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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING

ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Garvin Haslett

Many inherently spatial systems have been represented using networks. This thesis

contributes to the understanding of such networks by investigating the effect of imposing

spatial constraints upon both the process network formation and dynamics that occur

upon the network.

Degree heterogeneity is a feature of several real world networks. However, edge length is

typically constrained in a spatial network, preventing the formation of the high degree

nodes that are characteristic of degree heterogeneity. We instead constrain the network

to be planar, producing networks that have a scale-free degree distribution. This model

turns out to be a variant of random Apollonian growth and a one parameter family

of models which incorporates the planar model alongside existing Apollonian models is

proposed.

We identify the REDS model as a spatial model that does constrain edge length and

exhibits a form of degree heterogeneity, albeit a weaker form than the scale-free distri-

bution. REDS seeks to model social network formation by conceiving its nodes as agents

who disburse a personal budget in order to maintain social bonds. We strengthen the

model’s plausibility by introducing uncertainty into the agents’ budget expenditure de-

cisions. The degree heterogeneity that was readily observed in the original model is now

recovered only where decisions are subject to high levels of uncertainty.

An evolutionary game is a process that lends itself to simulation upon a spatial network.

This is due to the fact that a spatially constrained population is more likely to exhibit

network reciprocity known to result in increased levels of co-operation. We find those

experiments within existing literature to be unsatisfactory in that network connectivity

is assumed a priori. We address this issue by further extending the REDS model such

that its nodes play prisoner’s dilemma with their network neighbours. The budget with

which agents form connections is now earned by accumulating payoffs from the dilemma

game. This allows for a network topology that is now endogenous to the model. This

model is further distinguished from prior coevolutinary models by its agents’ ignorance

of the details of their individual strategic interactions.
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Chapter 1

Introduction

The end of the last century saw the establishment and rapid growth of network sci-

ence. This field has its roots in the mathematical discipline of graph theory and, when

combined with increasing computing power, has offered insights into, e.g., neuroscience

(Bullmore and Sporns, 2009), crime (Duijn et al., 2014), human language (Stella and

Brede, 2015) and development economics (Brummitt et al., 2017).

A discernible sub-field of network science is that of spatial networks. In the most general

formulation, spatial networks are those whose nodes are embedded in a metric space. In

this thesis, we confine our interest to networks with nodes that have a position in R2 and

distances between them are described by the Euclidean metric. Application domains in

this regard include social networks (Liljeros et al., 2001; Jones and Handcock, 2003),

cities (Levinson, 2012; Rui et al., 2013; Gudmundsson and Mohajeri, 2013), electronic

circuits (Miralles et al., 2010; Tan et al., 2014), wireless networks (Huson and Sen, 1995;

Lotker and Peleg, 2010) and leaf venation (Corson, 2010; Katifori et al., 2010).

In the examples cited, a graph is used as an intuitive representation of the system.

Such representations can be allied with network modelling so as to illuminate both the

formation of the graph and processes that take place upon its nodes. This thesis uses

this approach to contribute to the understanding of spatial networks by introducing

three models. The first two of these models speak to the issue of degree heterogeneity,

i.e., the extent to which there are multiple scales for the number of connections that a

node within the network may have. Of these two models, one of them lends itself to the

investigation of social interaction and we subsequently deploy it to address questions in

evolutionary theory.

In an influential review of the field, Barthélemy argued that the distinguishing feature of

many spatial networks is that a cost is associated with the length of an edge (Barthélemy,

2011). Where a network model respects this constraint, its nodes are confined to form-

ing connections within their immediate vicinity. Hence, in models with nodes uniformly

1
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distributed upon the plane, hub nodes cannot form. Conversely, a central claim within

network science is that many real world networks have a heterogeneous degree distribu-

tion (Caldarelli, 2007). Consequently, where spatial models have been used to describe

networks with a heterogeneous degree distribution, the majority of studies have either

supplied a power law as an input to the model, used an inhomogeneous distribution of

nodes upon the plane or exploited topological features of the network (Hayashi, 2006).

Furthermore, many spatial networks of interest are almost planar, e.g., a road network,

and investigating this property in more depth has therefore been identified as a relevant

goal for network science (Newman, 2010). Nonetheless, little, if any attention has been

paid in the literature to the issue of planarity. Our first contribution speaks to both

of these issues with a model, named planar growth (PG), that conserves planarity and

results in a scale-free degree distribution, i.e., the degree distribution follows a power law

and nodes therefore exhibit connectivity at all scales. We provide theoretical grounding

for this contribution by reformulating planar growth as a process of repeated subdivision

of the plane. This new process bears much similarity to Apollonian networks (Doye and

Massen, 2005; Andrade Jr et al., 2005) and, hence, is named Apollonian Planar Growth

(APG).

We have named social networks as an application domain with a relevant spatial em-

bedding. Despite the social world being a topic with a considerable history in network

science, there are few examples of spatial network models in which the nodes act as

agents actively engaged in the task of forming social connections. Within this class, the

REDS (Reach, Energy, Distance, Synergy) model (Antonioni et al., 2014; Iotti et al.,

2017) is distinctive in that its nodes exhibit agency by evaluating their capacity, or

lack thereof, to maintain the social connections they intend to make. The degree dis-

tribution produced by this model is notable in that it is bi-modal, i.e., we can identify

two classes of nodes, some with a small number of connections and the remainder with

a large number of connections. Thus, the REDS model exhibits degree heterogeneity

across two scales. This aspect of REDS networks is of especial significance since degree

heterogeneity is regarded as a defining feature of social networks (Amaral et al., 2000).

Agents making decisions in the REDS model do so with complete information with re-

spect to the costs of edge formation. This can be seen by the fact that the agents neither

inadvertently extend themselves beyond their inherent capacity to form social bonds nor

subsequently re-evaluate their current bonds. By contrast, the reality of a social net-

work is that agents form and reliquish connections in response to the opportunities and

demands of the social world. Our second contribution incorporates this insight into the

model by introducing uncertainty into an agent’s decision to maintain a connection and

to allow for the appraisal of existing connections. This new model, which we name the

stochastic REDS model, is a dynamic one in which edges are perpetually updated. This

contrasts with the original model which had a clearly defined stopping condition and so

produced static networks.
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A chief consequence of the stochastic REDS model is that the heterogeneous degree

distribution is observed in more restricted circumstances. Whereas, the original model

consistently produced networks with the bi-modal distribution within a region of its

parameter space, the bi-modal degree distribution only obtains for the stochastic model

when the uncertainty is high. Furthermore, where a bi-modal degree distribution is

observed within a stochastic REDS network, high degree nodes form along the boundary

of the space; a feature not observed in the REDS model.

Where a network is understood to represent interactions between social agents, the

nature of those interactions are, in themselves, a topic of interest. These interactions

are not always harmonious, to the extent that many social situations entail conflict

between the immediate self interest of the individual and the overall welfare of the group

(Van Lange et al., 2013). Such interactions are known as social dilemmas, the best known

of which is the prisoner’s dilemma. Analytical insight into the prisoner’s dilemma and

its evolutionary dynamics can be achieved via game theory and a mathematical model

known as the replicator equation. Formalising the dilemma in this manner leads to the

conclusion that within a rational population, agents will, under the pressure of natural

selection, prioritise self interest ahead of the welfare of the group (Taylor and Jonker,

1978); a finding that is at odds with the numerous examples of co-operation observed in

both the biological and social sciences (Wilkinson, 1984; Gomes et al., 2009; Fraser and

Bugnyar, 2012).

One approach to resolving this contradiction is to note that the replicator equation

assumes that its population is well mixed, i.e., its agents play the game with all other

agents. When the population is instead structured such that co-operators are more likely

to interact with each other, the pursuit of self interest is relinquished by some, or even

all, of the agents. This phenomenon is known as network reciprocity (Nowak, 2006)

and has a direct connection with spatial networks in that the structure of interacting co-

operators can be realised in an intuitive manner when co-operative agents are co-located

(Nowak et al., 1994).

co-operation can be further enhanced in network models by the introduction of coevolu-

tionary mechanisms, i.e., the modification of network connections in tandem with agent

strategy updates (Perc and Szolnoki, 2010). However, close reading of this literature re-

veals that the number of connections is an a priori trait of coevolutionary models, with

the final arrangement attained by rewiring the initial network. This approach is counter

to the everyday intuition that interactions ensue from those situations that demand

them, as opposed to aligning with a fixed global capacity for mutual reaction. Thus,

we highlight the need for coevolutionary models in which connectivity is established

endogenously.

A further issue is that if a coevolutionary model is to promote the co-operative strat-

egy, the network structure’s development needs to favour the formation of links between
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co-operators. In order to achieve this outcome, agents in these models are attributed

sufficient cognitive capacity so as to assess details of individual interactions, e.g., knowl-

edge of a neighbour’s strategy. However, many living creatures, e.g. microbes, non-social

animals, lack any such capacity. Furthermore, in human social interactions it is often

unclear how credit for an outcome should be assigned. Thus, there is a need for co-

evolutionary models with more limited cognitive abilities would better represent these

situations.

In our final contribution, the coevolutionary REDS model, we address both these issues

with a further extension of the stochastic REDS model. In the coevolutionary REDS

model, payoffs from the evolutionary game are a resource that agents make use of when

forming connections with others, thereby allowing for the endogenous growth of con-

nectivity. Furthermore, since this model is based upon the stochastic REDS model, its

agents make connections based upon their incomplete understanding of their capacity

to form new connections. Since this capacity is determined by the resource earned by

the agent from the evolutionary game, we argue that the coevolutionary REDS agents

rely upon a summary of their interactions as opposed to awareness of the actions of

individual neighbours.

A key element of any coevolutionary model is the time scale over which network connec-

tions are modified relative to the update of node strategy. We investigate the effect of

varying this scale for the coevolutionary REDS and identify the regions of the model’s

parameter space within which co-operation either dominates the model or collapses en-

tirely. Between these two extremes we further identify regions where the dynamics result

in the cyclical variation between coooperation and defection within the model.

1.1 Structure

The material which we have just discussed is divided into five chapters as follows:

Chapter 2: Literature Review. The second chapter reviews relevant the literature

and is organised as it pertains to the individual contributions. The issues addressed by

each model are placed in context and discussed in more detail. The literature review

concludes, in section 3, with a summary of the research aims and motivates the questions

addressed in light of the preceding discussion.

Chapter 3: Planar growth. Planar growth is a model in which edges are not allowed

to cross. Additionally, this chapter demonstrates that planar growth model can be

understood as a variant of random Apollonian growth.

Chapter 4: Stochastic REDS model. In the REDS model agents pay for connections

and do so with complete information as to their budget and the cost of an edge. We
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recreate this model and then, in the stochastic REDS model, modify the connection

decisions so as to make them subject to uncertainty.

Chapter 5: Coevolutionary REDS model. The stochastic REDS model is extended

so that its nodes play the prisoner’s dilemma with their neighbours. The payoffs from

the dilemma game are used as the budget with which the nodes in the stochastic REDS

model form connections. Since the process of network formation occurs in tandem

with updates to the strategy with which agents play the game we term this model the

coevolutionary REDS model.

Chapter 6: Conclusions The final chapter summarises the contributions made by

this thesis towards the modelling of spatial networks. Suggestions are made for future

work.





Chapter 2

Literature Review

The introductory chapter identified three contributions that this thesis makes to the

modelling of spatially embedded networks. These are a growth model that results in a

scale free network, a model of uncertain agents forming a social network and a coevolu-

tionary model in which uncertain agents earn the resources required to form a network

from a social dilemma’s payoffs. In this section we now review the literature relevant to

each of these three contributions.

In what follows we use the term graph interchangeably with network. Formally, a graph,

Γ, is defined by two sets; the first V , is the nodes. A connection between a pair of nodes,

i, j ∈ V is represented as (i, j) ∈ E, where E is the second set, the edges.

In section 2.1 we review existing spatial models that result in a scale-free network,

highlighting that we can only find one example where the model uniformly distributes

the nodes upon the plane. In section 2.2 we review examples of social network models

that are spatially embedded. Section 2.3 introduces the evolution of co-operation in more

detail before reviewing the literature, with a particular focus on the issues addressed in

this thesis. Finally, section 3 presents our research aims in the context of this literature.

2.1 Spatially embedded scale-free network models

One of the most fundamental ways in which a network can be characterised is the

degree distribution, which is the probability that a randomly chosen node i has ki

connections to other nodes and is typically written as P (k). Many empirical studies

have indicated that real world networks are characterised by a heterogeneous degree

distribution (Amaral et al., 2000; Mislove et al., 2007; Agler et al., 2016), i.e., the

distribution cannot characterised by a single scale for the average degree of a node. A

stronger version of this claim is that the degree distribution is of the form P (k) ∼ k−α,

7
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with the exponent in the range 2 < α < 3 (Caldarelli, 2007), the scale-free or power law

distribution.

The most influential model to address this observation is that of Barabási and Albert

(1999). Networks constructed by this model have been analytically demonstrated to

exhibit power law degree distributions with exponent α = 3 (Barabási et al., 1999).

Barabási & Albert’s (BA) model is a growth process which begins with a small number,

m0, of nodes. Each step of the process adds a new node which forms m ≤ m0 connections

with the existing nodes. The probability Π that a new node connects with existing node

i is given by:

Π(ki) =
ki∑

j∈V
kj

(2.1)

i.e., the new node attaches preferentially to nodes that already have a high degree.

This is an example of a Yule process (Yule et al., 1925), first advanced in 1925 to

explain distributions in taxonomic groups. However, the Yule process is one among many

mechanisms that can account for a power laws in nature (Newman, 2005). Consequently,

within network science, there has been considerable effort to identify other procedures

that can account for the power law degree distribution.

These efforts encounter difficulties when the network is spatially embedded. We illustrate

the problem by considering the most fundamental spatial model, the random geometric

graph (RGG) (Dall and Christensen, 2002). The RGG is generated by first placing the

nodes on a unit square. Pairs of nodes are then connected if they lie within distance R

of each other. The resulting degree distribution of the RGG is a Poisson distribution

with mean degree 〈kRGG〉 = nπR2. This outcome is due to the fact that nodes may

only make connections within a specified radius and, as such, their maximum degree is

limited by the density of nodes. Therefore, we do not see the formation of high degree

hub nodes within the RGG. In fact, the procedure only results in a scale-free degree

distribution when the nodes are themselves inhomogeneously distributed on the plane

(Herrmann et al., 2003; Barnett et al., 2007; Bullock et al., 2010).

Thus, processes that generate spatially embedded, scale-free networks must relax the

distance constraint to some extent. Three principal classes of mechanism have been

identified which achieve this goal (Hayashi, 2006); (i) link length penalisation, (ii) em-

bedding a scale-free network within a lattice and (iii) space filling. In the following

subsections we briefly review them.
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2.1.1 Link length penalisation

Two models make up this class; the modulated BA model and the geographical threshold

graph. The modulated BA (Manna and Sen, 2002) is a spatially embedded growth

model where nodes are sequentially added to the plane, by being placed uniformly at

random within a square. The model extends the BA by modifying equation (2.1) so

that the probability of node i receiving a connection from the newly added node follows

Π(ki) ∼ kilα. Here, l is the Euclidean distance between the nodes and α is a parameter

governing the influence of l on the connectivity. For −1 < α < 0 the modulated BA

has a degree distribution that is close to a power law. Where α < −1, the distribution

instead takes the form of the stretched exponential, P (k) = a exp(bkγ)

In the geographical threshold model (Masuda et al., 2005), nodes are again distributed

uniformly at random and each node i is assigned a weight wi. Connections between

nodes are formed where the following condition is met:

(wi + wj)h(rij) > θ (2.2)

where h is an increasing function of rij , the distance between i and j, and θ is a threshold.

In this model a scale-free network results when either the distribution of the weights or

the function h follows a power law.

2.1.2 Embedding within a lattice

Models in this class consist of a lattice with periodic boundary conditions where each

node i is assigned an intrinsic degree ki (Rozenfeld et al., 2002; Ben-Avraham et al.,

2003). The networks are constructed by selecting a node i at random and then connecting

i to the ki nearest neighbours on the lattice that (i) lie within the distance r(ki) = Ak
1/d
i

and (ii) have not yet reached their intrinsic degree. The degree distribution in this case is

precisely that which is assigned to the model during its initialisation and this is typically

chosen to be the power law.

2.1.3 Space filling

The final class of spatial scale-free models recursively partition space by adding new

nodes to the plane and then connecting them to the existing graph. The first of these

models is the Apollonian network (hereafter DAN, the Deterministic Apollonian Net-

work), which was discovered independently by both Doye and Massen (2005) and An-

drade Jr et al. (2005). The model begins with three nodes placed upon the plane so as to

form an equilateral triangle. In the first step a single node is placed in the middle of this
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triangle and connected to the three initial nodes. The second step begins with a node

being placed within each of the three triangles created by the first step. To complete

the second step, each of these nodes are then connected to the vertices of the triangle

that contains them. This process continues in a similar fashion at step t adding 3t−1

new nodes within each triangle and then 3t edges so as to connect those nodes to the

vertices of their containing triangle. Analytical treatment of this model reveals that its

degree distribution is a power law with exponent αDAN = 1 + ln 3/ln 2 ≈ 2.585.

A stochastic variant of the DAN is the random Apollonian network (RAN) (Zhou et al.,

2005). This model is initialised in the same way as the DAN and now, at each step, a

single triangle is selected. Similarly to the DAN a new node is placed within this triangle

and connected to its (the triangle’s) vertices. The exponent of the degree distribution

for the RAN is αRAN = 3.0.

Another Apollonian model of note is the evolutionary Apollonian network (EAN) (Zhang

et al., 2006; Kolossváry et al., 2013). This model is also initialised in the same manner

as the DAN. At step t each triangular face present in the EAN is, with probability qt,

trisected in the same manner as the RAN. This model produces triangulations of the

plane with a power law degree distribution. Where qt → 1 the EAN approximates the

DAN. Alternatively where qt → 0 and
∑∞

t=1 qt → ∞ the EAN can be demonstrated to

exhibit the same degree distribution and clustering coefficient as the RAN.

The final example in this class is the model of Mukherjee and Manna (2006). Here, new

nodes are placed uniformly at random in the space. The new node is then connected to

a random end of the nearest existing edge. The resulting degree distribution is a power

law with exponent α = 3.

2.2 Spatially embedded social networks

Social networks consist of nodes that represent people (or animals) and connections

representing the social bonds between them. It can be credibly argued that this is the

field of network science with the eldest pedigree, beginning with Moreno’s sociograms

in the 1930s (Moreno, 1934). Subsequently, social networks were a topic of extensive

interest during network science’s initial growth in the early 21st century. A consensus was

formed during this period that social networks exhibit several statistical characteristics

of interest. These were: high clustering, i.e., that a large number of triangles were present

in the network; positive assortativity, i.e., that high (resp. low) degree nodes tend to

link with other high (resp. low) degree nodes; community structure, i.e., that distinct

cliques of highly interconnected nodes can be identified; the small world property, i.e.,

that the number of network hops between nodes remains small as network size grows and

positively skewed degree distributions, i.e., that there exist a significant number of high
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degree nodes in the network (Amaral et al., 2000; Newman, 2002; Jones and Handcock,

2003; Newman and Park, 2003; Toivonen et al., 2006).

Concomitant with research into the structure of these networks has been a modelling

effort to gain insight into their formation. In many cases these models describe networks

whose edges solely represent relationships between nodes, entirely neglecting the spatial

separation between them. There are many reasons to follow this approach, for example,

the aim may simply be to establish an efficiently reproducible network with many of the

empirical features so as to allow for the investigation of dynamic processes upon that

network (Toivonen et al., 2006). Alternatively, one might wish to understand how a

psychological variable affects the network’s structure, e.g., the agent’s sense of identity

(Qiao et al., 2014); in such cases ignoring the spatial embedding may be a desirable

feature of the model so as not to confound the variable of interest. Other examples

have concentrated upon online social networks, e.g., (Kumar et al., 2010), in which case

geographical distance is considered to be less of a factor. Furthermore, as section 2.1

highlighted, difficulties that are specific to spatial models infringe upon attempts to

model a network that has a heterogeneous degree distribution.

Nonetheless it remains the fact that face to face contact is a mainstay of social interac-

tion. This assertion is supported by empirical studies of phone call data which indicate

that people call those that are nearby to them more often (Lambiotte et al., 2008; Mok

et al., 2010; Phithakkitnukoon et al., 2012). If we consider frequency of calls as an indi-

cator of the closeness of a social tie, these observations confirm the primacy of spatially

constrained, person to person contact. Consequently, there is a need for models with an

explicit spatial embedding. The literature that attends to this need is, at present, not

large and we will review it in the remainder of this chapter.

One of network science’s most fundamental models, the Watts-Strogatz (WS) model

(Watts and Strogatz, 1998) has been interpreted as a social network model; the reason

being that WS networks can exhibit the high clustering and short path length associated

with social networks. The spatial component of the WS is of the most basic form, N

nodes are arranged in a one dimensional space with periodic boundary conditions. Each

node i is then connected to k nodes, chosen to be the k/2 nodes on either side of i. This

initial construction results in a network that is highly clustered. To complete the model,

each node i is considered in turn. Each edge ij that connects i to its k/2 neighbours is

rewired with probability β to a node k. This node k is chosen uniformly at random from

all the other nodes such that there are no self loops and the edge k does not duplicate

an existing edge. For high β a network that is nearly random results. However, for low

values of β the network’s clustered structure is preserved while the rewiring introduces

edges that act as shortcuts through the network. These shortcuts allow for the low β

networks to exhibit short path length alongside the high clustering.
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The spatial component of the WS model is simplistic, reflecting its specific research

goal. A more sophisticated, early attempt to model the spatial embedding of social

networks was that of Boguñá et al. (2004), where the probability of a connection between

two individuals is inversely proportional to the distance between them. Boguñá et al.

were able to show that their model exhibited high clustering, positive assortativity and

community structure. Wong et al. (2006), in a related study, connected nodes with

increased probability if the distance between the nodes is less than a specified threshold.

This model created networks with short path lengths, skewed degree distributions and

community structure.

Both Boguñá et al. and Wong et al. are considered examples of nodal attribute models

(NAMs) (Toivonen et al., 2009). In a NAM each aspect of a node’s social life is quantified

by a real number. The node is then positioned within a linear space whose axes represent

the aspects. These models are spatial in the sense that the node’s attributes determine

its location within a social space rather than a geographical one. These networks are

thus appropriate for capturing homophily (McPherson et al., 2001), i.e., the tendency for

social agents to link with agents which share similar characteristics. Both of these models

are helpful in illuminating the influence of a spatial embedding upon the overall structure

of the network. However, they have little to say about the decisions of individual social

actors, by definition a key goal of any attempt to understand the social world. More

promising in this regard are models which take an agent based view of the network’s

construction. We now turn to examples of these.

zu Erbach-Schoenberg et al. (2014) introduced a spatial model with weighted connections

that represent the strength of the social interaction between the nodes. The model was a

dynamical one where, at each time step, agents invite those network neighbours that lie

within connection range R to a social gathering. Agents attending the same gathering

had the strength of their connection increased; conversely, the strength of the connection

depleted where agents did not meet at a subsequent time step. The resulting networks

from this model exhibited high clustering, positive assortativity, community structure

and short overall path length. Furthermore, these properties were demonstrated to be

stable, even though the underlying structure of the network was being rewired in time.

Antonioni and Tomassini (2017) described a growing network model where nodes were

placed, one at a time, uniformly at random, upon a unit square. With probability α

a new node formed connections with the network following the preferential attachment

rule, otherwise the node formed connections with the nearest Euclidean neighbours

on the square. For α as low as 0.1, Antonioni and Tomassini demonstrated that this

model produces networks with all the features associated with social networks, i.e., high

clustering, positive assortativity, community structure, short overall path length and

positively skewed degree distributions.
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None of the models discussed in this section consider the capability of their nodes to form

connections. This concept was central to the REDS model of Antonioni et al. (Antonioni

et al., 2014); a social model in which friendships require effort to maintain. This model

followed the RGG, in allowing its nodes to connect to those spatial neighbours within a

specified distance. However, nodes in the REDS model were allocated an energy budget,

E, with which connections were paid for. The cost of these connections was proportional

to the distance between nodes. A second intuition underpinning the REDS model was

that it is easier to maintain friendships with friends of friends. Another parameter

named synergy, S, controlled the extent to which shared neighbours reduced edge costs.

The process by which the REDS model constructs its network is that pairs of nodes are

selected and, if they can both pay for it from their respective energy budgets, the edge

between them is added.

It was found that this model produced three types of network, characterised by their de-

gree distributions. High S,E regions of the parameter space recovered the RGG network.

Low S,E regions of the parameter space produced low connectivity networks. Finally,

between these two regions were networks that exhibited a form of degree heterogeneity

in that their degree distribution was a bi-modal one, consisting of some nodes with high,

RGG-like connectivity and others with low connectivity. Positive assortativity and high

clustering was also recorded for both the high connectivity and bi-modal networks.

2.3 The evolution of co-operation

This section reviews literature pertaining to the evolution of co-operation. We first

introduce the problem in a more thorough manner than was presented in the introduction

in section 2.3.1. We then outline some key findings for networks that have a fixed

structure in section 2.3.2. Following on from this we look at coevolution; for non-spatial

networks in section 2.3.3 and for lattices in section 2.3.4. Finally, we review models that

have a more general spatial structure than lattices in section 2.3.5.

2.3.1 Overview

In the introduction we discussed the possibility of formalising a social dilemma using

game theory. In their most general form, games represent interactions between an arbi-

trary number of players, each of which has incomplete information about the game and

can choose from one of an arbitrary number of strategies. However, within the literature

on the evolution of co-operation, social dilemmas are commonly presented as symmetric,

two player games, where the participants have complete information and, consequently,

we concentrate on this form. Games of this sort can be represented by matrices with

the following arrangement:
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M =

C D( )
C R S

D T P
(2.3)

Entries in the matrix represent the payoff for the first player. Rows of the matrix

identify payoffs when the first player chooses to co-operate (C) or defect (D). Conversely,

columns of the matrix identify payoffs based on the second player’s strategy. So, e.g.,

if player 1 co-operates and player 2 defects, the payoffs will be S for player 1 and T

for player 2. The naming convention for the entries in the matrix come from the terms

reward R, sucker payoff S, temptation T and punishment P .

It is standard to scale the parameterisation of the game by setting R = 1, P = 0 and

choosing −1 ≤ S ≤ 1 and 0 ≤ T ≤ 2 (Perc and Szolnoki, 2010). Where S and T

are chosen such that T > R > P > S the matrix describes the prisoner’s dilemma. If

R > T > P > S we recover the stag hunt game, a dilemma in which the incentive is for

players to correlate their strategy. The snowdrift game is described by T > R > S > P

where, instead, the incentive is for players to anti-correlate their strategy. It is also

possible to choose the parameters such that R > T, S > P , known as the harmony game

since the incentive is for both players to co-operate.

In what follows we parameterise the temptation to defect as b. The reason for this

separate parameter is that a common investigative strategy is to define a model and

then test how well it supports co-operation as the temptation to defect increases. This

experimental setup is achieved by setting T = b.

Within the prisoner’s dilemma, when both players defect, neither player can improve

their payoff by choosing co-operate instead. A combination of strategies that meets this

criterion is known within game theory as a pure strategy Nash equilibrium. A crucial

feature of PD is that the defect-defect strategy profile is the only pure strategy Nash

equilibrium within the game, thus PD models a situation where a rational player will

ultimately choose to defect, despite the significant mutual reward for both players should

they choose to co-operate.

The formalisation of social dilemmas can be placed within the context of natural selection

via the replicator equation (Taylor and Jonker, 1978):

ṡi = si[(W s)i − sTW s] (2.4)

here s is a vector whose elements si represent the frequency with which strategy i is

played by the members of the population and W is the payoff matrix for a two player

game. In this context sT should be interpreted as the transposition of the strategy

vector.
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The term (W s)i is the fitness of strategy i while sTW s is the average fitness in the

population. Thus, the replicator equation embodies, in mathematical terms, the princi-

ple that individuals with strategies that reproduce more effectively spread throughout

the population. Methods from dynamical systems can be used to demonstrate that the

solutions of equation (2.4) are the Nash equilibria of W and these Nash equilibria are

also the equation’s fixed points (Hofbauer and Sigmund, 1998; Gintis, 2000). Thus,

replicator dynamics for PD, i.e., where W = M , indicates that the defect strategy will

be favoured by natural selection.

In spite of these pessimistic analytical results, examples of co-operation in nature are

widely abundant. To give examples from different species, vampire bats share blood

(Wilkinson, 1984), chimpanzees groom each other (Gomes et al., 2009) and ravens inter-

vene in each others conflicts (Fraser and Bugnyar, 2012). The problem of the evolution

of co-operation is to account, theoretically, for the observed abundance of co-operation

in nature. Or, more succinctly, to answer the question: under what conditions can a

co-operative strategy prevail within a Darwinian framework?

It is also the case that both the snowdrift and the stag hunt games also pose problems for

the evolution of co-operation, see e.g., Hauert and Doebeli (2004). However, the results

presented above underscore that the prisoner’s dilemma is regarded as the strongest

form of the problem. For this reason we will focus on the prisoner’s dilemma within this

thesis.

Numerous mechanisms have been proposed to resolve this problem including network

reciprocity (Nowak and May, 1992), repeated interactions (Trivers, 1971; Axelrod and

Hamilton, 1981), kin selection (Hamilton, 1964), reputation (Nowak and Sigmund, 1998),

group selection (Traulsen and Nowak, 2006), memory (Wang et al., 2006) and teaching

(Szolnoki and Perc, 2008). Among these, the introduction highlighted network reci-

procity as having a spatial aspect. A brief synopsis of the argument is as follows: evo-

lutionary populations are not well mixed, as is assumed within the replicator equation.

Instead, agents within such populations interact with some individuals more than others

with the consequence that co-operators can benefit where they play the game amongst

themselves. Spatial co-location of agents can serve to promote this structure in their

interactions.

It is here that the relevance of networks can be seen since the interaction structure can

be described using a graph. We now review relevant literature in this regard.

2.3.2 Static Networks

We begin our survey of network reciprocity by considering simulations that are performed

on static networks, i.e., networks with a fixed topology. This is a considerable area

of research and, as such, cannot be thoroughly covered here. In this section we will
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endeavour to cover key results. We refer the reader to Roca et al. (2009) and Szabó and

Fath (2007) for two reviews that are widely used as starting points within the literature.

A fundamental assumption of the replicator equation is that the population in equation

(2.4) is considered to be well mixed, i.e., individuals are assumed to play with all others

Roca et al. (2009). This is in contrast with the social or biological worlds as commonly

understood, where individuals interact in a more structured fashion. A seminal study

addressing this issue was that of Nowak and May (1992); the key innovation of which

was to simulate a finite population of agents placed within a lattice structure. These

agents accumulate the payoffs from playing PD with their lattice neighbours. During

each timestep, the model updates each agent’s strategy to be that amongst its own and

those of its network neighbours that has accumulated the largest payoff.

Nowak & May’s model repeats this sequence of playing the PD game and updating the

strategies of the nodes. It was found that the co-operative strategy not only survived

but was the dominant strategy in simulations where the temptation to defect was T =

b < 1.8. (By dominant, we mean that co-operation was the majority strategy on the

network.) For b > 2.0 defection was the dominant strategy. In the range 1.8 < b < 2.0,

both strategies could coexist within the lattice.

The explanation for the dramatic improvement in the co-operators’ fortunes observed

within Nowak & May’s model is that some co-operators now find themselves playing

the game solely with other co-operators. Members of these co-operative clusters then

outperform neighbouring defectors and ultimately convert them to the co-operate strat-

egy. These dynamics were investigated in more detail by Wang et al. (Wang et al.,

2013) who identified two distinct phases, the enduring and the expansive. The enduring

phase comes at the start of the model and is characterised by a fall in co-operation as

defectors easily convert lone co-operators. At the end of this phase those co-operators

that remain are grouped together in small clusters that can resist the defection strat-

egy, i.e., the co-operators have successfully endured the defectors’ advance. Furthermore

these co-operators can now convert defectors in the immediate vicinity of their cluster,

leading to an expansion in the number of co-operators. Wang et al. demonstrated that

this phenomenon holds for different update mechanisms and lattice structures.

A subsequent critique of Nowak & May’s model modified the strategy updating to be

asynchronous, i.e., a single node was updated during a timestep rather than the en-

tire network. Under these conditions co-operation was demonstrated to collapse in the

model (Huberman and Glance, 1993). Subsequent research has demonstrated conditions

under which synchronously updated models support high levels of co-operation (Nowak

et al., 1994; Lindgren and Nordahl, 1994; Kirchkamp, 2000). Nonetheless, asynchronous

updating now tends to be favoured and is used in all the articles we discuss from this

point onwards.
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Ease of implementation underscores the appeal of lattice models as the basis for an

evolutionary simulation. However, they are less satisfactory when considered in terms

of their capacity to capture more nuanced forms of population structure. In particular,

it was noted in a prior section that a uniform degree distribution is an unsatisfactory

description of a social network. Thus, Santos and Pacheco (Santos and Pacheco, 2005)

investigate what happens where the network has a heterogeneous distribution by simu-

lating PD for agents connected by a Barabási-Albert network. Their conclusion was that

co-operation is supported for very high values of the temptation to defect. Specifically,

they found that co-operation dominated the outcome for all b ∈ [1, 2]. An explanation of

this phenomenon was offered by Santos et al. (Santos et al., 2006a). The essential idea

being that where a co-operative hub connects to a defector hub, the co-operation strategy

will ultimately prevail. The mechanisms underlying this phenomenon are twofold; firstly,

highly connected defectors find their payoff augmented by the presence of co-operators

in their immediate neighbourhood. Consequently, the defector hubs rapidly convert co-

operators in their network neighbourhood, which, ironically, leads to a drop in the payoff

for the hub. Secondly, high connectivity co-operators, while penalised by connections

to defectors, nonetheless maintain enough connections to other co-operators so as to

heighten their payoff and ultimately convert their neighbourhood to co-operators. Thus

defector hubs are vulnerable to conversion while co-operator hubs are robust with re-

spect to their strategy. Note that this account assumes that hubs are directly connected

and Santos et al. report that, where these simulations are performed upon a hetero-

geneous network from which such connections are removed, the increased co-operation

disappears.

Masuda introduces a participation cost, h into simulations upon Barabási-Albert net-

works and random regular graphs (Masuda, 2007). The participation cost represents the

cost of maintaining a link and is introduced into the model by subtracting h from each of

the four entries in M . Masuda then runs the evolutionary simulation upon a random reg-

ular graph and a scale-free network. In the case of the random regular graph, each node

has the same degree and therefore each one accumulates the same total participation

cost. Therefore results upon the random regular graph are unchanged by the introduc-

tion of h. By contrast, the heterogeneous degree of the scale-free networks entails that

the high degree nodes accumulate more participation costs than the low degree nodes.

Thus, for h > 1, the mechanisms we have just described as supporting co-operation on

a scale-free network break down for the reason that high degree co-operators no longer

derive a high overall payoff from their neighbours.

An important general principle, theoretically demonstrated by Ohtsuki et al. (2006), is

that co-operation is favoured on networks where the mean degree is less than the cost

benefit ratio of the co-operate strategy. The authors further conclude that the fewer the

number of edges in the network the more likely it is that co-operation will be favoured in

an evolutionary simulation upon that network. Numerical support for this proposition
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comes from Tang et al. (2006) who studied how variation of average degree affected

the uptake of co-operation on various network structures. Their results show that co-

operation was favoured for low mean degree on Barabási-Albert, Watts-Strogatz and

Erdős-Rényi models.

2.3.2.1 Cyclical dominance

We complete our overview of static networks by considering cyclical dominance. Briefly,

these are models in which agents choose from, typically, three strategies. The strategies

follow the form of the children’s game rock, paper, scissors in that they are enumerated

in a cycle and each strategy is inferior to its predecessor. It is this structure of the

strategies that is termed cyclical dominance. There is a wide body of research in this

area which has been reviewed in Szolnoki et al. (2014). A central theme in this work is

that two of the possible outcomes allow for the survival of all the strategies. The first

of these outcomes is that the model enters a steady state in which all three strategies

coexist in constant proportion to each other. The steady state is maintained despite

the fact that the nodes perpetually update their strategy and so this state is often

termed a dynamic equilibrium. In the second outcome, known as global synchrony, the

model transitions through a sequence of states in which each strategy briefly dominates

the model without completely eradicating the others. Examination of this sequence of

states reveals that it follows that of the cyclical dominance.

Results such as these speak to the evolution of co-operation in that they offer a possible

mechanism by which a strategy, i.e., co-operation, that would normally be dominated

by another, i.e., defection, can nonetheless prevail in an evolutionary scenario. A key

point here is that cyclical dominance does not have to be explicitly imposed upon the

strategies; rather, it can emerge in any evolutionary game where the competing strategies

are three or more (Szolnoki et al., 2014). An example of this is Hauert & Szabó’s

voluntary participation model (Hauert and Szabó, 2005), where an agent has the third

option of a loner strategy alongside the now familiar co-operation and defection. What

the loner strategy means is that the agent chooses not to play PD and instead earns an

intermediate payoff σ, such that P < σ < R. Agents that find themselves playing with

loners are forced to adopt the loner strategy for that interaction.

In a well mixed population, the loner strategy dominates the model. However, note that

the loner strategy is preferred by defectors that are connected to other defectors, thereby

allowing loners to invade a population of defectors. In turn, co-operation will be preferred

in a population of loners. Finally the cycle is completed by the fact that defection is

favoured over co-operation. Hauert and Szabó found that when voluntary participation

was played on lattices, the dynamic equilibrium of three coexisting strategies resulted.

When the lattice structure was replaced with a network that allowed for long range

connections, the globally synchronous state of perpetual transitions instead emerges.
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Under certain dynamical conditions, cyclical interactions are possible even where the

number of strategies is limited to two. Szolnoki et al. describe agents that modify their

strategy with a probability W that is proportional to Pi − Pj , where Pi is the payoff

that i gets from the evolutionary game and Pj is the payoff of j, one of i’s neighbours

(Szolnoki et al., 2010). However, once i performs a strategy update the probability that

it will do so again is capped for a fixed number of steps, H. By doing so this model

allows for the existence of “young” C players, i.e., players that have held the co-operative

strategy for less than H steps. These young co-operators tend to retain their strategy

and, furthermore, can convert “old” D players. In this way Szolnoki et al. describe the

following form of cyclic dominance: “old” D → “young” C → “old” C → “young” D →
“old” D. Szolnoki et al. go on to show that co-operation can survive in this model at

high b under this regime.

The appeal of this model is that additional strategies have not been explicitly specified;

instead, a form of cyclic dominance arises from two strategies as a consequence of the

dynamics. Nonetheless, it stands alone as the sole example of its class. It would therefore

be of interest to identify further circumstances in which two strategy games can result

in cyclic interactions.

2.3.3 Coevolution

A natural continuation from the static networks paradigm is instead to allow the network

topology to evolve in tandem with the strategy update, a program of research known as

coevolutionary models. An early example of this sort of model is that of Zimmermann

et al. (2004) where nodes on an ER network were allocated either co-operate or defect

strategy. In a similar fashion to Nowak and May, nodes on this network play the PD

game, accumulate payoffs and then modify their strategy to mimic that of the neighbour

with the highest payoff. The coevolutionary aspect of this model is that, in a third step,

defectors with links to other defectors can, with probability p, rewire to another node

at random. In doing so it was demonstrated that for p as low as 0.01 co-operation

could dominate the network for a temptation to defect as high as b = 2.0, a noticeable

improvement over Nowak and May. This result is instructive in that it demonstrates

that a coevolutionary rule with a plausible motivation (in this case that defectors will

be dissatisfied with links to other defectors) can boost the chances of co-operators.

In an influential review of coevolutionary models, Perc and Szolnoki (2010) identify

timescale separation as an important factor that can affect the outcome of a coevolu-

tionary model. Timescale separation identifies two different time scales, τs and τn, at

which strategy and network topology updates occur. This idea is typically implemented

by defining w = τs/τn, and at each iteration of the model updating the strategy of a

randomly chosen node with probability (1 + w)−1; otherwise the network topology is
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modified instead. Thus, as w → 0, we recover a static network model; conversely as

w →∞, network topology is updated more rapidly than node strategy.

The most straightforward of this kind of example is that of Santos et al. (2006b). In this

model co-operators connected to defectors rewire their connection with a probability

that is proportional to the difference between payoffs that the two nodes, i.e., a rewiring

event is more likely if the co-operator has a higher payoff. When such rewiring events

occur, the co-operator links to one of the neighbours of the defector. Santos et al. varied

the rate of node strategy updates relative to the rate of network topology updates. In

doing so they found a critical value of time separation, wc, above which co-operation

always dominated the network.

Fu et al.(a) is a study in a similar vein; the innovation being that network nodes now

have a reputation (Fu et al., 2008). By this, they mean that the agents know the past

strategies of their nearest and next nearest network neighbours, those nodes that tend

to co-operate are awarded a high reputation score. The initial network is one where

all nodes have the same degree but are then randomly connected to each other. When

chosen for a topology update, a node on this network drops the connection to the partner

with the lowest reputation and, with probability p instead connects to the next nearest

neighbour with the highest reputation. With probability 1−p the node instead connects

to a randomly chosen member of the population. Fu et al.’s chief finding is that the

introduction of reputation significantly reduces wc, the critical value of the timescale

separation at which co-operation dominates the model.

It is not necessarily the case that coevolutionary models best support co-operation above

some threshold in the timescale separation. For example, Fu et al.(b) (Fu et al., 2009)

follow the model of Santos et al. above, the difference being is that only co-operators

may rewire connections they have with defectors. Here, it is an optimal, rather than a

critical value, of the time scale separation at which co-operation is best supported.

2.3.4 Coevolution on lattices

Thus far, this review has covered one example of a spatially embedded network, the

lattice model of Nowak and May (1992). We now examine two issues that have been

explored using lattice models: adaptive migration and reputation.

Within an adaptive migration model, agents move to more favourable regions of the

network in order to boost their payoff. The foundational example here is Helbing and

Yu (2009), whose model was a lattice containing more sites than agents. Each agent

was given knowledge of the payoff that would ensue by moving to an empty site within

a Moore neighbourhood of range M . The agents could then choose to move to a better

performing site than their current location. Over time, co-operative agents in this model

form clusters with defectors appearing on the borders. Once this happens a similar
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dynamic to the Nowak & May’s model takes hold, allowing for co-operation to convert

defectors.

Further research into adaptive migration has established that models whose agents have

only local knowledge also support co-operation (Jiang et al., 2010; Ichinose et al., 2013).

In these models the agent has awareness of nD, the number of defectors in its network

neighbourhood. The agent then moves to a new location with probability nD/k, where

k is the agent’s degree. These models indicate that, even with limited information, the

co-operate strategy is well supported.

Khoo et al. (2016) apply reputation to spatially embedded nodes. In this model, the

initial network is a lattice with connections between all pairs of nodes that are within

Manhattan distance two of each other. As well as reputation, the nodes are assigned a

preference to either rewire locally, i.e., to other nodes within a Manhattan distance of

3, or globally, i.e., to any other node in the model.

Khoo et al. demonstrated that, for low temptation to defect, co-operation dominated

the model. The structure of the network was a small world network with high degree

hubs. Further experiments revealed that an increase in the rate of rewiring increased

the capacity of co-operation to overcome the temptation to defect as the co-operators

could more easily rewire so as to become hub nodes.

2.3.5 General spatial models

We complete this section of the review by considering spatial models which allow for a

more nuanced topology than lattice models.

Yang et al. (2011) play PD upon the Apollonian network. Since the Apollonian network

is known to be scale-free it is perhaps unsurprising, in light of Santos and Pacheo’s

findings for the Barabási-Albert model, that co-operation dominates the model for high

values of b. More specifically, they find that pc, the proportion of co-operators in the

equilibrium state, reliably reaches one of the two states pc = 0 or pc = 1. They then

measure φc, the probability that the model reaches the all co-operators state (pc = 1).

Here, they find that when half the nodes in the model are initialised with the co-operation

strategy, φc = 1.0 when the temptation to defect reaches values as high as b = 2.4.

Buesser and Tomassini (2012) study the evolution of co-operation on three different

spatial network models; the scale-free spatial network (SFSN), the Apollonian network

and a modified RGG (mRGG). The SFSN is a form of intrinisic degree model where

nodes are temporarily placed in a lattice. Each node is assigned a degree from a sequence

k1, k2, ..., kn which follows the scale-free distribution. Edge (i, j) is added to node i

by performing a random walk, starting at i, upon the lattice, until a node j, whose

connectivity is at present less than kj , has been located.
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The construction of the mRGG is identical to that of the RGG except that each node

is assigned a unique radius of connection Ri. If Ri + Rj < Dij then the two nodes are

connected, here Dij is again the Euclidean distance between the nodes i and j. Buesser

& Tomassini then assign 1/16 of the nodes a radius of connection r and the remaining

nodes a null radius, thereby inducing a network structure of a relatively small number

of high degree hubs which connect to low degree, typically k = 1, nodes.

Buesser & Tomassini simulate 2 player evolutionary games on all three of these network

structures and compare their results to those obtained from an RGG. co-operation,

as measured by the fraction of co-operators in the equilibrium state, is found to be

improved by all three of these network structures when compared to equivalent results

on the RGG.

Li et al. (2013) investigate how the partner switching dynamics reported by Fu et al.(a)

are affected when the network is spatially embedded. The initial network is a lattice

and, as in the original study, nodes rewire from low reputation neighbours to higher

reputation next nearest neighbours during the network update steps. However, in this

model a node i may also rewire to any node j within within a specified Euclidean distance

of i. The choice to rewire to a nearest network neighbour of the low reputation node

or a spatial neighbour is governed by a probability. Li et al. found that co-operation

was most favoured the rewiring was more likely to be directed towards the next nearest

neighbours.

In a further experiment Li et al. awarded a reputation score Sij(t) to each node j that

can potentially be the target of a rewiring event at time t:

Sij(t) = Rj(t)/Dij (2.5)

here Rj(t) is the reputation of node j at time t and Dij is the Euclidean distance between

i and j.

In this version of the model an agent then rewires to the agent with the highest score.

Under this condition, Li et al. found that co-operation dominates the model for b ≤ 2.0

in scenarios where the network updating is rapid. However, perhaps unsurprisingly given

equation (2.5), a high percentage of spatial neighbours were favoured.



Chapter 3

Research aims and contributions

In this chapter we motivate the questions that are addressed in the remainder of this

thesis.

3.1 Planar growth

The discussion in section 2.1 revolved around the three mechanisms that have been

identified to produce spatially embedded networks with a scale-free degree distributions,

these were: (i) link length penalisation, (ii) embedding in a lattice and (iii) space filling.

For class (i) two models were identified, the modulated BA and the geographical thresh-

old model. In the modulated BA, the probability of an existing node receiving a new

connection followed the form Π(ki) ∼ kil
α. As such, this model is one whose connec-

tivity is determined as much by its existing network topology as its spatial embedding.

The geographical threshold model pre-assumed the power law as input, a feature that

it shares with the models in class (ii).

In class (iii), several of these examples were of Apollonian growth processes. The under-

lying theme of these models is that they choose a face of the existing triangulation of the

plane and then split it into three. Since it is the distributions of triangles in these models

that determines where the new node is placed, it follows that these models are a further

example of an inhomogeneous distribution of points upon the plane. Alternatively, one

can interpret the Apollonian processes as ones that do not attribute any explicit point

in space to their nodes, instead relying upon subtle aspects of the network topology to

generate the power law.

Therefore, amongst all existing spatial models, that of Mukherjee and Manna (2006)

results in a scale-free distribution when nodes are distributed uniformly at random on

the plane and, further, this model does not assume any other input that has a power

law form. Moreover, this model does not exploit network topology in the construction

23



24 Chapter 3 Research aims and contributions

process, indicating that it is purely spatial features of the model that contribute to the

power law degree distribution. Since this is the only model that exhibits a scale-free

degree distribution under these conditions, we contend that the discovery of further

models with these properties is a significant finding within the discipline.

A further issue that we explore in this thesis is the extent to which the model we propose

respects planarity : the property of a spatial network having edges that do not cross.

While, for example, sexual contact networks may be embedded in space, they need not

respect planarity. By contrast, the layout of a microchip must be planar since conductor

lines may not cross without creating a junction. Transport networks tend to be nearly

planar (a relatively small number of bridges and tunnels allow edges to cross without

creating a junction vertex). Planarity is also a consideration in the construction of

infrastructure such as wireless networks (Cairns et al., 2013). Despite the relevance of

planarity considerations across a wide range of network domains, the role of planarity

in network formation is an under-represented issue in the spatial networks literature

(Newman, 2010).

Our first contribution is to present two related mechanisms, planar growth and Apollo-

nian planar growth. The first, planar growth, constructs planar networks by the most

basic mechanism we can think of. Specifically, where a new node is added to the network,

it may not form a connection that crosses an existing one. In this way, we investigate

the issue of planarity as it pertains to spatial networks and demonstrate that this model

results in a network with a scale-free degree distribution. We then propose Apollonian

planar growth as a means to explain why planar growth produces this result. This sec-

ond mechanism is a reformulation of planar growth as an Apollonian growth process.

It is well known that Apollonian networks are scale-free and, hence, the second model

provides theoretical support for our findings.

3.2 The stochastic REDS model

The planar growth model reliably produces networks that have a heterogeneous de-

gree distribution. Nonetheless, both planar growth and Mukherjee and Manna’s model

permit the addition of edges of any length. Thus, it remains a relevant endeavour to

establish network models that maintain constraints upon edge length while exhibiting a

heterogeneous degree distribution. In section 2.2 we discussed social networks, in par-

ticular noting that these are real world networks that exhibit degree heterogeneity while

being made up of spatially constrained links. In light of the latter of these two properties

we therefore reviewed models of spatially embedded social networks. Amongst these,

we identified the REDS model (Antonioni et al., 2014) as being the sole example of a

spatially embedded social network model that exhibited a form of degree heterogeneity.
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The REDS model is one in which agents consider the merits of any potential connections.

This idea is realised by assigning to each node an energy budget, E. Edges in the REDS

model are only added if doing so does not cause either of their end nodes to exceed their

budgets. We interpret this last feature as implying that nodes in the REDS model are

partially rational agents; in the sense that they have complete knowledge of both their

current budget and the cost of connections that they form. The idea that the model’s

agents evince certainty is further accentuated by the fact that once an edge is formed

it becomes a permanent feature of the network. By contrast, the nature of real world

social interaction is an exploratory process, in which connections are formed and then

retained where they transpire to be beneficial, or at least sustainable, in the long run. In

this light, we seek to further develop the REDS model so as to better reflect this social

reality.

Our second contribution addresses this concern by alternatively formulating the REDS

model so that its agents make connection decisions that are subject to uncertainty. As a

result, these agents may form connections that exceed their energy budget and, therefore,

we allow them them to review and, where necessary, rescind an existing connection. In

this regard our model bears some similarity to that of blinking networks (Belykh et al.,

2005), where edges are added to a small world model only to be removed after a period

of time, τ . We achieve this by making the decision to create, or destroy, an edge subject

to a probability and for this reason we term our model the stochastic REDS model.

At the outset of this section we have discussed the significance of the heterogeneous

degree distribution observed for the REDS model. More specifically a bi-modal degree

distribution is observed within a small region of the REDS model’s parameter space.

We find that within the parameter space of the stochastic REDS model, the overall

connectivity of the network in a stable state tends to match that of the original REDS

model. However, we find that where the stochastic REDS model is parameterised with

low uncertainty, a configuration that one would intuitively expect to closely follow the

original REDS model, we do not observe the bi-modal degree distribution. Instead,

the bi-modal degree distribution is now only observed in regimes where there is a high

amount of uncertainty in the connection decisions.

Upon further inspection, we find a distinct spatial distribution of nodes in examples of

the stochastic REDS model with a bi-modal degree distribution. Here we find that high

degree nodes appear at the model’s (spatial) boundaries while low degree nodes form a

large cluster in the centre of the model. This is in contrast to the original REDS model,

where patches of high degree nodes are separated by regions of low degree nodes.

In summary, our findings support a claim that the stochastic REDS model also exhibits

a weak form of degree heterogeneity. However, the need for high uncertainty to attain

this outcome and the spatial distribution of the nodes should be highlighted.
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3.3 The evolutionary REDS model

Section 2.3 introduced the problem of the evolution of co-operation. Initially, we dis-

cussed networks with a static structure and the principle that clusters of connected

co-operators can form in populations that are not well mixed. Connections within these

clusters are mutually beneficial and the participants resist attempts to convert them to

the defect strategy. This phenomenon of co-operators linking with each other is known

as network reciprocity and can result in the entire population adopting the co-operate

strategy (Nowak, 2006). Spatial networks are particularly relevant here, since co-location

co-operators is a straightforward mechanism by which this structure of interaction can

be achieved.

We then highlighted the further development of coevolutionary models (Perc and Szol-

noki, 2010); the defining feature of which is that network structure evolves alongside

changes to strategy. A key motivation for this development is that links that form in

social situations typically change over time and so, the ongoing alteration of the connec-

tivity is deemed to be more realistic. In these models the prospects for the co-operative

strategy can be further boosted if the alterations to the network structure tend to favour

greater interconnectivity between co-operators.

In all models discussed in section 2.3, the total number of edges is held at some fixed

amount. Where topological modification occurs, it consists of rewiring undesirable con-

nections. Implicit in this scheme is the assumption that edges are paid for from a shared

budget and that connection costs are therefore invisible to the agent. Prima facie, two of

the models discussed would seem to challenge this assumption, those of Masuda (2007)

and Li et al. (2013). In Masuda’s case a fixed cost was applied to each node. However,

this was a static network, with the cost of the edge incorporated into the model by an

adjustment to the payoff matrix. Ultimately the cost had no impact upon a node’s ca-

pacity to form connections; a fact that was most apparent in the model’s scale-free guise,

where the total edges that a node could receive was, in principle, unlimited. Masuda’s

model then, serves to make explicit the underlying assumption of a shared budget. In Li

et al. (2013), equation (2.5) penalises the formation of long edges. Nonetheless, connec-

tivity within this model remains constant over its lifetime. Furthermore, short distances

are merely a preference in this model; the longer edges can still be formed, and when

they do so there is no additional cost for doing so. Thus, Masuda’s model also conforms

to the assumption of a shared budget.

To reiterate then, those coevolutionary network models that have been used to explore

the evolution of co-operation have an overall connectivity that has been determined a

priori; an assumption that implies that the model’s agents have access to a shared bud-

get with which they pay for their connections. This is an unrealistic scenario that can

potentially be addressed by the stochastic REDS model, insofar as one of the model’s
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key features is that each of its agents maintain connections from a privately held bud-

get. Since evolutionary games model strategic interactions in which agents maximise

accumulation of a resource, it would be logical to derive the privately held budget from

the payoff from the game. Such a model would extend the plausibility of coevolution-

ary network models in that connectivity can now arise in response to agent need and

capacity, rather than being imposed upon the population.

Our final contribution therefore extends the stochastic REDS model so that its agents

play the prisoner’s dilemma with their network neighbours. Doing so imbues the nodes

with a state, i.e., the strategy with which they play the game. The agents are rewarded

(or penalised) for their performance in the dilemma with more (or less) energy with

which they can form edges in the underlying REDS network. In this way the state is

intertwined with the network topology in the fashion of an adaptive network (Gross and

Sayama, 2009) and we therefore name the model the coevolutionary REDS network.

Since connectivity is determined in this fashion, there is no need to externally impose

network structure.

A further issue with the coevolutionary models discussed in section 2.3 is that the agents

are attributed with knowledge of their network neighbours. This knowledge takes diverse

forms, e.g., the neighbourhood (Santos et al., 2006b), strategy (Zimmermann et al.,

2004) or reputation (Fu et al., 2008) of a network neighbour. In the case of adaptive

migration, agents are ascribed with knowledge of the potential payoff from moving to

unoccupied slots of the lattice (Helbing and Yu, 2009). This knowledge is then applied

during the network update phase of the model to guide the agent’s rewiring strategy.

As a counterpoint to these assumptions, it is straightforward to imagine organisms

that lack such capacity, consider microbes or many animals. Moreover, even human

agents can find themselves in situations where assigning credit is difficult; consider salary

negotiation, an activity so contentious that its outcome is almost universally confidential.

In light of this discussion, a further merit of the coevolutionary REDS model is that it

is populated by less cognitively endowed agents. Agents in the coevolutionary REDS

network do not update their connectivity on the basis of any understanding of their

neighbours’ state; instead they deploy what resources they have available at any given

moment.

The coevolutionary REDS network exhibits three canonical forms of dynamics. One

where co-operation dominates the model, a second where co-operation collapses entirely

and a final example where co-operation rises and falls cyclically. The domination exam-

ple is significant in that it demonstrates that co-operation can be promoted in a model

where agents have no knowledge other than their overall reward from their strategic

interactions with their neighbours. We perform a broad range of numerical experiments

so as to establish the conditions that exhibit the varying canonical forms of the dynam-

ics. We also note that the cyclic interactions arise from dynamical properties of the two
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strategy game and, as such, bear some similarity to the model of Szolnoki et al. (2010)

discussed in section 2.3.2.1.



Chapter 4

Planar growth generates

scale-free networks

In section 3.1 we discussed models of spatial networks that result in a scale-free dis-

tribution. There, we identified Mukherjee and Manna (2006) as the sole example that

results in a scale-free distribution when (a) nodes are distributed uniformly at random

on the plane (b) does not assume an input to the model that has a power law form and

(c) does not make use of network topology in the construction process. Furthermore, we

identified planarity as an issue that has received little attention in the spatial networks

literature.

In this chapter we present two related mechanisms; the first, planar growth (PG), seeks

to directly address the impact of a planarity constraint on a network growth process.

Briefly, PG incrementally builds a network by placing new nodes at random locations

in space and connecting them to other nodes such that planarity is maintained. We

introduce it in section 4.1 alongside two reference cases; one of which considers a network

that grows in time but does not enforce planarity, while the other considers a network

built over a static set of nodes through the addition of planarity-preserving edges. In

contrast to the reference cases, PG results in a power law degree distribution and we

present evidence to support this claim in section 4.1.2. Further investigation of PG is

presented in sections 4.2 and 4.3, where we examine other key network measures and

demonstrate the consequences of relaxing planarity, respectively.

The second mechanism is named Apollonian Planar Growth (APG) and is introduced in

section 4.1.3 as a reformulation of PG as an Apollonian growth process. Consideration

of APG as an object of study in its own right leads to further contributions. Firstly, the

APG is inherently spatial; in contrast with the topological character of its precursors,

the DAN and the RAN. Secondly, PG can be viewed as a generalisation of Apollonian

growth processes to cases where m, the number of connections made when a node is

added to the network, is less than 3. In section 4.4, we further develop APG as a single

29
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parameter model, the variation of which tunes the exponent of the network’s degree

distribution. The deterministic Apollonian network (DAN) and the random Apollonian

network (RAN) can then be seen as special cases of APG, with PG intermediate between

them. Finally, we conclude this chapter in section 4.5 where we summarise our results.

4.1 The models and their degree distributions

We begin with a description of the models and an analysis of the degree distributions

that they produce.

4.1.1 Planar Growth, no planarity and no growth

Planar Growth creates spatially embedded networks with N + 10 nodes and average

degree 2m on a unit Euclidean square that has rigid boundary conditions. We wish

to begin the process with a planar network that has nodes distributed uniformly on

the plane. To do so ten nodes are placed uniformly at random upon the unit square

with m × 10 planar edges between them. As they are added, each node after the first

is connected to an existing node; the edge being chosen so as not to violate planarity.

Once all ten nodes have been placed, unconnected pairs are then chosen at random and

an edge is chosen between them; again subject to the caveat that planarity is always

maintained. We continue choosing node pairs until m× 10 edges are added or until all

possible node pairs have been tried. The resulting network is accepted irrespective of

its final number of edges.

Tests of the procedure over 10,000 realisations show that for m = 2 the average degree

of the initial network was kave = 3.99, while for m = 3 it was kave = 4.2. Despite the

results for the m = 3 case we retain this method of initialisation since the number of

nodes and edges of the initial network is statistically insignificant in comparison to the

finished network and the method reliably initialises planar networks.

The algorithm now enters the growing phase where the following steps are repeated N

times:

(1) Place a new node, i, uniformly at random within the square.

(2) Repeat m times:

(2a) Pick a node j where j 6= i.

(2b) If the straight line ij does not cross an existing edge then add ij otherwise go to 2a.
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(a) (b) (c) (d) (e)

Figure 4.1: A PG network with m = 2 at various stages of its growth. (a) N = 0 (b)
N = 50 (c) N = 100 (d) N = 250 (e) N = 500.

If step 2 cannot be completed because m valid nodes do not exist then remove node i

and any associated edges and repeat step 1.

As reference cases for PG we consider two degenerate variants of the mechanism; one

with no planarity constraint, PG-noplanarity, and one with no growth, PG-nogrowth.

Choosing these two models allow us to determine what aspects of the PG model are

responsible for the outcomes that we see. PG-noplanarity is very similar to PG except

that edge connections are always allowed. This scenario is equivalent to the uniform

attachment model originally introduced by Barabási et al. (1999), where it was shown

to result in networks with an exponential degree distribution. In PG-nogrowth we create

a static population of N nodes placed uniformly on the unit square. Pairs of nodes are

picked at random and an edge is drawn between them, provided this new edge does not

cross an existing one. We continue until N ×m edges have been added.

4.1.2 Analysis of the degree distribution

Figure 4.1 is a series of visualisations of a PG network from its initialisation until it

reaches 500 nodes. Qualitatively it seems that some nodes acquire a disproportionately

high amount of connections hinting that the network has a skewed degree distribution.

We proceed, in figure 4.2a, with a plot of the degree distribution for a planar growth

experiment of order N = 104, along with a PG-noplanarity experiment of order N =

104 and a PG-nogrowth experiment of order N = 2 × 103. A smaller value of N is

reported for PG-nogrowth due to computational limits. Nonetheless the results show the

degree distributions of both reference cases to be exponential while the PG experiment

approximates a power law distribution.

To investigate finite size effects we plot, in figure 4.2b, how the maximum degree observed

during these experiments varies with the size of the network. Following Newman (2003),

we also plot the analytically derived relationship between 〈kmax〉, the mean maximum

degree for networks with a power law degree distribution, and N ; 〈kmax〉 ∼ N1/(α−1).
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Figure 4.2: (a) Cumulative degree distributions for PG networks of order N = 104,
APG networks of order 5 × 105, PG-noplanarity networks of order N = 104 and
PG-nogrowth networks of order N = 2 × 103. All results averaged over 20 experi-
ments with m = 2. The dashed line is the best fit for the APG experiment, a power
law with exponent, αAPG = 2.77 ± 0.01. As with all exponents in this chapter, αAPG

has been estimated using the method of Maximum Likelihood Estimators outlined in
Clauset et al. Clauset et al. (2009). (b) Average maximum degree observed for the PG,
PG-noplanarity and PG-nogrowth networks. The dashed line is the expected value of
the maximum degree for a power law with exponent αm=2 = 2.83± 0.01, the estimated
value of the exponent in the n = 104,m = 2 case. The dotted line is a plot of the

expected maximum degree for a network with an exponential distribution.

We find it to be in good agreement with the observations, which provides strong support

for the hypothesis of a power law distribution.

The expected value of the ith member of a sequential ordering of the random variables

of an exponential distribution with parameter λ is E[Xi] = Hi/λ, where Hi is the ith

harmonic number. Barabási & Albert found the degree distribution for the uniform

attachment model to be P (k) = eλ exp(−λk) with λ = 1/m. We therefore approximate

the average maximum degree for a PG-noplanarity network of order N with 〈kmax〉 ∼
mHN . The plot of this curve also matches well with our empirical data supporting

the claim that the degree distributions generated for both types of reference cases are

exponential.

Considered as a whole, the evidence in this section suggests that the network produced

by the planar growth process is scale-free. The necessary ingredients in order to produce

this outcome are growth and the planarity conservation. When either of these aspects

are removed we observe an exponential degree distribution. However, results discussed

in this section are unsatisfactory in that the distribution has only been shown to hold

over one order of magnitude. We will attend to this in the next section.
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4.1.3 Apollonian Planar Growth

Zhou’s original RAN algorithm (Zhou et al., 2005) starts with an equilateral triangle on

the plane. Network construction proceeds by repeatedly choosing a face of the triangu-

lation at random, placing a new node within it and connecting that node to the vertices

of the face. Note that the probability of a node receiving a new edge is proportional to

the number of triangles of which it is a vertex. This count of triangles is, in turn, equal

to the degree. As such, the RAN is a form of linear preferential attachment; further-

more, its degree distribution can be analytically demonstrated to be a power law with

exponent αRAN = 3.0 when the degrees of the three vertices of the external triangle are

ignored.

Apollonian Planar Growth (APG) refines this algorithm by giving the nodes an explicit

position on the face of the triangle. Which face is chosen to receive a new node is still

random but now this probability is in proportion to the area of the face, i.e., face i is

chosen with probability πi defined by the following formula:

πi(t) =
ai∑

j∈Ft
aj
, (4.1)

where ai is the area of face i and Ft is the set of faces present in the simulation at step

t.

The new node is then placed uniformly at random within triangle i and connected to

its vertices. Clearly, this algorithm is equivalent to planar growth on a triangle with

m = 3. It has the advantage that the triangulation can be represented as a ternary

tree (Albenque et al., 2008), thereby allowing for more efficient implementation of the

model. Thus, in figure 4.2a we present a plot of the degree distribution of an APG

network of 5×105 nodes which shows the fit of the power law extending over two orders

of magnitude on both axes with an estimated exponent of αAPG = 2.77± 0.01.

4.1.4 Statistical test of the power law hypothesis

In this section we have estimated several different exponents of assumed power law dis-

tributions using the method of Maximum Likelihood Estimation introduced by (Clauset

et al., 2009). MLE can be used as a principled method to estimate the exponent but

does not establish if a power law is an appropriate model to describe the data under

consideration. To do so Clauset et al. describe two further steps; firstly, goodness of fit is

quantified by a p-value calculated by bootstrapping from the estimated model and com-

paring using the Kolmogorov-Smirnov statistic. Secondly, the power law is compared

with other candidate distributions via log likelihood ratios.



34 Chapter 4 Planar growth generates scale-free networks

However, it has been demonstrated that p-value generated for the bootstrapping stage

depends on the sample size of the data. An implication of this finding is that suit-

ably large samples containing noise or imperfections will always fail the goodness of fit

test. Further, results from the bootstrapping test may be inconclusive when comparing

likelihoods of different models (Klaus et al., 2011; Alstott et al., 2014).

We therefore follow the approach recommended by Alstott et al. (2014) and use the

second step as a means to identify the distribution that most appropriately describes

the data. In table 4.2, we report the log likelihood ratios, R, and associated p-values for

two experiments, the PG network with N = 104,m = 2 and the APG network of order

N = 5× 105. Following Clauset et al., the alternative distributions considered were the

exponential:

P (k) = Ce−λk (4.2)

the stretched exponential:

P (k) = Ckβ−1e−λk
β

(4.3)

powerlaw with cutoff:

P (k) = Ck−αe−λk (4.4)

and lognormal:

P (k) = Ck−1exp

[
−(ln k − µ)2

2σ2

]
(4.5)

where α, β, λ, σ & µ are the parameters to be estimated for the given distribution, C

is a constant that is dependent on these parameters and k is the degree.

The power law model is favoured with high significance over the exponential and stretched

exponential models for both PG and APG networks. The lognormal model is not found

to be a significantly better fit than the power law model for both network models (in-

dicated by the high p-values). The power law with cutoff model is found to be a signifi-

cantly better fit than the power law model (and also a significantly better fit than the log

normal model: with R = 3.0, p = 0.02 for the APG network and R = 5.1, p ∼ O(10−8)

for the PG network). This might be expected given equation 4.4 contains a further
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Table 4.1: Estimated exponents of networks of order n = 104 with varying m. Each
exponent, α, is calculated from a batch of twenty experiments that grow a network of
order n = 104 using m as specified in the first row. Following Clauset et al. (2009)
we use the standard error, σ, as our estimate of the uncertainty in power laws. For all

other estimates of uncertainty in this chapter we use the standard deviation.

m 1 1.5 2 2.5 3

α 3.15 2.97 2.83 2.78 2.69

σ 0.03 0.02 0.01 0.02 0.01

Table 4.2: Log likelihood ratios of estimated power law distributions compared with
other candidate distributions. The log likelihood ratio, R, and their associated p-
values, p, for fits of four alternative distributions compared with the fit of the power
law distribution. Statistics were gathered for PG, planar growth with m = 2, N = 104,
and APG, Apollonian planar growth with N = 5 × 105. Positive values of R indicate
that the powerlaw hypothesis is the preferred model of the data, p is the significance

value of the log likelihood ratio.

exponential stretched exp

R p R p

PG 2.7× 103 O(10−100) 34 9× 10−4

APG 7.1× 104 0 1.0× 103 O(10−85)

lognormal powerlaw with cutoff

R p R p

PG -3.4 0.10 -8.5 3.9× 10−5

APG -2.3 0.26 -5.3 1.1× 10−3

parameter beyond the one in equation 4.2. Moreover, the estimated parameters for the

functional form of the power law with cutoff suggest that the cutoff is not substantive.

We observe that α = 2.76, λ = 7.80×10−5 for the APG network and α = 2.77, λ = 0.0023

for the PG network. We also note that the maximum degree observed for the APG

network across all 20 experiments was kmax = 5726 while for the PG network it was

kmax = 271. Both of these values are less than the corresponding λ−1 indicating that

the magnitude of the cutoff does not significantly impact the power law.

4.1.5 Robustness to variation of m

We now vary m, the number of connections introduced with each new node, to determine

if our observations are peculiar to the m = 2, 3 cases. Three is an upper bound on m,

which can be established by consideration of Euler’s formula for a planar graph, see

discussion in reference Barthélemy (2011) for details. We therefore vary m between one

and three. Non-integer values of m are attained by always attaching bmc edges to a
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Figure 4.3: (a) Mean characteristic path length for PG, PG-nogrowth and PG-
noplanarity networks with varying order N . Note the logarithmic scaling on the x-
axis. (b) Clustering for the same networks. Error bars in each image is one standard

deviation.

new node and then attaching a further node with probability m − bmc. The network

size in these experiments was fixed at n = 104 and were observed to exhibit power laws.

In table 4.1 we report the estimated exponents for these networks which decrease from

αm=1 = 3.15± 0.03 to αm=3 = 2.69± 0.01. From this point of view PG can be thought

of as a generalisation of APG, which strictly has m = 3, to any average degree less than

three.

4.2 Analysis of Planar Growth

Having investigated the degree distribution we now take a look at other key indicators

of global structure. We begin with the small world property and assortativity. Sub-

sequently we examine how the planarity constraint affects the distribution of angles

between edges.

4.2.1 The small world property and assortativity

We seek to determine if PG networks have the small world property; the defining char-

acteristics of which are that the network’s clustering coefficient (Watts and Strogatz,

1998), c, is high and the network’s mean characteristic path length, l, scales with N as

l ∼ lnN . Here, l =
∑

i,j∈V d(i, j)/N(N−1) with V the set of vertices of the network and

d(i, j) the length of the shortest topological path between i and j. For random scale-free

networks with 2 < α < 3 it is known that l scales with N as follows: l ∼ ln lnN (Cohen

and Havlin, 2003). However the order of the networks, N = 104, does not permit the

precision necessary to confirm if this is the case for PG. Instead, figure 4.3a, a plot

of the observed l for PG networks with varying N and m = 2, indicates that l grows



Chapter 4 Planar growth generates scale-free networks 37

logarithmically with N . Figure 4.3b shows that, for the same network, clustering is high

for m = 2 and we therefore conclude that is a small world network.

Large values of c in this case are accounted for by the fact that when a node is added

it will form connections with the end nodes of nearby edges. PG networks with m ≥ 2

will therefore tend to form triangles with nearby edges. Furthermore, nearby edges deny

a significant portion of the network to new nodes, thereby exacerbating this tendency.

The short overall path length l, is a consequence of the high degree hubs in the network.

Now, we consider the assortativity coefficient, a, which we define, following Newman

(Newman, 2002), as a correlation coefficient of the degrees at either ends of an edge, i.e.,

a =
N−1

∑
i jiki − [N−1

∑
i
1
2(ji + ki)]

2

N−1
∑

i
1
2(j2i + k2i )− [N−1

∑
i
1
2(ji + ki)]2

(4.6)

where ji, ki are the degrees of the vertices at the end of the ith edge.

Specifically, we investigate how a varies with m. For PG networks of order N = 104, it

decreases from am=1 = −0.029± 0.006 to am=3 = −0.066± 0.002, i.e., the networks are

mildly disassortative and this tendency increases as m increases. Plots (not presented)

of this relationship show it to be roughly linear. These results are in line with the well

known fact that random scale-free networks are disassortative (Park and Newman, 2003;

Maslov et al., 2004). A partial explanation of this phenomenon that has been offered

is that there is a limited number of possible edges that can lie between high degree

hubs (Maslov et al., 2004). So, in general, a scale-free network must feature connections

between high and low degree nodes.

4.2.2 Angle distribution

Visualisations of PG, PG-nogrowth and PG-noplanarity networks are shown in figure 4.4.

A notable qualitative feature of the PG and PG-nogrowth plots are that edges emanating

from the same node often closely bunch together. Combined with the observation of high

clustering, this suggests that the space is characterised by triangles with at least one

highly acute angle. By contrast the PG-noplanarity network looks markedly different to

the naked eye with edges crossing each other freely.

Within city science, the distribution of angles between edges has been successfully em-

ployed to gain quantitative insight into road networks (Chan et al., 2011; Barthélemy

et al., 2013). In a similar fashion we here consider those edges incident to a vertex in

clockwise order and calculate the angle ω between subsequent pairs. The probability

density of ω is presented as a series of histograms beneath the corresponding visual-

isations in figure 4.4. In the PG case three peaks are apparent; at zero, π and 2π
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(a) (b) (c)

(d) (e) (f)

Figure 4.4: (a) Visualisation of a 0.35×0.35 patch of a N = 104,m = 2 planar growth
network. (b) Visualisation of a 0.01× 0.01 patch of a N = 104,m = 2 PG-noplanarity
network. (c) Visualisation of a 0.35× 0.35 patch of a N = 2× 103,m = 2 PG-nogrowth
network. (d), (e) and (f) the probability mass for the angle, ω, between successive
clockwise edges at a node of the network immediately above. Patch sizes in (a), (b)

and (c) have been chosen so as to best illustrate the network.

radians. The peak at zero is the largest and indicates the high number of acute angles

just described. The peak at 2π is evidence that in some cases the acute angle will be

complemented by a large angle. The difference between the peaks at zero and 2π indi-

cates that in many cases several acute angles will be recorded at a single node in a fan

like structure. There will also be occasions when these fan like structures are formed

next to pre-existing edges. When this happens the fan will spread towards the edge

without crossing it, thereby resulting in two edges incident at the same node that form

an almost straight line. It is this phenomenon that accounts for the peak at π. It should

also be noted that the peak at π will be influenced by the boundary conditions; fans

that appear next to the middle of a side will contribute to it.

The PG-noplanarity histogram shows a large proportion of small angles in a distribution

that smoothly and rapidly tails off. There is a small bump at higher values of ω which

is a consequence of the square’s boundary, i.e., nodes at the corners will tend to have

some ω > 3π/2. Finally, the PG-nogrowth histogram is very similar to that of the

PG networks, confirming that the angular structure is a consequence of the planarity

constraint.
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Table 4.3: Estimated exponents of crossing probability networks. Each exponent α is
estimated assuming a power law degree distribution for a batch of twenty experiments
which grow an N = 104, m = 2 network with the crossing probability χ that is specified

in the first row. Standard error, σ, is reported in the third row.

χ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

α 2.83 2.89 3.00 3.13 3.31 3.55 3.95 4.68 6.21 5.71 6.25

σ 0.01 0.01 0.02 0.01 0.02 0.04 0.03 0.08 0.32 0.07 0.05
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Figure 4.5: The normalised count of crossings, xnorm, observed in experiments with
varying χ. Normalisation was observed by dividing x, the number of crossings, by
20,020, the number of edges. The value of xnorm = 0 when χ = 0 cannot be represented

on logarithmic axes and has been approximated by the value for χ = 0.01.

4.3 Planarity relaxation

The contrast between the PG and the PG-noplanarity degree distributions is dramatic

and we would like to investigate intermediate networks. To do so we introduce a new

parameter; χ ∈ [0, 1], the crossing probability. This parameter is applied in step 2b of

the PG algorithm where, each time we encounter a crossing, instead of rejecting the

crossing outright, we allow it with probability χ. We grow networks with N = 104 and

m = 2 while using a different value of χ in the range 0.0 and 1.0 for each experiment. Our

first result, presented in figure 4.5, is a plot of the normalised number of crossings which

shows that the number of crossings increases in a roughly exponential fashion between

χ = 0.1 and χ = 0.9. Beyond χ = 0.9 the number of crossings increases significantly in

comparison to the previous regime.

The associated degree distributions are shown in figure 4.6a where we see a smooth

transition from a power law to an exponential curve as χ increases from 0.0 to 1.0.

Similarly, in figure 4.6b we present the average maximum degree where plots for low χ

match the predicted maximum of a power law while increasing χ leads to curves that

more closely match the exponential prediction. Taken together, this evidence shows

a smooth transition from a heavy tailed to an exponential degree distribution as χ
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Figure 4.6: (a) Cumulative degree distributions for networks created using planar
growth with a probability χ of accepting edge crossings. The dashed line is the power
law with exponent αm=2, the best fit for the χ = 0.0 experiment. (b) Average maxi-
mum degree observed in the same experiments. Dotted and dashed lines are the same
references plotted in figure 4.2 and are fits for the χ = 0.0 cases and χ = 1.0 cases

respectively.

increases. We also estimated exponents, assuming a power law distribution, and report

the results in table 4.3, finding an increasing trend for the exponent with χ for networks

with χ ≤ 0.8. However, from an examination of figure 4.6a, it is clear that networks

for which χ > 0.7 have a degree distribution that is exponential and we can therefore

disregard exponents in this region of the parameter space.

Assortativity is plotted in figure 4.7a and again exhibits a smooth transition, this time

from mild disassortativity to assortativity. To account for this change we first consider

the strength of node i, si =
∑

j∈V (i)wij , (where V (i) is the set of vertices connected

to i and wij is the Euclidean distance between i and j). As discussed in section 4.2.1,

preventing edge crossing has the consequence that new nodes are more likely to form

connections with nodes that lie at the ends of nearby edges. Thus, where planarity is

maintained, high strength nodes will be more likely to receive new connections since,

by definition, strength is a measure of the total length of edges beginning at node i.

These high strength nodes will also tend to be high degree nodes. Thus, for low χ, high

degree nodes attract connections from new, low degree nodes thus accounting for the

disassortativity. This tendency will be relaxed as χ increases leading to more assortative

networks.

We consider the clustering of these networks in figure 4.7b noting a high cχ=0.0 = 0.49

descending to a negligible value for cχ=1.0. High clustering occurs for χ = 0.0 for the

reasons outlined in section 4.2.1. On the other hand a new node connects freely to

any existing node in the χ = 1.0 case and, hence, this model displays no clustering,

equivalent to the uniform attachment model.
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Figure 4.7: (a) Average assortativity observed in PG networks with varying χ. (b)
Average clustering observed in the same experiments. Each data point relates to twenty
networks grown using n = 104, m = 2. Error bars represent one standard deviation.

4.4 Comparison of APG with existing Apollonian growth

In section 4.1.3 we introduced APG as a refinement to the Random Apollonian Network

noting that the exponent of its degree distribution was αAPG = 2.77±0.01. We contrast

this with the analytically derived exponents for the DAN, αDAN = 2.585, and the RAN,

αRAN = 3.0. The APG’s exponent lies between these two values and we contend that

this is because APG can be thought of as a generalisation of the two existing models.

A triangulation created by any of the three Apollonian growth processes can be repre-

sented as a ternary tree where the internal nodes of the tree correspond to nodes of the

network and leaves of the tree to the triangular faces (Albenque et al., 2008), see figure

4.8. In the case of the RAN, picking faces of the triangulation uniformly at random is

equivalent to picking leaves of the tree uniformly at random. Therefore, the correspond-

ing tree for the RAN will tend to grow in depth since leaves at the bottom of the tree

will appear in greater abundance.

DAN constructions begins with K4 embedded in R2. Growth is an iterative process

where, at each stage, a new node is placed within each of the graph’s internal faces.

Each of these new nodes is then connected to the vertices of its containing face resulting

in three new faces. This recursive splitting of the triangle is repeated t times and

the corresponding ternary tree has depth t + 2 and is both full and complete. Most

importantly, the tree for the DAN is shallower than that of the RAN.

The consequence for the degree distributions of the triangulations is as follows: at depth

t there are 3t potential nodes of which 3× 2t−1 will connect to the triangulation’s root

node. The triangulation associated with the DAN is guaranteed to fill those locations

that maximise the degree of the root node. Furthermore, note that the structure of the

ternary tree is self-similar. As such any node within the DAN receives the maximum

number of connections from its descendants on the tree. Meanwhile, degree in the RAN
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Figure 4.8: A triangulation resulting from an Apollonian growth process represented
as a ternary tree. Here a root node, 1, and one subsequent node, 2, have been added to
the triangulation, resulting in five faces. This triangulation is represented by a ternary
tree on the right hand side. The internal nodes of the tree correspond to the nodes of
the triangulation and have been numbered as such. The leaves of the tree correspond

to the faces and the colouring scheme indicates this.

will be distributed more evenly since the new additions at greater depths will not have

the same tendency to link to those at shallower levels of the tree. We therefore expect

the DAN to exhibit a heavier tail in its degree distribution and this accounts for the fact

that αDAN < αRAN .

In the case of APG there will be a tendency to place nodes within those faces with the

greatest area. The intuition here is that the earlier a face is created the larger its area

will be and therefore those faces that are at a shallow depth within the ternary tree

will be favoured for selection. On the other hand, as more nodes are added, a greater

proportion of the triangle’s total area is covered by newer triangles at greater depth and

these will come to be favoured over time. Therefore, nodes in the APG’s ternary tree

appear at a depth between those of the DAN and the RAN and this in turn explains

why we see an intermediate exponent for the degree distribution.

4.4.1 Area weighting and trisection

We test the hypothesis of the previous section by varying the extent to which face area

influences its selection within APG. To this end the equation 4.1 is modified as follows:

πi(t) =
aβi∑

j∈Ft
aβj
, (4.7)
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Table 4.4: Variation of the degree distribution with area weighting. Estimated values
of the exponent of the degree distribution, α, observed for APG networks of order 105

with varying area weighting exponent, β. The standard error, σ, in each case is 0.01.

β 10−3 10−2 10−1 100 101 102 ∞
α 2.92 2.93 2.82 2.76 2.77 2.76 2.77

where β, the area weighting exponent, is a parameter controlling the influence of a

given triangle’s area. Clearly, as β → 0, faces will be chosen at random and RAN will be

recovered. Conversely, when β →∞ larger faces will be favoured. Since a triangle that is

formed early in the process is more likely to be larger, we expect that faces corresponding

to shallower levels of the ternary tree to be filled first. As such, we expect, in this case,

to recover the DAN instead.

In table 4.4 we report the exponents for networks created using this variation of the

APG and varying β. For values of β < 1 we see precisely the result predicted, as β → 0,

α → 3. On the other hand, for values of β > 1, a saturation effect has taken hold

and the exponent remains around 2.76. This contradiction with the predicted behaviour

occurs because we have assumed that shallow faces in the ternary tree will always have

a greater area than deeper ones. Since nodes are placed randomly upon their containing

triangle, this is not necessarily the case in Apollonian Planar Growth. Thus, nodes tend

to appear deeper in the ternary tree than our initial hypothesis assumed.

In light of this reasoning we further modify the algorithm by placing each new node

so that it exactly trisects its containing face; thereby guaranteeing a hierarchy of face

sizes by depth within the tree. For β < 1 behaviour was again as expected; exponents

were observed to decrease from 2.93 ± 0.01 to 2.68 ± 0.01 as β increased from 10−2 to

10−0.5. A further experiment with β = 102 gave an exponent of 2.85±0.01 which, prima

facie, suggests that the hypothesis is incorrect. However, it is apparent from figure 4.9

that the fit is not indicative of the degree distribution of the area weighted APG with

trisection. This is because the Clauset et al. method is fitting the black dots in figure

4.9 and is therefore an inappropriate method for quantifying the exponent of power laws

that exhibit this sort of discretisation.

To better understand the distribution as β → ∞ we instead follow the formula for the

degree distribution of a DAN presented in Andrade et al.’s original paper (Andrade Jr

et al., 2005) and plot it on figure 4.9 alongside our own data. It is clear that the

discretisation of the experiment closely matches that of the analytical calculation. In a

further experiment we set β =∞, i.e. the largest triangle was always chosen, and grew

a network of 265,720 nodes, the order of an Apollonian network that has been iterated

11 times. In this case the analytical calculation exactly matches the experimental data,
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Figure 4.9: Black dots are the degree distribution of a network of order n = 105 grown
using Apollonian Planar Growth with β = 100. Faces were divided by trisecting in to
three equal areas in this version of the model. Empty circles are the degree distribution
of an Apollonian network of the same order. Dashed line is a plot the best fit of the

exponent, αβ=100 = 2.85± 0.01.

confirming that the area weighted APG with trisection approximates the DAN as β

increases.

To complete the analysis we considered networks with β < 0, results obtained indicate

that an exponential distribution takes hold in this regime. In this regime, new nodes

tend to appear within the model’s smallest triangle, thereby creating new smallest face

from the resulting trisection. Thus, new nodes will tend to congregate in the same

region of the model. This contrasts with the β ≥ 0 case where division of the largest

face effectively lessens the probability of that region being selected in the next iteration

of the process. Thus, the potential for nodes to be distributed over the entire face is a

key feature in the onset of the power law degree distribution.

4.5 Summary

We have introduced planar growth as a model of spatial network formation in which a

network is grown over time such that planarity is maintained. Resulting networks have

been found to be scale-free, have the small world property and are mildly disassortative.

It should be noted that PG attains the power law degree distribution with a uniform

distribution of nodes in space. As far as we are aware this is only the second example,

Mukherjee & Manna (Mukherjee and Manna, 2006) being the first, of a spatial growth

process that attains this outcome under this constraint. The scale-free property is de-

pendent on two aspects of the process; sequential growth and maintenance of planarity.

Removal of either aspect results in a network with an exponential degree distribution.
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To the extent that the planarity constraint is relaxed the degree distribution degrades

from a power law to the exponential case. Similarly, smooth crossover was noted for the

clustering and assortativity of these networks. We have discussed those spatial networks

that are nearly planar and further note that Newman has articulated a desire for a

quantification of the degree of planarity (Newman, 2010). We offer these results as an

initial step towards resolving this question.

A refinement of the model, Apollonian Planar Growth, demonstrated a connection be-

tween planar growth and Apollonian networks. Weighting the area selection of triangles

during Apollonian Planar Growth allowed us to easily recover the Random Apollonian

Network while a further variation, trisection, was required in order to produce the De-

terministic Apollonian Network. As such, weighted Apollonian Planar Growth with

trisection acts as a framework that generalises the two existing Apollonian models.





Chapter 5

Spatial network growth based on

stochastic agent decisions

In section 3.1 we discussed the REDS model (Antonioni et al., 2014), a spatially em-

bedded growth process that models the formation of a social network. The distinctive

feature of the REDS model is that its nodes are individually assigned a resource with

which they maintain the connections that they make in the model. Networks formed by

this model exhibit high clustering, positive assortativity and a form of degree hetero-

geneity, all of which are believed to be features of real world networks. The fact that

a form of degree heterogeneity obtains in this model is especially satisfying since the

length of edges in this model is constrained.

More precisely, the REDS model is a network growth process based upon the random

geometric graph (RGG) (Dall and Christensen, 2002). The RGG is constructed by

placing n nodes, uniformly at random, on the unit square and then connecting all pairs

that are separated by a Euclidean distance that is no more than a specified radius, R.

Nodes in the REDS model can form any edge described by the RGG. However, a node

i pays for its edges from an energy budget, Ei, that is specific to i. The cost of an edge,

(i, j), is proportional to Dij , the Euclidean distance between nodes i and j. Additionally,

this cost decreases in proportion to the number of neighbours that i and j share. This

effect is termed synergy and is governed by the parameter S.

Within the REDS model, an edge is created provided its addition to the network does

not cause either end node to exceed its budget. Furthermore, once an edge appears, it

is never removed. These aspects of the model imply that nodes in the REDS model are

agents that have a high degree of certainty when forming connections with each other.

This contrasts with everyday experience where social connections are often fleeting and

their perpetuation is contingent upon the participants’ unknown (at the time of meeting)

capacity to maintain them over time.

47
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Our main contribution in this chapter is instead to envision the nodes as agents whose

decisions in this respect are instead subject to noise. The presence of noise in these

decisions means that these agents may form connections that exceed their energy budget

and they are therefore afforded the opportunity to discard connections. We achieve these

goals by adding new edges between unconnected nodes in a probabilistic fashion, with

the new edge more likely to be added if the energy budgets of its end nodes are not

exceeded. Conversely, existing edges are more likely to be removed if either of the end

nodes currently exceeds its energy budget. Since this new model incorporates additional

stochastic elements we name it the stochastic REDS model.

We introduce noise into the stochastic REDS model via a parameter that we name

the network update temperature, Tn. We grow networks using different values of this

network update temperature and report key topological statistics. We find that, for

low Tn, these statistics are nearly identical to those of the REDS model. That is, we

find three distinct regions of the S ×E parameter space; the first is a high connectivity

region where mean degree, 〈k〉, matches that of the underlying RGG. The second is a

low connectivity region. Finally, between the high and low connectivity regions there

is a band of S × E space where we witness a sudden change in connectivity. At higher

values of Tn, we find that this boundary region is shifted within S ×E as higher energy

and synergy is required in order to produce a high connectivity network.

We investigate dynamics for networks that lie within the transition between high and

low connectivity. We find that, for low Tn, the network equilibrates to one of two states,

either (i) a constant high connectivity value of 〈k〉 or (ii) a state where the mean degree

does not settle but varies around a low value of 〈k〉. The probability with which a

network in this transition region enters either of these two states is governed by E, the

energy that is allocated to each node.

This is in contrast to networks within the transition regions of the REDS model, where

resulting networks can exhibit an intermediate value of 〈k〉. These networks are hybrids

of the high and low connectivity networks where parts of the network have RGG-like

connectivity and the remainder is sparsely connected and, consequently, they exhibit

a bi-modal degree distribution. However, we do find, for high Tn, scenarios where the

stochastic REDS model creates networks whose connectivity lies between high and low

values of 〈k〉.

In summary we find that the degree heterogeneity of the REDS model is not robust

in the stochastic variant. The bi-modal distribution is only observed when there is

high uncertainty in the stochastic variant of the model. We further examine the spatial

distribution of the bi-modal distribution’s high degree nodes and find that for the REDS

model they (the high degree nodes) are located across the plane while for the stochastic

REDS model they are located at the edges.
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Our first step, in section 5.1, is to recreate the REDS model. In doing so we find

a discrepancy between the original implementation and the algorithm as described in

Antonioni et al. (2014). We implement both versions and find the results to be broadly

similar. In section 5.2 we give the precise description of the stochastic REDS model

and report network statistics for a range of temperatures. In section 5.3 we look more

closely at the transition in mean degree.

5.1 The REDS model

Our chief aim in this section is to implement the REDS model. We begin by providing

a precise description of the model in section 5.1.1. In section 5.1.2 we summarise those

results of Antonioni et al. that are pertinent to the present study. Section 5.1.3 contains

our own results. We recreate of REDS model and find that it matches Antonioni et al.’s

findings. Further, we identify an error that was made with the original implementation

and present results for a corrected version.

5.1.1 Process

In this chapter’s introduction we outlined the construction of the Random Geometric

Graph (RGG) (Dall and Christensen, 2002). The RGG is a fundamental example of a

spatial network and directly inspires the REDS model. The RGG is formed by placing

nodes uniformly at random upon a unit square and then connecting all nodes that lie

within a specified distance of each other. We note here that the degree distribution

of the RGG is a Poisson distribution with mean degree 〈kRGG〉 = nπR2 (Dall and

Christensen, 2002). Furthermore, the RGG has clustering and assortativity coefficients

cRGG = aRGG = 1− 3
√
3

4π (Antonioni and Tomassini, 2012) (Barnett et al., 2007).

The REDS model takes the RGG as its starting point but considers the nodes of the

network to be social agents. Two intuitions about social interaction are embodied in

the REDS model; (i) that agents have a limited capacity to maintain social bonds and

(ii) that social bonds are more easily maintained between agents that share mutual

acquaintances. Intuition (i) is realised within the model by allocating an individual

budget, Ei, to each node i. An edge (i, j) incurs a cost cij which must be paid for from

this budget. Intuition (ii) is realised by making cij inversely proportional to kij , the

number of neighbours shared by i and j. These ideas are embodied in the following

equation:

cij =
Dij

1 + Skij
(5.1)
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where Dij is the distance between nodes i and j and S ∈ [0, 1] is the synergy, a parameter

that governs the extent to which shared neighbours reduce the cost of edge formation.

The REDS model is initialised in two steps; firstly we choose four parameters: the

network order n, the maximum connection distance R, the synergy S and the per node

energy budget, E. Secondly, each of the n nodes are placed uniformly at random within

a unit square with periodic boundary conditions and allocated an initial energy Ei = E.

The algorithm for growing the network then proceeds as follows:

1. A node i is picked uniformly at random. A second node is picked, uniformly at

random, from all nodes j such that Dij < R and (i, j) does not exist.

2. An undirected edge (i, j) is added if Ei ≥
∑

x c
+ij
ix and Ej ≥

∑
x c

+ij
jx . Here c+ijix

is the cost of the edge (i, x) in the network modified by the addition of edge (i, j).

The summation over x represents the summation over the neighbours of i in the first

inequality and j in the second.

3. Steps 1 & 2 are repeated until there are no edges that satisfy the criteria laid down

in step 2.

The aforementioned algorithm is the REDS model as described in Antonioni et al. (2014).

During the preparation of this section of the thesis we communicated with one of the

authors of Antonioni et al. and established that the results in the original paper were

produced using an erroneous implementation of the REDS algorithm. Specifically, in

step 2 of the algorithm, the implementation did not update the network before calcu-

lating the cost of an edge, i.e., the summations in step 2 were performed using cix, cjx

rather than c+ijix , c+ijjx .

We interpret this variation of the algorithm as meaning that a node cannot easily cal-

culate what the impact of adding the new edge will be upon its existing social network.

For this reason we refer to the erroneous implementation as the non-predictive REDS

model. Since the addition of a new edge (i, j) will reduce the cost of i and js’ shared

edges, the non-predictive REDS model will disallow connections that would be valid

under the REDS model.

5.1.2 Results as reported by Antonioni et al.

Antonioni et al.’s results can be broken into three main strands. Firstly, they reported

the mean degree, 〈k〉, clustering, c, and assortativity, a, for networks with varying

combinations of S and E. Secondly, they reviewed typical degree distributions, again

for varying S and E. Finally, they examined community structure for two networks with

differing values of S. Since we wish to establish if our recreation captures the essential

features of the original network, a comparison with Antonioni et al.’s network statistics
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Figure 5.1: Mean degree 〈k〉, clustering coefficient c and assortativity a for non-
predictive REDS networks of order n = 104 and the maximum connection distance R =
0.05. These heatmaps are reproductions of those within Antonioni et al. (Antonioni

et al., 2014).

and reported degree distributions will be sufficient. Thus, we now review Antonioni et

al.’s findings with respect to these issues.

Figure 5.1, is a series of three heatmaps that illustrate how the mean degree, 〈k〉, cluster-

ing, c, and assortativity, a, vary for networks grown by the non-predictive REDS model

using different combinations of S and E. The heatmaps are taken from Antonioni et

al.’s original work where networks of order n = 104 and maximum connection distance

R = 0.05 were grown using the non-predictive REDS model. These choices of n and R

effectively define the node density of these networks and determine the mean degree of

the underlying RGG to be 〈kRGG〉 = 78.54. Thus, where Antonioni et al. report a value

of 〈k〉 it is normalised by 〈kRGG〉, a convention that we will follow in the remainder of

this thesis.

The observations were made within the region of the S × E plane where 0.0 ≤ S ≤ 1.0

and 0.0 ≤ E ≤ 0.3. The upper bound on S is chosen to ensure that, for a node i within

a fully connected clique, cij will always be at least the average distance between i and its

neighbours. To justify E, we first observe that the mean distance between i and one of

its neighbours is 2R/3. Consequently, when S = 0.0, a node i of mean degree, 〈kRGG〉,
will require a budget of Ei = 2nπR3/3 to form connections with all of its neighbours.

Since, for n = 104, R = 0.05, this energy would be Ei = 2.62, the threshold E = 0.3

ensures that, in the S = 0.0 case, the non-predictive REDS model cannot form all of

the connections required to form an RGG.

The most obvious feature in figure 5.1a is the division of the mean degree heatmap into

two distinct regions. The top right of the heatmap is a region where 〈k〉 ∼ 1.0. Within

this region the clustering is c ∼ 0.59 and the assortativity is a ∼ 0.59. These statistics

are consistent with the analytical results for RGGs reported in section 5.1.1. In this

region of S × E space, synergy allows more edges to be created than is possible in the

S = 0.0 case. Thus, the networks in this region make almost all the possible connections

that are available to them. For this reason we refer to this as the high connectivity

region of S × E space.



52 Chapter 5 Spatial network growth based on stochastic agent decisions

Below and to the left of the high connectivity region S and E are not high enough to

permit edge formation in any great quantity and, consequently, we instead observe a

low connectivity region. Clustering is also low within this region. Assortativity within

the low connectivity region is moderate for low values of E and high for a band of

parameter values that lie just below the high connectivity region. The remainder of the

low connectivity region has low, i.e., close to zero, assortativity.

Antonioni et al. also investigate the degree distributions networks drawn from different

regions of the S × E heatmap. They assert that networks within the high connectivity

region have the Poisson degree distribution with 〈k〉 ∼ 1.0. Networks within the low

connectivity region have a degree distribution with a large peak at low values of k. They

further identify a third region of the S ×E heatmap in the boundary between the high

and low connectivity regions. Here the networks exhibit a bi-modal degree distribution,

in that the distribution exhibits two distinct peaks, a sharp peak at low k peak and a

second, flatter peak at a higher value of k. Antonioni et al. argue that these two peaks

indicate that these networks are composed of regions that are are sparsely connected

and other regions that have RGG like connectivity.

5.1.3 Implementation of both variants

In this section we recreate the non-predictive REDS model and implement the REDS

model. We then compare Antonioni et al.’s results with our own. To allow for this

comparison, we retain the parameters that govern network order, n = 104, and maximum

connection distance, R = 0.05. Our implementations differ from the original specification

in one respect; since real world social systems have defined geographic boundaries, we use

rigid rather than continuous boundary conditions. In what follows, we find that observed

phenomena closely match those reported by Antonioni et al. and for this reason we have

persisted with the rigid boundary conditions in the remainder of this thesis.

The three heatmaps in figure 5.2a have been produced by following the non-predictive

REDS algorithm. Since we do not have access to Antonioni et al.’s original results we

instead rely on a qualitative comparison between figure 5.1 and figure 5.2a where we find

a near exact match between the two sets of heatmaps. In particular we have reviewed

values of mean degree, clustering and assortativity within the high connectivity region

and find them to be consistent with the analytical values for an RGG, i.e., 〈k〉 ∼ 1.0

and c, a ∼ 0.59.

The heatmaps in figure 5.2b are results for the REDS algorithm. Here, we again see plots

that are similar to those in figure 5.1. The significant difference is that, for high S, the

high connectivity region of the 〈k〉 plot extends further down the right hand side of the

plot, i.e., high connectivity is observed for lower values of E. This difference is apparent
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Figure 5.2: Mean degree 〈k〉, clustering coefficient c and assortativity a for (a) re-
implemented non-predictive REDS networks and (b) REDS networks. The value in
each heatmap cell has been averaged over 10 instances of networks of order n = 104

and maximum connection distance, R = 0.05.

in the clustering and assortativity plots. In both cases the region where c, a ∼ 0.59 also

extends further down the right hand side of the plot.

At the end of section 5.1.2 we discussed the three types of degree distribution that

Antonioni et al. identified. Two of these distributions were characteristic of the high

and low connectivity regions of S × E space, while the third was discovered in the

boundary between these regions. In order to represent the equivalent regions of S × E
space for the REDS model we fix S = 0.8 and choose E = 0.03 (low connectivity),

E = 0.06 (boundary) and E = 0.24 (high connectivity). For each energy we generate 15

instances of the network.

Figure 5.3a is the degree distribution formed by compiling the degree sequences for all

15 E = 0.03 networks in to a single, master degree sequence. The distribution peaks at

k = 1 which rapidly decreases as k increases. The maximum degree observed across all

the E = 0.03 networks is 27.

Figure 5.4a visualises a portion of a single E = 0.03 network. Here, patches of relatively

high degree clusters are distinct amongst the predominately low degree nodes. The

prevalence of low connectivity indicates that these networks may be fragmented, i.e.,

they consist of multiple components. We define gc to be the number of components in

a network find the mean number of components within the E = 0.03 networks to be

〈gc〉 = 1331± 8.
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Figure 5.3: Degree distributions averaged over 15 instances of networks created using
the REDS algorithm with S = 0.8 and (a) E = 0.03, (c) E = 0.06 and (d) E = 0.24.
Values have been normalised so that the area under the histogram is 1.0. Plot (b)
is the reverse cumulative distribution of component sizes for the E = 0.03 networks.

Individual scales have been used for each plot so as to best fit the panel.

Figure 5.4: Visualisation of two REDS networks. The square of side 0.2 with bottom
left corner at (0.4,0.4) has been visualised for REDS networks with S = 0.8 and (a)

E = 0.03, (b) E = 0.06.

To analyse the order of these components, we define ng as the number of nodes within

a component and count ng for each component. Figure 5.3b is a reversed cumulative

distribution of ng. Here we see that the majority of components are small, specifically

91% of these clusters are of order ng ≤ 10. However, it should be borne in mind that

only 29% of the nodes lie within these ng ≤ 10 clusters.

In figure 5.4b, a visualisation of a E = 0.06 network, the space appears to be dominated

by patches of high connectivity that are separated by boundaries of low connectivity.

Figure 5.3c is the degree distributions for the E = 0.06 networks. Here, there is a sharp

peak at low k and a second, smoother peak, centered around k ∼ 30. In brief, this

distribution and the visualisation confirm that E = 0.06 networks exhibit the bi-modal
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distribution. Across all 15 of the E = 0.06 networks the largest component has order

ng ≥ 9990. Thus, it seems sensible to say that these networks are a single component,

albeit with a very small number of anomalies.

Finally, for E = 0.24 we find that, due to the density of edges, the resulting visualisation

is unintelligible. However, we have produced the degree distribution in figure 5.3d. The

distribution has an (unnormalised) mean degree of 75.2 and its shape is mostly similar

to that of a Poisson distribution albeit with a noticeable right skew. These observations

are consistent with a network that has reached a state that has formed most, but not

all, of the connections required to form an RGG. In all cases these networks consist of

a single connected component.

5.1.4 Summary

In this section we have investigated our implementation of the REDS model. Our first

result was to implement the non-predictive REDS algorithm used by Antonioni et al. in

their original work. We found good agreement between the mean degree, clustering and

assortativity S×E heatmaps reported by Antonioni et al. and our implementation. On

this basis we conclude that we have successfully recreated the original work.

For the remainder of the section we used the REDS model. We found the S×E heatmaps

for this implementation to be similar to those for the erroneous implementation; the

exception being that, where S is high, the high connectivity region extends towards

lower values of E. Furthermore, the associated clustering and assortativity heatmaps

also changed in a manner that was consistent with the extension of the high connectivity

region. This expansion of the high connectivity region was to be expected since we argued

that the effect of the error would be to reject edges that would otherwise be accepted

when the effect of synergy was properly accounted for.

We examined degree distributions for three networks drawn from what we expected to

be the distinct regions of the REDS model’s S × E space. We found good agreement

between the network structures reported by Antonioni et al. and our own results. This

final result leads us to conclude that while the REDS model has an extended high

connectivity region in comparison to the non-predictive REDS model, the character of

the underlying networks remains the same.

5.2 The stochastic REDS model

In the previous section we reviewed and recreated the REDS model. A key theme of

that growth process is that edge updates are deterministic; i.e. where a proposed edge

is affordable it is added, otherwise it is not. In this chapter we instead investigate the



56 Chapter 5 Spatial network growth based on stochastic agent decisions

scenario where there is uncertainty in the process of edge formation with the consequence

that nodes may overspend their budget. That being the case, we further require that

nodes remove edges so as to counteract energy deficits. We implement this idea by

introducing the stochastic addition (and removal) of edges and for this reason we name

our new process the stochastic REDS model.

We precisely define this algorithm in section 5.2.1. In particular we introduce the net-

work update temperature, Tn, a parameter which governs the amount of noise to which

the stochastic edge update events are subject. In section 5.2.2 we generate networks

using varying network update temperatures. We assess the stochastic REDS model by

comparing the S × E heatmaps it produces with those produced by the REDS model.

In particular, we find a near exact match between the REDS model heatmaps and those

generated by the stochastic process at low network update temperatures. When this

temperature is increased, the high connectivity region recedes towards the top of the

heatmap and is replaced by an enlarged low connectivity region.

5.2.1 The stochastic REDS algorithm

We have begun this section by highlighting the deterministic nature of edge addition

within the REDS model. Specifically, before edge (i, j) is added, the budgets of nodes

i and j are checked and if either node cannot afford (i, j) then the edge is not added.

We remind ourselves that the REDS model is intended to be a model of social network

formation and that node i is considered to be an agent in this context. That being the

case, we can interpret edge formation as a decision on the part of agent i. Furthermore,

we can consider these decisions to be rational in the sense that i has complete knowledge

of both its current expenditure on social connections and the cost of the new social

connection.

In this section we instead consider agents whose decisions are subject to uncertainty. In

particular these agents make a best guess as to how affordable a potential connection is

and, as such, on occasion they will participate in connections that, temporarily, exceed

their energy budget. Subsequent iterations of the model will allow agents to review their

expenditure and remove edges that violate the energy constraint.

We implement this idea within the stochastic REDS model by using a Fermi function.

A Fermi function is a probability distribution which has the following form:

f(δ, T ) =
1

1 + e−δ/T
(5.2)

where δ = E − EF is the difference between an energy state E and a ground state EF .

The temperature, T acts as noise parameter; as T → 0 the Fermi function acts like a

Heaviside function, alternatively, as T →∞, f(δ, T ) ∼ 0.5 for all values of δ.
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In the stochastic REDS model, the manner in which the Fermi function is applied

depends on whether or not the edge under consideration is being proposed for addition or

removal. When edge (i, j) is proposed for addition, we first calculate δi = Ei−
∑

x c
+ij
ix .

For a specified network update temperature, Tn, we say that node i accepts (i, j) if

r < f(δi, Tn), where r is drawn uniformly from the range [0, 1]. Conversely, when (i, j)

is proposed for removal, we first calculate δi =
∑

x cix − Ei. We say that node i rejects

(i, j) if r < f(δi, Tn).

We now define the network construction process as follows:

1. The process is initialised with n, S, E and R as for the REDS model above. In

addition to these parameters we also choose a network update temperature Tn.

2. A node i is picked uniformly at random. A second node j is picked, uniformly at

random, from all those nodes such that Dij < R.

3a. If (i, j) does not exist, we add the edge if both i accepts (i, j) and j accepts (i, j).

3b. Alternatively, if (i, j) exists we remove the edge if either i rejects (i, j) or j rejects

(i, j).

4. Steps 2 and 3 are then repeated for some specified number of iterations.

Informally, an edge is more likely to be added at step 3a if both nodes do not exceed

their energy budget as a result of doing so. Nonetheless, it can occur, in step 3a that

a node will accept an edge that violates this constraint or reject an edge that does

not; possibilities that become more likely with increasing Tn. Where an existing edge

is selected by the algorithm, step 3b allows for the end nodes to, in effect, reconsider

that edge. However, step 3b is also prone to make errors with respect to the budget

constraint. In this way we realise agents that are uncertain in their edge update decisions.

The extent of this uncertainty is controlled by the network update temperature, Tn;

with low temperature modelling agents that have near complete information as to their

expenditure and cost of connections. Conversely, high network update temperature

models agents who are more uncertain in these matters.

5.2.2 Results

In this section we grow stochastic REDS networks. Where we grew networks using the

REDS model above we relied upon the fact that the original model has a well defined end

point, i.e., the process reaches a point where no further edges can be afforded. No such

condition exists for the stochastic model. We remind ourselves that the characterisation

of the REDS model’s S × E heatmaps was determined primarily by the mean degree.
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Figure 5.5: Dynamics of 〈k〉 over t = 100 epochs of 2.5×104 iterations for a stochastic
REDS model with Tn = 10−2, S = 0.8, E = 0.24.

Ultimately, we wish to compare the results of the stochastic model with those of the

REDS. Therefore, in order to establish a stopping condition, we seek to determine when

the value of 〈k〉 stabilises within the stochastic REDS model.

Since we intend to track the dynamics of the quantity 〈k〉 over the lifetime of the model

we now clarify our definition of time for the model. We use the term epoch to mean a set

number of iterations, where an iteration is the execution of steps 2 & 3 of the algorithm.

In this chapter an epoch consists of 2.5 × 104 iterations. We also highlight here that

we continue to fix network order and maximum connection at n = 104 and R = 0.05 to

allow for comparison with previous results in this chapter.

As an initial experiment, we run the stochastic REDS model with Tn = 10−2, S =

0.8, E = 0.24 and at the end of each epoch record 〈k〉. Figure 5.5 presents the dynamics

of 〈k〉 for this network. In the plot, we see that the mean degree grows logarithmically

until it reaches 〈k〉 = 0.95 at epoch t = 100, i.e., this instance of the model has resulted

in a high connectivity REDS network. Repeated experiments with parameterisations

that result in a high connectivity network indicate that there is some growth in 〈k〉
beyond t = 100. However, the rate of increase of 〈k〉 remains gradual in this period.

We wish to assign a specific value of 〈k〉 to this network, however we do not simply use

the value just reported for epoch 100. Instead we calculate 〈k〉30, the mean of 〈k〉 over

the last 30 epochs of the model, i.e.:



Chapter 5 Spatial network growth based on stochastic agent decisions 59

〈k〉30 =

100∑
i=70
〈ki〉

30
(5.3)

where 〈ki〉 is the mean degree at epoch t.

Doing so results in a value of 〈k〉30 = 0.94 for this network. Also of importance here is

that the standard deviation of 〈k〉30 is s〈k〉,30 = 0.01, i.e., the value of 〈k〉 is stable in

this region.

A similar experiment, this time with the energy reduced to E = 0.03, results in a network

with low connectivity. For networks with these parameters, the mean degree rises to

〈k〉 ∼ 0.03 after t = 50 epochs and remains at this level until t = 100. More precisely,

〈k〉30 = 0.03 and s〈k〉,30 ∼ 10−4 in this case.

In general we have found during initial, exploratory experiments, that these two exam-

ples give a good indication of the dynamics of the stochastic REDS model. In particular

t = 100 epochs of 2.5 × 104 iterations is an adequate period of time for activity in the

model, as measured by s〈k〉,30, to reach a low value. We will explore these matters in

more depth in section 5.3. Before doing so, we will first explore the parameter space

more thoroughly.

To do so, we again produce S × E heatmaps, this time for stochastic REDS networks.

We have created three sets of S×E heatmaps, one for each network update temperature

Tn = 10−2, 10−4, 10−8. For an individual network we calculate 〈k〉30 as described above.

We also calculate clustering, c30, and assortativity, a30, in an analogous fashion, i.e., by

averaging over the relevant observations for last 30 epochs of the model. Each cell in

the heatmaps is then an average over 10 instances of the network.

In figure 5.6 we present S × E heatmaps generated from networks grown using the

stochastic REDS model. We begin by reviewing the results for the lowest temperature,

Tn = 10−8, where we find the heatmaps in figure 5.6a to be near exact replicas of those

presented in 5.2b., i.e, at this network update temperature, aggregate statistics for the

stochastic model match those of the REDS model.

At network update temperature Tn = 10−4 (figure 5.6b) we notice that the region of

high 〈k〉t has receded slightly towards the top right corner of the heatmap. Similar

phenomena can be observed in both the clustering heatmap and assortativity heatmaps.

Note that just below and to the left of the high ct region is a further band of intermediate

clustering. In the assortativity heatmap, the band of low at that separates the region of

moderate at in the top right corner from the band high at has disappeared.

Finally, for the highest temperature, Tn = 10−2 (figure 5.6c), we see that the high 〈k〉t,
ct regions have more definitively receded into the top right corner of the heatmap. In the
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Figure 5.6: Mean degree 〈k〉t, clustering coefficent ct and assortativity at heatmaps
for networks grown using the stochastic REDS algorithm for varying temperatures. (a)
Tn = 10−8 (b) Tn = 10−4 (c) Tn = 10−2. The value in each heatmap cell has been
averaged over 10 instances of network. Each network is of order n = 104 with maximum
connection distance, R = 0.05 and has been grown for 100 epochs of 2.5×104 iterations.
Statistics for an individual network are calculated by averaging over the last 30 epochs

of the process.

assortativity plot, the band of high at is noticeably thicker than that in the Tn = 10−4

case.

We have also experimented with Tn = 100 and found the resulting heatmaps to be

uniform, with low 〈k〉, c and a for all combinations of S and E. We find this result to

be typical of all examples where we have raised temperatures beyond Tn = 100.

In order to interpret these results we consider the effect of the Fermi function invoked

during step 3 of the algorithm. At low network update temperatures the Fermi func-

tion behaves more deterministically, adding edges in a manner that closely matches the

original REDS model which accounts for the close resemblance between the heatmaps

in figures 5.2b and 5.6a. As we increase network update temperature, edge addition and

removal becomes more random and, consequently, the process cannot effectively exploit
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synergy. Thus we find that the high 〈k〉 region recedes, particularly in regions of high

S.

5.3 Stabilisation of the mean degree and the transition

region

In the previous section we examined stochastic REDS networks for a range of different

parameters. We argued there that stabilisation of the mean degree is an appropriate

indicator that the process has reached an end state. To this end we discussed the

quantity s〈k〉,30, the standard deviation of the mean degree over the last 30 epochs of

the model’s execution. However, we only offered explicit values of s〈k〉,30 in two example

cases.

We address this shortcoming in section 5.3.1 where we report s〈k〉,30 for the experiments

discussed in figure 5.6 in section 5.3.1. We find that, in the majority of cases, the value

of s〈k〉,30 is low, i.e., the mean degree in the experiments has stabilised. Further, we find

that those experiments for which s〈k〉,30 is high are located upon the boundary between

high and low connectivity stochastic REDS networks with S × E space.

This analysis allows for a more precise definition of the transition region. We use this

definition in section 5.3.2 to specify a set of experiments that more thoroughly in inves-

tigate the transition region for different network update temperatures. In doing so we

find that it is only at Tn = 10−2 that we observe networks with intermediate values of

〈k〉.

We examine degree distributions for stochastic REDS networks generated with Tn =

10−2 in section 5.3.3. We find these distributions match the high, low and bi-modal

distributions discussed in previous sections of this chapter.

5.3.1 Defining the transition region

In equation (5.3) we defined 〈k〉30, the average value of the last 30 observations of

the mean degree in an instance of the stochastic REDS model. We further introduced

s〈k〉,30, the standard deviation of 〈k〉30. In figure 5.7 we present heatmaps of s〈k〉,30 for

the experiments from which figure 5.6 was generated. The value of an individual cell in

figure 5.7 is calculated by first establishing s〈k〉,30 for each of the ten experiments and

then taking the average of these.

Within each these plots we find a thin band of high s〈k〉,30. It is noticeable that, for each

temperature, this band of high s〈k〉,30 is located at the border between the high and low

connectivity regions of the heatmap. Closer examination of the three heatmaps indicates
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Figure 5.7: Heatmaps of s〈k〉 for networks grown using the stochastic REDS model
for temperatures Tn = 10−8, Tn = 10−4 and Tn = 10−2. Here, s〈k〉 is the standard
deviation of the observations of 〈k〉 made over the last 30 epochs of the process. The

value of s〈k〉 in each heatmap cell has been averaged 10 instances of the model.

Figure 5.8: Dynamics of 〈k〉 over t = 4000 epochs of 2.5×104 iterations for a stochastic
REDS model with Tn = 10−4, S = 0.8, E = 0.102.

that within the low connectivity regions s〈k〉,30 ∼ 10−4 while within the high connectivity

regions s〈k〉,30 < 0.02. We therefore define the transition region for the stochastic REDS

model as being any region of the S×E heatmap for which s〈k〉,30 > 0.02 after t = 2.5×106

iterations of the algorithm.

5.3.2 Characterising the transition region

We now analyse the transition region more closely. To do so, we retain the three network

update temperatures considered in section 5.2.2, i.e., Tn = 10−2, 10−4, 10−8. We focus

our analysis on a single axis of the S × E heatmap by fixing synergy at S = 0.8. For
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Figure 5.9: Plots of 〈k〉500 for networks grown using the stochastic REDS algorithm
for S = 0.8 and varying E. Temperatures are Tn = 10−8 (red), Tn = 10−4 (green) and
Tn = 10−2 (blue). Values of E have been chosen so as to cover the region of high s〈k〉

identified in figure 5.7. Error bars represent the standard error.

each network update temperature we vary the energy E so as to gather a set of data

points that are within the transition region and lie along the S = 0.8 axis.

We define a stopping condition for the stochastic REDS model as follows: after comple-

tion of each step we calculate s〈k〉,500, the standard deviation of the mean degree over the

last 500 epochs of the algorithm. Once s〈k〉,500 < 0.02, we halt the algorithm’s execution

and record 〈k〉500, the mean value of the last 500 observations of 〈k〉.

We find this stopping condition to be adequate in most of our experiments. However,

we have found that for T = 10−4, E < 0.105 and T = 10−8, E < 0.09 the dynamics

can follow the form of those presented in figure 5.8. Here we find that the value of 〈k〉
never truly settles with the consequence that the stopping condition is never reached,

nonetheless the mean degree varies around a value of 〈k〉 ∼ 0.4 in the latter half of the

plot. In light of these observations, we run each instance of the model for a maximum of

4000 epochs; in those cases where the stopping condition is not met we instead calculate

〈k〉500 by averaging over the 500 epochs prior to epoch 4000.

We present plots of 〈k〉500 in figure 5.9. For each data point, we have run sufficient

instances of the model so as to reduce the standard error below 0.04. For all values of Tn,

a high value of E produces a network with the high connectivity state. For the network

update temperatures, Tn = 10−2, 10−4, we observe curves with a steep transition. For

the highest network update temperature, Tn = 10−2, this transition occurs between

E = 0.144 and E = 0.15, while for Tn = 10−4 the transition occurs between E = 0.1

and E = 0.105. At the lowest network update temperature, Tn = 10−8, a more gradual

transition occurs between E = 0.07 and E = 0.09.
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Figure 5.10: Degree distributions averaged over 15 instances of networks created
using the stochastic REDS algorithm with Tn = 10−2, S = 0.8 and (a) E = 0.03, (c)
E = 0.145 and (d) E = 0.24. Values have been normalised so that the area under the
histogram is 1.0. Plot (b) is the reverse cumulative distribution of component sizes for
the E = 0.03 networks. Individual scales have been used for each plot so as to best fit

the panel.

We have examined individual experiments within the transition regions the tempera-

tures, Tn = 10−4, 10−8. In these two regions we find that the dynamics of the stochastic

REDS model conforms to one of two scenarios. In the first scenario, the mean degree

behaves as in figure 5.5, i.e., a logarithmic increase in the value of 〈k〉 resulting in a high

connectivity network. The second scenario is that of figure 5.8, where the mean degree

varies around a low value of 〈k〉 ∼ 0.4. Thus, intermediate points on the Tn = 10−4, 10−8

curves in figure 5.9 do not indicate networks that have reached an intermediate value of

〈k〉500. Instead they represent the proportion of experiments that result in high connec-

tivity.

By contrast, we find that for the high network update temperature, Tn = 10−2, all data

points are indicative of the value of 〈k〉500 attained by the underlying networks. That

is, at this network update temperature it is possible for the stochastic REDS model to

result in a network that has a value of 〈k〉 that lies between the mean degrees associated

with the high and low connectivity regions.

5.3.3 Degree distributions for the stochastic model

In section 5.1.3 we discussed the degree distributions of three instances of the stochastic

REDS model. These distributions were a high connectivity distribution, a low connec-

tivity distribution and a distribution that is a hybrid of high and low connectivity. In

section 5.2.2 we concluded that, out of all the network update temperatures that were

investigated, the stochastic REDS model with Tn = 10−8 produced an S × E heatmap
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that is very similar to that produced by the REDS model. However, we have just ob-

served that, within the transition region, stochastic REDS networks with T = 10−8 do

not result in an intermediate value of 〈k〉 and therefore do not exhibit a bi-modal degree

distribution. Thus, despite the near agreement between the heatmaps of figures 5.2a and

5.6a, the character of the transition between the high and low connectivity regions is

subtly different in the stochastic, T = 10−8, model when compared to the REDS model.

A similar argument follows for the T = 10−4 case.

However, for those experiments with a high network update temperature we did observe

intermediate values of 〈k〉. In light of this outcome we seek to compare the degree dis-

tributions for stochastic, T = 10−2, REDS networks with degree distributions for the

REDS model. We consider stochastic REDS networks with Tn = 10−2, S = 0.8, E =

0.03, 0.145, 0.24, thereby gathering representatives of the three regions of the high net-

work update temperature S × E heatmap in figure 5.6c.

In the experiments presented in figure 5.9, the stochastic REDS model reaches the

stopping condition after an average of 〈t〉 = 895 epochs when E = 0.145. Further

experiments indicate that, for E = 0.03, 0.24 cases, 〈k〉 stabilises after t < 100 epochs.

To ensure stability in the mean degree, we run the stochastic REDS model for 100 epochs

with E = 0.03, 0.24 and for 1000 epochs with E = 0.145.

In the same manner as section 5.1.3 we create 15 instances of the network. We then

gather all 15 degree sequences into a master degree sequence. Finally we normalise the

master degree sequence so that the area under the associated histogram has an area of

one.

Figure 5.10a is the histogram for E = 0.03, the low energy case. We find that the degree

distribution has a peak at k = 2 and that there are no nodes with k > 8. We plot the

reversed cumulative distribution of ng for these networks in figure 5.10b where we find

that 89% of the components are are of order ng ≤ 10 and 25% of nodes lie within these

ng ≤ 10 components. The mean number of components that make up these networks

is 〈gc〉 = 1200 ± 26 (compare with 〈gc〉 = 1331 for the REDS model with E = 0.03).

Furthermore, we note the longer tail in figure 5.10b in comparison to 5.3b.

In summary, the stochastic REDS, E = 0.03 networks have a similar structure to the

REDS model with E = 0.03. However, the stochastic REDS networks tend to have lower

overall degree than the REDS model. Furthermore, it appears that both these models

produce similar amounts of components of order ng ≤ 10. However, the stochastic model

produces fewer components with ng > 10. The longer tail in figure 5.10b indicates that

this is because components tend to be larger within the stochastic model.

In figure 5.10b we plot the degree histogram for the E = 0.145 networks. Here, the

degree distribution also has a significant peak at a low value of k. There is also a

second, flatter peak located around k = 70. Finally, figure 5.10c is the degree histogram
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Figure 5.11: Visualisations of a stochastic REDS network with S = 0.8, E =
0.145, Tn = 10−2. (a) The entire network. The greyscale hue of the smaller squares
represents 〈k〉 within that patch with darker hues representing higher 〈k〉. (b) The

square of side 0.2 with bottom left corner at (0.4, 0.4).

for the E = 0.24 networks. In this case the distribution is a large peak around a mean

degree 〈kE=0.24〉 = 75.1. There is also a noticeable tail to the left of this peak. All the

E = 0.145, 0.24 networks are a single component.

To complete our analysis of the E = 0.145 case we visualise a single instance of the

network. The edge density of the network makes it difficult to ascertain the structure

when the connections are plotted. Instead, we break the square down into a 50×50 grid

and within each square add a greyscale hue to represent the mean connectivity. The

resulting plot is presented in figure 5.11a. Here we see an obvious boundary effect where

the RGG-like nodes, located along the edges of the square, form a ring around the less

densely connected region. We capture a snapshot of this latter region in figure 5.11b

where we visualise the square of side 0.2 and bottom left corner at (0.4, 0.4). This plot

bears some similarity to the portion of the S = 0.8, E = 0.06 REDS network plotted in

figure 5.4b in that there are patches of varying connectivity. However, it is clear that

the nodes in figure figure 5.11b are not as well connected as those in figure 5.4b.

These results indicate that the structure of the stochastic REDS networks with Tn =

10−2, S = 0.8, E = 0.145, 0.24 are consistent with the bi-modal and high connectivity

regimes for the degree distribution that were reported by Antonioni et al. for the original

REDS model and discussed for our own implementation of the REDS model in section

5.1.3. However, there is a notable boundary effect for the transition region example, i.e,

the Tn = 10−2, S = 0.8, E = 0.145 network. This boundary effect was not observed in

the transition region REDS network, i.e., the S = 0.8, E = 0.06 case.
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5.4 Summary

In this chapter we have studied the REDS model, a process which grows spatially embed-

ded social networks. The key innovation of this model was to introduce a budget with

which agents pay for connections and resulting networks exhibit many of the features of

real world social networks; including, crucially, a weak form of degree heterogeneity. We

began by recreating Antonioni et al.’s original research, the non-predictive REDS model.

Following the original work, we summarised the parameter space of the non-predictive

REDS model using S × E heatmaps in figure 5.2a and found them (the heatmaps) to

be a near exact match of those presented in Antonioni et al.’s paper, indicating that we

had successfully recovered those results.

A subsequent set of heatmaps, produced using the REDS model, were very similar to

those for the non-predictive REDS model; the sole difference being an extended region

of high connectivity at the bottom right of the mean degree heatmap. This difference is

due to the fact that agents in the REDS model, by virtue of their capacity to properly

calculate the cost of their connections, are better able to exploit synergy so as to achieve

higher connectivity at high S, low E configurations.

The similarity between the REDS model and the non-predictive REDS model was further

confirmed by the degree distributions presented in figure 5.3. Here it was demonstrated

that the three classes of network structure reported by Antonioni et al. can be recovered

by the REDS model and that these network structures are found in equivalent regions

of the mean degree S × E heatmap. More specifically, both heatmaps featured three

clearly identifiable regions; one of high, RGG-like connectivity, one of low connectivity

and a third whose networks exhibit a bi-modal degree distribution consisting of both

high and low connectivity nodes. Of these three distributions, the bi-modal is of the

most significance since it is a form of degree heterogeneity.

We introduced an alternative formulation of the REDS model which allowed for the

stochastic update of network edges, thereby simulating agents whose decisions to form

connections are subject to uncertainty. The extent of the uncertainty within the stochas-

tic REDS model was captured by the network update temperature, Tn, a parameter

governing the amount of noise in the Fermi function. At the lowest network update

temperature Tn = 10−8, we observed S × E heatmaps whose structure was the near

equivalent of those produced by the REDS model. Closer examination of the transition

region of the mean degree heatmap for this temperature revealed that we do not observe

networks with the bi-modal degree distribution. Instead, intermediate values in this

mean degree heatmap were indicative of the proportion of networks that equilibrated to

an RGG like state for the given S,E combination.

This result indicates that the bi-modal degree distribution is not a stable outcome for

the stochastic REDS model as Tn → 0. We remind ourselves that continual addition and
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removal of edges is the essence of the stochastic REDS model whereas the REDS model

halts once there are no more possibilities to add edges. Since this is the key difference

between the two models it is this feature that must account for the difference between

the two transition regions. A possible explanation is that continued addition of edges

to an RGG-like region will result in over-budget nodes that will then have to relinquish

edges. Where edges are removed from an RGG-like region the effect of synergy will

be reduced, leading to more over-budget nodes. Assuming this brief hypothesis, the

ongoing addition and removal of nodes will render high connectivity regions unstable.

When the network update temperature was raised to Tn = 10−4, higher values of S and

E were required so as to induce high connectivity networks (compare the dark area of

the mean degree heatmap in figure 5.6b with that in figure 5.6a). In other words, agents

require either more energy or the reduced edge cost that accrues from synergy in order

to form the RGG-like network at this temperature. We interpret this result as meaning

that as agents become more uncertain, they become less capable, as a population, of

maximising the number of connections that they can make with their budget.

This pattern continued at the high network temperature Tn = 10−2, where we found

that the high connectivity region was described by even higher values of S and E,

relative to the Tn = 10−4 example. However, within the Tn = 10−2 transition region we

did find networks that exhibit a bi-modal degree distribution. Where we observed this

distribution it was clearly influenced by the rigid boundary condition. To be specific,

a high connectivity, RGG-like region along the boundary encircled a lower connectivity

region in the centre of the square.

The appearance of the high connectivity nodes at the boundary of the square is most

likely due to the fact that nodes at the boundary have fewer possibilities for making

connections and therefore they more rapidly make connections with their near neigh-

bours. These nodes can then exploit synergy to form clusters along the boundary. It is

notable that we did not see this phenomenon for any REDS networks, indicating that

the stochastic algorithm acts as a search mechanism to find this configuration. Fur-

thermore, the Tn = 10−8, 10−4 temperatures do not exhibit this phenomenon either,

indicating that high agent uncertainty is required to make this discovery.



Chapter 6

Social dilemmas on spatial

networks

In section 3.3 we discussed the problem of the evolution of co-operation and the fact

that spatial models readily produce interaction structures that promote co-operative

behaviour via the phenomenon of network reciprocity. Our discussion focussed on two

problems with coevolutionary models that have been applied to this problem; firstly,

that the connectivity of the networks is exogenously determined and, secondly, that

these models imbue their agents with significant cognitive ability and secondly .

In this chapter we define agents that, in contrast to the existing models, pay for links with

a privately held budget as opposed to implicitly assuming a shared resource underpinning

the model’s connectivity. We achieve this by extending the stochastic REDS model so

that its agents play the prisoner’s dilemma game with their network neighbours. Taking

this step begs the question as to where the agents acquire the energy with which they

make connections and we therefore further integrate the stochastic REDS model with

the evolutionary game by deriving the privately held budget from the payoff from the

evolutionary game. In this new model, decisions to form connections with other agents

are determined entirely by the stochastic mechanism outlined in the previous chapter.

This approach has the further merit that the agents do not rely on any information

other than their accumulated payoff from the game when forming connections. Thus,

we can say that these agents rely on a reduced cognitive endowment in this regard.

In section 6.1 we run the Prisoner’s Dilemma game on stochastic REDS networks. We

name this model the evolutionary REDS model. In section 6.2 we define the coevolu-

tionary REDS model and discuss three canonical forms of co-operation dynamics. In

section 6.3 we more thoroughly investigate how well co-operation is supported across a

broad range of the coevolutionary REDS model’s parameter space. Finally, in section

6.4 we summarise our results.

69
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6.1 Co-operation on the stochastic REDS model

In this section we introduce the evolutionary REDS model. The model is, simply, a static

network generated by the stochastic REDS model upon which the prisoner’s dilemma

game is played. The intention is that the evolutionary REDS model will ultimately act

as a reference case for the coevolutionary model that will follow in the next section. We

name the current model the evolutionary REDS model. In section 6.1.1 we define the

model and then present results in section 6.1.2.

6.1.1 The evolutionary REDS model

The evolutionary REDS model is initialised with the same set of parameters n,R, Tn, S, E

that are used for the stochastic REDS model. In addition, we choose Tg ∈ [0,∞], a

parameter that governs the extent of the stochasticity within the strategy update; a rule

that will be introduced below. Having established the initial parameters we then grow

the network using the stochastic REDS algorithm.

Within this model, nodes are players of an evolutionary game and therefore need to be

allocated a beginning strategy. Half of the nodes are designated as co-operators, while

the remaining half are designated as defectors. For the purposes of formalising the game,

we denote the co-operation strategy by the two dimensional unit vector s = [1, 0]T , and

defection by s = [0, 1]T . In this context T should be interpreted as a vector transpose

operation.

A node i plays prisoner’s dilemma (PD) with its neighbours on the network and earns

an accumulated payoff Pi as follows:

Pi =
∑
j∈Ni

sTi Msj (6.1)

where Ni is the set of neighbours of i and M is the payoff matrix for a game of PD.

We use a version of PD known as the donation game (Hilbe et al., 2013), so-called

because the co-operator effectively donates b, the temptation to defect, to the defector:

M =

C D( )
C 1 −b
D 1 + b 0

(6.2)

We use this formulation of PD so as to allow for comparability with the coevolutionary

REDS model defined in section 6.2 and our motivation is outlined more fully there. For
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now, we note that, from the point of view of co-operators, the donation game is a more

exacting version of PD than that presented in equation (2.3).

An iteration of the evolutionary REDS model proceeds as follows: a pair of nodes is

selected by first choosing a node i at random from all the nodes in the network. A

second node, j, is chosen uniformly at random from i’s neighbours. For both nodes we

calculate the payoffs, Pi and Pj . We then perform a strategy update by which we mean

that we copy sj to si with probability:

φ(Pi, Pj , Tg) =
1

1 + e(Pi−Pj)/Tg
(6.3)

i.e., φ is a Fermi function where Tg is a temperature that influences the intensity of

selection. This is a common choice of update function within the literature (Szabó and

Tőke, 1998; Blume, 2003; Traulsen et al., 2006), which we choose because Tg allows us

to control the intensity of selection.

Finally, this process of selecting neighbouring nodes and stochastically updating their

strategy continues until a specified number of iterations is completed.

To complete this section, we clarify the influence of Tg upon equation (6.3). When Pi

exceeds Pj , node i will tend to retain its current strategy. As the difference between Pi

and Pj increases, i retains its strategy with greater likelihood. Conversely, the extent to

which Pj exceeds Pi governs the likelihood that i will instead tend to adopt j’s strategy.

When Tg is low the update will almost always favour the strategy with the higher payoff.

With increasing Tg, the function φ becomes more uniformly distributed between the two

outcomes.

6.1.2 Results

In this section we examine the extent to which the co-operative strategy prevails within

the evolutionary REDS model. To do so we define the quantity pc, the proportion of the

network’s nodes that have the co-operative strategy. Having run the model extensively

we find that the value of pc tends to equilibrate rapidly, typically after 50 epochs of

t = 2 × 106 iterations. In this section we run the model for 300 epochs of t = 2 × 106

iterations. Having done so we calculate pc for an individual model run as being the mean

value of pc observed over the last 50 of these epochs. For each value of b we report the

mean value of pc observed over 15 instances of the model.

We seek to run the evolutionary REDS model on networks that are comparable to those

discussed in section 5.3.3. Therefore, we fix the values n = 104, R = 0.05, S = 0.8

and choose the energy to be E = 0.03, 0.145, 0.24. To initialise the models, we run

the stochastic REDS algorithm for 2.5 × 106 iterations in E = 0.03, 0.24 cases and for
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Figure 6.1: Plots of pc vs b for the evolutionary REDS model with varying Tn,
Tg and E = 0.03 (red), E = 0.145 (green) and E = 0.24 (blue). The parameters
n = 104, R = 0.05, S = 0.8 are fixed. Each data point is the mean value of pc over 15
instances of the model after 300 epochs of t = 2× 106 iterations. For each instance, pc

has been averaged over the last 50 epochs of the model run.

2.5× 107 iterations in the E = 0.145 case, again to maintain fidelity with section 5.3.3.

In order to choose the temptation to defect, we have found that the value of pc does not

vary beyond b ≥ 0.3, therefore, we always choose b ∈ [0.0, 0.3]. The values of n, R and t

quoted in this paragraph are used throughout this chapter and hence we do not repeat

them beyond this point.

The last condition that we inherit from section 5.3.3 is the network update temperature

Tn = 10−2; subsequently, we shall also explore the temperature Tn = 10−4. Finally, we

shall also consider two values of the strategy update temperature, Tg = 0.2, 2.0.

6.1.2.1 Low strategy update temperature

Initially, we consider the low network update temperature Tn = 10−2 and low strategy

update temperature, Tg = 0.2. Figure 6.1(a) presents results for this combination. In

the following three subsections we attend to each of the different energies.
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6.1.2.1.1 High E

We begin with the high energy, E = 0.24, scenario. In this case, we have found that

co-operation either completely dominates the model, i.e., pc = 1.0, or that co-operation

completely collapses, i.e., pc = 0.0. When the temptation to defect b = 0.0, we find

that co-operation always dominates the model while when b ≥ 0.05 co-operation always

collapses. Where 0 < b < 0.05 the data point represents the proportion of runs where

co-operation does dominate the model.

We recall from the previous chapter that the stochastic REDS model with Tn = 10−2, S =

0.8, E = 0.24 is an example of an RGG like network. These results are therefore consis-

tent with Buesser and Tomassini (2012) who found that, for RGGs with n = 104, 〈k〉 =

20, the equilibrium value of co-operation in the PD game was pc = 0 for all but very low

values of b.

6.1.2.1.2 Low E

For the low energy, E = 0.03, scenario we find that at b = 0.0, co-operation equilibrates

at pc = 0.77. As we increase the temptation to defect we find that the level co-operation

decreases but is significantly higher than in the E = 0.24 case. We reiterate Ohtsuki

et al.’s conclusion, that co-operation is better supported on low degree networks than

on high degree ones (Ohtsuki et al., 2006). It seems clear that this effect explains the

improved performance of the E = 0.03 network over the E = 0.24 network in this case.

Nonetheless, a question remains as to why co-operation does not dominate in the b = 0.0

case. We can answer this by recalling from the previous chapter that S = 0.8, E = 0.03

stochastic REDS networks are composed of several unconnected components. Within

some of these components, co-operation collapses entirely. Since, by definition, a com-

ponent cannot be reached from another part of the network, there is no possibility for

the co-operative strategy to re-enter the component at a later stage in the process. Thus

co-operation never fully dominates the b = 0 case.

We further note that at the highest value of the temptation to defect that we have

tested, b = 0.3, co-operation remains present in the E = 0.03 network at a value of

pc = 0.05. Conversely to the argument that we have just made, there are components of

the network that are dominated by co-operators, even at this high temptation to defect,

and so we observe a small fraction of co-operators at high b.

6.1.2.1.3 Intermediate E

For the intermediate energy, E = 0.145, we find that co-operation dominates the model

for b ≤ 0.01. As the temptation to defect increases we see a rapid drop in the proportion
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Figure 6.2: Visualisations of a evolutionary REDS network with S = 0.8, E =
0.145, Tn = 10−2, Tg = 0.2 and (a) b = 0.07 (b) b = 0.11. Green dots are co-operators,
red dots are defectors. The greyscale hue of the smaller squares represents 〈k〉 within

that patch with darker hues representing higher 〈k〉.

of co-operation between 0.01 < b ≤ 0.025. In the range 0.025 < b ≤ 0.1, co-operation is

relatively stable with values lying in the range 0.43 ≤ pc ≤ 0.6. Finally as the temptation

to defect increases beyond b > 0.1 we see a second rapid collapse in the proportion of

co-operation with pc = 0 for all b ≥ 0.15.

As a first step towards understanding the nature of these collapses we visualise two

example E = 0.145 networks, one with b = 0.07 and the other with b = 0.11 in figure

6.2. These plots follow the same format as figure 5.11a, i.e., we use greyscale hue to

indicate connectivity, and, in addition, we colour code nodes according to their strategy.

We have chosen the value b = 0.07 so as to represent the stable, intermediate region and

the value b = 0.11 to represent the second collapse.

We remind ourselves that, in section 5.3.3, we established that stochastic REDS networks

with S = 0.8, E = 0.145, Tn = 10−2 belong to the transition region of the S × E plane

and that they consist of a regions of high, RGG like connectivity that bounds a lower

connectivity, region. In figure 6.2a we see that defection dominates the high connectivity

region while co-operation is the preferred strategy within the lower connectivity region.

At the higher value of b, see figure 6.2b, defection is still dominant within the high

connectivity region but now a significant number of defectors can be seen in the low

connectivity region. Thus, the two separate collapses in the value of pc observed along

the E = 0.145 curve reflect the hybrid nature of the network. Reflecting what we have

just established, co-operation in the RGG-like regions of the network collapses at low

values of b. As we increase b beyond 0.1 we find that co-operation is progressively

eliminated from the lower degree region as well.
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Figure 6.3: The quantities (i) 〈k(c)〉, (green) and (ii) 〈k(d)〉, (red) observed in the
evolutionary REDS experiments with E = 0.145, Tn = 10−2, Tg = 0.2 reported in figure
6.1a. The co-operator mean degree, 〈k(c)〉, is calculated for all co-operator nodes in
the model and then normalised by the mean degree of all nodes in the model. Each
data point is the the mean value of 〈k(c)〉 recorded for all the networks generated for
the given value of b. A similar calculation, performed on defector nodes, gives 〈k(d)〉.

The grey plot is the pc curve for E = 0.145 from figure 6.1a.

We confirm this account of the collapses by considering 〈k(c)〉 (resp. 〈k(d)〉), the mean

degree of co-operator (resp. defector) nodes in the final epoch of the model. We nor-

malise both 〈k(c)〉 and 〈k(d)〉 by the mean degree of the network in the final epoch. In

figure 6.3 we plot the mean value of these quantities for the E = 0.145 experiments in

figure 6.1a. For b = 0.0, 0.01 we find 〈k(c)〉 = 1.0, since all the nodes are co-operators in

these scenarios. In the 0.01 < b ≤ 0.025 range, the mean degree of co-operators rapidly

drops to k(c) = 0.47, while the mean degree of defectors is around k(d) ∼ 1.7, indicating

that high degree nodes adopt the defect strategy for these low values of b. Some lower

degree defectors appear as b increases and, consequently, in the range 0.025 ≤ b ≤ 0.1

the mean degree of defectors then drops to k(d) = 1.50. Finally, all low degree nodes

adopt the defect strategy as b is increased above 0.1 and we observe that the mean

degree of defectors rapidly decreases to 1.0 in this region.

6.1.2.2 High strategy update temperature

In figure 6.1(b) we modify the parameterisation by raising the strategy update temper-

ature to Tg = 2.0. The most obvious difference between this plot and figure 6.1(a) is

that both of the E = 0.03, 0.145 curves have the same form as their Tg = 0.2 counter-

parts. However, for both curves, drops in the value of pc occur at lower values of b. In
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particular, bear in mind that the second collapse for the E = 0.145 networks was of the

low degree co-operators.

6.1.2.3 Low network update temperature

Finally, in figures 6.1c & d, we present plots for a lower network update temperature,

Tn = 10−4 and strategy update temperatures Tg = 0.2, 2.0. The two plots are similar,

co-operation has now completely collapsed for those E = 0.145 networks where b 6=
0.0. This is not surprising since S = 0.8, E = 0.145 networks lie well within the high

connectivity region of the S × E heatmap for Tn = 10−4. We have omitted the S =

0.8, E = 0.24 curve since the results are nearly identical to those of the E = 0.145 case.

For E = 0.03, the curves in both plots are significantly lower than in the Tn = 10−2

equivalents.

To summarise this section, we have found that co-operation is favoured within those

regions of an evolutionary REDS network that exhibit low connectivity. This finding

is in accord with previous claims within the literature. Increasing the strategy update

temperature Tg undermines the capacity of these networks to support co-operation. De-

creasing the network update temperature also decreases the capacity of the evolutionary

REDS network to support co-operation. However, this observation follows from the fact

that lowering Tn extends the high connectivity region of the S × E plane.

6.2 The coevolutionary REDS model

In this section we detail the model that is this chapter’s main contribution. As dis-

cussed in the introduction, the coevolutionary REDS model is an adaptive network with

endogenous connectivity whose nodes exhibit minimal cognitive ability. This minimal

capability for cognition is realised in the process of edge formation which is exactly

the one described for the REDS model in the preceding chapter, a process which is

determined by an agent’s capacity to maintain connections with its spatial neighbours.

We describe the coevolutionary REDS model in section 6.2.1 and then outline three

canonical forms of its dynamics in section 6.2.2.

6.2.1 The model

We initialise the coevolutionary REDS model in the now familiar fashion; by placing n

nodes, uniformly at random, upon a unit square. These nodes are assigned a default

strategy in the same manner as the evolutionary REDS model.
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Similarly to the stochastic REDS model, a node i has an energy budget, Ei, which is

expended when the node forms an edge. We link the energy budget to the payoff from

the game via the following equation:

Ei = lE + (1− l)Pi (6.4)

where E is a baseline allocation of energy and l ∈ [0, 1] is a parameter which controls the

relative amounts of baseline energy and payoff that compose the node’s overall budget.

Here, l can be thought of as an inherent capacity for nodes to form edges.

Where nodes play the PD game in the coevolutionary REDS model they accumulate

the payoff described by equation (6.2). We choose this formulation of PD so that the

amount of payoff available in equation (6.4) from a co-operate-defect edge is fixed at one

unit, irrespective of the choice of b.

The coevolutionary REDS model is one with timescale separation, i.e., during an iter-

ation of the model, either a topology or a strategy update occurs. These events occur

asynchronously on two timescales; τn (network updating) and τs (strategy updating).

We follow the scheme discussed in the literature and implement this concept by defining

the ratio, w = τs/τn. At each iteration of the model a strategy update is performed

with probability (1+w)−1; otherwise a network update event takes place. As w → 0, we

recover a static network model; conversely as w →∞, network topology is updated more

rapidly than node strategy. Where necessary, we refer to w as the timescale separation.

A network update event in the coevolutionary REDS model follows exactly the process of

the stochastic REDS model, with the caveat that node i’s energy budget Ei is calculated

using equation (6.4) above. A strategy update proceeds exactly as we have described

for the evolutionary REDS model, i.e., we pick a a pair of nodes, calculate their payoffs

and modify the strategy subject to the Fermi function.

6.2.2 Coevolutionary dynamics

We have run the coevolutionary REDS model in a broad range of configurations and

have identified three possible scenarios for the dynamics of pc. In figure 6.4 we present

an example plot of each case. The three scenarios are (i) domination, where all the nodes

end up as co-operators, (ii) collapse, where all nodes end up as defectors and (iii) cyclic,

where there is a pattern of rising and falling pc with no fixed period. In the following

sections we discuss an example of each of these scenarios.
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Figure 6.4: Dynamics of pc in three canonical scenarios for the coevolutionary REDS
model. They are (a) domination, (b) collapse and (c) cyclic. Model parameters in the
first two examples are Tn = 10−2, s = 0.8, e = 0.24, Tg = 0.2, w = 10−3, b = 0.12, (a)
l = 0.05 and (b) l = 0.5. Model parameters in the final example are Tn = 10−2, s =

0.8, e = 0.03, Tg = 2.0, w = 10−1, l = 0.95, b = 0.036.

6.2.2.1 Domination

Figure 6.4a plots the value of pc over 200 epochs of a coevolutionary REDS model where

Tn = 10−2, s = 0.8, e = 0.24, Tg = 0.2, w = 10−3, l = 0.05, b = 0.12. Initially we observe

that pc declines to a minimum by epoch 30. Subsequent to this the value of pc rises so

as to attain a value of 0.98 by epoch 200. Further experiments indicate that eventually

all the nodes co-operate in models which exhibit similar dynamics to this one. For this

reason we refer to this scenario as the domination example.

The initial decline in pc can be explained by considering that, in the early development

of the domination example’s network, new edges connect nodes whose strategies are

independent of each other. Furthermore, this new edge will connect two nodes that

are otherwise unconnected. Therefore, where co-operator i connects with defector j,

the resulting payoffs will be Pi = −0.12 and Pj = 1.12. Consequently, i will tend, by

equation (6.3), to adopt the defect strategy and the payoffs become Pi = Pj = 0. Since

neither i nor j now has access to much energy, edge (i, j) will tend to disappear during

a network update. By this mechanism low degree defectors initially spread through the

network and, after 30 epochs, the proportion of co-operators is pc = 0.39 and mean

degree is 〈k〉 = 0.01. Figure 6.5a visualises a small portion of the network at this stage.

This early phase of the domination example’s development also sees the creation of edges

joining either pairs of defectors or pairs of co-operators. As discussed, edges between

defector pairs tend to disappear. On the other hand, the payoffs are Pi = Pj = 1 in a
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Figure 6.5: Node strategies in the domination coevolutionary REDS example (see
figure 6.4a). The square of side 0.2 with bottom left corner at (0.1,0.5) has been
visualised after epochs (a) 30, (b) 70, (c) 110 and (d) 150. Green dots are co-operators,
red dots are defectors. The greyscale hue of the smaller squares represents 〈k〉 within

that patch with darker hues representing higher 〈k〉.

co-operative pair, and so these edges will tend to perpetuate. Thus, clusters of connected

co-operators form amongst the isolated defectors.

Furthermore, these clustered co-operators have an excess energy budget with which they

can form connections with nearby defectors. Now, suppose one of these co-operators,

i, now plays the game against a defector j. The payoff Pj is still boosted by the play

of the defection strategy against co-operation. However, it also remains the fact that i

plays the game with its multiple, co-operative neighbours; thus Pi > Pj and j will be

more likely to adopt a co-operative strategy. The outcome of these dynamics is visible

in figure 6.5b which visualises the same portion of the network as figure 6.5a, only now

after 70 epochs. The small pockets of co-operators increased their connectivity and in
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Figure 6.6: Mean degree of nodes with the (a) co-operate and (b) defect strategy over
the lifetime of the coevolutionary REDS domination example.

some places are now converting nearby defectors. Considering the model as a whole,

co-operation at epoch 70 is now pc,70 = 0.6.

Figures 6.5c (110 epochs) and 6.5d (150 epochs) demonstrate that this pattern contin-

ues for the remainder of the run. New regions of co-operation are established in the

immediate vicinity of existing co-operators and co-operation increases in patches where

there is a high proportion of co-operators. The statistics for co-operation are, at epoch

110, pc,110 = 0.85 and, at epoch 150, pc,150 = 0.95.

In summary, we have witnessed a process by which the co-operative strategy incremen-

tally comes to dominate a small region of the model. The fundamental mechanism is that

the co-operator nodes form local coalitions, thereby maximising their payoff. Members

of a coalition can then readily ‘convert’ nearby defectors upon connection with them.

We confirm that this explanation applies across the entirety of the domination example

by examining the behaviour of 〈k(c)〉 and 〈k(d)〉. In this case, these quantities are again

the mean degree of, respectively, co-operator nodes and defector nodes in the model.

However, in contrast to section 6.1.2 we here normalise 〈k(c)〉 and 〈k(d)〉 by 〈kRGG〉, the

mean degree of the underlying RGG network.

Figure 6.6a is a plot of 〈k(c)〉, over the 200 epochs of the domination example. We

find that, after a slow start, the mean degree of the co-operator nodes rises linearly to

〈k(c)〉 = 0.41 by the end of the model run. Meanwhile, in figure 6.6b we see that the

mean degree of the defector nodes rises logarithmically approaches a (noisy) maximum

of just over 0.01 just after epoch 50.

In conclusion, these results are consistent with the process we have described. The

logarithmic growth in defector connectivity occurs early in the simulation and is ulti-

mately small in comparison to that achieved by the co-operators. The growth in the

co-operator connectivity is slow initially since it takes time for co-operative clusters to

form. However, once such clusters do appear they rapidly increase their connectivity.
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6.2.2.2 Collapse

We now modify the parameterisation of the domination example so as to increase the

ratio of baseline to payoff energy to l = 0.5. The dynamics of pc for this example are

presented in figure 6.4b where we see that co-operation drops to an initial minimum of

pc = 0.22 after 5 epochs before rallying to a maximum of pc = 0.92 after 17 epochs.

Following epoch 17, pc falls steadily until it reaches zero at epoch 29. We refer to this

scenario as the collapse example.

6.2.2.2.1 Dynamics prior to the collapse

Since l has now been increased from 0.05 to 0.5, node i’s energy budget, Ei, is, per

equation (6.4), drawn more from the baseline energy allocation, E, than it is from the

payoff, Pi. Therefore, relative to the domination example, edges form more easily in this

example. In the initial phase of this example, defector/co-operator pairs appear more

rapidly than in the domination example and the co-operators are converted to defectors.

Hence, pc reaches a local minimum more rapidly than in the domination example.

Increased baseline energy also supports the formation of defector clusters. Members

of these clusters more effectively resist conversion to the co-operator strategy for the

following two reasons: firstly, where defector i is selected for strategy update; its neigh-

bour j is likely to be another defector, in which case the Fermi update rule dictates

that i remains a defector. Secondly, should defector i be converted, any neighbouring

defectors have their payoff boosted by the temptation to defect. Conversely, i now earns

the sucker payoff for its interaction with these defectors. Over time, then, i will tend to

revert back to the defect strategy.

Nonetheless, co-operative clusters still form in this scenario. However, since the defectors

now resist conversion, we find defector co-operator pairings that persist. These defector

nodes receive a high payoff from the PD game and can convert nearby co-operators. It

is this phenomenon that is the trigger for the collapse in co-operation.

We quantify these statements by considering 〈k(c)d〉, the mean number of connections

that start from a co-operator node and terminate at a defector, and 〈k(c)c〉, which is

the mean number of connections that start from a co-operator node and terminate at

another co-operator. To allow for comparison with the 〈k(c)〉 reported for the domination

example, we normalise 〈k(c)d〉 and 〈k(c)c〉 by 〈kRGG〉.1

These statistics are plotted in figure 6.7a. Here we see that, up to epoch 17, 〈k(c)c〉 rises

linearly after a slow start; a similar pattern to that of 〈k(c)〉 in figure 6.3b. Meanwhile,

〈k(c)d〉, is low during this period, demonstrating that the majority of connections that

1The merit of this comparison is that 〈k(c)〉 = 〈k(c)d〉+ 〈k(c)c〉
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Figure 6.7: In (a) we plot the mean number of connections from a defector to (i)
other defectors, 〈k(d)d〉 (red), and (ii) co-operators 〈k(d)c〉 (green). Similarly, in (b)
we plot the mean number of connections from a co-operator to (i) other co-operators

〈k(c)c〉 (green) and (ii) defectors 〈k(c)d〉 (red).

start from co-operators connect to other co-operators. Thus, we conclude that, up to

epoch 17, the co-operative nodes form clusters amongst themselves in much the same

fashion as the domination example.

We similarly investigate the connectivity of defector nodes by considering 〈k(d)c〉; start

from a defector, end at a co-operator; and 〈k(d)d〉; start from a defector, end at a

defector. Figure 6.7b plots these two quantities. Up to epoch 5, 〈k(d)d〉 rises to a value

of 0.02 of while 〈k(d)c〉 remains negligible; confirming that defectors connect to and

immediately convert co-operators in the early stages of this example. Note also that,

in figure 6.3b, 〈k(d)〉 stabilised at around 0.01 for the domination example. Therefore,

even at this early stage, defector nodes exhibit higher connectivity amongst themselves

than in the domination example.

Beyond epoch 5 and up to epoch 16, the value of 〈k(d)d〉 remains relatively stable at just

over 0.02. Meanwhile, 〈k(d)c〉 rises in this period, indicating that connections are being

formed between defectors and co-operators. This second point is the crucial difference

between the collapse and domination examples. We have found 〈k(d)c〉 to be negligi-

ble in the domination example; reflecting the fact that defectors are near immediately

converted after connecting to co-operators. Thus, we conclude that the accumulation

of relatively high levels of defector to co-operator connections differentiates the collapse

from the domination example and this is what triggers the fall in co-operation that

begins at epoch 17.

6.2.2.2.2 Dynamics after the collapse

We now turn our attention to the nature of the collapse itself. In particular we wish to

understand what drives the model to total collapse after epoch 17, instead of recovering
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in the same fashion as observed after epoch 5. Returning to figure 6.7b we see that

〈k(d)c〉 falls after epoch 17. This fall is not instantaneous indicating that in the early

stages of the collapse the defectors press the advantage of a high number of outgoing

connections to co-operators.

In the latter stages of the collapse 〈k(d)c〉 falls quite significantly. However, in this period

of the example 〈k(c)d〉 rises noticeably. In words, individual defectors do not make

multiple connections with co-operators as frequently as they did prior to the collapse.

However, defector nodes are now better coordinated so as to connect to individual co-

operators en masse. These co-operators receive multiple sucker payoffs from the PD

game and so they convert to the defect strategy. It is this effect that leads to the

completion of the collapse.

To summarise, the fundamental difference between the collapse and domination exam-

ples is the availability of baseline energy. In the domination example, baseline energy

was in short supply, with the consequence that co-operators are better placed to ex-

ploit their mutually beneficial payoff via coalition formation. These coalitions go on

to systematically convert nearby defectors. In the collapse example the introduction of

baseline energy allows defectors to more easily form connections thereby forming their

own coalitions. This leads to the situation that, in epoch 17, the following two in-

gredients combine to trigger the collapse: (i) defector clusters (ii) defector nodes with

multiple connection to co-operators. Once the collapse is set in motion a third ingredient

was added to this mix, that of co-operator nodes with multiple connections to defector

nodes. It is this last component that fatally weakens the co-operator nodes, leading to

their total collapse.

6.2.2.3 Cyclic

The dynamics of our final scenario are presented in figure 6.4c where the overall picture

is that of rising co-operation that reaches a peak and then immediately drops. However,

unlike the previous example, pc never completely collapses; instead co-operation revives

and the sequence begins again. This pattern of rising and falling pc does not exhibit a

constant period and we follow the convention from time series analysis and refer to this

scenario as the cyclic example (Hyndman, 2011).

Initial investigations indicate that cyclic dynamics do not readily occur and so the pa-

rameters that induce the cyclic example differ significantly from those used for the

domination and collapse examples; they are: Tn = 10−2, s = 0.8, e = 0.03, Tg = 2.0, w =

10−1, l = 0.95, b = 0.036. A consequence of modifying the parameters to this extent

is that network connectivity and the cost benefit ratio of co-operation are markedly
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different in this example when contrasted with those of the domination and collapse ex-

amples. As such, we cannot easily establish a basis for quantitative comparison between

the three examples.

Nonetheless, visualisation of this time series indicates consistent patterns in its dynamics.

Therefore, we will now give a qualitative description of an example of a rise and fall of pc

in the cyclic example’s dynamics. For the remainder of this section we focus on epochs 54

to 65. In this period co-operation starts from a low of pc = 0.24 and ascends to pc = 0.74

at epoch 59. From this peak co-operation falls to pc = 0.24 at epoch 65. We examine

the rise and fall in their own sections. We also dedicate a section to demonstrating the

phenomenon of transmission, i.e., a process by which a strategy can take root in a region

of the square that is at some distance from an existing cluster of that strategy.

6.2.2.3.1 Rising co-operation

Figure 6.8 is a series of visualisations of the network between epochs 54 and 57, the

period during which pc is increasing. We colour code each node according to whether

it is a co-operator (green) or a defector (red). Since the edge density is high in many

portions of the network we do not render individual edges; instead we break the image

into a 50 × 50 grid of squares of side 0.02 shade each square so as to represent its

connectivity.

At epoch 54 there are two high connectivity clusters at the top left and bottom right of

the network. These clusters are characterised by a core of co-operators and a boundary

that consists of both co-operators and defectors. Both the co-operative core and the

boundary have very high connectivity. The next epoch, 55, is almost exactly the same,

with the exception that a small cluster of low connectivity co-operators appears on the

middle right hand side of the network around the area marked by the blue square.

This small group of co-operators can now spread their strategy in a similar fashion to

the domination strategy. Thus, we find in epochs 56 and 57 that co-operation spreads

rapidly throughout the network. Also of note in epoch 57 is that a small group of

co-operators is apparent in the bottom left of the square centred on the point (0.1, 0.3).

6.2.2.3.2 Transmission

We have observed the appearance of small groups of co-operators at some distance from

existing communities of co-operators on two of the four epochs in the previous section.

We gain some insight into how the community that was observed in epoch 55 appears

by visualising the blue square from figure 6.8b at intermediate moments between epochs

54 and 55 in figure 6.9.
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Figure 6.8: Node strategies in a growing phase of the cyclic example. The entire
network has been visualised after epochs (a) 54, (b) 55, (c) 56 and (d) 57. Green
dots are co-operators, red dots are defectors. The greyscale hue of the smaller squares
represents 〈k〉 within that patch with darker hues representing higher 〈k〉. The blue

box in (b) highlights a region that is discussed in more detail in the text.

At epoch 54.1, we find the border of the highly connected cluster at the bottom of the

square. A few co-operator nodes lie beyond the cluster on the left of the image. This

leads to the situation in epoch 54.3, where there are 7 co-operators within the top half

of the square. None of these co-operators are within a distance of 0.05 of any other

co-operator in the square, indicating that co-operation has arrived in this region via

nodes that have subsequently converted back to the defect strategy. Finally, in epoch

54.5, the co-operators successfully form a cluster at the top of the square.
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Figure 6.9: Visualisations of the cyclic example at epochs (a) 54.1, (b) 54.3 and (c)
54.5 within the square of side 0.2 with bottom left corner at (0.8, 0.4). This is the

region highlighted by the blue square in figure 6.8b.

6.2.2.3.3 Falling co-operation

In figure 6.10 we present visualisations of the network between epochs 59 and 65, the

period during which pc is in decline. At epoch 59, the growth of the network reaches its

apotheosis and the entire top right of the network is now a highly connected co-operative

cluster. Furthermore, the small number of co-operators in the bottom left corner of the

square has now grown significantly. Also noticeable, in the centre of the square, is a

high connectivity patch consisting of both co-operator and defector nodes.

At epoch 61 we find that the defect strategy now begins to re-establish itself in two

regions, around the points (0.5, 0.2) and (0.5, 0.75). This process continues in epoch 63

where the influence of the defect strategy is extended in two ways. Firstly nodes have

been converted to the defect strategy across the entire top right of the plot. Secondly the

defect strategy successfully invades the bottom right of the plot. The overall outcome of

these developments is that a new highly connected cluster remains in the middle right of

the square. Also notice that another highly connected cluster has formed in the bottom

left of the square. Both of these new clusters share the features of the high connectivity

clusters discussed previously, a co-operative core and a mixed strategy boundary.

Finally, in epoch 65, the cluster on the right of the square collapses and we reach a

minimum of co-operation. In those areas where defection dominates, connectivity has

now died away, leaving a region that can readily be converted by the co-operate strategy.

This results in a network which has two high connectivity regions that can now seed the

low connectivity region of defectors with the co-operate strategy, thereby beginning the

sequence again.

This sequence of co-operation growth and collapse is underpinned by three key elements.

Firstly, the high connectivity clusters allow for the preservation of the co-operate strat-

egy. Secondly, transmission of the co-operation strategy means that high connectivity
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Figure 6.10: Node strategies in a collapsing phase of the cyclic example. The entire
network has been visualised after epochs (a) 59, (b) 61, (c) 63 and (d) 65. Green
dots are co-operators, red dots are defectors. The greyscale hue of the smaller squares

represents 〈k〉 within that patch with darker hues representing higher 〈k〉.

clusters can propagate co-operation to regions of the network that are dominated by low

connectivity defectors. Finally, while the high connectivity clusters appear to be robust

over time, they are not infallible. Thus, defector nodes within the border regions can

successfully initiate an invasion that leads to a collapse of co-operation within the high

connectivity regions.

6.3 Parameter variation

In this section we more thoroughly assess the parameter space of the coevolutionary

REDS model. Initially, we investigate the effect that variation of the baseline energy,
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Figure 6.11: Plots of pc vs b for the evolutionary REDS model with l = 0.05, 0.5, 0.95.
For each l plots are for all combinations of S = 0.0, 0.8 and E = 0.03, 0.24 (see legend).
Parameters Tn = 10−2, Tg = 0.2, w = 10−3 are fixed. For each data point, the standard

error is below 0.1.

E, and synergy, S, have upon co-operation within the coevolutionary REDS model. In

this regard, we remind ourselves that equation (6.4), introduced a weighting, l, between

baseline energy and payoff. Energy is a node’s inherent capacity to make connections

while payoff is earned during the course of the simulation. We assess l alongside E and

S in section 6.3.1, finding that low E and low l tend to promote co-operation while

variation of S has little effect on the outcome.

In section 6.3.2 we turn our attention to the network update temperature Tn, the strategy

update temperature, Tg and the timescale separation w which we, somewhat informally,

refer to as the update parameters. We investigate the effect of the update parameters

upon co-operation in section 6.3.2. We find that decreasing w, i.e., updating strategy

more frequently, and lowering Tg, i.e., making the strategy update more deterministic,

both promote co-operation.

6.3.1 The effect of synergy and energy upon co-operation

Our aim in this section is to investigate how synergy, S, and baseline energy, E, affect

the level of co-operation in the coevolutionary REDS model. The parameter l governs

the amount of baseline energy available to the nodes. Furthermore, the domination and

collapse examples demonstrated that availability of baseline energy is a key driver of

outcomes in the coevolutionary REDS model. Hence, it is appropriate to establish l’s

impact upon co-operation at this stage. Our approach follows that of section 6.1.2, i.e.,

we run a given l×S×E parameterisation of the coevolutionary REDS model against an

increasing temptation to defect so as to establish the ranges of b in which co-operation

persists.

In the domination and collapse examples, we used l = 0.05, 0.5, synergy S = 0.8 and

baseline energy of E = 0.24. We broaden our exploration of l×S×E space by choosing
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l = 0.05, 0.5, 0.95, S = 0.0, 0.8 and E = 0.03, 0.24. Update parameters are fixed at

network update temperature, Tn = 10−2, strategy update temperature, Tg = 0.2, and

timescale separation, w = 10−3.

For an l × S × E combination, the temptation to defect is varied between b = 0.0 and

b = 0.52. We run sufficient instances of the model for each value of b so as to ensure

that the standard error of pc is less than 0.1. Irrespective of the standard error, at least

15 instances of each case is run. An instance of the model is run for 800 epochs. The

value of pc for an instance is calculated by taking the mean value of pc observed over

the last 50 epochs.

In figure 6.11 we present the resulting pc vs. b plots for these experiments. It is clear

that the low energy networks better support co-operation than the high energy ones,

irrespective of the value of l, i.e., the red curves are further to the right than the blue

curves in each plot. This finding is unsurprising given our discussion of the collapse and

dominate examples. Quite simply, the more baseline energy that is present, the more

easily the defection strategy can undermine the co-operators.

More surprising is how closely each S = 0.0 curve matches its S = 0.8 pair. In the

domination example, co-operators locally formed coalitions which then connected to

and converted nearby defectors, thereby extending the co-operative cluster. One might

expect, since co-operators more readily form mutual connections, high synergy regimes

to enhance this mechanism. This result, however, indicates that it is sufficient for co-

operators to be spatially co-located in order to efficiently form coalitions.

When we compare results between different values of l it is clear that co-operation better

prevails within the l = 0.05 networks (compare figure 6.11a with b & c). This result

corroborates our analysis of the domination and collapse examples; recall that the sole

change in the parameters between the two scenarios was an increase in l from 0.05 to

0.5. This is effectively an increase in baseline energy and results in the same outcome.

6.3.2 The effect of update parameters upon co-operation

In this section we turn our attention to how the update parameters affect co-operation

in the coevolutionary REDS model. To motivate our choice of parameters we highlight

an issue with the cyclic dynamics. Experimentation reveals that the cyclic dynamics

are repeatedly observed when the model is initialised with the parameters discussed in

section 6.2.2.3. However, small adjustments to these parameters result in dynamics that

match those of either the domination or collapse examples. Therefore, alongside the key

goal of investigating conditions under which co-operation prevails in the model, we also

wish to establish in what regions of the parameter space cyclic dynamics are present.
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Figure 6.12: Plots of pc vs b for the evolutionary REDS model with w = 10−3 (blue),
10−1 (green) and 100 (red). Individual plots represent a Tn × Tg pair drawn from
Tn = 10−4, 10−2, 0.7 and Tg = 0.2, 0.5, 2.0. Error bars represent the standard error.

In light of this latter goal, we fix l = 0.95, S = 0.8, E = 0.03, the same values that were

used in the cyclic example. The three update parameters in the cyclic example were

Tn = 10−2, Tg = 2.0, w = 10−1. We choose Tn = 10−4, 10−2, 0.7 for the network update

temperature and w = 10−3, 10−1, 100 for the timescale separation so as to explore the

immediate vicinity of the cyclic example. Finally, exploratory experiments indicate that

lowering Tg is more conducive to co-operation, therefore we choose Tg = 0.2, 0.5, 2.0 as

strategy update temperatures.

We follow the familiar pattern of running the coevolutionary REDS model for each

Tn×Tg×w combination and with varying values of b. We run each individual experiment

for 400 epochs and calculate pc the mean value of over the last 50 epochs. We again

follow our convention of calculating pc as being the mean value of pc over the last 50

epochs of the model run. Where the standard deviation of pc over the last 50 epochs is
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greater than 0.01 we run the model for a further 400 epochs. We continue this process

up to a maximum of 2400 epochs.

In the vast majority of cases, network dynamics follow the form of either the collapse

or the domination example and do not equilibrate to intermediate values of pc. There

are two exceptions to this rule; firstly, some experiments result in cyclic dynamics. We

will review this outcome in more detail shortly. Secondly, in some experiments with low

network update temperature, Tn = 10−4, the dynamics follow the domination example

without co-operation reaching pc = 1.0. This outcome occurs for the straightforward

reason that the time required for co-operation to dominate these networks is considerably

longer than 400 epochs.

Figure 6.12 presents the results of our experiments in a Tg × Tn grid of 9 plots, i.e., an

individual plot represents a (Tg, Tn) pair. Within each plot there are three curves, one

for each value of w. The most obvious feature of these plots is that, in all cases, the

blue curves are the furthest to the right; indicating that the low timescale separation,

w = 10−3, is the most conducive to the perpetuation of the co-operative strategy.

Along the top row and rightmost column of the plots the red and green curves are nearly

equivalent to each other. As we move towards the bottom left of the grid we find that,

in general, the red curve (w = 100) is positioned somewhat to the left of the green curve

(w = 10−1). The interpretation of these observations is that increasing the timescale

separation continues to adversely affect co-operation in the model, however this effect is

only noticeable when both network and strategy update temperature is low.

In light of this analysis, we conclude that it is at low time separation that we best

discern how variation of the update temperatures influences co-operation. Of the two

we first address the strategy update temperature. The plots along the bottom row of

figure 6.12 fix the network update temperature at Tn = 10−4. As we scan from left to

right along this row we see that the blue curve shifts leftwards within the plot, in other

words co-operation is less well supported as strategy update temperature increases. The

same pattern is apparent in the middle (Tn = 10−2) and top (Tn = 0.7) rows.

We now shift our focus to the network update temperature. Along the top row of the

plot, at the high network update temperature, the blue curves all exhibit near immediate

transitions from pc = 1.0 to pc = 0.0. By comparison, the curves on the two lower rows

are more gradual. The two lower rows are also similar in that their transitions occur for

the similar values of b. The difference between the two cases is, as was discussed above,

is that the transition begins from a value around pc = 0.87 in the Tn = 10−4, due to the

longer time required to equilibrate the lower network update temperature model.

Considering the effect of the network update temperature on co-operation, it seems clear

where Tg = 0.2, 0.5 co-operation is better supported by lowering the network update

temperature. At the high value of the strategy update temperature, this pattern is
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reversed, i.e., the blue curve in the Tn = 0.7, Tg = 2.0 plot is further to the left than

in the other two Tg = 2.0 plots. However, we make two points in this regard; firstly,

this effect is not especially strong and secondly we reiterate that co-operation is not well

supported at the higher strategy update temperature.

We interpret these results as follows: firstly, lowering the network update temperature

improves the level of co-operation in the model. This finding is consistent with the

descriptions we gave of pc dynamics in the domination and collapse examples. Since

energy is most likely to be accumulated by mutual co-operators, low Tn ensures that

these nodes are rewarded with an increased capacity to form edges. As Tn increases, so

does the capacity for defectors to form edges.

Secondly, co-operation is best supported at the lowest value of the timescale separation

considered, indicating that a more static network structure favours co-operation. It

seems that this feature complements the improved co-operation for low Tn.

Finally, lowering strategy update temperature is also favourable to co-operation. For low

Tg strategy update is more consistent and so co-operator coalitions will more reliably

convert defectors. Conversely, increasing Tg will increase the possibility of defectors

appearing randomly within co-operative clusters.

6.3.3 The effect of update parameters upon cyclic dynamics

We now discuss the presence of cyclic dynamics within our experiments. Our first task in

this regard is to classify instances of the model with cyclic dynamics. We have seen that

the cyclic scenario has an incessant sequence of peaks and troughs in its dynamics. By

contrast, the domination and collapse dynamics settle to a constant value of pc during

the closing epochs of the model run. We therefore employ a simple method of peak

counting so as to identify instances of the model which exhibit cyclic dynamics.

Our algorithm has four steps, the first of which is to smooth the series of values of pc.

Secondly, we identify the maxima and minima in the closing stages of the smoothed

series. Thirdly, count those extrema that differ by a specified amount and finally we

choose those examples were a sufficient number of peaks have been detected. The precise

description of the algorithm is as follows:

1. Calculate the series pc,5, which is, simply, the rolling average of pc over a window of

5 epochs.

2a. Calculate, dpc,5 the difference in pc,5 between consecutive epochs.

2b. If dpc,5 > 0 (resp. dpc,5 < 0) at step t and dpc,5 < 0 (resp. dpc,5 > 0) at step t + 1

then mark epoch t as a maximum (resp. minimum).



Chapter 6 Social dilemmas on spatial networks 93

Figure 6.13: Plots of pn for each of the data points in figure 6.12. Here, is the
proportion of experiments that exhibit cyclic dynamics. As in figure 6.12 the curves
are colour coded w = 10−1 (green) and 100 (red). Results for w = 10−3 have not been

plotted since pn = 0 for all points with this timescale separation.

3. Within the last 50 epochs of pc,5 count the number of instances where the absolute

difference between consecutive extrema is greater than 0.05.

4. When this count is greater than 4 we classify the dynamics as being cyclic.

For each data point in figure 6.12 we use the foregoing algorithm to count the number of

experiments with cyclic dynamics. We then calculate pn, the proportion of experiments

that have cyclic dynamics for that data point. In figure 6.13 we plot pn for the w =

10−1, 100 experiments encountered in figure 6.12. We have not plotted results for the

w = 10−3 experiments since pn = 0 for all points with this timescale separation.
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We highlight two general points about these plots; firstly, cyclic dynamics are present

within the transitions of all the w = 10−1, 100 curves. Secondly, at the higher timescale

separation, w = 100 (red curves), cyclic dynamics are more prevalent. Examining the

lower timescale separation, w = 10−1 (green curves), more closely, we see that reducing

either the network or strategy update temperature reduces the proportion of experiments

that exhibit cyclic dynamics.

Returning to the red curves, we see that, along the bottom row of of figure 6.12 decreasing

the strategy update temperature reduces the incidences of cyclic dynamics. Raising the

network update temperature to Tn = 10−2, 0.7 maximises the the value of pn, i.e., there is

always a high prevalence of cyclic dynamics within the transition regions of the w = 100

experiments.

In summary, raising any of the three update parameters increases the likelihood that

cyclic dynamics will be observed in the transition region of the associated pc vs. b

curve. This finding throws light on the transmission phenomenon discussed in section

6.2.2.3. Increased network update temperature implies increased independence of edge

formation from a node’s current energy balance. This allows for the appearance of

temporary connections within the defector dominated, low connectivity regions of the

network. These links allow for the possibility of transmission within the low connectivity

region. Increased time separation has the consequence that these connections are long

lived enough for their end nodes to be the subjects of strategy update events. Finally,

increased strategy update temperature allows the co-operator strategy to overcome the

advantage that defectors have in defector/co-operator pairs.

This account of the update parameters effect upon cyclic dynamics would appear to

contradict the summary at the end of section 6.3.2. There, we argued there that low

network connectivity favoured co-operators whereas the argument just given can be

read as implying that it is, in fact, the case that increased connectivity now favours

co-operators. However, we stress that the processes outlined in this section describe

the formation of temporary pathways within the low connectivity region rather than a

substantial increase in overall connectivity.

6.4 Summary

In this chapter we have extended the stochastic REDS model so that its nodes play pris-

oner’s dilemma (PD) with each other. We began, in the evolutionary REDS model, by

playing PD on static networks generated by the stochastic REDS model. In agreement

with the predictions of Ohtsuki et al. (2006), two results in this set of experiments indi-

cated that co-operation was best supported in regions of the network where connectivity

was low. Firstly, higher levels of co-operation were found in the E = 0.03 evolutionary

REDS networks than in the E = 0.24 case for all but the lowest values of the temptation
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to defect. Decreased co-operation in the E = 0.03, low b experiments was due to the

fact that these networks consist of multiple components. Some of these components were

taken over by defectors early in the simulation and, hence, could not be reclaimed by

co-operators. The second instance of low connectivity favouring co-operation was seen in

the collapse of pc for E = 0.145 evolutionary REDS networks. This collapse occurred in

two stages as the temptation to defect increased; the first at low b for high connectivity

nodes and the second at higher b for low connectivity nodes. In all our experiments with

evolutionary REDS networks we found no examples where co-operation dominated the

network for a temptation to defect b > 0.01.

We then introduced the coevolutionary REDS model, where the payoff from the PD

game was used by the nodes as an energy source with which to form edges. Our key

finding was that the capacity of these networks to support co-operation was improved

by reducing the availability of baseline energy to the nodes, thereby maximising the

advantage to co-operators from forming mutually beneficial links. In a further series of

experiments we found that, in scenarios where the majority of energy available to a node

was drawn from the payoff, i.e., where l = 0.05, co-operation dominated the network for

b ≤ 0.2. Thus, we conclude that the introduction of the coevolutionary rule significantly

improves the uptake of the co-operative strategy when compared with the evolutionary

REDS model.

Prior examples of coevolutionary models assume that their agents can distinguish be-

tween the separate interactions that they participate in. For example, in one of the

fundamental coevolutionary models discussed section 2.3.3, that of Zimmermann et al.

(2004), we find that the agents in the model are aware of the strategy of individual net-

work neighbours. By contrast, agents in the coevolutionary REDS model can, at best,

be described as assessing their accumulated payoff from playing the dilemma game with

their neighbours. As such, our results demonstrate that co-operation can be supported

in a model in which agents do not examine the details of specific interactions.

We found that co-operation was best supported in simulations where where both the

energy, E, and the parameter l were low. Where this was the case, the payoff, per

equation 6.4, was the chief source of energy with which nodes could form connections.

Under these conditions mutual co-operators can more easily use the higher payoff from

the evolutionary game to form links. The spatially constrained nature of the model

ensures that these co-operators then form links with nearby nodes, thereby driving the

formation of locally co-operative clusters which can convert nearby defectors. When l

or E was increased, defectors could make use of the baseline energy to form clusters

amongst themselves, thereby resisting the co-operator’s influence.

These dynamics underscore the importance of endogenous edge formation to the outcome

of the coevolutionary REDS model. Such dynamics were also pertinent to the cyclic

example. Here, we found that weakly connected defectors are vulnerable to invasion by
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co-operators while, conversely, strongly connected defectors can resist invasion and even

turn the tables on co-operators. That being the case, defector nodes can be thought of as

being in one of two states; having either low or high degree. Furthermore, nodes within

a strongly connected defector cluster will, over time, drop their connections thereby

becoming a region of isolated individual defectors. From this perspective it can be said

that the low degree defector state dominates the high degree defector state.

These three states; co-operators, high degree defectors and low degree defectors; bear

comparison to the states in the model of voluntary participation presented in Hauert

and Szabó (2005). We recall that in this model a loner strategy was introduced that

could dominate defectors but was itself vulnerable to co-operators. Thus, in Hauert

and Szabó’s model loners dominate defectors, defectors dominate co-operators and co-

operators dominate loners, an arrangement of the strategies known as cyclic domination.

When simulated upon a network, it is possible for all three strategies of the voluntary

participation model to persist. Where coexistence occurs in this model it is because,

for any given strategy, there are always nodes with that strategy that have vulnerable

neighbours with the consequence that the strategy can perpetuate itself.

In the coevolutionary REDS model low degree defectors dominate high degree defec-

tors, high degree defectors dominate co-operators and co-operators dominate low degree

defectors. Crucially, we found, in the cyclic example, that co-operators could exploit

transmission so as to reach regions of low degree defectors, thereby closing the cycle

between the three states. Consequently, the cyclic model supports the survival of all

three states and, in this sense, we argue that it is analogous to the cyclic domination of

Hauert and Szabó.

We finish this chapter by highlighting a connection between the cyclic example and the

model of Szolnoki et al. (2010). In section 2.3.2.1 we outlined that Szolnoki et al.’s

contribution was to define a model whose dynamics gave rise to cyclic interactions in a

population of agents playing a two strategy game. In particular, these cyclic dynamics

were induced by specifying a period after a strategy update during which a node has a

reduced capacity to adopt a new strategy. The analogy between this example and the

coevolutionary REDS model is that a high degree defector node in the cyclic example is

prevented from updating to the co-operative strategy until such time as it relinquishes

enough connections so as to render it vulnerable to conversion by a co-operator.



Chapter 7

Conclusions

This thesis has sought to contribute to the understanding of how spatially embedding

a network affects both its structure and dynamics that occur upon it. We have realised

this goal with the following three contributions: (i) a model that produces spatially

embedded networks that exhibit a power law degree distribution, (ii) improving the

plausibility of the REDS model so that its agents’ decisions to form connections are

subject to uncertainty and (iii) a coevolutionary network model in which the agents’

capacity to form connections are constrained by a privately held budget.

The first of these contributions, the planar growth model, created a spatial network that

respected the constraint that its edges do not cross. The most notable outcome of this

model was that its networks displayed a heterogeneous degree distribution. Crucially,

planar growth neither relied upon topological features of the existing network when

forming connections with newly added nodes nor assumed a power law in any of its

inputs. These details distinguish the new model in that, as far as we are aware, planar

growth is only the second example with nodes uniformly distributed upon the plane that

results in the power law degree distribution.

The importance of the planarity constraint was investigated in a variation of the model

where edges were allowed to cross with differing probability. These experiments demon-

strated that the degree distribution smoothly changes from the power law into an ex-

ponential distribution in line with increasing probability of edges crossing. Similarly

smooth variations were noted for clustering and assortativity. Thus, planar growth con-

stitutes an initial foray into the investigation of spatial networks that are almost planar,

a topic that we identified as being under researched in section 3.1. Finally, for this

model, we redefined planar growth as a random Apollonian process. We developed this

idea sufficiently so as to incorporate planar growth and two existing Apollonian models

within a single framework.

We intend that the results of the PG model will shed light upon those situations where a

spatial network has a planar structure. Examples we have given in this thesis are roads,
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circuits and wireless networks. One might object that these real-world examples exhibit

a homogeneous degree distribution. However, we draw attention to those experiments in

chapter 4 that investigated the relaxation of the planarity constraint. Further research

in this direction has the potential to bridge the gap between our findings and empirically

observed networks.

We then considered the REDS model, a process which simulates the formation of a

social network. The distinguishing feature of this model was that its edges incurred a

cost proportional to their length which agents, i.e., the nodes, paid for from a personal

budget. The REDS model exhibits several statistics that are consistent with those

considered to be characteristic of real world social networks. The most significant of

these is a degree distribution that is heterogeneous in the sense that it is bi-modal, i.e.,

the distribution exhibits two scales, with several high degree nodes and the remainder

of the nodes having low degree. Our innovation here was to view decisions to connect

as being subject to uncertainty. Furthermore, edges were now subject to re-evaluation

and possible removal, with the consequence that the new model was a dynamic version

of the static original. We implemented these ideas in the stochastic REDS model by

modelling decisions using a Fermi function. This function accepted a single parameter,

Tn, representing the uncertainty in the decision.

When the stochastic REDS model was run with low uncertainty we found that we could

no longer recover the bi-modal distribution; the network instead equilibrated to either

high or low connectivity. This result indicated that high connectivity regions of the

network were unstable in the face of the nodes’ continual revision of their edges. By

increasing the uncertainty we found networks that exhibited the bi-modal degree dis-

tribution. However, in this case, each of the two node types were located in specific

regions of the square; high connectivity nodes appeared on its border and low connec-

tivity nodes in the centre. This result indicated that the inhomogeneity in the space,

i.e., the rigid boundary of the square, promoted the onset of the hybrid distribution

and that increased uncertainty in the decision contributed to the stability of the high

connectivity region along the border.

As was outlined in the literature review, social networks are amongst the most widely

studied empirical models. Furthermore, a growing body of evidence confirms the intu-

ition that spatial structure is inherent in real world social networks, even where those

networks are enhanced by communications technology. Nonetheless, the REDS model

is, as far as we are aware, the sole example of a spatially embedded social network model

that exhibits a form of degree heterogeneity. We found the REDS model encouraging

but voiced concerns as to the static nature of the finalised network. We offer the perpet-

ual review of connections in the stochastic REDS model as a more plausible simulation

of a social network. That being the case, the conditions under which the bi-modal dis-

tribution occurs in the stochastic REDS model is a new insight into the phenomenon of

heterogeneous real-world social networks.
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Our final contribution was the coevolutionary REDS model, in which we extended the

stochastic REDS model so that its nodes played the prisoner’s dilemma against their

network neighbours. The payoff from the evolutionary game was added to a node’s bud-

get when forming edges in the underlying stochastic REDS model. By this mechanism

connectivity within the coevolutionary REDS model was established endogenously, in

contrast to existing co-evolutionary models which pre-assume overall connectivity.

We compared the coevolutionary REDS model with simulations in which nodes played

prisoner’s dilemma upon static networks generated using the stochastic REDS model.

When we did so we found that the coevolutionary model better supported co-operative

behaviour within the population. These results follow a common pattern within the lit-

erature on the evolution of co-operation in that numerous coevolutionary models demon-

strate increased support for co-operation relative to an appropriate static model. How-

ever, pre-existing coevolutionary models rely upon agents that discern some feature of

each game they play, e.g., a neighbour’s strategy. By contrast the coevolutionary REDS

model’s agents did not have the capacity to assess their individual strategic interactions,

instead their knowledge consisted solely of the accumulated payoff across all the games

that they played. Thus, the coevolutionary REDS model demonstrates the possibility

for a population of agents with minimal cognitive capacity to favour the co-operative

strategy.

It was also observed that the coevolutionary REDS model can exhibit cyclic dynamics.

Two features ensured the onset of this phenomenon; firstly, defector nodes, depending

on their connectivity, can be considered to be in one of two states. High connectivity

defectors can successfully invade co-operators and, conversely, low connectivity defectors

are liable to invasion by co-operators. The second feature was that appropriate values

of the update parameters allowed for the appearance of temporary connections in the

model that could transmit the co-operative strategy from co-operative clusters to regions

of low connectivity defectors, thereby precipitating an invasion of the defectors by the

co-operators.

We expect that these results will contribute to the development of evolutionary theory

with respect to co-operation. To be clear, we do not discount that the cognitive capacity

of biological agents contributes to the persistence of co-operative behaviour. However,

our results indicate that, to some extent, co-operation may be supported ’for free’ within

a biological population. There is no reason to believe that this finding stands in opposi-

tion to existing work since the essential mechanism at the heart of evolutionary theory is

one of incremental change. Thus, we argue that it may well be the case that cognitively

enhanced agents build upon the spatial basis for co-operation that we have outlined.

Our findings in this regard offer the possibility of practical suggestions for promoting

co-operative behaviour in real world scenarios. For instance, in order to promote greater
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co-operation within an organisation, an obvious recommendation, in light of our find-

ings, would be to encourage known co-operators to be located together. Our results

indicate that, over time, such a group will spread their culture to the remainder of the

hypothetical organisation.

Taken together, our contributions underscore the capacity of spatially embedded net-

work models to enrich the field of network science. The formation of a scale-free degree

distribution and increased support for co-operation within a coevolutionary model, re-

visit issues that have both generated sizeable bodies of research. A common theme of

the planar growth and coevolutionary REDS models is that they offer more parsimo-

nious accounts of the phenomena of interest by exploiting spatial features not previously

explored within the relevant literature. As regards our other contribution, the original

REDS model was already a spatial model. The incorporation of uncertainty led to an

open-ended, dynamic model, as opposed to the fixed end point and static outcome of the

original. Investigation of the dynamics of the stochastic REDS model revealed subtleties

in the conditions required to induce a bi-modal degree distribution in the network; one

of the key results for the original REDS model.

These contributions open up new avenues for research. We have analysed the effects

of a planarity constraint on the structure of a growing network. It appears of interest

to investigate planarity constraints in conjunction with other network formation mech-

anisms. For instance, an area in network science that has found much attention in the

literature are questions of optimal design of network structures (Colizza et al., 2004;

Gastner and Newman, 2006; Brede, 2010). It would be of interest to further investigate

to what extent planarity restrictions can constrain such optimal network topologies.

Chapter 5 established clear differences between the transition regions of the REDS model

and the stochastic REDS model. It would be desirable to further elucidate the nature of

these differences. It would be particularly insightful to establish if the high connectivity

region observed in the high Tn example is observed in a model that has periodic boundary

conditions. A further open question is a precise description of the dynamics of edge

creation and removal within the transition regions of the low Tn examples.

The literature review discussed a form of coevolutionary model known as adaptive mi-

gration. In these models, nodes were placed on a lattice and, instead of rewiring, moved

to unoccupied spaces during the network update phase of the model. A typical compo-

nent of adaptive migration models is that agents are given an indication of the payoff

they will receive from the new lattice location, i.e., these are further examples of models

whose agents have significant cognitive ability. It seems clear that the concept of adap-

tive migration could readily be applied to the coevolutionary REDS model by allowing

nodes the capacity to move within the plane. Furthermore, it should be straightforward

to do so in a manner which retains the reduced cognitive capacities which are integral

to the contribution that the coevolutionary REDS model makes.
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Finally, to unify the work in this thesis, it would be of interest to apply the planarity

constraint to both the stochastic and the evolutionary REDS models. In the first case

intuition tells us that planarity should enhance the degree heterogeneity seen in the

model. In the second case it seems plausible that planarity may assist the formation of

co-operative communities, thereby enhancing co-operation overall.

To sum up, we reiterate our assertion that spatial network models offer a promising way

in which to deepen the insights of network science and offer the results in this thesis as

proof of this claim.
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Boguñá, M., Pastor-Satorras, R., Dı́az-Guilera, A., and Arenas, A. Models of social

networks based on social distance attachment. Physical review E, 70(5):056122, 2004.

Brede, M. Coordinated and uncoordinated optimization of networks. Physical Review

E, 81(6):066104, 2010.
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