

4e
−

11
6e

−
11

HYSPLIT output

Release duration (hours)

D
os

ag
e

Figure 7.2: HYSPLIT output at the 20 design points against release duration

grid, although it is still possible for this dosage to be very small if the inputs of interest

are chosen such that the absolute amount of pollutant released is low.

0 50 100 150 200 250 300 350

0e
+

00
2e

−
11

4e
−

11
6e

−
11

HYSPLIT output

Release time (minutes)

D
os

ag
e

Figure 7.3: HYSPLIT output at the 20 design points against release time

All of the work which follows requires an emulator on the HYSPLIT model. A

maximin Latin hypercube design with 20 points on the three inputs of interest (release

rate, hours of emission and release time) is used to generate the data to which the

emulator for the dosage output at the chosen spatial location is fitted. This is not a

large design for a three-dimensional design space, so there is a relatively high level of

uncertainty in prediction from the resulting emulator. The emulator is fitted using the R

package ‘DiceKriging’, with a Gaussian correlation function; the nugget is estimated

from the data during the fitting process. The input variables are on widely differing

111

ranges, so are rescaled to the [0, 1] interval before the emulator is fitted.

0.0 0.5 1.0 1.5 2.0

0e
+

00
2e

−
11

4e
−

11
6e

−
11

Mean emulator prediction

Release rate (units/hour)

D
os

ag
e

Figure 7.4: Mean emulator prediction for the HYSPLIT output at the 200 prediction
points against release rate

0 2 4 6 8 10 12

0e
+

00
2e

−
11

4e
−

11
6e

−
11

Mean emulator prediction

Release duration (hours)

D
os

ag
e

Figure 7.5: Mean emulator prediction for the HYSPLIT output at the 200 prediction
points against release duration

To understand how the model behaves, it is useful to look at both the results of the

simulator runs and the predictions made by the emulator for different input config-

urations. We can plot the true HYSPLIT output against the three inputs at the 20

points for which it is known. Figures 7.1, 7.2 and 7.3 suggest that there is a strongly

increasing relationship between the release rate and dosage. A weaker relationship can

be seen between release time and dosage, while there is no obvious pattern to the effect

of release duration. These patterns are largely replicated, as we would expect, in the

112

0 50 100 150 200 250 300 350

0e
+

00
2e

−
11

4e
−

11
6e

−
11

Mean emulator prediction

Release time (minutes)

D
os

ag
e

Figure 7.6: Mean emulator prediction for the HYSPLIT output at the 200 prediction
points against release time

mean predictions of the emulator we fit to the data, displayed in Figures 7.4, 7.5 and

7.6. The observed trends in the model are not what may have been expected: typically,

increasing the duration of release would cause the dosage to increase, while releasing

the pollutant later may be associated with lower dosages. The unusual patterns seen

here may be a result of the decision to focus on the dosage at a single geographical

location close to the source of the release. It should also be noted that it is not easy

to draw firm conclusions from these plots, as each individual scatter plot ignores the

effect of changes in the other two variables.

One interesting feature of the predictions is that for seven of the 200 points, the mean

emulator output is less than 0. This is of course not realistic, since a negative dosage

of a pollutant cannot exist, and the HYSPLIT model does not return such values.

Further analysis of these predictions shows that the variances associated with them

are relatively large. It is also observed that all seven negative mean predictions occur

when both the release rate and release time are low, a combination which is particularly

difficult for the emulator to deal with since it leads to very low dosages. With only

20 design points for the computer experiment, it can be difficult for the emulator to

make good predictions at extreme regions of the design space, especially when these

regions are associated with extreme predictions. One way to deal with this would be

to transform the output onto an unbounded scale before fitting an emulator. In this

work, however, we shall continue to use the emulator described here for simplicity.

7.2 Casualty model

The second model concerns the probability of casualty arising from a given dose of a

chemical or biological agent. It takes as inputs the dosage received by a person, together

113

with two additional inputs D50 and slope which are properties of the contaminant. The

output is the probability that the affected individual dies due to the agent.

The model equation for this particular dose response model is

P = 0.5

{
1 + erf

[
s√
2

log10
x

d

]}
(7.1)

where erf is the error function, P is the probability of casualty, x is the dosage, d is the

D50 and s is the slope. This model was suggested by Dstl to be indicative of what may

be seen, and is termed a probit model for dose response. The use of probit models for

casualty response to dosage has a long history, first appearing in Bliss (1934). Other

dose response models are also available - Berkson (1944), for example, prefers the use

of a logistic model, while Prentice (1976) introduces a four-parameter generalisation of

both models.

In our work, the D50 and dosage are considered of interest to vary, while the slope

is arbitrarily set to s = 3; this corresponds to a relatively gradual increase in the

probability of casualty, with values of exactly 0 and 1 only at very extreme values of

the other parameters. This was done to better demonstrate out methods and is not

based on any real pollutants.

The model can be viewed as a simple reparameterisation of the standard probit

regression equation, in which the constant term has been adjusted such that the role

of the D50 input - a known or estimated property of the agent, corresponding to the

dosage at which the probability of casualty is 0.5 - is made explicit. Equation (7.1)

could be rewritten as

P = 0.5

{
1 + erf

[
s√
2

(log10 x− log10 d)

]}
= 0.5{1 + erf[β0 + β1 log10 x]}

where β1 = s/
√

2 and β0 = s log10 d√
2

. This is the standard form of a probit regression

model.

7.3 Prediction from the chain

For this particular chain, there are several approaches that could be taken for predic-

tion. The dose-response model is not computationally expensive to run, so Gaussian

process emulation is not strictly required in order to make inferences about its be-

haviour. For the purposes of demonstrating our methodology, however, it will nonethe-

less be useful to emulate it anyway. In addition, while simulation-based methods lend

themselves naturally to a chain of models in which only some will require emulation,

the theoretical results derived in chapter 3 are specific to the case where all models in

114

the chain are emulated. However, simulation using the true model provides a useful

benchmark to compare our results again.

The following subsections will therefore consider four cases: a simulation in which

only the first model is emulated; a composite emulator, where the output of the second

model is modelled directly as a function of the controllable inputs to the chain only

a linked emulator constructed by Monte Carlo integration in which both models are

emulated; and a linked emulator constructed such that its theoretical mean and variance

are known. To test prediction across the space of the four controllable inputs, a maximin

Latin hypercube with 200 points on four dimensions is used. This prediction set will

form the basis for comparisons between the different methods considered in this chapter.

7.3.1 Direct simulation on the dose-response model

Prediction in the first case is achieved by generating a set of 1000 predictions from

the emulator for the HYSPLIT model for the values of release rate, release time and

release duration at each prediction point, then feeding each of these outputs into the

true simulator for dose response together with the value of D50 at the relevant prediction

point. Since this method has no uncertainty arising from the second model, we would

expect this to approximate the system better than one which has uncertainty in both

stages of the chain, so this will be used as the benchmark to which the other methods

are to be compared.

The plots of mean probability of casualty against the four inputs of interest (Figure

7.7) reveal a mixed picture. The most important input would appear to be D50,

with low values strongly associated with high probabilities and high values with low

ones. There is also a clear relationship between low release rates and low probability

of casualty, although the effect across the rest of the range of this input is less clear.

Release time shows a weaker relationship with casualty probability, while there is no

obvious evidence of a pattern in the plot of probability against release duration. These

results are consistent with what would be expected based on the preceding two sections.

Dosage (not included in these plots as it is not a directly controllable input to the chain)

and D50 should account for similar proportions of the variation in the probability of

casualty. A low value of D50 means that only a small dosage is required to reach a

probability of casualty of 0.5, while a high value means that a larger dosage is needed,

so the pattern seen is this plot is to be expected.

The relationship between dosage and casualty probability is positive (since a high

dosage is more likely to have a significant effect than a low one). In Section 7.1, we

saw that increasing the release rate and release time is associated with an increase in

dosage, so we would expect a positive relationship between these inputs and probability

of casualty - but since dosage is a function of three inputs, the relationship should be

less strong than between D50 and probability of casualty. The absence of a clear link

115

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Relase rate (units/hour)

E
*(

P
ro

ba
bi

lit
y

of
 c

as
ua

lty
)

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Release duration (hours)

E
*(

P
ro

ba
bi

lit
y

of
 c

as
ua

lty
)

0 50 100 150 200 250 300 350

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Release time (minutes)

E
*(

P
ro

ba
bi

lit
y

of
 c

as
ua

lty
)

0e+00 1e−11 2e−11 3e−11 4e−11 5e−11 6e−11

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

D50

E
*(

P
ro

ba
bi

lit
y

of
 c

as
ua

lty
)

Figure 7.7: Mean prediction of probability of casualty against release rate (top left),
release duration (top right), release time (bottom left) and D50 (bottom right) at the
200 prediction points - direct simulation on the dose-response model

between release duration and casualty probability is also consistent with what was seen

in Section 7.1. Additionally, it is interesting to note that there are more predictions

close to 0 than to 1.

It is also of interest to briefly investigate the variance of the predictions from the

chain. Since all of the variation arises from the first model, it may be expected that the

variance in our predictions would be related to the inputs to the first model in some

way. However, the opposite is the case: as seen in Figure 7.8, the variance is generally

very low across the predictions, with large values occurring almost entirely when D50

is low. The plots for the other inputs reveal no comparable trend in the location of

the high-variance points. This may be because low values of D50 lead to potentially

very high probabilities of casualty, which means that changes in the dosage obtained

from the first emulator could have a large knock-on effect in the probability of casualty

obtained from the second model.

7.3.2 Composite emulator

To build an emulator for the entire chain, a 20 point Latin hypercube design is again

used, but this is now in four dimensions instead of three since D50 must be accounted

for at this stage. The first model is run at the 20 configurations of its three inputs,

and the obtained dosage is used as an input to the second model together with the D50

116

0.0 0.5 1.0 1.5 2.0

0.
00

0.
02

0.
04

0.
06

Relase rate (units/hour)

V
ar

*(
P

ro
ba

bi
lit

y
of

 c
as

ua
lty

)

0 2 4 6 8 10 12

0.
00

0.
02

0.
04

0.
06

Relase duration (hours)

V
ar

*(
P

ro
ba

bi
lit

y
of

 c
as

ua
lty

)

0 50 100 150 200 250 300 350

0.
00

0.
02

0.
04

0.
06

Relase time (minutes)

V
ar

*(
P

ro
ba

bi
lit

y
of

 c
as

ua
lty

)

0e+00 1e−11 2e−11 3e−11 4e−11 5e−11 6e−11
0.

00
0.

02
0.

04
0.

06

D50

V
ar

*(
P

ro
ba

bi
lit

y
of

 c
as

ua
lty

)

Figure 7.8: Prediction variance of probability of casualty against release rate (top left),
release duration (top right), release time (bottom left) and D50 (bottom right) at the
200 prediction points - direct simulation on the dose-response model.

value specified by the design. An emulator is then built to approximate the probability

of casualty directly from the four inputs. A Gaussian correlation function is used,

with all parameters including the regression coefficients, process variance and nugget

estimated from the data.

Predicting the output at the 200 prediction points gives a very different set of plots

to those seen before. The composite emulator shows little link between release duration

and probability of casualty, as the method based on direct simulation did, but disagrees

with it on the effect of the other variables. While some evidence of the previously-

observed patterns in release rate and release time are still present, much of their effect

is lost, particularly at the lower end of release rate. The trend of decreasing probabilities

with increasing D50 remains, but is bucked by an increased probability of casualty as

the extreme upper end of its distribution; across most of the rest of the input range,

predictions are too concentrated, with the emulator largely unable to predict outside of

a relatively narrow range at similar values of D50 almost regardless of the other inputs.

More of the mean predictions are close to 1 than in the previous case, and there are

several mean predictions below 0 or above 1 (an artefact of emulating on a bounded

scale instead of an unbounded one). In addition, the prediction variances are generally

much larger than seen previously (although this is to be expected, since the second

model is now a source of uncertainty), with little pattern in the variance relative to the

117

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Relase rate (units/hour)

E
*(

P
ro

ba
bi

lit
y

of
 c

as
ua

lty
)

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Relase duration (hours)

E
*(

P
ro

ba
bi

lit
y

of
 c

as
ua

lty
)

0 50 100 150 200 250 300 350

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Relase time (minutes)

E
*(

P
ro

ba
bi

lit
y

of
 c

as
ua

lty
)

0e+00 1e−11 2e−11 3e−11 4e−11 5e−11 6e−11

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

D50

E
*(

P
ro

ba
bi

lit
y

of
 c

as
ua

lty
)

Figure 7.9: Mean prediction of probability of casualty against release rate (top left),
release duration (top right), release time (bottom left) and D50 (bottom right) at the
200 prediction points - composite emulator

inputs.

Many of these problems are explained by the experimental design used to build the

emulator. A 20-point design over a four-dimensional space is not especially large, and

leaves sizable regions of the design space uncovered. This could be overcome by using

a larger design, but this would require an increased number of runs of the complex

HYSPLIT model. In addition, while the 20 design points are evenly spread on the

four controllable inputs, they are not evenly spread on the dosage input to the casualty

model. The increase in the predicted probability of casualty at the highest values

of D50 is a result of these issues: the two design points with the largest values of

D50 happen to occur at distinct configurations of the other three inputs which lead

to higher-than-average dosages, which confuses the emulator into assuming that the

higher probabilities observed are a result of the D50 input instead of the release rate

and release time which actually explain the observations. Emulating the two models

separately offers more flexibility in this respect, since the number of design points for

the computer experiment on each model need not be the same.

7.3.3 Theoretical linked emulator

To construct the linked emulator, we require separate emulators for the two models in

the chain. The HYSPLIT model is handled as before, using the 20 design points intro-

118

0e+00 1e−11 2e−11 3e−11 4e−11 5e−11 6e−11

0.
00

0.
04

0.
08

0.
12

D50

V
ar

*(
P

ro
ba

bi
lit

y
of

 c
as

ua
lty

)

Figure 7.10: Prediction variance of probability of casualty against D50 - composite
emulator

duced in Section 7.1. For the significantly cheaper casualty model, we take advantage

of the split nature of the emulators to use a larger experimental design with 50 points.

This is chosen using a two-dimensional maximin Latin hypercube, with the range on

which dosage is taken to vary determined by the results of the 20 HYSPLIT model

runs. This approach is preferable to using the results of the HYSPLIT model runs

as design points for the reasons discussed in Chapter 4; the more complex sequential

design ideas are not considered here, but could potentially be of use for future study

on the same topic. A Gaussian correlation function is chosen for both emulators.

We first consider a linked emulator where the theoretical mean and variance can be

determined. Plug-in estimates of the regression coefficients and process variances for

each emulator are obtained using the ‘DiceKriging’ package.

Plotting the probability of casualty against the four inputs (Figure 7.11) reveals a

similar picture to that seen in Figure 7.7. The same inputs are deemed to be important,

and their effects on the output is largely similar in nature. This suggests that the linked

emulator has captured the features of the chain of models relatively well. There are

however several predictions outside of the [0, 1] range on which probability of casualty

lies, which is a source of some concern, but these are fewer in number and generally

lower in magnitude than under the composite emulator. These could in theory be dealt

with using a transformation which takes the probability of casualty to the whole real

line, but when this was attempted in practice, the result was an emulator which failed

to accurately capture the behaviour of the casualty model.

119

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Relase rate (units/hour)

E
*(

P
ro

ba
bi

lit
y

of
 c

as
ua

lty
)

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Release duration (hours)

E
*(

P
ro

ba
bi

lit
y

of
 c

as
ua

lty
)

0 50 100 150 200 250 300 350

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Release time (minutes)

E
*(

P
ro

ba
bi

lit
y

of
 c

as
ua

lty
)

0e+00 1e−11 2e−11 3e−11 4e−11 5e−11 6e−11

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

D50

E
*(

P
ro

ba
bi

lit
y

of
 c

as
ua

lty
)

Figure 7.11: Mean prediction of probability of casualty against release rate (top left),
release duration (top right), release time (bottom left) and D50 (bottom right) at the
200 prediction points - linked emulator, theoretical method

7.3.4 Simulation-based linked emulator

The simulation approach allows for more flexibility. We use this to integrate out the

regression coefficients and process variances instead of using plug-in estimates, which

allows us to better account for the uncertainty arising from their unknown status. The

simulation itself proceeds as described in Section 3.2, with 1000 repetitions at each

design point.

Again reviewing the plots of probability of casualty against the four inputs (Figure

7.12), we observe that the patterns are very similar to those seen in Figure 7.11 when

the theoretical method was used. Integrating out the additional parameters of the two

GP emulators does not appear to have changed the mean response significantly. This

is as expected: the two methods use the same data and similar structures for the two

emulators in the chain, so it would be highly concerning if they disagreed markedly.

However, the additional uncertainty captured in the simulation method may lead to

larger changes in the variance. This is investigated in Figure 7.13, where the variances

of the two methods are plotted together against D50. First, it is important to note that

the pattern in the variances is much more like that of the direct simulation method than

the composite emulator, which further suggests that the linked emulator is capturing

the behaviour of the chain well. Both linked emulator approaches give larger variances

than direct simulation on the casualty model, which is again to be expected as the

120

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Relase rate (units/hour)

E
*(

P
ro

ba
bi

lit
y

of
 c

as
ua

lty
)

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Release duration (hours)

E
*(

P
ro

ba
bi

lit
y

of
 c

as
ua

lty
)

0 50 100 150 200 250 300 350

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Release time (minutes)

E
*(

P
ro

ba
bi

lit
y

of
 c

as
ua

lty
)

0e+00 1e−11 2e−11 3e−11 4e−11 5e−11 6e−11
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

D50

P
ro

ba
bi

lit
y

of
 c

as
ua

lty

Figure 7.12: Mean prediction of probability of casualty against release rate (top left),
release duration (top right), release time (bottom left) and D50 (bottom right) at the
200 prediction points - linked emulator, simulation method.

second emulation step introduces additional uncertainty into the predictions.

It is also clear from Figure 7.13 that the variances in the simulation method (plotted

in red) are consistently slightly larger than those of the theoretical method (in black) at

the same prediction points. The difference in variance is not uniform across the space:

it affects some points more than others, and is generally larger where the variance is

already relatively high; this may be a true reflection of an underlying pattern, or an

artefact of Monte Carlo error in the simulation. The observed variances nonetheless

remain low relative to the scale of the predictions themselves. It is clear that although

considering for uncertainty in the GP parameters does increase prediction variance, the

extra variability accounted for is not especially large in this case. It should however

be noted that this method does not take account of uncertainty in the correlation

parameters of the two GP emulators, which would have to be dealt with using a Markov

chain Monte Carlo approach as discussed in Section 2.3.

7.4 Sensitivity analysis

Having concluded that the linked emulator provides a reasonable approximation to

the chain, we now move on to sensitivity analysis. Both sensitivity analysis on the dose-

response model (with respect to its inputs, dosage and D50) and sensitivity analysis

121

Figure 7.13: Prediction variance of probability of casualty against D50 - linked emula-
tor, theoretical method (black) and simulation method (red)

for the entire chain will be considered.

Before any analysis can be conducted, we require distributions for the four control-

lable input variables. We have no particular information about the three inputs to the

HYSPLIT model - release rate, release duration and release time - beyond the range

on which each can occur. They are thus best handled using uniform distributions on

their range. The distribution which best represents the behaviour of the D50 input is

more debatable. Unlike the three inputs previously discussed, in which different con-

figurations correspond to different types of release which may all be of interest, D50

is a property of the agent being released itself. Assuming the agent is the same in

each, this has a single true value, but it may not be known exactly. A symmetrical

distribution about the most likely value would thus appear sensible; the obvious choice

is a truncated normal distribution with mean at the centre of the range of possible

values for D50. The variance of the normal distribution could be chosen in several

ways depending on how uncertain we are about the true value. The limiting case of the

variance being effectively infinite on the input range corresponds to a uniform distri-

bution for D50. In this work, we consider a uniform distribution; a normal distribution

with finite variance would also be a reasonable choice, with the variance chosen based

on discussions with a subject-matter expert.

First, we consider sensitivity analysis for the dose-response model given its inputs.

The dosage input arises as the output of the HYSPLIT model, so the distribution

of this input must be derived empirically by prediction from the GP emulator for the

HYSPLIT model across a large set of input configurations from the chosen distributions

on release rate, duration and time. The resulting Sobol’ indices are 0.4576 for dosage,

0.4809 for D50 and 0.0615 for the interaction between them. This suggests that both

inputs are of similar importance given the specified distributions on the controllable

122

inputs. The corresponding main effects plot (Figure 7.14) shows that the effect of

increasing dosage is to increase the probability of casualty on average, while the effect

of increasing D50 is to reduce it on average; this is consistent with what might be

expected based on the form of the dose-response model given in (7.1).

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

xi

E
(Y

|x
i)

Dosage
D50

Figure 7.14: Posterior expectation of probability of casualty given the two inputs to
the dose-response model.

To analyse the chain as a whole requires substantially more input configurations to

be tested than the previous small-scale prediction studies, so execution speed is of the

essence, which means the slower simulation-based methods are of less use here. The

theoretical results from the linked emulator are therefore used as the basis for our

analysis.

Figure 7.15. shows a (scaled) main effects plot for each controllable input to the

chain. The inputs are scaled to the [0, 1] interval so that they can be directly compared

on the same plot; only the posterior expectation is considered. Each input is fixed at

50 equally-spaced values across its range, with 1000 random values drawn from the

distribution of the unfixed variables, and the expectation of the linked emulator means

across these 1000 runs taken to obtain an estimate of the posterior expectation of the

probability of casualty given the fixed input.

Having removed the confounding effects of the other variables, it is now possible to

see the patterns in the behaviour of the probability of casualty more clearly. There is

a strongly negative relationship between D50 and probability of casualty, with the rate

of decrease slowing as the input becomes larger. Increasing release rate is associated

with increased probability of casualty, but the relationship is highly non-linear, with a

slower rate of increase at the two extremes of its range. Release time has a small but

123

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

xi

E
(Y

|x
i)

Release rate
Release duration
Release time
d50

Figure 7.15: Posterior expectation of probability of casualty given each input to the
linked emulator.

noticeable effect, which is initially positive but later negative in nature as the variable

is increased across its range. Release duration has little effect: fixing it to any value

provides no substantial information on the output of the chain of models. Despite the

previously-observed individual predictions outside of the range [0, 1], there is no value

of any input which gives a posterior expectation of the expected value of probability of

casualty outside of this range.

Ideally, we would of course like to consider sensitivity analysis for the full chain

further, by constructing variance bounds for the main effects and calculating Sobol’

indices for the main effects and two-way interactions. As discussed in Chapter 5, this is

not currently possible. For this specific example, further analysis of the chain could be

conducted by simulation by making use of the emulator for the HYSPLIT model and

using direct simulation on the dose-response model. This is not directly relevant to the

framework we have constructed in this thesis, however, so was not considered here.

7.5 Conclusions

This chapter uses the methods developed throughout this thesis to make predictions

from a chain of models for a real-life scenario. Being a CBR chain, it is directly rel-

evant to the research goals set out in Chapter 1. Taking advantage of the simplicity

of the second model allowed our predictions to be compared directly to the output of

a simulation where only one model is emulated, which should better reflect the true

nature of the chain. The results confirmed both the consistency of the two linked emu-

lator approaches, and that both outperform the composite emulator for this particular

chain, thus validating the linked emulator approach. The results also serve as a com-

124

parison between the two linked emulator strategies, demonstrating both the speed and

exact nature of the theoretical method and the flexibility and more robust uncertainty

estimates arising from the Monte Carlo method.

Sensitivity analysis demonstrates that the D50 input of significant importance - ef-

fectively equal to that of the dosage, and greater than that of any individual input to

the HYSPLIT model. One conclusion from these results, since the inputs to the dis-

persion model have a range of interest on which they can vary while D50 has a single

true (but unknown) value, is that learning more about D50 would have a significant

effect in reducing the uncertainty in predictions from the chain of models.

We should note that this chain of models is far from ideal for the purposes of making

new inferences using our methodology. The chain is only two models long, and could

thus have already been analysed using the pre-existing methods set out in Section 3.3;

a longer chain would offer more potential for new results that could not already have

been obtained. More importantly, the second model is too simple to require emulation

at all. The chain is also incomplete when compared to the diagram in Figure 1.1, with

many more modelling aspects which could be considered. This is discussed further in

Chapter 9.

125

126

Chapter 8

Simulation study

8.1 Introduction

In Chapter 7, we presented an analysis of the linked emulator method when applied

to a real-world problem. Our results demonstrate that both of the linked emulator ap-

proaches considered in this thesis can make better predictions than the simpler method

of a composite emulator. However, it is difficult to draw conclusions from the analysis

of a single chain of models, especially a chain in which the second function is very

smooth and does not present a significant challenge to emulate.

A further aspect of linked emulator methodology which we have not yet explored in

detail is the difference between the theoretical and simulation approaches. In both the

dispersion-dose response chain in Chapter 7 and the one-dimensional synthetic chains

in Chapters 3 and 4, the theoretical and simulation methods produced largely similar

results. If this were true in general, there would be no need for the simulation method

to be used, as it is significantly slower than the theoretical approach. But in all of these

examples, the simulators being emulated were sufficiently smooth that a Gaussian corre-

lation function could be used to build the emulators. The Gaussian correlation function

produces infinitely differentiable sample paths, so there are some functions which can-

not be emulated well using this correlation function. Stein (1999), pp.30-31 and 69-70,

advises against using the Gaussian correlation function when modelling any physical

process, citing both theoretical concerns and evidence in real examples of predictions

which would be highly implausible in the context of the process being modelled. While

computer experimentation does not involve modelling physical processes directly, a sim-

ulator that approximates a physical process should have similar behaviour to it. It is

therefore of interest to investigate the behaviour of the two classes of linked emulators

when a different correlation function may be more appropriate.

The comparatively poor performance of a composite emulator relative to its linked

emulator counterparts in previous examples is also worthy of further consideration.

A similar result was previously observed for a chain of simple synthetic functions by

Kyzyurova et al. (2018), and it is especially noteworthy in the real example in Chapter

127

7. It is however unclear if the failure of the composite emulator is specific to the types of

chain considered so far, or a more widespread phenomenon. This is especially relevant

to chains containing models which a Gaussian correlation function is not appropriate,

as the simulation method for linked emulation is very slow in comparison to simply

fitting a single emulator.

8.2 Simulation setup

These questions can be investigated by constructing a chain from models which

require a less smooth correlation function but which also consist of known, easily com-

putable functions. A set of simple functions with these properties are those with dis-

continuous derivatives, notably the absolute value function. We will therefore consider

a chain of two models defined by the following relationships:

y1 = [1− (|x1| ∗ |x2|3/2)a]3 ;

y2 = cos[(1− 2 ∗ |0.8− y1|b)3] ,

where −1 ≤ x1 ≤ 1 and −1 ≤ x2 ≤ 1. The values a and b are tunable parameters..

For the purposes of this study, we will consider five values each for these parameters:

a = {2, 2.5, 3, 3.5, 4} and b = {1, 1.2, 1.4, 1.6, 1.8}. These two sets combine to give 25

chains of models to investigate.

For each of these 25 chains, we build two linked emulators - one each using the

theoretical and simulation methods - and a composite emulator. The composite emu-

lators use a constant regression term, and a Matérn correlation function as defined in

equation (2.3). The smoothness parameter of the Matérn correlation function is set to

ω = 3/2, with the remaining correlation parameters and the nugget estimated from the

data. This choice of correlation function and smoothness parameter implies a Gaussian

process prior which is differentiable only once, so is likely to be appropriate for a chain

made up of less smooth simulators.

An experimental design is required for the directly controllable inputs x1 and x2 for

the composite emulator. The same design can be used for all values of a and b; we

choose 15 design points using a maximin Latin hypercube design, which thus requires

the two simulators to be run 15 times each for a total computational cost of 30 simulator

runs. The design points are given in Table 8.1.

In the interests of fairness, the two linked emulators for each chain share an ex-

perimental design and thus differ only in how they are fitted to the training data.

However, since the first model in the chain is a function of two inputs x1 and x2, while

the second is a function of just one input y1, the linked emulator would benefit from

allocating more simulator runs to the first model than the second. We thus allocate 20

128

x1 x2
-0.9333 0.2667

-0.8 -0.2667
-0.6667 0.6667
-0.5333 -0.6667

-0.4 0
-0.2667 0.5333
-0.1333 -0.9333

0 -0.4
0.1333 0.1333
0.2667 0.8

0.4 -0.8
0.5333 -0.1333
0.6667 0.4

0.8 0.9333
0.9333 -0.5333

Table 8.1: Experimental design for the complete chain of models for the composite
emulator

design points to the first model and 10 to the second. Since both simulators have very

similar computational cost, the total computational cost of the 30 simulator runs per

linked emulator is virtually identical to that of the 30 simulator runs required for each

composite emulator.

The design points for x1 and x2 are independent of a and b and can therefore be the

same for all 25 chains. A 20-point maximin Latin hypercube design is used, with the

design points presented in Table 8.2. The 10 design points for y1 in the second model

are chosen by following the procedure in Algorithm 2, and thus depend on the output

of the simulator runs for the first model. The second simulator is univariate so the

design points are equally spaced on the five different implied ranges of y1, which are

dependent on the value of a so cannot be made identical for every chain.

The linked emulator for the theoretical method is composed of two individual emu-

lators, one for each simulator, with constant regression terms and Gaussian correlation

functions as defined in equation (2.2). The regression coefficients, process variances,

correlation parameters and nuggets are estimated from the data. The linked emulator

for the simulation method is composed of two emulators with constant regression terms

and Matérn correlation functions where ω = 3/2, as for the composite emulators. The

correlation parameters and nuggets are estimated from the data, using the likelihood

marginal to the regression coefficients and process variances.

For an additional comparison to a non-emulation method, we shall also consider a

linear regression model for y2 against x1 and x2:

y2 = β0 + β1x1 + β2x2 + ε ,

129

x1 x2
-0.95 0.05
-0.85 0.65
-0.75 -0.45
-0.65 -0.95
-0.55 0.25
-0.45 0.75
-0.35 -0.25
-0.25 -0.75
-0.15 0.15
-0.05 0.55
0.05 0.95
0.15 -0.55
0.25 -0.05
0.35 0.45
0.45 -0.85
0.55 -0.35
0.65 0.85
0.75 0.35
0.85 -0.65
0.95 -0.15

Table 8.2: Experimental design for the first model in the chain for the linked emulator

where ε is an error term and the coefficients β0, β1, β2 are estimated using maximum

likelihood estimation.

To test the predictive capabilities of the four methods, we require a set of prediction

points. We choose 1000 points across the space of x1, x2 from a maximin Latin hyper-

cube. The first simulator was run at each of these points, and the resulting value of y1

fed into the second simulator to obtain the true output of the chain. These true values

are used as a comparison set for the predictions made by the composite emulator, the

two linked emulators and the linear regression model at the same 1000 points. We

consider two measures of predictive ability for the three methods. The first is the root

mean squared error (RMSE) of the mean prediction from the regression and emulation

methods versus the true value across the 1000 prediction points. Let η∗ be the estimate

of the true chain of models η, and let x1,i be the ith prediction point. The RMSE of

η∗ is defined as

RMSE(η∗) =

√√√√ 1

n

1000∑
i=1

[η∗(x1,i)− η(x1,i)]2 .

This is chosen instead of, say, the mean absolute error as it has the property of

penalising large errors at individual prediction points more heavily, which is important

as we do not wish the worst predictions made to be very large. The second measure

is based on coverage. The composite emulator, both linked emulators and the linear

regression model can generate nominal 95% prediction intervals for the output of the

130

chain at any input set. A useful measure of the accuracy of the uncertainty estimates

of the four methods is to compare this to the true percentage of the prediction set

for which the calculated interval includes the true output. In particular, if for any

method this is consistently below 95 or occasionally dramatically lower, the method is

understating the uncertainty in its predictions.

8.3 Results

The resulting RMSE and coverage for each of the three methods across the 25 chains

of models are presented in Table 8.3. For presentational reasons, we define the following

abbreviations: Simu, the simulation-based linked emulator; Theory, the theoretical

linked emulator; Comp, the composite emulator; Linear, the linear regression model.

a b RMSE Coverage (%)
Simu Theory Comp Linear Simu Theory Comp Linear

2 1 0.0804 0.0688 0.0980 0.1073 95.7 72.3 91.7 95.2
2 1.2 0.0833 0.0670 0.1126 0.1193 96.3 65.7 90.3 96.8
2 1.4 0.0805 0.0628 0.1186 0.1229 96.5 57.0 91.0 98.7
2 1.6 0.0781 0.0611 0.1199 0.1238 97.8 45.3 99.1 98.1
2 1.8 0.0779 0.0609 0.1207 0.1249 98.4 43.4 99.4 92.6

2.5 1 0.0896 0.0870 0.0936 0.1179 99.0 90.7 84.7 99.1
2.5 1.2 0.0955 0.0917 0.1057 0.1304 97.8 86.1 84.4 99.5
2.5 1.4 0.0946 0.0933 0.1089 0.1314 95.5 81.5 85.8 100
2.5 1.6 0.0937 0.0941 0.1186 0.1275 93.6 79.2 75.0 97.3
2.5 1.8 0.0941 0.0946 0.1246 0.1230 93.0 76.4 71.7 92.6
3 1 0.0893 0.0910 0.0879 0.0944 95.6 87.8 59.8 95.9
3 1.2 0.0993 0.1027 0.0987 0.1076 92.6 85.2 58.1 97.4
3 1.4 0.1012 0.1067 0.1028 0.1114 92.5 82.0 57.4 98.9
3 1.6 0.1000 0.1063 0.1025 0.1101 92.0 78.9 56.3 96.9
3 1.8 0.0990 0.1042 0.0998 0.1072 92.3 78.1 56.7 93.4

3.5 1 0.0875 0.0894 0.0836 0.0789 96.8 91.9 65.5 97.6
3.5 1.2 0.0968 0.1010 0.0984 0.0886 95.1 87.1 62.0 98.1
3.5 1.4 0.0979 0.1040 0.1026 0.0921 93.5 82.8 61.6 98.7
3.5 1.6 0.0959 0.1022 0.1005 0.0920 93.2 80.7 62.5 96.5
3.5 1.8 0.0939 0.0989 0.0960 0.0904 93.0 79.5 63.9 94.6
4 1 0.0794 0.0824 0.1103 0.0706 95.9 91.0 74.5 95.6
4 1.2 0.0878 0.0915 0.1190 0.0789 94.8 87.6 73.0 95.4
4 1.4 0.0893 0.0942 0.1164 0.0809 93.6 83.7 70.3 95.6
4 1.6 0.0879 0.0932 0.1082 0.0797 93.0 82.2 68.8 92.1
4 1.8 0.0857 0.0905 0.0987 0.0777 93.0 80.6 67.0 91.3

Table 8.3: RMSE and coverage for the simulation (S) and theoretical (T) linked emu-
lators, for the composite emulator (C), and for the linear regression model (L).

There are several points of interest in these results. Firstly, the performance of the

composite emulator is comparatively poor in most cases: across the 25 values of a and b

given here, the RMSE for the composite emulator is the lowest of the three emulation-

based methods in only two cases, compared to 15 cases where it is the highest. Only

131

when a = 3 or a = 3.5 is the composite emulator competitive. There is also a connection

to value of b: the composite emulator predicts better when b is small, except when a is

large. The coverage of the nominal 95% prediction intervals for the composite emulator

are also of concern, falling below 95% in all but two cases, and consistently very low

whenever a is not equal to 1. When a = 3, which produces the relatively best RMSEs

for the composite emulator, all five actual coverages are unacceptably low at below

60%.

The linear model varies strongly with the value of a in its predictive accuracy. For

a ≤ 3, its RMSE is consistently the largest of the four methods, suggesting a model

which approximates the true chain poorly. When the value of a is 3.5 or 4, however,

the situation is reversed: the linear model now outperforms all three emulation-based

approaches. Despite this improved performance for a subset of the chains, it is clear

that a linear model is insufficient to make good predictions in general. The coverage

achieved by the linear model is strong for every chain, consistently exceeding 90% and

exceeding 95% in 19 of the 25 cases. If anything, this suggests the prediction intervals

provided are in fact too wide, although it is noteworthy that the coverage falls below

95% whenever b = 1.8.

The relative performances of the two linked emulators in terms of RMSE is varied,

with 17 cases in which the simulation method produces the lower RMSE and 8 in

which the theoretical method is the more accurate. Again, these are closely linked to

the value of a. When a = 2, the theoretical method consistently produces the lower

RMSE; for a = 2.5, there is little to separate the two linked emulators; while for a ≥ 3,

the RMSE of the simulation method is consistently lower. The main difference between

the two methods is the choice of correlation function, so this suggests that low values

of a produce a smoother simulator which is better suited to the Gaussian correlation

function, while larger values of a lead to simulators which require a rougher correlation

function like the Matérn. The composite emulator performs poorly when a is large

despite also using a Matérn correlation function, which again indicates that the linked

emulator approach is preferable.

However, the two types of linked emulator are vastly different in terms of the cover-

ages of their nominal 95% prediction intervals. The coverages seen when the simulation

method is used are largely consistent with what would be expected from a genuine 95%

prediction interval: 12 are greater than and 13 less than 95%, with no value lower

than 90%. The coverage is typically somewhat lower when both a and b are large, but

the effect on the coverage of varying these parameters is not as pronounced as for the

composite emulator.

The same cannot be said of the linked emulator constructed using the theoretical

method. Instead, all 25 actual coverages are below 95%, suggesting a consistent prob-

lem of underestimating the uncertainty in the predictions made. The coverage is con-

132

sistently poorer when b is large or when a = 2, and falls below 50% when a = 2, b = 1.6

and when a = 2, b = 1.8. This is particularly surprising as, for these two parameter

configurations, the theoretical linked emulator produced not only the lowest RMSEs of

the four approaches, but the lowest RMSEs of any method across any of the 25 chains.

While the theoretical linked emulator makes comparatively very accurate mean predic-

tions in these cases, there is a substantially greater variance associated with prediction

than the method would suggest.

As discussed in Chapter 3, the probability distribution of the prediction from a the-

oretical linked emulator given the inputs to the chain is approximated by a normal

distribution with the variance calculated using equation 3.8. The consistently low cov-

erages would thus suggest that this equation in fact produces an underestimate of the

true variance. This is not entirely surprising: the theoretical linked emulator uses

plug-in estimation for the regression coefficients, process variance and correlation pa-

rameters, ignoring a potential source of predictive uncertainty. The simulation-based

linked emulator also uses plug-in estimation for the correlation parameters, so its im-

pressive performance in terms of actual coverage implies that - at least when Matérn

correlation function is used - the uncertainty in the correlation parameters contributes

little to the predictive uncertainty for this chain of emulators.

This simulation study of 25 chains of simulators demonstrates several noteworthy

points about the different methods considered in this thesis. We observe that the com-

posite emulator generally performs poorly compared to both classes of linked emulator.

There are some chains for which a theoretical linked emulator provides good approxi-

mations, and others for which it is not a viable choice. The simulation method offers

greater robustness, delivering reasonable predictions and trustworthy 95% prediction

intervals across all of the chains. The theoretical method shows signs of consistently

underestimating the variance in its predictions and thus providing unreasonably nar-

row prediction intervals. The much simpler linear regression model can perform well for

some chains with more linear relationships between the input and output, but performs

poorly in the majority of cases.

The simulation method however has a clear disadvantage in speed. Benchmarking

the computational time required to make predictions at the 1000 prediction points for

each of the three methods, we found that the composite emulator was the fastest. This

is to be expected, as fitting and making predictions from a single emulator is a swift

process, and while the theoretical linked emulator is substantially slower, it is clear from

the consistently poor performance of the composite emulator that the speed advantage

alone does not make this method worth pursuing. However, the simulation-based linked

emulator is around 50 times slower than the theoretical linked emulator. The additional

computational resources required mean that the performance advantages offered by

the simulation method would need to be extremely large to be worth pursuing, and for

133

chains with a large number of models or inputs, the method may not be computationally

feasible at all.

For this reason, when utilising a linked emulator for a real problem, we would choose

the theoretical method whenever it could be expected to give reasonable results. But

identifying which chains of models can be approximated appropriately by a theoretical

linked emulator is a difficult problem. It is not usually possible to know in advance

whether the models in the chain are smooth enough for a Gaussian correlation function

to perform well. One possibility is to fit GP emulators with both Gaussian and Matérn

correlation functions to each model in the chain from the same simulator runs, and use

the diagnostics for GP emulator performance discussed by Bastos and O’Hagan (2009)

to assess if these emulators are appropriate before linking them together. It may also

be possible to narrow the performance gap between the two linked emulator methods

by improving the speed of the simulation method, for example by writing more efficient

code, although its dependence on Monte Carlo approximation means it will always be

the slower of the two approaches.

Perhaps the most important conclusion from this study is that the 95% prediction

interval of a theoretical linked emulator should not be considered entirely trustworthy.

In all 25 chains considered here, the actual coverage was well below 95, with the lowest

coverages coming when the mean predictions were on average closest to the true output

of the chain. This could be improved by integrating out the regression coefficients of

the individual emulators instead of using plug-in estimation, although it would not

be possible to integrate out the process variance as the resulting distribution on the

output of the earlier models in the chain would no longer be normal. Finally, while

the much less complex linear regression model is unable to match the performance

of the linked emulator methods in general, its comparatively strong performance for

certain chains highlights the potential benefits of using emulators with linear instead

of constant regression terms for each model in the chain.

134

Chapter 9

Conclusions and future work

9.1 Conclusions

In this thesis, we considered approaches towards the analysis of chains of complex

computational models using Gaussian process emulation. We have presented a variety

of methods by which such chains can be handled. We reaffirm existing results that sug-

gest that a linked emulator (in which the models in the chain are emulated separately,

and the uncertainty passed between them) is preferable to a composite emulator (in

which a single emulator is built for the chain of models as a whole), and present two

methods for analysis from such chains - a flexible approach involving simulation and

Monte Carlo integration, and a faster theoretical approximation for a specific class of

emulators. Both methods were generalised from a simple two-model chain to a longer

chain, the latter using an approximation to a probability distribution which is not avail-

able in closed form. A simulation study was conducted to investigate the differences

between the two approaches to linked emulation, demonstrating that the simulation

method is more robust if the models in the chain are less smooth than ideal for an

emulator with a Gaussian correlation function. The advantages of a linked emulator

approach over the much simpler technique of linear regression was also demonstrated,

with the caveat that the occasionally very good performance of linear regression pro-

vides a strong argument for the use of emulators which include a linear component.

We have also highlighted the related problems of experimental design for chains of

models. We focus on experimental design for models at the second and later steps

in the chain, illustrating why this is both an important and a difficult problem, and

present a simple algorithm for single-stage design which nonetheless offers significant

benefits over more naive approaches. Some thought was also given to sequential design

for chains of models, both in terms of why this may be beneficial and to potentially

productive strategies to accomplish it.

Sensitivity analysis for a chain of models was another area of focus. We developed

an algorithm for sensitivity analysis for the final model in the chain in terms of its own

inputs. We also worked towards sensitivity analysis for the final output of the chain in

135

terms of the directly controllable inputs to any model in the chain, with a theoretical

result presented for the posterior expectation of the main effects and interactions of an

input or set of input.

Our work was tested on models supplied by Dstl, which form a simplified chain

demonstrating some of the principles of casualty modelling from a CBR release. Al-

though this example is imperfect - a two-model chain with a relatively simple second

model - it nonetheless highlights the potential applications of our research. In addition,

we were able to demonstrate fast predictions from the chain of models for different in-

put configurations, and to draw new conclusions about the relative importance of the

inputs to the model output.

There are many avenues of relevant future research that could be considered. These

are discussed in detail below.

9.2 Future work: experimental design

One of the most promising fields for further research would appear to be experimental

design for chains of computational models. This is a broad and complex topic with

significant potential for further research. Our method for single-stage design for chains

of emulators, presented in Section 4.2, effectively reduces the problem to one which has

already been solved. As discussed in the same section, however, this is not perhaps the

most rewarding approach to the design problem for chains of models.

Even here, however, there are open questions. Our method uses the results of the

simulator runs for model 1 to construct a design space for y1 in the second emulator.

This is potentially problematic if the simulator output does not include values in the

extremes of the true range for y1. The extremes would then be poorly covered by the

resulting design for the second emulator, meaning prediction from the chain at the

values of the model 1 inputs x̃1 which lead to extreme values of y1 may be unreliable.

This could be overcome by simply adding some fixed amount to the range of y1 when

constructing its design space, but this risks placing design points at values of y1 which

may not in fact be in its true range.

Perhaps more significantly, sequential design for chains of models has the potential

for significant improvement over the simple method presented in Section 4.3. This could

include algorithms for sequential design which make better use of the available resources

than can be achieved by simply applying standard methods for sequential design for

a stand-alone emulator. By accounting for potential differences in computational cost

and output variation between the individual models in the chain, it may be possible

to learn significantly more about the behaviour of the chain without a substantial

increase in computational cost. Learning more about the behaviour of the models

allows better emulators to be built, so this could be extremely beneficial in terms of

136

making predictions from the chain as a whole. Section 4.4 sets out some initial ideas as

to how this could be achieved, but further research and implementation of these ideas

is required.

9.3 Future work: sensitivity analysis

Sensitivity analysis is another area in which our work could be expanded substan-

tially. While methods for the analysis of the final model are available, further work

is required on analysis of the chain as a whole. As discussed in Section 5.6, the most

plausible route to full sensitivity analysis for a chain under the assumptions required

in Sections 3.4 and 3.6 is via a derivation for the covariance between two independent

predictions from the linked emulator. A natural way to achieve this is by a similar

process to the derivation of the posterior predictive variance of a single linked emulator

output in Section 3.3. We present the beginnings of this below, but have been unable

to complete the derivation.

Let Y2 and Y ′2 be two independent realisations of the linked emulator at distinct input

points, and let x̃′1, x̃′2, y
′
1 and c′n+1,2 be the associated model 1 inputs, model 2 inputs,

model 1 output and vector of correlations with the model 2 design points respectively.

For ease of notation, let

Cov∗(Y2, Y
′
2) = Cov[Y2, Y

′
2 |x̃2, x̃1, x̃

′
2, x̃
′
1,Yn,2,Yn,1]

be the covariance between the two realisations given all of the inputs except y1 and y′1.

Also, let

c∗(Y2, Y
′
2) = Cov[Y2, Y

′
2 |x̃2, x̃1, x̃

′
2, x̃
′
1,Yn,2,Yn,1, y1, y

′
1]

be the covariance between the two realisations given all of the inputs including y1

and y′1 (which are unknown beyond their probability distributions). The law of total

covariance allows us to express Cov∗(Y2, Y
′
2) in terms of c∗(Y2, Y

′
2), µ2 and µ′2 as

Cov∗(Y2, Y
′
2) = Cov(µ2, µ

′
2) + E[c∗(Y2, Y

′
2)] (9.1)

The second term of (9.1) is given by

E[c∗(Y2, Y
′
2)] = E[σ2z,2{R[(x̃2, y1)

T , (x̃′2, y
′
1)
T]− cTn+1,2C2c

′
n+1,2}]

which reduces to

E[c∗(Y2, Y
′
2)] =σ2z,2

q2∏
d=1

exp[−bd(x2,d − x′2,d)2]E
{

exp[−by1(y1 − y′1)2]
}

− σ2z,2E[cTn+1,2C2c
′
n+1,2] .

(9.2)

137

Let

u = cTn+1,2C2c
′
n+1,2 .

For the expectation in the second term of (9.2), we thus have

E[u] = E

[k∑
i=1

k∑
j=1

exp{−by1(x(q2+1)
2,i − y1)2}P1C

(i,j)
2 exp{−by1(x

′(q2+1)
2,j − y′1)2}P2

]
,

where

P1 =

q2∏
d=1

exp{−bd(x
(d)
2,i − x

(d)
2,n+1)

2}

and

P2 =

q2∏
d=1

exp{−bd(x
′(d)
2,j − x

′(d)
2,n+1)

2} .

Following a similar approach to that in Chapter 3 leads to

E[u] =

k∑
i=1

k∑
j=1

C
(i,j)
2

p∏
d=1

exp{−bd[(x
(d)
2,i − x

(d)
2,n+1)

2 + (x
′(d)
2,j − x

′(d)
2,n+1)

2]}I∗i,j

where

I∗i,j =

∫ ∫
1

2πσ1σ′1
exp

{
− (y1 − µ1)2

2σ21
− (y′1 − µ′1)2

2σ
′2
1

}
exp{−by1[(x(q2+1)

2,i − y1)2 + (x
′(q2+1)
2,j − y′1)2]}dy1dy′1 .

(9.3)

For ease of notation, let

W1 = exp

{
−
µ21 + 2σ21by1[x

(q2+1)
2,i]2 − (µ1+2σ2

1by1x
(q2+1)
2,i)2

1+2σ2
1by1

2σ21

}
,

and analogously,

W ′1 = exp

{
−
µ
′2
1 + 2σ

′2
1 by1[x

′(q2+1)
2,j]2 − (µ′1+2σ

′2
1 by1x

′(q2+1)
2,j)2

1+2σ
′2
1 by1

2σ
′2
1

}
.

We also define

V1 =

(1 + 2σ21by1)

[
y1 −

µ1+2σ2
1by1x

(q2+1)
2,i

1+2σ2
1by1

]2
2σ21

,

and

138

V ′1 =

(1 + 2σ
′2
1 by1)

[
y′1 −

µ′1+2σ
′2
1 by1x

′(q2+1)
2,j

1+2σ
′2
1 by1

]2
2σ
′2
1

.

Further algebraic manipulation of (9.3) leads to

I∗i,j = C1I1

where

C1 =
1√

(1 + 2σ21by1)(1 + 2σ
′2
1 by1)

W1W
′
1

and

I1 =

∫ ∫ √
1 + 2σ21by1

√
1 + 2σ

′2
1 by1

2πσ1σ′1
exp{−V1 − V ′1}dy1dy′1

The integrand in I1 is the density of a bivariate normal distribution with zero correla-

tion, where the other parameters are given by

µ(y1) =
µ1 + 2σ21by1x

(q2+1)
2,i

1 + 2σ21by1
;

µ(y′1) =
µ′1 + 2σ

′2
1 by1x

′(q2+1)
2,j

1 + 2σ
′2
1 by1

;

σ(y1) =
σ1√

1 + 2σ21by1
;

σ(y′1) =
σ′1√

1 + 2σ
′2
1 by1

.

When integrated with respect to y1 and y′1, this is equal to 1, so I1 = 1, leaving

I∗i,j = C1 ,

but the complicated form of C1, W1 and W ′1 suggests that further simplification is

required before this quantity is used in the full covariance expression.

The first term of (9.1) is

Cov(µ2, µ
′
2) = E(µ2µ

′
2)− E(µ2)E(µ′2) .

E(µ2) and E(µ′2) are found from equation (3.7), so we only need to calculate

E(µ2µ
′
2) = Ey1{[β2,0 + cTn+1,2C

−1
2 (yn,2 − β2,0)][β2,0 + c

′T
n+1,2C

−1
2 (yn,2 − β2,0)]} ,

139

which simplifies to

E(µ2µ
′
2) =β22,0 + β2,0E[cTn+1,2C

−1
2 (yn,2 − β2,0)] + β2,0E[c

′T
n+1,2C

−1
2 (yn,2 − β2,0)]

+ E[{cTn+1,2C
−1
2 (yn,2 − β2,0)}{c

′T
n+1,2C

−1
2 (yn,2 − β2,0)}]

(9.4)

An expression for E[cTn+1,2C
−1
2 (yn,2− β2,0)] (and by extension the case where c

′T
n+1,2 is

used instead) was derived in (3.9):

E[cTn+1,2C
−1
2 (yn,2 − β2,0)] =

k∑
i=1

a(i)
q2∏
j=1

exp{−bj(x(j)
2,i − x

(j)
2,n+1)

2}Ii ,

where Ii is given in (3.11). To deal with the remaining expectation, note that

{cTn+1,2C
−1
2 (yn,2 − β2,0)}{c

′T
n+1,2C

−1
2 (yn,2 − β2,0)} = (cTn+1,2 a)(c

′T
n+1,2 a)

=

k∑
i=1

k∑
j=1

c
(i)
2 c

′(j)
2 a(i)a(j) ,

so

E
[
{cTn+1,2C

−1
2 (yn,2 − β2,0)}{c

′T
n+1,2C

−1
2 (yn,2 − β2,0)}

]
= E

[k∑
i=1

k∑
j=1

c
(i)
2 c

′(j)
2 a(i)a(j)

]
.

Algebraic manipulation similar to that seen in Chapter 3 gives

E

[k∑
i=1

k∑
j=1

c
(i)
2 c

′(j)
2 a(i)a(j)

]
=

k∑
i=1

k∑
j=1

a(i)a(j)P3I
∗
i,j ,

where

P3 =

q2∏
d=1

exp{−bd[(x
(d)
2,i − x

(d)
2,n+1)

2 + (x
(d)
2,j − x

′(d)
2,n+1)

2]} .

As above, this expression depends on further simplification of I∗i,j but is otherwise

complete.

For ease of notation, let

c∗y = exp[−by1(y1 − y′1)2] .

The expectation in the first term of (9.2) is then

E(c∗y) =

∫ ∫
f(y1)f(y′1) exp[−by1(y1 − y′1)2]dy1dy′1 ,

which, when the distributions are substituted in and like terms collected, reduces to

140

E(c∗y) =
1

2πσ1σ′1

∫ ∫
exp

[
− N1

2σ21σ
′2
1

]
dy1dy

′
1 ,

where

N1 = σ
′2
1 (1 + 2σ21by1)y

2
1 − 2σ

′2
1 µ1y1 − 2σ21y

′
1µ
′
1 − σ21(1 + 2σ

′2
1 by1)y

′2
1 − 4σ21σ

′2
1 by1y1y

′
1 .

However we have been unable to make further progress on this integral. This is the

main reason why the covariance derivation is incomplete.

Even if this were completed, it would provide full sensitivity analysis only when

the conditions required for the theoretical approximation to hold are met. Sensitivity

analysis for chains with different correlation or regression structures, or where the pro-

cess variances are integrated out of the individual emulators, would require a different

method.

One option is to consider a form of decomposition of the Sobol’ indices of a chain

of models. For example, consider a two-model chain with final output y2, where the

second model includes the input y1 which is the output of an earlier model. Let

Sy2(x1,1) =
var{E(Y2|X1,1 = x1,1)}

var(Y2)
. (9.5)

be the Sobol’ index for the input x1,1 with respect to the output y2. We have

Sy2(y1) =
var{E(Y2|Y1 = y1)}

var(Y2)

and

Sy1(x1,1) =
var{E(Y1|X1,1 = x1,1)}

var(Y1)
.

A simple approximation could be provided by

Sy2(x1,1) ≈ Sy2(y1)× Sy1(x1,1) .

The logic for this is as follows: Sy2(y1) corresponds to the proportion of the variance

in y2 that is explained by y1. Similarly, Sy1(x1,1) is the proportion of the variance in

y1 explained by x1,1. It therefore appears natural that the product of the two indices

should correspond to the proportion of the variance in y2 which is explained by x1,1,

since there is no additional source of uncertainty in y1 other than its inputs. However,

no theoretical result exists to demonstrate that this is a good approximation for two

(or more) complex non-linear simulators, although initial simulation studies to test this

empirically for simple chains were encouraging.

141

Another possible solution is to bypass the chain of emulators by using a single ap-

proximation. We have already seen that a composite emulator does not perform well

for the chains of computational models covered in this thesis. However, for sensitivity

analysis a composite emulator has two major advantages: it is significantly less com-

putationally intensive to make predictions from than a linked emulator, and allows the

pre-existing sensitivity analysis results from Section 5.3 to be used without alteration.

A possible compromise, therefore, is to build a linked emulator as discussed before,

but then approximate this again by a single emulator. While this adds another layer

of uncertainty to the process, it neatly bypasses many of the problems associated with

both the linked and the composite emulators when conducting sensitivity analysis.

Since the linked emulator is generally much less computationally intensive than the

chain of simulators (but still too intensive for sensitivity analysis to be done directly),

a relatively large set of design points could reasonably be used. The linked emulator is

however a stochastic function, so any emulator to it must account for this; the methods

discussed in Section 2.4 would need to be used. The design points used to train the

linked emulator could themselves be used as design points for the single stochastic

emulator, with a known uncertainty in the linked emulator output of 0 at these points.

This somewhat esoteric approach has not been implemented, but may be of interest in

the future.

9.4 Future work: other areas

There are also other ways in which our methodology could be extended. The chains

of models considered in this thesis all obey a relatively restrictive set of assumption, and

a significantly wider class of problems could also be approached using similar methods.

One natural extension would be to unify our framework with that of Kyzyurova et al.

(2018), in which multiple inputs to the same computational model may come from

other models. This would allow more complicated structures than just a chain to be

considered. Such a unification process should be relatively straightforward, as adding

additional inputs from other models does not change the theoretical results for the

linked emulator substantially, so adapting the theoretical results presented here to the

more general framework may not present a great challenge.

The individual emulators considered here are also somewhat restrictive. Incorporat-

ing Markov chain Monte Carlo inference for the correlation parameters of the Gaussian

process emulators would allow the uncertainty in these parameters to be incorporated

into our predictions. Emulators which account for non-stationarity in the underlying

computational models may also have a role to play in broadening the set of problems

which our methodology can be applied to.

The framework we present for emulation applies to a specific type of model, with

a single deterministic output and continuous inputs. Models with multiple outputs

142

and/or categorical inputs could also be considered as part of the chain. Models with

stochastic instead of deterministic output are another avenue worthy of exploration.

These extensions would require incorporating some of the processes introduced in Sec-

tion 2.4. Given that these processes change the underlying nature of the emulators

involved, it is likely that the theoretical results discussed in this thesis would no longer

hold, so new theoretical derivations would be required if anything beyond a simple

Monte Carlo method were to be used.

Finally, the application to a chain of models for probability of casualty from a chain of

models for a CBR release could also be expanded. Real world dispersion and casualty

models can be far more complex than those considered here. There are many more

inputs that could be taken into account in addition to release rate, release duration

and release time. Examples include the release location and meteorological conditions

such as wind speed and wind direction, the latter of which are in fact inputs to the

single model for a CBR release in Chapter 5. It would also be useful to consider the

probability of casualty across a range of locations, instead of at a single point; this

would need the emulator for the final model to be able to handle multiple outputs, as

discussed above. A full study of the CBR problem would include at least one additional

model in the chain, for the meteorological conditions, and potentially another for the

placement of sensors to detect a release.

143

144

Bibliography

R.J. Adler. The Geometry of Random Fields. John Wiley, 1981.

I. Andrianakis and P. G. Challenor. The effect of the nugget on Gaussian process

emulators of computer models. Computational Statistics and Data Analysis, 56:

4215–4228, 2012.

S. Ba. Package ‘slhd’. R package vignette, 2015.

S. Banerjee. Bayesian linear model: Gory details. http://www.biostat.umn.edu/

~{}ph7440/pubh7440/BayesianLinearModelGoryDetails.pdf, 2010.

L. S. Bastos and A. O’Hagan. Diagnostics for Gaussian process emulators. Technomet-

rics, 51:425–438, 2009.

J. Beck and S. Guillas. Sequential design with mutual information for computer exper-

iments (MICE): Emulation of a tsunami model. Journal of Uncertainty Quantifica-

tion, 4:739–766, 2016.

J. Berkson. Application of the logistic function to bio-assay. Journal of the American

Statistical Association, 39:357–365, 1944.

I. Billonis and N. Zabaras. Multi-output local Gaussian process regression: Applications

to uncertainty quantification. Journal of Computational Physics, 231(17):5718–5746,

2012.

M. Binois, J. Huang, R. B. Gramacy, and M. Ludkovski. Replication or exploration?

Sequential design for stochastic simulation experiments. Technometrics, pages 1–43,

2018.

C.I. Bliss. The method of probits. Science, 79(2037):38–39, 1934.

V.E. Bowman and D.C. Woods. Emulation of multivariate simulators using thin plate

splines with application to atmospheric dispersion. SIAM/ASA Journal on Uncer-

tainty Quantification, 4:1323–1344, 2016.

F. Campolongo, J. Cariboni, and A. Saltelli. An effective screening design for sensitivity

analysis of large models. Environmental Modelling and Software, 22:1509–1518, 2007.

J.Q. Candela, A. Girard, J. Larsen, and C.E. Rasmussen. Propagation of uncertainty in

Bayesian kernel models - application to multiple-step ahead forecasting. Proceedings

145

http://www.biostat.umn.edu/~{}ph7440/pubh7440/BayesianLinearModelGoryDetails.pdf
http://www.biostat.umn.edu/~{}ph7440/pubh7440/BayesianLinearModelGoryDetails.pdf

of the 2003 IEEE Conference on Acoustics, Speech, and Signal Processing, 2:II–701,

2003.

W. F. Caselton and J. V. Zidek. Optimal monitoring network designs. Statistics &

Probability Letters, 2(4):223–227, 1984.

D. A. Cohn, Z. Ghahramani, and M. I. Jordan. Active learning with statistical models.

Journal of Artificial Intelligence Research, 4:129–145, 1996.

S. Conti and A. O’Hagan. Bayesian emulation of complex multi-output and dynamic

computer models. Journal of Statistical Planning and Inference, 140(3):640–651,

2010.

A. C. Damianou and N. D. Lawrence. Deep Gaussian Processes. In Proceedings of the

16th International Conference on Artificial Intelligence and Statistics, 2013.

A. C. Damianou and N. D. Lawrence. Uncertainty propagation in Gaussian process

pipelines. In NIPS workshop on modern non-parametrics, 2014.

G.M. Dancik and K.S. Dorman. mlegp: statistical analysis for computer models of

biological systems using R. Bioinformatics, 2008.

S. Duane, A.D. Kennedy, B. Pendleton, and D. Roweth. Hybrid Monte Carlo. Physics

Letters B, 195:216–222, 1987.

D. Eddelbuettel. Seamless R and C++ Integration with Rcpp. Springer, 2013.

D. Eddelbuettel and C. Sanderson. RcppArmadillo: Accelerating R with high-

performance C++ linear algebra. Computational Statistics and Data Analysis, 71,

2014.

J. Fan. Comment on ”Wavelets in statistics: A review” by A. Antoniadis. Journal of

the Italian Statistical Society, 6(2):131–138, 1997.

K. Fang, R. Li, and A. Sudjianto. Design and Modelling for Computer Experiments.

Chapman and Hall, Boca Raton, 2006.

D. Gamerman and H.F. Lopes. Markov Chain Monte Carlo: Stochastic Simulation for

Bayesian Inference (Second Edition). Chapman and Hall, 2006.

A. Girard, C. E. Rasmussen, J.Q. Candela, and R. Murray-Smith. Gaussian process

priors with uncertain inputs - application to multiple-step ahead time series fore-

casting. In Advances in Neural Information Processing Systems, volume 15, pages

529–536, 2002.

P. W. Goldberg, C. K. I. Williams, and C.M. Bishop. Regression with input-dependent

noise: A Gaussian process treatment. In Advances in Neural Information Processing

Systems, volume 10, pages 493–499, 1998.

146

R. B. Gramacy and H. K. H. Lee. Bayesian treed Gaussian process models with an

application to computer modeling. Journal of the American Statistical Association,

103:1119–1130, 2008.

R. B. Gramacy and H. K. H. Lee. Adaptive design and analysis of supercomputer

experiments. Technometrics, 51(2):130–145, 2009.

R. B. Gramacy and H. K. H. Lee. Cases for the nugget in modeling computer experi-

ments. Statistics and Computing, 22(3):713–722, 2012.

R. B. Gramacy and M. A. Taddy. Categorical inputs, sensitivity analysis, optimization

and importance tempering with tgp version 2, an r package for treed Gaussian process

models. Journal of Statistical Software, 33(6), 2010.

M. Gu, X. Wang, and J.O. Berger. Robust Gaussian stochastic process emulation. The

Annals of Statistics, 46(6A):3038–3066, 2018.

W.K. Hastings. Monte Carlo sampling methods using Markov Chains and their appli-

cations. Biometrika, 57(1):97–109, 1970.

R.G. Haylock and A. O’Hagan. On inference for outputs of computationally expensive

algorithms with uncertainty on the inputs. Bayesian Statistics, 5:629–637, 1996.

D. Higdon, J. Gattiker, B. Williams, and M. Rightley. Computer model calibration

using high dimensional output. Journal of the American Statistical Association, 103

(482):570–583, 2008.

R. L. Iman and W. J. Conover. A distribution-free approach to inducing rank correla-

tion among input variates. Communication in Statistics - Simulation and Computa-

tion, 11(3):311–334, 1982.

H. Jeffreys. Theory of Probability. Oxford University Press, 1961.

M.E. Johnson, L.M. Moore, and D. Ylvisaker. Minimax and maximin distance designs.

Journal of Statistical Planning and Inference, 26:131–148, 1990.

V. R. Joseph, L. Gu, and W. Myers. Space-filling designs for robustness experiments.

Technometrics, 61(1):24–37, 2019.

J. Jun and I. Horace. Active learning with SVM. In J. Ramón, R. Dopico, J. Dorado,

and A. Pazos, editors, Encyclopedia of Artificial Intelligence, volume 3, pages 1–7.

ICI Global, 2009.

K. Kersting, C. Plagemann, P. Pfaff, and W. Burgard. Most likely heteroscedastic

Gaussian process regression. In Proceedings of the International Conference on Ma-

chine Learning, pages 393–400, 2007.

A. Konyukhov, P. Vielsack, and K. Schweizerhof. On coupled models of anisotropic

contact surfaces and their experimental validation. Wear, 264(7-8):579–588, 2008.

147

A. Krause, A. Singh, and C. Guestrin. Near-optimal sensor placements in Gaussian

processes: Theory, efficient algorithms and empirical studies. Journal of Machine

Learning Research, 9:235–284, 2008.

K.N. Kyzyurova, J.O. Berger, and R.L. Wolpert. Coupling computer models through

linking their statistical emulators. SIAM/ASA Journal on Uncertainty Quantification

(JUQ), 6(3):1151–1171, 2018.

L. Le Gratiet, C. Cannamela, and B. Iooss. A Bayesian approach for global sensitiv-

ity analysis of (multi-fidelity) computer codes. SIAM/ASA Journal on Uncertainty

Quantification (JUQ), 2:336–363, 2014.

R. Li and A. Sudjianto. Analysis of computer experiments using penalized likelihood

in Gaussian kriging models. Technometrics, 47(2):111–120, 2005.

H. Lin and S. Yim. Coupled surge-heave motions of a moored system. I: Model cal-

ibration and parametric study. Journal of Engineering Mechanics, 132(6):671–680,

2006.

D. V. Lindley. On a measure of the information provided by an experiment. Annals of

Mathematical Statistics, 27(4):986–1005, 1956.

D. MacKay. Information-based objective functions for active data selection. Neural

Computation, 4(4):590–604, 1992.

S. Mak and V. R. Joseph. Minimax and minimax projection designs using clustering.

Journal of Computational and Graphical Statistics, 27(1):166–178, 2018.

B. Matern. Spatial variation. Meddelanden Fran Statens Skogs-Forskningsinstitut, 49

(5), 1960.

M.D. McKay, R.J. Beckman, and W.J. Conover. A comparison of three methods for

selecting values of input variables in the analysis of output from a computer code.

Technometrics, 21:239–245, 1979.

N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller. Equation

of state calculations by fast computing machines. Journal of Chemical Physics, 21

(6):1087–1092, 1953.

D. M. Morris. Factorial sampling plans for preliminary computational experiments.

Technometrics, 33:161–174, 1991.

R. M. Neal. Bayesian learning for neural networks. Springer, 1996.

R. M. Neal. Handbook of Markov Chain Monte Carlo, chapter MCMC Using Hamilto-

nian Dynamics. Chapman and Hall, 2011.

F. Novometsky and S. Nadarajah. Package ‘truncdist’. R package vignette, 2016.

148

E. Nummelin. General Irreducible Markov Chains and Non-Negative Operators. Cam-

bridge University Press, 1984.

D. Nychka, Q. Yang, and J.A. Royle. Constructing spatial designs for monitoring

air pollution using subset regression. Statistics for the Environment 3: Pollution

Assessment and Control. Wiley, 1997.

D. Nychka, R. Furrer, J. Paige, and S. Sain. Package ‘fields’. R package vignette, 2016.

J.E. Oakley and A. O’Hagan. Probabilistic sensitivity analysis of complex models: a

Bayesian approach. Journal of the Royal Statistical Society, 66:751–769, 2004.

A. O’Hagan. Bayesian analysis of computer code outputs: A tutorial. Reliability

Engineering and System Safety, 91:1290–1300, 2006.

H.D. Patterson and R. Thompson. Recovery of inter-block information when block

sizes are unequal. Biometrika, 58(3):545–554, 1971.

A. Plumb. Metamodelling for hazard prediction. Master’s thesis, University of

Southampton, 2008.

R.L. Prentice. A generalization of the probit and logit methods for dose response curves.

Biometrics, 32(4):761–768, 1976.

W.H. Press and G.R. Farrar. Recursive stratified sampling for multidimensional Monte

Carlo integration. Computers in Physics, 4(190), 1990.

G. Pujol, B. Iooss, and A. Janon. Package ‘sensitivity’. R package vignette, February

2017.

Z. G. Qian, H. Wu, and C. F. J. Wu. Gaussian process models for computer experiments

with qualitative and quantitative factors. Technometrics, 50:383–396, 2009.

C. E. Rasmussen and C. K. I. Williams. Gaussian processes for machine learning. MIT

Press, Cambridge, MA, 2006.

G.O. Roberts, A. Gelman, and W.R. Gilks. Weak convergence and optimal scaling

of random walk Metropolis algorithms. The Annals of Applied Probability, 7(1):

110–120, 1997.

O. Roustant, D. Ginsbourger, and Y. Deville. DiceKriging, DiceOptim: Two R Pack-

ages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and

Optimization. Journal of Statistical Software, 51(1), 2012.

J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn. Design and analysis of computer

experiments (with discussion). Statistical Science, 4:409–435, 1989.

A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana,

and S. Tarantola. Global Sensitivity Analysis. Wiley, 2008.

149

T. J. Santner, B. J. Williams, and W. I. Notz. The Design and Analysis of Computer

Experiments. Springer, New York, 2003.

M. Schonlau and W. J. Welch. Screening Methods for Experimentation in Industry,

Drug Discovery and Genetics, chapter Screening the Input Variables to a Computer

Model Via Analysis of Variance and Visualization, pages 308–327. Springer, 2006.

S. Seo, M. Wallat, T. Graepel, and K. Obermayer. Gaussian process regression: Active

data selection and test point rejection. In Proceedings of the International Joint

Conference on Neural Networks, volume 3, pages 241–246. IEEE, 2000.

A. F. Stein, R. R. Draxler, G. D. Rolph, B. J. B. Stunder, M. D. Cohen, and F. Ngan.

NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bul-

letin of the American Meteorological Society, 2015.

M. L. Stein. Interpolation of Spatial Data: Some Theory for Kriging. Springer, 1999.

G. Stevens and S. Atamturktur. Mitigating error and uncertainty in partitioned anal-

ysis: A review of verification, calibration and validation methods for coupled simu-

lations. Archives of Computational Methods in Engineering, pages 1–15, 2016.

M. Titsias and N. D. Lawrence. Bayesian Gaussian process latent variable model.

Journal of Machine Learning Research - Proceedings Track, 9:844–851, 2010.

W. J. Welch, R. J. Buck, J. Sacks, H. P. Wynn, T. J. Mitchell, and M. D. Morris.

Screening, predicting, and computer experiments. Technometrics, 1992.

150

Index

active learning - Cohn, 52

active learning - MacKay, 52, 58

adaptive design, see sequential experi-

mental design

CBR release modelling, 2, 74, 92, 109,

143

correlation functions, 9

Gaussian, 10, 16, 48, 95, 96

Matérn, 10, 15, 16, 95

power-exponential, 10, 16, 19

squared-exponential, see correlation

functions, Gaussian

covariance function, 9

coverage design, 50, 51

deep Gaussian process, 4

dose response model, 114

Dstl, 2, 74, 80, 114

elementary effects method, 67

HYSPLIT, 109

input screening, 68

Latin hypercube design, 49

maximin distance design, 49, 51

maximum likelihood estimation, 17

mean square prediction error, 51

Metropolis-Hastings algorithm, 21

minimax distance design, 50, 51

model decomposition, 65, 67, 69

Monte Carlo integration, 33, 41, 42, 67,

72, 73

mutual information for computer exper-

iments, 52

neural network, 4

non-standardised t-distribution, 12, 69

nugget, 15, 17, 19, 52

prior distribution, 4, 8, 12, 69

conjugate prior, 12, 14, 23

non-informative prior, 13, 14, 23

sensitivity index, see Sobol’ index

sequential experimental design, 51, 57,

61

Sobol’ index, 65, 67, 71, 93, 141

stochastic model, 25, 143

total effect index, 66, 68, 71

uncertain input, 30, 32, 35, 44

variance index, see Sobol’ index

variational inference, 29

151

	Declaration of Authorship
	Acknowledgements
	Glossary of symbols
	Introduction
	Emulation
	Overview
	Gaussian Process emulation
	Unknown parameters of the Gaussian process emulator
	Plug-in approach
	Markov chain Monte Carlo

	Extensions of the GP emulator
	Conclusions

	Emulation for chains of multiple models
	Introduction
	Approximating the linked emulator output by Monte Carlo integration
	The mean and variance of the linked emulator
	Extending the simulation-based linked emulator to longer chains
	Extending the theoretical linked emulator to longer chains
	Conclusions

	Experimental design for chains of multiple models
	Review of existing methods for experimental design
	Single-stage design for chains of emulators
	Sequential design for chains of emulators
	Conclusions

	Sensitivity analysis
	Introduction
	Probabilistic sensitivity analysis
	Sensitivity analysis using emulation
	Practical issues
	Example: CBR modelling
	Sensitivity analysis for multiple models
	Sensitivity analysis for the final model in a chain with respect to the model's inputs
	Sensitivity analysis for the final output of a chain with respect to the controllable inputs

	Conclusions

	Software implementation
	Introduction
	Details of usage
	Prediction from a linked emulator using simulation
	Prediction from a linked emulator using the theoretical method
	Sensitivity analysis for the final model in a chain
	Sensitivity analysis for the output of a chain in terms of the directly controllable inputs

	Examples

	Application: casualty prediction from a CBR release
	Dispersion model
	Casualty model
	Prediction from the chain
	Direct simulation on the dose-response model
	Composite emulator
	Theoretical linked emulator
	Simulation-based linked emulator

	Sensitivity analysis
	Conclusions

	Simulation study
	Introduction
	Simulation setup
	Results

	Conclusions and future work
	Conclusions
	Future work: experimental design
	Future work: sensitivity analysis
	Future work: other areas

	Bibliography

