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Abstract
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Doctor of Philosophy

Far-Field Microphone Array Techniques for Acoustic Characterisation of

Aerofoils

by Fabio Casagrande Hirono

This Thesis is concerned with the acoustic characterisation of flat plate aerofoils interacting

with turbulent flows, and the use of microphone array methods as an experimental tool to as-

sess these characteristics. The main equations describing acoustic propagation and radiation in

a moving medium are described, covering plane waves, point sources and distributed sources.

The geometric far-field approximation, introduced here as the Fraunhofer approximation, is

shown to relate the acoustic field seen by a distant observer to the Spatial Fourier Transform

of the source distribution evaluated within the so-called “radiation ellipse” in the wavenumber

domain. The Amiet model for turbulence-flat plate interaction noise is presented, and its

surface pressure and acoustic radiation characteristics for single- and multiple-gust responses

are discussed from a wavenumber-domain perspective. Three sources of near-field effects were

identified in a flat plate: the fundamental dipole hydrodynamic near-field, considered signif-

icant contributor to the acoustic field at low frequecies; the geometric near-field, considered

significant at high frequencies; and the response to subcritical gusts, considered significant at

low frequencies for a finite-span aerofoil. The prediction model was validated via microphone

array acoustic measurements of a flat plate in a wind tunnel, showing a good agreement be-

tween the predicted and the measured acoustic fields, particularly regarding the coherence

between microphones. The same set of signals was processed with conventional beamforming

and CLEAN-SC, and again a good agreement was observed between prediction and measure-

ments. Finally, a far-field inversion method was proposed by inverting the above mentioned

Fourier relationship between the far-field pressure and the source wavenumber spectrum; two

formulations were proposed, and it was shown that the estimated source is effectively a band-

passed version of the original source and thus lacks fine spatial detail. This band-passing

phenomenon in the far-field radiation effectively smears out the original source distribution,

and the estimated source becomes larger than the physical source. It is shown that both forms

have very similar formulations to frequency-domain delay-and-sum beamforming.
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Chapter 1

Introduction

This Thesis investigates the acoustic characteristics of turbulence-flat plate interaction noise,

and the use of microphone arrays for experimentally assessing these characteristics. Aerofoil

interaction noise is an important source of broadband noise in many industrial applications,

and has been the topic of considerable research in the past decades. As a distributed, partially-

coherent source immersed in a moving medium, it presents significant challenges from a micro-

phone array signal processing perspective, and as such it is an interesting test case for source

estimation methods.

A literature review on analytical models for aerofoil interaction noise has identified a gap

regarding the description of the aerofoil acoustic near-field. As further discussed below, most

recent studies on aerofoil interaction noise apply the far-field approximation, and investigate

the effects of different aerofoil geometries or experimental conditions on the far-field sound only.

Little, if any, discussion has been made on under which conditions the far-field approximation

is valid, or what are the acoustic characteristics observed in the aerofoil near-field. Therefore,

we propose to investigate the far-field and near-field characteristics as observed for an aerofoil

interacting with a turbulent flow as part of the original contributions of this Thesis.

Microphone array signal processing methods have become the norm for aeroacoustic measure-

ments in recent years. Most popular array methods - such as conventional beamforming [1],

or deconvolution methods such as DAMAS [2] and CLEAN-SC [3] - can estimate the spatial

distribution of source powers, but are not used to estimate the source phase or coherence

structure. Given the random nature of most aeroacoustic phenomena, estimating the source

coherence as well as the source power distribution would paint a much more complete picture

1
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of the noise sources. We then propose a source estimation framework based on the far-field ap-

proximation and the Spatial Fourier Transform as part of the Thesis original contributions, and

demonstrate how this method can be used to estimate the acoustic source power distribution

and its coherence structure.

The remainder of the Thesis describes the steps taken to develop these contributions. The

next section covers the literature review of analytical models for aerofoil interaction noise, and

on aerofoil measurements with microphone arrays. This is followed by a list of the Thesis

original contributions, and a description of the Thesis structure.

1.1 Literature Review

The interaction of a turbulent gust with a solid lifting surface, commonly termed “turbulence-

aerofoil interaction noise” or “leading edge noise”, is a large contributor to noise in many

applications, such as turbomachinery [4] and wind turbines [5], and as such is subject to a

substantial body of research. Recent research efforts in aerofoil interaction noise can be broadly

divided into three areas: numerical methods, analytical methods and experimental methods.

The next paragraphs attempt to describe their main characteristics and distinctions.

Numerical methods attempt to directly simulate the interaction of the turbulent flow with a

solid surface using computational techniques. These methods are computationally-intensive,

time-consuming [6], and usually aimed at describing the tiniest details of the sound generation

mechanism and reproducing it as closely as possible [7]. While computational resources are

becoming more powerful every year, some particular cases of Reynolds and Mach numbers are

still out of reach of current numerical methods [7], and the computational cost makes them

prohibitive for some applications.

Analytical methods, on the other hand, model a known mechanism of noise generation and

attempt to obtain an approximate analytical solution. Such solutions are often reached at the

cost of assuming drastic simplifications of the flow features or problem geometry: for example,

Amiet’s model for turbulence-aerofoil interaction [8] is derived for a flat-plate aerofoil immersed

in an isotropic, uniform turbulent flow. Real experimental conditions frequently differ from

such assumptions, and a significant body of work has been done recently to extend the existing

models to more realistic conditions.
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While less accurate than their numerical counterparts, analytical methods are much cheaper

and faster, and thus are still very important for preliminary engineering design and identifying

trends for known physical mechanisms [7, 9]. Given the current relevance of analytical methods,

and given that numerical methods require specific skills and training, we will not discuss

numerical methods in this work.

In contrast to the previous two, experimental methods focus on experimentally assessing char-

acteristics of the radiated sound in terms of measurable quantities such as acoustic spectra and

directivity functions. Since experiments must by design reproduce the physical phenomenon

under study, such methods are much closer to the “real” problem to be tackled, and experi-

mental results are thus often used to validate numerical and analytical results. Current aerofoil

interaction noise measurement methods can vary from single-microphone power spectral den-

sity (PSD) measurements, used to observe the far-field sound radiated by the aerofoil as a

whole, to microphone array beamforming methods, used to separate and quantify multiple

sources simultaneously.

The next sections will cover a brief review of analytical and experimental methods recently ap-

plied to aerofoil interaction noise, point some limitations of the current methods, and describe

how the work developed during this research project fits within these gaps in the literature.

1.1.1 Analytical Methods for Aerofoil-Turbulence Interaction Noise Pre-

diction

For aerofoil interaction noise predictions, the Amiet model [8, 10] is perhaps the most estab-

lished and forms the basis of many methodologies currently in use [6]. A very good overview of

the Amiet model can be found in Roger and Moreau [9], where the authors also tackle trailing

edge noise and vortex shedding noise using a similar mathematical formulation.

The Amiet model assumes a flat, rectangular plate as a simplified aerofoil model. This flat

plate is subject to an incoming turbulent flow, which is described as a Fourier sum of incoherent

hydrodynamic plane waves moving at the mean flow velocity towards the aerofoil. The flat

plate unsteady aerodynamic response is calculated for each gust from linearised potential

theory, resulting in an analytical expression for the unsteady lift forces over the aerofoil surface;

the total unsteady lift force is obtained by integrating over all gusts’ responses. Finally, the

sound field is calculated from the unsteady lift using an acoustic analogy: the unsteady force
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distribution is equivalent to a distribution of point dipole sources over the aerofoil planform

area, and the sound field is given by integrating the contribution of all sources.

Most recent research efforts on turbulence-interaction analytical models have focused in de-

veloping extensions towards more realistic experimental conditions: for example, we can find

attempts to predict interaction noise for spanwise-varying conditions [11] and the inclusion of

realistic aerofoil geometries (i.e. thickness and camber) in the formulation [12]. Other works

have discussed the mean flow distortion generated by aerofoil thickness and its impact on the

assumed turbulence model [13], and an increased low-frequency extension [6].

The model is also used by researchers working on new aerofoil designs aiming at reducing

their acoustic radiation. There has been a strong interest in extending the existing models

to include the effects of leading edge serrations [4, 14, 15], and extensions to porous leading

edges have also been investigated [14].

1.1.1.1 Limitations of Current Analytical Methods

Because many applications of interaction noise come from the aviation industry and aim to

reduce noise levels perceived by the general population, research efforts are often focused on

the far-field noise emmited by the aerofoil. Assuming the observer is in the far-field allows

significant simplifications of the analytical formulation, resulting in a much more tractable

closed form expression for the far-field sound. The use of the far-field assumption is also

reinforced by the nonexistence of analytical solutions for the near-field sound of most types of

acoustic sources. It is therefore not surprising that all papers referenced so far in this Section

assume far-field conditions and do not consider near-field effects.

However, it has not been established in these references what the conditions are for the far-

field approximation to be valid, whether the approximation is applicable to typical aerofoil

measurement situations, or what errors should be expected if the approximation is applied

incorrectly. Therefore, we propose to investigate the far-field approximation, determine its

conditions of validity and attempt to provide some physical interpretation.

The absence of studies describing near-field characteristics of aerofoil interaction noise also

complicates the design of a microphone array geometry optimised for this particular source

type, since the acoustic characteristics in the near-field region are not well established. We thus

propose a more thorough investigation of the source characteristics for this research project,
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including the identification of the origins of near-field effects and to what extent they might

affect the measurements.

1.1.2 Aerofoil-Turbulence Interaction Noise Measurements

Recent efforts in aerofoil noise measurements often focus on microphone arrays and decon-

volution methods; however, it is interesting to go briefly through other methods used in the

literature. Bahr et al. [16] presented an interesting analysis of trailing edge noise measurement

techniques, most of which have also been applied to leading edge measurements as well and

therefore are of interest. They listed, in increasing sensor count: single-microphone measure-

ments, two- and three-microphones Coherent Output Method (COP), microphone arcs and

linear arrays for directivity measurements, and microphone array beamforming.

Many authors have used single-microphone measurements, where the main variable of interest

is the microphone signal spectrum as a proxy for the aerofoil radiated noise [13, 14]. These

are clearly the simplest method to implement, but might not be representative of the aerofoil

radiation towards different directions and are easily contaminated by extraneous noise. Other

authors have compared single-microphone spectra with array measurements [17–19], often

indicating a good agreement between both methods and noting the favourable noise rejection

capabilities of array measurements.

Two- and three-microphone Coherent Output Power (COP) methods use microphones located

at opposite sides of the aerofoil surface and explore the dipole nature of aerofoil radiation

to reject external noise sources [16, 20]. Such methods have had limited use in interaction

noise measurements, possibly due to the popularisation of microphone array signal processing

methods and their improved noise rejection capabilities.

Microphone arcs or linear arrays are often used for directivity measurements [16, 21]. In this

setup, the microphone spectra are plotted as a function of the observation angle, and the

resulting plot is interpreted as a directivity measurement of the source under study. These

are a popular alternative due to their simplicity, but often require complex installation setups

such as arcs of microphones suspended above the aerofoil [15].

In recent years, perhaps the most popular method for interaction noise measurement is micro-

phone array beamforming. Frequency-domain conventional beamforming consists of applying

a phase shift and summing the microphone signals so that signals originated from a given
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spatial location sum up coherently and are amplified, while signals originated from other loca-

tions and incoherent noise sum up incoherently and are attenuated. The beamformer outputs

an estimate of the source strength at a target location, and steering the beamformer over

multiple locations yield the so-called “source map” containing the estimated source strength

distribution over a region of interest. A very thorough review of conventional beamforming

methods for aeroacoustic measurements can be found in Sijtsma [22]

Despite being more resource-intensive than the previous methods and having results that

might be more difficult to interpret [16], recent increases in computational power have helped

popularise the method: many authors have reported conventional beamforming measurements

of aerofoil interaction noise [17–19, 23, 24] in recent years. Even more recently, the use of

deconvolution methods seem to have become the de facto standard in aeroacoustic measure-

ments and have also been reported extensively; of those, the most popular methods are the

CLEAN-SC method [18, 23, 25, 26] and the DAMAS method [19, 20, 24].

1.1.2.1 Limitations of Current Measurement Methods

Conventional beamforming measurements have well-known limitations in the form of limited,

frequency-dependent spatial resolution and sidelobes. It is well established in the literature

that these limitations can be mitigated through careful microphone array design [27] and the

adoption of deconvolution methods in the post-processing stage [2, 3].

However, we would like to point a less studied limitation of beamforming methods: even

though they can be said to reconstruct the source distribution, most aeroacoustic applications

of beamforming focus on recovering only the source powers, but not the source coherence

characteristics. It is known that for sources with random characteristics, a full description of

the source powers and mutual coherences at a single frequency is given by the source strength

cross-spectral matrix (CSM).

From a measurement perspective, it is then desireable to estimate the source cross-spectral

matrix from the acoustic measurements; this capability would enable researchers to investi-

gate the source coherence structure, thus yielding more information about the physics of the

problem.
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1.2 Original Contributions of this Thesis

The original contributions of this Thesis are summarised below:

• A link between the radiated acoustic pressure at a far-field observer and a single wavenum-

ber component of the source Spatial Fourier Transform is demonstrated via the Fraun-

hofer far-field approximation. While this link is well-known in the acoustics literature

[28–30], it is derived through a systematic Fourier-based framework, generalized to dis-

tributions of either monopole or dipole sources, in steady or subsonic convected media,

and its conditions of validity are established.

• A review of the flat plate interaction noise model by Amiet [8] is presented, with em-

phasis in describing the flat plate surface pressure and cross-spectrum characteristics

in the spatial and in the wavenumber domain. Examples of single-gust and multiple-

gust surface pressure responses are shown in the wavenumber domain, and interpreted

in terms of their corresponding far-field radiation via the previously introduced Fourier

framework.

• Three sources of near-field effects are identified on the flat plate radiation model: the hy-

drodynamic dipole near-field, considered a significant contributor to the radiated sound

at low frequencies; the geometric near-field, considered significant at high frequencies;

and the aerofoil response to subcritical gusts, considered significant at low frequencies

for finite-span aerofoils.

• An experimental validation of Amiet model using a microphone array in an open-jet wind

tunnel experiment is presented. The predicted and measured acoustic field cross-spectra

at the microphone locations are compared, and source maps obtained with conventional

beamforming and CLEAN-SC from predicted and measured data are compared.

• A Fourier-based far-field inversion method for planar sources in flow is proposed in

two formulations. The first starts from an arbitrary microphone array geometry and

obtains an irregular wavenumber-domain sampling, while the second imposes a uniform

wavenumber-domain sampling and defines the microphone array geometry in a second

step. The second method can be considered an extension of that proposed by Kim and

Nelson [31] for monopole sources in a steady medium, as here it is formulated for dipole

sources in a subsonic moving medium.
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1.3 Thesis Structure

Chapter 1 presents a brief literature review of the recent advances on aerfoil interaction noise

prediction methods and measurement methods. We report two gaps in the current literature:

a detailed description of turbulence-aerofoil interaction noise characteristics as an acoustic

source, with emphasis on the description of near-field effects; and an experimental method to

estimate the source strength CSM in aerofoil interaction noise measurements.

Chapter 2 reviews sound radiation and propagation, including expressions for plane waves in a

homogeneous convected medium, acoustic radiation from point sources and boundary sources

in an inhomogeneous convected medium, and shear layer diffraction effects. We also formally

introduce the Fraunhofer geometric far-field approximation, show its inherent assumptions and

limitations, and observe it can be interpreted as a plane wave approximation of the sound field

as seen far from the source. Finally, we show the relationship between the acoustic far-field of

a distributed source and the Spatial Fourier Transform of the source strength distribution via

the Fraunhofer far-field approximation.

Chapter 3 outlines an analytical method for predicting turbulence-flat plate interaction noise

surface pressure and acoustic radiation. We present the analytical model including near-

field effects, and show how the model simplifies under far-field (i.e. the Fraunhofer far-field

approximation) and infinite-span assumptions. We also describe the flat plate surface pressure

response characteristics in both spatial and wavenumber domain, for both single-gust and

multiple-gusts interactions.

Chapter 4 describes acoustic radiation predictions obtained with the interaction noise model

from Chapter 3 for representative cases of both single-gust and multiple-gusts interaction. We

compare the different forms of the prediction model with “far-field” experimental results, where

we predict near-field effects should be apparent for single-gust radiation at high frequencies,

even in “far-field” experimental setup. We identify three possible sources of near-field effects

in the leading edge noise model: the dipole hydrodynamic field, the radiation from subcritical

gusts, and the geometric near-field. These effects are assessed in terms of how they affect

measurements performed in the near-field, where we show that subcritical gusts are significant

contributors of sound at low frequencies and will have a propagating (i.e. non-evanescent)

acoustic response for finite-span aerofoils. Finally, we predict that geometric near-field effects
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are not apparent when considering multiple-gusts interaction noise, although they become

apparent when investigating single-gust interaction noise.

Chapter 5 describes the experiments performed in the ISVR open jet wind tunnel with both a

far-field microphone arc and a near-field planar microphone array. We compare the predicted

and measured acoustic PSD, cross-PSD phase and coherence for the microphone array ele-

ments, and obtain a good agreement for the phase and coherence but poor agreement for the

PSD estimation. We then use the interaction noise model to explain trends in coherence as a

function of frequency and microphone location, with good agreement between the predictions

and measurements.

Chapter 6 reviews microphone array signal processing methods for source estimation. Conven-

tional beamforming and CLEAN-type deconvolution algorithms are described in detail, with

some simulated test cases used for illustrative purposes. We then predict the performance

of these methods when analysing synthesized microphone array data generated from the in-

teraction noise model, and obtain good agreement with experimental results. We also apply

beamforming and CLEAN-SC for measurements made with different aerofoils, and discuss the

results.

Chapter 7 proposes a source estimation method for planar sound sources in a moving medium

from far-field measurements. The method is based on inverting the Fourier relationship

between source in wavenumber domain and radiated far-field in a convected medium, de-

scribed in Chapter 2. The method is presented in two slightly different approaches: arbitrary

wavenumber-domain sampling, and uniform wavenumber-domain sampling. We show that an

acoustic source will lose the finer details in its spatial characteristics when estimated from the

far-field, due to the loss of high spatial frequencies - i.e. large magnitude wavenumbers. We also

show that the proposed method holds strong similarities to frequency-domain delay-and-sum

beamforming.

Chapter 8 provides a summary of the Thesis contributions, and proposes some topics for future

work.





Chapter 2

Sound Propagation and Radiation

in a Moving Medium

In this Chapter we analyse the fundamentals of sound propagation and radiation in a convected

medium. We consider the propagation of plane waves in homogeneous media with a subsonic

mean flow, and obtain relationships describing their behaviour and conditions for existence.

This is followed by a section covering the acoustics of inhomogeneous media, where we use

Green’s function to describe the radiation of point sources and distributed sources, such as an

aerofoil in a turbulent flow.

The Fraunhofer geometric far-field approximation is extensively used in this work and is pre-

sented in detail in the following section, including its derivation and conditions of validity.

We then merge the three topics discussed above and present a far-field approximation to the

radiation of distributed sources, where the acoustic field seen by a distant observer is inter-

preted as a plane wave and is related to the Spatial Fourier Transform of the source strength

distribution. This approximation is identical to the one used by Amiet [8] in his far-field model

of leading edge radiation, and forms the basis of our proposed source estimation method from

far-field measurements in flow.

Finally, we present a brief discussion on the effects of sound propagation through a shear

layer, as observed in open-jet wind tunnel experiments. We propose a simplified model for

the refraction of acoustic rays moving propagating through an infinitesimally thin shear layer,

which is later used to both predict and compensate for shear layer effects in simulated and

experimental data, respectively.

11



Chapter 2. Sound Propagation and Radiation in a Moving Medium 12

x

y

z

θ
ϕ

r 
r

Figure 2.1: Position vector r in Cartesian (x, y, z) and spherical (r, θ, φ) coordinate system.

All analyses presented in this document assume a three-dimensional space. A vector r can be

written in a Cartesian coordinate system as r = (x, y, z) and in a spherical coordinate system

as r = (r, θ, φ), as shown in Figure 2.1. These coordinate systems are related through the

following relations:


x = r sin(θ) cos(φ)

y = r sin(θ) sin(φ)

z = r cos(θ),


r = ‖r‖ =

√
x2 + y2 + z2

θ = arccos(z/r)

φ = arctan(y/x).

(2.1)

2.1 Acoustics of Homogeneous Convected Media

The equations describing acoustic waves in a three-dimensional space can be derived from the

linearised equations for conservation of mass and conservation of momentum in a fluid, as

shown below. However, since aeroacoustic noise is generated by fluid motion, the effects of

convection must be included when describing the propagation of acoustic waves.

Let us assume the acoustic medium is subject to a mean flow of velocity U = (Ux, 0, 0) in the

positive-x direction. The uppercase letter denotes a steady value, in opposition to lowercase
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letters denoting unsteady (i.e. acoustic) values. The mean flow Mach number is written

Mx = Ux/c0, where c0 is the speed of sound in a quiescent medium.

While generally assumed constant, the speed of sound has a dependence on the air temperature

TC in Celsius and can be calculated as [32]

c0(TC) = c0(0)

√
TC + 273.15

273.15
, (2.2)

where the speed of sound at TC = 0◦C is c0(0) = 331.5 m/s [32].

We define the total derivative (or material derivative) Df(r, t)/Dt of a function f(r, t), rep-

resenting the rate of change of the function in a frame of reference that moves with the fluid

particles [30]:

Df(r, t)

Dt
=
∂f(r, t)

∂t
+ U · ∇f(r, t) (2.3)

=
∂f(r, t)

∂t
+ Ux

∂f(r, t)

∂x
. (2.4)

2.1.1 The Homogeneous Convected Wave Equation

In a uniformly moving medium with no sources, the linearised equation of conservation of

mass can be written as [30, 33]

Dρ(r, t)

Dt
+ ρ0∇ · u(r, t) = 0, (2.5)

where ρ is the acoustic medium density, ρ0 is the mean fluid density, and u = (ux, uy, uz) is

the acoustic particle velocity. The divergence operator of a vector field is denoted as ∇ · {.} =

∂{.}/∂x+ ∂{.}/∂y + ∂{.}/∂z.

The linearised equation of conservation of momentum is written as

ρ0
Du(r, t)

Dt
+∇p(r, t) = 0, (2.6)
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where p is the acoustic pressure, and the gradient operator of a scalar field is denoted as

∇{.} = (∂{.}/∂x, ∂{.}/∂y, ∂{.}/∂z)

These two equations, combined with the isentropic relationship p(r, t) = c2
0ρ(r, t) [34], give

rise to the homogeneous convected wave equation

(
∇2 − 1

c2
0

D2

Dt2

)
p(r, t) = 0. (2.7)

The wave equation can be simplified for sources and fields that display time-harmonic be-

haviour. We will use the real part of the complex exponential e+jωt to denote time-harmonic

behaviour at the angular frequency ω:

p(r, t) = Re
{
p(r, ω)ejωt

}
, (2.8)

and leave the notation Re
{

[.]ejωt
}

implicit from here onwards. Alternatively, we could obtain

a frequency representation p(r, ω) of the time-domain signal p(r, t) by applying a Temporal

Fourier Transform:

p(r, ω) =
1

2π

∫ +∞

−∞
p(r, t)e−jωt dt. (2.9)

For a time-harmonic sound field, the convected wave equation can be rewritten as [33]

(
∇2 +

[
k0 − jMx

∂

∂x

]2
)
p(r, ω) = 0, (2.10)

where k0 = ω/c0 is the acoustic wavenumber.

The conservation of momentum equation can also be simplified under a time-harmonic as-

sumption to give the convective Euler’s equation [33], relating the acoustic particle velocity

and the acoustic pressure gradient:

ρ0

(
jω + Ux

∂

∂x

)
u(r, ω) +∇p(r, ω) = 0. (2.11)
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2.1.2 Plane Wave Solutions in Convected Media

In the following chapters we will rely heavily on approximating sound fields as plane waves,

so let us consider plane wave solutions to the convected wave equation in more detail. In later

sections we will be considering only the acoustic field radiated to the space above the sources,

which are assumed to be located at the z = 0 plane; hence, we restrict our current analysis to

z ≥ 0 coordinates only.

A plane wave represents a separable solution to the homogeneous Helmholtz equation in a

Cartesian coordinate system; a unitary-amplitude plane wave is denoted as

p(r, ω) = e−jkxxe−jkyye−jkzz (2.12)

= e−jk·r, (2.13)

where k = (kx, ky, kz) is the wavenumber vector, with magnitude k = ‖k‖ and pointing in the

direction of propagation (θp, φp) of the plane wave. Its Cartesian components kx, ky, kz are

called trace wavenumbers in the x, y, z directions, respectively. The wavenumber vector can

also be represented in polar coordinates as (k, θp, φp), where


kx = k sin(θp) cos(φp)

ky = k sin(θp) sin(φp)

kz = k cos(θp),


k = ‖k‖ =

√
k2
x + k2

y + k2
z

θp = arccos(kz/k)

φp = arctan(ky/kx).

(2.14)

The wavenumber vector magnitude k is related to the wavelength λ and phase speed cp of the

plane wave, observed in the direction of propagation, through the expression

k =
ω

cp
=

2π

λ
. (2.15)

Note the absence of the subscript {.}0 in the above variables, indicating they are not necessarily

identical to the acoustic wavenumber k0, the acoustic wavelength λ0 = 2π/k0 and the speed

of sound c0 in a quiescent medium.

We can insert Eq. 2.13 into Eq. 2.10 and obtain the dispersion relation for a uniformly moving

medium:
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k2
x + k2

y + k2
z = (k0 −Mxkx)2 (2.16)

= k2
0 − 2k0Mxkx +M2

xk
2
x. (2.17)

Note that the wavenumber vector magnitude is not a constant, but instead a function of the

streamwise trace wavenumber kx. In other words, it will vary with the relative angle between

the wavenumber vector k and the mean flow velocity U = (Ux, 0, 0). As a consequence, plane

waves propagating in a uniformly moving medium will also have varying phase velocity cp and

wavelength λ, depending on their direction of propagation relative to the mean flow.

Let us now assume the trace wavenumbers kx and ky are independent variables and can be

chosen arbitrarily. The process of obtaining the kz component of the wavenumber vector from

its trace components (kx, ky) is equivalent to calculating a three-dimensional sound field p(r, ω)

from its trace p(x, y, ω) in the z = 0 plane only; this process is used in later sections to obtain

the acoustic radiation of planar sources [7]. A kz that satisfies Eq. 2.17 for a given (kx, ky)

pair can be found as

kz = ±
√

(k0 −Mxkx)2 − k2
x − k2

y (2.18)

= ±
√
k2

0 − (1−M2
x)k2

x − 2k0Mxkx − k2
y. (2.19)

In later sections we will consider sources on the plane z = 0 radiating into the half-space z > 0,

so we consider only positive-valued solutions of Eq. 2.19 as representing waves radiated from

these sources.

For positive-, real-valued kz, the dispersion relation for a convected medium represents half

the surface of an ellipsoid, shown in Figure 2.2. The intersection of the ellipsoid surface with

the kz = 0 plane forms an ellipse, indicated by the dash-dotted line. Both the ellipsoid and

the ellipse become stretched towards negative kx values with increasing Mach number Mx,

and revert respectively into a sphere and a circle of radius k0 and centred at (kx, ky) = (0, 0)

for a quiescent medium (Mx = 0) [29].

For a given pair of trace wavenumbers (kx, ky) located inside the ellipse, the corresponding

kz component that satisfies the dispersion relation (Eq. 2.19) is real-valued and given by the
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height of the ellipsoid above the (kx, ky) point, as indicated in Fig. 2.2. The acoustic field

p(r, ω) = e−jk·r evaluated from this wavenumber vector k = (kx, ky, kz) represents a plane

wave propagating in physical space (x, y, z ≥ 0) in the direction (θp, φp), as described in Eq.

2.14.

On the other hand, trace wavenumbers (kx, ky) located outside the ellipse cannot have a

corresponding real-valued kz that obeys the dispersion relation (Eq. 2.19), and hence cannot

represent a propagating plane wave at the chosen angular frequency ω and Mach number Mx.

In these cases, kz is purely imaginary, and the resulting acoustic field is an evanescent wave

decaying exponentially in the +z direction:

kz = ±j
√

(1−M2
x)k2

x + 2k0Mxkx + k2
y − k2

0 (2.20)

= ±jk′z, (2.21)

where k′z is positive- and real-valued. We will again consider only positive-valued solutions of

Eq. 2.21 from now onwards. The resulting evanescent field in the z > 0 space is expressed as

p(r, ω) = e−jkxxe−jkyye−k
′
zz. (2.22)

The boundary between propagating and non-propagating waves is obtained for trace wavenum-

bers (kx, ky) located over the ellipse, where kz = 0, and represent acoustic waves propagating

in a direction parallel to the z = 0 plane. This curve in the (kx, ky) plane is called the radiation

ellipse [35]; for a quiescent medium (Mx = 0), the radiation ellipse reverts to the radiation

circle [29].

We can obtain an expression for the radiation ellipse by setting kz = 0 and rearranging Eq.

2.17:

(kx + kx1)2

k2
r1

+
k2
y

k2
r2

= 1, (2.23)

where

kx1 =
k0Mx

β2
, kr1 =

k0

β2
, kr2 =

k0

β
, β2 = 1−M2

x . (2.24)
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kzk = (kx, ky, kz)

ϕp kx

ky(kx, ky)
θp

Figure 2.2: Three-dimensional diagram of the radiation ellipsoid in wavenumber domain. The
vector k = (kx, ky, kz) is located over the surface of the ellipsoid and represents a propagating

plane wave in the direction (θp, φp). Note that k = (k, θp, φp) in polar coordinates.

Equation 2.23 describes an ellipse centred at (−kx1, 0), with a semimajor axis kr1 and a semimi-

nor axis kr2 [35]. The ellipse is shown in Figure 2.3 for Mx = 0.5, with the radiation circle for

Mx = 0 at the same angular frequency ω for comparison. The ellipse has its area proportional

to frequency: at low frequencies, the ellipse will contain only wavenumbers with small mag-

nitude, while at higher frequencies the ellipse will increase in size and contain wavenumbers

with larger magnitude.

From Equation 2.23, we can obtain an expression for the streamwise wavenumbers kx on the

right half of the ellipse (i.e. kx ≥ −kx1) as a function of the wavenumber ky:

kx =
1

β2

(√
k2

0 − (kyβ)2 − k0Mx

)
, (kx, ky) ∈ Rad. Ellipse. (2.25)

Equation 2.25 will be used later when discussing the response functions of flat plate aerofoils

to a single turbulent gust in Section 3.2.2.

Since ‖k‖ = k is strictly non-negative, Equation 2.17 can be simplified to yield the wavenumber

vector magnitude as

k = k0 −Mxkx. (2.26)
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kx

ky

(−kr1 − kx1, 0) (kr1 − kx1, 0)(−kx1, 0)

(−kx1, kr2)

(−kx1,−kr2)

Figure 2.3: Radiation Ellipse for a mean flow in the positive-x direction (Mx = 0.5).

This allows us to use Equation 2.14 to obtain explicit expressions for the propagation angles

(θp, φp) as a function of the trace wavenumbers (kx, ky):


θp = arccos


√

(k0 −Mxkx)2 − k2
x − k2

y

k0 −Mxkx


φp = arctan (ky/kx) .

(2.27)

2.1.2.1 Example: Single-kx Pressure Distribution in Varying Mach Number Flow

As an example, consider a pressure distribution composed of a single kx term over the infinite

z = 0 plane. For different flow conditions, there can be different plane waves on the three-

dimensional space above the plane that share the same trace wavenumber kx. For simplicity,

we will look into the y = 0 plane; this is identical to assuming ky = 0 [29], and shows how a

single pressure distribution can correspond to different acoustic fields in the medium above it

under different propagation conditions.

Figure 2.4 shows four examples of a fixed kx trace wavenumber (see (kx, kz) wavenumber

diagram in the left-hand side of the Figure) and their corresponding acoustic plane wave

solutions in a quiescent (Mx = 0, middle of the Figure) and in a convected medium (Mx = 0.5,
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right-hand side of the Figure). Note how the induced wavenumber vector magnitude and

direction of propagation change between the two different media. The exception is the wave

propagating perpendicular to the flow (Figure 2.4b), where the wavenumber vector is the same

in both cases.

It is shown that the presence or absence of a mean flow can drastically alter the acoustic field:

note in Figure 2.4d how a disturbance that propagates to the far-field in a quiescent medium

can become evanescent in a convected medium, for example. Although not shown here, it is

also possible for a negative kx component to represent an evanescent wave in quiescent medium

and a propagating wave in a convected medium.

2.1.2.2 Plane Wave Representations of Sound Fields

Since plane waves are a solution to the wave equation, and since the wave equation is linear,

any field composed of a sum of plane waves will also be a solution to the wave equation. From

Fourier Theory, it is possible to synthesize an arbitrary three-dimensional field as a sum of

plane wave [1, 29]. Note that, in this context, the term plane waves is used to denote both

propagating waves and evanescent waves [29].

This relationship can be expressed via the Spatiotemporal Fourier Transform, defined as

p(k, ω) =
1

(2π)4

∫
t

∫
r
p(r, t) ejk·re−jωt dr dt. (2.28)

Therefore, there is a complex-valued spectrum p(k, ω) which describes a spatiotemporal field

p(r, t) in the wavenumber-frequency domains.

We also define the Inverse Spatiotemporal Fourier Transform as

p(r, t) =

∫
ω

∫
k
p(k, ω) e−jk·rejωt dk dω. (2.29)

Hence, a three-dimensional, time-varying field p(r, t) can be expressed as a Fourier sum of

time-harmonic plane waves, whose spectrum p(k, ω) denote the complex amplitudes of each

plane wave term.
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(a)

(b)

(c)

(d)

Figure 2.4: Examples of plane wave propagation in the xz-plane for a quiescent and a moving
medium (Mx = 0.5), as induced by a single disturbance with trace wavenumbers (kx, ky = 0): (a)

kx < 0; (b) kx = 0; (c) 0 < kx < k0; (d) kx = k0.
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2.2 Green’s Functions and the Inhomogeneous Convected Wave

Equation

While plane waves offer a convenient solution to the homogeneous wave equation, they are

not the most adequate form in the presence of inhomogeneities. This limitation can be too

restrictive for some cases, and therefore we need to consider different solutions to the Helmholtz

equation.

A general solution for second-order linear differential equations - such as the wave equation

- can be obtained through the well-established method of Green’s functions [36, 37]. Green’s

functions are solutions for a case that is homogeneous everywhere except at a single point;

the solution for a particular inhomogeneity distribution is then expressed as an integration in

terms of Green’s functions [37].

We will now obtain a general solution to the inhomogeneous convected Helmholtz equation

using the method of Green’s functions. Let us assume an arbitrary source distribution of the

form Q(rs, ω), such that the inhomogeneous convected Helmholtz equation is written as

(
∇2 +

[
k0 − jMx

∂

∂x

]2
)
p(rs, ω) = −Q(rs, ω). (2.30)

The term Q(rs, ω) is a general term describing a distribution of sources inside a volume V ,

as shown in Figure 2.5. We denote the volume V as being bounded by a surface S; in the

particular example shown in Figure 2.5, S = S1 ∪ S2. Surfaces S1 and S2 can represent either

mathematical abstractions created to facilitate the problem, or actual physical boundaries in

the volume V . Note as well that the unitary normal vectors n point outwards of the volume

V .

2.2.1 Boundary Conditions

When present, the surface S interacts with the acoustic field p(r, ω) through the boundary

conditions prescribed on S. The Green’s function describes how sound propagates through

the domain of interest [38], and hence it must include the effects of any particular boundary

conditions present in the problem of interest.
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n

nRV
S1

S2rs

Figure 2.5: Schematic of the problem used to derive the free-field Green’s Function and the
Kirchhoff-Helmholtz Integral formulation.

Boundary conditions can be physically interpreted as a distribution of equivalent acoustic

sources placed infinitesimally close to the surface [37]. In order to underscore this dualism

between acoustic sources and boundary conditions, we will use the adjectives homogeneous

and inhomogeneous when describing boundary conditions as well. We define:

• Homogeneous boundary conditions: when it is required that the acoustic field (or its

normal gradient) be identically zero at the surface S;

• Inhomogeneous boundary conditions: when it is required that the acoustic field (or its

normal gradient) be a given non-zero function at the surface S.

The most fundamental boundary conditions used in acoustics are: the Dirichlet boundary con-

dition, where the boundary conditions are imposed on the complex amplitude of the acoustic

field at the boundary; the Neumann boundary condition, where the boundary conditions are

imposed on the normal gradient of the acoustic field at the boundary; and the Sommerfeld

radiation condition, where it is imposed that the acoustic field is composed solely of waves

outgoing towards infinity.
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2.2.1.1 The Dirichlet Boundary Condition

The Dirichlet boundary condition is given by

p(rs, ω) = D(rs, ω), rs ∈ S, (2.31)

where D(rs, ω) is a prescribed acoustic pressure at the boundary S. The inhomogeneous

Dirichlet condition is given by DI(rs, ω) 6= 0, while the homogeneous Dirichlet condition is

given by DH(rs, ω) = 0. A Green’s Function that satisfies the Dirichlet boundary condition is

named a Dirichlet Green’s Function [38].

Physically, the homogeneous Dirichlet boundary condition can be interpreted as modeling a

boundary that has zero acoustic impedance, where any wave propagating outwards of the

volume V will have its acoustic pressure forced to zero at the boundary: this situation oc-

curs when sound propagating underwater reaches a water-air boundary, for example. The

inhomogeneous Dirichlet boundary condition denotes a prescribed pressure over a given sur-

face: for example, an aerofoil interacting with a turbulent gust in a mean flow will block the

gusts components normal to the aerofoil, causing a pressure jump to develop over the aerofoil

surface.

2.2.1.2 The Neumann Boundary Condition

The Neumann boundary condition is given by

∂

∂n
p(rs, ω) = N(rs, ω), rs ∈ S, (2.32)

where ∂{.}/∂n = n · ∇ is the derivative in the direction of the outwards normal vector n,

and N(rs, ω) is the prescribed pressure gradient normal to the boundary. The inhomogeneous

Neumann condition is given by NI(rs, ω) 6= 0, while the homogeneous Neumann condition is

given by NH(rs, ω) = 0. A Green’s Function that satisfies the Neumann boundary condition

is named a Neumann Green’s Function [38].
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Note, however, that the normal gradient of the acoustic pressure ∂p(rs, ω)/∂n is directly

related to the acoustic particle velocity un(rs, ω) normal to the surface and its streamwise

derivative ∂un(rs, ω)/∂x through Eq. 2.11, rewritten here for the normal component only:

∂p(rs, ω)

∂n
= −jρ0ωun(rs, ω)− ρ0Ux

∂

∂xs
un(rs, ω). (2.33)

For no-flow conditions, the term containing the streamwise derivative ∂/∂x vanishes, and Neu-

mann boundary conditions can then be interpreted as imposing an acoustic particle velocity

distribution normal to a surface S.

Physically, homogeneous Neumann boundary conditions can be interpreted as having the

surface S being impenetrable and stationary, such that there will be no acoustic particle

velocity across it. Equivalently, the inhomogeneous Neumann boundary condition can arise

from a vibrating surface, where we assume the normal surface velocity ∂v/∂n at S imposes

an identical normal acoustic particle velocity un on the fluid.

2.2.1.3 The Sommerfeld Radiation Condition

When considering acoustic sources in the absence of boundaries - i.e. in free-field conditions

- it is common to describe this condition as having the volume V of interest surrounded by

a spherical or hemispherical boundary - such as surface S1 in Figure 2.5 - and then take the

limit of R going to infinity. As S1 gets further away, any prescribed boundary conditions on S1

cease to affect the volume V due to the sheer distance between them; alternatively, it can be

said that any solution to a free-field problem must consist solely of acoustic waves travelling

away from the sources and towards infinity (i.e. outgoing waves), and not otherwise (incoming

waves).

These equivalent conditions, named Sommerfeld radiation condition, can be denoted as a

boundary condition on S1 and written for a quiescent medium as [39]

lim
r→∞

r

(
∂p(r, ω)

∂r
+ jk0p(r, ω)

)
= 0. (2.34)

If free-field conditions are assumed, the Green’s function is assumed to satisfy the Sommerfeld

radiation condition [40] - i.e. there can only exist waves outgoing from a source.
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2.2.2 General Solution to the Inhomogeneous Convected Wave Equation

Let us now obtain the general solution to the acoustic radiation problem for an arbitrary source

distribution and boundary conditions in a convected medium, as posed on Equation 2.30, using

the method of Green’s functions. Such general solution has been previously presented by Wu

and Lee [41] using the weighted residual method, and more recently by Mancini et al. [42]

using integral theorems and vector algebra manipulation; we will describe an approach similar

to the latter.

We define a convected Green’s function GUx(r|rs, ω), corresponding to the acoustic field ob-

served at r generated by a time-harmonic point monopole source at rs in a convected medium;

such function must satisfy the inhomogeneous convected Helmholtz equation when the singu-

larity on the right-hand side is a Dirac Delta at the monopole location:

(
∇2 +

[
k0 − jMx

∂

∂x

]2
)
GUx(r|rs, ω) = −δ(r− rs). (2.35)

The Green’s function represents the spatial field generated by a time-harmonic point source

at the point rs, subject to any prescribed boundary conditions on the surface S.

The Green’s function for a quiescent medium is reciprocal, such that G(r|rs, ω) = G(rs|r, ω), as

long as the two points r, rs are inside the volume V where the Helmholtz equation is satisfied.

However, in a convected medium, reciprocity also requires that the flow direction is reversed

[30], which is expressed as

GUx(r|rs, ω) = G−Ux(rs|r, ω). (2.36)

We then rewrite Eq. 2.35 for the reciprocal case; note that the flow direction has been reversed,

leading to a change in the sign of the ∂/∂x operator inside the square brackets:

(
∇2 +

[
k0 + jMx

∂

∂x

]2
)
G−Ux(rs|r, ω) = −δ(rs − r). (2.37)

We multiply Eq. 2.30 by G−Ux(rs|r, ω), multiply Eq. 2.37 by p(rs, ω) and subtract the latter

from the former to obtain:
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[
G−Ux(rs|r, ω)∇2p(rs, ω)− p(rs, ω)∇2G−Ux(rs|r, ω)

]
. . .

. . .+

[
G−Ux(rs|r, ω)

(
k0 − jMx

∂

∂x

)2

p(rs, ω)− p(rs, ω)

(
k0 + jMx

∂

∂x

)2

G−Ux(rs|r, ω)

]
= −Q(rs, ω)G−Ux(rs|r, ω) + δ(rs − r)p(rs, ω). (2.38)

We can now integrate both sides of Eq. 2.38 over a volume V defined in the coordinates rs and

surrounding the source region; integrating the right-hand side and exchanging G−Ux(rs|r, ω)

with GUx(r|rs, ω), we obtain

−
∫
V
Q(rs, ω)GUx(r|rs, ω) dV (rs) +

∫
V
δ(rs − r)p(rs, ω) dV (rs)

= −
∫
V
Q(rs, ω)GUx(r|rs, ω) dV (rs) +


p(r, ω), r ∈ V
p(r, ω)/2, r ∈ ∂V
0, r /∈ V

. (2.39)

Integrating the left-hand side of Eq. 2.38, we obtain

∫
V

[
G−Ux(rs|r, ω)∇2p(rs, ω)− p(rs, ω)∇2G−Ux(rs|r, ω)

]
dV (rs) . . .

+

∫
V

[
G−Ux(rs|r, ω)

(
k0 − jMx

∂

∂x

)2

p(rs, ω)

−p(rs, ω)

(
k0 + jMx

∂

∂x

)2

G−Ux(rs|r, ω)
]

dV (rs). (2.40)

The first term of Eq. 2.40 can be simplified by exchanging G−Ux(rs|r, ω) with GUx(r|rs, ω)

and using Green’s Theorem:

∫
V

[
GUx(r|rs, ω)∇2p(rs, ω)− p(rs, ω)∇2GUx(r|rs, ω)

]
dV (rs)

=

∫
S

[
GUx(r|rs, ω)

∂

∂n
p(rs, ω)− p(rs, ω)

∂

∂n
GUx(r|rs, ω)

]
dS(rs), (2.41)

where the surface S(rs) is the boundary of the volume V (rs), the vector n = (nx, ny, nz) is

the outward-pointing normal to the surface S at rs, and ∂/∂n is the normal derivative to the
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surface S in the outward direction; thus, we have transformed the volume integral in V in a

surface integral in S.

The second integral in Eq. 2.40 can be rewritten by exchanging G−Ux(rs|r, ω) for GUx(r|rs, ω)

and expanding the terms in parenthesis as

∫
V

[
GUx(r|rs, ω)

(
k2

0 − 2jk0Mx
∂

∂x
−M2

x

∂2

∂x2

)
p(rs, ω) . . .

−p(rs, ω)

(
k2

0 + 2jk0Mx
∂

∂x
−M2

x

∂2

∂x2

)
GUx(r|rs, ω)

]
dV (rs) (2.42)

=

∫
V

[
k2

0

=0︷ ︸︸ ︷(
GUx(r|rs, ω)p(rs, ω)− p(rs, ω)GUx(r|rs, ω)

)
. . .

−2jk0Mx

(
GUx(r|rs, ω)

∂

∂x
p(rs, ω) + p(rs, ω)

∂

∂x
GUx(r|rs, ω)

)
. . .

−M2
x

(
GUx(r|rs, ω)

∂2

∂x2
p(rs, ω)− p(rs, ω)

∂2

∂x2
GUx(r|rs, ω)

)]
dV (rs). (2.43)

The first term in Eq. 2.43 is identically zero, as indicated, while the second term can be

simplified by considering the following identities:

GUx(r|rs, ω)
∂

∂x
p(rs, ω) = GUx(r|rs, ω)∇ · [p(rs, ω)nx] , (2.44)

p(rs, ω)
∂

∂x
GUx(r|rs, ω) = [p(rs, ω)nx] · ∇GUx(r|rs, ω), (2.45)

where nx = (1, 0, 0) is a unit vector pointing in the positive-x direction and the term p(rs, ω)nx

in square brackets is treated as a vector field. We can then rewrite the second term in Eq.

2.43 as
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∫
V

[
GUx(r|rs, ω)

∂

∂x
p(rs, ω) + p(rs, ω)

∂

∂x
GUx(r|rs, ω)

]
dV (rs)

=

∫
V

(
GUx(r|rs, ω)∇ · [p(rs, ω)nx] + [p(rs, ω)nx] · ∇GUx(r|rs, ω)

)
dV (rs) (2.46)

=

∫
V
∇ ·
(
GUx(r|rs, ω) [p(rs, ω)nx]

)
dV (rs) (2.47)

=

∫
S
GUx(r|rs, ω) ([p(rs, ω)nx] · n) dS(rs) (2.48)

=

∫
S

[
GUx(r|rs, ω)p(rs, ω)nx

]
dS(rs), (2.49)

where nx is the x component of the normal vector n = (nx, ny, nz); the passage from the

volume integral to the surface integral comes from the divergence theorem.

The third term in Eq. 2.43 can be simplified by considering the following identity:

GUx(r|rs, ω)
∂2

∂x2
p(rs, ω)− p(rs, ω)

∂2

∂x2
GUx(r|rs, ω)

= ∇ ·
[(
GUx(r|rs, ω)

∂

∂x
p(rs, ω)− p(rs, ω)

∂

∂x
GUx(r|rs, ω)

)
nx

]
, (2.50)

where nx = (1, 0, 0). Hence, we can once again use the divergence theorem and rewrite the

third term in Eq. 2.43 as

∫
V

[
GUx(r|rs, ω)

∂2

∂x2
p(rs, ω)− p(rs, ω)

∂2

∂x2
GUx(r|rs, ω)

]
dV (rs)

=

∫
V
∇ ·
[(
GUx(r|rs, ω)

∂

∂x
p(rs, ω)− p(rs, ω)

∂

∂x
GUx(r|rs, ω)

)
nx

]
dV (rs)

=

∫
S

[(
GUx(r|rs, ω)

∂

∂x
p(rs, ω)− p(rs, ω)

∂

∂x
GUx(r|rs, ω)

)
nx

]
· n dS(rs) (2.51)

=

∫
S

(
GUx(r|rs, ω)

∂

∂x
p(rs, ω)− p(rs, ω)

∂

∂x
GUx(r|rs, ω)

)
nx dS(rs). (2.52)

Now, we can join and rearrange Eqs. 2.39, 2.41, 2.49 and 2.52, and obtain the following form:
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∫
V
Q(rs, ω)GUx(r|rs, ω) dV (rs)

+

∫
S

[(
GUx(r|rs, ω)

∂

∂n
p(rs, ω)− p(rs, ω)

∂

∂n
GUx(r|rs, ω)

)
−2jk0Mx

(
GUx(r|rs, ω)p(rs, ω)

)
nx

−M2
x

(
GUx(r|rs, ω)

∂

∂x
p(rs, ω)− p(rs, ω)

∂

∂x
GUx(r|rs, ω)

)
nx

]
dS(rs)

=


p(r, ω), r ∈ V
p(r, ω)/2, r ∈ S
0, r /∈ V

. (2.53)

Equation 2.53 is the general solution for the inhomogeneous convected Helmholtz equation

[41, 42]. The acoustic pressure inside the volume V depends on an arbitrary volumetric

source distribution Q(rs, ω) and on the boundary conditions p(rs, ω) and ∂p(rs, ω)/∂n at the

boundary surface S.

This is the most general form for the solution of the inhomogeneous wave equation, and from

it we can derive a few special cases:

• The acoustic field generated by a prescribed source distribution in an unbounded medium,

termed here the “free-field radiation problem”;

• The acoustic field generated by a prescribed source distribution in a bounded medium,

which require the use of a tailored Green’s function;

• The acoustic field generated by a prescribed source distribution and scattered by a body

inside V with prescribed homogeneous boundary conditions on its surface, termed here

“scattering problem”;

• The acoustic field in a source-free medium with prescribed inhomogeneous boundary

conditions, termed here the “Kirchhoff-Helmholtz Integral”.

In this document we will describe the free-field radiation problem and the Kirchhoff-Helmholtz

Integral formulation; the tailored Green’s function problems and scattering problems will not

be described, although they can be tackled using the same formalism.
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The key to understand how a single method can be used to obtain the solutions to these

seemingly different problems is well described by Morse and Feshbach [37]: “The Green’s

function is therefore a solution for a case which is homogeneous everywhere except at one point.

When the point is on the boundary, the Green’s function may be used to satisfy inhomogeneous

boundary conditions; when it is out in space, it may be used to satisfy the inhomogeneous

equation.”

2.2.3 General Solution for Point Sources in Free-Field

Let us now assume a volumetric distribution of sources Q(rs, ω) in free-field. To obtain the

free-field solution, we assume the spherical boundary surface S surrounding the source region

is at an infinite distance from the source region and from the observer location r; hence, from

the Sommerfeld radiation condition, the contributions from the boundary will have decayed

to zero by the time they reach the observer location, and can be discarded. In such case, the

general solution for the inhomogeneous convected Helmholtz equation becomes

∫
V
Q(rs, ω)GUx(r|rs, ω) dV (rs) = p(r, ω). (2.54)

We consider the solutions to two types of point sources: convected monopoles and con-

vected dipoles. Such solutions can be obtained via Lorentz-type transformations of the well-

established non-convective monopole and dipole transfer functions [43]; however, the deriva-

tions will not be shown, and we will refer only to the final solutions shown below.

2.2.3.1 Convected Monopole Transfer Function

The acoustic transfer function between a monopole source located at rs and an observer

located at r in a uniform flow and free-field conditions can be obtained by assuming a unitary

magnitude point volume source, denoted as

Q(rs, ω) = δ(r− rs). (2.55)

The convected monopole transfer function is defined by the convected Green’s function
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GUx(r|rs, ω) =
e−jk0r

4πβ2r
ejk0Mx(x−xs), (2.56)

where the overline represents flow-transformed variables [43]:

r =
(
x, y, z

)
=

(
x

β2
,
y

β
,
z

β

)
, r = ‖r− rs‖ , β =

√
1−M2

x . (2.57)

Under no-flow conditions, r = ‖r− rs‖ and the Green’s function reduces to the usual point

monopole transfer function:

G(r|rs, ω) =
e−jk0r

4πr
. (2.58)

Figure 2.6 shows a slice at the plane y = 0 of the three-dimensional acoustic fields radiated

by a point monopole in a quiescent medium (Fig. 2.6a) and in a moving medium with Mach

number Mx = 0.5 (Fig. 2.6b).
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Figure 2.6: Acoustic field radiated by a point monopole: (a) in a quiescent medium; (b) in a
moving medium (Mx = 0.5).

2.2.3.2 Convected Dipole Transfer Function

The acoustic transfer function between a dipole source located at rs and with its acoustic

axis aligned in the +z direction and an observer located at r in a uniform flow and free-field
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conditions can be obtained by assuming a unitary magnitude point force source aligned with

the dipole acoustic axis; this is denoted as [28]

Q(rs, ω) = ∇ · (δ(r− rs)nz). (2.59)

The dipole transfer function is defined by the spatial derivative of the convected Green’s

function in the direction of application of the force. This transfer function is given by

∂

∂zs
GUx(r|rs, ω) =

(
jk0 +

1

r

)
(z − zs)
βr

e−jk0r

4πβ2r
ejk0Mx(x−xs), (2.60)

where the overline represents the same flow-transformed variables previously defined in Eq.

2.57. For no-flow conditions, r = ‖r− rs‖ and the above function reduces to the standard

dipole transfer function:

∂

∂zs
G(r|rs, ω) =

(
jk0 +

1

r

)
(z − zs)

r

e−jk0r

4πr
. (2.61)

Figure 2.7 shows a slice at the plane y = 0 of the three-dimensional acoustic fields radiated by

a point dipole in a quiescent medium (Fig. 2.7a) and in a moving medium with Mach number

Mx = 0.5 (Fig. 2.7b). The dipole has its acoustic axis oriented in the +z direction; note, as a

consequence, the null acoustic field over the plane z = 0.
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Figure 2.7: Acoustic field radiated by a point dipole: (a) in a quiescent medium; (b) in a moving
medium (Mx = 0.5).
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n1n1
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y

Figure 2.8: Geometry for planar radiator located at the (x, y) plane; the surface S = S1 + S2

bounds the volume V of interest, and the normal vectors n1 and n2 point outwards of the volume
V .

2.2.4 General Solution for Boundary Sources: Kirchhoff-Helmholtz Integral

Let us now adapt the general solution for the particular case of inhomogeneous boundary

conditions with no volumetric distribution of sources inside the volume V . We will consider

a planar radiator located over the z = 0 plane, and look into the acoustic field p(r, ω) in the

half space above the planar radiator (z ≥ 0).

Figure 2.8 shows the proposed geometry. The surface S = S1 + S2 defines the boundary of

the region V : the surface S1 is the z = 0 plane up to a distance R∞, and the surface S2 is

a hemisphere of radius R∞ over the surface S1. We now consider the limit of R∞ → ∞, and

invoke the Sommerfeld radiation condition to discard the contribution of the boundary terms

on the surface S2. Hence, we can consider the surface S1 only.

Note, however, that if the surface S1 is parallel to the flow direction, then the outwards-

pointing normal vector to this surface can be written as n1 = (nx, ny, nz) = (0, 0,−1). Since

this normal vector does not have a component in the x direction (i.e. nx = 0), the second

and third terms inside the surface integral in Eq. 2.53 - the terms proportional to Mx and

M2
x - vanish [33]; another consequence is that the normal derivatives ∂/∂n simplify to −∂/∂z.

Therefore, Equation 2.53 simplifies to
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∫
S1

(
p(rs, ω)

∂

∂zs
GUx(r|rs, ω)−GUx(r|rs, ω)

∂

∂zs
p(rs, ω)

)
dS(rs) =


p(r, ω), r ∈ V
p(r, ω)/2, r ∈ S
0, r /∈ V

,

(2.62)

which is known as Kirchhoff-Helmholtz Integral (KHI) equation for a convected medium.

This Equation describes the acoustic field above a plane using a distribution of convected

monopole and dipole sources on the surface S1, with the monopole strength being proportional

to the normal acoustic pressure gradient at the surface and the dipole strength proportional

to the acoustic pressure at the surface.

Its format is similar to the Kirchhoff-Helmholtz Integral for a quiescent medium [29, 39, 40], but

using the convective Green’s function GUx(r|rs, ω) and its normal derivative in the formulation.

For no-flow conditions, we can simply replace them by the standard Green’s function (Eq. 2.58)

and its derivative (Eq. 2.61) and obtain the classical KHI formulation.

If we now assume particular boundary conditions over the surface S1, we can obtain tailored

forms of the Green’s functions and simplify Equation 2.62 even further, as shown below.

2.2.4.1 Planar Vibrating Surfaces

Let us now consider the surface S1 is vibrating with normal velocity vz(rs, ω); we assume

the surface velocity at a point is identically transmitted to the acoustic particles immediately

above it, and hence the normal acoustic particle velocity uz(rs, ω) at a point will be equal to

the surface velocity at the same point:

uz(rs, ω) = vz(rs, ω). (2.63)

This condition is equivalent to assuming inhomogeneous Neumann boundary conditions over

the vibrating surface, allowing us to adopt a Neumann Green’s function. Such function has

the property that ∂GN (r|rs, ω)/∂zs = 0 at all points over the surface except at rs, and hence

Neumann boundary conditions are sometimes referred to as “hard wall boundary conditions”.

The KHI formula then simplifies to
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−
∫
S1

GN (r|rs, ω)
∂

∂zs
p(rs, ω) dS(rs) =


p(r, ω), r ∈ V
p(r, ω)/2, r ∈ S
0, r /∈ V

, (2.64)

where ∂p(rs, ω)/∂zs is related to the normal velocity at the surface and acts as a source

strength term.

By imposing homogeneous Neumann boundary conditions on the remainder of the z = 0 plane,

one can use the method of images to obtain a Neumann Green’s function which is equal to

twice the free-field Green’s function (Eq. 2.56) [44]:

GN (r|rs, ω) = 2GUx(r|rs, ω), (2.65)

Thus, the Neumann Green’s function displays a monopole-like behaviour; consequently, so

does a point velocity source acting at the boundary of a moving medium.

We now use the convective Euler’s equation (Eqs. 2.11 and 2.33) to link the normal acoustic

particle velocity to the gradient of the acoustic pressure; however, in the convective case, the

dependence is on both the normal velocity and the normal velocity gradient along the flow

direction [33]. The final formulation for the acoustic field generated by a planar vibrating

surface with normal velocity vz(rs, ω) in a convected medium has the form

2

∫
S1

GUx(r|rs, ω)

(
jρωvz(rs, ω) + Ux

∂

∂x
vz(rs, ω)

)
dS(rs) =


p(r, ω), r ∈ V
p(r, ω)/2, r ∈ S
0, r /∈ V

. (2.66)

2.2.4.2 Planar Pressure Surfaces

For surfaces that support a prescribed pressure distribution, we can assume inhomogeneous

Dirichlet boundary conditions at the boundary, allowing us to use a Dirichlet Green’s function;

such function has the property that GD(r|rs, ω) = 0 over the surface at all points except rs,

and thus the KHI equation simplifies to
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∫
S1

p(rs, ω)
∂

∂zs
GD(r|rs, ω) dS(rs) =


p(r, ω), r ∈ V
p(r, ω)/2, r ∈ S
0, r /∈ V

, (2.67)

where p(rs, ω) is the imposed pressure distribution at the surface, and acts as a source strength

term.

By imposing homogeneous Dirichlet boundary conditions on the plane, one can use the method

of images to obtain a Dirichlet Green’s function whose normal derivative is equal to twice the

normal derivative of the free-field Green’s function (Eq. 2.60) [44]:

∂

∂zs
GD(r|rs, ω) = 2

∂

∂zs
GUx(r|rs, ω). (2.68)

Thus, the normal derivative of the Dirichlet Green’s function displays a dipole-like behaviour;

consequently, so does a point pressure source acting at the boundary of a moving medium.

The final formulation for the acoustic field generated by a planar pressure distribution p(rs, ω)

in a convected medium has the form

2

∫
S1

p(rs, ω)
∂

∂zs
GUx(r|rs, ω) dS(rs) =


p(r, ω), r ∈ V
p(r, ω)/2, r ∈ S
0, r /∈ V

, (2.69)

2.3 Far-Field Approximation

In the previous section, we obtained equations for determining the acoustic pressure field

generated by a variety of acoustic sources, including spatial distribution of sources in free-

field, and planar sources at boundaries. While the resulting equations are exact, they often do

not have closed-form analytical solutions available for any source distribution; however, one

can obtain approximate closed-form solutions when the observer is geometrically distant from

the source; such approximation is generally referred to as (geometric) far-field approximation.
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The far-field approximation is widely known and used in acoustics [28, 30, 32], optics [45] and

electromagnetic antennas [46, 47], to cite a few areas; most of this section is based on the

above mentioned references.

However, not many authors in the acoustics community refer to it as the Fraunhofer approx-

imation, as it is usually named in the optics community [45] and used for describing some

types of diffraction. The same approximation ends up often being written in different forms,

with little or no discussion on the similarities of the many forms; hence, we have decided to

adopt the name “Fraunhofer approximation” in an effort to highlight these similarities. Little

thought is generally given to the conditions under which the approximation can be considered

valid, so we discuss it as well in the next sections.

Figure 2.9 shows a geometrical representation of the problem. Let us assume a planar acoustic

source at z = 0, with rs = (xs, ys, 0) denoting a point over the source surface and r = (x, y, z)

denoting the location of an observer; the origin of the coordinate system is located at the

source centre. Let the source largest dimension be given by D, and r denote the distance

between the source point rs and the observer point r; the Fraunhofer far-field approximation

consists of approximating the actual source-to-observer distance r as

r = ‖r− rs‖ ≈ ‖r‖ −
r · rs
‖r‖ (2.70)

= ‖r‖ − ‖rs‖ cos(γ), (2.71)

where γ is the angle between the observer location vector r and the source location vector rs.

2.3.1 Derivation of Fraunhofer Far-Field Approximation

We will now discuss how to obtain the approximation shown in Equation 2.70 and what the

conditions are under which the approximation is valid. We will assume a convected medium

and use flow-transformed variables (defined in Eq. 2.57); equivalent results can be obtained

for a quiescent medium by setting Mx = 0.

We start by rewriting r as
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r

R

rs

r
(0, 0)
D

(a)

r

R rs (0, 0)
D

γ
r

(b)

Figure 2.9: Estimating the source-observer distance r: (a) the actual distance r = ‖r− rs‖
between observer and source; (b) the approximated distance r ≈ ‖r‖ − ‖rs‖ cos(γ) using the

Fraunhofer far-field approximation.

r =
(
‖r‖2 − 2r · rs + ‖rs‖2

)1/2
(2.72)

= ‖r‖
(

1− 2
r · rs
‖r‖2

+
‖rs‖2

‖r‖2

)1/2

. (2.73)

Here we make our first assumption: the observer is many source lengths away from the origin,

which we can write as ‖rs‖2 / ‖r‖2 � 1. We can then rewrite the remaining expression as

r ≈ ‖r‖ (1− α)1/2, α = 2
r · rs
‖r‖2

. (2.74)

We can now approximate the square root term using the binomial series [47] :

(1− α)1/2 = 1− α

2
− α2

8
− . . . , (2.75)

where we retain the first two terms of the series for our final expression:

r ≈ ‖r‖
(

1− α

2

)
= ‖r‖ − r · rs

‖r‖ (2.76)
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Equation 2.76 is the Fraunhofer far-field approximation [45].

It is interesting to note that the Fraunhofer approximation implicitly assumes the acoustic

signals emitted by all points in the source will travel parallel to each other on their paths

towards the observer in the far-field [46], as shown in Figure 2.9. This is not immediately

obvious from the initial assumptions, but it gives an intuitive idea of how far the observer

must be from the source for the approximation to be considered valid.

2.3.1.1 Far-Field Approximation Error and Region of Validity

It is possible to obtain an estimate for the error committed in the Fraunhofer approximation,

which we can use to obtain the conditions under which the approximation can be deemed

satisfactory. The discarded terms of the binomial series (Eq. 2.75) can be interpreted as a

second-order estimate of the distance error committed when making the Fraunhofer approx-

imation; let us rewrite the absolute value of the third term (the leading order term of the

discarded part, proportional to α2) as

‖rerror‖ = ‖r‖
(
α2

8

)
=
‖r‖
8

(
2
r · rs
‖r‖2

)2

(2.77)

=
1

2R
‖rs‖2 cos2(γ). (2.78)

The error ‖rerror‖ is maximized when cos2(γ) = 1 and ‖rs‖ takes its maximum value - assumed

here to be half of the largest source dimension D (i.e. ‖rs‖max = D/2), leading to

‖rerror‖max =
D2

8R
. (2.79)

The argument so far has been purely geometrical; however, it should not be controversial to

state the important factor is not the absolute distance error - say, in metres - but instead how

this error compares to the acoustic wavelength of interest. Of course, a distance error can also

be associated with a phase error k0rerror in the complex exponential ejk0r.

From the antenna literature [46, 47], the Fraunhofer approximation is assumed to be accu-

rate for a value of ‖rerror‖max < λ0/16; this suggests the far-field approximation is valid for

distances



Chapter 2. Sound Propagation and Radiation in a Moving Medium 41

R >
2D2

λ0
. (2.80)

Equation 2.80 is possibly one of the most popular definitions for the geometrical far-field. For

a fixed observer distance R, we can then assume the Fraunhofer far-field approximation is

valid for frequencies such that

f <
Rc0

2D2
. (2.81)

Hence, for a fixed observer distance from the source centre, there is a high frequency bound to

the far-field approximation.

It must be noted that the rule proposed in Equation 2.80 provides only a rough estimate for

the validity of the approximation. By considering accuracy values other than λ0/16, one can

derive alternative formulations with different multiplying constants instead of the number 2;

for example, Goodman [45] derives the Fraunhofer far-field approximation as a limiting case of

the Fresnel near-field approximation (not discussed here), and arrives at the slightly different

formulation

R >
πD2

λ0
(2.82)

for the far-field approximation limit. This formulation is stricter than the one proposed by

Equation 2.80; it can be interpreted as bounding the maximum distance error (Eq. 2.79) to

be less than the more stringent limit of λ0/(8π), despite being obtained through a different

derivation.

It must be mentioned that few authors - such as Sarkar et al. [47], for example - point out that

the proposed accuracy limit of λ0/16 is fairly arbitrary, and we have not been able to identify its

origin. Many other expressions for the far-field limit exist, most being proportional to D2/λ0

but using different multiplying constants; such expressions can be interpreted as assuming

accuracy limits other than λ0/16.

As an example, see Table 1 of Capps [48], where the author compiled more than 15 different

definitions of the near-field/far-field boundary as used by antenna engineers. This variety of



Chapter 2. Sound Propagation and Radiation in a Moving Medium 42

results can yield conflicting information on ranges and frequencies of validity for the approxi-

mation, which might help explain why the Fraunhofer distance limit is not widely used in the

engineering community for categorical statements regarding geometrical near- and far-field

regions.

2.3.1.2 Source Compactness and the Fraunhofer Approximation

For a source with characteristic length D, the Helmholtz number k0D can be used to determine

the degree of source compactness [49]: for frequencies where k0D � 1 (i.e. the Helmholtz

number is “very small”) the source is considered compact, and will behave as a point source

on the scale of a large region surrounding it. For higher frequencies, the source is considered

non-compact, and the observer will be subject to significant variations in phase shift from

different regions over the source. As a consequence, non-compact sources might present strong

interference effects - both constructive and destructive - between their different regions, while

such effects are not observed to the same extent for compact sources.

One can relate the source compactness to the Fraunhofer far-field distance limit in a fairly

direct manner; Eq. 2.82 can be rewritten as a function of the Helmholtz number:

R >
πD2

λ0
=

1

2
(k0D)D. (2.83)

From Equation 2.83, it can be said that the extent of the near-field region of a source will be

proportional to the source characteristic length D and to the degree of source compactness,

given by the Helmholtz number k0D; therefore, a compact source (k0D � 1) will have a near-

field region extent that is much shorter than its characteristic length D, while a non-compact

source will have a near-field region extent that is much longer than its length D.

Clearly, the above statement should be taken carefully, since in order to obtain the Fraunhofer

approximation we had to assume the observer distance is much larger than the source length,

which contradicts the first part of the above sentence. However, the above expression does

point to a link between near-field extent and the degree of source compactness.
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2.3.2 Far-Field Approximation of Convected Monopole

Extended sources are often modelled using distributions of point sources. As such, before we

investigate distributed sources, let us consider a single point monopole source in a convected

medium, with its location rs close to but not exactly at the origin. We would now like

to approximate the acoustic field as seen far from this source by applying the Fraunhofer

approximation to the convected monopole transfer function (Eq. 2.56). We use a similar

procedure in Section 2.3.3 to obtain an approximation to the far-field radiation of point dipole

sources, and in Section 2.3.4 we use these results to investigate the acoustic far-field of extended

sources by modelling them as distribution of point sources around the origin.

The convected monopole transfer function in Eq. 2.56 presents a few dependencies on the exact

flow-transformed source-to-observer distance r = ‖r− rs‖ that we would like to approximate.

The term in the denominator describes an amplitude decay as a function of distance, and can

be reasonably approximated by

1

β2r
≈ 1

σr
, (2.84)

where σr is the convection-corrected observer radius:

σr =
√
x2 + β2 (y2 + z2) = β2 ‖r‖ . (2.85)

However, the exponential term e−jk0r is an oscillating function with range r, and requires a

more accurate approximation. By assuming far-field conditions, we can use Eq. 2.70 in flow-

transformed coordinates to approximate r inside the complex exponential of the convected

Green’s function (Eq. 2.56). The far-field-approximated Green’s function is

GFF (r|rs, ω) =
e−jk0‖r‖e

jk0
r·rs
‖r‖

4πσr
ejk0Mx(x−xs) (2.86)

=
1

4πσr
e−jk̂·(r−rs), (2.87)

where the term k̂ =
(
k̂x, k̂y, k̂z

)
is a wavenumber vector dependent on the observer position

and on the Mach number of the form
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k̂(r,Mx) =

(
k0

(
x−Mxσr
β2σr

)
, k0

y

σr
, k0

z

σr

)
(2.88)

=
(
k sin(θp) cos(φp), k sin(θp) sin(φp), k cos(θp)

)
, (2.89)

and (θp, φp) are the direction of propagation and k is the wavenumber vector magnitude of

a plane wave, as discussed in Chapter 2. The mapping between observer location r and

wavenumber vector k̂ in Eq. 2.88 is an injective function: every observer location over a

hemisphere in the far-field has a unique corresponding wavenumber vector. However, there

are wavenumber vectors that do not correspond to any physically possible observer location,

as described further below.

Equation 2.87 can be interpreted in the following manner: the acoustic field generated by a

point monopole source at rs is perceived by an observer at r in the far-field as a plane wave

of the form e−jk̂·r, with complex amplitude ejk̂·rs/(4πσr). The effects of the mean flow on the

phase of the acoustic field were absorbed into the wavenumber vector k̂, allowing us to express

the complex exponential in Eq. 2.87 using physical space variables r = (x, y, z) instead of

flow-transformed variables r = (x, y, z).

As it represents a (perceived) plane wave propagating in a subsonic convected medium, the

wavenumber vector k̂ will follow all the properties previously described for plane wave solu-

tions: it exists on the surface of an ellipsoid in wavenumber domain, its magnitude is associated

with the angle between the observer direction and the mean flow direction, and its polar angles

(θp, φp) represent the direction of propagation of the plane wave.

As Eq. 2.88 allows us to determine the trace wavenumbers corresponding to a known observer

location, it is also possible to determine the observer location on a hemisphere of radiusR = ‖r‖
that will correspond to a known pair of trace wavenumbers (k̂x, k̂y). First, it is necessary to

calculate the corresponding k̂z through Eq. 2.19 (assumed real-valued for points inside the

radiation ellipse). We can then obtain the observer coordinates r = (x, y, z) individually and

in sequence through the following expressions:
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

|x(k̂,Mx)| = R√
1 +

(
k̂y

β2(k̂x+kx1)

)2

+

(
k̂z

β2(k̂x+kx1)

)2
, sgn

(
x(k̂,Mx)

)
= sgn

(
k̂x + kx1

)
,

y(k̂,Mx) =
k̂y

β2
(
k̂x + kx1

)x(k̂,Mx),

z(k̂,Mx) =
k̂z

β2
(
k̂x + kx1

)x(k̂,Mx).

(2.90)

However, for streamwise wavenumbers k̂x = −kx1, the corresponding chordwise observer co-

ordinate becomes x = 0 and the other coordinates cannot be determined. In such cases, we

must obtain the remaining coordinates as


y(k̂,Mx)|x=0 =

R√
1 +

(
k̂z
k̂y

)2
,

z(k̂,Mx)|x=0 =
k̂z

k̂y
y.

(2.91)

Finally, if k̂x = −kx1 and the spanwise wavenumber k̂y = 0, then the observer location must

be given by r = (0, 0, R).

2.3.2.1 Quiescent Medium Case (Mx = 0)

Figure 2.10 shows this approximation to a monopole source in a quiescent medium and in a

moving medium. In the case of a quiescent medium, Mx = 0 and the wavenumber vector k̂

has the form

k̂(r, 0) =
(
k0
x

R
, k0

y

R
, k0

z

R

)
(2.92)

=
(
k0 sin(θgeo) cos(φgeo), k0 sin(θgeo) sin(φgeo), k0 cos(θgeo)

)
, (2.93)

where R = ‖r‖ is the observer distance from the source centre, and (θgeo, φgeo) is the observer

geometrical angle. The perceived plane wave points out of the source centre (the origin of the

coordinate system) and towards the observer direction - that is, (θp, φp) = (θgeo, φgeo).



Chapter 2. Sound Propagation and Radiation in a Moving Medium 46

This is represented schematically for a source and observer on the plane y = 0 in Figure

2.10a. It can be seen that the acoustic field inside the red dashed circle around the observer

generated by the point source (in the left-hand side) is well approximated by the plane wave

(in the right-hand side). As can be expected, the further the observer is from the source, the

better the plane wave will approximate the point source wavefront curvature.

2.3.2.2 Moving Medium Case (0 < Mx < 1)

The wavenumber vector direction in the far-field approximation behaves differently in a moving

medium, where the convection effects change the apparent wavefront direction of propagation

as seen by the observer. The perceived plane wave does not point out of the source centre and

towards the observer location r; instead, it points out of an apparent source location r′s that

is further downstream from the real source location, as seen in Figure 2.10b, and towards the

observer location r. The apparent source location is given by

r′s = rs + (Uxτ, 0, 0), (2.94)

where τ is the time taken for an acoustic signal to propagate from the actual source location

rs to the observer location r in a moving medium [50]:

τ =
−(x− xs)Mx + σr,rs

c0β2
, (2.95)

and σr,rs is a convection-corrected source-to-observer distance:

σr,rs =
√

(x− xs)2 + β2 [(y − ys)2 + (z − zs)2]. (2.96)

Hence, the apparent source location depends on the observer position.

This is represented schematically for a source and observer in the y = 0 plane in Figure 2.10b.

The acoustic field inside the red dashed circle around the observer generated by the point

source (in the left-hand side) is again well approximated by the plane wave (in the right-hand

side). And again, the further the observer is from the source, the better the approximation

will be.
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(a)

(b)

Figure 2.10: Far-field approximation of point monopole source (left-hand side) interpreted as a
plane wave (right-hand side): (a) propagation in a quiescent medium; (b) propagation in a moving
medium with Mx = 0.5. Source position is given by rs, observer position by r and apparent source
position for moving medium case by r′s; angles are assumed positive in the clockwise direction from

the vertical axis.
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In order to showcase the effects of the mean flow on the far-field approximation, the relationship

between the geometrical angle θgeo and the perceived plane wave direction of propagation angle

θp can be traced for different Mach numbers (assuming both source and observer are at the

plane y = 0 - i.e. φ = 0). Figure 2.11 shows this distortion in the apparent wavefront direction

of propagation; the relationship is a unit slope line (i.e. θp = θgeo) for Mx = 0, while an

increase in the mean flow velocity “pushes” the perceived plane wave angle θp towards values

lower than θgeo.

Figure 2.11: Plane wave propagation angle as a function of geometrical angle for different Mach
numbers; see Figure 2.10 for a geometrical interpretation. Both source and observer are assumed
to be over the plane y = 0. Angles are assumed positive in the clockwise direction from the vertical

(z) axis, so +90◦ represents downstream.

2.3.3 Far-Field Approximation of Convected Dipole

The far-field approximation for a point dipole follows a similar rationale to the point monopole

case, but requires a few extra steps. When compared to the convected monopole (Eq. 2.56),

the extra terms in Eq. 2.60 can be approximated in the far-field as

(
jk0 +

1

r

)
(z − zs)
βr

≈ jk0
z

σr
, (2.97)
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where we express the dipole directivity as z/σr and remove the near-field term 1/r. The

remaining terms in the dipole transfer function are approximated as for the convected monopole

response; the final convected dipole response is

∂

∂zs
GFF (r|rs, ω) =

jk0

4πσr

(
z

σr

)
e−jk̂·(r−rs). (2.98)

The dipole acoustic field can also be approximated as a plane wave of the type e−jk̂·r, and

its complex amplitude is jk0(z/σr)(e
−jk̂·rs/4πσr) in the far-field. Plane waves propagating at

directions almost parallel to the xy-plane will be attenuated by the dipole directivity factor

z/σr; this indicates a limitation of dipole-type sources of generating plane waves at such

directions, which will be further discussed when modelling planar sources with a distributions

of point dipoles.

Here we note another type of near-field effect: the dipole near-field term, often described

as dipole hydrodynamic near-field, is a textbook example of near-field [32], and is generally

ignored for k0r � 1. This is also a frequency-dependent relationship, and assuming a fixed

observer distance R can be rewritten as

f � c0

2πR
. (2.99)

Hence, for a fixed observer distance, the dipole hydrodynamic near-field imposes a lower

frequency bound to the far-field assumption. Note that this is the opposite to the geometrical

near-field, which imposes a high frequency bound.

As a final comment on the far-field approximation to the dipole acoustic field, we note that

Eq. 2.98 can be rewritten as

∂

∂zs
GFF (r|rs) =

jk0z

4πσ2
r

e
jk0

(
Mxx−σr

β2

)
e
jk0

(
x−Mxσr
σrβ2

)
xse

jk0

(
y
σr

)
ys , (2.100)

which is the expression used by Amiet [8] when considering the acoustic far-field radiation of

an aerofoil interacting with a turbulent gust. This expression will be used in the next chapter

when discussing Amiet’s model.
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2.3.4 Far-Field Approximation of Planar Sources

2.3.4.1 Distribution of Monopoles

We will now look into the acoustic field generated by a distributed planar source as seen by

an observer in the far-field. Let us consider an observer at position r, at a radius R from the

source centre. Assuming convected monopole radiation and propagation, a continuous source

distribution of strength q(rs, ω) and located on the plane zs = 0 will generate an acoustic field

at the observer location of the form

p(r, ω) =

∫
ys

∫
xs

q(rs, ω)GUx(r|rs, ω) dxs dys. (2.101)

By assuming far-field conditions, we can use the far-field approximation to the Green’s function

(Eq. 2.87) into Eq. 2.101 and obtain

p(r, ω) ≈ e−jk̂·r

4πσr

∫
ys

∫
xs

q(rs, ω)ejk̂·rs dxs dys. (2.102)

Note that while the convected Green’s function in Eq. 2.101 must be evaluated over flow-

transformed spatial coordinates, Eq. 2.102 is expressed in non-transformed space coordinates.

As previously described, the far-field approximation allows us to express some convection

effects in the wavenumber domain instead of the spatial domain.

From the Spatiotemporal Fourier Transform defined in Eq. 2.28, the double integral term

in Eq. 2.102 can be related to the two-dimensional Spatial Fourier Transform Q(k̂, ω) of

the source strength distribution evaluated at the source-dependent wavenumber vector k̂ =

(k̂x, k̂y). This can be demonstrated by rewriting the above equation as

p(r, ω) ≈ e−jk̂·r

4πσr

∫
ys

∫
xs

q(rs, ω)

[∫
ky

∫
kx

ejk·rsδ(k− k̂) dkx dky

]
dxs dys (2.103)

=
e−jk̂·r

4πσr

∫
ky

∫
kx

[∫
ys

∫
xs

q(rs, ω)ejk·rs dxs dys

]
δ(k− k̂) dkx dky (2.104)

=
e−jk̂·r

4πσr

∫
ky

∫
kx

[
(2π)2Q (k, ω)

]
δ(k− k̂) dkx dky (2.105)

=
e−jk̂·r

4πσr
(2π)2Q

(
k̂x, k̂y, ω

)
, (2.106)



Chapter 2. Sound Propagation and Radiation in a Moving Medium 51

where δ(.) is the Dirac Delta function. Thus, the acoustic far-field is seen by the observer as a

plane wave of the type e−jk̂·r, with complex amplitude given by (2π)2Q(k̂x, k̂y, ω)/(4πσr). As

the amplitude and phase of the perceived plane wave is proportional to the source wavenumber

spectrum at the observer-dependent wavenumber (k̂x, k̂y), it can be said the far-field observer

“samples” the source wavenumber spectrum at this particular wavenumber value.

2.3.4.2 Distribution of Dipoles

When the planar source under consideration is modelled as a distribution of dipoles with their

dipole axes in the +z direction, the expressions become slightly different. For simplicity, we

will maintain the notation for the source strength distribution as q(rs, ω) for the dipole case

as well. The radiation integral is then written as

p(r, ω) =

∫
ys

∫
xs

q(rs, ω)
∂

∂zs
GUx(r|rs, ω) dxs dys. (2.107)

By assuming far-field conditions, we can insert the far-field approximation to the dipole transfer

function (Eq. 2.98) into Eq. 2.107 and obtain

p(r, ω) ≈ jk0

(
z

σr

)
e−jk̂·r

4πσr

∫
ys

∫
xs

q(rs, ω)ejk̂·rs dxs dys, (2.108)

= jk0

(
z

σr

)
e−jk̂·r

4πσr
(2π)2Q

(
k̂x, k̂y, ω

)
. (2.109)

Once again, the acoustic far-field radiated by a distributed source is proportional to the Spatial

Fourier Transform of the source distribution evaluated at an observer-dependent wavenumber

k̂. The overall analysis is very similar to the monopole case, except in this particular instance

we note the additional frequency factor jk0 and directivity factor (z/σr) due to the dipole

nature of the source elements.

However, we will show that we can alternatively interpret the directivity term (z/σr) as a

wavenumber window function Wdip(kx, ky). From Eq. 2.88, we write
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z

σr
=
k̂z
k0

(2.110)

=
1

k0

√
(k0 −Mxk̂x)2 − k̂2

x − k̂2
y (2.111)

= Wdip

(
k̂x, k̂y, ω

)
. (2.112)

The wavenumber window function Wdip

(
k̂x, k̂y, ω

)
, being essentially proportional to k̂z, is

always real- and positive-valued for (k̂x, k̂y) inside the radiation ellipse, and assumes zero

value for (k̂x, k̂y) located on the radiation ellipse.

We can now write the far-field as

p(r, ω) ≈ jk0
e−jk̂·r

4πσr
(2π)2

[
Q
(
k̂x, k̂y, ω

)
Wdip

(
k̂x, k̂y, ω

)]
(2.113)

= jk0
e−jk̂·r

4πσr
(2π)2Qwin

(
k̂x, k̂y, ω

)
, (2.114)

whereQwin

(
k̂x, k̂y, ω

)
corresponds to a windowed wavenumber transform of the source strength

distribution.

Therefore, the acoustic far-field as generated by a planar distribution of dipole sources can

also be determined from the Spatial Fourier Transform of the source distribution evaluated

inside the radiation ellipse; however, the dipole directivity imposes a windowing function that

essentially tapers out the contribution of wavenumbers near the radiation ellipse, and the

acoustic field is even further spatially low-passed than with monopole sources. This effect

must be taken into account when attempting to recover the source wavenumber spectrum

from the pressure readings.

2.3.4.3 Proof of Equivalence between Observer Hemisphere and Radiation El-

lipse

By tracing the relationship between all possible observer locations over a hemisphere surround-

ing the acoustic source and their perceived far-field wavenumber vectors, we obtain the “acous-

tic domain” [51] of the wavenumber spectrum. This domain corresponds to all wavenumbers

(kx, ky) contained inside the radiation ellipse (Eq. 2.23), as we demonstrate below.
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All the points on a hemisphere of radius R = ‖r‖ can be projected to the area inside a circle

of radius R in (x, y) space; hence, for any observer located on this hemisphere, its coordinates

must satisfy

x2

R2
+
y2

R2
≤ 1. (2.115)

We now demonstrate that all observer locations spanned by Eq. 2.115 map to points inside

the radiation ellipse (Eq. 2.23) via the perceived wavenumber vector k̂: if k̂ is constrained to

be inside the radiation ellipse, we can insert Eq. 2.88 into Eq. 2.23 and obtain

(
k0

(
x−Mxσr
β2σr

)
+ k0Mx

β2

)2

(
k0
β2

)2 +

(
k0

y
σr

)2

(
k0
β

)2 ≤ 1, (2.116)

which can be simplified to

(
x

σr

)2

+

(
β
y

σr

)2

≤ 1, (2.117)

and finally, to

x2 + β2y2 ≤ σ2
r . (2.118)

Given that σ2
r = x2 + β2(y2 + z2), the last expression must always be true for all observer

positions considered in Eq. 2.115. Hence, the space spanned by all observers located on a

hemisphere around the source will correspond to the space spanned inside the radiation ellipse

in wavenumber domain (when Eqs. 2.115 and 2.118 assume a strict inequality), and observers

at the edge of the hemisphere will correspond to wavenumbers exactly on the radiation ellipse

(when Eqs. 2.115 and 2.118 assume a strict equality).

Figure 2.12 represents the mapping between points in the hemisphere around the source in

r = (x, y, z) physical space and the radiation ellipse in k = (kx, ky) wavenumber domain for a

mean flow at Mx = 0.5, with regions that are mapped through Eq. 2.88 shown with the same

colour in both spaces. Note this is a one-to-one relationship between observer position and

perceived wavenumber.
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Figure 2.12: Figure denoting the mapping between points in the hemisphere around the source
in r = (x, y, z) physical space and the radiation ellipse in k = (kx, ky) wavenumber domain for a
mean flow at Mx = 0.5. Regions in the hemisphere surface are mapped to regions with the same

color in the wavenumber domain.

2.3.5 Far-Field Power Spectral Estimation

The above analysis allow the determination of the acoustic far-field as estimated from a de-

terministic source distribution. However, when the sources present random behaviour, it is

necessary to work in the cross-spectral domain. From Eq. 2.106, we denote the cross-power

spectral density Spp′(r, r
′, ω) of the acoustic far field radiated by a planar source as

Spp′(r, r
′, ω) =

π

T
E
{
p(r, ω)p∗(r′, ω)

}
(2.119)

≈ π

T
E

{(
e−jk̂·r

4πσr
(2π)2Q

(
k̂, ω

))(e−jk̂′·r′
4πσr′

(2π)2Q
(
k̂′, ω

))∗}
(2.120)

=
π

T

e−j(k̂·r−k̂
′·r′)

(4π)2σrσr′
(2π)4 E

{
Q
(
k̂, ω

)
Q∗
(
k̂′, ω

)}
(2.121)

=
e−j(k̂·r−k̂

′·r′)

(4π)2σrσr′
(2π)4 SQQ′

(
k̂, k̂′, ω

)
. (2.122)

Therefore, the cross-power spectral density of the acoustic pressure at two observer locations

r, r′ is associated with the cross-power spectral density of the source strength in wavenumber

domain, evaluated at two wavenumbers k̂, k̂′ and multiplied by an extra amplitude and phase

term that depends on both observer locations and wavenumber vectors.

Similarly, the (auto) power spectral density Spp(r, ω) can be approximated in the far-field as
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Spp(r, ω) =
π

T
E {p(r, ω)p∗(r, ω)} (2.123)

≈ π

T
E

{(
e−jk̂·r

4πσr
(2π)2Q

(
k̂, ω

))(e−jk̂·r
4πσr

(2π)2Q
(
k̂, ω

))∗}
(2.124)

=
π

T

1

(4πσr)2
(2π)4 E

{
Q
(
k̂, ω

)
Q∗
(
k̂, ω

)}
(2.125)

=
1

(4πσr)2
(2π)4 SQQ

(
k̂, ω

)
, (2.126)

where SQQ

(
k̂, ω

)
is the power spectral density of the source strength in the wavenumber

domain at the particular wavenumber k̂.

2.4 Shear Layer Effects and Correction

The above analysis was performed considering the acoustic sources are completely surrounded

by a uniformly convecting medium; however, it is not uncommon to encounter cases where

the surrounding medium is convecting only within a region, and quiescent outside. This

occurs in open-jet wind tunnel experiments, for example: a shear layer will develop in the

interface between the two regions, and sound waves propagating through this shear layer will

be refracted. This effect will change the direction of propagation of the sound waves, affecting

both their amplitude and travel time, and must be taken into account when using source

reconstruction algorithms such as beamforming.

An open-jet wind tunnel with a rectangular nozzle was used for the experiments described in

Chapter 5, represented in Figure 2.13, and thus will be the assumed problem geometry for

our analysis. The air in front of the tunnel nozzle is being convected in the +x direction at

a velocity Ux; the convecting region is represented in the lower part of the image. A point

source is located inside the flow at rs = (xs, ys, zs), and a microphone is located outside the

flow at rm = (xm, ym, zm). The shear layer is assumed to be a plane surface of zero thickness,

and is thus represented as a plane at height z = zl. It is implicitly required that zl must be

located between zs and zm.

Let us assume an acoustic ray being emitted by the source and reaching the microphone;

the acoustic ray path does not follow a straight line between the source and microphone,
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Figure 2.13: Cross-section in the xz plane of an acoustic ray trajectory across a shear layer.

but instead crosses the shear layer at the point rl = (xl, yl, zl), where it is refracted and

changes direction, before reaching the microphone at rm. The path rsl occurs inside the flow,

and hence must obey the convected wave equation; meanwhile, the path rlm occurs in the

quiescent medium region, and thus must obey the standard wave equation.

For a given pair of source and observer positions, we are then interested in determining two

variables: the total propagation time taken by the acoustic ray to travel from the source

through the shear layer and to the microphone; and the total propagation distance covered

by the acoustic ray during its propagation time. With a complete prediction model for both

the amplitude and the phase seen by an observer in the out-of-stream region, both effects

can be incorporated into the propagation matrix used to estimate the sound radiation by the

acoustic sources; similarly, knowledge of these effects allow them to be taken into account

when applying source estimation methods.

We propose a simplified analytical model for describing the propagation time and amplitude

decay of an acoustic ray moving through a shear layer. For completeness, we also describe the

widely used Amiet’s model for shear layer correction [52]; although not explicitly compared
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here, the proposed method and Amiet’s method yield very similar results and are considered

equivalent.

2.4.1 Total Propagation Time

The total propagation time allows us to determine the phase shift of the acoustic ray in its

path from the source to the microphone location. The Fermat’s Principle of least travel time

[53] can be used to determine the shear layer crossing point rl: this point will be such that

minimizes the total propagation time τsm from source to microphone. Koop et al. [54] adopted

the same principle (where it is named as Huygens’ Principle) to find the shear layer crossing

point in a 2D case, but the method can be easily extended to 3D geometry, as show below.

A similar approach has also been used by Bahr et al. [55, 56], and the same equations are

presented in the Appendix of Amiet [52].

For clarity, let us redefine a convection-corrected distance σab between two points ra and rb as

σab =
√

(xb − xa)2 + β2 [(yb − ya)2 + (zb − za)2]. (2.127)

As described above, an acoustic ray propagating inside the mean flow must obey the convected

wave equation. The time taken for the ray to propagate from the source rs to the shear layer

crossing point rl is given by [50]

τsl =
−(xl − xs)Mx + σsl

c0β2
. (2.128)

Outside the mean flow, the acoustic ray must obey the standard wave equation and move with

the speed of sound c0 in any direction. The time taken for the ray to propagate from the shear

layer crossing point rl to the microphone rm is then written as

τlm =
rlm
c0
. (2.129)

The total propagation time is then given by the sum of the two intermediate times:

τsm = τsl + τlm. (2.130)
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We can now take the partial derivatives of Equation 2.130 with respect to the shear layer

coordinates xl and yl, leading to the following system of equations [52, 54, 55]:


(
xl − xs
σsl

)
− β2

(
xm − xl
rlm

)
−Mx = 0,

(
yl − ys
σsl

)
−
(
ym − yl
rlm

)
= 0.

(2.131)

These equations present constraints on the shear layer crossing point in the x and y axes; the

zl coordinate is already constrained to be on the shear layer plane.

The approach adopted in this work is to numerically calculate the shear layer crossing point

rl that minimises the acoustic ray total travel time (Eq. 2.130), subject to the constraints on

each spatial dimension given by Eq. 2.131. We use the minimization function from the SciPy

package [57] with the aforementioned constraints; if necessary, an initial guess can be given as

the point where a straight line between the source and the observer intersects the shear layer

plane, which can easily be obtained from geometric analysis. Once the point rl is found, the

total propagation time is determined through Equation 2.130.

2.4.2 Amplitude Decay

It is known from ray acoustics theory that the acoustic pressure squared is proportional to

the cross-sectional area of a “ray tube” (or “ray bundle”) [58]. Therefore, the refraction of

the acoustic rays crossing the shear layer will affect the area of the ray tube before and after

refraction, and hence its amplitude. A few other effects beyond refraction are also associated

with the interaction of sound with a shear layer, such as reflection of sound waves back into

the convecting region [52] and turbulent scattering of waves crossing a thick, turbulent shear

layer [59]. These effects can be studied in more detail by using full ray acoustics theory or

computational aeroacoustics methods [60], for example; these are not described because they

require significantly more information about the shear layer characteristics, and their level of

accuracy is not considered necessary for this work.

We propose a simplified analytical model, partially based on ray acoustics, for approximating

the amplitude decay of the sound waves across the shear layer. For a point monopole source,

the acoustic pressure p(r1, ω) observed at a point r1 by a source with strength q(rs, ω) at a

point rs is written as
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p(r1, ω) = q(rs, ω)
e−jk0r1

4πr1
, (2.132)

where r1 = ‖r1 − rs‖ is the source-to-observer distance. The acoustic pressure p(r2, ω) at a

point r2 geometrically aligned with the point r1 but further away is written as

p(r2, ω) = q(rs, ω)
e−jk0r2

4πr2
(2.133)

=

[
q(rs, ω)

e−jk0r1

4πr1

]
︸ ︷︷ ︸

=p(r1,ω)

r1

r2
e−jk0(r2−r1), (2.134)

where it is shown that one can estimate the acoustic pressure p(r2, ω) from the pressure

p(r1, ω) and the distances between the source and both observation points. The correction

terms determine the amplitude decay due to spherical spreading over the larger distance r2

and the phase shift over the extra distance difference r2 − r1.

Therefore, we can incorporate an extra step to determine the acoustic pressure at a point xm

in the out-of-stream region for a source at xs: first, we determine the shear layer crossing

point xl for an acoustic ray leaving the source and reaching the observer, as described above.

The incident acoustic pressure at the shear layer is computed using the convected Green’s

function, and we then estimate the acoustic pressure at xm from the pressure at the shear

layer as described above. A similar shear layer amplitude correction method is described by

Bahr et al. [56], but we will adopt a slightly different approach by considering convection

effects on the amplitude of the incident acoustic pressure.

2.4.2.1 Shear Layer Amplitude Decay for Monopole Source

Let us use Eq. 2.56 for a convected monopole to describe an acoustic ray propagating from

the source towards the shear layer crossing point, and let us divide this expression into an

amplitude term and a complex exponential term containing the phase:

GUx(rl|rs, ω) =
e−jk0[rsl−Mx(xl−xs)]

4πβ2rsl
(2.135)

=
1

4πσsl
e−jωτsl . (2.136)
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Once the ray is refracted and propagates within the quiescent medium region, it assumes a

simple monopole-like propagation from the shear layer up to the observer position:

G(rm|rl, ω) =
e−jk0rlm

4πrlm
(2.137)

=
1

4πrlm
e−jωτlm . (2.138)

By combining the two effects, the total propagation equation will then become:

G(rm|rs, ω) =
[
GUx(rl|rs, ω)

] σsl
σsl + rlm

e−jωτlm (2.139)

=

[
e−jωτsl

4πσsl

]
σsl

σsl + rlm
e−jωτlm (2.140)

=
e−jω(τsl+τlm)

4π(σsl + rlm)
. (2.141)

Figure 2.14 shows the predicted acoustic field for a point monopole source located in the

convected region and near a shear layer; the dashed line indicates the shear layer location,

and the Mach number is Mx = 0.5 in the convected region. The convection effects are clearly

visible in the lower part of the Figure, but note that the (originally spherical) wavefronts are

distorted after passing through the shear layer.

Note as well the acoustic field presents a discontinuity at the shear layer location for x coordi-

nates upstream of the source location. This discontinuity appears because our model does not

account for reflections at the shear layer; however, as acoustic measurements in open jet wind

tunnels are generally performed in the quiescent region, this is considered to be a secondary

effect for our purposes. Our model is otherwise representative of the general effects observed

in shear layer flows over acoustic fields.

2.4.2.2 Shear Layer Amplitude Decay for Dipole Source

Let us use Equation 2.60 for a point dipole in a moving medium to describe an acoustic ray

propagating from a point dipole source towards the shear layer crossing point, and let us divide

this expression into an amplitude term and a complex exponential term containing the phase:
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Figure 2.14: Cross-section in the xz-plane of the acoustic field across a shear layer generated by
a monopole source; the Mach number for the convected region is Mx = 0.5.

G(rl|rs, ω) =

(
jk0 +

1

rsl

)
(zl − zs)
rslβ

e−jk0[rsl−M(xl−xs)]

4πβ2rsl
(2.142)

=

(
jk0 +

1

r

)
(zl − zs)
σsl

1

4πσsl
e−jωτsl . (2.143)

Note that the equation contains three different terms affecting the acoustic ray amplitude: the

first contains the dipole hydrodynamic near field, the second contains the dipole directivity,

and the third contains the spherical amplitude decay with distance, all of them evaluated over

transformed variables.

We now make the assumption that the first and third terms (the dipole near-field and the spher-

ical spreading amplitude decay) will continue to change after the acoustic ray goes through

the shear layer, but the second term (the dipole directivity) will remain unmodified. The

hypothesis behind this assumption is that the directivity function is a property inherent to

the angle of propagation of the acoustic ray when leaving the source, and not to the acoustic

ray propagation distance; thus, the directivity function will affect the ray amplitude as the ray
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is emitted from the source, but it ceases to have an effect it once the ray has been emitted.

The resulting expression for the dipole field across a shear layer is then

G(rm|rm, ω) =

(
jk0 +

1

rsl + rlm

)
(zl − zs)
σsl

e−jω(τsl+τlm)

4π(σsl + rlm)
. (2.144)

2.4.3 Amiet Shear Layer Correction Procedure

In the 1970s, Amiet [52] proposed an analytical method for shear layer correction. His method

consists in calculating an equivalent microphone position rc, such that the acoustic ray that

reaches rm in the presence of the shear layer would instead reach rc in the absence of the shear

layer, as shown in Figure 2.13. Note that, as the equivalent case assumes no shear layer, rc is

geometrically aligned with the shear layer crossing point rl and with the source location rs.

We can associate the corrected position rc to a retarded source position rr, which corresponds

to the centre of the convected spherical wavefront that would reach the corrected microphone

position rc in the absence of the shear layer. This retarded position corresponds to an apparent

source location, as discussed in previous sections. Note that the distance rsc also corresponds

to the sound propagation inside the hypothetical flow beyond the shear layer height, and thus

sound propagation through this path must also obey the convected wave equation.

In principle, any other point located in the same direction could be used as corrected mi-

crophone position; however, we adopt the definition originally proposed by Amiet [52] and

choose the point of equal retarded radius - i.e. the radius between the retarded source po-

sition rr and the corrected microphone position rc is the same as the distance between the

actual source rs and the actual microphone rm. It should be mentioned that this choice of

corrected microphone position does not lead to the same propagation time as seen by the real

microphone.

In order to determine the corrected position rc, we first determine the acoustic ray propagation

velocity inside the flow by cray = rsl/τsl. We then consider that, in the absence of a shear

layer, a spherical wavefront generated by the source at rs will expand outwards with the speed

of sound c0 while at the same time being convected in the positive-x direction; therefore, when

the wavefront reaches the corrected microphone position rc at time τsc, its centre (the apparent

source location, or retarded source location rr) will be located at rs + (Uxτsc, 0, 0), and the

wavefront radius to its centre will be rrc = c0τsc. However, since by definition we assume
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rrc = rsm, we can then write τsc = rsm/c0. Finally, the corrected source position rc can be

obtained by “propagating” the acoustic ray in its original direction during a time interval τsc,

or rc = rs + (rl/ ‖rl‖)crayτsc.

In some simplified test cases, the proposed shear layer correction model and the Amiet model

yielded very similar results, and hence are treated as being equivalent for our purposes.





Chapter 3

Characteristics of Leading Edge

Noise Surface Pressure on a Flat

Plate

This section investigates the surface pressure, near-field and far-field noise characteristics due

to a flat plate leading edge interacing with a turbulent flow. The flat plate model is due

to Amiet [8], and it is shown that the classical Amiet far-field formulation can be directly

obtained from the far-field approximation for planar sources discussed in the previous chapter.

Amiet’s effective chordwise lift and spanwise sinc-like directivity can, therefore, be interpreted

as the Spatial Fourier Transform of the aerofoil source distribution evaluated over the flat

plate surface.

We make an in-depth analysis of the aerofoil response function, including its representation in

the wavenumber domain, considering the surface pressure and the acoustic field characteristics

for both single- and multiple-gust cases. As established in Chapter 2, the wavenumber-domain

representation within the radiation ellipse is directly linked to the radiated acoustic far-field.

The sections covering the presentation of the method are heavily based on the work related to

the Amiet model by Reboul [61], Roger [7] and de Santana [62].

65
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3.1 Aerofoil Response to a Turbulent Gust

The Amiet model [8, 10] describes the acoustic surface pressure and radiation created by the

interaction of a turbulent velocity field with the leading edge of a flat-plate aerofoil. The flat

plate has chord c = 2b and span L = 2d. The origin of the coordinate system is placed at the

centre of the aerofoil, as shown in Figure 3.1.

We assume that the incoming turbulent field moves with a uniform convection velocity of

Mach number Mx = Ux/c0 in the positive x-direction. The incoming field is modelled by an

integration of sinusoidal gusts, denoted by a pair of streamwise and spanwise wavenumbers

(kχ, kψ). The gusts are hydrodynamic (i.e. vortical) waves, and have an essentially different

nature from acoustic waves; we reinforce this difference by denoting acoustic wavenumbers as

(kx, ky) - i.e. with different subscripts.

The angle ζ of incidence of the gust refers to the gust direction of propagation (i.e. the

direction normal to the wavefronts) with respect to the aerofoil chord, and is given by

tan(ζ) = kψ/kχ. (3.1)

Gusts with kψ = 0 will therefore have an angle of incidence ζ = 0; however, its wavefronts will

be parallel to the aerofoil leading edge, and hence such gusts are often called parallel gusts.

On the other hand, gusts with kψ 6= 0 are called oblique or skewed gusts.

3.1.1 Aerofoil Surface Pressure

We define a “frozen” turbulent gust in the plane of the flat plate (z = 0) moving with the flow

speed Ux in the +x direction. The gust vertical velocity w(x, y, t) in this plane can be written

as an integration over all gust wavenumber components

w(x, y, t) =

∫ +∞

−∞

∫ +∞

−∞
ŵ(kχ, kψ) e−j[kχ(x−Uxt)+kψy] dkχ dkψ, (3.2)

where ŵ(kχ, kψ) is the turbulence wavenumber spectrum. The spectrum can be obtained by

calculating the double Spatial Fourier Transform of w(x, y). A single incoming harmonic gust

with amplitude ŵ0(kχ, kψ) will have the form
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x
y

c=2b

kχkψ ζ

Ux

ζ
L = 2d

Figure 3.1: Oblique gust with wavenumbers (kχ, kψ) inciding at an angle ζ with flow velocity Ux
over the leading edge of an aerofoil.

w(x, y, t) = ŵ0(kχ, kψ)e−j[kχ(x−Uxt)+kψy]. (3.3)

The pressure jump ∆p(xs, ys, t) developed over the aerofoil surface as induced by a single gust

will assume the form

∆p(xs, ys, t) = 2πρ0Uxŵ0(kχ, kψ)gLE(xs, kχ, kψ) e−j(kψys−kχUxt), (3.4)

where gLE(xs, kχ, kψ) is the aerofoil response function that couples the chordwise pressure

jump to the particular hydrodynamic gust that excites it; these are detailed in Section 3.1.4.

Note that the chordwise surface pressure jump is determined by the aerofoil response function,

while the spanwise pressure jump will follow the the spanwise gust component e−jkψys .

We can then integrate the above equation over all gusts wavenumber components to obtain

the total pressure jump ∆p(xs, ys, t):
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∆p(xs, ys, t) = 2πρ0Ux

∫ +∞

−∞

∫ +∞

−∞
ŵ(kχ, kψ) gLE(xs, kχ, kψ)e−j(kψys−kχUxt) dkχ dkψ. (3.5)

We now apply the Temporal Fourier Transform to Equation 3.5 to obtain the aerofoil pressure

jump ∆p(xs, ys, ω) in the frequency domain:

∆p(xs, ys, ω) = 2πρ0

∫ +∞

−∞
ŵ(κχ, kψ) gLE(xs, κχ, kψ)e−jkψys dkψ, (3.6)

where from the Fourier Transform we obtain κχ = ω/Ux. Thus, all turbulence-leading edge

interaction noise generated at a temporal frequency ω is related to one particular value κχ of

the chordwise hydrodynamic wavenumber kχ.

However, turbulence is a random phenomenon, and can only be analysed in a statistical sense.

Let us assume that the turbulent velocity field has a finite extent in the chordwise direction

x ∈ [−X,X]; since the turbulence is moving with the flow velocity Ux in the +x direction,

there will be an associated time length T = X/Ux such that the turbulence will only interact

with the aerofoil during a time interval t ∈ [−T, T ]. We can now consider the limit of both X

and T going to infinity to define the PSD and the CSD of the turbulence quantities [8].

The cross-power spectral density of the surface pressure jump can be defined as

S∆p∆p′(xs, x
′
s, ys, y

′
s, ω) = lim

T→∞

[π
T

E
{

∆p(xs, ys, ω)∆p∗(x′s, y
′
s, ω)

}]
(3.7)

= lim
T→∞

[
(2πρ0)2 π

T

∫ +∞

−∞

∫ +∞

−∞
E
{
w(κχ, kψ)w∗(κχ, k

′
ψ)
}
. . .

. . . gLE(xs, κχ, kψ)gLE∗(x′s, κχ, k
′
ψ)e−j(kψys−k

′
ψy
′
s) dkψ dk′ψ

]
.(3.8)

Hydrodynamic gusts with different wavenumbers are assumed orthogonal in homogeneous

turbulence [8]; this is denoted as

lim
T→∞

[π
T

E
{
w(κχ, kψ)w∗(κχ, k

′
ψ)
}]

= Uxδ(kψ − k′ψ)Φww(κχ, kψ), (3.9)

where Φww(κχ, kψ) is the wavenumber spectral density of the turbulent gust velocity. The

cross-PSD of the surface pressure jump can then be rewritten as
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S∆p∆p′(xs, x
′
s, ys, y

′
s, ω) = (2πρ0)2Ux

∫ +∞

−∞
Φww(κχ, kψ) . . .

. . . gLE(xs, κχ, kψ)gLE∗(x′s, κχ, kψ)e−jkψ(ys−y′s) dkψ. (3.10)

Note the appearance of the extra Ux factor when calculating the cross-spectrum of the aerofoil

surface pressure jump.

Here we point out that it is common to express the cross-spectral density in the temporal

frequency f instead of the angular frequency ω = 2πf , which leads to the alternative expression

for the CSD:

S∆p∆p′(xs, x
′
s, ys, y

′
s, f) = 2πS∆p∆p′(xs, x

′
s, ys, y

′
s, ω). (3.11)

It should also be observed that while all expressions for PSD in this chapter define double-

sided spectra, it is more convenient to calculate single-sided spectra in order to compare

simulations with experimental measurements. When calculating a single-sided spectrum, an

extra multiplying factor of 2 must be included in the equations.

3.1.2 Aerofoil Acoustic Radiation

The acoustic pressure radiated by the aerofoil can be obtained from the Ffowcs-Williams and

Hawkings acoustic analogy [63]. The surface pressure jump can be interpreted as a surface

distribution of point dipole sources normal to the flat plate. The total radiated acoustic

pressure p(r, ω) seen by an observer located at r = (x, y, z) is the surface integration over the

dipole source distribution:

p(r, ω) =

∫ d

−d

∫ b

−b
∆p(xs, ys, ω)

∂

∂zs
G(r|rs, ω) dxs dys, (3.12)

where ∂G/∂zs is the transfer function for a point dipole in a convected medium (Eq. 2.60):

∂

∂zs
GUx(r|rs, ω) =

(
jk0 +

1

r

)
(z − zs)
βr

e−jk0r

4πβ2r
ejk0Mx(x−xs).
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The cross-power spectral density Spp′(r, r
′, ω) between the acoustic pressure at two observer

points r and r′ is:

Spp′(r, r
′, ω) = lim

T→∞

[π
T

E
{
p(r, ω)p∗(r′, ω)

}]
(3.13)

=

∫ +d

−d

∫ +b

−b

∫ +d

−d

∫ +b

−b
S∆p∆p′(rs, r

′
s, ω)

∂

∂zs
G(r|rs, ω) . . .

. . .
∂

∂z′s
G∗(r′|r′s, ω) dxs dys dx′s dy′s. (3.14)

Equation 3.14 is the “complete” Amiet model for interaction noise prediction, including near-

field effects.

3.1.3 Far-Field Formulation

The complete Amiet model shown in Equation 3.14, while tractable via numerical methods,

is clearly a complex and cumbersome calculation to be dealt with analytically. In order to

obtain a more manageable formulation, Amiet assumed the observer is in the far-field of the

source. We have identified Amiet’s approximation as being exactly the Fraunhofer far-field

approximation, which was extensively discussed in Chapter 2. All discussions regarding the

Fraunhofer approximation, such as its range of validity and interpretation as a plane wave

approximation, are thus applicable in the present context.

3.1.3.1 Far-Field, Finite Span Formulation

The first step is to adopt the far-field formulation for the dipole acoustic radiation; the for-

mulation adopted by Amiet is presented in Eq. 2.100. The far-field acoustic pressure radiated

by an aerofoil (Eq. 3.12) is then approximated as

p(r, ω) ≈
∫ d

−d

∫ b

−b

[
2πρ0

∫ +∞

−∞
w(κχ, kψ) gLE(xs, κχ, kψ)e−jkψys dkψ

]
. . .

. . .

[
jk0z

4πσ2
r

e
jk0

(
Mxx−σr

β2

)
e
jk0

(
x−Mxσr
σrβ2

)
xse

jk0

(
y
σr

)
ys

]
dxs dys (3.15)

= ρ0
jk0bz

2σ2
r

e
jk0

(
Mxx−σr

β2

) ∫ +∞

−∞
w(κχ, kψ)LLE(x, κχ, kψ)

(2d) sin ((kψ − κψ) d)

(kψ − κψ) d
dkψ, (3.16)
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where κψ = k0y/σr, and LLE(x, kχ, kψ) is the effective lift [64] for a single turbulent gust

(kχ, kψ):

LLE(x, kχ, kψ) =
1

b

∫ b

−b
gLE(xs, kχ, kψ)e

jk0

(
x−Mxσr
σrβ2

)
xs dxs. (3.17)

Assuming far-field conditions allows the separation of the source integration into the xs and

ys components and to treat them as Spatial Fourier Transforms, as previously discussed in

Section 2.3.4. The term k0(x −Mxσr)/(σrβ
2) in Eq. 3.17 is identical to the first component

of the far-field acoustic wavenumber vector k̂ = (k̂x, k̂y, k̂z) in Eq. 2.88. The effective lift

function in Eq. 3.17 can then be interpreted as a normalised Spatial Fourier Transform of the

chordwise surface pressure jump evaluated over the (acoustic) wavenumber k̂x:

LLE(x, kχ, kψ) =
1

b

∫ b

−b
gLE(xs, kχ, kψ)ejk̂xxs dxs (3.18)

=
2π

b
gLE(k̂x, kχ, kψ), (3.19)

The relationship between the observer chordwise position x and the chordwise acoustic wavenum-

ber k̂x has an implicit dependence on the flow-corrected chordwise observer angle x/σr; con-

sequently, the effective lift function describes the aerofoil acoustic directivity for chordwise

angles. There are known closed-form solutions available for the effective lift function [7, 61],

as shown in Section 3.1.4.3.

In Eq. 3.16, the spanwise integration of the aerofoil noise results in a sinc function in kψ(= k̂y),

with a main lobe of height of 2d, null-to-null width ∆kML
ψ = 2π/d and centred at κψ = k0y/σr.

This function is the Spatial Fourier Transform of a rectangular window of length L = 2d and

behaves as a bandpass filter in kψ centred on κψ.

The relationship between the observer spanwise position y and the acoustic wavenumber k̂y

has a dependence on the flow-corrected observer spanwise angle y/σr, and hence the sinc

function also defines an acoustic directivity as a function of spanwise observer angle. The sinc

function main lobe will sift a particular spanwise gust wavenumber towards a specific span

angle, indicating that most of the acoustic radiation reaching an observer at an angle y/σr is

due to a gust at the specific hydrodynamic wavenumber κψ = k̂y = k0y/σr. For example, an
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observer located at mid-span (y = 0) will be exposed mostly to the acoustic radiation induced

by the gust with spanwise hydrodynamic wavenumber κψ = 0.

For an observer aligned with the y axis (i.e. x = z = 0), the sifted spanwise wavenumber sim-

plifies to κψ = κxMx/β. Gusts with hydrodynamic spanwise wavenumber inside the interval

kψ ∈ [−κxMx/β, κxMx/β] will display strong acoustic radiation towards a unique spanwise

angle in the interval θ ∈ [−π/2, π/2], while gusts outside that range will not have a preferred

spanwise radiation direction. It is shown in Section 3.1.4.1 (see p. 74) that the aerofoil re-

sponse function assumes different forms for hydrodynamic gusts inside and outside of this

range: gusts inside this range are called supercritical gusts, while gusts outside this range are

called subcritical gusts.

In the case of multiple gusts, the acoustic cross-power spectral density Spp′(r, r
′, ω) for the

far-field, finite-span model can be written as:

Spp′(r, r
′, ω) =

(
ρ0k0b

2

)2( z

σ2
r

)(
z′

σ′2r

)
Ux

∫ +∞

−∞
Φ(κx, kψ)LLE(x, κx, kψ)LLE∗(x′, κx, kψ) . . .

. . .
(2d) sin ((kψ − κψ) d)

(kψ − κψ) d

(2d) sin
((
kψ − κ′ψ

)
d
)

(
kψ − κ′ψ

)
d

dkψ, (3.20)

while the acoustic power spectral density of the far-field sound Spp(r, ω) can be written as

Spp(r, ω) =

(
ρ0k0bz

2σ2
r

)2

Ux

∫ +∞

−∞
Φww(κχ, kψ)

∥∥LLE(x, κχ, kψ)
∥∥2
∥∥∥∥(2d) sin ((kψ − κψ) d)

(kψ − κψ) d

∥∥∥∥2

dkψ.(3.21)

3.1.3.2 Far-Field, Infinite Span Formulation

As discussed above, the spanwise integration gives rise to a sinc function in the kψ domain,

as shown in Equation 3.16. In the limit of the aerofoil span becoming large (i.e. d → ∞),

the sinc function will tend to behave as a Dirac Delta function inside the kψ integration; see

Appendix A on how this can be demonstrated. We denote this as:

lim
d→∞

(2d) sin ((kψ − κψ) d)

(kψ − κψ) d
= 2πδ (kψ − κψ) . (3.22)
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The integration over the kψ wavenumbers coupled with the Delta function will effectively sift

the spanwise turbulence wavenumber, so that only κψ = k0y/σr contributes to the observation

point y/σr in the far field. Therefore, the infinite-span, far field pressure p(r, ω) can be

approximated by the acoustic field generated by a single gust with hydrodynamic wavenumbers

(κχ, κψ):

p(r, ω) ≈ ρ0
jπk0bz

σ2
r

e
jk0

(
Mxx−σr

β2

)
w(κχ, κψ)LLE(x, κχ, κψ). (3.23)

In this limit, for an observer directly above the aerofoil (y = 0), only the normal incidence

gust kψ = 0 will contribute to the observed acoustic pressure; all oblique gusts (kψ 6= 0) will

cancel along the span and will not radiate towards the observer direction.

The far-field, infinite-span (single-gust) power spectral density Spp(r, ω) has to be formulated

in a slightly different form, because the convergence of the sinc-squared function is not the

same as the square of the convergence of the sinc function. As discussed in Appendix A, we

must write

lim
d→∞

1

2d

(2d) sin
((
kψ − k0y

σr

)
d
)

(
kψ − k0y

σr

)
d

2

= 2πδ

(
kψ −

k0y

σr

)
. (3.24)

And hence, the far-field, infinite-span (single gust) PSD can be derived from Equation 3.21 as

Spp(r, ω) =

(
ρ0k0bz

2σ2
r

)2

Ux

∫ +∞

−∞
Φww(κχ, kψ)

∥∥LLE(x, κχ, kψ)
∥∥2
. . .

. . . (2d)
1

2d

∥∥∥∥∥∥
(2d) sin

((
kψ − k0y

σr

)
d
)

(
kψ − k0y

σr

)
d

∥∥∥∥∥∥
2

dkψ.(3.25)

Performing the integration results in

Spp(r, ω) =

(
ρ0k0bz

σ2
r

)2

Uxπd Φww(κχ, κψ)
∥∥LLE(x, κχ, κψ)

∥∥2
. (3.26)
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3.1.4 Aerofoil Response Functions

3.1.4.1 Supercritical and Subcritical Gusts

Implementing the interaction noise model using a numerical method requires calculating the

aerofoil response to individual gusts; Graham [65] described how the response of an infinite-

span aerofoil subject to a subsonic, oblique gust can assume two forms, depending on the value

of the parameter

ΘG =
kχMx

kψβ
. (3.27)

A gust is termed supercritical when ‖ΘG‖ ≥ 1. The aerofoil response to a supercritical gust is

similar to the response to a compressible, normal incidence gust. In this case, it my be shown

that the intersection point between the gust and the aerofoil leading edge moves supersonically

relative to the fluid [8], and the aerofoil is an efficient radiator of sound to the far-field.

A gust is termed subcritical when ‖ΘG‖ < 1. The aerofoil response to a subcritical gust is

similar to the response to an incompressible, oblique gust. In this case, the intersection point

between the gust and the aerofoil leading edge moves subsonically relative to the fluid, and

the aerofoil is an inefficient radiator of sound. More specifically, a subcritical gust response by

an infinite-span aerofoil will induce an evanescent acoustic field, which decays exponentially

away from the aerofoil and does not reach the far field [7].

For a fixed temporal frequency - and hence fixed kχ - we can define the critical value of kψ

such that ΘG = 1 as

kcritψ =
kχMx

β
. (3.28)

Thus, all kψ integrations can be described as a superposition of the subcritical gusts contribu-

tion for |kψ| > kcritψ , plus the supercritical gusts contribution for |kψ| ≤ kcritψ . As a consequence

of this duality, the aerofoil response function gLE(xs, kχ, kψ) assume different forms for super-

critical and subcritical gusts [7, 61].
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Note that the critical spanwise hydrodynamic wavenumber kcritψ has been previously identified

in Section 3.1.3.1 (see p. 70), where it was shown that supercritical gusts will radiate strongly

in a given spanwise direction, while subcritical gusts do not have a preferred radiation direction.

3.1.4.2 Aerofoil Response Functions

The analytical formulation for compressible gusts used in this Thesis are based on Amiet’s

proposed solution based on the Schwarzschild technique [9], which consists of calculating the

solution for an infinite-chord aerofoil with no trailing edge (that is, infinite downstream of

the leading edge) to model the leading edge scattering of the hydrodynamic gusts, and then

applying a correction factor for an infinite-chord aerofoil with no leading edge (that is, infinite

upstream of the trailing edge) to consider the trailing edge scattering of the aerofoil surface

pressure response. As the model is based on linearised potential theory [9], the solutions can

be added directly. In principle this is an iterative procedure, but Amiet states that the first

two iterations are enough for practical problems.

The first two terms of the aerofoil response function have the form

gLE(xs, kχ, kψ) = g1(xs, kχ, kψ) + g2(xs, kχ, kψ), (3.29)

where g1 and g2 represent the leading edge scattering and the trailing edge backscattering of

sound, respectively. In the formulations for g1 and g2, all quantities will be normalised by the

half-chord b, which is denoted using a “breve” (̆·) symbol:

x̆ =
x

b
, k̆i = kib,

and the acoustic reduced frequency is denoted as µa = k̆χMx/β
2.

For supercritical gusts (ΘG ≥ 1), we write [61]

κ2 = µ2
a −

(
k̆ψ
β

)2

= µ2
a

(
1− 1

Θ2
G

)
, (3.30)
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g1(xs, kχ, kψ) = e−jπ/4
e−j[(κ−µaMx)(x̆s+1)]

π
√
π(x̆s + 1)(k̆χ + β2κ)

, (3.31)

g2(xs, kχ, kψ) = −e−jπ/4 e
−j[(κ−µaMx)(x̆s+1)]

π
√

2π(k̆χ + β2κ)
{1− (1 + j) F∗ [2κ(1− x̆s)]} , (3.32)

where F∗[.] is the complex conjugate of the Fresnel integral F [.]. The latter is defined as

F(ζ) =
1√
2π

∫ ζ

0

ejz√
z

dz, (3.33)

and therefore the former is defined as

F∗(ζ) =
1√
2π

∫ ζ

0

e−jz√
z

dz. (3.34)

For subcritical gusts (ΘG < 1), we have [61]

κ′2 = −κ2 (3.35)

=

(
k̆ψ
β

)2

− µ2
a = µ2

a

(
1

Θ2
G

− 1

)
, (3.36)

and write gLE = g′1 + g′2, with

g′1(xs, kχ, kψ) = e−jπ/4
e[(−κ′+jµaMx)(x̆s+1)]

π
√
π(x̆s + 1)(k̆χ − jβ2κ′)

, (3.37)

g′2(xs, kχ, kψ) = −e−jπ/4 e
[(−κ′+jµaMx)(x̆s+1)]

π
√

2π(k̆χ − jβ2κ′)

{
1− erf

[√
2κ′(1− x̆s)

]}
, (3.38)

where erf[.] is the error function:

erf(x) =
2√
π

∫ x

0
e−t

2
dt. (3.39)
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Note that the above equations are not defined for critical gusts (kψ = kcritψ ); therefore, the

critical gust response is numerically interpolated from responses slightly above and slightly

below criticality in order to obtain a smooth transition, as previously commented by Roger

[7].

3.1.4.3 Effective Lift Functions

From these formulations for the aerofoil response functions, we can write the respective effective

lift functions LLE(x, kχ, kψ) defined in Eq. 3.17. For supercritical gusts (ΘG ≥ 1), we write

L1(x, kχ, kψ) =
1

π

√
2

(k̆χ + β2κ)H1

F∗(2H1)ejH2 (3.40)

and

L2(x, kχ, kψ) =
ejH2

πH1

√
2π
(
k̆χ + β2κ

)
{
j
(
1− e−j2H1

)
. . .

. . .+ (1− j)
[
F∗(4κ)−

√
2κ

κ+ µax/σ
e−j2H1F∗

(
2(κ+ µax/σr)

)]}
, (3.41)

where H1 = κ− µax/σr and H2 = µa(Mx − xσr)− π/4 [9, 61].

Note that the term H1 becomes negative when evaluated for certain gusts near criticality at

some frequencies and observer locations, which in turn yield innacurate results in the evaluation

of L1(x, kχ, kψ).

For subcritical gusts (ΘG < 1), we write

L′1(x, kχ, kψ) =
1

π

√√√√ 2(
k̆χ − jβ2κ′

)
(jκ′ − µax/σr)

F
(
2(jκ′ − µax/σr)

)
ejH2 (3.42)

and
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L′2(x, kχ, kψ) =
jejH2

πH3

√
2π
(
k̆χ − jβ2κ′

)
{

1− e−2H3 − erf
(√

4κ′
)
. . .

. . .+ 2e−2H3

√
κ′

jκ′ + µax/σr
F
(
2(jκ′ − µax/σr)

)}
, (3.43)

where H3 = κ′ − jµax/σr [9, 61].

Note that the supercritical formulations require the calculation of the complex conjugate of

the Fresnel integral, written as F∗[.] (Eq. 3.34), while the subcritical formulations require the

Fresnel integral without complex conjugation, written as F [.] (Eq. 3.33).

3.1.5 Turbulent Velocity Wavenumber Spectrum

In order to match the experimental conditions, we adopted the von Karman wavenumber

energy spectrum [8] for homogeneous, isotropic turbulence. This model describes the velocity

spectrum vertical to the flat plate Φww(kχ, kψ) as a function of hydrodynamic wavenumbers

(kχ, kψ). It is defined in terms of the mean-squared velocity u2 and the integral length scale

Λ as

Φww(kχ, kψ) =
4

9π

u2

k2
e

ǩ2
χ + ǩ2

ψ(
1 + ǩ2

χ + ǩ2
ψ

)7/3
, (3.44)

ke =

√
π

Λ

Γ(5/6)

Γ(1/3)
, (3.45)

where ǩi = ki/ke and Γ(·) is the Gamma function.

3.2 Aerofoil Surface Pressure Characteristics

We will now discuss in more depth the aerofoil surface pressure jump characteristics as induced

by turbulence-leading edge interaction to understand what information it yields about the

acoustic radiation. It will also serve as a background for what is expected in the proposed

source reconstruction scheme using microphone arrays.



Chapter 3. Characteristics of Leading Edge Noise Surface Pressure on a Flat Plate 79

The next sections show some numerical computations based on a general experimental setup

often used for interaction noise measurements in the ISVR’s anechoic open jet wind tunnel

(see, for example, Clair et al. [15]). A flat plate with chord c = 0.15 m and span L = 0.45 m

(the aspect ratio is L/c = 3) is positioned in the potential core of the wind tunnel. The flow

speed is Ux = 60 m/s, the turbulence intensity is Ti =
√
urms2/U2

x = 0.025 and the integral

length scale is Λ = 0.007 m.

3.2.1 Aerofoil Surface Discretisation

Equations 3.31 and 3.37 suggests that the gust-leading edge interaction pressure jump for a flat-

plate aerofoil exhibits a 1/
√
x singularity at the leading edge, which requires extra care when

evaluating the aerofoil surface pressure near the leading edge. A non-uniform discretisation

scheme is therefore adopted in the chordwise direction, similar to the one used by Clair et al.

[15]. The chord sampling points xs[n] ∈ (−b, b] are calculated via

xs[n] =

(
el[n] − e−Lexp/2

e+Lexp/2 − e−Lexp/2

)
(2b)− b, (3.46)

where l[n] containsNx+1 points uniformly sampled over the non-dimensional interval [−Lexp/2,
Lexp/2]. The first sample of xs[n], located exactly at the leading edge, is then removed from

the grid. The exponential function, when evaluated over the negative values around −Lexp/2,

provides a finer discretisation for the points close to the leading edge. Shorter interval lengths

Lexp provide a sampling scheme that is closer to uniform sampling, while larger values provide

a more non-uniform sampling; throughout this work, we adopted Lexp = 2.

The spanwise sampling is uniform, with Ny points in the range ys ∈ [−d, d]. Note that

the spanwise sampling interval ∆ys is identical over the flat plate span, while the chordwise

sampling interval ∆xs is non-uniform and becomes smaller closer to the leading edge. Care

must therefore be taken when numerically integrating the surface pressure to consider the

correct corresponding sample width.

Figure 3.2 shows an example of the proposed discretisation with (Nx, Ny) = (50, 101) points,

used for illustration purposes; a denser grid of (Nx, Ny) = (100, 101) was adopted for the

actual numerical calculations to achieve convergence.
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Figure 3.2: Example of flat-plate aerofoil surface discretisation mesh around the span tip;
this aerofoil surface is uniformly discretised with 101 points in the spanwise direction, and non-

uniformly discretised with 50 points in the chordwise direction.

3.2.2 Wavenumber Analysis of Single-Gust Response Functions

We will start discussing the surface pressure response to a single gust, which is fully coherent

over the entire z = 0 plane.

3.2.2.1 Supercritical Gusts

The leading edge scattering term is described by Equation 3.31 for supercritical gusts, and can

be rewritten in terms of a travelling wave modulated by an envelope function and a constant

phase shift of −π/4:

g1(xs, kχ, kψ) = genv1 (xs, kχ, kψ) e−jk
sup
x (xs+b) e−jπ/4, (3.47)

where the envelope function is

genv1 (xs, kχ, kψ) =
1

π
√
π(x̆s + 1)(k̆χ + β2κ)

(3.48)
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and ksupx is a purely real wavenumber term of the form

ksupx =
1

b
(κ− µaMx) (3.49)

=
1

β2

(√
k2

0 − (kψβ)2 − k0Mx

)
. (3.50)

Note that, for spanwise wavenumbers kψ = ky in the supercritical range, this wavenumber

component will be located over the radiation ellipse in (kx, ky) domain (compare with Eq.

2.25). As kψ increases (i.e. as the gusts become more oblique), ksupx decreases.

Returning to the total aerofoil surface pressure jump for single-gust excitation (Eq. 3.6),

each gust with spanwise hydrodynamic wavenumber kψ will induce a spanwise phase varia-

tion of the type e−jkψys over the aerofoil surface. A supercritical single-gust excitation will

therefore induce a response similar to a travelling wave of the type e−j[k
sup
x (xs+b)+kψys]. In

the wavenumber domain, this aerofoil response will be centred at the acoustic wavenumber

(ksupx , kψ), located over the right-hand-side half of the radiation ellipse. A sample of these

wavenumbers are indicated in Figure 3.3 with circles.

The aerofoil response function can then be interpreted as an acoustic wave propagating over

the aerofoil surface in the (xs, ys) plane, in the direction given by the acoustic wavenum-

bers (ksupx , kψ) and at the velocity of sound in a moving medium. These conclusions will be

illustrated in the next sections.

3.2.2.2 Subcritical Gusts

A similar analysis can be performed for the subcritical gust response function (Eq. 3.37),

which can be rewritten as

g′1(xs, kχ, kψ) = g
′env
1 (xs, kχ, kψ) e−jk

sub
x (xs+b) e−jπ/4, (3.51)

where the envelope function is

g
′env
1 (xs, kχ, kψ) =

1

π
√
π(x̆s + 1)(k̆χ − jβ2κ′)

. (3.52)



Chapter 3. Characteristics of Leading Edge Noise Surface Pressure on a Flat Plate 82

kψ = 0.00 kcritψ

kψ = 0.35 kcritψ
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kψ = −0.75 kcritψ

kψ = kcritψ
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kψ = 1.60 kcritψ
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Figure 3.3: Diagram displaying in acoustic wavenumber space (kx, ky) the location of the main
wavenumber component of the aerofoil response function gLE(xs, kχ, kψ) for different hydrody-
namic spanwise wavenumbers kψ; supercritical gusts responses are indicated with a circle, critical
gusts responses are indicated with a square, and subcritical gusts responses are indicated with

pentagons.

Again, the response can be decomposed into: a complex-valued envelope function; a complex

exponential, that can be interpreted as a wave propagating along the chord in the streamwise

direction; and a constant phase shift of −π/4. The wavenumber term ksubx can be written as

the sum of a propagating and a decaying part as

ksubx =
1

b
(−jκ′ − µaMx) (3.53)

=

(
−k0Mx

β2

)
+ j

(
− 1

β2

√
(kψβ)2 − k2

0

)
. (3.54)

Hence, the subcritical chordwise wavenumber contains a real and an imaginary part. The

real part corresponds to a travelling wave component in the downstream direction, while

the imaginary part is negative and corresponding to an exponential decay component in the

downstream direction. Note that as kψ increases (i.e. as the gusts become more oblique), the
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real component remains the same, but the imaginary component increases in magnitude and

the aerofoil response quickly decays in amplitude in xs.

In wavenumber space, the travelling wave component will correspond to a point (−k0Mx

β2 , kψ)

that moves in a straight line away from the radiation ellipse for increasing kψ. Representative

examples of these wavenumbers are indicated with pentagons in Figure 3.3. Hence, the trav-

elling wave component of the aerofoil response will generate an evanescent acoustic wave into

the acoustic medium.

3.2.2.3 Gust Integration Limit for Surface Pressure Calculations

Due to their exponential decay, subcritical gusts will only affect a certain portion of the

aerofoil chord around the leading edge and up to a given chord point xs. For a fixed chordwise

coordinate xs, therefore, there will be a maximum subcritical gust spanwise wavenumber

k
[A]
ψ (xs) below which the evanescent character of the aerofoil response will attenuate the surface

pressure distribution by less than A decibels (say, −20 dB). This relationship can be obtained

by setting the magnitude of the evanescent component at that chord point to be equal to A

dB:

20 log10

(
e
−
[

1
β2

√
(k

[A]
ψ β)2−k2

0

]
(xs+b)

)
= A, (3.55)

from which we can derive the following expression for the maximum spanwise gust limit:

k
[A]
ψ (xs,Mx, k0) = kcritψ

√√√√√−β2 ln
(

10
A
20

)
k0(xs + b)

2

+ 1. (3.56)

Hence, at a given chord position xs, subcritical gusts with spanwise wavenumbers |kψ| < k
[A]
ψ

are considered significant contributors to the surface pressure response at that point, while

gusts with spanwise wavenumbers |kψ| > k
[A]
ψ will induce a response with a magnitude below

A dB at that chord point. Their contribution to the surface pressure response at that point

can therefore be ignored. Note that the maximum spanwise gust wavenumber increases as

1/(xs + b) for points approaching the leading edge (xs = −b).
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Figure 3.4: Evanescent gust spanwise wavenumber k
[A]
ψ , with evanescent response at A = −20

dB at each chord point xs, in double-logarithmic plot, for chordwise normalised frequencies k0c =
[0.5, 5, 20].

Figure 3.4 shows the maximum subcritical gust spanwise wavenumber k
[A]
ψ for A = −20 dB as

a function of xs for three chordwise reduced frequencies k0c = [0.5, 5, 20]. It can be seen that

as xs moves downstream, the less the aerofoil response is affected by subcritical gusts, which

can then be ignored in the analysis. Conversely, if xs moves upstream towards the leading

edge - and if one observes the aerofoil response at lower frequencies - than it is necessary to

consider a much larger range of subcritical gusts in order to correctly estimate the aerofoil

response.

We have tested the convergence of the surface pressure cross-spectral density S∆p∆p′(rs, r
′
s, ω)

as a function of maximum spanwise gust integration, and have found that k
[−20]
ψ is a sufficient

integration limit to achieve convergence in the cross-spectrum for a wide range of frequencies.

This limit will be adopted later on when computing the aerofoil response to multiple gusts.

3.2.3 Single-Gust Surface Pressure Characteristics

Let us now demonstrate the aerofoil response to single gusts at different reduced frequencies

(k0c = 0.5, k0c = 5 and k0c = 20). We consider a flow Mach number Mx ≈ 0.17 to match the

experimental conditions.
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Figure 3.5: Typical aerofoil response function chordwise magnitude for different range of gusts,
shown in arbitrary units. The solid line denotes a normal incidence gust (supercritical); the dashed
lines denote oblique supercritical gusts; the dash-dotted line denotes a critical gust; and the dotted

lines denote subcritical gusts; k0c = 0.5, Mx ≈ 0.17. [Modified from Roger [7]]

3.2.3.1 Example: Low Frequency Response (k0c = 0.5)

Consider a low frequency example at k0c = 0.5, in which the aerofoil is a compact source

(i.e. much smaller than the acoustic wavelength), and radiates effectively as a single, point

dipole source [30]. Figure 3.5 shows the magnitude of the chordwise aerofoil response function

for normal-incidence (supercritical), oblique supercritical, critical and subcritical gusts. This

Figure illustrates how at low frequencies, all types of gust load the aft portions of the aerofoil

surface.

Figure 3.6 shows the real part of the surface pressure jump. The surface loading in this example

is almost entirely in phase over the entire surface, except for small areas of phase change for

subcritical gusts at relatively high spanwise wavenumber value. It can also be observed how the

surface loading is very similar for all gusts, indicating that at low frequencies even subcritical

gusts should be as efficient radiators of sound to the far-field as supercritical gusts.

Figure 3.7 shows the magnitude (in dB) of the Spatial Fourier Transform of the surface pressure

distributions for the 6 examples shown in Figure 3.6; the white traces represent the radiation

ellipse. Very little variations inside the radiation ellipse region in the wavenumber domain,

denoting an almost uniform acoustic radiation to the far-field at all angles for all gusts. No

particular main lobe or sidelobes are visible at this frequency range.
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Figure 3.6: Typical aerofoil surface pressure jump (real part) for different range of supercritical
and subcritical gusts; k0c = 0.5, Mx ≈ 0.17.

Figure 3.7: Wavenumber Transform of aerofoil surface pressure jump for different range of su-
percritical and subcritical gusts; k0c = 0.5, Mx ≈ 0.17.
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Figure 3.8: Typical aerofoil response function chordwise magnitude for different range of gusts,
shown in arbitrary units. The solid line denotes a normal incidence gust (supercritical); the dashed
lines denote oblique supercritical gusts; the dash-dotted line denotes a critical gust; and the dotted

lines denote subcritical gusts; k0c = 5, Mx ≈ 0.17. [Modified from Roger [7]]

3.2.3.2 Example: Medium Frequency Response (k0c = 5)

Figure 3.8 shows the absolute value of the aerofoil response function for the previously discussed

set of supercritical and subcritical gusts. All gust responses present the singularity at the

leading edge, but it can be seen that supercritical gusts load more significantly the aerofoil

surface as a whole, while for subcritical gusts the loading is more concentrated at the leading

edge and decay exponentially towards the trailing edge.

Figure 3.9 shows the surface pressure jump for parallel-incidence and oblique gusts excitation

at medium frequency (k0c = 5). It can be clearly seen how the aerofoil response wavefronts

move from towards the downstream direction for a parallel-incidence gust, to towards the

spanwise direction for oblique gusts. It can also be seen how supercritical gusts load most

of the aerofoil surface, while the loading due to subcritical gusts is concentrated close to the

leading edge.

The magnitude (in dB) of the Spatial Fourier Transform of the aerofoil surface pressure re-

sponses are shown on Figure 3.10. A series of sidelobes can be seen in the ky direction due

to the aerofoil finite span. Some weak sidelobes are also present in the kx direction, although

these are much broader due to the aerofoil chord being smaller than the span. As previously

discussed, the wavenumber component of maximum pressure are concentrated along the ra-

diation ellipse for supercritical gusts, and moves in a vertical line away from the ellipse for

subcritical gusts, as previously shown in Figure 3.3.
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Figure 3.9: Typical single-gust aerofoil surface pressure jump (real part) for different range of
supercritical and subcritical gusts; k0c = 5, Mx ≈ 0.17.

Figure 3.10: Wavenumber Transform of single-gust aerofoil surface pressure jump for different
range of supercritical and subcritical gusts; k0c = 5, Mx ≈ 0.17.
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Figure 3.11: Typical aerofoil response function chordwise magnitude for different range of gusts,
shown in arbitrary units. The solid line denotes a normal incidence gust (supercritical); the dashed
lines denote oblique supercritical gusts; the dash-dotted line denotes a critical gust; and the dotted

lines denote subcritical gusts; k0c = 20, Mx ≈ 0.17. [Modified from Roger [7]]

3.2.3.3 Example: High Frequency Response (k0c = 20)

Figure 3.11 shows the aerofoil response magnitude at high frequencies (k0c = 20), where overall

magnitudes are lower than the medium and low frequency cases. The exponential decay for

the subcritical gusts is more pronounced at this higher frequency. Figure 3.12 shows the real

part of the surface pressure jump over the aerofoil surface. Note, however, that the levels

displayed in this Figure are 5 times lower than that shown for low and medium frequencies

(note the colorbar scale). Once again, the wave-like characteristics of the surface pressure are

apparent, with the change in direction of the wavefronts as the gust spanwise wavenumber kψ

increases clearly observable. Note also the severe attenuation of the subcritical gusts responses

when compared to previous cases.

Figure 3.13 shows the Spatial Fourier Transform of the surface pressure distributions shown

in the previous Figure. The main lobe of the supercritical response functions is clearly posi-

tioned on top of the radiation ellipse, moving around it as the hydrodynamic spanwise gust

wavenumber changes, and clearly departing from the radiation ellipse for subcritical gusts.

One can also observe how only the sidelobes are inside the radiation ellipse for the critical

gust response, indicating an inefficient acoustic radiation to the far-field.
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Figure 3.12: Typical aerofoil surface pressure jump (real part) for different range of supercritical
and subcritical gusts; note that the levels displayed in this figure are 5 times lower than the ones

shown previously for low and medium frequencies. k0c = 20, Mx ≈ 0.17.

Figure 3.13: Wavenumber Transform of aerofoil surface pressure jump for different range of
supercritical and subcritical gusts; k0c = 20, Mx ≈ 0.17.
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3.2.4 Multiple-Gust Surface Pressure Characteristics

This Section considers the simultaneous contribution of multiple mutually incoherent vortical

gusts, representative of an isotropic turbulent flow. From Eq. 3.10, the total surface pressure

jump over the aerofoil is obtained by integrating multiple gusts responses, each one inducing

a fully-coherent surface pressure distribution:

S∆p∆p′(xs, x
′
s, ys, y

′
s, ω) = (2πρ0)2Ux

∫ +∞

−∞
Φww(κχ, kψ) . . .

. . . gLE(xs, κχ, kψ)gLE∗(x′s, κχ, kψ)e−jkψ(ys−y′s) dkψ.

As the flat plate surface pressure jump corresponds to the source strength distribution in

the acoustic analogy, a thorough investigation of the pressure jump characteristics will yield

information about the radiated acoustic field.

We choose some reference points rrefs on the aerofoil surface and investigate the cross-spectrum

magnitude, phase and coherence against these references. Figure 3.14 shows the three reference

points in the mid-span: 1% chord (i.e. near the leading edge), 10% chord, and 50% chord (i.e.

at mid-chord).

The coherence function, defined from classical Signal Processing [66] as

γ2(rref , rs, ω) =
|S∆p∆p′(r

ref
s , rs, ω)|2

S∆p∆p(r
ref
s , ω) S∆p∆p(rs, ω)

, (3.57)

determines the degree of linear association between the surface pressure at the two points.

Regions where the surface pressure is coherent will generate sound fields that interfere con-

structively and behave as a single larger, more efficient acoustic radiator. Meanwhile, incoher-

ent regions will not generate constructively interfering sound fields and are less efficient sound

sources when viewed as a whole.

3.2.4.1 Surface Pressure Characteristics

Figures 3.15 to 3.17 show the aerofoil surface pressure cross-spectrum magnitude and phase,

and the surface pressure coherence, evaluated over the entire aerofoil surface for each case: at

frequencies k0c ∈ [0.5, 5, 20] and reference points at 1% chord (Fig. 3.15), 10% chord (Fig.
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(a) (b) (c)

Figure 3.14: Mid-span reference points. (a) 1% chord; (b) 10% chord; (c) 50% chord.

3.16) and 50% chord (Fig. 3.17). We have empirically obtained convergent results using a

gust wavenumber sampling of 4 samples per sinc function null-to-null main lobe width ∆kψ

(see Section 3.1.3.1), and adopting a gust integration limit of k
[−20]
ψ .

Some general trends relative to the surface pressure coherence can be inferred from these

Figures. In Fig. 3.15, with the reference at 1% chord, it can be observed that points near

the leading edge have a very short coherence length in the chordwise direction and shorter

in the spanwise direction. As described in Section 3.2.2.3, it is necessary to consider a large

range of gust wavenumbers to obtain convergence at this reference point - i.e. k
[−20]
ψ is large.

While high wavenumber gusts do not affect the aft section of the aerofoil, they can still load

the leading edge and impose a shorter spanwise coherence length. The chordwise coherence

is longer than the spanwise coherence, and the coherence length is slightly longer at lower

frequencies, but the differences are very small.

In Figure 3.16, with the reference positioned at 10% chord, the coherence lengths are longer

than in the previous case. The difference between the different frequencies is now clearer,

with higher frequencies having shorter coherence lengths. The chordwise coherence length

is also observed to be longer than the spanwise coherence length. It can also be noted that
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the coherence decreases slightly for points upstream of the reference (i.e. towards the leading

edge).

Finally, in Figure 3.17, with the reference at 50% chord, the coherence lengths become signif-

icantly longer in the spanwise direction.

These results indicate that, despite the pressure jump singularity, the leading edge might be

an inefficient radiator of sound due to the highly incoherent nature of the surface pressure

near that region at all frequencies. On the other hand, the surface pressure on the aft regions

display longer coherence lengths and might be more efficient radiators of sound, particularly

at lower frequencies.

Note as well the variation in cross-spectrum phase relative to the references: points located

downstream of the references (i.e. towards the trailing edge) tend to be positive, while points

upstream of the references tend to be negative. This effect might be related to how the single-

gust flat plate response functions can be described as a travelling wave over the aerofoil surface,

as discussed in Section 3.2.2.
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Cross-Spectrum and Coherence ref. 1% Chord

This text is only here to provide some spacing between the header and the figure.
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Figure 3.15: Cross-spectral density magnitude and phase, and coherence, for reference point
1% chord: (a) low frequency (k0c = 0.5); (b) medium frequency (k0c = 5); (c) high frequency

(k0c = 20).
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Cross-Spectrum and Coherence ref. 10% Chord
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Figure 3.16: Cross-spectral density magnitude and phase, and coherence, for reference point
10% chord: (a) low frequency (k0c = 0.5); (b) medium frequency (k0c = 5); (c) high frequency

(k0c = 20).
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Figure 3.17: Cross-spectral density magnitude and phase, and coherence, for reference point
50% chord: (a) low frequency (k0c = 0.5); (b) medium frequency (k0c = 5); (c) high frequency

(k0c = 20).
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3.2.4.2 Total Wavenumber Power Spectra Characteristics

In previous Sections, we considered the Spatial Fourier Transform of the fully coherent surface

pressure response to single vortical gust components. In practice, turbulence contains a contin-

uum of wavenumber components that are mutually uncorrelated, and requires a cross-spectral

density analysis. We can obtain a surface pressure cross-spectrum in the wavenumber domain

by calculating

S∆p∆p′(k,k
′, ω) =

1

(2π)4

∫ ∫
S∆p∆p′(rs, r

′
s, ω)ej(k·rs−k

′·r′s) drs dr′s. (3.58)

We plot in Figure 3.18 the auto-power spectral density (in dB) in wavenumber domain (kx, ky)

at frequencies k0c ∈ [0.5, 5, 20], representing the amount of “energy” contained in each wavenum-

ber component of the surface pressure jump. This Figure can be interpreted as the incoherent

sum of the wavenumber spectra of the single-gust responses previously shown in Figures 3.7,

3.10 and 3.13, where each single gust response has its main wavenumber component located

over the radiation ellipse. As a consequence, the energy in the wavenumber autospectrum is

visibly concentrated along the radiation ellipse for medium and high frequencies.

The wavenumber spectra inside the radiation ellipse can be related to the acoustic far-field

radiated by the source, as established in Sections 2.3.4 and 2.3.5, and is associated to the

source far-field directivity. At low frequencies, the energy is uniformly distributed inside the

ellipse, indicating an almost omnidirectional far-field response by the aerofoil. However, the

radiation ellipse occupies a relatively small area in wavenumber domain at this frequency, and

the energy can be seen to spread across wavenumbers both inside and outside the ellipse;

thus, only a small portion of the surface pressure energy will radiate as far-field sound. This

indicates that a far-field-based source reconstruction method will not be able to recover a

significant amount of highy energetic wavenumber components, and will likely underestimate

the source distribution at this frequency.

At higher frequencies it tends to concentrate towards the ellipse and form multiple radiation

lobes and nulls, while for wavenumbers outside the radiation ellipse the energy can be seen

to decay. Therefore, at such frequencies, a significant amount of the energy contained in the

aerofoil surface pressure will radiate as far-field sound. We can also observe the appearance

of radiation lobes and nulls inside the ellipse: at medium frequency, only one null is observed

within the radiation region, while at high frequency multiple nulls can be observed.
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Note that sources composed of distribution of dipoles have an extra wavenumber factor

Wdip (kx, ky, ω) (Eq. 2.112) when associating their wavenumber spectrum to the radiated

far-field, as discussed in Section 2.3.4.2. This windowing function will attenuate the contri-

butions to the far-field of wavenumbers towards the radiation ellipse, while maintaining the

contribution of wavenumbers near the centre of the ellipse. Since most of the energy in the

surface pressure jump developed over an aerofoil interacting with a turbulent gust is contained

in wavenumbers located over the radiation ellipse, therefore these same wavenumbers do not

radiate effectively to the far-field.
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Figure 3.18: Auto-power spectral density magnitude in wavenumber domain: (a) low frequency
(k0c = 0.5); (b) medium frequency (k0c = 5); (c) high frequency (k0c = 20).





Chapter 4

Leading Edge Noise Radiation from

a Flat Plate

In this Chapter we consider the acoustic field radiated by an aerofoil in a turbulent flow. The

characteristics of the flat plate source distribution have been discussed in the previous chapter,

and we now investigate the resulting acoustic radiation for single- and multiple-gust responses.

Repeating Equation 3.14, the cross-power spectral density Spp′(r, r
′, ω) of the radiated acoustic

field is related to the cross-power spectral density S∆
qq′(rs, r

′
s, ω) of the surface pressure jump

via the convected dipole transfer function ∂G(r|rs, ω)/∂zs:

Spp′(r, r
′, ω) =

∫ +d

−d

∫ +b

−b

∫ +d

−d

∫ +b

−b
S∆p∆p′(rs, r

′
s, ω)

∂

∂zs
G(r|rs, ω) . . .

. . .
∂

∂z′s
G∗(r′|r′s, ω) dxs dys dx′s dy′s.

For the predictions of the acoustic radiation, we compute the pressure jump response of the

flat plate to a single vortical gust, with the gust amplitude obtained from the von Karman

model (Eq. 3.44). If multiple gusts are being considered, the surface pressure cross-spectrum is

calculated from each gust response, and the cross-spectra are summed. The radiated acoustic

field is then calculated using an acoustic analogy approach, where the pressure jump at each

point in the aerofoil surface is treated as the complex amplitude of an infinitesimal point dipole

source. We then calculate the acoustic pressure or the acoustic cross-power spectrum at the

desired observer locations by numerically integrating the contributions of each point dipole.

101
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From this analysis, we identified three near-field mechanisms of the aerofoil radiation: the

hydrodynamic near-field of the fundamental dipole sources; the geometric near-field; and the

aerofoil acoustic response to subcritical gusts. We then analyse their acoustic radiation charac-

teristics and discuss the conditions where they will influence acoustic measurements of aerofoils.

4.1 Single-Gust Acoustic Radiation

We now present some predictions of near- and far-field radiation at a single frequency k0c = 5,

at which non-compactness effects are expected to be significant. The aerofoil geometry and

flow characteristics follow the description given in Section 3.2.

We look into four separate single-gust cases:

1. Normal incidence gust: kψ = 0 (supercritical response);

2. Oblique incidence gust, kψ = 0.35kcritψ (supercritical response);

3. Oblique incidence gust, kψ = 0.75kcritψ (supercritical response);

4. Oblique incidence gust, kψ = 1.25kcritψ (subcritical response).

Since a flat-plate aerofoil is symmetric over the z = 0 plane, its directivity patterns are identical

in the +z and −z directions; hence, we will show only the radiation corresponding to the +z

directions.

As previously stated, these directivity patterns are associated with the wavenumber transform

of the surface pressure jump evaluated inside the radiation ellipse, multiplied by the dipole

windowing function Wdip(kx, ky, ω) (Eq. 2.112). The chordwise directivity (over the plane

y = 0) is related to the wavenumber spectrum over the ky = 0 line, while the spanwise

directivity (over the plane x = 0) is related to the wavenumber spectrum over the kx = −kx1

line. For this particular frequency, the wavenumber spectrum is shown in Figure 3.10; one

can then observe the correspondence between the number and location of the main lobe, nulls

and sidelobes in the directivity plots shown in this Section and their corresponding entries in

Figure 3.10.
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4.1.1 Normal Incidence Gust, kψ = 0

For a normal-incidence harmonic gust, kψ = 0 and hence the aerofoil response is supercritical.

The variation in pressure jump over the aerofoil surface is shown on Figure 4.1, with the

real part shown on the left-hand side and the normalised magnitude shown in decibels on the

right-hand side. As the aerofoil surface pressure jump has its spanwise variations determined

by the spanwise gust wavenumber kψ, there are no spanwise variations in this case.

Figure 4.2 shows the acoustic pressure radiated near the aerofoil in the y = 0 and x = 0 planes;

some non-compactness effects can be observed in the chordwise radiation, where the radiated

field is clearly not uniform with angle. The sinc-like directivity in the spanwise direction (x = 0

plane) is also evident, indicating a strong radiation in the x = 0 plane and weaker radiation

towards other spanwise directions. Note as well the dipole directivity effect, superimposing a

null on the z = 0 plane in both images.

Figure 4.3 shows the flat plate far-field directivity obtained on these same planes, normalised

against the maximum chordwise directivity value. Note that the directivity plots in the next

sections will also be normalised against this value. The directional behaviour of the aerofoil

radiation is easily observable, particularly the slightly stronger chordwise acoustic radiation

in the downstream direction (i.e. towards the +x direction). The shape of the spanwise

directivity (the sinc function) is also clearly observable, with distinct main lobe, sidelobes and

nulls.
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Figure 4.1: Surface pressure jump of a flat-plate aerofoil caused by a normal-incidence (kψ = 0)
harmonic gust; real part (left-hand side), in arbitrary units, and absolute value (right-hand side),

in normalised decibels.

(a) (b)

Figure 4.2: Acoustic field simulation from leading edge radiation for a normal-incidence (kψ = 0)
harmonic gust; (a) acoustic field on y = 0 plane; (b) acoustic field on x = 0 plane.

(a) (b)

Figure 4.3: Normalised far-field directivity simulation from leading edge radiation for a normal-
incidence (kψ = 0) harmonic gust; (a) directivity on y = 0 plane; (b) directivity on x = 0 plane.
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4.1.2 Oblique Incidence Gust, kψ = 0.35kcritψ

We now consider an oblique gust with spanwise wavenumber kψ ≈ 0.35kcritψ , where the aerofoil

response will be supercritical. The surface pressure jump over the aerofoil is shown in Figure

4.4, with the real part shown on the left-hand side and the normalised magnitude in decibels

in the right-hand side. Note that now the aerofoil surface pressure jump spanwise variation

follows the spanwise gust wavenumber component (of the form e−jkψys), as described before.

Figure 4.5 shows the acoustic pressure radiated around the aerofoil in the y = 0 and x = 0

planes. The general structure of the acoustic field over the y = 0 plane (left-hand side) is

similar to the one shown for the normal-incidence case, despite the smaller amplitude; however,

the acoustic field over the x = 0 plane (right-hand side) is quite different, with pronounced

beaming effect towards an angle oblique to the aerofoil surface normal.

Figure 4.6 shows the flat plate far-field directivity obtained on these same planes, normalised

by the maximum value for the kψ = 0 case. Note that the chordwise directivity now appears

much smaller, since for this particular gust wavenumber the aerofoil directivity presents a null

close to the x = 0 plane. The spanwise directivity, which is still similar to a sinc function,

is now inclined and pointing at an angle θ > 0; this is a direct consequence of the chosen

spanwise wavenumber value kψ > 0. Due to symmetry, a spanwise wavenumber kψ < 0 would

induce a sinc function-like directivity pointing at an angle θ < 0.
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Figure 4.4: Surface pressure jump of a flat-plate aerofoil caused by an oblique-incidence (kψ =
0.35kcritψ ), supercritical harmonic gust; real part (left-hand side), in arbitrary units, and absolute

value (right-hand side), in normalised decibels.

(a) (b)

Figure 4.5: Acoustic field simulation from leading edge radiation for an oblique-incidence (kψ =
0.35kcritψ ), supercritical harmonic gust; (a) acoustic field on y = 0 plane; (b) acoustic field on x = 0

plane.

(a) (b)

Figure 4.6: Normalised far-field directivity simulation from leading edge radiation for an oblique-
incidence (kψ = 0.35kcritψ ), supercritical harmonic gust; (a) directivity on y = 0 plane; (b) direc-

tivity on x = 0 plane.
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4.1.3 Oblique Incidence Gust, kψ = 0.75kcritψ

For the third case, we consider an oblique-incidence harmonic gust with spanwise wavenumber

kψ = 0.75kcritψ ; hence, this gust is supercritical, but close to criticality.

The surface pressure jump over the aerofoil is now shown on Figure 4.7, with the real part

shown on the left-hand side and the magnitude shown in decibels on the right-hand side. Note

that again the aerofoil surface pressure jump spanwise variation follows the spanwise gust

wavenumber component, of the form e−jkψys , as discussed before.

Figure 4.8 shows the acoustic pressure radiated around the aerofoil in the y = 0 and x = 0

planes, and Figure 4.9 shows the flat plate far-field directivity obtained on these same planes,

normalised by the maximum value for the kψ = 0 case. We can now observe a greater difference

between this case and the previous cases; the aerofoil is radiating towards a larger spanwise

angle, with a few narrow sidelobes radiating towards the other directions on the x = 0 plane.

There is once again a null close to the y = 0 plane, and thus the chordwise radiation is reduced

in amplitude.
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Figure 4.7: Surface pressure jump of a flat-plate aerofoil caused by an oblique-incidence (kψ =
0.75kcritψ ), supercritical harmonic gust; real part (left-hand side), in arbitrary units, and absolute

value (right-hand side), in normalised decibels.

(a) (b)

Figure 4.8: Acoustic field simulation from leading edge radiation for an oblique-incidence (kψ =
0.75kcritψ ), supercritical harmonic gust; (a) acoustic field on y = 0 plane; (b) acoustic field on x = 0

plane.

(a) (b)

Figure 4.9: Normalised far-field directivity simulation from leading edge radiation for an oblique-
incidence (kψ = 0.75kcritψ ), supercritical harmonic gust; (a) directivity on y = 0 plane; (b) direc-

tivity on x = 0 plane.
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4.1.4 Oblique Incidence Gust, kψ = 1.25kcritψ

For the last case, we now consider an oblique-incidence harmonic gust with spanwise wavenum-

ber kψ = 1.25kcritψ ; this gust response is subcritical.

The surface pressure jump over the aerofoil is shown in Figure 4.10, with the real part shown

on the left-hand side and the magnitude shown in decibels on the right-hand side. As de-

scribed before, the aerofoil surface pressure jump spanwise variation follows the spanwise gust

wavenumber component, of the form e−jkψy; the behaviour of the pressure jump in the chord-

wise direction, however, presents an exponential decay towards the trailing edge, with a strong

attenuation of the aerofoil response magnitude.

Figure 4.11 shows the residual acoustic pressure in the y = 0 and x = 0 planes. The aerofoil

acoustic radiation is now much weaker compared to the previous cases, with the acoustic

pressure negligible due to the exponential decay of the chordwise pressure jump coupled with

the cancellation effects between adjacent spanwise regions of opposite phase. However, some

weak acoustic radiation is still observed near the leading edge and near the span ends. As

previously discussed, a finite-span aerofoil will have a radiating (and not evanescent) response

to a subcritical gust, due to the incomplete cancellation effects at the span ends.

Figure 4.12 shows the flat plate far-field directivity obtained on these same planes, normalised

by the maximum value for the kψ = 0 case. The chordwise directivity has significantly lower

magnitude than previous cases at all chordwise angles, and the spanwise directivity displays

a series of small, narrow sidelobes over the spanwise angles. Both directivities thus indicate

this gust is an inefficient source of far-field sound.



Chapter 4. Leading Edge Noise Radiation from a Flat Plate 110

Figure 4.10: Surface pressure jump of a flat-plate aerofoil caused by an oblique-incidence (kψ =
1.25kcritψ ), subcritical harmonic gust; real part (left-hand side), in arbitrary units, and absolute

value (right-hand side), in normalised decibels.

(a) (b)

Figure 4.11: Acoustic field simulation from leading edge radiation for an oblique-incidence (kψ =
1.25kcritψ ), subcritical harmonic gust; (a) acoustic field on y = 0 plane; (b) acoustic field on x = 0

plane.

(a) (b)

Figure 4.12: Normalised far-field directivity simulation from leading edge radiation for an oblique-
incidence (kψ = 1.25kcritψ ), subcritical harmonic gust; (a) directivity on y = 0 plane; (b) directivity

on x = 0 plane.
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4.2 Multiple-Gusts Acoustic Radiation

Simulation results are now presented for aerofoil radiation in response to multiple vortical

gusts. We will adopt the same configuration (i.e. aerofoil geometry and flow properties) as

described in Section 4.1 for single-gust radiation; however, we now integrate the contributions

of gusts over a range of spanwise wavenumbers to calculate the surface pressure cross-spectrum,

according to Eq. 3.10.

4.2.1 Gust Integration Limit for Acoustic Pressure Calculations

As we are now interested in the acoustic radiation of the aerofoil, it is not necessary to integrate

the contributions of gusts up to the previously proposed wavenumber limit k
[−20]
ψ , as for the

surface pressure calculations. This value, being reference-dependent and assuming values well

above the critical gust limit kcritψ for many conditions, includes the contributions of many gusts

that are acoustically insignificant and is deemed excessive for acoustic radiation predictions.

In Section 3.2.3, it was shown that subcritical gusts are significant contributors to the acoustic

radiation at low frequencies but cease to contribute at higher frequencies, where supercritical

gusts are the main contributors to the radiated field. We can then consider a low frequency

region, in which supercritical and subcritical gusts must be taken into account for predicting

the acoustic field, and a high frequency region, in which only supercritical gusts are necessary.

These regions are separated by a critical frequency fcrit, which we establish below.

In Section 3.1.3.1, the flat plate acoustic far-field was shown to have a sinc function-like

dependence on the gust spanwise wavenumber kψ. The sinc function is shown in Figure 4.13

for an observer at mid-span, with its frequency-independent null locations indicated. We

propose that gusts with wavenumbers in the range kψ ∈ [−2π/d,+2π/d] (i.e. located within

the sinc function main lobe and first sidelobes for an observer at mid-span) are significant

contributors to the acoustic field and must be considered at all frequencies; these are indicated

by the shaded region in Figure 4.13.

We can now determine the transition frequency fcrit by considering how the frequency-dependent

critical gust wavenumber kcritψ compares to the sinc function nulls:
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Figure 4.13: Spanwise sinc function in kψ domain, with region of significant gust responses
shaded in grey; d is the aerofoil semi span.

• In the low frequency region, kcritψ < 2π/d. Some wavenumbers in the proposed range will

be subcritical in nature but still acoustically significant, and must be included in the

predictions. The gust wavenumber integration limit will be kmaxψ = 2π/d;

• At high frequencies, kcritψ ≥ 2π/d. All wavenumbers within the proposed range are

supercritical, and there is satisfactory convergence considering supercritical gusts only.

The gust wavenumber integration limit will be kmaxψ = kcritψ .

From Eq. 3.28, the transition frequency fcrit between the low- and high-frequency regions can

be determined as where kcritψ = 2π/d, which simplifies to

fcrit =
c0β

d
. (4.1)

For the proposed conditions (Mx ≈ 0.17 and L = 2d = 0.45 m), the transition frequency is

fcrit ≈ 1487.4 Hz, which is equivalent to k0c ≈ 4.12.

4.2.2 Multiple-Gusts Normalised Directivities

Figures 4.14 to 4.16 show the chordwise (left-hand side) and spanwise (right-hand side) di-

rectivity patterns at frequencies k0c ∈ [0.5, 5, 20] obtained when integrating the contributions

of multiple gusts according to the above proposed rule. The plots were obtained from the
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acoustic power spectral density Spp(r, ω) in Eq. 3.14, and are normalised against the largest

magnitude observed in Figure 4.15a.

Figure 4.14 demonstrates the aerofoil radiates similarly to a point dipole source at low fre-

quency k0c = 0.5, even when considering the contributions of multiple gusts. This indicates

compactness effects of low-frequency radiation, as expected from the low normalised frequency

value.

At medium frequency k0c = 5, Figure 4.15 begins to demonstrate non-compactness effects

in both chordwise and spanwise directions. The chordwise directivity is very similar to the

normal-incidence single-gust directivity shown in Figure 4.3a. This is expected, since it was

shown that all other gusts will be beaming at different spanwise angles and thus will have

very weak radiation in this plane. On the other hand, the spanwise directivity now contains

the contributions of many different gusts radiating at different angles. The sum of all gust

contributions yields a very different directivity pattern than those previously observed, with

slightly stronger radiation towards angles slightly above θ = ±π/4 and very defined spanwise

symmetry.

At high frequency k0c = 20, Figure 4.16 shows strong non-compactness effects, with both

chordwise and spanwise directivity plots showing multiple lobes in a number of directions.

The chordwise directivity is strongly asymmetric, while the spanwise directivity is symmetric.

Note that these far-field directivities are associated with the wavenumber-domain power spec-

trum shown in Figure 3.18. By considering the variations in the wavenumber spectrum magni-

tude inside the radiation ellipse across the ky = 0 line, we can obtain the chordwise directivities

(left-hand side of Figures 4.14 to 4.16), and by considering the variatins across the kx = −kx1

line, we can obtain the spanwise directivities (right-hand side of Figures 4.14 to 4.16).
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(a) (b)

Figure 4.14: Normalised far-field directivity simulation from leading edge radiation for multiple
harmonic gusts at low (k0c = 0.5) frequency; (a) directivity in XZ plane; (b) directivity in Y Z

plane.

(a) (b)

Figure 4.15: Normalised far-field directivity simulation from leading edge radiation for multiple
harmonic gusts at medium (k0c = 5) frequency; (a) directivity in XZ plane; (b) directivity in Y Z

plane.

(a) (b)

Figure 4.16: Normalised far-field directivity simulation from leading edge radiation for multiple
harmonic gusts at high (k0c = 20) frequency; (a) directivity in XZ plane; (b) directivity in Y Z

plane.
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4.3 Comparing the Different Amiet Formulations for Near-

Field Effects

We would now like to compare the different formulations for interaction noise predictions

presented in Chapters 3 and 4 regarding their near-field effects, and investigate whether near-

field effects should be expected for typical experimental conditions used in the ISVR anechoic

wind tunnel.

4.3.1 Experimental Setup Description

The experimental setup for measuring aerofoil leading edge noise is described in more detail

in Chapter 5, so we will briefly describe the main features of the experimental setup. A

flat-plate aerofoil with chord c = 0.15 m and span L = 0.45 m is situated in a turbulent

flow, with a mid-span, “far-field” microphone arc positioned at R = 1.2 m for chordwise

directivity measurements, and a planar, “near-field” microphone array positioned at z = −0.5

m for beamforming measurements; see Figure 4.17. The mean flow speed is Ux = 60 m/s

(Mx ≈ 0.17). A turbulence-generating grid is installed at the wind tunnel nozzle, yielding

a turbulence intensity of Ti = 0.025 and an integral length scale of Λ = 0.007 m. The von

Karman spectrum for isotropic turbulence was found to adequately represent the observed

velocity spectrum.

Let us compare the predicted acoustic power spectral density for an observer at mid-span,

mid-chord at two distances, R = 8c (1.2 m) and R = 100c (15 m), with the measured acoustic

PSD as seen by a mid-span, mid-chord microphone in the far-field arc (at R = 1.2 m). We

compare three prediction formulations:

• the near-field, multiple-gust formulation (Eq. 3.14), which evaluates the integration

over the spanwise wavenumber kψ and takes into account the effects of multiple gusts

interacting with a finite-span aerofoil at each frequency;

• the far-field, single-gust formulation (Eq. 3.26), which considers the effect of a single

gust interacting with an infinite-span aerofoil at each frequency;

• and a near-field, single-gust model, obtained by evaluating Eq. 3.14 at zero spanwise

wavenumber (kψ = 0) only, which considers the effect of a single gust interacting with a

finite-span aerofoil at each frequency.
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Figure 4.17: Typical experimental setup for interaction noise measurements: an aerofoil is ex-
posed to a turbulent flow, with a mid-span, “far-field” microphone arc used for chordwise directivity

measurements and a planar, “near-field” microphone array used for beamforming.

According to the flat plate radiation model presented in Chapter 3, gusts with kψ = 0 are

the main contributors to the acoustic radiation for observers at mid-span (y = 0). Comparing

the second and the third models allow us therefore to evaluate the validity of the geometric

far-field approximation for the chosen measurement conditions.

As proposed by Clair et al. [15], an extra factor of 2π/(2d) is added when numerically evaluating

the zero-spanwise-wavenumber spectrum Φww(kχ, 0) (in Equation 3.14) for the single-gust,

finite-span model. We can then obtain equivalent levels between single-gust and multiple-gust

predictions.

It has been established in Section 3.1.3.1 that the far-field formulations for interaction noise

prediction rely on the Fraunhofer far-field approximation, extensively discussed in Section 2.3.

In order to evaluate whether these formulations are valid for the proposed measurement setup,

we define the Fraunhofer far-field distance limit as
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RFF =
2L2

λ
, (4.2)

where L is the aerofoil span, and use it to determine whether the observer is in the geometric

far-field or not.

4.3.2 Comparison of Measured and Predicted Results
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Figure 4.18: Prediction of acoustic PSD for mid-span microphone using different formulations:
near-field, multiple-gust formulation (solid lines); near-field, kψ = 0 gust only formulation (dashed
lines); and far-field, infinite-span approximation (dotted lines), for observers at R = 8c (1.2 m)
and R = 100c (15 m) from the aerofoil. The measured PSD for an observer at R = 8c is also
shown (dash-dotted line) for reference. The frequency range shown in the Figure is approximately

50 Hz to 20 kHz.

The predicted PSD results for the three formulations are shown in Figure 4.18 for both observer

distances, together with the measured PSD for the observer at R = 8c. The frequency range

shown in the Figure is approximately 50 Hz to 20 kHz.

There is excellent agreement between all prediction models for the observer at 100c (15 m),

with the near-field and far-field models collapsing well. However, according to Eq. 2.81, far-

field conditions can be assumed at this distance for frequencies up to approximately 12.6 kHz

(k0c ≈ 35), so in principle true geometric far-field conditions cannot be assuemd at the highest
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frequencies of interest. Strikingly, the models still converge to very similar results at these

frequencies, an indication that strict adherence to the Fraunhofer distance/frequency limit

might not be necessary for adopting the far-field approximation.

For the observer at 8c (1.2 m), there are more significant differences between the predictions.

A small discrepancy between the prediction models at low frequencies can be observed, where

the far-field approximation underpredicts the PSD level by a few decibels when compared to

the near-field models. This difference is likely to be due to the dipole hydrodynamic near field

effect: the lowest frequency shown in Figure 4.18 is approximately 50 Hz, which is comparable

to the k0r = 1 transition frequency given by Equation 2.99 (approximately 45 Hz). Note,

however, how the measured PSD level is significantly above all prediction models at such low

frequencies; it is known that wind tunnel measurements are often plagued by large levels of

background noise at low frequencies, hence we assume such small level differences between the

prediction methods at this frequency region are not significant for experimental purposes.

At middle and high frequencies the predictions and measurements display a much better

agreement, with the “humps and dips” typical of aerofoil measurements visible on all curves.

Note, for example, that the first two dips occur near k0c = 2π and k0c = 4π [7]. However, the

near-field, single-gust (“kψ = 0 only”) model diverges significantly from the far-field models at

high frequencies, decreasing in amplitude as frequency increases. The level difference is seen

to reach 3 dB at approximately k0c = 16.6 (f = 6 kHz), indicating source non-compactness

and possible near-field effects. A similar decrease in amplitude at high frequencies has been

noted by Clair et al. [15] for the near-field, single-gust prediction model, who also pointed out

possible near-field effects as a likely cause.

The frequency limit of the Fraunhofer approximation (Eq. 2.81) evaluated at the observer

distance R = 8c (1.2 m) yields a high frequency limit of approximately f = 1 kHz (k0c ≈
2.8). The differences pointed out above could then be attributed to the observer entering

the geometric near-field limit. However, as discussed above for the distant observer case, no

apparent differences can be seen for frequencies near this limit, only significantly above it; this

reinforces the idea of the Fraunhofer limit being useful as a general guideline, and not a strict

rule.

Despite the far-field approximation yielding convergent results even when the Fraunhofer limit

is not strictly obeyed, it must be noted that near-field effects are still apparent over a wide

range of frequencies - even for an experimental setup designed to measure far-field directivities,
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as the microphone arc described above. Therefore, it is recommended that experimenters be

aware of near-field effects in measurements, especially above the Fraunhofer approximation

frequency limit.

Strikingly, this near-field-related decrease in level is not observed when multiple gusts are

included in the prediction. In fact, the multiple-gusts model presents very similar results to

the far-field, infinite-span model and to the experimental measurements. Our hypothesis is

that contributions from oblique (kψ 6= 0) gusts add up to the observed PSD level at mid-span,

raising it to levels similar to the far-field, infinite-span PSD. However, this hypothesis has not

been verified.

4.4 Acoustic Near-Field Effects from a Flat Plate

The previous section indicates that near-field effects should be expected for flat plate interac-

tion noise over a wide frequency range, even for supposedly “far-field” measurement conditions.

A more thorough investigation of when near-field effects occur and what are their consequences

is therefore required.

As discussed in Section 2.3, we can assume an observer is in the far-field of a source when

the sound field radiated by the source is locally perceived by the observer as a plane wave.

However, the acoustic near-field can have more varied characteristics; these are summarised

in Dowling and Ffowcs Williams [28], Kinsler et al. [32], Fahy [67], for example, from where

we cite:

• The acoustic near-field presents an amplitude decay proportional to 1/R2, or higher

inverse power;

• Acoustic energy can move between adjacent source regions instead of propagating to-

wards the far-field, with the acoustic intensity vector often exhibiting circulatory pat-

terns;

• The acoustic pressure and particle velocity are not in phase, and can be nearly in quadra-

ture near vibrating surfaces;

• The acoustic impedance magnitude is lower than that of a plane wave due to larger

particle velocities.
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Hence, for our purposes, we choose to define the acoustic near-field of a source as the region

around the source, at a given frequency, where the far-field assumption is not applicable. As

one source can have multiple forms of near-field effects, there might be different spatial and

frequency ranges for each type of near-field.

From the above definition, we identified three possible sources of near-field effects in the Amiet

model for aerofoil leading edge noise. These are:

1. The fundamental dipole sources hydrodynamic near field, which affect the measurement

results at very low frequencies;

2. The effect of subcritical gusts, which behave as “cut-off modes” of the aerofoil radiation

and will yield an evanescent acoustic field in the infinite-span limit;

3. The geometric near-field effects, which can be observed at distances and frequencies

where the Fraunhofer approximation is not valid.

We will now investigate how these effects might affect acoustic measurements of the aerofoil

near-field radiation. We choose the centre microphone in the planar microphone array as the

observer for this analysis. This microphone is located at a vertical distance of R = 0.5 m

(approx. 3c) below the aerofoil centre, as seen in Figure 4.17. Note that this distance is

comparable to the aerofoil span (L = 0.45 m), which in principle invalidates the adoption of

the Fraunhofer far-field approximation. With this observation in mind, we aim to investigate

if RFF can nevertheless function as a criterion for determining when the geometric far-field

approximation can be successfully used.

4.4.1 Hydrodynamic Dipole Near-Field

The dipole hydrodynamic near-field was briefly discussed in Section 2.3.3. This source of near-

field imposes a low-frequency limit on the far-field approximation, given by Equation 2.99. For

typical wind tunnel experimental conditions, however, it is probably not a significant source

of error, as it only affects very low frequencies - approximately 100 Hz for the observer at

0.5 m - where the signal-to-noise ratio is often already very poor due to the measurement rig

background noise.
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The hydrodynamic dipole near-field could significantly affect the results when using measure-

ments techniques which benefit from very short distances from the aerofoil surface, such as

Near-field Acoustical Holography and its variations.

4.4.2 Subcritical Gusts and Finite Span Effects

We now discuss the effects of subcritical gusts on the aerofoil acoustic radiation. The analysis

by Graham [65] points towards subcritical gusts being minor contributors to the far-field sound,

given their evanescent nature in the infinite-span approximation, and hence perhaps significant

contributors to the aerofoil near-field sound. However, we will discuss how finite-span aerofoils

do not generate a fully evanescent acoustic field. Indeed, in some frequency ranges, subcritical

gusts might contribute significantly to the acoustic field and must be taken into consideration.

In order to analyse the overall behaviour of different gusts, we plot the relative PSD at the

centre microphone of the near-field array, at 0.5 m. We use the near-field model of Equation

3.14, but evaluated at each single oblique gust kψ/k
crit
ψ separately.

Figures 4.19, 4.20 and 4.21 show the single-gust PSD magnitude as a function of spanwise gust

wavenumber kψ at normalised frequencies k0c = 0.5, k0c = 5 and k0c = 20, respectively. To

illustrate our analysis, we also plot a series of spanwise cross-sections (x = 0 plane, distances

normalised to the half span d) of the amplitude-normalised acoustic pressure at the spanwise

wavenumbers kψ = 0 (supercritical), kψ = 0.5kcritψ (supercritical), kψ = 0.9kcritψ (supercritical,

close to critical) and kψ = 2kcritψ (subcritical). These spanwise wavenumbers are marked in

the plot with triangles, and each acoustic pressure cross-section plot is linked to its respective

marker by an arrow.

4.4.2.1 Low Normalised Frequency (k0c = 0.5)

The results shown in Figure 4.19 demonstrate that the aerofoil behaves as a compact source

at this frequency. The different gusts can be seen to generate very similar acoustic fields, with

no apparent preferred radiation direction. The PSD magnitude displays a slow variation as

a function of kψ, with subcritical gusts generating PSD levels at the observer location that

are comparable to those generated by supercritical gusts, despite their fundamentally different

aerodynamic responses.
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Figure 4.19: Bottom: prediction of acoustic PSD for observer at mid-span, R = 0.5 m, normalised
chordwise frequency k0c = 0.5, as a function of spanwise wavenumber kψ (normalised to kcritψ ,
vertical dashed lines); PSD magnitudes have been normalised to their maximum value. Top:
cross-section of the radiated acoustic field in the x = 0 plane for single-gust excitation at spanwise
wavenumbers kψ = 0, kψ = 0.5kcritψ , kψ = 0.9kcritψ and kψ = 2kcritψ ; spatial coordinates are

normalised to the half-span d, and the acoustic field is shown in arbitrary units.

Figure 4.20: Bottom: prediction of acoustic PSD for observer at mid-span, R = 0.5 m, normalised
chordwise frequency k0c = 5, as a function of spanwise wavenumber kψ (normalised to kcritψ , vertical
dashed lines); PSD magnitudes have been normalised to their maximum value. Top: cross-section
of the radiated acoustic field in the Y Z plane for single-gust excitation at spanwise wavenumbers
kψ = 0, kψ = 0.5kcritψ , kψ = 0.9kcritψ and kψ = 2kcritψ ; spatial coordinates are normalised to the
half-span d, and the acoustic field is shown in arbitrary units; the acoustic pressure amplitude in

the rightmost plot has been increased ten times for better visibility.
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Figure 4.21: Bottom: prediction of acoustic PSD for observer at mid-span, R = 0.5 m, normalised
chordwise frequency k0c = 20, as a function of spanwise wavenumber kψ (normalised to kcritψ ,
vertical dashed lines); PSD magnitudes have been normalised to their maximum value. Top:
cross-section of the radiated acoustic field in the Y Z plane for single-gust excitation at spanwise
wavenumbers kψ = 0, kψ = 0.5kcritψ , kψ = 0.9kcritψ and kψ = 2kcritψ ; spatial coordinates are
normalised to the half-span d, and the acoustic field is shown in arbitrary units; the acoustic

pressure amplitude in the rightmost plot has been increased twenty times for better visibility.

Despite the geometric far-field approximation not being strictly applicable at distances com-

parable to the aerofoil span, the observer is beyond the Fraunhofer far-field distance limit

RFF ≈ 0.21 m (Eq. 4.2) at this frequency and we will therefore use the far-field formulation

to interpret some of the general trends in the results. The plot of the PSD versus kψ clearly

presents the expected sinc-like behaviour, with the kψ = 0 being the largest contributor to

the radiated sound. However, at this frequency, the sinc function main lobe width is much

wider than the far-field “visible region” determined by [−kcritψ ,+kcritψ ], and some subcritical

wavenumbers can be seen to contribute significantly to the acoustic PSD at the observer -

even reaching levels comparable to that of supercritical gusts.

When evaluating multiple-gust acoustic radiation at low frequencies, we proposed in Section

4.2.1 to consider the contributions of all gusts located within the main lobe and the first

sidelobes of the sinc function (i.e. |kψ/kcritψ | < 8 in Fig. 4.19, approximately). Here it can be

seen that gust wavenumbers beyond this limit will contribute less than −20 dB to the PSD at

the observer (relative to the maximum level), and therefore can be safely ignored.
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4.4.2.2 Medium Normalised Frequency (k0c = 5)

Figure 4.20 shows the same plots for k0c = 5 (approx. 1.8 kHz), where now the aerofoil

begins to show non-compactness effects. The Fraunhofer far-field limit at this frequency is

RFF ≈ 2.1 m, so the observer at 0.5 m is technically in the geometric near-field region. The

sinc-like behaviour of the PSD over kψ is still apparent, and the kψ = 0 gust is still the largest

contributor to the observed PSD. However, the nulls between the lobes are not as pronounced

- an indicator of increasing near-field effects.

Another feature of this Figure are the small “peaks” observed near the critical hydrodynamic

wavenumbers ±kcritψ . This type of behaviour is often present when acoustic sources transition

between radiating and non-radiating behaviours [67]. It appears to indicate that, despite

the far-field aerofoil response for such gusts present stronger acoustic radiation away from

an observer at mid-span, near-critical gusts are still significant contributors to the acoustic

radiation at mid-span.

The acoustic pressure cross-sections show interference effects between adjacent areas of the

aerofoil, which lead to the formation of beams and nulls in the acoustic field at specific spanwise

angles, as predicted by the sinc-function-like directivity in the far-field model. It is visible how

different gusts “beam” towards and contribute more strongly in certain spanwise observer

locations, and how the range between [−kcritψ ,+kcritψ ] corresponds to radiation angles in the

range [−90◦, 90◦] - i.e. the “visible” region. Note, however, that the dipole directivity cancels

out most of the acoustic radiation for spanwise angles close to ±90◦, creating nulls in the

acoustic field at these directions.

The acoustic pressure cross-section for the subcritical gust response (kψ = 2kcritψ , rightmost

plot) show significant cancellation effects across the entire aerofoil span, and its induced PSD

is shown to be almost 40 dB lower than that of the kψ = 0 gust. In fact, the acoustic pressure

amplitude shown in the figure is increased ten times relative to the other plots in order to

improve visibility. One striking feature of this plot is the strong cancellation effects around

the aerofoil centre, but not at the edges. This incomplete cancellation effect is responsible for

the decreasing but fundamentally non-evanescent (i.e. propagating) character of the finite-

span aerofoil response to subcritical gusts, where most of the radiation is generated at the tips

of the distributed source.
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4.4.2.3 High Normalised Frequency (k0c = 20)

Figure 4.21 shows a normalised frequency of k0c = 20 (approx. 7.2 kHz). At this frequency,

the aerofoil is a non-compact source, and the observer is well below the Fraunhofer distance

RFF ≈ 8.6 m at this frequency. The PSD does not display a sinc-like behaviour in kψ any

longer, the supercritical region is now almost completely smeared, and gusts other than kψ = 0

have become the largest contributors to the PSD. These are strong indicators that the observer

is located within the source near-field.

The peaks near the critical wavenumbers kcritψ are now more prominent. We have found that

these peaks determine the largest spanwise wavenumber kψ that still contribute significantly

to the acoustic radiation at higher frequencies, with gusts kψ > kcritψ not being significant

contributors of sound at the observer location any more.

The overall beaming behaviour of the single-gust response can again be seen in the acoustic

pressure cross-sections, with even stronger beaming effects. For the subcritical gust, the can-

cellation effect is severe enough that the acoustic pressure amplitude shown in the figure is

increased twenty times relative to the other plots to improve visibility in the Figure. However,

the response is again showing incomplete cancellation effects at the tips. This tip radiation is

clearly non-evanescent and will eventually reach an observer in the far-field, although likely at

insignificant levels.

4.4.3 Geometric Near-Field Effects

We will now consider how the acoustic field predicted with the near-field, multiple-gust model

and with the far-field, single-gust model behave as a function of observer distance R. We will

calculate the acoustic pressure PSD over a vertical line at mid-chord, mid-span, over distances

between 0.001RFF and 100RFF .

Figure 4.22 shows the PSD decay with distance for the near-field, multiple-gust formulation in

Equation 3.14 (thick lines) and for the far-field, single-gust formulation of Equation 3.26 (thin

lines), at the three chordwise normalised frequencies k0c = 0.5, k0c = 5 and k0c = 20 previously

considered. Note that the Fraunhofer distance RFF is frequency-dependent, therefore the

absolute distances are not directly comparable between the different frequencies.
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Figure 4.22: Acoustic PSD magnitude decay as a function of vertical distance R from aerofoil
with far-field approximations (thin lines) and without far-field approximations (thick lines), at
normalised frequencies k0c = 0.5 (solid, thick and dashed, thin blue lines), k0c = 5 (dashed, thick
and dotted, thin orange lines) and k0c = 20 (dotted, thick and dash-dotted, thin green lines).
Distances are normalised to the Fraunhofer far-field distance RFF = 2L2/λ; note that RFF is
frequency dependent, and thus the absolute distances are different for each normalised frequency.

As expected, the acoustic PSD decays proportionally to 1/R for observer distances larger than

RFF , displaying good agreement with the far-field, infinite-span model; as distance becomes

much shorter than RFF , the far-field and the near-field models diverge, with the far-field

model maintaining its 1/R slope. Contrary to the descriptions of near-field in the literature

presented above, however, the magnitude decay of the near-field model does not follow a 1/R2

or higher inverse-power decay close to the source. Instead, the magnitudes appear to converge

to a roughly constant level independent of distance. The relative distance at which the PSD

behaviour transition from stationary to decaying also appears to change with frequency.

Figure 4.23 extends the above analysis for single-gust responses at the spanwise wavenumbers

kψ = 0, kψ = 0.5kcritψ , kψ = 0.9kcritψ and kψ = 2kcritψ , evaluated at the same three normalised

frequencies. Since the observer is at mid-span, the kψ = 0 gust is expected to be the main

contributor to the pressure field. The microphone array height relative to the aerofoil (R = 0.5

m) is also marked in the Figures with a black arrow for reference.

For the low frequency case (k0c = 0.5) in Figure 4.23a, both supercritical and subcritical gust

responses present similar levels and distance decay behaviour, in agreement with the previous

discussions for compact, finite-span aerofoils. Each individual response presents a 1/R decay

for distances above RFF , but ceases to decay at distances smaller than RFF and converge to

a steady level. None of the gust responses present regions with 1/R2 or higher inverse-power

decay. As previously discussed, although the observer distance is greater than the Fraunhofer

distance limit RFF , it is also comparable to the source length, so it is not clear whether the
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approximation is indeed valid. Nevertheless, the results seem to indicate that the Fraunhofer

distance limit is an adequate estimate of far-field behaviour threshold at this frequency range,

at least regarding the aerofoil response pressure decay.

For the medium frequency case (k0c = 5) in Figure 4.23b, a different behaviour can be observed

in the supercritical oblique (kψ = 0.5kcritψ and kψ = 0.9kcritψ ) gusts responses. Their PSD curves

change from a constant level in the near-field to an inverse-power decay higher than 1/R (but

under 1/R2) below the Fraunhofer distance RFF , and then change to a 1/R rate further away.

The supercritical, oblique gust responses levels are similar to the parallel gust response in the

near-field, although their responses reach a lower level in the far-field. Similarly, the subcritical

gust (kψ = 2kcritψ ) presents a much lower PSD than the supercritical gusts over all distances,

despite not presenting 1/R2 decay trends. The actual observer distance is now below RFF ,

indicating the far-field approximation might be innacurate.

For the high frequency case (k0c = 20) in Figure 4.23c, the parallel gust response now presents

some magnitude oscillations in the near-field. There is now a distinct near-field region where

the oblique, supercritical gust responses present a level decay with a higher inverse-power

than 1/R - and for the kψ = 0.5kcritψ case, higher than 1/R2 over a short region - before

reaching a constant region at shorter ranges. Again, it can be expected that oblique gusts

might contribute significantly to the aerofoil acoustic near-field. The subcritical gust does not

reach a steady level at short distances, but instead its PSD appears to decay proportionally

to R. The actual observer distance is below RFF , and therefore the far-field approximation is

not valid for this distance and frequency.

As a final observation, note that all subcritical gust responses exhibit a 1/R decay in the far-

field, although at very low levels for medium and high frequencies; an exponential decay with

distance, as would be expected from an infinite-span aerofoil, is not observed in any of the

plots. Therefore, one can conclude that finite-span aerofoils responding to subcritical gusts

do not exhibit exponentially decaying acoustic fields, but instead exhibit propagating acoustic

fields that reach the far-field [7]. The relative importance of subcritical gusts responses to the

overall sound level is clearly frequency-dependent, and the results presented above indicate

that they are not significant contributors of sound at medium and high frequencies.
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Figure 4.23: Acoustic PSD magnitude decay as a function of vertical distance R from aerofoil
for different gusts; distances are normalised to the Fraunhofer far-field distance RFF = 2L2/λ.(a)
Normalised frequency kc = 0.5; (b) normalised frequency kc = 5; (c) normalised frequency kc = 20.



Chapter 5

Experiments

This chapter describes the experiments aimed at validating the interaction noise prediction

models presented in Chapter 4. A diagram of the experimental setup can be seen in Figure

4.17 (repeated here from p. 116). A flat-plate aerofoil is situated in a turbulent flow, and

its radiated acoustic pressure is measured with two microphone array systems: a mid-span,

“far-field” microphone arc positioned at R = 1.2 m, and a planar, “near-field” microphone

array positioned at z = −0.5 m.

5.1 Wind Tunnel Experimental Setup

5.1.1 The Wind Tunnel

The measurements were performed in the ISVR Large Anechoic Chamber using the DARP

Open Jet Facility. The ISVR Large Anechoic Chamber [68] is a box-within-a-box construction,

and its internal walls, floor and ceiling are covered in 0.91 m-long glass-fibre cored wedges. The

wedges allow for free-field conditions inside the chamber above 80 Hz, and result in internal

usable dimensions of 7.33× 7.33× 5.50 m. A grid of metal floor panels is generally used above

the floor wedges to provide mechanical support with minimum acoustic disturbance of the

sound field.

The DARP Open Jet Facility [69] is a low-noise, low-turbulence wind tunnel, with its working

section located inside the ISVR Large Anechoic Chamber. It was originally designed to facili-

tate aerofoil trailing edge self-noise measurements by providing a very low level of background

129
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Figure 4.17 (repeated from p. 116): Typical experimental setup for interaction noise measure-
ments: an aerofoil is exposed to a turbulent flow, with a mid-span, “far-field” microphone arc
used for chordwise directivity measurements and a planar, “near-field” microphone array used for

beamforming.

noise, while at the same time providing a very low turbulence flow so the noise generated by

the interaction of the aerofoil leading edge with turbulent incoming flow is eliminated.

Turbulent flows can also be achieved by introducing a turbulence-generating grid in the nozzle.

Aerofoil noise predictions were performed using a flow speed of Ux = 60 m/s. The turbulence

intensity and integral length scale were measured using hot-wire anemometry and found to be

Ti = 0.025 and Λ = 0.007 m, respectively [70]. The turbulence wavenumber spectrum for the

noise prediction methods was modelled using the von Karman model for isotropic turbulence

(previously introduced in Section 3.1.5), using the parameters described above as input.

The wind tunnel nozzle, with dimensions of 0.15 x 0.45 m, also holds two sideplates used

to fix the aerofoil within the mean flow. Figure 5.1 shows a photograph taken during the

experiments showing the setup described above.

The air temperature TC was measured inside the chamber with a thermometer, and used to

calculate the speed of sound c0(TC) using Eq. 2.2.
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Figure 5.1: Photograph of the experimental setup; the aerofoil is attached to the wind tunnel
nozzle, and the near-field microphone array is visible underneath it.

5.1.2 The Aerofoils

The aerofoils tested were a a metal flat plate, a NACA651210 aerofoil, and a NACA0012

aerofoil, all with L = 0.45 m span. All aerofoils were tested at 20 m/s, 40 m/s and 60 m/s flow

speed, at different angles of attack and with either straight or serrated leading edges attached.

All aerofoils had their boundary layer tripped using a strip of rough sandpaper attached near

the leading edge on both sides of the aerofoils to ensure a turbulent boundary layer, which

would cause trailing edge noise. The full list of measurement cases and air temperatures is

shown in Table 5.1.

5.1.3 The Far-Field Microphone Arc

The open jet wind tunnel was equipped with a mid-span, “far-field” microphone arc positioned

above the aerofoil at 1.2 m and used to observe chordwise spectra and directivity of the aerofoils

under study. This array is not visible in Figure 5.1, but is indicated in Figure 4.17.

The microphones are B&K Type 4189, with 1/2” diameter and are arranged in a circular

arc at 1.2 m from the centre of the aerofoil, covering a range of emission angles between
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Table 5.1: List of measurement cases for aerofoil noise measurement.

Case Number Aerofoil Angle of Attack LE Type Turbulence Grid Temp. [◦C]

01 NACA651210 5◦ Straight Yes 14.9
02 NACA651210 0◦ Straight Yes 14.5
03 NACA651210 0◦ Serrated Yes 13.7
04 NACA651210 5◦ Serrated Yes 13.6
05 NACA0012 0◦ Straight Yes 13.5
06 NACA0012 10◦ Straight Yes 13.5
07 Flat plate 0◦ Straight Yes 13.5
08 Flat plate 0◦ Serrated Yes 13.4
09 NACA651210 5◦ Serrated No 12.0
10 NACA651210 0◦ Serrated No 12.0
11 NACA0012 0◦ Straight No 12.2
12 NACA651210 0◦ Straight No 12.2
13 NACA651210 5◦ Straight No 12.3
14 Flat plate 0◦ Straight No 12.3
15 Flat plate 0◦ Serrated No 12.3

40◦ and 140◦ relative to the flow direction. The microphones were connected to a National

Instruments acquisition card and sampled at fs = 50 kHz. The microphone signal amplitudes

were calibrated using a 1 kHz, 1 Pa RMS reference signal from a B&K Type 4231 calibrator.

Only a small part of this data will be presented in this Thesis.

5.2 Near-Field Microphone Array Measurements

In addition to the typical wind tunnel experimental setup described above, we also included

a planar microphone array for measuring the aerofoil acoustic “near-field” and apply beam-

forming methods to estimate the aerofoil source distribution. The array was positioned at 0.5

m below the aerofoil, with the centre microphone visually aligned with the aerofoil mid span.

The array can be seen in the experiment diagram (Fig. 4.17) and in the photograph of the

experimental setup (Fig. 5.1).

The array geometry was an Underbrink multi-arm spiral array with 36 electret microphones,

comprising 7 spiral arms with 5 microphones each, plus one extra microphone added at the

centre of the array. The Underbrink design [27, 71] is a modified multi-arm spiral array:

an odd number of logarithmic spirals are traced over the array plane with uniform angular

separation, and the microphones are then positioned at specific arc lengths over each spiral so

that each microphone samples an equal-area aperture. This design results in a denser packing

of sensors at larger radii when compared to an equal-arc-length sampling, effectively weighting
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this region of the array more heavily than the smaller radii. This type of spatial weighting is

known to decrease the maximum sidelobe level while slightly increasing the main lobe width,

which tends to produce arrays with better broadband performance [27].

An Underbrink array can be designed from the maximum and minimum microphone radii

rmax and r0, the number of spiral arms Na (odd by definition), the number of microphones

per spiral Nm (excluding the extra central microphone), and the spiral angle α. The circular

area containing the microphones is divided into Nm − 1 equal area annuli, which are further

subdivided into Na equal area segments each. The microphones are then positioned at the

centre of these segments, and an extra inner circle of microphones is added at the minimum

radius r0 to improve the high frequency behaviour.

Following the formulation described in Prime and Doolan [71], the polar coordinates (rm,n, θm,n)

over the array surface for the m-th microphone positioned over the n-th spiral are given by

rm,1 = r0, (5.1)

rm,n = rmax

√
2n− 3

2Nm − 3
, (5.2)

for m = 1, . . . , Na and n = 2, . . . , Nm, and

θm,n =
ln (rm,n/r0)

cot(α)
+
m− 1

Na
2π, (5.3)

for m = 1, . . . , Na and n = 1, . . . , Nm. As mentioned above, we have also added one extra

microphone at the origin of the coordinate system in the centre of the array.

The parameter values adopted to design the array are shown on Table 5.2, and the resulting

microphone positions are given in Table 5.3. A diagram of the full microphone array, with its

spirals traced for visual reference, can be seen on Figure 5.2.

It should be noted that there was an error in the code to transform the microphone positions

from polar to Cartesian coordinates, and thus the array shown here has its spirals “rotating”

in the clockwise direction, in opposition to the ones commonly shown in the literature which
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Table 5.2: Microphone array design parameters

Min. radius [m] r0 0.025
Max. radius [m] rmax 0.25
No. of arms Na 7
Mics per arm Nm 5
Spiral angle [rad] α 6π/14

Table 5.3: Microphone coordinates (in centimetres)

Mic Number x-coord y-coord Mic Number x-coord y-coord Mic Number x-coord y-coord
01 0 0 13 2.184 -9.193 25 -21.072 -1.553
02 2.5 0 14 8.124 -14.208 26 -24.318 -5.799
03 8.477 4.175 15 6.203 -20.198 27 -0.556 2.437
04 12.044 11.082 16 11.065 -22.418 28 -5.957 7.335
05 18.311 10.542 17 -2.252 -1.085 29 -13.484 9.276
06 19.394 15.776 18 -5.825 -7.44 30 -14.352 15.506
07 1.559 -1.955 19 -6.043 -15.21 31 -19.696 15.397
08 8.549 -4.024 20 -11.924 -17.443 32 1.559 1.955
09 16.173 -2.507 21 -10.628 -22.628 33 2.021 9.231
10 19.659 -7.743 22 -2.252 1.085 34 -1.155 16.326
11 24.426 -5.327 23 -9.449 -0.084 35 3.174 20.889
12 -0.556 -2.437 24 -15.659 -4.759 36 -0.242 24.999

“rotate” in the counter-clockwise direction. This minor mistake has no influence on the array

performance.

The array was built on a 60× 60 cm, 1 cm-thick plywood board. The microphones positions

were marked on the board surface, which was then drilled manually creating 1 cm-diameter

holes. The microphones used in this array were OBO Pro.2 model OBO-04FP-0A-1F0 electret

condenser capsules, which were mounted flush to the plywood board surface and fixed using

hot melt adhesive. The capsules were connected to 3 m-long coaxial cables with added heat-

shrink tubing, polarised via 10 kΩ resistors and connected to a custom-made multi-channel

microphone amplifier providing a polarising voltage of 5 V. The amplifiers were set to a gain

of 20 dB ref 1 V/V on all channels.

The amplifier outputs were then connected via balanced cables to a rack of five RME ADI-8

DS analog-to-digital converters. The converters were connected via ADAT cables to an RME

ADI-648 MADI/ADAT converter, which was in turn connected via MADI cables to an RME

MADIface USB interface. The interface was connected via USB cable to a laptop computer

running Adobe Audition 3.0 to record the microphone signals at a chosen sampling frequency

of 48 kHz. Each measurement was made over 30 s.

The planar array microphone signal amplitudes were calibrated using a 1 kHz, 1 Pa RMS

reference signal from a B&K Type 4230 calibrator positioned above each microphone. It
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Figure 5.2: Top-down view of Underbrink multiarm spiral array, with its spirals traced for visual
reference. The aerofoil position is indicated with the thick, dashed lines.

should be noted that the microphone capsules were not inserted into the calibrator cavity for

recording the reference signals, as is standard procedure; instead, the calibrator was positioned

on the array baffle, on top of each microphone at a time. This calibration is therefore not

expected to be very accurate, and errors of a few decibels should be expected.

5.3 Acoustic Cross-Spectral Density Results

The array was used to measure the cross-spectral characteristics of the acoustic pressure at the

different microphone locations. We choose to investigate the microphones numbered 32 to 36:

these microphones are positioned at increasing spanwise coordinate y, as shown in Figure 5.3,

and can be used to determine whether the spanwise behaviour of the radiated near-field also

follows the far-field characteristics described by the Amiet model in Chapter 3. We investigate

their power spectral density magnitude, and cross-spectral density phase and coherence - the

latter two using the centre microphone as the phase reference.



Chapter 5. Experiments 136

−0.2 −0.1 0.0 0.1 0.2

x [m]

−0.2

−0.1

0.0

0.1

0.2

y
[m

] 32

33

34

35

36

Ref

LE TE

Figure 5.3: Selected microphones in planar array for spanwise (y direction) acoustic field analysis.
The aerofoil position is indicated with the thick, dashed lines.
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Figure 5.4: Predicted and measured PSD magnitude (dB re 20µPa/Hz), unwrapped CSD phase
(rad) and coherence γ2 (ref mic 1) as a function of frequency for microphone 32 (y = 0.020 m).
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Figure 5.5: Predicted and measured PSD magnitude (dB re 20µPa/Hz), unwrapped CSD phase
(rad) and coherence γ2 (ref mic 1) as a function of frequency for microphone 33 (y = 0.092 m).
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Figure 5.6: Predicted and measured PSD magnitude (dB re 20µPa/Hz), unwrapped CSD phase
(rad) and coherence γ2 (ref mic 1) as a function of frequency for microphone 34 (y = 0.163 m).
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Figure 5.7: Predicted and measured PSD magnitude (dB re 20µPa/Hz), unwrapped CSD phase
(rad) and coherence γ2 (ref mic 1) as a function of frequency for microphone 35 (y = 0.209 m).
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Figure 5.8: Predicted and measured PSD magnitude (dB re 20µPa/Hz), unwrapped CSD phase
(rad) and coherence γ2 (ref mic 1) as a function of frequency for microphone 36 (y = 0.25 m).
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Figures 5.4 to 5.8 show a comparison of the predicted and measured PSD in dB re 20µPa/Hz,

the unwrapped phase (in radians) and coherence function γ2 for the selected near-field planar

array microphones, ordered in increasing spanwise distance y from the array centre. The

cross-spectra were calculated from the calibrated microphone signals using the Welch method

[66]. The spectra were obtained using NDFT = 1024 samples, 50% overlap and used a Hann

window for each window. We compare the experimental data with predictions made using the

Amiet model, and include shear layer refraction effect as described in Section 2.4.

5.3.1 PSD levels

The above spectra display slight oscillations in all measured data, in a manner similar to

a “comb filter” effect, with peaks at approximately every 340 Hz. This was identified as a

standing wave effect between the flat plate aerofoil and the planar microphone array baffle.

This effect is clearly undesirable, since it might obscure actual features of the acoustic field;

hence, we recommend the use of acoustically transparent microphone arrays when possible.

All power spectral density plots in Figures 5.4 to 5.8 show significant differences between the

predictions and the measurements, both in level and in general shape of the spectra. Differences

of more than 10 dB are visible over a wide range of frequencies for all plots. The rate of decay

is slightly different between the predictions and measurements, and the oscillations seen in

the predicted spectra at high frequencies are not visible in the measurements. This result

can be contrasted with Figure 4.18, which showed a good agreement between prediction and

measurement for the PSD as seen by a “far-field” observer, particularly at higher frequencies.

A few reasons for these discrepancies are:

• Measured data are contaminated by wind tunnel jet noise, which is particularly promi-

nent at low frequencies;

• The planar array is significantly closer to the wind tunnel shear layer than the far-field

array, and thus might be more affected by shear layer hydrodynamic near-field noise,

particularly at low frequencies;

• The measurements of the turbulence characteristics (turbulence intensity and integral

length scale) might be in error, leading to a poor estimation of the turbulent wavenumber

energy spectrum - and consequently, a poor estimation of the radiated noise spectra;
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• The wind tunnel turbulent velocity field might not be isotropic, as is assumed when

adopting the von Karman model;

• The shear layer amplitude correction model presented in Section 2.4 and adopted for the

prediction calculations might be inaccurate and lead to errors in the noise spectra.

5.3.2 CSD phase and Coherence

Figures 5.4 to 5.8 show the (unwrapped) cross-spectrum phase and the coherence of micro-

phones 32 (closest to the array centre) to 36 (furthest from the array centre), relative to

microphone 01 at the array centre. These plots can be broadly divided into two frequency

zones based on the coherence function: a low-frequency zone is present where the coherence

rolls off from approximately unity to zero, and a high frequency zone, where the coherence

remains very close to zero, with some minor oscillations.

At the lower range of the low frequency region, it is expected that the aerofoil response to

single gusts will not exhibit a very directional radiation. Every gust will thus induce a sound

field that is fully coherent at different spanwise observer locations. The acoustic field seen at

all microphones will therefore be highly coherent with respect to the phase reference (micro-

phone 1). This effect is observed in both predictions and measurements with the exception

of microphone 32, whose measured coherence decays for very low frequencies as well. The

comb-filtering effect pointed out above is not present at this frequency range, possibly because

the array baffle is not large enough (compared to the acoustic wavelength) to be a significant

reflector of sound. In general, the phase and coherence predictions agree well within this

region.

At the higher range of the low frequency region, where the coherence roll-off frequency is more

apparent in the semi-logarithmic plots of Figures 5.4 to 5.8, there is still a good agreement

between the predicted and the measured phase and coherence. Small differences are visible at

the higher range, where the coherence curves first reach zero; this frequency will be used in

the next Section to propose an explanation for the origin of the coherence decay. The comb-

filtering effects also become more prominent in this zone, possibly because the array baffle

dimensions become comparable to the acoustic wavelength. However, the predicted trend is

still correctly observed in the measured curves.
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Figure 5.9: Predicted (top) and measured (bottom) coherence function γ2 evaluated between
selected planar array microphones with reference to microphone 1 (array centre).

As a consequence of the loss of coherence, the measured phase difference diverges significantly

from the predictions at higher frequencies (not visible in all plots). This effect is to be expected,

since incoherent signals by definition do not have a well-defined phase difference. Another

possible cause for the divergence between predicted and measured phase is the effect of noise

on the phase unwrapping algorithm, which might also lead to significant “jumps” in the

unwrapped phase.

Figure 5.9 provides a comparison of the predicted coherence (top) and the measured coherence

(bottom) for microphones 32 to 36. Each curve is marked with the symbol corresponding to

its microphone number, as used in Figure 5.3. The difference in the frequency at which the

coherence begins to decay is clearly visible, with microphones further away from the array

centre (e.g. microphone 36) rolling off at lower frequencies than microphones that are closer

to the array centre (e.g. microphone 32). It is also apparent how the measured coherence

curves follow the predicted trends.



Chapter 5. Experiments 142

−0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4

y [m]

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

z
[m

]

Aerofoil

Near-Field Array

Ref 32 33 34 35 36

θMic34

θNull

Figure 5.10: Diagram demonstrating the peak-to-null width angle for normal-incidence (kψ = 0)
gust responses and spanwise microphone angles over the plane x = 0. The mean flow direction is

perpendicular to the page and towards the reader.

5.3.3 Relationship between Main Lobe Width and Coherence for kψ = 0

Gusts

We now propose an explanation for the observed coherence drop as a function of frequency

and spanwise microphone location. In the plane x = 0, we denote θNull the first null angle of

the aerofoil spanwise directivity in response to the kψ = 0 gust; we also denote θMicXX the

spanwise angle of the XX-th microphone. Both angles are indicated in Figure 5.10.

We propose that the coherence between the XX-th microphone and the centre microphone

will first reach zero at the frequency where θNull = θMicXX - i.e. when the aerofoil spanwise

directivity angle becomes equal to the microphone spanwise angle.

The rationale for this explanation is as follows. As the aerofoil tends to beam its acoustic ra-

diaton at well-determined spanwise directions for each gust (as shown in Section 4.1), different

microphones will be acoustically “illuminated” by different, incoherent gusts, and would show

zero coherence for an infinite-span aerofoil. Therefore, a non-zero coherence between a pair

of microphones indicates that both microphones are being exposed to the same single-gust

response; in particular, the coherece will be high when both microphones are located within

the aerofoil spanwise directivity main lobe. This will occur when the aerofoil spanwise main
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Figure 5.11: Spanwise radiation null angle θNull for kψ = 0 gusts as a function of frequency, with
microphone angles θMicXX indicated as horizontal lines.

lobe covers a broad angular range (i.e. at low frequencies), or when the microphone pairs are

closely spaced in the spanwise direction.

In order to test this hypothesis, we calculate the null angle θNull as a function of frequency for

a normal-incidence (kψ = 0) gust, shown in Figure 5.11. This particular gust was chosen as the

reference microphone in the array centre is always exposed to its maximum spanwise directivity.

We then mark on top of this plot the spanwise angles corresponding to the microphones under

analysis. It has been discussed in Section 3.1.3.1 that the main lobe null-to-null width in

the wavenumber domain is ∆kML
ψ = 2π/d, and hence the null must be located at knullψ =

∆kML
ψ /2 = π/d. From Eq. 2.88, this wavenumber corresponds to a flow-corrected spanwise

angle y/σ = kψ/k0. In the x = 0 plane, this simplifies to

y

r
= β

kψ
k0
, (5.4)

from which we obtain the frequency where the two angles coincide as

f(θMic = θNull) =
c0β

2d

(
r

y

)
, (5.5)

where y and r correspond to the microphone spanwise coordinate and radius, respectively.
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Table 5.4: Approximate frequencies for zero microphone coherence (ref mic 01) and spanwise
radiation null angle, and relative difference.

Mic number f(γ2
pred = 0) [Hz] f(θMic = θNull) [Hz] Rel. difference

32 *not observed 19060 -
33 4230 4092 -3.3%
34 2110 2394 13.5%
35 1840 1927 4.7%
36 1620 1661 2.5%

We compare the frequencies where the predicted coherence function γ2 first reaches zero, as

visually identified from Figure 5.9 (top), with the frequencies where the null angle and the

microphone angle coincide, as seen in Figure 5.11 and obtained from Eq. 5.5.

The comparison is shown in Table 5.4, together with the relative difference between the fre-

quencies (ref f(γ2
pred = 0) ). As can be seen, the frequencies are fairly close to each other,

indicating that the two phenomena are consistent. The agreement is not perfect, however; this

might be because the calculation of the zero predicted coherence frequency f(γ2
pred = 0) takes

into account shear layer refraction effects, while the null angle frequency f(θNull = θMic) does

not.

Another possible explanations for this difference is that we are using a far-field characteristic

of the aerofoil - its directivity pattern - as a proposed mechanism to describe a coherence drop

phenomenon in the near-field. It is possible that the acoustic radiation nulls are not fully

developed at these distances and frequencies, thus causing the above mentioned differences.

Nevertheless, there is a satisfactory agreement between the values - which perhaps illustrates

once again how the borders between the near- and the far-field are not clearly defined.

5.3.4 Coherence Between Array Microphones

We now consider how the acoustic field coherence varies as a function of frequency over the

array microphones, and investigate how it changes when choosing different reference micro-

phones. For this analysis, we calculate the pairwise coherence over each microphone and a

reference microphone, and linearly interpolate the coherence in the space between the micro-

phones for visualisation purposes.

Figure 5.12 show the predicted (left) and measured (right) coherence function for frequencies

close to 200 Hz (top), 400 Hz (middle) and 800 Hz (bottom), and Figure 5.13 for frequencies
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close to 1600 Hz (top), 3200 Hz (middle) and 6400 Hz (bottom). Both Figures use microphone

1 at the centre of the planar array (marked with a blue square) as the phase reference. Figures

5.14 and 5.15 show the same analysis, but using microphone 34, located off-centre, as the

phase reference.

In these Figures, the expected coherence behaviour of the radiated sound field is clearly visible:

all microphones are highly coherent at low frequencies, and the spanwise coherence decreases

with increasing frequency, as the aerofoil single-gust response begins to become more direc-

tional. It is also noteworthy that, since the chordwise radiation is always fully coherent, the

coherence is preserved over a larger range of frequencies for microphones aligned in the chord-

wise direction. These effects are observed regardless of which microphone is chosen as the

phase reference.

The agreement displayed in these Figures is noteworthy. To the best of our knowledge, this

is the first time the radiated acoustic field power spectral density, cross-spectrum phase and

coherence are measured and compared against an analytical model for observers in the aerofoil

near-field and out of the mid-span plane.
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Figure 5.12: Predicted (left) and measured (right) coherence function γ2 evaluated over the
planar array face with reference to microphone 1 (array centre, square marker); values are interpo-
lated from pairwise coherences at approximate narrowband frequencies k0c = 0.5 (200 Hz - top),

k0c = 1.2 (400 Hz - middle) and k0c = 2.2 (800 Hz - bottom).
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Figure 5.13: Predicted (left) and measured (right) coherence function γ2 evaluated over the
planar array face with reference to microphone 1 (array centre, square marker); values are interpo-
lated from pairwise coherences at approximate narrowband frequencies k0c = 4.4 (1600 Hz - top),

k0c = 8.8 (3200 Hz - middle) and k0c = 17.8 (6400 Hz - bottom).
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Figure 5.14: Predicted (left) and measured (right) coherence function γ2 evaluated over the
planar array face with reference to microphone 34 (off centre, square marker); values are interpo-
lated from pairwise coherences at approximate narrowband frequencies k0c = 0.5 (200 Hz - top),

k0c = 1.2 (400 Hz - middle) and k0c = 2.2 (800 Hz - bottom).
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Figure 5.15: Predicted (left) and measured (right) coherence function γ2 evaluated over the
planar array face with reference to microphone 34 (off centre, square marker); values are interpo-
lated from pairwise coherences at approximate narrowband frequencies k0c = 4.4 (1600 Hz - top),

k0c = 8.8 (3200 Hz - middle) and k0c = 17.8 (6400 Hz - bottom).





Chapter 6

Source Reconstruction via

Conventional Beamforming

In this Chapter we review frequency-domain beamforming [1] from a source reconstruction

perspective. Beamforming is by far the most popular signal processing strategy employed

in the microphone array literature, with a large number of references from the radar and

sonar array communities as well. It is perhaps the simplest and most robust array processing

method, and as such its advantages and limitations are well understood.

Despite the importance of conventional beamforming, its shortcomings have driven deconvo-

lution algorithms to become the new standard for aeroacoustic measurements. These methods

generally attempt to analyse a source map originally obtained by conventional beamforming

and deconvolve the array response from it. Our review will focus on covering the algorithms

CLEAN-PSF and CLEAN-SC [3], which are some of the most popular deconvolution algo-

rithms in current use.

6.1 Conventional Beamforming

All analyses here are assumed to be in the frequency domain. We first define an ensemble

of acoustic sources at rn, n = 1, . . . , N with q = [q1, q2, . . . , qN ]T being the column vector

of complex source strengths. The acoustic pressure generated by these sources and observed

at the M array element positions rm, m = 1, . . . ,M can be written as a column vector

p = [p1, p2, . . . , pM ]T . The forward radiation problem is then expressed as [72]

151
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p =

N∑
n=1

qngn (6.1)

=


| | |

g1 g2 . . . gN

| | |



q1

q2

...

qN

 (6.2)

= Gq. (6.3)

We define gn = [g(1,n), g(2,n), . . . , g(M,n)]
T as the transfer vector1; it contains the transfer

function elements between the n-th source and all M microphones, arranged in vector form.

We can also interpret the transfer vector as containing the complex pressures induced at the

microphone locations by a unitary-amplitude source located at rn [50]; every source will induce

a multiple of its associated transfer vector at the array elements, scaled by the source complex

amplitude [72]. The matrix G groups all transfer vectors gn and can be defined as the transfer

matrix.

The transfer vector elements describe the acoustic source radiation and wave propagation inside

the medium of interest. Different radiation and propagation models were described in Chapter

2 and are possible candidates for transfer vector elements: for example, monopole or dipole

transfer functions, with or without convection, and with or without shear layer refraction.

For the remainder of the current Chapter, however, we will assume an appropriate wave

propagation model has been adopted, and we will deal with the transfer vector components

as arbitrary elements g(m,n).

A common interest in array processing is to find an estimate of the n-th complex source

strength q̃n through a linear combination of the array signals. This result is often called the

array output, and it has the general form

q̃n =

M∑
m=1

w∗(m,n)pm = wH
n p, (6.4)

1It should be pointed out that many authors in the literature call the vector gn as the steering vector ;
however, we have decided not to adopt this nomenclature since it can be confusing when discussing the act of
steering the array to estimate a given sound source using a weights vector, as is described below.
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where the asterisk superscript {.}∗ denotes complex conjugation, the superscript {.}H denotes

complex conjugate (Hermitian) transpose, and wn = [w(1,n), w(2,n), . . . , w(M,n)]
T is a vector of

weighting coefficients, generally obtained by optimising the array response for a given metric.

It is then said that, by applying the complex-conjugated weights vector wH
n to the microphone

signals to estimate the n-th source amplitude, we are steering the array towards the n-th source

location; hence, this vector is often named the steering vector.

We now formally introduce conventional beamforming as the combination of array signals that

minimizes the difference ‖p− q̃ngn‖2 [50]. The estimated source strength that minimizes this

cost function is given by

q̃n =
gHn

‖gn‖2
p, (6.5)

from which we obtain the following formulation for the steering vector wn:

wn =
gn

‖gn‖2
. (6.6)

Alternatively, we can obtain the entire vector of source strength estimates q̃ by multiplying

the vector of acoustic pressures p by the Hermitian transpose of a matrix W containing all

steering vectors:

q̃ = WHp (6.7)

=


− wH

1 −
− wH

2 −
...

− wH
N −




p1

p2

...

pM

 . (6.8)

Note that steering vector formulations other than Eq. 6.6 are available, which usually provide

a trade-off between correct source localisation and correct source strength estimation [73]. It

is shown below that Eq. 6.6 provides the correct source strength in a single-source case.

In practice, a grid of candidate source locations is defined a priori over a region of interest, and

the array is successively steered towards each point in the grid, effectively scanning it. The
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Figure 6.1: Diagram demonstrating the beamforming scan grid elements over the aerofoil plane
(z = 0) and the near-field microphone array elements. The wind tunnel mean flow is in the +x

direction.

beamforming algorithm will estimate the source strength complex amplitude at each point,

and the resulting estimated source strength distribution as a function of grid point location is

called the beamforming map.

As an example, let us consider the setup used to analyse the measurement results described

in Chapter 5: we define a planar scan grid with dimensions 0.55 × 0.55 m at a height z = 0,

where the aerofoil is located, with grid points spaced 0.01 m apart in both directions. The

near-field planar microphone array described in Section 5.2 is positioned below and parallel to

the scan plane, at a vertical distance of 0.5 m, as shown in Figure 6.1. For the moment, we

will not consider shear layer effects; instead, we will assume the entire medium is subject to a

mean flow of Ux = 60 m/s.

6.1.1 Array Point Spread Function

Let us define a single point source located at the k-th position in the scan plane and with

amplitude qk. The microphone signals induced by this source are
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p = qkgk. (6.9)

We can now use conventional beamforming to estimate the source amplitude seen by the array

at the n-th position. From Eq. 6.4, we have:

q̃n = wH
n p (6.10)

= wH
n (qkgk) (6.11)

= qkw
H
n gk (6.12)

= qk PSFn,k. (6.13)

We define the array point spread function, denoted PSFn,k, as the array output when it is

steered at the n-th location and exposed to a unitary-amplitude source at the k-th location.

When using the steering vector formulation defined in Equation 6.6, the point spread function

is unitary when the array is steered towards the correct source location. If only one source is

present at the steering location, the array estimate will yield its correct source strength:

q̃k = wH
k p (6.14)

=

(
gk

‖gk‖2
)H

(qkgk) (6.15)

= qk
gHk gk

‖gk‖2
(6.16)

= qk. (6.17)

Note that due to the PSF, a source at the k-th location can affect the estimation of a source

at the n-th location; the point spread function thus describes the beamformer limited spatial

resolution, and as such it depends on frequency, problem geometry (including the microphone

array design) and choice of steering vector formulation. An ideal PSF would be an infinitesi-

mally thin beam with unitary amplitude at the source location, and zero everywhere else (i.e.

a Dirac Delta function); in practice, it normally contains a main lobe around the source loca-

tion with an associated width, which limits the array resolution, and many smaller sidelobes

elsewhere, which limit the array dynamic range.
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We can also consider the PSF in matrix form. Let us rewrite Eq. 6.4 as

q̃ =


− wH

1 −
− wH

2 −
...

− wH
N −

p (6.18)

= WHp (6.19)

=
(
WHG

)
q. (6.20)

Note that the PSF is now expressed in the columns of the matrix WHG, as they describe

the estimated source strength distribution when exposed to a unitary point source. In this

formulation, the ideal PSF would have WHG = IN×N - i.e. the ideal matrix of beamforming

steering vectors is the inverse of the matrix of transfer functions, so that each source estimate

would depend only on its corresponding source strength. However, most times WHG will

not be diagonal, and a given source estimate will be contaminated by adjacent sources, as

previously described.

Figure 6.2 illustrates the PSF for the planar near-field array at frequencies ranging from 500

Hz to 16 kHz, obtained by applying conventional beamforming to a point monopole source

in the middle of the scan plane. The main lobe width can be seen to dominate the entire

scan grid at low frequencies, demonstrating that conventional beamforming suffers from poor

resolution at low frequencies and will not be able to separate closely spaced sources. At mid

to high frequencies, the main lobe becomes narrower and a series of sidelobes appear around

the main lobe, which in turn will disturb the identification of lower-amplitude sources close

to a large amplitude source. The main lobe width and the sidelobes location and level are

directly linked to the microphone array geometry, and careful array design can mitigate these

limitations to a certain extent [27, 74].

One common assumption in array processing is that a given beamforming map is composed

of PSFs scaled by their respective source strengths. This assumption implies that all occuring

sources must be mutually incoherent point sources, and that the chosen steering vectors are

calculated from the correct transfer vectors. This might not always be the case, as: sources can

have their acoustic radiation properties differing from the transfer functions used to calculate

the steering vectors (for example, the sources might present dipole characteristics while the
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Figure 6.2: Microphone array point spread function for the near-field array at frequencies between
500 Hz and 16 kHz.
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steering vectors were calculated with monopole transfer functions); sources can be distributed

instead of point-like; and multiple sources can have varying degrees of coherence with one

another. These assumptions should be taken into consideration when interpreting a source

map [60], and might also affect the performance of deconvolution algorithms.

6.1.2 Cross-Spectral Matrix and Source Power Estimation

In aeroacoustics experiments, the noise sources under analysis are generally broadband, and

thus require analysis in the cross-power spectral domain [30]. Let us denote the expected

values of the source auto-powers by E
{
|qn|2

}
= Qn to simplify the notation; the estimated

expected value of the n-th source power is given by [72, 75]

Q̃n = E
{
|wH

n p|2
}

(6.21)

= E
{(

wH
n p
) (

wH
n p
)H}

(6.22)

= wH
n E

{
ppH

}
wn (6.23)

= wH
n Cwn. (6.24)

We now define the microphone array cross-spectral matrix C (CSM - alternatively called spatial

covariance matrix, cross-power matrix or spatial correlation matrix ) as [60]

C = E
{
ppH

}
(6.25)

= E




p1p
∗
1 p1p

∗
2 . . . p1p

∗
M

p2p
∗
1 p2p

∗
2 . . . p2p

∗
M

...
...

. . .
...

pMp
∗
1 pMp

∗
2 . . . pMp

∗
M




. (6.26)

The CSM is akin to the correlation matrix of a temporal signal [76], but contains information

about the spatial correlation characteristics of the observed signal instead of temporal cor-

relation. Since it only contains the relative phase between different microphones, the phase

difference given by the wave propagation from the source to the centre of the array is ignored,

as is the phase difference from evaluating the CSM at increasing time origins for different

STFT blocks [1].
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The CSM is usually computed using the Welch’s method for spectral density estimation. A

set of digitised recordings of the microphone signals are separated into temporal blocks called

frames, and a Short-Time Fourier Transform is performed for each frame. The frame duration

must be much larger than the difference between the shortest and the longest propagation time

from any grid point to each microphone [60]. For each frame, a CSM is computed for each

frequency using the corresponding complex microphone coefficients, and the resulting CSMs

are averaged across different frames; the temporal frames can be windowed and overlapped as

desired. As with any temporal averaging processes, the implicit assumption is that the sources

are wide-sense stationary during the interval of observation [75].

For a single source at the n-th location, the CSM takes the form

C = E
{
ppH

}
(6.27)

= E
{

(qngn)(qngn)H
}

(6.28)

= Q̃ngng
H
n . (6.29)

6.1.2.1 Noise and the Diagonal Elements of the CSM

Let us consider what happens at the CSM when uncorrelated noise is added at the microphone

signals. The noisy microphone output vector is written

pnoisy = p + n, (6.30)

where n is a vector of M random uncorrelated noise signals. The ratio of the signal power

to the noise power at the microphones is defined as the signal-to-noise ratio (SNR), usually

expressed in decibels as

SNR = 10 log10

(
1
M ‖p‖

2

1
M ‖n‖

2

)
. (6.31)

It is assumed the elements of n are statistically uncorrelated with one another, such that a

CSM obtained from the noise signal alone would be purely diagonal:
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Cn = E
{
nnH

}
(6.32)

= E




n1n

∗
1 0 . . . 0

0 n2n
∗
2 . . . 0

...
...

. . .
...

0 0 . . . nMn
∗
M




. (6.33)

It is also assumed n is statistically uncorrelated to p, such that

E
{
pnH

}
= E

{
npH

}
= 0M×M . (6.34)

The CSM calculated from a noisy microphone array recording is then expressed as

Cnoisy = E
{
pnoisy pHnoisy

}
(6.35)

= E
{

(p + n)(p + n)H
}

(6.36)

= E
{
ppH

}
+ E

{
pnH

}︸ ︷︷ ︸
=0M×M

+ E
{
npH

}︸ ︷︷ ︸
=0M×M

+E
{
nnH

}
(6.37)

= Cp + Cn. (6.38)

Hence, the noise CSM will load only the diagonal terms of the noisy microphone array CSM;

this raises the background noise level of the beamforming map, and decreases even further the

beamformer dynamic range.

When performing array measurements in poor signal-to-noise conditions, such as in closed-

walls wind tunnels, it is usual to replace the diagonal elements of the CSM with zeros to reduce

the effects of noise and improve the dynamic range of the beamforming map [60]. This proce-

dure is justified by noting that most sources of microphone noise, such as turbulent boundary

layer perturbations at the microphones, and electrical noise in the microphone capsules and

preamplifier circuits, are uncorrelated between different microphone pairs and will “enter” the

CSM through the diagonal terms, as shown above. Meanwhile, sound waves radiated from the

aeroacoustic sources towards the array will be correlated between pairs of microphones and

will “enter” the CSM through the non-diagonal terms as well.
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Figure 6.3: Beamforming maps obtained via conventional beamforming with (left) and without
(right) the CSM diagonal elements at f = 5 kHz.

As an example, let us simulate a beamforming map with a unitary amplitude point source

in the middle of the scan grid, and add noise to the microphone signals such that a SNR of

0 dB is obtained - i.e. the uncorrelated noise at the microphones contains as much energy

as the acoustic signals of interest. A noise vector n that satisfies a desired SNR for a given

microphone signal vector p can be obtained via the expression [77]

n =
10−

SNR
20 ‖p‖ ejφM√

M
, (6.39)

where φN is a vector of M randomly distributed phase angles.

For visualisation purposes, we consider a temporal frequency of 5 kHz. Figure 6.3 shows

the resulting source maps for conventional beamforming by using the noisy CSM (left), and

by applying diagonal removal (right); note the improvement in the background noise level.

However, this procedure is not always recommended, since beamforming without the diagonal

can sometimes lead to negative source power estimations; these are obviously non-physical

results, and might interfere with techniques such as source map integration. We refer the

reader to Dougherty [60] for a more in-depth discussion on the justifications for diagonal

removal.
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6.1.2.2 Multiple Sources and Source Coherence

Let us consider how the coherence between a pair of sources will influence the microphone CSM.

Let two sources i and j, with their respective amplitudes qi and qj , radiate sound towards the

microphone array; from Equation 6.3, these sources will induce a vector of pressure amplitudes

p at the microphones of the form

p = pi + pj (6.40)

= qigi + qjgj . (6.41)

The total microphone CSM will be given by

Ci+j = E
{

(pi + pj)(pi + pj)
H
}

(6.42)

= E
{
pip

H
i + pip

H
j + pjp

H
i + pjp

H
j

}
(6.43)

= E
{
pip

H
i

}
+ E

{
pip

H
j

}
+ E

{
pjp

H
i

}
+ E

{
pjp

H
j

}
(6.44)

= Ci + E
{
qiq
∗
j

}
gig

H
j + E {qjq∗i }gjg

H
i + Cj . (6.45)

Therefore, the CSM obtained for two sources will be given by the sum of the individually

induced CSMs plus two cross-terms that depends on the expected value of the cross-power

between the sources.

From classical signal processing, it is known that incoherent sources will not have a stable

phase relationship along time, and therefore the expected value of their cross-powers will tend

to zero. Meanwhile, coherent sources do have a stable phase relationship, and hence the

expected value of their cross-powers will not tend to zero [1]. If the sources are incoherent,

their cross-terms will average to zero and the microphone array CSM can be written as

Ci+j = Ci + Cj . (6.46)

This property is explored in the CLEAN-PSF deconvolution method, where incoherent acoustic

sources are separated based on estimating and subtracting each individually induced CSM from

the measured CSM. However, if the sources are coherent (or partially coherent), it will not be
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possible to directly subtract the individual CSMs, and a different approach is required; this

case is explored in the CLEAN-SC deconvolution method. Both methods are further detailed

below.

6.1.3 Power PSF

We can then extend the concept of the point spread function to the broadband case. Assuming

a single source at the k-th location and the array steered at the n-th location, we can express

Equation 6.24 as

Q̃n = wH
n Cwn (6.47)

= wH
n E

{
ppH

}
wn (6.48)

= wH
n E

{
(qkgk) (qkgk)

H
}

wn (6.49)

= E {qkq∗k} wH
n gkg

H
k wn (6.50)

= Qk PSF2
n,k, (6.51)

from where we define the point spread function squared - or power PSF - as

PSF2
n,k =

∥∥wH
n gk

∥∥2
(6.52)

=
(
wH
n gk

) (
wH
n gk

)H
(6.53)

= wH
n gkg

H
k wn. (6.54)

As with the amplitude PSF, the magnitude of the power PSF is unitary when the steering

direction n and the source location k coincide.

As previously pointed out, when the acoustic sources are incoherent, the microphone array

CSM will be composed of the sum of the individually induced CSMs from each source. The

beamforming source powers estimation will be composed of a sum of squared PSFs scaled

by its corresponding source power, which is akin to a spatial convolution of the real source

location and power with the array power PSF. In theory, if the experimenter has knowledge of

the PSFs induced by each source and of the source locations, it should be possible to subtract
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the PSF effect from the beamforming map; this is the basis for deconvolution algorithms,

described in the next Section.

6.2 Deconvolution Algorithms

In recent years, deconvolution algorithms such as DAMAS, CLEAN-PSF and CLEAN-SC be-

came widely used to reduce misinterpretation and improve accuracy of beamforming maps,

and likely are the de facto tools for modern array signal processing in aeroacoustic applica-

tions. Their aim is to remove the effects of the PSF on the source map and thus arrive at the

“true” source strength distribution; their rationale and performance, however, vary consider-

ably amongst different methods, and therefore each method deserves a separate description.

6.2.1 CLEAN-PSF

We begin by describing the CLEAN-PSF algorithm, sometimes termed simply CLEAN, origi-

nally developed for astronomy and later adapted to acoustics [3]. In broad terms, this algorithm

takes a beamforming map (called the “dirty” map) as input, locates the highest peak on the

map, subtracts a scaled PSF from the map, and adds a “clean beam” - i.e. an artificially

created narrow beam with no sidelobes - at the corresponding peak location and level to a

“clean map”. The process is repeated iteratively until a stop condition is met. The “clean”

map, populated by clean beams at the estimated source locations and levels, is presented as a

final output.

The main assumption for the CLEAN algorithm is that all sources are incoherent and point-

like, and that peaks in the source map are due to single sources. Each source will then induce a

PSF on the beamforming map equal to the theoretical PSF of the array, and the beamforming

map can be expressed as a finite sum of individual PSFs. Note that this algorithm requires

knowledge - or at least assumption - of the transfer vectors gn from the scan points to the

microphones in order to build the theoretical PSFs for each source.

The CLEAN algorithm is initialized by defining a “degraded” CSM D(i) and initialising its

iteration i = 0 with the original array CSM C:

D(0) = C. (6.55)
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The initial source power “dirty map” is obtained from conventional beamforming using the

initial CSM:

Q̃(0)
n = wH

n D(0)wn = wH
n Cwn, (6.56)

and the source power “clean map” is initialised with zeros:

Q̃
(0)
n CLEAN = 0, ∀n. (6.57)

For i ≥ 1, we apply the following algorithm:

• Find the location rk containing the peak on the “dirty” map Q̃
(i−1)
n and determine the

peak power Q̃
(i−1)
k ;

• Define the CSM C
(i)
k induced by the source at rk as

C
(i)
k = Q̃

(i−1)
k gkg

H
k (6.58)

and remove (“clean”) its contribution from the beamforming map:

Q̃(i)
n = Q̃(i−1)

n − ϕwH
n C

(i)
k wn, (6.59)

where ϕ is a “loop gain”, with 0 < ϕ ≤ 1;

• Add a clean beam Φk (with specified width, no side lobes and maximum value Φ0 = 1)

centred at the peak location rk and scaled by the peak power level Q̃
(i−1)
k to the clean

map:

Q̃
(i)
n CLEAN = Q̃

(i−1)
n CLEAN + ϕQ̃

(i−1)
k Φk; (6.60)

• Subtract the source-induced CSM C
(i)
k from the previous degraded CSM to obtain the

new degraded CSM:

D(i) = D(i−1) − ϕC
(i)
k ; (6.61)

• Alternatively to Equation 6.59, the new “dirty” map can also be calculated using the

new degraded CSM:

Q̃(i)
n = wH

n D(i)wn. (6.62)
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The above loop is repeated until a stop criterion is reached. One suggested stop criterion is

∥∥∥D(i+1)
∥∥∥

1
≥
∥∥∥D(i)

∥∥∥
1
, (6.63)

where ‖.‖1 is the 1-norm of the degraded CSM; quoting Sijtsma [3], it makes sense to stop if

the current degraded CSM contains more “information” than the previous iteration.

After I iterations, the clean map is written as a sum of the clean beams and the remaining

dirty map:

Q̃
(I)
n CLEAN =

I∑
i=1

Q̃
(i)
k Φi + Q̃(I)

n . (6.64)

Note that it is not necessary to know the number of sources in advance. However, the conven-

tional beamforming step requires the user to define a grid of candidate source positions, which

in practice limits the number of possible sources the CLEAN algorithm can identify. This is

usually of no concern, since usual beamforming grids will often have hundreds or thousands of

points, while the number of real sources in an aeroacoustic context is generally much smaller.

6.2.2 CLEAN-SC

The assumption used for CLEAN can become impractical for aeroacoustic applications: sources

can be distributed instead of point-like; they can have different acoustic radiation properties,

and thus the source map will not be composed of a sum of theoretical PSFs; and we might

not have a model for the steering vector g for a non-point source. In such cases, CLEAN will

fall short.

In order to overcome these disadvantages, Sijtsma [3] developed an adaptation of CLEAN

based on spatial Source Coherence, named CLEAN-SC, which is described below. The driving

idea for CLEAN-SC is that the sidelobes of a source must be coherent with its main lobe,

since they originate from the same physical source; thus, they can be empirically identified

from the beamforming map, regardless of the source being point-like or not.

First, let us define what is meant by spatial source coherence. For a source at the k-th location

and with amplitude qk, we define the estimate of the expected value of its auto-power Q̃kk as
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Q̃kk = E {q̃kq̃∗k} = E
{
|q̃k|2

}
(6.65)

= wH
k Cwk, (6.66)

and we define the cross-power Q̃jk between sources at rj and rk as

Q̃jk = E {q̃j q̃∗k} = wH
j Cwk. (6.67)

The expected value of the source auto power is also denoted Q̃k (with a single subscript index)

in previous sections for convenience, but here it is denoted as Q̃kk (with a double subscript

index) for clarity.

The coherence function γ2 presented in Eq. 3.57 can be applied in the present context as the

ratio between two sources’ cross-powers squared and the product of the sources auto-powers:

γ2
jk =

|Q̃jk|2
Q̃jjQ̃kk

(6.68)

=
|wH

j Cwk|2(
wH
j Cwj

) (
wH
k Cwk

) . (6.69)

The coherence function γ2
jk measures the degree of linear association between two sources,

and can assume values 0 ≤ γ2
jk ≤ 1 [66]. Thus, for a given beamforming map, we can define

one point k as a reference - for example, a main lobe peak - and calculate the coherence

between the reference k and all other source points j, thus identifying all other points that are

coherent with the given reference. We will call the combination of the reference scan point k

and all other points coherent with k as a coherent source component ; in principle, such source

components will contain all sidelobes associated with the chosen main lobe.

Once identified, these coherent components can be subtracted from the source map, similarly

to the CLEAN-PSF algorithm:

Q̃
(i)
jj = Q̃

(i−1)
jj

(
1− γ2

jk

)
. (6.70)
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However, this method is not robust to diagonal removal of the CSM, since this procedure can

induce negative source autopowers and thus becomes unstable due to a coherence function

γ2
jk 6∈ [0, 1] [78].

An alternative approach consists of identifying a “coherent component” hk, with unitary

magnitude and containing the pressures induced at the microphone array by a single coherent

source distribution with peak autopower Q̃k. The CSM induced by this coherent component

is then

Ckk = Q̃khkh
H
k , (6.71)

and it is assumed the source cross-powers Q̃jk with reference to the source peak Q̃k is entirely

defined from the coherent component hk and its induced CSM Ckk only:

Q̃jk = wH
j Cwk = wH

j Ckkwk. (6.72)

This source component can then be written as [3]

hk =
Cwk

Q̃k
, (6.73)

which allow us to fully determine its induced CSM Ckk and subtract it from the observed

CSM C, in the same spirit of the original CLEAN algorithm.

When the observed CSM has had its diagonal elements removed, however, the estimation

of the coherent component becomes slightly different: we now define the diagonal-removed

induced CSM Ckk as

Ckk = Q̃k
(
hkh

H
k −Hk

)
, (6.74)

where the matrix Hk contains the diagonal elements of the matrix hkh
H
k :

Hk = diag
(
hkh

H
k

)
. (6.75)
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We then define the coherent component hk as [50, 79]

hk =
1(

1 + wH
k Hkwk

)1/2 (Cwk

Q̃k
+ Hkwk

)
. (6.76)

This is not an explicit expression for hk, since Hk depends on hk. We can, however, use

the above Equation iteratively if we initialise the coherent component as hk = gk, and then

compute its diagonal matrix Hk. This allow us to estimate the coherent component hk once

again and thus repeat the loop. According to Sijtsma [3], only a few iterations are required

for convergence. Our implementation of the algorithm confirms the quick convergence of this

approximation.

Once hk is identified and its CSM Ckk estimated, it can then be removed from the observed

CSM C as described in the original CLEAN algorithm. The same stop condition can be

applied here as well.

6.2.3 Deconvolution Example: Point Sources and Line Source

In order to illustrate the performance of the above mentioned deconvolution algorithms, we

simulate a test case consisting of two point monopole sources and one line source. The line

source has a length of 20 cm, and is modelled as a distribution of fully coherent monopole

sources, all radiating with the same amplitude and phase. The point sources and the line

source are incoherent with respect to one another.

We assume an operating frequency of 5 kHz and a mean flow of Ux = 60 m/s. The two

point monopoles have unitary source power (i.e. Qn = 1), and the line source amplitude

was adjusted until the resulting beamforming map displayed similar peak levels for all three

sources. The beamforming maps show the estimated auto-powers of the sources in decibels.

The levels are normalised with respect to the maximum power observed in each plot, and the

dynamic range is limited to 15 dB.

Figure 6.4 compares the results obtained for conventional beamforming (6.4a), CLEAN-PSF

(6.4b) and CLEAN-SC (6.4c) when dealing with the proposed source arrangement; the real

source locations are indicated with small black stars, and the sources identified by the CLEAN

methods are marked with large red stars. Conventional beamforming correctly indicates the

three sources as bright zones in the source map, and presents the correct levels for the point
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sources; however, the background of the source map contains many sidelobes, and it is difficult

to determine whether there might be other low-level sources.

In Figure 6.4b, we can see that CLEAN-PSF has successfully identified all sources and their

respective levels as well. Note, however, how CLEAN-PSF “interprets” the line source as a

distribution of point sources, and how it also incorrectly locates lower-level sources elsewhere

in the map. The final source map background shows some residues, possibly due to the line

source sidelobes that were not correctly removed; the final map is not very “clean” and it does

not provide much information about the line source characteristics.

Figure 6.4c shows the final CLEAN-SC map. We can observe that CLEAN-SC managed

to correctly identify all three sources, while also “cleaning” the source map background of

all residues. Figure 6.5 compares the final CLEAN-SC map with the first three coherent

source components identified by the method, allowing for a more detailed analysis. The first

component, corresponding to the line source, is shown in Figure 6.5b; while the source location

has been defined at the source map peak, the coherent component structure correctly accounts

for the extended length of this particular source, while also considering all its sidelobes. Figures

6.5c and 6.5d show the next two components, corresponding to the two point sources; their

location and peak levels have been correctly identified as well, and some of their sidelobe

structure is very similar to that of the PSFs previously shown in Figure 6.2.

Let us also compare the source powers identified by CLEAN-PSF and CLEAN-SC. Figure 6.6

plots the peak source powers as a function of source index for both methods. It can be observed

how CLEAN-PSF successively identifies point sources in a slowly decreasing fashion. This is an

indication of how CLEAN-PSF tries to account for the line source (and possibly its sidelobes)

by using a sequence of incoherent point sources over the actual source location. Still, despite

identifying 10 point sources, the remaining “dirty” map still contains a significant amount

of sidelobes, indicating a poor performance of this method when dealing with distributed,

coherent sources.

On the other hand, CLEAN-SC identifies five sources, with the first three displaying levels

similar to the first three sources found by CLEAN-PSF. However, the remaining two sources

identified by CLEAN-SC have significantly lower levels than the others, and can be ignored.

Hence, CLEAN-SC can deal with the distributed nature of the line source much more gracefully

than CLEAN-PSF.
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(a)

(b)

(c)

Figure 6.4: Beamforming maps of two point sources and a line source, at narrowband frequency
of 5 kHz and plotted in normalised decibels; mean flow direction is left to right. (a) conventional

beamforming; (b) deconvolution using CLEAN-PSF; (c) deconvolution using CLEAN-SC.
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(a) (b)

(c) (d)

Figure 6.5: CLEAN-PSF map of two point sources and a line source, at narrowband frequency of
5 kHz and plotted in normalised decibels; mean flow direction is left to right. (a) “clean” map; (b)
coherent source component 1; (c) coherent source component 2; and (d) coherent source component

3.

6.3 Beamforming Results for Aerofoil Interaction Noise

6.3.1 Simulated Conventional Beamforming Results

We now use the turbulence-aerofoil interaction model developed in Chapters 3 and 4 to simulate

the performance of the near-field microphone array when observing leading edge noise. We use

the geometry shown in Figure 6.1, but we now include shear layer refraction effects to model

the ISVR open jet wind tunnel and allow for a more direct comparison between the simulated

and the experimental results. As described in Section 5.1.1, the aerofoil is positioned in the jet

core at the plane z = 0, and the planar shear layer is located at zl = −7.5 cm. The temporal

freuency is f = 5 kHz (approx. k0c = 13.8), and the mean flow velocity is Ux = 60 m/s. The



Chapter 6. Source Reconstruction via Conventional Beamforming 173

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

So
ur
ce
 P
ea
k 
Po
we

r [
dB

]

−15

−10

−5

0

Peak Power identified  er Source
CLEAN-PSF
CLEAN-SC

0 2 4 6 8
Source Index

−170

−165

−160

−155

Figure 6.6: Peak source power identified via CLEAN-PSF and CLEAN-SC deconvolution meth-
ods as a function of source index. Vertical axis has been “cut” to show the discrepancy between

the first three and the last two source powers identified via CLEAN-SC.

shear layer effects are modelled using the dipole transfer function defined in Eq. 2.144, and

this same transfer function is used to compute the conventional beamforming steering vectors.

In Section 4.2.1, we discussed the gust integration limits for aerofoil acoustic predictions. It was

proposed that at high frequencies, only supercritical gusts are acoustically relevant and should

be integrated when predicting leading edge acoustic radiation. Let us now compare the effect of

adding subcritical gusts to conventional beamforming source maps: Figure 6.7 shows the sim-

ulated conventional beamforming maps obtained when integrating the acoustic contributions

of supercritical gusts only (kψ ∈ [−kcritψ ,+kcritψ ], Fig. 6.7a) and when doubling the gust inte-

gration range and integrating both supercritical and subcritical gusts (kψ ∈ [−2kcritψ ,+2kcritψ ],

Fig. 6.7b). Both source maps are essentially identical, so it can be concluded that subcritical

gusts do not play a significant role for beamforming at these frequencies.

From a more general perspective, the beamforming maps present an almost uniform source

strength distribution over the aerofoil leading edge, as expected. Some low-level structures can

be observed near the trailing edge and downstream of the aerofoil, possibly due to sidelobes;

given the extended nature of the source under consideration, these sidelobe structures cannot

be directly compared to the sidelobes seen in the array PSF.
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(a)

(b)

Figure 6.7: Simulated Conventional Beamforming source map obtained from turbulence-flat
plate interaction noise model at narrowband frequency 5 kHz; (a) using supercritical gusts only;

(b) using supercritical and subcritical gusts.



Chapter 6. Source Reconstruction via Conventional Beamforming 175

6.3.2 Simulated CLEAN-SC Results

Let us now apply CLEAN-SC to the simulated beamforming maps. Figure 6.8a shows the

CLEAN-SC map for the supercritical-only case, with the first ten coherent source components

indicated as red stars; of these, the three largest coherent source components are shown in-

dividually in Figs. 6.8b to 6.8d. The results for the supercritical-plus-subcritical case are

essentially identical and are not shown. As expected, the CLEAN-SC method identifies a

series of sources more or less uniformly spread along the aerofoil leading edge, all displaying

similar levels.

It is interesting to observe how CLEAN-SC deals with the simulated aerofoil, which bears some

similarities to a partially-coherent line source. The first coherent source component, shown

in Fig. 6.8b, contains a main lobe near the lower span end, but it also displays an extended

sidelobe in the spanwise direction, along the aerofoil leading edge. This could indicate that

sections of the leading edge at mid-span are partially coherent with the peak. This behaviour

is observed in a weaker manner for the second source component (Fig. 6.8c), but not observed

for the third source component (Fig. 6.8d).

In Section 3.2.4, it was shown that the aerofoil surface pressure jump has a very short coherence

length near the leading edge at these frequencies; see, for example, Figs. 3.15 and 3.16. On

the other hand, the CLEAN-SC coherent source components appear to indicate a much longer

coherence length for leading edge sources. We propose two possible explanations to this

difference: the short coherence lengths arise from the integrating a wide range of subcritical

gusts, which are by nature acoustically weak and might not be “seen” by the microphone array.

Alternatively, this result can also be due the finite resolution capabilities of the microphone

array, which would naturally “smear out” short coherence lengths into wider regions, in a

similar manner to how a point source is smeared out into a PSF when seen by a microphone

array. At the moment, it is unknown whether one of the two explanations - or a combination

of both - is the main cause of this effect.

6.3.3 Experimental Beamforming Results

We now use the experimental data presented in Chapter 5 to estimate the source strength dis-

tribution over the aerofoils using the conventional beamforming algorithm and the CLEAN-SC
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(a) (b)

(c) (d)

Figure 6.8: Simulated CLEAN-SC results for turbulence-flat plate interaction simulation using
supercritical gusts only: (a) “clean” map; (b) coherent source component 1; (c) coherent source

component 2; and (d) coherent source component 3.

deconvolution algorithm. The goal for this section is to present some typical results of con-

ventional beamforming array processing and compare them with the predicted results shown

in the previous section.

For the sake of brevity, we will focus on the results of a small selection of aerofoils with straight

leading edge at 0◦ angle of attack, 60 m/s flow speed and at a narrowband temporal frequency

of f = 5 kHz. The turbulence grid was installed at the tunnel nozzle, and should induce

leading edge noise on all aerofoils, although some level of trailing edge noise is known to be

present from previous experiments. The aerofoils to be shown are a flat plate, a NACA651210

aerofoil and a NACA0012 aerofoil.

As previously mentioned, the steering vectors are calculated using in-flow, dipole transfer

functions, and also take into account the shear layer propagation correction presented in Eq.
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(a) (b)

(c) (d)

Figure 6.9: Experimental Conventional Beamforming source maps for different aerofoils at nar-
rowband frequency of 5 kHz and plotted in normalised decibels; mean flow direction is left to right.
(a) Simulated flat plate aerofoil; (b) measured flat plate aerofoil; (c) measured NACA651210 aero-

foil; (d) measured NACA0012 aerofoil.

2.144. As the levels are normalised with respect to the maximum power observed in each plot,

the different beamforming plots are not comparable amongst each other.

Figure 6.9a shows the beamforming map for the simulated flat plate, while Figure 6.9b shows

the measured flat plate beamforming map. A good agreement can be observed between the two

maps, particularly at the sidelobe structure downstream of the trailing edge. The leading edge

can be clearly seen as the dominant source, with an approximately uniform span distribution,

but the aerofoil span ends show high acoustic power in the experimental map. Such “corner

sources” have been previously reported in the literature [79, 80], and are associated with

turbulent flow at the junction of the aerofoil to the sideplates. Trailing edge sources are not

visible in this map, and neither are sources located outside the aerofoil surface.
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Figure 6.9c shows the beamforming map for the NACA651210 aerofoil. This beamforming

map shows a less uniform distribution of sources over the leading edge span when compared to

the flat plate case, but the leading edge region still appears to be the dominant source region.

The beamforming map in general appears to be “noisier”, with more “hot spots” near the

trailing edge than the flat plate.

Figure 6.9d shows the beamforming map for the NACA0012 aerofoil. The leading edge radi-

ation is relatively weaker compared to the previous cases, and the trailing edge radiation is

now significantly stronger, with a clear source distribution observable near that region. The

plot also shows two point-like sources appearing upstream of the aerofoil leading edge, at the

same direction as the aerofoil span tips; the origin of these sources has not been identified.

In order to verify the relative strength of leading versus trailing edge noise observed in the

beamforming maps, we compare the PSD seen by the mid-span, far-field microphone at 90◦ for

measurements performed with and without the turbulence-generating grid in the wind tunnel

nozzle: measurements performed without the grid should display trailing edge noise only, while

measurements performed with the grid should exhibit leading and trailing edge noise.

These are shown in Figure 6.10 for the three aerofoils under consideration: the vertical dotted

line marks the 5 kHz frequency at which we applied beamforming, and the wind tunnel back-

ground noise level is shown as a dash-dotted line. Note the significant level difference at 5 kHz

for the flat plate case (Fig. 6.10a - approx. 10 dB), indicating a dominance of leading edge

noise. A smaller level difference can be observed for the NACA651210 aerofoil (Fig. 6.10b -

approx. 4 dB), and an even smaller difference for the NACA0012 aerofoil (Fig. 6.10c - approx.

2 dB), indicating a relative increase in the trailing edge noise contribution for the two latter

aerofoils and validating the beamforming results. Note as well how the NACA0012 levels are

very close to the wind tunnel background noise level, indicating a poor signal-to-noise ratio at

the frequency of interest.

6.3.4 Experimental CLEAN-SC Results

We now apply the CLEAN-SC deconvolution algorithm to the measured results, using a loop

gain of ϕ = 0.95. The ten first coherent source component locations are indicated with stars

on the “clean map”, and the three first components are also shown individually for a more

in-depth investigation.
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Figure 6.10: Measured aerofoil acoustic PSD for observer at mid-span, 90◦, for measurements
performed with (solid line) and without (dashed line) a turbulence-generating grid at the wind
tunnel nozzle: (a): flat plate aerofoil; (b): NACA651210 aerofoil; (c): NACA0012 aerofoil. The
vertical dotted line marks the 5 kHz frequency used in the beamforming plots, and the wind tunnel

background noise level is shown as a dash-dotted line.
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(a) (b)

(c) (d)

Figure 6.11: CLEAN-SC results for flat plate beamforming measurements: (a) “clean” map; (b)
coherent source component 1; (c) coherent source component 2; and (d) coherent source component

3.

6.3.4.1 Flat Plate Aerofoil

Figure 6.11 shows the CLEAN-SC results for the flat plate aerofoil. The sources are almost all

evenly spaced over the aerofoil leading edge, with a few low-amplitude sources located away

from the leading edge.

When compared to the simulation results in Fig. 6.8, there is a very good qualitative agreement

between the resulting source maps. In particular, the first two coherent source components

in both cases display extended sidelobes towards the leading edge at mid-span, which as

previously discussed might be an indication of significant coherence between different span

regions. The sidelobe structure is also similar, although some slight differences can be noted.
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(a) (b)

(c) (d)

Figure 6.12: CLEAN-SC results for NACA651210 beamforming measurements: (a) “clean”
map; (b) coherent source component 1; (c) coherent source component 2; and (d) coherent source

component 3.

6.3.4.2 NACA651210 Aerofoil

Figure 6.12 shows the CLEAN-SC result for the NACA651210 aerofoil. Once again, a series

of source components were identified along the leading edge, with the two dominant sources

located at the span ends and the third source located near mid-span. The individual source

components appear to show a more complex sidelobe structure in this case when compared to

the flat plate aerofoil, and is still different from the array PSF. However, the source components

again display extended sidelobes towards the leading edge mid-span.
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6.3.4.3 NACA0012 Aerofoil

Figure 6.13 shows the CLEAN-SC result for the NACA0012 aerofoil. In this case, the decon-

volution algorithm was unable to identify the leading edge sources; instead, it identified two

strong point-like sources upstream of the aerofoil leading edge and two small sources at the

aerofoil span ends. While not shown here, conventional beamforming maps for this same test

case at different frequencies show the same point sources upstream of the aerofoil, indicating

these are possibly parasitic sources from the wind tunnel apparatus.

While the beamforming map shows that these parasitic sources appear stronger than the

leading edge sources, we expected the CLEAN-SC algorithm would be able to identify acoustic

sources at the leading edge or at the trailing edge after removing the parasitic sources. Its

failure in doing so could have been caused by the poor signal-to-noise ratio obtained for this

particular aerofoil at this frequency range, as previously mentioned.
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(a) (b)

(c) (d)

Figure 6.13: CLEAN-SC results for NACA0012 beamforming measurements: (a) “clean” map;
(b) coherent source component 1; (c) coherent source component 2; and (d) coherent source com-

ponent 3.





Chapter 7

Far-Field Inversion for Planar

Sources in Flow

In this Chapter, we invert the relationship between the aerofoil surface pressure wavenumber

spectrum and its radiated far-field, described in Chapter 2, and introduce a Fourier-based

method for estimating the aerofoil surface pressure distribution from far-field acoustic pressure

measurements.

We first discuss the consequences of using far-field data only for estimating a planar source

distribution in flow. As only wavenumbers within the radiation ellipse are “visible” in the

far-field, any source reconstruction method based on far-field data is bandlimited to these

wavenumbers only. The lack of high spatial frequencies imposes a degree of smoothness in the

estimated source distribution, as fine spatial details cannot be recovered.

We present two implementations of this method. The first assumes an arbitrary far-field micro-

phone array layout. As no constraints are placed on the microphone locations, the equivalent

wavenumber sampling might be non-uniform, and the Inverse Spatial Fourier Transform must

take this into account. We simulate the performance of this method for estimating the aerofoil

surface pressure jump cross-spectrum using a hemispherical array, discuss the estimated source

power spectral density, phase and coherence characteristics, and compare them to the original

aerofoil characteristics.

185
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In the second implementation, we first impose a uniform sampling in the bandlimited wavenum-

ber domain, and consider a Nyquist-type source sampling in the spatial domain. The In-

verse Spatial Fourier Transform is shown to become an Inverse Discrete Fourier Transform

(IDFT) under these assumptions, and the microphone array geometry can be obtained from

the wavenumber-domain samples. We use this method to recover the complex source strength

of a simplified one-dimensional source, and analyse whether the far-field-estimated source dis-

tribution can correctly describe the far-field radiation of the original source.

Finally, we have identified from the optics literature a super-resolution source estimation

method that could possibly be applied in tandem with our proposed framework [81]. We

briefly discuss the basis and some limitations of this method, but leave an in-depth feasibility

investigation for future work.

7.1 Fourier Approach for Far-Field Source Reconstruction

It is well known that conventional beamforming, presented in Chapter 6, allows for a great

degree of flexibility regarding the microphone array configuration, as it does not impose any

special requirements for the spatial sampling of the sound field and can be used with arbitrary

microphone array geometries. However, source estimation via beamforming can be inaccurate

due to its finite spatial resolution and sidelobes, as discussed in Section 6.1.1 and expressed by

a non-diagonal PSF matrix WHG (Eq. 6.20) relating the original and the estimated source

strength vectors.

In Section 2.3.4 we have shown that by restricting the observer locations to a hemisphere

in the far field, the acoustic field seen by a distant observer is directly related to the source

strength wavenumber spectrum evaluated at a single wavenumber inside the radiation ellipse.

This relationship can be said to diagonalise the radiation integral operator, as each observer is

dependent on a single wavenumber component. Diagonal operators are of special interest for

being easier to analyse and, especially, easy to invert. It is then natural to consider inverting

the above described relationship and obtain expressions for source strength estimation from

far-field acoustic data.

Assuming a distribution of dipole sources, it is possible to invert Equation 2.109 to estimate

the source strength at a single wavenumber k̂ = (k̂x, k̂y) inside the radiation ellipse from the

observed acoustic far-field at the observer location r:



Chapter 7. Far-Field Inversion for Planar Sources in Flow 187

Q̃
(
k̂, ω

)
≈ 1

(2π)2

(
jk0

z

σr

e−jk̂·r

4πσr

)−1

p(r, ω). (7.1)

If one would know the acoustic far-field p(r, ω) over the entire (continuous) hemisphere, it

would be possible to estimate the source strength spatial distribution via an Inverse Spatial

Fourier Transform (Eq. 2.29) of the estimated source strength wavenumber spectrum evaluated

at all wavenumbers inside the radiation ellipse:

q̃(rs, ω) =

∫
kx

∫
ky

Q̃(k, ω)e−jk·rs dkx dky, (kx, ky) ∈ Rad Ellipse. (7.2)

In practice, measurements of an acoustic far-field must be performed with an array of dis-

crete microphones, and hence the wavenumber domain is necessarily sampled and the Fourier

Transform must be discretized.

The problem can then be approached from two perspectives. One is by fixing the microphone

array geometry and obtaining its equivalent wavenumber sampling, as discussed in Section 7.2.

The second is by fixing the wavenumber sampling and obtaining the equivalent microphone

array geometry, as discussed in Section 7.3.

7.1.1 Source Estimation from Limited Wavenumber-Domain Information

Before introducing the proposed methods, we discuss the effects of source reconstruction

from far-field data. Equation 7.2 illustrates one limitation of the proposed framework: even

from knowledge of the entire radiated far-field in all directions, the “visible” information in

wavenumber domain is limited to the “acoustic domain” [51] inside the radiation ellipse. That

is, only wavenumber components that correspond to propagating plane waves are observable;

wavenumbers outside of the radiation ellipse represent evanescent waves, which are by defini-

tion “invisible” in the far-field and cannot be included in the inversion process. This effective

“wavenumber windowing” has severe consequences for source estimation, as we describe below.

Real acoustic sources, such as an aerofoil, have finite dimensions - i.e. are spatially bounded.

From the properties of the Fourier Transform, its source wavenumber spectrum must then

be: unbounded, i.e. extend to infinity [82]; and it must be an analytic function, i.e. infinitely
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differentiable [81]. By estimating the source strength from far-field data only, we are essen-

tially taking the Inverse Fourier Transform of a windowed version of the original wavenumber

spectrum, as described in Eq. 7.2. As such, the estimated source strength distribution is

forced to become band-limited, as the estimated spectrum is now bounded.

However, by ignoring the wavenumbers outside the radiation ellipse, the estimated source

strength distribution becomes spatially low-passed, and exhibits a lower spatial resolution than

the original source. This “spatial smearing” effect is solely determined by observing the source

from the far-field, as high spatial frequency phenomena are not efficient far-field sources and

cannot be observed. Note that a similar but distinct “spatial smearing” effect when estimating

a source arises from a microphone array point spread function (PSF), previously discussed in

Section 6.1.1, which describes the finite resolution capability of a given microphone array.

Despite having similar consequences for source estimation, both effects have different origins

and should be interpreted separately.

It must be noted that bandpassing the source spectrum also forces the source distribution to

become spatially unbounded [81]. As such, the estimated source distribution becomes smeared

over all space, beyond the physical limits of the real source. While in principle one could

simply ignore the “extra” source distribution as physically insignificant and consider only the

source terms that fall within the real aerofoil dimensions, we describe further below that these

extra terms are important to accurately describe the acoustic source radiated far-field.

7.2 Far-Field Inversion with Arbitrary Wavenumber Sampling

We now return to the proposed far-field inversion method for arbitrary distributions of mi-

crophones in far-field, hemispherical array geometries. Let us consider an arbitrary sampling

of the far-field hemisphere - and thus, of the wavenumber space as well. Figure 7.1 shows a

far-field hemispherical array covering the entire angular space above the source as an example,

and its corresponding wavenumber-domain sampling.

The two-dimensional wavenumber integration in Eq. 7.2 is discretised and expressed as a

single sum over the M microphone elements:

q̃(xs, ys, ω) ≈
M∑
m=1

Q̃m

(
k̂xm, k̂ym, ω

)
e−jk̂xmxse−jk̂ymys ∆Sm, (7.3)
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Figure 7.1: Full hemispherical microphone array (left) and corresponding wavenumber-domain
sampling (right).

where Q̃m

(
k̂xm, k̂ym, ω

)
is the estimated wavenumber spectrum corresponding to the m-th

microphone, and ∆Sm is an equivalent area in the two-dimensional wavenumber domain as-

sociated with the m-th sample. These area terms are further explained in section 7.2.1 below.

The above expression for the source wavenumber spectrum can be rewritten as a function

of the acoustic pressure p(rm) measured at the array microphones. By applying the far-field

approximation in Eq. 7.1 to the Inverse Fourier Transform in Eq. 7.3, we obtain

q̃(xs, ys, ω) ≈ 1

(2π)2

M∑
m=1

(jk0
zm
σm

e−jk̂m·rm

4πσm

)−1

p(rm, ω)

 e−jk̂m·rs ∆Sm (7.4)

=
1

(2π)2

M∑
m=1

(
jk0

zm
σm

e−jk̂m·(rm−rs)

4πσm

)−1

p(rm, ω) ∆Sm (7.5)

=
1

(2π)2

M∑
m=1

(
∂

∂zs
GFF (rm|rs, ω)

)−1

p(rm, ω) ∆Sm, (7.6)

where ∂GFF /∂zs is the far-field approximation to the convected dipole transfer function be-

tween a given source point rs and the m-th observer location rm, previously presented in Eq.

2.98.

One can interpret the procedure outlined in Eq. 7.6 as back-propagating the plane waves seen

by the far-field observers, while also compensating for the dipole directivity and amplitude
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decay over distance. Each back-propagated plane wave is then projected over the source points

rs, and the sum of all projections constitutes the estimated source strength distribution.

Note that the proposed inversion method in Equation 7.6 is very similar to the frequency-

domain delay-and-sum beamforming algorithm [1], where the proposed steering vector ele-

ments w(m,n) (as per Eq. 6.4) are proportional to the element-wise inverse of the transfer

matrix elements:

w(m,n) =
1

(2π)2

[
∂

∂zs
G∗FF (rm|rn, ω)

]−1

∆Sm. (7.7)

7.2.1 Wavenumber-Domain Equivalent Areas

In order to consider a possibly uneven sampling of the array visibility region, we propose

calculating the areas ∆Sm using a modified Voronoi diagram of the wavenumber samples, as

shown in Figure 7.2 for the full hemispherical array shown in Figure 7.1.

A Voronoi diagram is a division of a plane into Voronoi cells from a set of seeds, where

the m-th cell is a convex polygon around the m-th seed and contains all points that are

closer to the m-th seed than to any other seed [83]. This diagram is calculated using the

Python package scipy.spatial.Voronoi [57], where the seeds are the wavenumber samples of

the microphone array. The cells are denoted by their corresponding vertices, from which the

cell areas ∆Sm can be calculated. In addition, to avoid allocating a disproportionately large

area to microphones at the edges of the diagram, vertices located out of the radiation ellipse

are scaled and repositioned close to the ellipse.

7.2.2 Inverse Equation for Source Cross-Spectrum

As aeroacoustic sources are often broadband in nature, we now obtain expressions for esti-

mating the source cross-power spectral density. From Eq. 3.58, we can express the source

cross-power spectral density in spatial domain from the cross-power spectral density in the

wavenumber domain as

Sqq′(rs, r
′
s, ω) =

∫ ∫
SQQ′(k,k

′, ω)e−j(k·rs−k
′·r′s) dk dk′. (7.8)
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Figure 7.2: Modified Voronoi diagram denoting the equivalent area ∆Sm of each microphone in
wavenumber domain for the full hemispherical microphone array shown in Figure 7.1. Microphone
wavenumber-domain samples (seeds) are shown as red circles, Voronoi cells are shown as dashed

lines and Voronoi vertices are shown as blue pentagons.

The estimation of the source wavenumber spectrum from far-field acoustic measurements (Eq.

7.1) can be generalised to the estimation of the source wavenumber cross-spectrum from mea-

surements of the acoustic far-field cross-spectrum:

S̃QQ′(k̂m, k̂m′ , ω) = lim
T→∞

[π
T

E
{
Q̃
(
k̂m, ω

)
Q̃∗
(
k̂m′ , ω

)}]
(7.9)

=
1

(2π)4

[
(jk0)

(
zm
σm

)
e−jk̂m·rm

4πσm

]−1

. . .

. . .

[
(jk0)∗

(
zm′

σm′

)(
e−jk̂m′ ·rm′

4πσm′

)∗]−1

Spp′(rm, rm′ , ω) (7.10)

By inserting the expression for the wavenumber-domain source cross-spectrum (Eq. 7.10) in

the expression for the spatial-domain source cross-spectrum (Eq. 7.8), we obtain
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S̃qq′(rs, r
′
s, ω) =

∑
m

∑
m′

1

(2π)4

[
∂

∂zs
GFF (rm|rs, ω)

]−1

. . .

. . .

[
∂

∂zs
G∗FF (rm′ |r′s, ω)

]−1

Spp′(rm, rm′ , ω) [∆Sm∆Sm′ ] . (7.11)

Equation 7.11 is the discrete approximation to the cross-power spectral density of the source

strength distribution from the cross-power spectral density of the acoustic far-field measure-

ments.

7.2.3 Full Hemispherical Array Simulation

We now consider the simulated performance of the proposed far-field source reconstruction

method when applied to a flat plate. We first investigate the performance of the full hemi-

spherical array shown in Figure 7.1 to discuss the main characteristics of the proposed method,

and then consider the effects of using a smaller, more practical microphone array design in the

next section.

We consider a setup similar to the experimental conditions typically found in the ISVR open-

jet wind tunnel. However, it is assumed that the flow is everywhere the same, and no shear

layer effects are considered. The flow speed is Ux = 60 m/s (Mx ≈ 0.17), and the wavenumber

spectral density of the turbulent velocity field is calculated from the von Karman model.

We compare three types of source descriptions:

• The source distribution obtained from the Amiet model in Chapter 3;

• A source distribution obtained from the Amiet model, but with its spectra set to zero

for all wavenumber components outside of the radiation ellipse. This bandlimited source

is an approximation to Eq. 7.2, and describes the best outcome that can theoretically

be obtained from far-field measurements;

• The source distribution estimated from the proposed far-field method, presented in Eq.

7.11.

In these examples, we will only consider the acoustic source strength estimated over the aerofoil

surface. It must be kept in mind, however, that truncating a function in the frequency domain
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has the effect of extending it in the spatial domain, as previously described, so the actual

estimated source is actually “smeared” over all space beyond the physical limits of the aerofoil.

7.2.3.1 Surface Pressure Chordwise PSD

Figure 7.3 shows the chordwise surface pressure power spectral density magnitude at frequen-

cies k0c = 0.5, k0c = 5 and k0c = 20. We can observe that the proposed source estimation

method and the wavenumber-bandlimited source agree qualitatively well, with a disagreement

of approximately 3 dB at high frequencies. The reason for this disagreement is unclear at the

moment. The proposed method can be seen to successfully estimate the source wavenumber

spectrum within the radiating region for low and medium frequencies.

In all cases, the leading edge singularity is removed. This seems to indicate that as the far-field

is concerned, the aerofoil can be described as an extended acoustic source without the leading

edge singularity. The Kutta condition of zero pressure at the trailing edge is also absent,

possibly due to the spatial low-passing effect.

In the k0c = 0.5 case, the estimated level is significantly lower than the original. As previously

discussed in Section 3.2.4.2, the area of the radiation ellipse is proportional to k0, and at low

frequencies it will be relatively small and contain only a small portion of the total power in

wavenumber space. Note in Figure 3.18a that wavenumber components outside of the ellipse

contain levels identical to those inside the ellipse.

At higher frequencies, when k0c = 5 and k0c = 20, the original and the estimated source

display a better agreement in the aft sections of the aerofoil, indicating that these regions are

significant contributors to the aerofoil far-field sound. The leading edge singularity is again

not prominent in the estimated source distribution.

7.2.3.2 Surface Pressure Cross-Spectrum Phase and Coherence

Figure 7.4 shows the estimated surface pressure cross-spectrum phase for three mid-span ref-

erence points (1% chord, 10% chord and 50% chord). There is some loss of fine detail in the

bandlimited and in the estimated phase distribution. As the wavenumber-bandlimited version

and the estimated version again display a good agreement, this indicates the lack of detail is

likely due to the missing high spatial frequency wavenumbers. The proposed method can thus

correctly recover the information available in the far-field.
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Similarly, Figure 7.5 shows the surface pressure coherence for the same three reference points.

The original source coherence is very short near the leading edge due to the presence of

subcritical gusts. As these gusts are acoustically inefficient, however, the coherence as seen

from the far-field is significantly broader. The wavenumber-bandlimited coherence is similarly

broader, indicating the smearing effect due to the removal of the high spatial frequencies.

For the reference point at mid-chord, however, the coherence is almost identical across the

three plots, indicating that the aft sections of the aerofoil are not as contaminated by high

spatial frequency wavenumbers due to subcritical gusts.
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Figure 7.3: Original and estimated chordwise surface pressure jump power spectral density for
full hemispherical array: (a) low frequency (k0c = 0.5); (b) medium frequency (k0c = 5); (c) high

frequency (k0c = 20).
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Figure 7.4: Original (left), wavenumber-domain bandlimited (middle) and estimated using full
hemispherical array (right) cross-spectral density phase at medium frequency (k0c = 5): (a) refer-

ence point at 1% chord; (b) reference point at 10% chord; (c) reference point at 50% chord.



Chapter 7. Far-Field Inversion for Planar Sources in Flow 197

Original

0.0

0.2

0.4

0.6

0.8

1.0

C
oh
er
en
ce

γ
2

Bandlimited

0.0

0.2

0.4

0.6

0.8

1.0

C
oh
er
en
ce

γ
2

Est. from FF

0.0

0.2

0.4

0.6

0.8

1.0

C
oh
er
en
ce

γ
2

(a)

Original

0.0

0.2

0.4

0.6

0.8

1.0

C
oh
er
en
ce

γ
2

Bandlimited

0.0

0.2

0.4

0.6

0.8

1.0

C
oh
er
en
ce

γ
2

Est. from FF

0.0

0.2

0.4

0.6

0.8

1.0

C
oh
er
en
ce

γ
2

(b)

Original

0.0

0.2

0.4

0.6

0.8

1.0

C
oh
er
en
ce

γ
2

Bandlimited

0.0

0.2

0.4

0.6

0.8

1.0

C
oh
er
en
ce

γ
2

Est. from FF

0.0

0.2

0.4

0.6

0.8

1.0

C
oh
er
en
ce

γ
2

(c)

Figure 7.5: Original (left), wavenumber-domain bandlimited (middle) and estimated using full
hemispherical array (right) coherence at medium frequency (k0c = 5): (a) reference point at 1%

chord; (b) reference point at 10% chord; (c) reference point at 50% chord.
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7.2.4 Hemispherical Cap Array Simulation

The hemispherical far-field array used in the previous example provides an optimistic scenario

for the source reconstruction, as the entire acoustic domain in wavenumber space is sampled

by the array. However, this is an impractical setup for real experiments, given the spatial

distribution of the sensors was chosen to cover the entire hemisphere over the source.

Practical arrays often sample only a portion of the hemispherical angular space, and as such

have an even more limited “visibility region” in the wavenumber domain. Let us consider

a hemispherical cap array positioned above the aerofoil. Its geometrical sensor arrangement

and equivalent wavenumber sampling are shown in Figure 7.6. As this array only samples a

limited region in the wavenumber domain, its Voronoi diagram has its vertices restricted to

a smaller region near the ellipse centre, so all microphones have similar wavenumber-domain

areas ∆Sm, as shown in Figure 7.7.

This design is more representative of typical microphone arrays used in the literature, but is

only able to observe wavenumbers close to the radiation ellipse centre. As this array is “blind”

to a significant range of wavenumbers, even those that are efficient radiators to the far-field, it

is not surprising that its performance will be worse than that of the full hemispherical array,

as its source estimation will not include wavenumbers it cannot observe.

Its chordwise surface pressure PSD distribution is shown in Figure 7.8, and the estimated phase

and coherence for the three reference points are shown in Figures 7.9 and 7.10. The estimated

source distribution PSD is significantly underestimated when compared to the original or to

the wavenumber-bandpassed sources. The phase and the coherence plots have lost major

spatial features and look very similar regardless of which reference points are taken. Overall,

the estimated source characteristics bear little resemblance to the original sources.

From the results presented herein and considering the similarities between the proposed far-

field estimation method and frequency-domain delay-and-sum beamforming, we hypothesize

that delay-and-sum beamforming might also benefit from using microphone arrays that cover

a wide angular region of the source radiation. However, while our method proposes a clear

explanation on why large aperture arrays present better performance, it is currently not clear

how much this improvement carries on to near-field source estimation methods.
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Figure 7.6: Hemispherical cap microphone array (left) and corresponding wavenumber-domain
sampling (right).
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Figure 7.7: Modified Voronoi diagram denoting the equivalent area ∆Sm of each microphone in
wavenumber domain for the hemispherical cap microphone array shown in Figure 7.6.
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Figure 7.8: Original and estimated chordwise surface pressure jump power spectral density for
hemispherical cap array: (a) low frequency (k0c = 0.5); (b) medium frequency (k0c = 5); (c) high

frequency (k0c = 20).
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Figure 7.9: Original (left), wavenumber-domain bandlimited (middle) and estimated using hemi-
spherical cap array (right) cross-spectral density phase at medium frequency (k0c = 5): (a) refer-

ence point at 1% chord; (b) reference point at 10% chord; (c) reference point at 50% chord.
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Figure 7.10: Original (left), wavenumber-domain bandlimited (middle) and estimated using
hemispherical cap array (right) coherence at medium frequency (k0c = 5): (a) reference point at

1% chord; (b) reference point at 10% chord; (c) reference point at 50% chord.
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7.3 Far-Field Inversion with Uniform Wavenumber Sampling

We now consider the far-field inversion problem using a uniform sampling of the source spec-

trum in the wavenumber domain. From Fourier Transform theory, a uniform sampling of N

points in the frequency domain is associated with an equivalent uniform sampling of N points

in the time domain - or in our case, in the spatial domain - via the Nyquist-Shannon Sampling

Theorem [66, 82]. This theorem states that a bandlimited signal must be sampled at a rate at

least two times its bandwidth in order to avoid aliasing of its high frequency components.

As we have discussed in this Thesis, the acoustic far-field is associated with the source

wavenumber spectrum within a pass-band, which defines a bandwidth for the acoustic source

as seen from the far-field. We can then apply the Sampling Theorem in the spatial domain,

and obtain an equivalent sampling in the wavenumber domain - and its equivalent microphone

array design in the acoustic far-field. In principle, this array is optimal from the standpoint of

being able to recover the bandlimited equivalent source distribution with a minimum number

of microphones. However, we will see that there are other factors involved in this analysis.

The relationship between the DFT of an acoustic source strength and its radiated far-field

has been previously identified and investigated by Kim and Nelson [31] in a medium at rest.

We propose a formulation for dipole-type sources in a uniformly moving medium and discuss

the necessary changes in the wavenumber-domain sampling strategy. Although we have ex-

tensively explored planar acoustic radiators in a three-dimensional space, the method will be

demonstrated for a one-dimensional acoustic source, which is simpler to analyse.

In the previous section, it was established that the source distribution estimated from far-field

data will contain less fine spatial details when compared to the original source due to the lack

of high spatial frequencies. In this Section, we propose to investigate whether the estimated

source distribution can adequately describe the far-field behaviour of the original source or, in

other words, whether the estimated source distribution will radiate the same far-field as the

original source.
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7.3.1 One-Dimensional Case: Line Source in xs

We present the uniform-sampling method with a line source example. This case, being simpler

to analyse, helps illustrate the sampling strategy and the method results.

We consider a continuous linear distribution of point dipole sources over xs ∈ [−Lx/2, Lx/2],

with a complex source strength distribution q(xs, ω) and its associated Spatial Fourier Trans-

form Q(kx, ω). This source region is sampled at N points, as shown in Figure 7.11a. The

inter-sample distance is ∆xs = Lx/N , and we assume for simplicity that N is even. The

source samples are indexed as n ∈ [−(N/2), (N/2) − 1], so the xs coordinate of the n-th

sample is

xs[n] = n∆xs. (7.12)

Lx

Δxs
xsxs=0

n  = 
-Lx/2 +Lx/2

−
N
2

−
N
2

+1 .   .   .   .   .   .   0   .   .   .   .   .   .   .   . N
2

−1

(a)

2kxmax

Δkx
kxkx=0-kxmax +kxmax
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m  = −N
2

−
N
2

+1 .   .   .   .   .   .   0   .   .   .   .   .   .   .   . N
2

−1

(b)

Figure 7.11: Sampling scheme for one-dimensional acoustic source in a convected medium: (a)
sampling in spatial domain; (b) sampling in wavenumber domain. Samples marked with a square
are within the radiating region and correspond to disturbances visible in the far-field. For illustra-

tion purposes, the DFT length N is assumed to be even.
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It was extensively discussed in this Thesis that only wavenumber components within the

radiation ellipse can contribute to the far-field. From this argument, there will be a maximum

streamwise wavenumber kmaxx that represents the highest spatial frequency of interest, and its

associated minimum wavelength λminx = 2π/kmaxx on the source surface. We can apply the

Shannon-Nyquist Sampling Theorem and determine the minimum sampling interval ∆xs to

correctly sample the maximum radiating wavenumber kmaxx as a function of its wavelength as

∆xs =
Lx
N
≤ λminx

2
, (7.13)

from which the minimum number of samples N is expressed as

N ≥ 2Lx
λminx

=
Lxk

max
x

π
. (7.14)

For simplicity, we assume the source length Lx is an integer multiple of λminx /2, so Eq. 7.14

becomes an equality and N is an integer. The wavenumber domain will contain N samples in

the region kx ∈ [−kmaxx ,+kmaxx −∆kx], as shown in Figure 7.11b, where ∆kx is a wavenumber

interval obtained from the previous equations as

∆kx =
2π

Lx
, (7.15)

and therefore the wavenumber-domain resolution is inversely proportional to the source length.

We will explore this fact later on when considering methods to increase the accuracy of the

estimated acoustic far-field.

The wavenumber samples are indexed as m ∈ [−N/2, (N/2)− 1], and the kx coordinate of the

m-th sample is

kx[m] = m∆kx = m

(
2π

N∆xs

)
. (7.16)

As discussed in Section 2.1.2 and shown in Figure 2.3, the radiation region is a circle of

radius k0 for Mx = 0, but becomes progressively wider and more skewed towards negative

wavenumbers as the Mach number increases. Consequently, larger magnitude wavenumbers

become visible in the far-field and the source requires a denser sampling in the spatial domain
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as the flow velocity increases. To illustrate this phenomenon, consider that for Mx = 0.5, the

largest magnitude wavenumber is kmaxx = | − kr1 − kx1| = 2k0. A Mach number of 0.5 will

therefore double the minimum number of samples required compared to the quiescent medium

case.

Note as well that the DFT frequency sampling is symmetric around kx = 0, but for non-zero

Mach numbers the wavenumber-domain radiation region is asymmetric around the origin. In

this case, there will inevitably be wavenumber samples that fall outside the radiating region,

particularly around positive wavenumbers. These are indicated in Figure 7.11b as red circles.

Hence, of the N possible samples in wavenumber domain, only a subset of M ≤ N samples will

be observable from far-field data and correspond to physical observer locations in the far-field.

7.3.1.1 Matrix Formulation - Direct Problem

Let us now consider the formulation of the direct problem and of the inverse problem in matrix

form. For simplicity, we first consider a linear distribution of dipole sources in a medium at

rest, where all wavenumber samples fall within the radiation circle and M = N . We then

consider the special case of a medium with non-zero Mach number and how it affects the

original problem formulation.

We use a similar formulation for the direct problem to the one shown in Eq. 6.3, where a

vector of M(= N) acoustic pressures p, where m ∈ [Mmin,Mmax](= [Nmin, Nmax]), is linked

to a vector of N source strengths q, where n ∈ [Nmin, Nmax], via a matrix G of transfer

function elements. However, to keep the units consistent, we multiply the source strengths q

by the spatial sampling interval ∆xs, effectively defining a numerical evaluation of the radiation

integral. The final expression reads

p = G(q∆xs) (7.17)

=


| | |

gNmin gNmin+1 . . . gNmax

| | |

 (q∆xs). (7.18)

Each vector gn = [gMmin,n, . . . , gMmax,n]T contains the transfer functions from the n-th source

to all N observers and describes the acoustic radiation and propagation from source to receiver.
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By assuming dipole-type radiation in a moving medium and the observers in the far-field, the

matrix elements gm,n can be approximated by the far-field dipole transfer function of Eq. 2.98:

gFFm,n =
∂

∂zn
GFF (rm|rn, ω) (7.19)

=

(
jk0

zm
σm

e−jk̂m·rm

4πσm

)(
ejk̂m·rn

)
(7.20)

= dm ejk̂m·rn , (7.21)

where we can isolate the term dm, containing the phase and attenuation effects that depend

solely on the observer location rm, from the complex exponential ejk̂m·rn , that depends on

both the source location rn and on the observer location via k̂m.

As the transfer function elements can be separated as in Eq. 7.21, we can write the far-field-

approximated transfer function matrix as

GFF =


| | |

gFFNmin gFFNmin+1 . . . gFFNmax

| | |

 (7.22)

=


dMmin . . . 0

...
. . .

...

0 . . . dMmax



ejk̂Mmin ·rNmin . . . ejk̂Mmin ·rNmax

...
. . .

...

ejk̂Mmax ·rNmin . . . ejk̂Mmax ·rNmax

 (7.23)

= DE. (7.24)

Thus, the far-field transfer matrix can be written as the product of a diagonal matrix D con-

taining the phase shifts and amplitude attenuation related to the observer location, including

the dipole directivity effect, and a Fourier-like matrix E mapping the source strength at rn to

an observer-dependent wavenumber k̂m.

Note that the (m,n)-th element of the matrix E is
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ejk̂m·rn = ejkx[m]xs[n] (7.25)

= e
j
[
m
(

2π
N∆xs

)]
[n∆xs] (7.26)

= ejmn(
2π
N ), (7.27)

which is identical to the entries in a DFT matrix. It is known that the DFT matrix has

the property EEH = EHE = NI, and therefore E−1 = (1/N)EH . The DFT matrix is also

known for having unitary condition number, indicating an optimal conditioning of the acoustic

problem [31].

The direct problem can then be re-expressed as

p ≈ GFF (q∆xs) (7.28)

= DE(q∆xs) (7.29)

= 2πDqk, (7.30)

where qk = [Q[Mmin], . . . , Q[Mmax]]T is a vector of source strength Spatial Fourier Transform

samples evaluated at the discrete wavenumbers kx[m].

However, as previously discussed, some wavenumber samples will fall outside the radiating

region when the Mach number is non-zero. In such cases, only M < N observer locations

are available in the far-field, and therefore the matrix E will be rectangular (M ×N). Since

“invisible” samples can occur either at the leftmost or rightmost ends of the wavenumber

spectrum (see Figure 7.11b), the matrix D then takes the form

DM×N =


dMmin 0 . . . 0 0 . . . 0

0 dMmin+1 . . . 0 0 . . . 0
...

...
. . . 0 0 . . . 0

0 0 . . . dMmax 0 . . . 0

 . (7.31)
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Only the diagonal is populated with non-zero terms, and the Nmax−Mmax rightmost columns

will be identically zero. All N −M wavenumbers located outside of the radiating region will

be within the matrix D nullspace, and will not have a corresponding element in the vector of

microphone pressures p.

7.3.1.2 Matrix Formulation - Inverse Problem

Our objective is to obtain an estimate q̃ of the source strength vector q from the far-field

pressures p. A first step is to obtain an estimate q̃k of the source strength Spatial Fourier

Transform from the vector of microphone complex pressures:

q̃k =
1

2π
D†p, (7.32)

where D† = DH(DDH)−1 is the right pseudoinverse of D, and contains the element-wise

inversion of the non-zero entries of the main diagonal of D:

D†N×M =



(dMmin)−1 0 . . . 0

0 (dMmin+1)−1 . . . 0
...

...
. . .

...

0 0 . . . (dMmax)−1

0 0 0 0
...

...
...

...

0 0 0 0


. (7.33)

Since the matrix D only contains the attenuations and phase shifts related to the microphone

positions, it element-wise inverse is numerically stable1. Note that wavenumber samples in q̃k

that are outside the radiating region cannot be estimated and are automatically set to zero.

Finally, from q̃k, we can compute the source distribution estimate q̃ via an Inverse Discrete

Fourier Transform by multiplying by EH . The apparently missing factor 1/N is explained

below. Here we perform the same modification as we did in Eq. 7.17, and multiply the

1A possible exception occurs for microphones placed in the z = 0 plane, where the dipole directivity presents
a null in the acoustic radiation and dm = 0. However, as microphones placed in this plane would not record
any acoustic pressure from a dipole-like source, this situation most likely would not occur in practice.
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estimated source strength wavenumber spectrum q̃k by the wavenumber-domain sampling

interval ∆kx:

q̃ = EH(q̃k∆kx) (7.34)

=
1

2π
EH

(
D†p

)
∆kx (7.35)

=


e−jk̂Mmin ·rNmin . . . e−jk̂Mmax ·rNmin

...
. . .

...

e−jk̂Mmin ·rNmax . . . e−jk̂Mmax ·rNmax





(dMmin)−1 . . . 0
...

. . .
...

0 . . . (dMmax)−1

0 . . . 0
...

...
...

0 . . . 0


p∆kx. (7.36)

Here, we define the N×M matrix EHD† appearing in Eq. 7.35 as WH , and write its (n,m)-th

element as

w∗n,m = e−jk̂m·rn(dm)−1 (7.37)

= e−jk̂m·rn

(
jk0

zm
σm

e−jk̂m·rm

4πσm

)−1

(7.38)

=

(
jk0

zm
σm

e−jk̂m·(rm−rn)

4πσm

)−1

(7.39)

=

(
∂

∂zn
GFF (rm|rn, ω)

)−1

, (7.40)

The elements of WH are the element-wise inverse of the far-field-approximated transfer matrix

GFF (Eq. 7.19). Therefore, the n-th source estimate can be written as

q̃(rn, ω) =
1

2π
wH
n p∆kx (7.41)

=
1

2π

Mmax∑
m=Mmin

(
∂

∂zn
GFF (rm|rn, ω)

)−1

p(rm, ω)∆kx. (7.42)

We note here that the one-dimensional source estimation in Equation 7.42 for a uniform

wavenumber-domain sampling has a similar form to the two-dimensional source estimation
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presented in Equation 7.6 for arbitrary wavenumber-domain sampling, and both are similar

to classical frequency-domain delay-and-sum beamforming [1].

Finally, we observe that, despite explicitly lacking the usual 1/N factor, the proposed formu-

lation is identical to the definition of the Discrete Fourier Transform. Observe that the two

added sampling intervals ∆xs and ∆kx, when considered in combination with the extra 1/(2π)

factor in the definition of the Spatial Fourier Transform, result in the apparently missing 1/N

factor:

∆xs∆kx
2π

=
(Lx/N)(2π/Lx)

2π
=

1

N
. (7.43)

Therefore, including the sampling intervals ∆xs and ∆kx, and the 1/(2π) factor in the DFT

definition is equivalent to applying the usual DFT/IDFT formulations with the 1/N term. As

an advantage, our proposed formulation maintains the variable values consistent with their

physical entities, thus allowing a direct comparison between the original and the sampled

variables, as shown below.

7.3.1.3 Sinc Interpolation of Bandlimited Functions

It is known that if the Nyquist-Shannon sampling theorem is satisfied, the original continuous

signal can be recovered from its samples via a sinc interpolation [66]. As our far-field-estimated

source distribution q̃ is bandlimited in wavenumber to the radiation region, and our sampling

scheme is defined accordingly, the - now bandpassed - continuous source distribution can be

estimated as

q̃(xs) =

∞∑
n=−∞

q̃n sinc

(
(xs − xn)π

∆xs

)
, (7.44)

where the unnormalised sinc function is defined as sinc(x) = sin(x)/x.

Similarly, we can apply the same theorem for wavenumber-domain sampling. If a function

is spatially-limited, its continuous wavenumber spectrum can also be reconstructed from its

samples via a sinc interpolation:
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Q̃(kx) =
∞∑

m=−∞
Q̃m sinc

(
(kx − km)π

∆kx

)
. (7.45)

However, as the sinc function interpolator presents an infinite number of decreasingly small

sidelobes between the samples, correctly evaluating the continuous functions between pairs of

samples require knowledge of samples over the entire wavenumber domain, into the evanescent

region and up to infinity. Note that even samples that are distant from the region of interest

will contribute to the interpolation.

Equations 7.44 and 7.45 indicate that wavenumber samples in the evanescent region will con-

tribute to the acoustic field inside the radiation region. Therefore, lack of knowledge of samples

in the evanescent region will in principle lead to errors in the estimated spectrum within the

radiation region, and hence to errors in the estimated radiated far-field as well. This limitation

is observed in the examples shown in the next section.

7.3.1.4 Example: Nyquist-type Sampling in the Wavenumber Domain

Let us now consider an example of the proposed source reconstruction method with uniform

wavenumber-domain sampling. We consider a linear distribution of point dipole sources in

xs, with a source strength distribution given by a typical flat plate chordwise surface pressure

jump ∆p(xs, ω), as described in Chapter 3.

We assume a Mach number Mx = 0.5, and a frequency where the aerofoil chord is c = 2λ0. As

a result, kmaxx = 2k0, and the Nyquist sampling criterion will require 8 samples over the aerofoil

chord. The chordwise normalised frequency is k0c ≈ 12.5. Figure 7.12 shows the resulting

wavenumber-domain sampling, indicating which samples are inside the radiation region, and

the equivalent far-field microphone array.

The acoustic field at the far-field microphone array is calculated using a standard radiation

integral for distributed dipole sources. The sampled source wavenumber spectrum is estimated

from these far-field pressures using Eq. 7.32, and the source strength distribution in the spatial

domain is estimated from the sampled wavenumber spectrum using Eq. 7.34. Finally, we

compute the acoustic far-field radiated by the estimated source strengths, and compare it

with the original far-field directivity.
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Figure 7.12: Uniform wavenumber-domain sampling and associated far-field microphone arc for
Nyquist-type wavenumber sampling: (a) Samples in wavenumber domain kx; samples marked with
squares are inside the radiation region, while samples marked with circles are outside; (b) Far-field
microphone arc design corresponding to wavenumber-domain samples within tha radiation region.
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The normalised far-field directivity of the original and of the estimated source are shown in

Figure 7.13, together with the acoustic pressure magnitudes observed by the far-field micro-

phone array. The original and the estimated far-field directivities present a similar general

structure, with a stronger radiation in the downstream direction and the presence of multiple

sidelobes and nulls. Because the Nyquist-Shannon theorem has been satisfied, both curves

agree exactly at the microphone locations.

However, it can also be observed that the curves don’t agree well in the angles between

microphone positions. Significant differences can be observed, reaching approximately 10 dB

at some upstream angles. As discussed in the previous section, this inaccuracy in the observed

directivity between the microphone positions is associated with a lack of samples outside of

the radiation region, coupled with a relatively sparse wavenumber-domain sampling.
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90◦

dB re |p(x)|max

−40 −30 −20 −10 0

Norm. Directivity Original

Mics
Interp. q̃n

Figure 7.13: Chordwise normalised far-field directivity for Nyquist-type wavenumber sampling.
The original source directivity is plotted with a solid line; the acoustic pressure observed by the
microphone array are indicated with circles; and the far-field-estimated source directivity is plotted

with a dash-dotted line.

We now show in Figures 7.14 and 7.15 the estimated source distribution in the wavenumber

and in the spatial domains, plotted as continuous lines. For comparison, we include the

wavenumber band-passed source distribution, as we did for the arbitrary wavenumber sampling

formulation. The bandpassed source is shown using dashed lines.

In the wavenumber domain, shown in Fig. 7.14, we compare the sampled wavenumber

spectrum estimated from the far-field, shown as circles, and a continuous estimated source
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wavenumber spectrum obtained from interpolating the wavenumber-domain samples, shown

as a dotted line. The estimated wavenumber samples can be seen to correctly estimate the

original source spectrum. The wavenumber-interpolated spectrum also agrees with the original

spectrum at the microphone positions, but diverges from it in the regions between samples.

Observe also how the interpolated spectrum is able to estimate part of the spectrum within

the evanescent region, due to the sinc function sidelobes.
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Figure 7.14: Original and far-field-estimated source wavenumber spectrum for Nyquist-type
wavenumber sampling. The original source is plotted with a solid line; the wavenumber-bandpassed
source is indicated with a dashed line; the far-field-estimated source is indicated with circles; and
the interpolated source (from the far-field-estimated samples) is plotted with a dashed-dotted line.

In the spatial domain, Fig. 7.15, we compare the real part (Fig. 7.15a) and the magnitude

(Fig. 7.15b) of the sampled source strength, as estimated from the proposed far-field inversion

method, and the continuous estimated source strength obtained from spatial interpolation,

shown as a dotted line. The wavenumber-bandpassed source distribution is not very prominent

at the leading edge, and it is now spread beyond the source physical limits. It displays a quickly

decaying, oscillatory behaviour outside of the source length, but agrees reasonably well with the

original source within the source limits. The sampled estimated source follows the same trends

as the original and bandpassed sources, but presents very different details to the previous two.

The sampled source also displays a similarly reduced leading edge peak when compared to the

bandpassed source.



Chapter 7. Far-Field Inversion for Planar Sources in Flow 216

−3 −2 −1 0 1 2 3

xs/b

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

A
m
pl
it
ud
e

Re{q(xs)}
Original

Bandpassed
q̃n

Interp. q̃n

(a)

−3 −2 −1 0 1 2 3

xs/b

−30

−25

−20

−15

−10

−5

0

5

10

M
ag
ni
tu
de

[d
B
]

|q(xs)|
Original

Bandpassed
q̃n

Interp. q̃n

(b)

Figure 7.15: Original and far-field-estimated source spatial distribution for Nyquist-type
wavenumber sampling: (a) real part of estimated source strength spatial distribution; (b) magni-
tude of estimated source strength spatial distribution. The original source is plotted with a solid
line; the wavenumber-bandpassed source is indicated with a dashed line; the far-field-estimated
source is indicated with circles; and the interpolated source (from the far-field-estimated samples)

is plotted with a dashed-dotted line.
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7.3.1.5 Example: Oversampling in the Wavenumber Domain

As the wavenumber-domain resolution is dependent on the source length L, one method of

improving the wavenumber resolution - and hence, the estimated far-field resolution - is to

artificially increase the estimated source length. We now assume that the source is three times

larger than its physical dimensions, and estimate the source strength distribution on those

samples beyond its physical limits as well. This will increase the DFT length in the spatial

domain while maintaining the spatial sampling interval, thus increasing the number of points

- and hence, the resolution - within the passband in the frequency domain, as shown in Figure

7.16a.

The denser sampling in the wavenumber domain is equivalent to increasing the sensor count in

the microphone array, shown in Figure 7.16b. Since the proposed uniform sampling framework

is able to identically recover the sampled acoustic pressures, the larger number of observations

reduces the error when predicting the acoustic far-field from the estimated source distribution.

Regarding the source spatial distribution, we can conclude that the “extra” source samples,

located outside the source physical dimensions, become significant contributors to the accuracy

of the reconstructed far-field pressures.

The larger number of far-field sensors allow us to increase the number of wavenumber samples,

shown in Figures 7.17 and 7.18. Because of the denser wavenumber sampling, the interpolated

far-field directivity and the interpolated wavenumber spectrum are now significantly closer to

their original values.

Figure 7.19 shows the real part (Fig. 7.19a) and the magnitude (Fig. 7.19b) of the source

strength spatial distribution. Both the sampled and the interpolated estimated sources display

a reduced magnitude at the leading edge, and non-zero values outside of the source physical

limits. Note that the estimated source does not agree well with the bandpassed source outside

of the source limits, although both have very similar wavenumber spectra. The origin for this

difference is not currently understood.
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Figure 7.16: Uniform wavenumber-domain sampling and associated far-field microphone arc for
wavenumber-domain oversampling: (a) Samples in wavenumber domain kx; samples marked with
squares are inside the radiation region, while samples marked with circles are outside; (b) Far-field
microphone arc design corresponding to wavenumber-domain samples within tha radiation region.
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Figure 7.18: Original and far-field-estimated source wavenumber spectrum for wavenumber-
domain oversampling. The original source is plotted with a solid line; the wavenumber-bandpassed
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Figure 7.19: Original and far-field-estimated source spatial distribution for wavenumber-domain
oversampling: (a) real part of estimated source strength spatial distribution; (b) magnitude of
estimated source strength spatial distribution. The original source is plotted with a solid line; the
wavenumber-bandpassed source is indicated with a dashed line; the far-field-estimated source is
indicated with circles; and the interpolated source (from the far-field-estimated samples) is plotted

with a dashed-dotted line.
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7.4 Super Resolution Methods

Although the proposed far-field inversion method outlined in this Chapter is able to recover

the radiating source distribution, it is in theory possible to further process the results to obtain

super-resolution. We briefly outline this super-resolution method below, and discuss some of

its limitations.

The spatial bandlimiting effect on far-field data is analogous to the Rayleigh resolution limit,

which states that two point sources spaced by less than half of the wavelength cannot be

clearly separated [84]. This limitation can be contrasted with Nearfield Acoustic Holography,

for example, where the acoustic field is sampled very close to the source in order to acquire

the evanescent components and obtain resolution beyond the Rayleigh limit [31, 85]. Methods

that exceed the Rayleigh limit are often termed super-resolution methods [81].

We have identified a super-resolution method which could be applied to our far-field results. It

is based on the principle of analytic continuation [81] . It is known that, in the absence of noise,

an analytic function can be perfectly reconstructed over its entire domain from knowledge of its

values over a finite domain. As the original source wavenumber spectrum is analytic, then in

principle its evanescent components can be correctly estimated from knowledge of its radiating

components only.

Working in the context of diffraction-limited optical signals, Castleman [81] describes the

“Successive Energy Reduction” method: the estimated source spatial distribution is Inverse

Fourier Transformed from spectrally-limited data, and as such it is spatially unbounded; the

source is enforced to be spatially limited again, which in turn makes its spectrum unbounded;

the spectrum within the system passband is then imposed to be identical to the original band-

limited data; and the source distribution is again estimated from Inverse Fourier Transforming

the new estimated spectrum, now available a wider bandwidth. This process is iterative, and

each step yields a slightly better approximation for the “invisible” parts of the spectrum.

Although some extension of the observable bandwidth is obtained, in practice such superres-

olution methods require considerable oversampling of the original signal and very low noise

conditions to obtain significant bandwidth extension. Moreover, in order to obtain a fine spec-

tral resolution, the Fourier Transforms must be computed over a domain much larger than

the original signal. Given the strict demands that this method imposes, it has rarely been

reported in practice [81].





Chapter 8

Conclusions

8.1 Summary of Thesis Contributions

This Thesis investigated the acoustic characteristics of flat plate aerofoils interacting with

turbulent flows, and the use of microphone array methods to experimentally assess these

characteristics. The main findings of this work are summarised below.

A systematic Fourier-based framework linking the far-field acoustic radiation of planar sources

in a convected medium to the Spatial Fourier Transform of its source strength distribution

has been presented. It was shown, via the Fraunhofer geometric far-field approximation, that

a distant observer will perceive the incoming sound field as a plane wave. The wavenumber

vector of this plane wave is uniquely associated with the observer location, and its magnitude

is determined by the source strength spectrum evaluated at its wavenumber vector within

the radiation ellipse. This framework is applicable for distributions of monopole or dipole

sources, in flows with Mach number 0 ≤Mx < 1, and is valid up to a distance-dependent high

frequency limit.

The analytical model by Amiet for a flat plate interacting with a turbulent flow was presented,

and discussed from a wavenumber-domain perspective. Single-gust supercritical responses

were shown to have a principal wavenumber component located over the radiation ellipse in

wavenumber domain, corresponding to an acoustic wave propagating over the aerofoil sur-

face. Subcritical responses, on the other hand, were shown to have a principal wavenumber

component located outside the radiation ellipse, corresponding to an evanescent wave on the
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aerofoil surface. An empirical rule for determining the gust integration limit for surface pres-

sure calculations was proposed, and the aerofoil surface pressure characteristics for single- and

multiple-gust responses were discussed in both spatial and wavenumber domains.

The acoustic radiation characteristics of a flat plate for single- and multiple-gust responses were

discussed, and an empirical rule for determining the gust integration limit for acoustic radiation

calculations was proposed. From these analyses, three near-field effects were identified for

the flat plate acoustic radiation: the hydrodynamic dipole near-field, considered a significant

contributor to low-frequency radiation; the geometric near-field, considered significant at high

frequencies for single-gust responses but not observed in multiple-gust responses; and the

subcritical gust response, considered significant at low frequencies for finite-span aerofoils.

Frequency and distance limits for all three near-field effects were identified: the dipole near-

field imposes a low frequency limit to the far-field approximation, while the geometric near-field

imposes a high frequency limit to the approximation.

The acoustic field of a real flat plate interacting with a turbulent flow was measured with a

planar microphone array in the ISVR wind tunnel. A good agreement was observed between

the flat plate measurements and the prediction model, particularly regarding the coherence

between array microphones as a function of microphone location and frequency. A good

agreement was also observed when applying array signal processing methods to the predicted

and measured acoustic fields, both when using conventional beamforming and CLEAN-SC

deconvolution.

A far-field inversion method for planar sources in flow was proposed by inverting the previously

discussed Fourier framework linking the acoustic far-field and the source wavenumber spec-

trum. Two formulations for the inversion method were shown: the first formulation considered

an arbitrary microphone array geometry, where an equivalent irregular wavenumber-domain

sampling is calculated from the microphone positions. This formulation was evaluated with

a broadband aerofoil simulation using a full hemispherical microphone array. The estimated

aerofoil source distribution was shown to be almost identical to a wavenumber-domain band-

passed source distribution: both versions lack fine spatial detail in general, and the leading

edge singularity is not prominent anymore. It was also shown that arrays that do not cover

the entire far-field hemisphere, as is the case in typical experimental setups, have their source

estimates even further bandpassed, and their spatial resolution is further decreased. This
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formulation was shown to be analytically very similar to frequency-domain delay-and-sum

beamforming

The second formulation considered a Nyquist-type spatial sampling criterion and an associ-

ated uniform wavenumber-domain sampling, from which the microphone array geometry is

obtained. This formulation was shown to be directly related to the Discrete Fourier Trans-

form of the source strength, and as such it represents an optimal conditioning of the plant

matrix. This formulation was evaluated with a narrowband, one-dimensional aerofoil model

using a microphone arc; it was shown that the equivalent source is able to describe the orig-

inal far-field pressures at the microphones, but the acoustic field between the microphones

might be in error due to missing wavenumber-domain samples. We showed that it is possible

to improve the far-field reconstruction by considering a wider source length, which in turn

takes into account the source smearing due to the bandpassing effect in wavenumber domain

and increases the number of microphone sensors in the far-field. This formulation was also

shown to be very similar to frequency-domain delay-and-sum beamforming, although slightly

different to the first formulation.

8.2 General Remarks and Open Questions

In general, this research has achieved a better understanding of the acoustic characteristics

of a flat plate aerofoil in terms of its spatial source distribution, wavenumber spectrum and

radiated near-field and far-field. We have also proposed methods to assess these characteristics

from far-field microphone arrays, and simulated their performance at a few single-frequency

cases.

We have extensively applied the Spatial Fourier Transform to relate the spatial source distri-

bution and its wavenumber spectrum, and the wavenumber spectrum to the acoustic far-field

radiated by the source. This relationship has been described in a systematic manner, allowing

its applications to a variety of sources and medium conditions. Although we have established

what are the theoretical limits to the Fraunhofer far-field approximation, we have also shown

that in practice this limit is not very well defined, and must be taken as a general indicator of

validity only.

The proposed Fourier framework currently assumes a uniform convected medium encompassing

both source and observers. However, in many aeroacoustics experiments the medium is not
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uniform, such as in the open-jet wind tunnel experiments described in Chapter 5. Further

work is required to determine whether the proposed framework can be extended to include

inhomogeneities in the flow, such as shear layer refraction effects.

Detailed investigations of the flat plate surface pressure distribution in the spatial domain and

in the wavenumber domain have been performed. However, it is currently unknown whether

these results can be validated by experimental surface pressure measurements. Hence, an

experimental verification and possible validation of these results would provide a strong argu-

ment to their importance. It is known, however, that such measurements are very difficult to

perform due to the difference in magnitude between the acoustic surface pressure fluctuations

and the boundary layer pressure fluctuations, and would require a data acquisition system

with a very high dynamic range.

Results regarding the acoustic near-field behaviour of an aerofoil were presented for the first

time. As their mechanisms and frequency ranges were also established, it is now feasible to

consider which near-field behaviours might affect a particular measurement setup and must be

taken into account, and which ones can be safely ignored via a far-field approximation. Sur-

prisingly, such behaviours were more easily observable when considering single-gust responses,

but not multiple-gust responses. The reason for this difference is not known at the moment,

and is recommended as further investigation.

We have applied beamforming methods to simulated microphone array data generated from

the Amiet flat plate model, and obtained qualitatively very similar results to those of a real

experiment, using both conventional beamforming and deconvolution with CLEAN-SC. This

is the first time this comparison has been performed. It is still necessary to extend this

comparison and perform a quantitative analysis as well over multiple frequencies, which is

suggested as future work.

If further investigations confirm the viability of achieving realistic microphone array results

with the Amiet model, we propose adopting this prediction model as a benchmark case for

assessing microphone array performance, both in terms of array design and signal processing

strategy. Such model would present a higher level of complexity than the usual point sources

or incoherent line sources generally used, and it would allow comparing beamforming results

regarding source characteristics with the “ground truth”known from the analytical model.
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It must be noted that the deconvolution method CLEAN-SC was originally formulated to

separate distinct, incoherent sources, and it is currently unknown how CLEAN-SC performs

when observing a single distributed, partially-coherent source, such as a flat plate aerofoil.

Although some results presented here indicate that CLEAN-SC might be able to separate

coherent regions on the source surface, it is now known how the source coherence length or

the microphone array design might play a role in this separation. This investigation is left for

future work.

The proposed source estimation methods from far-field data describes a “line-of-sight” rela-

tionship between the microphone locations and their observable wavenumber components. As

these methods assume formulations that are very similar to classical delay-and-sum beam-

forming, there is a strong possibility that this “line of sight” relationship is also applicable

to classical beamforming. This hypothesis requires further investigation, but we believe this

might be a novel interpretation of a well-known microphone array signal processing method,

and might yield novel beamforming arrangements with more varied microphone array layouts.

In order to discuss the source estimation results in more depth, both formulations of the

proposed far-field inversion method were simulated at a single frequency or at a few discrete

frequencies. A natural next step would be to apply these methods over all frequencies and

compare, for example, the estimated and the original PSD of the aerofoil surface pressure at

some points on the aerofoil surface.

The far-field inversion method in the uniform wavenumber-domain sampling formulation re-

quires an extension to two-dimensional sources and to the broadband case - i.e. to estimate the

source cross-spectral density matrix from the acoustic far-field cross-spectral density matrix

measurements. As the resulting microphone array layout is frequency-dependent, in practice

one would likely design the array for the highest frequency of interest; in this case, the source

domain would be oversampled at lower frequencies, and thus an adapted formulation would

be required to use all microphones. These tasks are also suggested as future work.





Appendix A

Defining Dirac Delta Functions

This Appendix describes a method used by Osgood [82] to obtain a Dirac Delta function δ(x)

from a starting - or “nascent” - function f(x).

A.1 Defining δ(x)

At first, we must define what is meant by a Dirac Delta function δ(x). Following Osgood [82],

it is better to define a Delta function by describing its behaviour when inside integrals, instead

of its values in a point-wise manner. This is often easier when considering a limiting process:

we say that a function f(x, p) will tend towards a Delta function δ(x) in the limit

lim
p→∞

f(x, p)→ δ(x), (A.1)

if the function f(x, p) presents the behaviour

lim
p→∞

∫ +∞

−∞
f(x, p)ψ(x) dx = ψ(0). (A.2)

Such a function will then present the following properties:

• lim
p→∞

f(x, p) = 0, x 6= 0;

• lim
p→∞

f(x = 0, p) =∞;
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• and

∫ +∞

−∞
f(x, p) dx = 1,

which are often cited as properties of the Delta function δ(x).

A.2 Obtaining δ(x)

We will now describe a procedure to obtain a Delta function δ(x) from a starting function

f(x) taken to a limit. Let us first define f(x) such that

∫ ∞
−∞

f(x) dx = 1. (A.3)

We must then form a scaled version of f(x), defined as

fp(x) = pf(px), p > 0. (A.4)

Informally, one might interpret that the original function f(x) becomes compressed by a factor

p in the x axis, while becoming “taller” by the same amount. From this interpretation, it is

trivial to observe that

∫ ∞
−∞

fp(x) dx =

∫ ∞
−∞

f(px) dpx = 1. (A.5)

As a consequence, we have that

lim
p→∞

∫ +∞

−∞
f(x, p)ψ(x) dx = ψ(0), (A.6)

which is our definition of the Delta function δ(x). We can then write

lim
p→∞

fp(x)→ δ(x). (A.7)



Appendix A. Defining Dirac Delta Functions 231

A.3 The sinc(x) as a nascent Delta Function

We will now explore two different “nascent” Delta functions: the sinc(x) and the sinc2(x).

First, let us define the unnormalised sinc function sinc(x) as

sinc(x) =
sin(x)

(x)
. (A.8)

We will assume it is known that

∫ +∞

−∞
sinc(x) dx = π; therefore, we must consider a function

f(x) such that

f(x) =
1

π
sinc(x) →

∫ +∞

−∞
f(x) dx = 1. (A.9)

Let us now define a modified function fp(x) as

fp(x) = pf(px) (A.10)

=
p

π

sin(px)

(px)
. (A.11)

We then have that

lim
p→∞

fp(x) = lim
p→∞

p

π

sin(px)

(px)
(A.12)

= lim
p→∞

sin(px)

xπ
→ δ(x). (A.13)

The above limit can be shown, with small modifications, to be equivalent to Equation 3.22.

On a side note, it is also known that

∫ d

−d
ejkx dx =

1

jk

(
ejkd − ejk(−d)

)
=

(2d) sin(kd)

kd
. (A.14)

Taking the limit of d→∞, it can be seen that
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lim
d→∞

∫ +d

−d
ejkx dx = lim

d→∞

(2d) sin(kd)

kd
→ 2πδ(k), (A.15)

which we now denote as

∫ +∞

−∞
ejkx dx = 2πδ(k). (A.16)

A.4 The sinc2(x) as a nascent Delta Function

We can now apply the same analysis to the sinc squared function:

sinc2(x) =
sin2(x)

x2
. (A.17)

First, it is necessary to evaluate

∫ +∞

−∞
sinc2(x) dx; this improper integral can be calculated

via the limit of an integration by parts:

∫ +∞

−∞
sinc2(x) dx = lim

t→∞

∫ +t

−t
sin2(x)

1

x2
dx. (A.18)

Let

u = sin2(x) → du = 2 sin(x) cos(x)︸ ︷︷ ︸
=sin(2x)

dx, (A.19)

dv = x−2 dx → v = (−1)x−1. (A.20)

We can then write

lim
t→∞

∫ +t

−t
sin2(x)

1

x2
dx = lim

t→∞

[
(−1)

sin2(x)

x

]+t

x=−t
− lim
t→∞

[∫ +t

−t
(−1)

sin(2x)

x
dx

]
. (A.21)

Let us analyse the first term on the right-hand side of Eq. A.21:
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lim
t→∞

[
(−1)

sin2(x)

x

]+t

x=−t
= lim

t→∞

[
(−1)

sin2(+t)

+t
− (−1)

sin2(−t)
−t

]
. (A.22)

Note that sin2(x)/x is the product of a monotonically decaying function (1/t→ 0 as t→ ±∞)

and a bounded function (sin2(t) ∈ [0, 1]), and must converge to zero in the limit t→ ±∞.

Back to Eq. A.21, we are left with

lim
t→∞

∫ +t

−t

sin2(x)

x2
dx = 0 + lim

t→∞

[∫ +t

−t

sin(2x)

x
dx

]
(A.23)

= lim
t→∞

∫ +t

−t

sin(2x)

2x
d2x (A.24)

= lim
t→∞

∫ +t

−t

sin(u)

u
du. (A.25)

We can now evaluate the limits and reach the interesting conclusion that

∫ +∞

−∞
sinc2(x) dx =

∫ +∞

−∞
sinc(x) dx = π. (A.26)

In order to generate a Delta function δ(x), we must thus define a function f(x) such that

f(x) =
1

π
sinc2(x) →

∫ +∞

−∞
f(x) dx = 1. (A.27)

Let us now define a modified function fp(x) as

fp(x) = pf(px) (A.28)

=
p

π

sin2(px)

(px)2
. (A.29)

We then have that

lim
p→∞

fp(x) = lim
p→∞

p

π

sin2(px)

(px)2
(A.30)

= lim
p→∞

sin2(px)

x2pπ
→ δ(x). (A.31)

This last limit is equivalent to Eq. 3.24, and is the limit originally used by Amiet [8].
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