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Abstract

Counter-flow configurations, whereby two streams of fluid are brought together from opposite

directions, are highly efficient mixers due to the high turbulence intensities that can be maintained.

In this paper, a simplified version of the problem is introduced that is amenable to direct numerical

simulation. The resulting turbulent flow problem is confined between two walls, with one non-zero

mean velocity component varying in the space direction normal to the wall, corresponding to a

simple shear flow. Compared to conventional channel flows, the mean flow is inflectional and the

maximum turbulence intensity relative to the maximum mean velocity is nearly an order of magni-

tude higher. The numerical requirements and turbulence properties of this configuration are first

determined. The Reynolds shear stress is required to vary linearly by the imposed forcing, with

a peak at the channel centreline. A similar behaviour is observed for the streamwise Reynolds

stress, the budget of which shows an approximately uniform distribution of dissipation, with large

contributions from production, pressure-strain and turbulent diffusion. A viscous sublayer is ob-

tained near the walls and with increasing Reynolds number small-scale streaks in the streamwise

momentum are observed, superimposed on the large-scale structures that buffet this region. When

the peak local mean Mach number reaches 0.55, turbulent Mach numbers of 0.6 are obtained,

indicating that this flow configuration can be useful to study compressibility effects on turbulence.

I. INTRODUCTION

Counter-flow shear layers, also known as counter-current flows, have been previously

recognised as efficient flow configurations for mixing [1–4], thrust vectoring (flow control)

[5–7] and combustion [8, 9]. Strykowski and Wilcoxon [2] showed that counter-current con-

figurations could be used to control axisymmetric jet flows and enhance their mixing charac-

teristics using global oscillations produced by self-excitation within shear layers. Strykowski

and colleagues [8, 9] also showed that a counter-current flow configuration can be used

in swirl combustors to efficiently control the turbulent burning velocity (flame speed) and

reduce pollutant emissions. The use of counter-flow configurations for fundamental flow

studies was first recognised by Humphrey and Li [1] and later by various researchers includ-

ing most notably Forliti et al. [3] who studied planar shear layers. A shear layer develops
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when two fluid streams interact at a different velocity. Shear flows are typically quantified

by the velocity ratio (r) and the normalised velocity ratio (λ) defined as r = U2/U1 and

λ = (U1 − U2)/(U1 + U2) [3]. Here, U1 and U2 denote the velocity magnitude of the two

flow streams (primary and secondary flows, respectively). A counter-flow forms when r < 0.

It has been shown theoretically [10] and experimentally [11] that a counter-flow shear layer

experiences transition from convective to absolute (global) instability when the secondary

reverse stream achieves a velocity magnitude of around 13% or higher of that of the primary

stream i.e. |r| > 0.136 or λ > 1.315 [3].

Humphrey and Li [1] studied vortex generation and collapse mechanisms at the interface

of two counter-flowing streams initially separated by splitter plates in a channel configuration

(r = −1.0) in the laboratory. The two flow streams were laminar with the Reynolds number,

based on the channel width and the mass average velocity in one of the flows, ranging from

370 to 1000. The use of such counter-flow channel configuration was found to be a relatively

simple but effective way to study vortex-induced mixing. However, their set-up resulted

in a stagnation zone which eventually disrupted the shear layer. Later, Humphrey et al.

[4] conducted a numerical study on counter-flow shear layers based on the experimental

setup of Humphrey and Li [1]. They investigated the effect of the Reynolds number using

symmetric and antisymmetric counter-flowing velocity profiles. It was concluded that the

convective transport at such Reynolds numbers was not able to remove vortical structures

due to their fast generation and amplification rate which consequently resulted in rotational

flow instabilities and a periodic breakdown.

Momentum-driven counter-flows, like the ones studied by Humphrey and Li [1], have

proven to be experimentally difficult to create. Therefore, suction-driven approaches, which

typically utilise suction-type centrifugal fans to drive the secondary backward stream, have

been used to create counter-flow shear layers as, for example, discussed in [3, 11]. Forliti et al.

[3] were the first to study the characteristics of planar counter-flows. In their wind tunnel set-

up, a splitter plate separated the primary stream and the suction-driven secondary stream.

Velocity ratios up to r = −0.3 with U1 = 31 m/s were investigated. A critical normalised

velocity ratio of λ = 1.3 was found for the onset of the transitional instability which was in

line with earlier theoretical predictions and experimental measurements. It was concluded

that locally unstable flows trigger the global instability in counter-flow shear layers [3].

A further potential application of counter-flow shear layers is in the study of compress-

ibility, which has major effects on the turbulent characteristics of fluid flows and is typically
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manifested through, among others, reduction in turbulence production, acoustic/entropy os-

cillations, shear layers growth suppression, shock formation and non-linear shock-turbulence

interactions [12–15]. Many aspects of the complex interactions between compressibility ef-

fects and turbulence structures are still not thoroughly understood. Traditional free shear

layers (such as jets, wakes and mixing layers) and Poiseuille/Couette type flows (such as

channel flows) have been utilized to study compressible turbulence [13, 15, 16]. Spatially-

developing mixing layer simulations are computationally expensive and are sensitive to far-

field and inflow/outflow boundary conditions [16, 17], but the basic compressibility effects

are captured in temporal simulation as, for example, discussed by Vreman et al. [18]. A

drawback of the temporal approach is that the shear layer thickens as time progresses and

large structures rapidly fill the computational domain. Using much larger domains is then in-

efficient for the early development stages of the flow. On the other hand, Poiseuille/Couette

type flows are relatively efficient to compute [19–21] and can achieve high Reynolds num-

bers for much lower cost than what is typically required for a spatially-developing boundary

layer [20]. Conventional channel flow is limited in terms of the fluctuating Mach number

that can be reached, due to the fact that the mean flow becomes hot, with the associated in-

crease in the speed of sound. A counter-flow channel configuration can potentially overcome

the barriers of the above-mentioned flows. Specifically, it retains a statistically station-

ary one-dimensional solution, in common with conventional channel flows, but contains an

inflectional mean flow, representative of free shear layers.

Another version of channel flow that produces counter-flows of the kind considered here

is from Waleffe [22]. That flow was devised to study exact solutions of the Navier-Stokes

equations in a confined setting and in that context it was important that the base flow was

linearly stable. In the present study, however, we introduce a new wall-bounded counter-flow

channel configuration and argue that, in contrast, its unstable base flow is more relevant to

free shear layers (jets, wakes and mixing layers) found in practice. Here, there are different

questions about organised structures that make such flows interesting from a theoretical

perspective. A recent example is the work of Mantič-Lugo and Gallaire [23, 24] that proposed

a self-consistent model of structures in backward-facing step configuration in which the time-

averaged flow is unstable.

In the present numerical study we first introduce the new counter-flow configuration and

the Direct Numerical Simulation (DNS) approach used to study it. Since this is the first time

such flows have been simulated, we spend some time on grid and domain size requirements
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and explain the flow structure (section III). Then in section IV we increase the Reynolds

number and examine the flow near the walls, where the near-wall turbulence is buffeted by

large shear layer structures. Finally, in section V the Mach number is increased to check

whether the configuration can sustain high turbulent Mach numbers.

II. METHODOLOGY

A. Configuration

DNS of compressible turbulent counter-flow channels with different domain sizes of the

form LxH × 2H × LzH are conducted. H denotes the channel half height and is set to

H = 1 in the current study. Lx and Lz are the domain lengths in the x (streamwise) and

z (spanwise) directions, respectively. Dimensionless streamwise and spanwise dimensions

range from 6 to 24 and 3 to 12, respectively. Figure 1 shows a schematic of the counter-flow

channel configuration introduced in this study. The streamwise and spanwise boundaries

are periodic, while isothermal (Tw = 1.0) no-slip walls are assigned to the boundaries in the

normal direction (y). In order to accurately resolve the near wall region, the grid is stretched

in the y direction using a stretching function with a stretching factor of 1.7 as discussed in

[25]. A tangent hyperbolic forcing function is used to drive the flow in opposite directions

on the upper and lower halves of the channel. This consequently forms an antisymmetric

mean “shear” velocity profile as shown schematically by the blue profile in Figure 1.

Unless otherwise stated, simulations are initialized using an approach originally developed

for DNS of conventional channel flows as discussed in [25]. Specifically, fluctuations based

on sine and cosine disturbances are superimposed over a mean classical turbulent velocity

profile in the x direction and in other directions only the sine and cosine disturbances are

imposed. All simulations are initially conducted for relatively long transient periods (as

long as t = 400) to obtain fully developed counter-flows before collecting the statistics for

an additional period of t = 1000.

B. Governing equations

The dimensionless governing equations of a compressible Newtonian fluid flow that con-

serve mass, momentum and energy are given as:
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FIG. 1. 2D schematic of the 3D counter-flow channel configuration. The streamwise and span-

wise (in-plane, in the z direction) boundaries are periodic. The top and bottom boundaries are

isothermal no-slip walls. The red arrows show the theoretical directions of the mean flow in the

upper and lower halves of the channel. Profiles of the hyperbolic tangent forcing term (c1) and the

mean streamwise velocity are shown by the black and blue arrows, respectively. The black dashed

line shows the channel centreline at y = 0. An alternative coordinate in the y direction relative to

the wall will be denoted ỹ (with ỹ = 0 is at the wall) and will be used to compute the normalised

wall distance (ỹ+).

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0, (1)

∂ρui
∂t

+
∂

∂xj
(ρuiuj + pδij − τij) + cjδij = 0, (2)

∂ρE

∂t
+

∂

∂xj
(ρEuj + ujp+ qj − uiτij) + cjuj = 0, (3)

where ρ represents the density, ui(i = 1, 2, 3) denotes the velocity component (u, v and w,

respectively) in the ith direction (x, y and z, respectively), E is the total energy, and p and

δ denote the pressure and the Kronecker delta, respectively. The equations are solved in

three spatial dimensions xi(i = 1, 2, 3). The forcing term cj drives the flow, with a value of

c1 = −c0 tanh(ax2) in the x1 direction and zero in other directions. The maximum value

is set as c0 = 1. Here −1 < x2 < 1, therefore equivalent driving forces are applied in

opposite directions to the upper and lower halves of the domain which consequently result

in the formation of a shear-forcing or counter-flow condition with a constant flow rate. The

coefficient a in the forcing term is positive with a value of a = 100 in the present study. The

viscous stress tensor (τij) and the heat flux (qj) are defined as:
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τij =
µ

Re

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
, (4)

qj =
−µ

(γ − 1)M2PrRe

∂T

∂xj
, (5)

where µ denotes the dynamic viscosity, T is the temperature, γ is the ratio of specific heats

with a value of γ = 1.4 here and Pr is the Prandtl number with a value of Pr = 0.7 in

this study. Also, Re and M denote the Reynolds and Mach numbers based on a reference

velocity deduced from the forcing as u∗ref =
√
c0H/〈ρ〉b, where 〈ρ〉b is the bulk-averaged

density, together with the channel half height H and the wall temperature and viscosity.

Angle brackets 〈〉 denote averages over the homogeneous spatial directions (x and z) and

time throughout this study. The additional subscript b here denotes an additional average

over y. All quantities are non-dimensionalised by the bulk-averaged density, the reference

velocity (u∗ref) and the wall temperature and viscosity. The dynamic viscosity is calculated

as µ = T 0.7. The temperature is calculated as T = pγM2/ρ. Here the pressure of an ideal

Newtonian fluid is obtained using an equation of state as:

p = (γ − 1)(ρE − 1

2
ρuiui). (6)

A fourth order finite-difference central scheme is used to discretise the governing equations

which are recast in split skew-symmetric formulations to improve numerical stability [26, 27].

For non-periodic boundaries a fourth order one-sided boundary closure is used [28, 29]. A

low-storage three-stage explicit Runge-Kutta scheme [30] is used to advance the solution in

time.

C. Computational framework

The governing equations are discretised and solved using OpenSBLI, a Python-based

automatic source code generation and parallel computing framework for finite difference

discretisation [31, 32]. It automatically generates C codes for the Oxford Parallel library

for Structured mesh solver (OPS), an embedded Domain Specific Language (DSL) with

associated libraries and pre-processors to generate parallel executables for applications on

multi-block structured meshes [33, 34]. OPS can target various computational architectures

based on CUDA or OpenCL for GPUs, MPI or OpenMP for CPUs and CUDA-MPI for mul-
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tiple GPUs [34]. A comprehensive discussion on the automatic derivation Python interface

of OpenSBLI and the automatic procedure of the OPS C code generation can be found in

[31, 32]. The results presented in this numerical study are obtained using single (CUDA)

and multiple (MPI+CUDA) NVIDIA P100 GPUs.

D. Problem specifications

In the present study various Mach and Reynolds number values, in addition to different

channel sizes and grid resolutions, are investigated. A list of test cases studied here is

presented in table I. First, the effect of the domain size and the grid resolution on the

turbulence characteristics and flow structures are evaluated with M = 0.1 and Re = 400.

The height of the channel is kept constant and different domain sizes have different lengths

in the streamwise x and spanwise z directions as 6 × 2 × 3, 12 × 2 × 6 and 24 × 2 × 12.

For the domain size study, a similar grid resolution is maintained between the different

cases (cases 1, 4 and 5 of table I) as shown in table II based on the normalised cell sizes

in different directions. The normalised wall distance value (ỹ+) is defined as ỹ+ = ỹReτ ,

where ỹ is the coordinate in the y direction relative to the wall. The normalised cell sizes

in different directions, ∆x+, ∆ỹ+ (the height of the first grid point above the wall) and

∆z+, are evaluated in a similar way to ỹ+. The friction Reynolds number is defined as

Reτ = 〈ρwall〉uτH/〈µwall〉 where uτ =
√
〈τwall〉/〈ρwall〉. The effect of the grid resolution is

studied for the 12× 2× 6 domain size based on test cases 2, 3 and 4 of table I.

The effect of the Reynolds number is investigated by conducting DNS of M = 0.1 counter-

flow cases with Re = 800 and Re = 1600 (cases 9 and 10) on the 6 × 2 × 3 domain size.

Finally, the friction Mach number is increased from M = 0.1 to 0.4 to introduce higher

compressibility effects. Various time steps from ∆t = 5×10−5 to 2×10−4 are used depending

on the particular case as provided in table I. In tables I and II, subscript p denotes the peak

values of the flow quantities listed. Also, 〈u〉b is the bulk velocity (the average of the absolute

mean streamwise velocity over the channel).

It should be noted that, in this numerical study, the single prime ′ denotes the turbulent

fluctuations which for an arbitrary flow quantity (φ) is defined as φ′ = φ − 〈φ〉. Moreover,

for the higher Mach number case, the Favre average is defined as {φ} = 〈ρφ〉/〈ρ〉 and the

double prime ′′ denotes the turbulent fluctuation with respect to the Favre average defined

as φ′′ = φ − {φ}. For the Reynolds stresses, the Favre average is related to the Reynolds
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average as 〈ρ〉{u′′i u′′j} = 〈ρuiuj〉 − 〈ρ〉〈ui〉〈uj〉. Also, the mean Mach number is defined as

〈M〉 =
√
〈u〉2 + 〈v〉2 + 〈w〉2/〈a〉, where a is the local speed of sound, while the turbulent

Mach number is defined as Mt =
√
〈u′u′〉+ 〈v′v′〉+ 〈w′w′〉/〈a〉.

TABLE I. DNS counter-flow channel cases.

Case M Re Domain Grid ∆t (×10−4) 〈u〉b 〈u〉p 〈M〉p Mtp

1 0.1 400 6× 2× 3 120× 151× 100 2.0 1.261 1.885 0.182 0.211

2 0.1 400 12× 2× 6 192× 151× 160 2.0 1.400 2.147 0.206 0.213

3 0.1 400 12× 2× 6 240× 131× 200 2.0 1.410 2.162 0.207 0.213

4 0.1 400 12× 2× 6 240× 151× 200 2.0 1.407 2.159 0.207 0.213

5 0.1 400 24× 2× 12 480× 151× 400 2.0 1.391 2.130 0.204 0.214

6 0.4 400 12× 2× 6 240× 151× 200 0.5 1.364 2.047 0.556 0.595

7 0.1 800 6× 2× 3 240× 301× 200 1.0 1.359 2.069 0.196 0.216

8 0.1 1600 6× 2× 3 480× 601× 400 0.5 1.401 2.124 0.198 0.217

TABLE II. Computational parameters of the counter-flow cases.

Case M Re Reτ uτ ∆x+ ∆ỹ+ ∆z+ 〈u〉+p

1 0.1 400 124.474 0.286 6.223 0.385 3.734 6.578

2 0.1 400 130.841 0.299 8.177 0.404 4.906 7.182

3 0.1 400 131.376 0.299 6.568 0.470 3.941 7.224

4 0.1 400 131.482 0.299 6.574 0.406 3.944 7.209

5 0.1 400 130.745 0.298 6.537 0.404 3.922 7.145

6 0.4 400 193.835 0.210 9.691 0.599 5.815 9.716

7 0.1 800 225.726 0.251 5.643 0.345 3.385 8.218

8 0.1 1600 407.819 0.219 5.097 0.310 3.058 9.671

III. FLOW STRUCTURES AND STATISTICS

A. Flow structure

Contours of the instantaneous streamwise velocity fluctuation for the counter-flow case

with the 24 × 2 × 12 domain size are plotted on three x − z planes at different heights in
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figure 2. Also, contours of the instantaneous streamwise velocity (u) for the same counter-

flow case on different x − y and y − z planes are shown in figure 3. The horizontal planes

of figure 2 with y = 0, y ≈ 0.791 and y ≈ 0.905 cut through (a) the channel centreline,

(b) the peak of the mean streamwise velocity and (c) the near-wall region (ỹ+ ≈ 12),

respectively. At y = 0, elongated streaks with opposing flow directions are seen. Towards the

upper wall the streaks disappear, in contrast to conventional channel flow where streamwise

streaks would be observed near the wall. The high velocity of the fluctuating centreline

streaks is associated with significant ejections of the flow from one half into the other half

of the counter-flow channel, something which is clear in the velocity contours shown in

figure 3 and also the Q-criterion iso-surfaces shown in figure 4. From the iso-surfaces of

figure 4, which are coloured by the magnitude of the instantaneous streamwsie velocity,

it is clear that the counter-flow configuration produces highly complex three-dimensional

vortical turbulent structures particularly in the vicinity of the channel centreline. The

existence of the elongated streamwise streaks seen in y = 0 snapshot of figure 2 are also

recognisable from the spatial distribution of the Q iso-surfaces of figure 4. In fact, such

complex vortical structures are mainly generated near the channel centreline, where the

counter-flowing streaks break down. A level of spanwise flow coherence is seen in figure 2

(also seen in similar plots for the case with a 12× 2× 6 domain size that is not shown here).

Iso-surfaces of the pressure (not shown here) revealed that the 6 × 2 × 3 case exhibited a

quite different flow pattern with a large vortical structure spanning the entire domain but

this was not clearly present for wider domains. Quantitative comparisons will be presented

in the next section, but there is a substantial domain-dependency in the flow structures

between 6× 2× 3 and 12× 2× 6 domain sizes.

Figure 5 shows the two-point correlations for the fluctuating part of the velocity compo-

nents as a function of the spanwise distance (z) at different channel heights for the test case

with a 24 × 2 × 12 domain size. The correlations plotted in figure 5 are accumulated and

averaged over a period of t ≈ 120. The values are also spatially averaged over all grid points

in the x direction at each y location. The two-point correlation is evaluated in the spanwise

direction with a reference point at z = 0 as [35]:

R(z)u′iu′i =
〈u′i(0)u′i(z)〉√
〈u′2i (0)〉〈u′2i (z)〉

. (7)

All two-point correlations decay to zero which indicate that the size of the channel is
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(c)

(b)

(a)

FIG. 2. Instantaneous field of the streamwise velocity fluctuation (u′ = u− 〈u〉) on x− z planes

at different channel heights for the counter-flow cases with M = 0.1, Re = 400 and a 24 × 2× 12

domain size at t = 1400. (a): y = 0.0, (b): y ≈ 0.791 (ỹ+ ≈ 27) and (c): y ≈ 0.905 (ỹ+ ≈ 12).

large enough in the spanwise direction [36]. The case with a 12× 2× 6 domain size exhibits

a very close flow characteristics to the case with a 24 × 2 × 12 domain size in terms of the

flow structures, mean and turbulent flow statistics as we shall see in the next subsection.

Therefore, it is selected to investigate the effect of the Reynolds and Mach numbers with a

reasonable computational cost in this study.
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FIG. 3. Instantaneous field of the streamwise velocity (u) on various planes for the counter-flow

case with M = 0.1, Re = 400 and a 24 × 2 × 12 domain size at t = 1400. The red lines show the

outlines of the x− z plane cutting through the channel centreline (the figure shows the full height

of the channel from y = −1 to y = 1).

B. Mean flow and turbulence statistics

In this subsection the effect of the domain size and grid resolution is investigated using

the test cases with M = 0.1 and Re = 400 (cases 1 to 5 of table I). Figure 6 shows a

direct comparison between those cases based on the mean flow streamwise velocity and the

Reynolds stresses. Please note that in the graphs provided in this paper, the markers (if

applicable) are shown for a limited number of grid points as specified in the captions. Except

for the test case with the smallest domain size (6×2×3) the other test cases exhibit very close

profiles and peak values. Case 1 with a domain size of 6× 2× 3 has lower peak streamwise

velocity and mean Mach number by around 12.7% and 12.0%, respectively compared to case

4 which has a larger domain size (12× 2× 6) but a similar grid resolution. With respect to

the turbulent Mach number, all cases exhibit very close profiles and peak values around 0.21

as provided in table I. With the peak mean Mach number also around 0.21, these cases can

be considered effectively incompressible, albeit with approximately a 10% variation in mean

density and temperature that would need to be taken into account in modelling this flow.

Over the core of the channel (out to y = 0.75), the mean velocity shows an approximately

12



(a)

(b)

FIG. 4. (a): Iso-surfaces of the Q-criterion with an iso-value of Qiso = 200 coloured by the

magnitude of the streamwise velocity (u) for the counter-flow case with M = 0.1, Re = 400 and a

24× 2× 12 domain size at t = 1400. (b): Zoomed view of the region within the dashed rectangle

in (a). The legend limits are cut off for a better visualisation. The light violet lines in (a) show the

outlines of the x− z plane cutting through the channel centreline (the figure shows the full height

of the channel from y = −1 to y = 1).

power-law behaviour given by 〈u〉 = 3|y|0.8.

As shown in figure 6, for the streamwise Reynolds stress 〈u′u′〉, all cases with different

grid resolution show very similar profiles with comparable peak values. Comparing with
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(a) (b) (c)

(d) (e) (f)

FIG. 5. The two-point correlations of u′, v′ and w′ at different channel heights for the counter-flow

case with a 24× 2× 12 domain size. (a): y = 0.0; (b): y ≈ 0.12; (c): y ≈ 0.35; (d): y ≈ 0.78; (e):

y ≈ 0.90; (f): y ≈ 0.997 (first grid point above the wall).

the cases with larger domain sizes, the small-domain case exhibits around 4.0% higher and

11.0% lower peak values of the wall-normal 〈v′v′〉 and the spanwise 〈w′w′〉 Reynolds stresses,

respectively. However, 〈u′u′〉 is more dominant than the other two normal stresses, and the

overall outcome is the very similar peak values of the turbulent Mach number, as shown in

table I.

An interesting feature of figure 6 is the exactly linear behaviour of the shear stress and the

approximately linear behaviour of the streamwise normal stress. As with conventional chan-

nel flow the linear variation of the shear stress derives from the imposed forcing. Neglecting

the viscous terms, the momentum equation for such parallel mean flow reduces to:

d

dy
〈ρuv〉 − tanh(ay) = 0. (8)

Integrating equation 8 gives:

〈ρuv〉 − 1

a
ln(| cosh(ay)|) + C = 0, (9)

where the constant C can be obtained by applying a no-slip boundary condition at the walls

i.e. ρuv = 0 at y = ±1. For a = 10 and a = 100 the constant is C ≈ 0.930 and C ≈ 0.993,

14



FIG. 6. Mean velocity and Reynolds stresses of the counter-flow cases with M = 0.1 and Re = 400

on different domain sizes and grid resolutions. Please note that for the 〈u〉+ sub-figure, the data is

averaged over the two halves of the channel and ỹ+ is relative to the wall. The markers are shown

for every 10 grid points.

respectively. Equation 9 is plotted in figure 7 for different a values along with 〈ρuv〉 obtained

by the present DNS for case 4 of table I (M = 0.1 and Re = 400). The DNS has lower values
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compared to equation 9 due to the viscous effects close to the walls, which were neglected.

The DNS case has a friction velocity of uτ ≈ 0.3 as shown in table II which gives a wall shear

stress of τwall ≈ 0.1. When this value is added to the value of 〈ρuv〉 obtained by equation

9, the shifted curves can then be seen to match the DNS, also showing that the statistical

averaging time is long enough to get well-converged statistics.

−1.0 −0.5 0.0 0.5 1.0
y

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

−〈 ρ
u
v〉

Exact (a=10)

Exact (a=100)

Exact (a=10), Shifted
Exact (a=100), Shifted
DNS (a=100)

FIG. 7. A direct comparison between the exact solution of 〈ρuv〉 based on equation 9 and the

present DNS with M = 0.1 and Re = 400 (case 4 of table I). The markers are shown for every 10

grid points.

The approximate linearity of the streamwise normal stress (〈u′u′〉) motivated an investi-

gation of the associated stress transport equation, which can be written as:

0.0 = P11 − ε11 + Π11 +Dt11 +Dv11, (10)

where, P11, ε11, Π11, Dt11 and Dv11 are production, dissipation, pressure strain, turbulent

diffusion and viscous diffusion terms, respectively, defined as:

P11 = −2〈u′v′〉∂〈u〉
∂y

, (11)

ε11 = 2〈du
′

dx
τ ′11 +

du′

dy
τ ′12 +

du′

dz
τ ′13〉, (12)
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Π11 = 2〈p′du
′

dx
〉, (13)

Dt11 = −d〈u
′u′v′〉
dy

, (14)

Dv11 =
d

dy

(
1

Re

d〈u′u′〉
dy

)
. (15)

The above budget terms are plotted in figure 8 for the counter-flow cases with 6×2×3 and

12×2×6 domain sizes (M = 0.1 and Re = 400). The budget terms for a steady parallel mean

flow sum up to zero as demonstrated by the present DNS. It can also be seen in figure 8 that

increasing the domain dimensions does not have a significant influence on the budget terms.

The peak of the production term is at the channel centreline, which is consistent with the

profiles of the Reynolds stresses as shown in figure 6. The dissipation term is approximately

constant across the channel core, while the diffusion terms are only of consequence near the

walls. The flow is clearly far from an equilibrium state between production and dissipation,

with the dissipation only the fourth largest term near the centreline, where the main balance

to the production comes from the turbulent diffusion and the pressure strain term. From

the perspective of the stress transport equation, the linearity of the normal stress seems to

be due to a complicated balance in the spatial distribution of the production, pressure strain

and turbulent diffusion terms which change rapidly in the wall-normal direction.

IV. EFFECT OF THE REYNOLDS NUMBER

A. Mean flow and turbulence statistics

Figure 9 shows a direct comparison between the cases with a 6 × 2 × 3 domain size,

M = 0.1 and Re = 400, 800 and 1600 (cases 1, 7 and 8 of table I) based on various mean

flow quantities, including the streamwise velocity 〈u〉, temperature 〈T 〉, density 〈ρ〉 and Mach

number 〈M〉, and also the turbulent Mach number Mt. Increasing Re does not significantly

affect the mean flow. For instance, the peak mean streamwise velocity increases by around

9.8% and 12.7% when Re increases to 800 and 1600, respectively. Moreover, the peak

turbulent Mach number only increases by around 7.7% and 8.8% when Re increases to 800

and 1600, respectively. When plotted in wall units it can be seen that the viscous sub-layer

extends outwards, but at the highest Re the peak 〈u〉+ remains under 10, increasing by 1.5
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FIG. 8. Energy budget of the streamwise normal stress 〈u′u′〉 and its terms for the cases with

M = 0.1, Re = 400 and left: domain size of 6 × 2 × 3 and right: domain size of 12 × 2 × 6. The

markers are shown for every 10 grid points.

for each doubling of Re. The mean temperature is seen to be more sensitive than the mean

density, indicating that the mean pressure is increasing as the Reynolds number increases.

From the wall-normal momentum equation this would equate to a change in the wall-normal

turbulent stress, as seen in Figure 10, which provides the Reynolds stresses. However, the

dependency of the mean temperature to the Reynolds number is quite small and the peak

mean temperature at the channel centreline increases by ∼ 3.5% as the Reynolds number is

doubled. On the other hand, the dependency of the mean density to the Reynolds is much

lower (almost not noticeable) compared to that of the mean temperature. All the normal

stresses exhibit more sensitivity to Re and their peak values noticeably increase as the Re

increases, with values shown in table III. Both the normal stresses based on wall-parallel

fluctuations show the development of a near-wall peak that indicates the emergence of a

separate mechanism of near-wall turbulence production which will be studied further in the

next subsection. The shear stress is again linear, in accordance with the imposed forcing,

with a slight increase in the centreline shear stress as Re increases.

B. Flow structure

To complement the statistical picture obtained in the previous subsection, it is also useful

to consider some instantaneous flowfields. Figure 11 shows the instantaneous streamwise

18



FIG. 9. Mean velocity, temperature, density and Mach number profiles and the turbulent Mach

number (Mt) profile of the counter-flow cases with M = 0.1 and Re = 400, 800 and 1600. Please

note that for the 〈u〉+ sub-figure, the data is averaged over the two halves of the channel and ỹ+ is

relative to the wall. The markers are shown for every 10, 20 and 40 grid points for the cases with

Re = 400, 800 and 1600, respectively.

velocity on x−z planes at different channel heights. At the lowest Re, the flow near the wall
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FIG. 10. Reynolds stresses for the counter-flow cases with M = 0.1 and Re = 400, 800 and 1600.

The markers are shown for every 10, 20 and 40 grid points for the cases with Re = 400, 800 and

1600, respectively.

TABLE III. Peak values of the Reynolds stresses of the cases with Re = 400, 800 and 1600.

Case Re 〈u′u′〉p 〈v′v′〉p 〈w′w′〉p −〈u′v′〉p

1 400 2.630 1.074 1.133 0.894

7 800 2.927 1.113 1.203 0.922

8 1600 2.959 1.211 1.317 0.943

is buffeted by the turbulence originating at the centreline. In particular it is noteworthy that

significant regions of reverse flow are present near the wall. This is something that develops

in boundary-layer flows at high enough Re, as the turbulence intensity in the log-law region

of the boundary layer increases above that of the self-sustaining near-wall turbulence. The

present configuration contains this phenomenon even at low Re.
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Additional smaller-scale streaky structures are visible at ỹ+ = 12 for the case with Re =

1600 (and less evidently on the same plane height for the case with Re = 800). These streaks

are superimposed on the large-scale unsteadiness, but are of a scale that suggests they are

connected to the usual streaks seen at the edge of the viscous sublayer in turbulent channel

and boundary layer flows. For reference, given that Reτ is approximately 400, the near-wall

streak width in the y direction would be δy = 0.25 in the channel scale shown in figure 11.

The additional turbulence intensity from these features would explain the increases in 〈u′u′〉

and 〈w′w′〉 seen in Figure 10. It was previously noted that the peak 〈u〉+ is just under 10,

with the peak at ỹ+ = 60. This is just below what would be required to sustain a near-wall

turbulence cycle, so it seems likely that the streak here form as a response to the outer-layer

forcing. Additional evidence for this is that the streaks that are visible in figure 11 clearly

align with the imposed unsteady flow, rather than being strictly aligned with the x axis.

Nevertheless, it appears that one would not have to go much higher in Re (perhaps one

more doubling) before a self-sustaining near-wall turbulence cycle would be present, giving

an additional means of turbulence production on top of the main inflectional shear layer.

(a)

(b)

FIG. 11. Instantaneous field of the streamwise velocity (u) on x − z planes at different channel

heights for the counter-flow cases with M = 0.1 and Re = 400 (left), Re = 800 (middle) and

Re = 1600 (right) at t = 400. (a): y = 0.0 (channel centre) and (b): ỹ+ = 12.
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V. EFFECT OF THE MACH NUMBER

Figure 12 shows a direct comparison between the cases with a 12×2×6 domain size and

M = 0.1 and 0.4 (cases 4 and 6 of table I) based on various mean flow quantities, including

the streamwise velocity {u}, temperature 〈T 〉, density 〈ρ〉 and Mach number 〈M〉, and also

the turbulent Mach number Mt. Additionally, figure 13 provides the Favre Reynolds stresses

of the same counter-flow cases. As shown in table II, when M increases from 0.1 to 0.4 the

friction Reynolds number, Reτ , increases by around 47.0%. Also, the friction velocity, uτ ,

reduces by around 29.7%, and the peak mean normalised velocity increases by 34.8%. The

flow significantly heats up when M increases, for instance the peak mean temperature is

around 2.3 times higher for the case with M = 0.4 compared to the case with M = 0.1.

Mean and turbulent Mach numbers also show significant increases when M increases. The

peak turbulent Mach number increases from 0.21 to 0.6 when M increases from 0.1 to 0.4.

With respect to the normal stresses, as shown in figure 13, by increasing the Mach number,

the peak streamwise stress increases and the peaks of the other two normal stresses reduce.

For instance, as shown in table IV, the peak 〈ρ〉{u′′u′′} increases by around 0.5% when M

increases from 0.1 to 0.4. The Favre shear stress 〈ρ〉{u′′v′′} remains almost intact when the

Mach number increase and varies linearly with y as also seen in the previous sections.

Figure 14 shows the vorticity fluctuation (ω′ =
√
〈ω2

x + ω2
y + ω2

z〉) and the components of

the vorticity turbulent fluctuations for the cases with different Mach numbers. By increasing

the Mach number, values of the vorticity fluctuation and the vorticity turbulent fluctuations

reduce noticeably. This trend is comparable to the relationship between the spanwise and

wall-normal Reynolds stresses and the Mach number as seen in figure 13. The vorticity

reduction is a sign for the reduction of three-dimensional structures in the flow and hence

turbulence stabilisation.

In a conventional plane channel flow, Coleman et al [20] were able to reach turbulent

Mach numbers around 0.35 for which the changes relative to incompressible flow were ex-

plainable based on the mean density changes. The higher fluctuating Mach number found

in the counter-flow channel proposed in the present study suggests more scope for exploring

true compressibility effects. Indeed, a further increase in the Mach number to M = 0.7

was found to give turbulent flow containing eddy shocklets with a turbulent Mach number

beyond Mt = 0.9. This then necessitates a change to a shock-capturing numerical method

requiring additional verifications, hence being better deferred to a future publication. Mild
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FIG. 12. Mean velocity, temperature, density and Mach number profiles and the turbulent Mach

number (Mt) profile of the counter-flow cases with M = 0.1 and 0.4 (Re = 400). Please note that

for the 〈u〉+ sub-figure, the data is averaged over the two halves of the channel and ỹ+ is relative

to the wall. The markers are shown for every 10 grid points.

compressibility effects are observed up to M = 0.4 which can be quantified using the dilata-

tion defined as θ =
∂u

∂x
+
∂v

∂y
+
∂w

∂z
. Specifically, negative values of the dilatation (below a
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FIG. 13. Favre Reynolds stresses for the counter-flow cases with M = 0.1 and 0.4 (Re = 400).

The markers are shown for every 10 grid points.

certain threshold) can be associated with the existence of compression waves and/or shock-

lets [37, 38]. Figure 15 shows the Probability Density Function (PDF) of the dilatation (θ)

on a x− z plane at y ≈ 0.51 for the counter-flow cases with M = 0.1 and 0.4. It is observed

that the dilatation trend widens when moving from M = 0.1 to M = 0.4 but stays almost

symmetric indicating that shocklets are not detected in the flow.

TABLE IV. Peak values of the Favre stresses of the counter-flow cases with Re = 400 and M = 0.1

and 0.4.

Case M 〈ρ〉{u′′u′′}p 〈ρ〉{v′′v′′}p 〈ρ〉{w′′w′′}p −〈ρ〉{u′′v′′}p

4 0.1 2.638 1.019 1.274 0.875

6 0.4 2.650 0.847 1.121 0.855
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FIG. 14. Vorticity fluctuation and the components of the vorticity turbulent fluctuations of the

counter-flow cases with M = 0.1 and 0.4 (Re = 400). The markers are shown for every 10 grid

points.

VI. CONCLUSIONS

A counter-flow turbulent channel configuration, amenable to simulation and modelling,

has been introduced. The counter-flow channel has periodic streamwise and spanwise bound-

aries and isothermal no-slip walls and is driven by a mean pressure gradient introduced by

adding a forcing term to the streamwise momentum and total energy equations. The forcing

term was a tangent hyperbolic function that forced the flow in opposite directions on the

upper and lower halves of the channel. Direct numerical simulations of the counter-flow

configuration were performed for combinations of various domains sizes (6×2×3, 12×2×6

and 24× 2× 12), grid resolutions, friction Mach numbers (M = 0.1 and 0.4) and Reynolds

numbers (Re = 400, 800 and 1600). The OpenSBLI framework, a high-order finite difference

automatic code generation computational fluid dynamics framework, was used to perform
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FIG. 15. Probability density of the dilatation on a x− z plane at y ≈ 0.51 and t = 1400 for the

counter-flow cases with M = 0.1 and 0.4 (Re = 400).

the high-fidelity simulations.

The counter-flow results showed a linear shear-stress behaviour consistent with the forcing

and also an approximately linear streamwise normal stress behaviour over 75% of the channel

width. In some sense this mimics high Reynolds turbulent boundary layers giving reverse

flow near the wall, with near-wall streaks aligned with disturbances further away from the

wall. As the Reynolds number increased, the near-wall streaks became more pronounced,

leading to local peaks in the streamwise and spanwise normal stresses. With an increase

of the Mach number up to M = 0.4, it was shown that turbulent Mach numbers up to 0.6

could be obtained. Thus the counter-flow configuration seems to provide a useful framework

to study some of the fundamental physics associated with high Reynolds number and high

Mach number turbulent flows, as well as being a model problem exhibiting a high degree of

sustained turbulent mixing.

The DNS counter-flow channel results discussed in this paper are openly available in

Zenodo at https://doi.org/10.5281/zenodo.4635349.
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