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Active Acoustic Black Holes for Controlling Vibration

by Kristian Hook

An Acoustic Black Hole (ABH) is a lightweight and compact damping solution, which
can be realised as a lightly damped structural taper. Although ABHs are effective at
attenuating vibration, their performance at lower frequencies is strongly dependent on
the local modes of the taper. Limiting the size of an ABH therefore physically limits
its cut-on frequency and accurate tuning is required to address low frequency prob-
lems. To improve the performance of ABHs at lower frequencies, this thesis proposes
and investigates the integration of active control technologies into the ABH taper. Ini-
tially, a parametric study has been carried out which highlights how a beam based ABH
termination can be geometrically tuned to maximise both narrow and broadband per-
formance. Particularly, it is shown that the tip height and power law can be selected
to minimise broadband reflection. With guidance from this study, an ABH termination
has been designed and a piezoelectric patch has been attached to the taper. It has been
shown through the implementation of a wave-based feedforward active control strat-
egy that the Active ABH (AABH) outperforms a traditional constant thickness active
termination and requires less electrical and computational power. However, it has also
been shown that when the reflection coefficient is controlled, the local vibration in the
AABH is significantly enhanced. To provide further insight into this connection, a re-
mote damping control strategy has been considered and it has been shown that there
is a control tradeoff between maximising performance and minimising the vibration of
the taper. The AABH concept has then been extended to a plate with five embedded
AABHs. It has been shown that the AABHs reduce the electrical power required to
implement active control and provide a higher level of damping over a significantly
wider bandwidth than achievable via a constant thickness plate with active elements.

In summary, this thesis presents the first exploration of integrating active control tech-
nologies into both one-dimensional and two-dimensional ABHs and demonstrates the
significant benefits of combining passive and active control technologies. Future work
will likely extend the novel AABH to more complex structures and consider not only
their effect on structural vibration, but also on the structural radiation.
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Definitions and Abbreviations

al Acceleration measured at accelerometer l
b Beam width
c Flexural wave speed
d Vector of disturbance signals
dφ− The reflected wave component of the disturbance signal
d Disturbance signal
E Young’s modulus
E Expectation operator
e Vector of error signals
eφ− The reflected wave component of the error signal
ea1 Error signal from accelerometer 1
ea2 Error signal from accelerometer 2
el Local taper vibration error signal
êl Estimate of the gain and phase of the local error signal relative to the reference signal
F Excitation force
Fp Primary Excitation force
f Frequency
fmin Lower frequency limit
fmax Upper frequency limit
fl Local sensitivity function
fφ− Remote sensitivity function
g...(ω) The plant frequency response between the control actuator and the respective

error sensor
g... FIR filter representing the plant response between the control actuator and the

respective error sensor
ĝ...(ω) The estimated plant frequency response between the control actuator and the

respective error sensor
ĝ... FIR filter representing the estimated plant response between the control actuator

and the respective error sensor
g... The frequency response between the control actuator and the respective error signal
glmj The j-th FIR coefficient of the plant response between the m-th piezoelectric patch and

the l-th sensor
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g̃ A point on the complex γ-plane which can be used to calculate a
compensator that annihilates the remote error

h Height
hmin Minimum height of an embedded ABH
hplate The height of the plate
h0 hmin − hplate

h(x) Height function of an ABH termination
h(rABH) Height function of an embedded ABH
hbeam The height of the beam
htip The height of the ABH tip
h+ Positive wave decomposition variable
h− Negative wave decomposition variable
h+ Positive wave decomposition filter
h− Negative wave decomposition filter
I Identity matrix
Iz Moment of inertia about the z-axis
Ih Number of FIR filter coefficients in the wave decomposition filters
I Vector of control filter coefficients
i

√
−1

i, j A specific FIR filter coefficient
J Cost function
J FIR filter length
k Flexural wavenumber
ktip Flexural wavenumber at the tip of the ABH
L Number of sensors
l Distance of the sensor array from any near-field inducing features
lbeam Length of the beam
labh Length of the ABH taper
M Number of secondary sources
n Sample number
ns A discrete number of samples
p... FIR filter representing the primary response between the primary source

and respective error sensor
R Reflection coefficient
Ratten Reflection coefficient attenuation
R0 The reflection coefficient of the uncontrolled and undamped constant thickness

termination
R̂ Matrix of filtered reference signals
r̂l Vector of filtered reference signals corresponding to the l-th sensor and all

M piezoelectric patches
r̂lm The filtered reference signal corresponding to the l-th sensor and the
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m-th piezoelectric patch
r̂φ− The reflected wave filtered reference signal
r A point along the radius of the ABH
rABH ABH radius
S Cross-sectional area
Sdd Matrix of cross and power spectral densities of the disturbance signals
See Matrix of cross and power spectral densities of the error signals
T Sampling time period
t Propagation time
u Control signal
um Control signal used to drive the m-th piezoelectric patch
wi Vector of I FIR controller coefficients
wopt Vector of optimal FIR control filter coefficients
wopt Optimal control filter coefficient
wi The i-th FIR controller coefficient
W Wave amplitude
w Complex flexural displacement
ẇ Complex flexural velocity
x(n) Reference signal
x1 The location on the x-axis of sensor 1
x2 The location on the x-axis of sensor 2
xc The location on the x-axis of the centre of the sensor array
xmax The location on the x-axis of the ABH tip
z Vector containing the real and imaginary part of a reference signal
α Sensitivity function
β Positive control effort coefficient-weighting parameter (Chapters 3 and 5)
β Remote damping variable used to express the conditions for control

of the remote error signal (Chapter 4)
γ Remote damping variable used to express the conditions for control

of the local error signal
γ0 A specific point on the complex γ-plane
∆ Distance used to define the upper wave decomposition limit
∆x Sensor separation along the beam
ε Random white measurement noise with zero mean
ε Scaling factor for the ABH termination height function
ηBeam Isotropic damping loss factor for the beam
ηABH Isotropic damping loss factor for the ABH
θ Vector containing the real and imaginary part of the error signal

with respect the the reference signal
κ Feedback compensator
κ0 Feedback compensator calculated from γ0
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λ Flexural wavelength
λtip Flexural wavelength at the tip of the ABH
λ RLS forgetting factor
µ Power law of the ABH taper
ν Poisson’s ratio
ξ Regularisation factor
π Pi
ρ Density
υ Gain relative to the reference signal
φ Phase relative to the reference signal
φ+ Positive travelling wave component
φ− Negative travelling wave component
ω Angular frequency
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AVC Active Vibration Control
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FE Finite Element
FIR Finite Impulse Response
FxLMS Filtered reference Least Mean Squares
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Chapter 1

Introduction

When subjected to a time-varying disturbance, a structure will vibrate with a response
that is dependent on its mass, stiffness and damping [1]. Vibration in structures is
generally undesirable [2] and various solutions, including damping technologies, have
been created to reduce the level of vibration. In 1988, a lightweight damping solu-
tion, realised as a structure with a smoothly decreasing thickness, was proposed as a
means to reduce flexural vibrations in a beam or plate [3]. The perhaps misleading
terminology ’Acoustic Black Hole’ (ABH) arose due to an article by Krylov and Tilman
that compared the ABH damping mechanism to the behaviour of an astrological black
hole [4]. The term ABH has now become standardised in the literature and this the-
sis will continue to use the term ABH for consistency. Since the early work of Krylov
and Tilman, there has been a growing number of investigations into ABHs that can
be separated into three broad categories: ABHs for vibration control, ABHs for energy
harvesting and ABHs for acoustic wave reduction. Interestingly, the latter is probably
the most fitting category for the name ABH. This thesis will focus on the use of ABHs
for vibration control and a literature review of the work in this area will be presented
in this chapter. With respect to the application of ABHs for energy harvesting [5–10]
and acoustic wave reduction [11–13], the reader is referred to the literature for further
information, as these areas do not form the focus of this thesis.

In order to contextualise the ABH research presented in this thesis, an introduction
to the concept behind the ABH and the physical mechanism via which it is able to
achieve significant levels of structural damping is provided. A review of the literature
in the field of ABHs for vibration control will then be presented. Finally, an outline of
the thesis structure and objectives of each chapter is given in Section 1.3 and the key
contributions of this thesis are presented in Section 1.4
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1.1 Acoustic Black Holes

The ABH effect, as described by Mironov in 1988 [3], is a phenomenon that occurs
when a beam or plate is tapered to a point, over a distance equal to or larger than the
structural wavelength. Figure 1.1 shows an example of an ABH, seen as the tapering of

ℎ!"#$

ℎ(𝑥)

𝑥% 𝑥$#&

ABH 
Junction

𝑥

𝑦
𝑧

ℎ'()

𝑏

FIGURE 1.1: A diagram of an ABH taper. hbeam is the height of the beam, b is the width
of the beam, h(x) is the height function of the taper that varies along the x-axis, xj is
the location of the ABH junction, xmax is the location of the tip and htip is the tip height.

a beam via a power law height function, h(x). The behaviour of such an ABH can be
explained by considering flexural vibrations travelling down a tapered Euler-Bernoulli
beam. Starting with Euler-Bernoulli beam theory, the equation of motion for free flexu-
ral vibration of a homogeneous beam is

EIz
∂4w(x, t)

∂x4 + ρS
∂2w(x, t)

∂t2 = 0, (1.1)

where E is the Young’s modulus of the beam, Iz is the moment of inertia about the
bending axis, ρ is the density of the beam, S is the cross-sectional area of the beam and
w is the complex wave amplitude, which can be expressed as

w(x, t) = We(kx+iωt), (1.2)

where W is the amplitude of the wave, k is the flexural wavenumber, ω is the angular
frequency of the wave and t is the propagation time [14, 15]. Substituting Equation 1.2
into 1.1 gives

EIzk4We(kx+iωt) − ρSω2We(kx+iωt) = 0, (1.3)

which, with some rearrangement, can be organised into an expression for the flexural
wavenumber,

k =

(
ρSω2

EIz

) 1
4

. (1.4)
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The flexural wavenumber can be linked to the height function of the ABH shown in
Figure 1.1 by considering a rectangular cross-section, such as a slice from the ABH
termination shown in Figure 1.1, where b is the width of the cross-section and h(x) is
the height of the cross-section. In this case, the cross-sectional area, which is dependent
on coordinate position x, can be expressed as

S(x) = bh(x). (1.5)

The bending moment of inertia of a rectangular cross-section [16] can be written as

Iz =
1

12
bh3(x). (1.6)

Substituting Equations 1.5 and 1.6 into Equation 1.4, the flexural wavenumber can be
expressed in terms of the height of the beam as

k(x) =
(

12ρω2

Eh2(x)

) 1
4

. (1.7)

It can be seen from equation 1.7, that if the height of the beam were to decrease, the
flexural wavenumber would increase, approaching infinity at an infinitely small height.
The flexural wavenumber can also be expressed as

k =
ω

c
=

2π

λ
, (1.8)

which allows the flexural wave speed to be expressed as

c(x) =
(

Eh2(x)ω2

12ρ

) 1
4

, (1.9)

and the flexural wavelength to be expressed as

λ(x) =
(

4Eh2(x)π4

3ρω2

) 1
4

. (1.10)

For a tapered semi-infinite plate, the same equations may be used by inclusion of the
poisson ratio [17].

It can be seen from Equations 1.9 and 1.10, that as the height of the taper decreases
along the x-axis, the flexural wave speed and wavelength also decrease, theoretically
approaching zero at an infinitely small height. Therefore, if a flexural wave were to en-
ter an ABH with an infinitely small tip height, the wave would never reach the end of
the taper and would not reflect back out of the ABH. However, in practice, an infinitely
small tip height cannot be achieved and there will be reflection from the truncated tip,
which will increase as the tip height is increased [4]. The performance of ABHs with fi-
nite tip heights can be significantly improved by the addition of a viscoelastic damping
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layer, which dampens the vibration of the ABH via hysteresis [2]. Shorter wavelength
vibration is more easily attenuated using hysteretic damping treatments and so only a
thin viscoelastic layer is required due to the wave compression that occurs along the
length of the taper, described by Equation 1.10. This effect has been practically demon-
strated for thin viscoelastic damping layers added to either one or both sides of the
taper [4, 18].

In addition to a finite tip height, in practice, a rapidly changing height function will also
result in reflection due to the high impedance change. This effect has been explored in
the literature [19–22] and the WKB approximation can be used to analytically determine
whether a specific height function is likely to produce a high level of reflection; this will
be reviewed in the following section. Subsequently, some various ABH designs will be
reviewed in Sections 1.1.2 through to 1.1.3, before a discussion on the manufacturing of
ABHs is presented in Section 1.1.5. Finally, Section 1.1.6 will present a brief review of
semi-active ABHs.

1.1.1 The WKB Approximation and Modelling the ABH

The WKB approximation is a popular method for finding suitable modifications of
plane-wave solutions for propagation in slowly varying structures [23]. In the ABH
literature, a first-order WKB approximation to the flexural wave equation is generally
used, which takes account of the variation of the wavenumber in addition to a varying
amplitude term [3,24]. This approximation has also been referred to as the geometrical
acoustics approach [4, 25, 26] and a measure of the validity of this approximation has
been used called the ’Normalised Wavenumber Variation’ (NWV) [19, 21]. Addition-
ally, higher order WKB approximations for modelling ABHs have been investigated
in [22] and further details regarding the WKB approximation for modelling ABHs can
be found in this reference.

The validity of the WKB approximation is limited to structures with gradual changes
in impedance and therefore gradual changes in the wavenumber. The condition for
validity can be found, for example, in [3, 19, 25], and can be expressed as

dk
dx
�
∣∣k2∣∣ , (1.11)

where k is the flexural wavenumber and x is a spatial coordinate along the axis of
propagation. Equation 1.11 can be rearranged to express the condition for validity as∣∣∣∣ 1

k2
dk
dx

∣∣∣∣� 1. (1.12)

The flexural wavenumber from Equation 1.7 can be substituted in Equation 1.12 to
check whether the WKB approximation is valid at a specific point along a tapered beam
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at a specific frequency. This has been investigated in [19,21] as an ABH design tool and,
as mentioned above, has been referred to as the NWV. Taking the height function used
in [19], which can be expressed as

h(x) = εxµ + htip, (1.13)

where µ is the power law of the taper, htip is the tip height and ε is a scaling factor, the
NWV can be calculated for each individual point along the taper for a range of frequen-
cies. Some examples are shown in Figure 1.2 for a taper with a starting beam height of 1
cm, a length of 7 cm and a tip height of 0.5 mm. Figure 1.2 shows that as the power law

(a) µ = 2

(b) µ = 3 (c) µ = 4

FIGURE 1.2: The WKB approximation validity (NWV) plotted over frequency and
position along the taper for µ = 2, 3 and 4 power tapers. A guide showing the taper is

presented to the left of (a).

is increased, the NVW becomes higher close to the junction of the ABH. This is because
a higher power law gives a higher gradient change, and hence a higher impedance
change, near the ABH junction. In addition, when frequency is increased, the NWV
decreases because the wavelength is smaller relative to the impedance change. In the
literature, a rule of thumb value of 0.4 or less has been accepted for the NWV [21]. If
this condition is not satisfied, the WKB approximation can not be considered valid. It
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is, therefore, clear that the first order WKB approximation becomes invalid over the full
bandwidth presented for power laws higher than 3, but is also invalid for lower power
laws at low frequencies. As a result, care must be taken when carrying out an inves-
tigation into ABHs using an analytical model with a first order WKB approximation
and given the focus of this thesis is on enhancing the low frequency performance of the
ABH, it will be necessary to use an alternative modelling approach.

1.1.2 Acoustic Black Hole Terminations

Although the slowing of flexural waves in a tapered plate was first observed by Mironov
in 1988 [3], the behaviour of an ABH termination on a beam has been investigated in
more detail by Krylov and Tilman in [4]. They showed, via a two dimensional ana-
lytical model of an ABH power law taper defined by h(x) = εxµ, how the reflection
coefficient of an ABH varies over frequency. In addition, a sinusoidal taper has also
been investigated [4] and other taper profiles have been compared by Karlos et. al. [22],
however, in general, the variation between the performance of the different taper func-
tions has been shown to be relatively small. Therefore, a power law function has been
adopted in the majority of the literature. In [4], Krylov and Tilman also showed that, for
finite tip heights, a small amount of damping is required to achieve good performance,
and that the ABH performs better at higher frequencies. It has also been shown in [4]
that in a small number of discrete cases, the reflection coefficient of the ABH could be
reduced by increasing the power law, decreasing the tip height or increasing the taper
length. However, the ABH model in [4] uses a first order WKB approximation, which
in Section 1.1.1 has been shown to be invalid for lower power laws at lower frequencies
and this invalidity extends to higher frequencies when the power law is increased.

Despite the limitations of using the first order WKB approximation, Feurtado and Con-
lon have further investigated the NWV at the taper-beam boundary [19, 20] and a
multi-objective optimisation of an analytical model has been carried out by Shepherd
et. al. [21], optimising the NWV against the reflection coefficient using the analytical
model. It has been found that, for the ABH investigated, a power of approximately 3
gave the optimum NWV-reflection tradeoff. This is consistent with the results shown in
Figure 1.2, where it is shown that the WKB approximation starts to become invalid over
a broader frequency range above a power law of 3; in contrast, the analytical model
used in [4] predicts that a higher power law results in a lower reflection coefficient.

In order to further understand the damping performance of ABHs, Denis et. al. [27]
have carried out an investigation into the reflection coefficient of an ABH termination
on a beam using a geometrical acoustics based model, a beam waveguide model, a
plate model and an experimental implementation. ABHs made from aluminium and
a polymer (with the inclusion of a thin damping strip on the taper) have been used in
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the investigation and the velocity at a mesh of points has been measured. The reflec-
tion coefficient has then been calculated using a method based on the Kundt tube-like
technique [27]. Figure 1.3(a) shows the reflection coefficient that has been calculated

(a)

(b)

FIGURE 1.3: (a) The reflection coefficient of an ABH calculated using the geometri-
cal model (dash-dotted line), the beam waveguide model (dashed line) and the plate
model (full line). (b) The estimated reflection coefficient for an ABH termination made
from aluminium (full black line) and polymer (dashed grey line). The light grey line

represents the aluminium reference beam [27].

using the three different models. A comparison of the models shows that the beam
waveguide and plate models yield the same result, but that the geometrical acoustic
approach does not predict the oscillations in the reflection coefficient. The oscillations
in the reflection coefficient have also previously been observed in [28, 29] and are de-
pendent on the local modes of the ABH, which are not taken into account in the geo-
metric acoustics model. It has also been shown in [29] that at higher frequencies, the
modal overlap in the ABH is higher and the oscillations in the reflection coefficient are
broadened. Figure 1.3(b) presents the experimentally estimated reflection coefficient
for the aluminium ABH, the polymer ABH and the aluminium reference beam. From
these results it can be seen that the manufactured aluminium ABH exhibits the oscilla-
tions in the reflection coefficient, as predicted by the waveguide and plate models. It
can also be seen that the bands of low reflection are less pronounced for the polymer
ABH, and that the aluminium reference beam exhibits almost perfect reflection over
the bandwidth tested [27].

To further understand and visualise wave propagation in a damped ABH, Ji et. al. [18]
have used a pulse laser to excite an ABH. A laser doppler vibrometer has been used
to detect the flexural vibrations in the ABH, which were separated into their incident
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and reflected components. The reflection coefficient has been calculated for a selection
of ABH designs, with damping layers of varying thickness and location. The results
demonstrated that there is an optimal thickness for the damping layer on their ABH,
which is approximately 5 times thicker than the tip height. It has also been shown that
the attenuation is enhanced when the damping strip is placed near the tip of the taper,
where the wavelength is the shortest.

Novel designs such as a spiral shaped ABH taper [30] have been proposed to minimise
the space an ABH occupies. In [30], it has been shown that introducing an Archimedean
spiral yielded a similar reduction in reflection, allowing for a longer taper, and thus
improved attenuation at lower frequencies, without significantly increasing the overall
ABH size; Figure 1.4 shows a diagram of this taper design. The concept of the spiral

FIGURE 1.4: Lee and Jeon’s Archimedean spiral ABH [30].

ABH has been investigated experimentally in [31]. The curvature effect on the driving
point mobility was measured and compared to the modelled results. It was found
that, compared to a straight ABH, the curvature effect did not significantly change the
structural vibration above 2 kHz. It was also found that curling the ABH changed the
resonance frequencies and that the gap distance, which is the distance between each
layer of the spiral, could be used to tune the frequency of these resonances. Although
this design requires less space, it may be more challenging to manufacture accurately
and to integrate into the design of structures.

1.1.3 Embedded Acoustic Black Holes

In structures comprising of beams and plates, there is not always a free end that can
be used to implement an ABH termination. Therefore, investigations have been car-
ried out that examine embedded ABHs as a more practical realisation in structures. A
design has been investigated in [40], where a number of ABHs were embedded within
a beam, as shown in Figure 1.5. In [40], Tang and Cheng found that as more ABHs
are stacked along a beam, they collectively form a more efficient broadband absorber,
above the frequency of the first local cut-on mode. Although effective at absorbing
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FIGURE 1.5: The design of multiple ABHs along a beam, with damping strips applied
[40].

energy, the thin regions will significantly decrease the stiffness of the structure and
therefore limit the practical uses of this design.

Whereas the performance of a beam based ABH has generally been gauged by its re-
flection coefficient or transmission, the performance of a plate based ABH has gen-
erally been gauged by its ability to reduce the structural response or radiated sound
power. In [41], a numerical analysis has been performed on the different arrangements
of ABHs in a plate, such as can be seen in Figure 1.6. The structural response and

(a) 25 ABH grid (b) Partial 13 ABH grid

FIGURE 1.6: The different grid layouts of ABHs in a plate that were investigated
in [41].

sound power radiated by these plates has been studied and it has been shown that
both designs behaved in a similar way and both were effective at reducing the global
structural vibration and radiated sound power when damping material was added to
the ABHs. In another investigation, it has been shown that the transmission loss of
a plate with 20 embedded ABHs is significantly higher than either an undamped or
uniform plate [42]. Both a distributed and point drive excitation were used and were
found to produce similar results.

The low frequency performance of plates with embedded ABHs has also been shown
to strongly depend on the specific low order vibrational modes of the ABHs [43], which
is consistent with the beam based studies presented in Section 1.1.2. In order to provide
further insight into the behaviour of embedded ABHs, Feurtado and Conlon have used
a scanning laser vibrometer to measure the velocities of and around the ABHs [44]. The
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measured surface velocities were then transformed into the wavenumber domain. An
investigation has also taken place that presents the phase accumulation of a plate with
embedded ABHs [45]. In concurrence with previous results, it has been found that
at low frequencies, the low order plate modes dominated the response and the ABHs
had little effect. It was only above the first local ABH mode, named the cut-on mode,
that the ABH began to significantly impact plate vibrations. The first local ABH modal
frequency, and therefore the cut-on frequency of an ABH, can be calculated analytically
and this has been shown, for example, in [46, 47].

Alternative ABH designs have also been investigated in [48, 49]. The examples pre-
sented in Figure 1.7 show that for some designs, the region with the minimum thick-
ness has been shifted outward so that the ABH takes on a ring-like appearance. Other
designs make use of stiffeners, similarly to [50] or distribute ABHs in rings. The designs

(a) (b)

FIGURE 1.7: The different ABH designs investigated in [48, 49].

in Figure 1.7(a) have been created with the intention of surrounding and isolating an
excitation area on a plate to avoid vibration transmission. Although the performance
of the annular ABH without stiffeners has been shown to be the most effective at in-
creasing transmission loss, the inclusion of some stiffeners has been shown to avoid
excessive weakness in the plate. The addition of more ABHs in a concentric design
has also been shown to be beneficial, however, if these ABHs are smaller, the cut-on
frequency will be higher and the low frequency performance will deteriorate. The de-
sign in Figure 1.7(b) has been shown to enlarge the energy focussing area of the ABH
and gives bi-directional ABH effects due to the inbound and outbound waves passing
through the region of minimum thickness. As a consequence of this effect, it has been
shown that two local ABH modes dominated the overall increase in damping.

Embedding ABHs within a plate, rather than on the surface, has also been investigated
in [50–52], where the ABHs have been tunnelled into plates. Examples of the designs,
with and without a strengthening stud, can be seen in Figure 1.8 [50, 51]. All tunnelled
ABH plates were found to be effective at attenuating vibration and the strengthening
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(a) (b)

FIGURE 1.8: The design of an ABH tunnelled into a plate (a) with and (b) without a
strengthening stud [50, 51].

stud that connects the two branches of the tunnelled ABHs has been shown to create a
large impedance mismatch with the thin walls and generates effective Bragg scattering
above 4 kHz, thus broadening the transmission band gaps and improving performance.

Ma and Cheng have investigated the topological optimisation of damping material ap-
plied to an ABH, with the objective of minimising either the vibration or the sound
radiated from a plate with a singular ABH [53]. The optimal placement of damping
material for minimising vibration or radiated sound power has been compared to the
conventional central covering of the ABH. An example of the layouts for three frequen-
cies can be seen in Figure 1.9. The first frequency was below the cut-on frequency of

(a) (b)

FIGURE 1.9: Optimal damping distribution to minimise (a) vibration and (b) radiated
sound power at three frequencies [53]. The first, 100 Hz, is below the cut-on frequency
of the ABH; the second, 1.7 kHz, is above the cut-on frequency of the ABH but below
the critical frequency of the ABH; the third, 3.15 kHz, is above the critical frequency of

the ABH.

the ABH, where it has been found that the optimum damping configuration did not
vary much from the conventional central covering. The second frequency was between
the cut-on frequency of the ABH and the critical frequency of the ABH, where it has
been found that the optimum damping configuration varies between minimising the
vibration and minimising the radiated sound power. In this case, the damping mate-
rial is placed away from the centre of the ABH to minimise the radiated sound power.
This trend is also shown at the higher frequency, which is above the critical frequency
(where acoustic wavelength becomes smaller than its structural counterpart [54]) of the
ABH.
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1.1.4 Surface-Attached Acoustic Black Holes

In addition to ABHs embedded in structures, recent investigations have been carried
out to examine the use of ABHs as surface-attached dampers. For example, a continu-
ation of the work on spiral ABHs has seen them implemented as surface-attached vi-
bration absorbers [32], as shown in Figure 1.10(a). Alternative types of surface attached

(a)

(b) (c)

FIGURE 1.10: The design of surface-attached ABHs with damping strips applied [32–
34].

ABHs are also shown in Figure 1.10. Figure 1.10(b) shows the surface-attached ABH
from [33], where a standard ABH has been connected to the surface of a beam to act as
a resonant beam damper. Figure 1.10(c) shows the surface-attached ABH used by Wang
et. al. [34], where an ABH disk has been attached to a structure. All surface-attached vi-
bration absorbers have been shown to be effective at dampening structural vibrations,
however they require careful design and placement in order to couple effectively with
the modes of the primary structure.

1.1.5 Manufacture of Acoustic Black Holes

In addition to the design of ABHs, the manufacturing of a precise taper can sometimes
be problematic in real structures. Due to the thin region, the taper is susceptible to
damage from, for example, imprecise milling. The effect of minor damage and imper-
fections within an ABH taper has been investigated by Bowyer et. al. [35, 36]. Additive
layer manufacturing has been suggested to provide greater flexibility and has been in-
vestigated by Rothe et al. in [37]. The additive method allows for high definition struc-
tures to be created with fewer defects than would be seen if the same structure were
milled. Additive manufacturing also offers the possibility to create intricate designs
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that are not possible using more traditional manufacturing methods. The additive pro-
cess may also allow damping material to be precisely integrated into novel ABH struc-
tures without the need for adhesives. For example, in [38], a series of additive designs
have been investigated where the Youngs modulus of the material has been changed
between 2.5 GPa and 0.2 GPa along the ABH taper. It has been found that designs with
a more elastic tip are particularly effective at reducing the reflection coefficient of the
termination and are able to achieve a lower reflection coefficient than the conventional
ABH. However, these structures may not always be suitable for industrial applications
due to the thin and soft tip of the ABH. Therefore, Cheer and Daley [39] have examined
a functionally graded ABH design where only the elastic modulus is graded, rather
than the physical structure itself. This work has demonstrated how the material prop-
erties can be smoothly varied to achieve comparable performance to a conventional
geometric ABH without the need for a thin tip.

1.1.6 Semi-Active Acoustic Black Holes

The use of semi-active technologies in the design of ABHs has been studied to provide
further tune-ability. For example, Ouisse et. al. [55] have varied the temperature of a
viscoelastic damping layer in order to control its mechanical properties. It has been
shown that by controlling the temperature of the damping layer, the bands of low re-
flection can be tuned to particular frequencies and the broadband reflection coefficient
can be changed. It has also been shown that at the glass transition temperature, the
loss factor of the damping material was as high as 2.4, which significantly increased
the damping of the ABH. Although this temperature tuned damping could be used to
effectively reduce the reflection coefficient above the second modal frequency of the
taper, the performance of the ABH at lower frequencies was still shown to be strongly
dependent on the bands of low reflection. In addition, this design required the ABH to
be located in a thermal chamber which, in practical applications, could be problematic.
Further work is therefore required to utilise this tuning method.

Zhao [56] has performed a theoretical and numerical study that compares the applica-
tion of a viscoelastic damping strip to a shunted piezoelectric transducer under steady-
state response. A diagram of the semi-active ABHs is shown in Figure 1.11. The thick-
ness of the viscoelastic damping layer and the external resistor connected to the piezo-
electric transducer have both been varied [56]. It has been concluded that the addition
of a shunted piezoelectric transducer slightly improves the damping performance of
the ABH compared to a passive damping layer and, in addition, the external resistor
can be tuned to maximise damping over a particular frequency band. Increasing the
number of ABHs in the beam has also been shown to provide more damping. However,
the addition of shunted piezoelectric transducers did not significantly improve damp-
ing at lower frequencies, particularly below the cut-on frequency of the ABH, where
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FIGURE 1.11: ABHs with viscoelastic tape attached and ABHs with piezoelectric
transducers and external resistors attached [56].

vibration control is still limited. It has also been found that the operating bandwidth
of the piezoelectric transducer system is extended due to the wavenumber sweep in
the ABH. The wavenumber sweep that occurs along the ABH taper means that waves
entering the taper would match the most effective absorbing frequency of the trans-
ducer at some point along the taper. This is also the mechanism behind the the use of
ABHs for energy harvesting, which is not covered in this literature review. The use of
shunted piezoelectric transducers in place of viscoelastic damping material has been
studied experimentally in [57], where both the steady state and transient performance
were tested.

1.2 Summary and Outlook

The literature review presented in this chapter covers a broad range of investigations
into different passive ABH designs. It is clear from this review that although there
are a lot of innovative ABH designs, their performance is generally limited at lower
frequencies where the performance of the ABH is dependent on the local taper modes
[4, 27, 29, 43, 45, 56]; this will be further demonstrated in Chapter 2. It has also been
highlighted in this literature review that the addition of piezoelectric patches to ABHs
can been used for both energy harvesting and semi-active damping and this offers a
potentially enhanced performance, however, fully-active control strategies have not
yet been investigated.

Active vibration control (AVC) is a well established method of control that can be used
to reduce the vibration of a mechanical system by modification of the system’s struc-
tural response [1]. AVC is commonly implemented when equivalent passive solutions
would exceed limitations on the mass or size of the structure, making it a lightweight
and compact control solution. It can sometimes be problematic to implement AVC at
higher frequencies due to the spatial matching that is required between the primary
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and secondary sources, which is easier achieve when the wavelength is longer. There-
fore, AVC can be considered a logical and lightweight solution to the low frequency
limitations of ABHs and the two damping strategies, ABHs and AVC, complement
each other very well.

1.3 Thesis Structure and Objectives

The objective of the work presented in this thesis is to overcome some of the perfor-
mance limitations of ABHs through the design and integration of active control tech-
nologies. Initially, an investigation has been carried out to determine how three key
design parameters can be used to design an ABH with practical dimensions. Piezoelec-
tric components have then been integrated into the ABH to address the performance
limitations of the passive system that were identified in the parametric study. The per-
formance of an active ABH (AABH), including its energy and computational require-
ments, has then been investigated to determine whether the AABH provides advan-
tages over a conventional active control design. The structure of this thesis is organised
as follows.

Chapter 2

The objective of the work presented in this chapter is to investigate the design and per-
formance of a passive ABH beam termination. A finite element (FE) model has been
used to perform a parametric study where the tip height, taper length and power law of
the ABH termination have been varied over practical ranges. The reflection coefficient
has then been calculated for each configuration and frequency bands of low reflection
have been observed, which are dependent on the design parameters. A modal analysis
has also been carried out using the FE model to explain the spectral variation in the
reflection coefficient. The magnitude of the local minima within the bands of low re-
flection have been seen to be dependent on the design, which lead to an investigation
into the tradeoff between the design parameters. This investigation shows how the
power law and tip height could be selected to minimise the broadband reflection from
an ABH. An experimental validation has then been performed.

Chapter 3

In this chapter, the ABH designed in Chapter 2 has been taken and active control tech-
nologies have been integrated into the ABH to investigate the benefits of an AABH
termination compared to a more conventional constant thickness active termination. A
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wave-based feedforward active control strategy is presented that can be used to con-
trol the reflected wave, and hence the reflection coefficient of the AABH. Offline active
control has been performed to assess the performance of the AABH in terms of the
reflection coefficient and also in terms of the energy and computational requirements.
The wave-based control strategy has also been implemented using a constant thickness
active termination so that a comparison can be made. The AABH termination has been
shown to provide more attenuation than the constant thickness active termination, re-
quires a shorter filter to accurately model the plant response and takes less energy to
implement. However, it has also been shown that this control strategy produces a sig-
nificant enhancement of the vibration in the AABH that is not present in the constant
thickness active termination. An experimental validation is performed for each config-
uration.

Chapter 4

To further investigate the relationship between the reflection from the AABH taper
and the local vibration in the AABH, the work in this chapter presents the application
of a tonal remote damping feedback control strategy using an AABH. A selection of
feedback compensators have been calculated using a geometric approach that allows
a local feedback loop to be used to control both the local taper vibration and the re-
flected wave component simultaneously. The compensators have been implemented
in the frequency domain and the results provide insight into the connection between
the vibration of the taper and the reflection from the AABH. It has also been shown
that a compensator can be calculated with constraints on enhancing either the reflected
wave component or the local taper vibration. A time domain implementation is then
presented to back up the frequency domain results.

Chapter 5

Using the findings of the previous chapters, the work presented in this chapter extends
the AABH concept to multiple AABHs embedded into a plate and a comparison is pre-
sented between the plate with embedded AABHs and a constant thickness plate with
active components. The plates have been individually mounted on a box and clamped
on all sides. Embedding AABHs has been shown to reduce the overall mass of the plate
and additionally dampens vibration above 2 kHz. A multichannel feedforward active
control strategy is then presented that can be used to control the vibration of the plate
below 2 kHz. Offline active control has been performed on each plate and it has been
shown that embedding AABHs reduces the energy required for control. However, the
plant modelling requirements and the attenuation achieved from control is similar for
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both plates, which has been attributed to the high level of damping caused by clamp-
ing the plates. Up to 10 kHz, it is shown that embedding AABHs provides significant
damping over the full frequency range, whereas the constant thickness active plate is
only effective over the actively controlled bandwidth.

Chapter 6

The final chapter in this thesis gives a summary of the research presented in the previ-
ous chapters, including a contextualisation within the current field of ABHs. The key
results and conclusions from each of the preceding chapters have been drawn together
and their significance within the field of ABHs has been discussed. Finally, some sug-
gestions are provided for further research in the field of AABHs.

1.4 Contributions

The main contributions of this thesis are listed below.

1. A detailed parametric study of an ABH termination on a beam, including a modal
analysis, which provides new insight into how the tip height and power law can
be selected to minimise narrow and broadband reflection [58, 59].

2. The proposal of the active acoustic black hole (AABH) concept, where an actuator
is attached to the ABH to provide both passive damping and active control [60].
Through the implementation of a wave-based feedforward control strategy, it is
shown that an AABH beam termination outperforms a constant thickness active
beam termination in terms of reflection control, electrical power requirements
and computational demand [61–63].

3. The implementation of a remote damping feedback active control strategy using
an AABH beam termination that provides further insight into the relationship
between controlling reflection, thus improving the performance, and controlling
taper vibration, thus reducing the stresses that cause structural fatigue [64].

4. Extension of the AABH concept to a plate, encompassing multiple AABHs and
thus a multichannel system. It is shown that coupling the passive damping of
the ABHs at higher frequencies with active control at lower frequencies provides
a higher level of damping over a significantly wider bandwidth than achievable
via a constant thickness plate with active elements and requires less electrical
power to implement.
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Chapter 2

A Parametric Study of a Passive
Acoustic Black Hole Termination

Previously, in the introductory chapter of this thesis, it has been shown that the perfor-
mance of an ABH can be modified by varying the taper length, tip height and power
law [4]. However, if using an analytical model, the bandwidth over which the first or-
der WKB approximation is valid has been shown to quickly decrease as the power law
is increased [19]. As a result, it has been shown that, whilst the taper length should
be maximised and the tip height minimised, the power law can be selected to reach an
optimal tradeoff between performance and WKB validity [21]. Further insight into the
performance of ABHs with higher power law profiles has been shown in [22], where a
higher order WKB model has been used to show how tapers with higher power laws,
which were penalised in [21] due to violation of the smoothness criterion, physically re-
sult in significant reflection from the junction between the uniform section of the beam
and the taper due to the rapid impedance change at this point [20, 22]. Similar results
have been shown using finite element models, and investigations have focussed on ei-
ther a specific design parameter [28, 65], or considered only a small number of design
cases over frequency or a parameter sweep at a specific frequency [29, 56, 66, 67]. Flex-
ural waves have been solely considered in the majority of the literature because they
generally dominate the structural response of beams. Reducing the energy of the flex-
ural waves is, therefore, desirable for effective noise control [15, 16, 68] and this study
will continue to focus solely on flexural waves.

To provide more detailed insight in to the effect that varying the geometrical design
parameters has on the performance of an ABH termination, this chapter contains an
extended parametric design study, which considers the influence of the tip height, ta-
per length and power law on the ABH reflection coefficient over a broad frequency
range. The results from this study are complemented by a corresponding modal anal-
ysis, which builds on previous work that has demonstrated the link between the ABH
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performance and the modal density [29]. This work also builds upon the link between
the bands of low reflection and the local modes of the ABH cell [69], by highlighting in
detail how the local modes of the ABH are influenced by the geometrical design param-
eters. Furthermore, using the data from the full parametric design sweep, it is shown
how ABHs can be designed for narrowband performance. In particular, it is shown that
there are local minima in the bands of low reflection that are dependant on both the de-
sign parameter and frequency. The results from the investigations into each individual
design parameter have fed into an investigation into how the geometrical parameters
should be selected for optimal broadband performance, which is particularly useful
when selecting the optimum power law for an ABH design with practical constraints
on the taper length and tip height, but also shows new insight into the selection of the
tip height.

A parametric study has been chosen for this investigation rather than a direct opti-
misation procedure as, for example, highlighted in [66], to enable the intricate effects
that each design parameter has on the reflection coefficient of the ABH over a broad
frequency and parameter range to be examined. Although this parametric study may
ultimately be used to assess the optimal set of design parameters, it is not restricted to
a specific optimisation cost function and, therefore, is able to provide broader insight.
A Finite Element (FE) model has been used to carry out this study, rather than a higher
order analytical model, because it could be easily extended for future investigations.
Many practical structures can be modelled using FE. A computer aided design is first
created and then material properties and pre-built physics packages can be applied to
the structure. The presented parametric study considers an ABH termination on one
end of a beam, as shown in Figure 2.1.

The structure of this chapter is as follows. Initially, the geometry and physical proper-
ties of the modelled beam with an ABH termination are presented in Section 2.1 and
followed by a discussion of the meshing procedure in Section 2.1.1. A wave decompo-
sition method is then presented in Section 2.2, which outlines how the generated data
can be used to calculate the reflection coefficient of the modelled ABH termination.
Section 2.3 presents the results from the parametric study for each individual design
parameter and this section ends with an investigation into the performance tradeoffs
that arise between the design parameters. The results are accompanied by a discussion
about optimal design when one or more of the parameters are limited, for example due
to practical design constraints. Section 2.4.2 presents an experimental validation of the
simulation results and finally, Section 2.5 presents the conclusions from this investiga-
tion and summarises the key findings.
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2.1 Model Description

The FE model presented in this section has been implemented using COMSOL Mul-
tiphysics. Timoshenko beam theory and the beam physics module have been used,
which neglects torsional and compressional waves. In this physics module, the beam
and taper can be defined as a 2D cross-section and are given a finite width. The model
can then be solved for a one-dimensional flexural wave and the reflection coefficient of
the ABH termination can be calculated. A 3D model was also implemented to validate
the accuracy of the 1D model over the considered frequency range, however, due to the
high computational requirements the 3D model was not used for the full parametric
study. Although modelling an ABH in this way neglects torsional modes and flexural
modes across the width of the beam, it allows a comprehensive parametric study to be
carried out within practical computational limitations. One-dimensional models have
been successfully utilised in the study of ABHs in work such as [20, 69]. A diagram of
the model geometry is shown in Figure 2.1 and the range of each parameter studied is
detailed in Table 2.1. In this parametric study, the geometry of the beam, which has the
ABH termination on one end, has been kept constant. That is, the beam height, width
and length defined in Table 2.1 do not change throughout this investigation. The geo-
metrical properties of the ABH termination (excluding its width) are, however, varied
over practical ranges, as also detailed in Table 2.1. The sampling resolution of each of
the ABH parameters is also included. Although a variety of taper profiles have been
investigated in the literature [4,22], the differences in performance are relatively small.
Therefore, in this study, a power law profile has been assumed and the height function
in this case can be defined as

h(x) = ε

(
xmax − x

xmax

)µ

+ htip, (2.1)

where ε = hbeam − htip is a scaling factor, x is the position along the taper, µ is the power
law of the taper that defines the gradient and htip is the tip height at the end of the taper.

TABLE 2.1: The parameters used in the model geometry.

Parameter Symbol Value / Range of Values Sampling Resolution
Beam height hbeam 10 mm n/a
Beam length lbeam 300 mm n/a

Beam/ABH width b 40 mm n/a
ABH tip height htip 0.01 mm – 3 mm 6.67×10−3 mm

ABH taper length labh 10 mm – 300 mm 2 mm
ABH power law µ 1 – 10 0.1
Excitation force F 1N n/a

Sensor separation ∆x 20 mm n/a
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FIGURE 2.1: A diagram of the modelled beam with an ABH termination. The locations
of the force excitation and sensors are also indicated.

In addition to the geometrical parameters, Figure 2.1 also shows the position of two
sensors on the beam, separated by ∆x, and a point force, which corresponds to a sym-
metrically located excitation with respect the width of the beam. The sensors were po-
sitioned midway along the beam section for the extraction of the reflection coefficient,
which will be discussed in Section 2.2. The length of the uniform beam was chosen
to be sufficient such that evanescent components could be neglected in the analysis,
as will be discussed in Section 2.2. The beam and ABH were both assumed to be con-
structed from aluminium alloy 6082-T6 and some hysteretic damping has been imple-
mented as an isotropic loss factor with a value of ηBeam = 0.0001, which is consistent
with other studies [41, 43, 66] and will also be cross-validated via experimental results
in Section 2.4.2. To model the additional damping layer required on the taper of the
practical ABH, further damping was included in the ABH by applying a separate, ad-
ditional, isotropic loss factor of ηABH = 0.2 and the additional mass of this damping
layer was modelled by an evenly distributed mass of 11.9 g along the length of the ta-
per. This damping, and the additional mass associated with it, were calculated to match
the damping layer used in the experimental implementation discussed in Section 2.4.
The addition of damping material to the ABH also changes the rigidity along the taper.
Although the rigidity change associated with this damping layer could be included in
the model by modifying, for example, the Young’s modulus of the taper, it was not
required in order to achieve a good match between the experimental and modelled re-
sults. The boundary conditions of all the edges were set to free and the initial state of
the ABH was set to stationary. A picture of the completed model from COMSOL can
be seen in Figure 2.2

2.1.1 Model Meshing and Convergence Study

Typically, a minimum of 6 finite elements should be used per wavelength when con-
structing an FE model [70]. However, in an ABH the wavelength varies along the length
of the tapered section and, therefore, some care must be paid to meshing the ABH. To
determine the specific meshing requirement for the ABH, a convergence study was
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(a)

(b)

FIGURE 2.2: Two pictures of the beam with an ABH termination in COMSOL. (a)
shows the input design and (b) shows the modelled geometry.

performed with the number of elements per wavelength ranging from 1 to 20. Edge el-
ements were used as required by the beam physics module in COMSOL and, to ensure
that the minimum number of elements per wavelength was realised at all points in the
ABH, the elements were linearly spaced and the mesh resolution was calculated from a
reference wavelength taken from the tip of the ABH, where the wavelength is shortest.
The wavelength in the tip of the ABH can be calculated by first recounting from Chap-
ter 1 the expression for the flexural wavenumber, which after setting h(x) = htip can be
written as

ktip =

(
12ρω2

Eh2
tip

) 1
4

, (2.2)

which rearranging for λtip gives

λtip =
2π

ktip
=

(
4Eh2

tipπ4

3ρω2

) 1
4

. (2.3)

FIGURE 2.3: The mean absolute displacement in the taper plotted against the number
of elements per wavelength at 10 kHz.
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To guarantee that the meshing procedure was sufficient for the full parameter sweep, a
mesh convergence study has been conducted for the longest taper (300 mm), smallest
tip height (0.01 mm) and a power law of µ = 10, which gives the largest variation in the
wavelength along the taper within the considered parameter range. To assess the con-
vergence, the model was solved at a frequency of 10 kHz, which is the upper frequency
of interest, for an increasing number of elements per wavelength. The mean absolute
displacement in the ABH was calculated by taking the sum of the absolute displace-
ments measured at each element in the taper and dividing by the number of elements
in the taper. The results from this study are shown in Figure 2.3 and, from these re-
sults, it can be seen that the mean absolute displacement per element has converged to
a constant value when there are approximately 10 or more elements per wavelength. A
convergence study was also carried out to ensure that a sufficient number of elements
were used to model the uniform beam section, which is constant over the various pa-
rameterisations of the ABH and 10 elements per wavelength were used. Therefore, 10
elements per wavelength have been used for both the beam mesh and the taper mesh
in the following parametric study.

FIGURE 2.4: The number of elements required to model a 70 mm taper with a power
law of 10 for each tip height increasing from 0.01 mm to 3 mm with 10 elements per

wavelength at a 10 kHz excitation frequency.

Based on the results of the convergence study, Figure 2.4 shows how the total number of
elements required to model the taper section varies with the tip height at the maximum
frequency of interest in the following study, which is 10 kHz. From this plot it can be
seen that the number of elements required rapidly decreases as the tip height increases.
In the beam section, a total of 32 elements were required at the upper frequency of
interest.
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2.2 Wave Decomposition in a Beam

Wave decomposition is the separation of a measured disturbance into the individual
wave components. Examples of wave decomposition can be found in the literature for
both acoustic systems [71], and structures such as beams [72, 73]. Wave decomposi-
tion has also been performed on a beam with an ABH termination in order to estimate
the reflection coefficient [27]. This section will present a wave decomposition method,
based on [27], which will be used to investigate the performance of the ABH and facil-
itate a comparison between different ABH designs.

In order to perform a wave decomposition, the number of sensors required is depen-
dant on the number of wave components that make up the disturbance. For example,
if there are positive and negative travelling near-field and far-field waves, four sensors
are required so that four simultaneous equations can be formed. These four equations
can be manipulated so that the amplitude and phase of each of the wave components
can be estimated. Although multiple wave components can be separated, solving the
simultaneous equations requires a matrix inversion, that can cause problems if the ma-
trix is ill-conditioned. This can occur if the sensor spacing is too small or close to a
half-wavelength. In addition, increasing the number of wave components considered
in the decomposition reduces the determinant of the matrix and these factors can result
in a matrix that is close to being singular (i.e. if its determinant is zero and the matrix
does not have an inverse) [1, 72]. It is, therefore, convenient to place the sensor array a
sufficient distance from any impedance changes or input forces, so that the contribution
from the near-field waves can be neglected. In this case, only two sensors are required
and the two simultaneous equations can be solved without singularity issues. Further
information about wave decomposition in the presence of a near-field, including the
limitations associated with solving the inverse problem, can be found in [72, 74, 75].
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FIGURE 2.5: Two sensors placed at x1 and x2 that are used to measure the velocity, ẇ,
at each respective point. The sensors are centred on a mid-point, xc, and are separated
by ∆x. The velocity measured at each sensor can be used to calculate φ− and φ+, the

positive and negative travelling propagating waves along the beam.

A diagram of the beam section of the model is shown in Figure 2.5 indicating the sens-
ing points and the two propagating waves. It has been assumed in the following inves-
tigation that the near-field contribution can be neglected once it has decayed to 10% of
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its original magnitude, i.e.
e−kl = 0.1, (2.4)

where l is the distance from the sensor array to any features, such as impedance changes,
that introduce near-field components and k is the flexural wavenumber. This percent-
age decay is consistent with previous studies [27] and corresponds to a 20 dB reduction
in the near-field wave components. To address the limits that this assumption imposes
on the location of the sensor array, the flexural wavenumber,

k =

(
12ρω2

Eh2
beam

) 1
4

, (2.5)

is first considered. Substituting Equation 2.5 into Equation 2.4 and rearranging gives
the low frequency limit as

fmin =
1
l2

(
Eh2

beam(ln(0.1))4

48ρπ2

) 1
2

. (2.6)

In addition, an upper frequency limit due to aliasing can be calculated by considering
the requirement that the distance between the two sensors must be less than half a
wavelength. An expression for the upper frequency limit can be derived expressing
the flexural wavenumber as

k =
2π

λ
, (2.7)

and equating this to the expression given in Equation 2.5. This leads to an expression
for the flexural wavelength, which can be written as

λ =
2π

k
=

(
4π4Eh2

beam
3ρω2

) 1
4

. (2.8)

Because the sensor separation should not exceed λ/2, ∆x can be substituted in place of
λ/2 and Equation 2.8 can be rearranged to express the upper frequency limit as

fmax =
1

∆2
x

(
Eh2π2

48ρ

) 1
2

. (2.9)

In the presented study, the sensor array was located at 140 mm from the excitation
force and 140 mm from the ABH boundary, so that l = 140 mm and the sensor spacing
was set to ∆x = 20 mm. These parameters give a low frequency limit of approximately
600 Hz and an upper frequency limit of approximately 57 kHz. However, this analysis
assumes that the structure behaves as a beam with one-dimensional wave propagation,
which will break down when the wavelength becomes comparable to either the width
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or height of the beam [27]. Equation 2.9 can, therefore, be revised as

fmax =
1

∆2

(
Eh2π2

48ρ

) 1
2

, (2.10)

where ∆ represents either the width of the beam, the height of the beam or the distance
between the sensors, whichever is the largest distance. In the following study, this
limit first occurs where the wavelength becomes comparable to the width of the beam,
which is 40 mm, and gives a practical upper frequency limit of approximately 14 kHz.
Therefore, to keep within these frequency limits, the following investigation analysis
has been limited to a frequency range of 600 Hz to 10 kHz.

Now that the limitations of the wave decomposition have been established, the equa-
tions to calculate the positive and negative travelling far-field waves can be derived.
Referring to Figure 2.5, each sensor measures the velocity at its location, which is the
superposition of the two propagating waves at each point, such that

ẇ(x1) = iω(φ+e−ikx1 + φ−eikx1) (2.11)

ẇ(x2) = iω(φ+e−ikx2 + φ−eikx2), (2.12)

where ẇ is the transverse velocity measured at x1 or x2 and φ+ and φ− are the complex
amplitudes of the positive and negative propagating waves respectively [1]. In order
to express the wave amplitudes in terms of the velocity measured at each sensor, x1

and x2 must first be expressed in terms of the point midway between the two sensors,
which will be referred to as xc. The distance between point xc and either sensor is thus
xc ± ∆x/2, and it follows that x1 = xc − ∆x/2 and x2 = xc + ∆x/2. Using these new
expressions, Equations 2.11 and 2.12 can be expanded into matrix form and written in
terms of each velocity sensor as[

ẇ(x1)

ẇ(x2)

]
= iω

[
e−ik(xc− ∆x

2 ) eik(xc− ∆x
2 )

e−ik(xc+
∆x
2 ) eik(xc+

∆x
2 )

] [
φ+

φ−

]
. (2.13)

By inverting the matrix of exponentials, Equation 2.13 can be re-arranged to express
the wave amplitudes in terms of the velocity measured at the two sensors as[

φ+

φ−

]
=

1
iω (eik∆x − e−ik∆x)

[
eik(xc+

∆x
2 ) −eik(xc− ∆x

2 )

−e−ik(xc+
∆x
2 ) e−ik(xc− ∆x

2 )

] [
ẇ(x1)

ẇ(x2)

]
. (2.14)

By using Euler’s identity, and arbitrarily setting xc = 0, the positive and negative prop-
agating wave amplitudes can then be calculated in terms of the velocity at each of the
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sensors as

φ+ =
−1

2ω sin(k∆x)

[
ẇ(x1)e

ik∆x
2 − ẇ(x2)e

−ik∆x
2

]
(2.15)

φ− =
−1

2ω sin(k∆x)

[
ẇ(x2)e

ik∆x
2 − ẇ(x1)e

−ik∆x
2

]
. (2.16)

The magnitude of the reflection coefficient can thus be calculated as

∣∣R∣∣ = ∣∣∣∣φ−φ+

∣∣∣∣ . (2.17)

This will be used in the following parametric study to investigate the tradeoffs in the
design of the ABH beam termination, as shown in Figure 2.1.

2.3 Finite Element Results

In this section, the results from the parametric study of an ABH beam termination are
presented. Specifically, the reflection coefficient is studied over a broad frequency range
when the tip height, taper length and power law are varied. The reflection coefficient
for each parameterisation has been calculated using the method presented in Section
2.2 over a frequency range of 600 Hz to 10 kHz, which is within the upper and lower
limits of validity of the wave decomposition method, as discussed in Section 2.2. In
addition, for each parameterisation, the local modes of the ABH have been calculated
by modelling the ABH in isolation and assuming a no-rotation boundary condition at
the junction between the beam and the ABH. The no-rotation boundary condition was
found to approximate the modal behaviour of the ABH coupled to the beam section
well because in the fully-coupled system, the rotational stiffness of the beam at the ABH
junction is much greater than the bending stiffness. The results from this investigation
into the different design parameters are presented in the following order. Firstly, the
effect that varying the tip height has on the reflection coefficient of the ABH is shown
over the frequency range of interest. Secondly, over the same frequency range, the
effect of varying the taper length is shown and finally, over the same frequency range,
the effect of varying the power law is shown. In each case, the mode shapes are shown
as an overlay at the corresponding modal frequencies.

2.3.1 The Effect of the Tip Height

Figure 2.6(a) shows a contour plot of the reflection coefficient plotted as a function of
frequency for a range of tip heights from 0.01 mm to 3 mm, which has been chosen
to cover practically realisable tip heights. The taper length has been fixed at 70 mm
and the power law set to µ = 4. The resolution of the change in the tip height was
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decreased iteratively until the results shown in Figure 2.6(a) converged. The tip height
was ultimately varied in steps of 6.67 µm, which corresponds to 1/5th of the minimum
flexural wavelength.

(a) (b)

FIGURE 2.6: (a) The reflection coefficient, shown on a colour scale of 0 to 1, plotted as
a function of frequency and tip height for an ABH with a taper length of 70 mm and a
power law of 4. The modal frequencies are indicated by the white dotted lines and the
first five mode shapes are shown. (b) The change in modal density averaged across

the considered bandwidth as a function of the tip height.

The results in Figure 2.6(a) show that as frequency increases from 600 Hz to 10 kHz,
there are varying bands of high and low reflection coefficient. At larger tip heights,
the spectral bands become wider in both bandwidth and spacing and, resultantly, there
are fewer bands of low reflection within the presented frequency range. Interestingly,
it is also clear that the minima in the spectral bands are lower in the mid-range of tip
heights presented and, therefore, if the ABH was being tuned for a narrowband control
problem, there may be a benefit to selecting a tip height that is greater than the mini-
mum manufacturable limit; this is distinct from the general ABH design approach. For
example, the performance at 7 kHz can be maximised by using a tip height of 0.7 mm.
Despite this potential for narrowband tuning, by decreasing the tip height the bands of
low reflection begin to overlap and the broadband performance tends to increase; this
broadband performance will be explored in more detail in Section 2.3.4.

In addition to the narrowband and broadband performance of the ABHs, it is inter-
esting to consider the low frequency performance limit, which can be determined by
evaluating the modes of the ABH. Therefore, to provide further insight into the physi-
cal behaviour of the ABH, the modes of the ABH cell have been calculated as described
in the introduction to Section 2.3. The variation in the frequency of the first 5 modes of
the ABH cell over tip height are shown by the white dotted lines in Figure 2.6(a) and
the corresponding mode shapes are shown for the first 5 modes. From these results it
can be seen that the frequencies at which the modes occur align well with the bands of
low reflection and that at low frequencies the ABH only achieves a low reflection coef-
ficient at frequencies very close to the first mode. It can also be seen from these results
that the modal density increases with a decrease in the tip height, which is consistent
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with [29] and Figure 2.6(b) shows the change in the modal density averaged across the
considered bandwidth as a function of the tip height. From this plot it can be seen
that the modal density increases exponentially for a decreasing tip height. The increase
in the modal density for smaller tip heights is due to higher order modes occurring
at lower frequencies and this can, in turn, be related to the increased reduction in the
wavelength over the length of the taper.

2.3.2 The Effect of the Taper Length

(a) (b)

FIGURE 2.7: (a) The reflection coefficient, shown on a colour scale of 0 to 1, plotted as
a function of frequency and taper length for an ABH with a tip height of 0.6 mm and a
power law of 4. The modal frequencies are indicated by the white dotted lines and the
first five mode shapes are shown. (b) The change in modal density averaged across

the considered bandwidth as a function of the taper length.

Figure 2.7(a) shows a contour plot of the reflection coefficient plotted as a function of
frequency for a range of taper lengths from 10 mm to 300 mm, which has been cho-
sen to represent practically realisable taper lengths. The tip height has been fixed at
0.6 mm and the power law set to µ = 4. As in the previous section, the resolution of the
change in the taper length was decreased iteratively until the results shown in Figure
2.7(a) converged. The taper length was ultimately varied in steps of 2 mm, which cor-
responds to 1/10th of the minimum flexural wavelength. The results in Figure 2.7(a)
show that, as frequency increases, the reflection coefficient of the ABH varies in bands,
similarly to Figure 2.6(a). For longer tapers, there are more bands of high and low re-
flection than for shorter tapers over the same bandwidth. As discussed in Section 2.2,
the low frequency limit of the ABH is dependent on the length of the taper and it can be
seen from the results in Figure 2.7(a) that the low frequency limit decreases as the taper
length is increased. For the considered power law (µ = 4) and tip height (htip = 0.6 mm),
when the taper is shorter than 26 mm, the broadband performance of the ABH is lim-
ited over the presented frequency range. As in Section 2.2, this can be related to the
length of the ABH and a 26 mm taper becomes comparable to the flexural wavelength
at a frequency of 10 kHz. At taper lengths below 26 mm it can be seen from Figure 2.7(a)
that a dip in the reflection coefficient only occurs over a narrow bandwidth around the
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first ABH mode, as discussed in the previous section. That said, considering the rela-
tively small amount of damping assumed in the presented results, it can be seen that
ABHs with longer tapers are very effective, especially at higher frequencies, where the
reflection coefficient is between around 0 and 0.2 over a large portion of the presented
bandwidth.

Once again, the first 5 modes of the ABH cell have been calculated over the range of
taper lengths and their frequencies are indicated by the white dotted lines in Figure
2.7(a). From these results, it can again be seen that the modal frequencies correspond to
the bands of low reflection. In addition, it can be seen that the modal density increases
as the taper length increases and this is clearly shown by Figure 2.7(b), which shows
the average modal density as a function of the taper length. From this plot, it can be
seen that the average modal density increases linearly with the taper length, resulting
in improved performance for longer tapers.

2.3.3 The Effect of the Power Law

The final geometrical parameter that can be tuned when designing an ABH for a beam
application is the power law. In fact, in many applications this may be the main de-
sign parameter due to restrictions on tip height, due to manufacturing and structural
integrity requirements, and taper length, due to the space available for the ABH. Figure
2.8(a) shows a contour plot of the reflection coefficient plotted as a function of frequency
for a range of power laws from 1 to 10. The taper length has been fixed at 70 mm and
the tip height has been set to 0.6 mm. In this case, the power law has been varied in
steps of 0.1, which has been determined iteratively, as in the previous sections.

(a) (b)

FIGURE 2.8: (a) The reflection coefficient, shown on a colour scale of 0 to 1, plotted as
a function of frequency and power law for an ABH with a tip height of 0.6 mm and a
taper length of 70 mm. The modal frequencies are indicated by the white dotted lines
and the first five mode shapes are shown. (b) The change in modal density averaged

across the considered bandwidth as a function of the power law.

From the results presented in Figure 2.8(a) it can be seen that the spectral bands of high
and low reflection, observed previously, also vary with the taper power law. At higher
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frequencies, on average, the reflection coefficient is lower for all power laws and this is
consistent with the previous results and literature. Figure 2.8(a) once again shows the
alignment between the modal frequencies of the ABH and the bands of low reflection
for the range of power laws examined. A higher power law changes the mass distribu-
tion of the taper and can be seen to lower the modal frequencies and thus increase the
modal density over the presented frequency range. This is also shown by the average
modal density versus power law, which is shown in Figure 2.8(b). From this plot it can
be seen that the modal density increases exponentially with the power law. In addition
to the changes in the modal frequencies, it can be seen from the results shown in Fig-
ure 2.8(a) that for power laws less than around 5, the minima in the spectral bands are
lower than for higher power laws. For example, in the band corresponding to the third
mode, the reflection coefficient is lowest for a power law between 3 and 5. There thus
exists an optimal power law, which reaches a tradeoff between the large impedance
change between the beam and the taper at higher power laws, and the limited length
of the taper over which the wave speed is relatively slow at lower power laws. That
is, the reflection at higher power laws becomes dominated by the component reflected
from the junction to the ABH rather than from the ABH itself, as demonstrated in [22],
and it can be seen from the results in Figure 2.8(a) that this is a frequency dependent
effect.

Based on the above discussion and the results in Figure 2.8(a), it is evident that there
is an optimum power law that can be used to attenuate a particular frequency. For
example, if attenuation is required at 7 kHz and the ABH has been constrained to a
length of 70 mm and a tip height of 0.6 mm, the optimum power law would be 3.3.
This demonstrates that the power law can be used to tune the behaviour of an ABH
when the other geometrical design parameters, namely the length and tip height, are
constrained due to practical restrictions.

In the previous sections, the eigenfrequencies corresponding to the local ABH modes
are complex and the imaginary part of each eigenfrequency is approximately 10 times
smaller than the real part, representing a damping ratio of approximately 0.1. The real
part of the eigenfrequencies has been shown to align well with the bands of low reflec-
tion and the mode shape has also been shown for each of these frequencies. Although
it hasn’t been explored here, the bands of low reflection have been linked to the poles
and zeros of the complex eigenvalues [76]. The poles have been shown to correspond
to the local ABH modes whilst the zeros have been shown to correspond to destructive
interference phenomena [76]. It has also been shown in [76] that when the complex
reflection coefficient is plotted, the zeros are shifted towards the real axis when a loss
factor is present in the ABH. Critical coupling between the beam and the ABH occurs
when sufficient loss is present in the ABH, such that the zeros lie on the real axis. At fre-
quencies where this arises, the impedance is matched between the beam and the ABH,
leading to significant absorption of the incident wave [76]. Further in-depth analyses
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of the relation between the complex eigenfrequencies and the local modes of the ABH
taper can be found in [76].

2.3.4 Parameter Selection for Optimal Design

It has been shown in the previous sections that the geometrical parameters of an ABH
can be tuned to achieve a change in its performance characteristics. In particular, it has
been discussed how the parameters can be tuned to optimise the ABH for performance
at a single frequency or over a narrow band. However, the ABH design parameters
could also be tuned to minimise the reflection over a broadband frequency range and
in this case the optimal parameters will depend on both the bandwidth of interest and
the constraints due to the application. In this section, the potential design tradeoffs
are considered for the case when the maximum broadband performance of the ABH is
required and the optimal design parameters will be evaluated. The broadband perfor-
mance has been assessed over a frequency range of 600 Hz – 10kHz by calculating the
average reflection coefficient for each combination of design parameters, and the mini-
mum broadband reflection coefficient over the parameter space has been evaluated.

FIGURE 2.9: The variation in the broadband average reflection coefficient with both
the tip height and taper length of an ABH with a power law of 4. The reflection co-
efficient has been averaged over a broadband frequency range (600 Hz – 10 kHz) and
is shown on a colour scale of 0 to 1. The optimum tip height is shown by the dotted

white line.

In the first instance, Figure 2.9 shows how the broadband average reflection coefficient
varies with both taper length and tip height for an ABH with a power law of 4. From
these results it can be seen that increasing the taper length lowers the broadband aver-
age reflection coefficient for this power law. The optimal configuration is thus relatively
trivial in this case, essentially requiring the longest taper length achievable. That said,
for each taper length there is an optimum tip height and it is, therefore, insightful to
discuss the behaviour further. For the parameter ranges examined, it is clear that the
optimum tip height, which minimises the broadband reflection coefficient for a specific



34 Chapter 2. A Parametric Study of a Passive Acoustic Black Hole Termination

taper length, varies with taper length. This is shown by the dotted white line in Fig-
ure 2.9 and is generally lower for longer taper lengths. This is somewhat distinct from
current ABH design strategies, which specify that reducing the tip height improves the
performance of the ABH. This is because, as shown in Section 2.3 for a power law of 4,
that although a small tip height gives a higher modal density, the minima in the bands
of low reflection are low enough to shift the minimum in the broadband average up to
the mid-range tip heights. This may explain the lower optimum tip height at longer
taper lengths because, as shown in Section 2.3, increasing the taper length reduces the
reflection coefficient at all frequencies and would therefore reduce the difference be-
tween the minima in the bands of low reflection in Section 2.3 and the reflection coef-
ficient when the modal density is high. It should be noted then that the optimum tip
height for minimising the broadband reflection coefficient may not be suitable for all
broadband vibrational problems as there may be cases where the problematic frequen-
cies do not align with the bands of low reflection.

FIGURE 2.10: The variation in the broadband average reflection coefficient with both
the power law of the taper and the taper length for an ABH with a tip height of 0.6 mm.
The broadband reflection coefficient is shown on a colour scale from 0 to 1. The opti-

mum power law is shown by the dotted white line.

Figure 2.10 shows how the broadband average reflection coefficient varies with both the
power law of the ABH and the length of the taper. For a fixed power law, the results
show that increasing the length of the taper decreases the broadband average reflection
coefficient. As shown in Section 2.3, increasing the length of the taper increases the
modal density and, therefore, increases the attenuation provided by the ABH. A more
interesting observation from the results presented in Figure 2.10 is, however, that at
each taper length there is an optimum power law that can be used to achieve the low-
est broadband reflection and this power law has been indicated by the dotted white
line. From the indicated optimal results shown in Figure 2.10, it can be seen that the
optimum power law varies with taper length. In section 2.3, it was shown that increas-
ing the power law results in an increase in the modal density, but also increases the
reflection from the junction between the beam and the ABH. This trade-off differs for
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each taper length, due to the corresponding variation in the modal density as discussed
in Section 2.3. Specifically, for a long taper with a high modal density, a lower power
law is used to limit the impedance change and, therefore, reflection at the junction.
Whereas for a shorter taper, with a relatively low modal density, a higher power law
provides the optimal trade-off between reflection from the junction and modal density.
This trend can be seen from the results presented in Figure 2.10. It is also interesting
to note that for taper lengths greater than about 100 mm, the optimum power law is
relatively constant with a value between 2 and 3. In summary, the results in Figure
2.10 show that the power law of an ABH can be optimised for a specific taper length
to achieve the minimum broadband reflection coefficient. If, in practice, the length of
the ABH taper was constrained by the intended application, the power law of the ABH
could be optimally tuned according to the data shown in Figure 2.10.

FIGURE 2.11: The variation in the broadband average reflection coefficient with both
the power law of the taper and the tip height of an ABH with a taper length of 70 mm.
The broadband reflection coefficient is shown on a colour scale from 0 to 1. The opti-

mum power law is shown by a dotted white line.

In addition to considering how the broadband performance varies with both power
law and taper length, it is interesting to consider the variation with power law and tip
height and this is shown in Figure 2.11. The optimum power law, which minimises
the broadband reflection coefficient for each tip height, is shown by the dotted white
line. From these results it can be seen that the optimum power law is greater for larger
tip heights and this can be related to a shift in the trade-off between modal density and
reflection from the junction. That is, when the modal density is limited by the tip height,
the benefit of increasing the modal density by using a higher power law outweighs the
relative change in the reflection from the junction to the ABH. For smaller tip heights,
this balance between the reflection from the junction and the modal density occurs at a
lower power law.

The results presented in this section have been calculated using a damping loss fac-
tor of ηABH = 0.2, so that they are consistent with the previous results presented over
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frequency. However, if the damping were to be modified the same characteristic be-
haviour would be expected. Only a small amount of damping is required to achieve the
low reflection that occurs when a local taper mode is excited. Therefore, as long as there
is damping present, modifying the loss factor of this damping will predominantly affect
the frequencies outside of the bands of low reflection. Over frequency, increasing the
loss factor will decrease the maxima of the reflection coefficient, bringing them closer
to the minima. This effect will be more substantial at higher frequencies, where the
shorter wavelengths are more easily damped. There will be, therefore, a point where
the damping is high enough that the characteristic behaviour of the ABH is lost above a
particular frequency. When the broadband reflection coefficient is calculated, this effect
will cause the value of the reflection coefficient to decrease and will reduce the clarity
of the optimum configuration, however it will not completely remove the presence of
an optimum configuration.

2.4 Experimental Validation

In this section, the reflection coefficient of a practical ABH will be experimentally cal-
culated and presented alongside the experimentally identified modes. These results
will be assessed to validate the physical insights provided by the simulation-based
study. This experimental study will demonstrate that the practical ABH behaves with
the characteristics that were predicted in the simulation study presented in Section 2.3.

2.4.1 Experimental Setup

An ABH on a beam was cut from an aluminium plate, alloy T6, using a water jet and
the dimensions are shown in Table 2.2. The tolerance for each parameter is also given
in Table 2.2. In most cases, the tolerance is small compared to the value of the parame-
ter and so is not expected to significantly affect the experimental results. However, the
tolerance for the power law is 1/10th of its specified value and the tolerance for the tip
height is 1/5th of its specified value. By referring to Sections 2.3.1 and 2.3.3, it can be
seen that this variation will change the modal frequencies of the ABH, particularly for
higher order modes. As a result, the bands of low reflection can vary and so care must
be taken when manufacturing ABHs for narrowband applications. The manufactured
beam with the ABH termination is shown in Figure 2.12, with and without the addi-
tional damping applied to the taper. The damping that was used in this experiment
was ‘Yellow Plastic Compound’, manufactured by WT Henley [77]. The compound is
easy to mould and was attached to the aluminium surface without requiring additional
adhesive. The structure was then mounted, via a force gauge, onto a large shaker as
shown in Figure 2.13. The shaker was driven with white noise, using a sample time of
41.7 µs (corresponding to a Nyquist frequency of 12 kHz).
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TABLE 2.2: The dimensions of the manufactured ABH on a beam.

Parameter Value
Beam height 10 mm ± 0.1 mm
Beam length 300 mm ± 0.1 mm
Beam width 40 mm ± 0.1 mm

ABH tip height 0.5 mm ± 0.1 mm
ABH taper length 70 mm ± 0.1 mm

ABH width 40 mm ± 0.1 mm
ABH power law 4 ± 0.1
Damping mass 12 g ± 0.5 g

FIGURE 2.12: A picture of the ABH that was used in the experimental study, with and
without damping.
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FIGURE 2.13: A diagram (a) and picture (b) of the experimental setup used.
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The resulting vibration of the structure was measured at intervals of 5 mm along the
length of the beam and the taper sections using a Polytec PDV–100 laser vibrometer
mounted on a tripod 210 mm above the ABH. Each measurement was taken for a du-
ration of 60 s to allow significant averaging to achieve good coherence. 5 mm inter-
vals between measurement points were chosen along the length of the beam and the
taper sections so that the modes of the system could be analysed. The reflection coef-
ficient was then calculated using the wave decomposition method described in section
2.2. Similarly to the FE model, a measurement separation of 20 mm was used and
each measurement location was at least 140 mm from either the shaker or the ABH
junction. Using the same calculation method described in Section 2.2, the lower fre-
quency measurement limit was ∼ 600 Hz and the upper frequency measurement limit
was ∼ 14 kHz. The upper frequency limit has been reduced to 10 kHz due to the anti-
aliasing filters used.

2.4.2 Experimental Results

FIGURE 2.14: The reflection coefficient calculated using the experimentally measured
velocities from an ABH on a 300 mm beam. The dimensions of the beam and ABH
are specified in Table 2.2 and the measured mode shapes at each minima have been
plotted. The grey shaded area is the frequency range that the wave decomposition
is not necessarily valid. In addition, the reflection coefficient calculated using the FE

model is shown.

Figure 2.14 shows the measured reflection coefficient over frequency along with the
measured mode shapes of the ABH cell and their frequencies. Minima in the reflection
coefficient occur at 1.3 kHz, 3.35 kHz, 6.01 kHz and 9.45 kHz. The modes of the ABH
cell were extracted by noting the peaks in the frequency response of the taper and ex-
amining the amplitude of the displacement along the taper at these frequencies. These
modes have been numbered in Figure 2.14. The first five modal frequencies match the
frequencies of the bands of low reflection, with the first mode occurring at approxi-
mately 315 Hz. The first mode falls outside of the valid frequency range of the wave
decomposition and therefore the reflection coefficient measured at this frequency is not
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valid, but is still included for reference. Figure 2.14 also shows FE results for the same
ABH design parameters, where the mass and loss factor of the yellow damping mate-
rial have been matched in the model as discussed in Section 2.1. Although there are
slight deviations, the FE results match the experimental results well and validate the
insight gained from the model based investigation.

2.5 Summary

The work presented in this chapter contains an extended study of how the controllable
geometrical parameters of an ABH influence the reflection coefficient and the broad-
band average reflection coefficient of a beam. A FE model has been developed and
utilised to carry out a parametric design study. In the first instance, the variation in
the reflection coefficient over frequency has been investigated as either the tip height,
taper length or power law of the ABH are modified. These results have shown that
the reflection coefficient exhibits bands of low reflection and, through a modal analy-
sis, these bands have been linked to the modes of the ABH cell. Although the bands
of low reflection have been previously related to the modes of the ABH cell [69], this
study has demonstrated, over a broad frequency range with a high level of resolution,
that as each of the ABH design parameters are varied, the modes of a damped ABH
change in frequency and the corresponding bands of low reflection change in both fre-
quency and amplitude. Thus, the finer details of how each design parameter affects
the modal frequencies, modal density and reflection coefficient of an ABH have been
shown. Specifically, it has been shown that not only are there bands of low reflection,
but that there are optimal minima within these bands for certain parameter values.
These minima are achieved by selecting the power law and tip height to reach a trade-
off between increasing the modal density of the ABH and reducing the reflection from
the junction to the ABH. It can therefore be seen that, contrary to previous studies,
to achieve optimal performance the ABH design should not necessarily maximise the
modal density, which is achieved by using a high power-law and small tip-height.

The results from the initial parametric investigation into each design parameter have
also fed into an investigation into the variation in the broadband averaged reflection
coefficient when two of the three geometrical design parameters are varied simulta-
neously. This investigation has initially shown that the broadband average reflection
coefficient is minimised by maximising the taper length as expected. However, con-
trary to current ABH design strategies, the tip height was shown to have an optimum
value for a specific ABH parameterisation. In practical applications, the tip height and
taper length are likely to be constrained and, therefore, a series of results have also been
presented that demonstrate how the power law should be optimally tuned depending
on other design constraints. In overview, it has been shown that the optimal power
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law decreases with the taper length and increases with the tip height and this obser-
vation has been linked to reaching a trade-off between maximising the modal density
and limiting the reflection from the junction between the beam and the taper.

In order to validate the findings of the FE model, an experimental case study of an ABH
termination on one end of a beam has been performed using one set of design param-
eters. A thin layer of damping material was applied to the taper to enhance the per-
formance and the structure was driven with broadband white noise as a disturbance.
Two sensors were used to decompose the wave components and calculate the reflec-
tion coefficient. In addition, the local mode shapes of the ABH cell have been identified
by measuring the displacement along the taper at each frequency and the frequencies
of these modes have been determined from the peaks in the frequency response of the
taper. It has been shown that the bands of low reflection are present in the damped
ABH, and that these bands of low reflection align with the experimentally identified
ABH modes. These results support the numerical analysis presented and thus serve to
validate the findings from the FE model.

In addition to the design study, the results from this parametric investigation also high-
light the limited performance of passively damped ABHs at low frequencies, especially
when the dimensions of the ABH are constrained in some way. It has been shown that
outside of the narrow bands of low reflection, located at the modal frequencies, the re-
flection remains high, which may be problematic if there are constraints on the design
of the ABH or if there are multiple tonal disturbances. The following chapters will use
the manufactured ABH from this investigation and build upon the passive damping
of the ABH by integrating active components into the taper in order to improve the
performance. The following chapter describes the realisation of an AABH and an in-
vestigation into the implementation of a feedforward wave-based control strategy is
presented, which is used to actively control the reflection coefficient of the ABH termi-
nation.
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Chapter 3

Feedforward Control using an
Acoustic Black Hole Termination

In Chapter 2, and in a variety of the literature [20,22,28,29,47,65–67], it has been shown
that an ABH can be designed to minimise reflection passively over a narrow or broad
band of frequencies by tuning the taper length, tip height and taper gradient. It has also
been shown that these parameters are interdependent and they can thus be optimised
when considering different practical limits due to manufacturing or the intended ap-
plication [19,21,59]. In addition to the investigations into passive tuning, a semi-active
method of tuning the damping layer was proposed in [55], in which a thermally con-
trolled material was utilised. Although it was an effective tuning method, it required
accurate temperature adjustment which meant that the structure had to be placed in
a thermal chamber, therefore limiting the practicality of this tuning method. Another
semi-active method for tuning the damping layer has been presented in [56], where
the standard viscoelastic damping layer has been replaced by a shunted piezoelectric
transducer. In this investigation, the external resistor was changed to alter the damping
properties of the piezoelectric transducer.

When implemented passively, or semi-actively, ABHs have been found to have a low
frequency cut-on limit and the damping performance is poor below this frequency [43].
The low frequency cut-on limit can be approximated as the frequency at which the
flexural wavelength becomes comparable to the taper length [45–47]. Although one
solution to lowering the cut-on frequency limit is to increase the taper length, this is
not always possible in practical applications where space is limited. One possible so-
lution to overcome a limitation on space has been proposed where a longer ABH can
be curled up to form a spiral [30, 31]. However, a design such as this is more complex
to manufacture and the increased height may make it difficult to integrate into existing
structures. An alternative approach to improve the low frequency performance of an
ABH is to integrate Active Vibration Control (AVC) technology into the taper. AVC is
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an effective solution for the control of structural vibration when there are restrictions
on the size and weight of the control treatment [1], and thus presents a complimentary
solution to the passive ABH.

This chapter contains a detailed investigation into the realisation of an Active ABH
(AABH) when used as a termination on one end of a beam. A feedforward wave-
based control strategy that has previously been used in the realisation of an active ane-
choic beam termination is adopted from the literature [73, 75, 78]. Section 3.1 contains
a description of this control strategy in the context of an AABH including wave de-
composition, controller formulation and controller limitations. Section 3.2 presents the
experimental setup used in this investigation, an investigation into the effect of plant
model accuracy, an investigation into the effect of control filter length and the offline
and real-time results from the wave-based control. To assess the performance of the
AABH, control is also performed on a beam with a constant thickness termination. The
chapter is then concluded with a summary of the investigation, which is presented in
Section 3.3.

3.1 Wave-Based Active Control

In this section, a wave based control strategy is presented where the objective is to
minimise the reflected wave, therefore reducing the reflection coefficient of the termi-
nation. This control strategy has been chosen, rather than, say, global control, because it
demonstrates the performance enhancements gained by integrating active components
whilst also defining the control performance in the same way that passive ABHs have
been assessed in a large amount of the literature, via the reflection coefficient.

3.1.1 Wave Decomposition in the Time Domain

It has previously been shown in Section 2.2 that, in the frequency domain, a distur-
bance can be decomposed into its individual wave components. This section will ini-
tially refresh how wave decomposition is performed in the frequency domain, using
acceleration rather than velocity, and then extend this to the time domain. It will be
assumed that the sensor array is positioned so that the near field waves can be consid-
ered negligible. This assumption can be made once the amplitude a near field wave
has decayed to 10 % of its original amplitude [27, 59], which can be calculated as a 20
dB reduction with respect to the original level. The limitations that this assumption
imposes on wave-based control have been previously discussed in Section 2.2 and will
be addressed for the AABH experimental setup in Section 3.2.1. In order to decompose
a far field disturbance into its positive and negative travelling wave components, two
sensors are required. Figure 3.1 shows two accelerometers on a beam, separated by ∆x
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FIGURE 3.1: Two accelerometers placed on a beam, separated by distance ∆x, which
can be used decompose the disturbance within the beam into two far field wave com-

ponents.

and centred at the point xc. In the frequency domain, the amplitude of the disturbance
measured at each accelerometer can be expressed as[

a1(ω)

a2(ω)

]
= −ω2

[
e−ik(xc− ∆x

2 ) eik(xc− ∆x
2 )

e−ik(xc+
∆x
2 ) eik(xc+

∆x
2 )

] [
φ+(ω)

φ−(ω)

]
, (3.1)

where k is the flexural wavenumber and ω is the angular frequency. Equation 3.1 can
be simplified to [

a1(ω)

a2(ω)

]
= −ω2

[
eik ∆x

2 e−ik ∆x
2

e−ik ∆x
2 eik ∆x

2

] [
φ+(ω)

φ−(ω)

]
(3.2)

if it is assumed that the arbitrary location xc = 0. The matrix containing exponentials in
Equation 3.2 can be inverted to obtain an expression for the positive and negative wave
amplitudes,[

φ+(ω)

φ−(ω)

]
= − 1

ω2 (eik∆x − e−ik∆x)

[
eik ∆x

2 −e−ik ∆x
2

−e−ik ∆x
2 eik ∆x

2

] [
a1(ω)

a2(ω)

]
. (3.3)

Equation 3.3 can be simplified to give an expression for the amplitude of each of the
individual wave components,

φ+(ω) = − eik ∆x
2

ω2 (eik∆x − e−ik∆x)
a1(ω) +

e−ik ∆x
2

ω2 (eik∆x − e−ik∆x)
a2(ω) (3.4)

φ−(ω) =
e−ik ∆x

2

ω2 (eik∆x − e−ik∆x)
a1(ω)− eik ∆x

2

ω2 (eik∆x − e−ik∆x)
a2(ω), (3.5)

which, using Euler’s formula, can be written as

φ+(ω) = h−(ω)a1(ω) + h+(ω)a2(ω) (3.6)

φ−(ω) = h+(ω)a1(ω) + h−(ω)a2(ω), (3.7)
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where

h−(ω) =
−i

4ω cos(k∆x/2)
− 1

4ω sin(k∆x/2)
(3.8)

h+(ω) =
−i

4ω cos(k∆x/2)
+

1
4ω sin(k∆x/2)

. (3.9)

To implement equation 3.7 in real-time, the two frequency responses, h−(ω) and h+(ω),
can be approximated using FIR filters [73, 78, 79], which can be achieved, for example,
by using the MATLAB function invfreqz. However, if this function is directly used to
approximate the frequency responses, the resulting impulse responses are non-causal.
To ensure causality, a small delay is added prior to calculating the filters by multiplying
the frequency responses by eiωns , where ns is a discrete number of samples [73,78]. The
effect that this delay has on the performance of the control system is minimal if the
propagation time between the accelerometers and the piezo is greater than ns [80]. The
resulting, causal, FIR filters will be referred to as h−(t) and h+(t) in the following
sections.

3.1.2 Controller Formulation

A diagram of the control setup is shown in Fig. 3.2 and a block diagram of the con-
troller that minimises the reflected wave is shown in Figure 3.3. Although there are
two accelerometers used as error sensors, the controller is only required to minimise
the reflected wave, and so uses a single-input single-output feedforward architecture.
The measured signals are passed through the two FIR wave filters of Ih coefficients, h−
and h+, to give the reflected wave components of the signals, denoted by a subscript
φ−. In this system, the reference signal, x(n), is the signal that is being used to drive

𝑒!!

Controller
𝑢(𝑛) 𝑥(𝑛)

𝑒!"

𝑎"𝑎#

𝐹$

Piezo

FIGURE 3.2: A diagram showing a beam with an AABH termination and two ac-
celerometers that are used as the error sensors for the wave-based feedforward active
control system. The signal from each of these accelerometers is fed into the controller

in addition to a reference signal taken from the primary input.
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FIGURE 3.3: A block diagram showing a wave-based feedforward active control sys-
tem. φ− has been used to denote the reflected wave component of the respective filter
or signal, that is obtained by using the wave filters described in Section 3.1.1. In this
control system the digital controller, w, is adapted to minimise the error signal, eφ− .

the primary disturbance. Although the incident wave component could be used as the
reference signal, similarly to [78], the use of the disturbance signal has been chosen
because it allows the optimal performance to be assessed without being limited by the
quality of the reference signal. In practice, however, it is unlikely that the disturbance
signal would be available and the incident wave would be used as the reference signal.
This may require a higher sample rate to account for delays in the signal processing.
The elements in the vector x(n) correspond to the signal measured at the n-th time step.
This signal is filtered by ĝφ− , which represents the combined response of the estimated
plant filter and the reflected wave filter, calculated as

ĝφ− = [hT
+ ĝa1 ] + [hT

− ĝa2 ], (3.10)

where the subscript a1 and a2 denotes the estimated plant filter corresponding to the
respective accelerometer shown in Figure 3.2. The filtered reference signal can thus be
expressed as

r̂φ−(n) = ĝT
φ−x(n), (3.11)

where x(n) is the vector of current and past samples of the reference signal. r̂φ− is used
to update the controller, w, which is used to filter the reference signal to generate the
control signal, u(n). The reference signal is also filtered by the primary response FIR
filter, pφ− , to obtain the disturbance signal where

pφ− = [hT
+pa1

] + [hT
−pa2

]. (3.12)

The error signal can be calculated as the sum of the reflected wave component of the
primary disturbance,

dφ−(n) = pT
φ−x(n), (3.13)
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and the reflected wave component of the secondary disturbance, gT
φ−u(n), where

gφ− = [hT
+ga1

] + [hT
−ga2

] (3.14)

is the secondary path of the reflected wave component between the piezoelectric patch
and the sensor array and u(n) is the vector of current and past samples of the control
signal. The error can be expressed as

eφ−(n) = dφ−(n) +
J−1

∑
j=0

gφ−j
u(n− j), (3.15)

where the secondary path between the control source and the reflected wave compo-
nent measured at the error sensor has been represented by a J-th order FIR filter with
coefficients gφ−j

. As shown in Figure 3.3, the control signal is generated by filtering the
reference signal, x(n), with the controller, w, which is implemented as a FIR filter with
I coefficients, wi, to give

u(n) =
I−1

∑
i=0

wix(n− i). (3.16)

Substituting Equation 3.16 into 3.15 then gives the error signal at the sensor array as

eφ−(n) = dφ−(n) +
J−1

∑
j=0

I−1

∑
i=0

gφ−j
wix(n− i− j), (3.17)

and by making the assumption that the control filter is time-invariant [81], this can be
rewritten as

eφ−(n) = dφ−(n) +
I−1

∑
i=0

wi r̂φ−(n− i), (3.18)

where the reference signal filtered by the reflected wave component secondary path
response is

r̂φ−(n) =
J−1

∑
j=0

ĝφ−j
x(n− j). (3.19)

Equation 3.18 can be expressed more succinctly using vector notation as

eφ−(n) = dφ−(n) + wT r̂φ−(n), (3.20)

With the error signal expressed in Equation 3.20, it is possible to derive the optimal
broadband control filter that minimises the cost function defined as the weighted sum-
mation of the mean-squared error signal and the sum of the squared control filter coef-
ficients. This cost function can be expressed as

J(n) = E[e2
φ−(n)] + βwTw, (3.21)
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where E denotes the expectation operator and β is a positive control effort coefficient-
weighting parameter. The inclusion of the second term in the cost function has a num-
ber of practical benefits, which are discussed in Section 2.3.1 of [81], and it has been
included here primarily to enable a constraint to be imposed on the magnitude of the
control signals. Substituting Equation 3.20 into Equation 3.21 gives

J(n) = wTE[r̂φ−(n)r̂T
φ−(n)]w + 2wTE[r̂φ−(n)dφ−(n)] + E[d2

φ−(n)] + βwTw, (3.22)

where E[r̂φ−(n)r̂T
φ−(n)] is the autocorrelation matrix of the filtered reference signal and

E[r̂φ−(n)dφ−(n)] is the cross-correlation vector between the filtered reference signal and
the disturbance [81]. The vector of optimal control filter coefficients can then be calcu-
lated by setting the derivative of Equation 5.15 with respect to the control filter coeffi-
cients to zero and this leads to the optimal solution

wopt = −
{

E[r̂φ−(n)r̂T
φ−(n)] + βI

}−1
E[r̂φ−(n)dφ−(n)], (3.23)

where I is the identity matrix. From Equation 3.23, it can be seen that β is used to add
a value that is proportional to the sum of the squared filter weights. This is equivalent
to adding white noise with a mean-square value of β to the reference signal [81]. A
finite value of β can prevent large filter coefficient values, which do not significantly
reduce the mean-square error and which lead to a control signal with a large peak-to-
peak voltage. Additionally, it is assumed that the inverted matrix in Equation 3.23 is
positive definite and can, therefore, be inverted and it can be seen that a finite value
of β regularises the solution to the inverse problem [81]. In a practical real-time im-
plementation, the optimum solution is usually reached by an adaptive algorithm such
as the FxLMS algorithm. However, in the following investigation the optimal solution
given by Equation 3.23 will be utilised to ensure that the limitations on the maximum
control performance are clearly demonstrated.

3.2 An Experimental Investigation of an Active Acoustic Black
Hole Termination

In this section, an experimental investigation into the use of an AABH termination
for wave-based feedforward control is presented. The performance of the AABH ter-
mination has been compared to a constant thickness termination, both with the same
active components. The layout of this section is as follows. The experimental setup
is described in Section 3.2.1. Section 3.2.3 presents a plant modelling study, where the
relationship between the length of the FIR filter used to model the plant response and
the accuracy of the resulting plant model has been investigated. From these results, a
specific error has been selected so that the accuracy of the plant model for each termina-
tion configuration is the same. A control filter length study is presented in Section 3.2.4,
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where the length of the control filter has been compared to the average broadband at-
tenuation achieved. The performance of each termination has then been assessed over
frequency in Section 3.2.5, where the same control filter length has been used for each
termination. Finally, the results from a real-time validation are presented in Section
3.2.6.

3.2.1 Experimental Setup

The dimensions of each of the two beams used in this investigation are shown in Table
3.1 and a diagram is shown in Figure 3.4 for clarity. These dimensions are identical to
the dimensions of the ABH and constant thickness terminations that have been used
to experimentally validate the model in Chapter 2, because the ABH design provides
effective passive damping and allows a direct comparison to be made between the
passive performance of the piezoelectric patch and the viscoelastic damping material
used in Chapter 2 (Henley’s yellow compound [77]).

TABLE 3.1: The geometrical parameters for the beam and each termination. Each
parameter has a tolerance of ± 0.1 mm.

Parameter Beam ABH termination Constant thickness termination
Height 10 mm (9.5(1-(x/70))4 + 0.5) mm 10 mm
Length 300 mm 70 mm 70 mm
Width 40 mm 40 mm 40 mm

Termination 
Junction

BeamTermination

ABH

Constant Thickness

FIGURE 3.4: A diagram showing the beam and termination described in Table 3.1.

A PI Ceramic P-876.A11 DuraAct patch transducer has been attached to the flat side
of the ABH taper and to the constant thickness termination using adhesive. The flat
side of the ABH taper was chosen so that the piezo patch was not pre-stressed on ei-
ther termination. The P-876.A11 patch has a mass of 2 g, an operating voltage range of
-50 V to 200 V and its dimensions are 61 mm × 35 mm × 0.4 mm. Full technical spec-
ifications for the piezo patch can be found at [82]. Figure 3.5 shows a diagram of the
experimental setup and a photo of each configuration is shown in Figure 3.6.

When set up, the effective mass of the piezoelectric patch was 4 g due to the extra
mass of the hanging wires. A comparison between the damping performance of the
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FIGURE 3.5: A diagram showing the experimental setup used in this investigation.

(a) (b)

FIGURE 3.6: Pictures of the experimental setup used to measure the responses of the
AABH and beam.

piezoelectric transducer and 12 g of Henley’s yellow compound, which was used in
the experimental investigation presented in Chapter 2, can be seen in Figure 3.7. These
results show that the piezoelectric patch provides a slightly lower level of damping
compared to the Henley’s yellow compound and this is demonstrated by the minima
in the bands of low reflection, which are lower when Henley’s yellow compound is
used. This is also evident from the broadband average reflection coefficient, which is
0.62 when the piezoelectric patch is used and 0.54 when Henley’s yellow compound
is used. The difference in frequency of the minima in the bands of low reflection can
be attributed to the higher mass of the Henley’s (12 g) compared to the effective mass
of the piezoelectric patch (4 g) and the additional stiffness that is associated with each
damping treatment.

Two accelerometers were attached to the beam using wax and were placed 200 mm and
220 mm from the primary source. Referring to Section 2.2, the low frequency limit of
the wave decomposition can be calculated as approximately 310 Hz, which has been
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FIGURE 3.7: The reflection coefficient of the ABH termination when the piezoelec-
tric patch is attached (dark blue line) compared with the Henley’s yellow compound

(yellow line).

rounded up to 400 Hz for this investigation. The upper frequency limit is determined
by the largest distance, selected from the accelerometer spacing, 20 mm, the width of
the beam, 40 mm, and the height of the beam, 10 mm. In this case, the width of the
beam is the longest and the upper frequency limit can be calculated as approximately
14 kHz. However, the anti-aliasing and re-construction filters used were set to a cut-off
frequency of 10 kHz, which thus defines the upper frequency limit. In addition to the
aliasing high frequency limit, there is another high frequency limit that occurs when
the delay through the controller is greater than the group delay between the actuators
and sensors [1]. In this investigation, a sampling frequency of 24 kHz has been used,
which equates to a sampling period of approximately 42 µs. The frequency at which
the group delay between the piezoelectric patch and the closest sensor on the beam
becomes equal to or less than the delay through the controller has been calculated as
approximately 15 kHz. This is higher than the 10 kHz upper frequency limit imposed
by the anti-aliasing and reconstruction filters and therefore this frequency limit does
not limit the controller.

3.2.2 Plant Responses

As discussed in Section 3.1.2, the proposed wave-based feedforward control strategy
requires an accurate model of the plant response to generate the filtered reference sig-
nal, r̂φ− . The plant model for each configuration has been calculated by fitting a FIR
filter to the respective plant response using the MATLAB function invfreqz. To ex-
amine the requirements of the AABH and constant thickness active termination plant
models, a study that compares the plant modelling error to the number of FIR coeffi-
cients in the plant model has been carried out.
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Using a sampling frequency of 24 kHz, the plant responses between the piezoelectric
transducer and each of the two accelerometers have been calculated by driving the
transducer with broadband white noise and taking a 60 second measurement. The
disturbance signal was kept the same for each configuration. The frequency responses
were calculated using the H1-estimator and are presented in Figure 4.1.
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FIGURE 3.8: The frequency response and phase of the reflected wave for a beam with
(a) an AABH termination and (b) a constant thickness active termination.

Figure 3.8(a) shows the frequency response of the reflected wave for the AABH ter-
mination. The results show that there is a resonance with a double peak at 0.6 kHz,
which can be seen to align with with a rapid phase change, and three more peaks at
1.35 kHz, 1.6 kHz and 1.95 kHz. The final notable peak occurs at approximately 3.2
kHz. All higher resonances have been significantly damped by the passive behaviour
of the AABH. Figure 3.8(b) shows the frequency response of the reflected wave for the
constant thickness active termination. The results show that there are strong resonances
at 2.4 kHz, 3.65 kHz and 7.75 kHz. There are also resonances with smaller magnitudes
at 0.5 kHz, 1.15 kHz, 1.75 kHz and 5.4 kHz. The low frequency resonances are smaller
in magnitude because the constant thickness active termination requires a larger force
to excite low order modes. Unlike the AABH termination, where there was a signifi-
cantly rapid phase change at the 600 Hz resonance, it can be seen from the results in
Figure 3.8(b) that there are are a lot of rapid phase changes occurring below 4 kHz in
the response of the constant thickness active termination. It can also be seen that be-
low 3 kHz the frequency response of the AABH termination is much higher than the
frequency response of the constant thickness termination, indicating that the thin taper
has better coupling with the piezoelectric patch at lower frequencies.

3.2.3 The Effect of Plant Modelling Accuracy

To investigate the plant modelling requirements, the frequency responses presented in
Figure 4.1 have been subsequently modelled using FIR filters. To create the FIR filters,
the MATLAB function invfreqz has been used. The FIR filters have been weighted so
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that they are most accurate between 400 Hz and 10 kHz. In order to examine the effect
of plant model accuracy, the number of FIR filter coefficients has been varied from 10
to 5000 (or 0.4 to 208 ms at the 24 kHz sample rate). As a measure of the plant model
error, the normalised mean-squared error (NMSE) has been calculated as

NMSE =
1
2

2

∑
l=1

[
(gl − ĝl)

H(gl − ĝl)
]

(gH
l gl)

, (3.24)

for each filter length and averaged over both accelerometers. In Equation 3.24, ĝl is the
column vector containing the frequency response of the plant model FIR filter and gl

is the identified plant, both between the piezoelectric patch and the l-th accelerometer.
These results are shown in Figure 3.9 for the beam with an AABH termination and the
beam with a constant thickness termination.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of Coefficients

-60

-50

-40

-30

-20

-10

0

N
M

S
E

 (
d

B
)

FIGURE 3.9: The NMSE of the plant model for filter lengths between 10 and 5000
coefficients. The red line represents the constant thickness termination and the blue
line represents the AABH. A plant modelling error has been selected so that it is the
same for both the constant thickness termination and the AABH termination. This has

been marked on the figure in black.

From the results shown in Figure 3.9, which have been calculated using Equation 5.18,
it can be seen that increasing the number of filter coefficients in the plant model de-
creases the NMSE. It can also be seen that the AABH configuration requires fewer filter
coefficients than the constant thickness active termination configuration to achieve the
same NMSE in the plant model. The difference can be attributed to the extra passive
damping provided by the ABH. This is a potentially significant advantage because it
reduces the computational requirements of implementing the active feedforward con-
trol strategy outlined in Section 3.1.2. A comparative case has been highlighted by the
black line in Figure 3.9. For this case, the NMSE of the plant model has been kept at -28
dB for both the AABH termination and the constant thickness termination. To achieve
this level of error, 400 FIR filter coefficients were required to model the plant response
of the AABH and 1430 FIR filter coefficients were required to model the plant response
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of the constant thickness active termination. From this case study, it can be seen that the
AABH termination potentially allows a more computationally efficient implementation
of the FxLMS controller.

3.2.4 The Effect of Controller Length

Having established the case study for accurate plant modelling, this section is used
to investigate the effect of the control filter length. To assess how many coefficients
are required for the optimum controller, wopt, the total broadband attenuation of the
reflection coefficient has been calculated for a range of control filter lengths. At each
frequency, the reflection coefficient has been calculated as

R(ω) =

∣∣∣∣φ−(ω)

φ+(ω)

∣∣∣∣ , (3.25)

where the wave components, φ+ and φ−, have been decomposed previously for the
controller in Section 3.1.1. The attenuation at each frequency has been calculated as

Ratten(ω) = −20 log10

(
R(ω)

R0(ω)

)
, (3.26)

where R0 is the passive reflection coefficient of the beam with a constant thickness
termination, which has been used as a reference reflection coefficient, and R is the re-
flection coefficient of the test case. Finally, the total broadband average attenuation of
the reflection coefficient can be calculated by taking the frequency average of Ratten, in
this case over a bandwidth of 400 Hz – 10 kHz.

The optimum set of control filter coefficients have been calculated using the measured
plant responses for each of the beam configurations and the control effort weighting
coefficient, β in Section 3.1.2, was initially set to zero for each case. For the constant
thickness termination configuration, β has also been set so that the peak-to-peak in-
put voltage is equal to the peak-to-peak input voltage required by the optimal AABH
configuration. This limitation allows the two control systems to be directly compared.

The broadband attenuation has been calculated for the un-regularised AABH termina-
tion, un-regularised constant thickness termination and regularised constant thickness
termination using a range of 0 to 500 controller coefficients. The broadband average at-
tenuation, normalised with respect to the passive, uncontrolled, beam with a constant
thickness termination, can be seen in Figure 3.10(a) and the maximum peak-to-peak
voltage of the control signal can be seen in Figure 3.10(b). The passive performance can
be seen when the control filter length is 0. From the results presented in Figure 3.10(a),
it can be seen that in all cases the broadband performance increases as the number of
control filter coefficients increases. The increase in performance is initially quite rapid,
however for a control filter length of over 350 coefficients there is less than 1 dB increase
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FIGURE 3.10: (a) The total broadband attenuation with respect to the passive constant
thickness termination vs the control filter length and (b) the maximum peak-to-peak

voltage of the control signal for each of the case studies.

in performance for any of the controllers. In addition to demonstrating how the perfor-
mance varies with control filter length, it can be seen in Figure 3.10(a) that the AABH
termination provides more attenuation than the constant thickness termination with or
without regularisation, up to the limit of 500 control filter coefficients shown here. This
is due to the increased passive performance of the AABH that can be seen by examining
the broadband performance at 0 control filter coefficients (where the AABH termination
achieves approximately 4 dB of attenuation passively). Although when 500 controller
coefficients are used the performance of the AABH termination and un-regularised
constant thickness termination are similar, it can be seen from Figure 3.10(b) that the
maximum peak-to-peak voltage of the control signal for the un-regularised constant
thickness termination is approximately 13 times the peak-to-peak voltage required by
the AABH system. It is important to highlight that the maximum operating peak-to-
peak voltage for the piezoelectric transducer used in this investigation has been marked
as the dashed black line in Figure 3.10(b), and it is clear that without regularisation the
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constant thickness termination significantly exceeds this physical limit. Some insight
into the reason for this can be seen in the plant models shown in Section 3.2.2, where
the magnitude of the plant response for the AABH termination is generally larger than
the magnitude of the plant response for the constant thickness termination, especially
at lower frequencies. Therefore, Figures 3.10(a) and 3.10(b) also show the performance
of the constant thickness termination when the maximum peak-to-peak voltage of the
control signal has been regularised to the same level as the AABH termination, which
is within the physical limit of the patch. In this case, it can be seen that the performance
of the constant thickness termination is reduced and the performance of the AABH ter-
mination is increased by approximately 10 dB for longer control filter lengths. It can
be noted that this performance is not just due to the passive effect of the AABH, as
this only accounts for 4 dB of broadband attenuation. These results thus demonstrate
that the AABH termination has practical advantages over a standard constant thickness
active termination.

3.2.5 Broadband Performance

To provide a detailed comparison between the active beam terminations in this study,
the reflection coefficient has been calculated for each termination over a frequency
range of 400 Hz to 10 kHz, with and without control. The control parameters for the
AABH termination are 400 plant model coefficients and 350 controller coefficients; the
control parameters for the constant thickness termination are 1430 plant model coef-
ficients and 350 control filter coefficients. Two cases are presented for the constant
thickness termination, one where the controller is unconstrained and the other where
the maximum peak-to-peak voltage of the control signal has been regularised to the
same level as the AABH. These results, therefore, show the control performance of
each termination when operating under the same limitations. In addition to the control
performance, the required control effort for each controller configuration, defined as
wTw, has been presented.

Figure 3.11 shows the reflection coefficient and control effort for the different termina-
tions over frequency. From the results shown in Figure 3.11(a), it can be seen that the
reflection coefficient of the constant thickness termination without control is approx-
imately 1 over the frequency bandwidth shown and the reflection coefficient of the
beam with an AABH termination without control exhibits the bands of low reflection
that are typical of a passive ABH. The passive damping required for the ABH effect is,
in this case, being provided by the piezoelectric patch. It can be seen, from the active
control results in Figure 3.11(a), that all configurations achieve control over the full fre-
quency bandwidth presented. When control is performed using the AABH termination
(light blue line), the reflection coefficient is almost perfectly controlled at all frequencies
above 4.1 kHz. Between 400 Hz and 4.4 kHz, the reflection coefficient is also reduced
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FIGURE 3.11: (a) The reflection coefficient of the AABH termination without con-
trol (dark blue line), AABH termination with control (light blue line), constant thick-
ness termination without control (black line), constant thickness termination with un-
constrained control (purple dashed line), and constant thickness termination with con-
strained control (red line). (b) The control effort required in each respective control
case. The control effort has been normalised so that a constant level at 0 dB corre-

sponds to the maximum broadband input to the piezoelectric patch.

to almost zero, but there is one notable peak where control is less effective. This occurs
at approximately 600 Hz and is attributed to a dominant structural resonance that can
be seen in the plant response, shown in Section 3.2.2. This resonance coincides with a
rapid phase change, which is difficult to model accurately.

When control is performed using the un-regularised constant thickness termination
(purple dashed line), the reflection coefficient is almost perfectly controlled above 4.1
kHz. Between 400 Hz and 4.1 kHz, the reflection coefficient is mostly controlled, except
for peaks at approximately 420 Hz, 1.1 kHz and 2.4 kHz. Similarly to the AABH termi-
nation, these frequencies correspond with dominant structural resonances that can be
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seen in the plant response, shown in Section 3.2.2. These peaks in the response largely
account for the difference in the broadband average level between the un-regularised
constant thickness termination and the AABH termination, shown in Figure 3.10(a).
When control is performed using the regularised constant thickness termination (red
line), the reflection coefficient is still almost perfectly controlled above 4.1 kHz, how-
ever below this frequency it can be seen that the regularisation largely limits the per-
formance of the active termination to a level that, below 2 kHz, it is comparable with
the uncontrolled AABH termination.

The control effort for each of the three performance results is shown in Figure 3.11(b).
These results have been presented with reference to the control effort corresponding to
the maximum broadband input to the piezoelectric actuator. From these results, it can
be seen that the beam with an AABH termination requires up to 30 dB less energy than
the constant thickness termination. Although this difference is largest below 2 kHz,
it can be seen that the control effort requirements are still notably less for the AABH
at higher frequencies. Although the employed level of regularisation for the constant
thickness termination limits the large control effort below 2 kHz, the effort required at
higher frequencies is still more compared to the AABH termination. This is reflected in
the average level of the control effort, which is -31 dB for the AABH termination, -24
dB for the un-regularised constant thickness active termination and -25 dB for the reg-
ularised constant thickness active termination. These results more clearly demonstrate
the advantages of the AABH termination over the constant thickness active termination
that have already been noted in the broadband average performance results presented
in Section 3.2.4. Once again, it is interesting to note that the performance advantage of
the AABH is above that expected by simply combining the passive performance gained
by the ABH with the active performance of the constant thickness termination. Particu-
larly, at frequencies outside of the bands of low reflection, the AABH is able to achieve
near perfect absorption with a lower control effort compared to the constant thickness
active termination.

It has been shown by the presented results that the AABH termination outperforms the
constant thickness termination in terms of the broadband reflection coefficient. In addi-
tion, it has been shown that the AABH termination is more efficient because it requires
a significantly reduced control effort to achieve the same or better performance. In or-
der to further understand the effect that control has on the response of the termination,
Figure 3.12 presents the responses of each termination, with and without control. From
the results presented in Figures 3.12(a) and 3.12(b), it can be seen that the AABH termi-
nation response is, on average, 10 dB greater than the constant thickness termination
response. This is to be expected because the ABH effect is known to focus energy into
the taper, as observed in [41, 47, 83]. It is interesting, however, to observe the effect that
control has on each termination response. In the case of the AABH termination (Fig-
ure 3.12(a)), it can be seen that controlling the reflected wave significantly enhances
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(a)

(b)

FIGURE 3.12: The response measured at (a) the AABH termination with and without
control, and (b) the constant thickness termination with and without control and with

regularised control.

the taper response across the majority of the presented bandwidth. On the other hand,
when the reflected wave is controlled using the constant thickness termination, there
is only a modest variation in the response over the presented bandwidth. The main
enhancement in this case is between 3 kHz and 5 kHz where the uncontrolled response
is low. These results indicate that for this control strategy, there is a trade-off between
enhancing the stress concentration in the taper and reducing the reflection coefficient
of the termination, which has been considered for passive ABHs in [84]. In the case of
an active termination, this trade-off will be addressed in more detail in Chapter 4.
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3.2.6 Real-Time Experimental Validation

The practical control configurations where the plant model error has been kept the
same for the two terminations have been implemented experimentally. In this case,
400 FIR filter coefficients were used in the plant model for the beam with the AABH
termination and 1430 FIR coefficients were used in the plant model for the beam with
a constant thickness termination. 350 control filter coefficients were used and the wave
filters were delayed by 10 samples to ensure causality. The optimal control filter has
been calculated using Equation 3.23 and implemented directly. Due to the physical
limitations of the piezoelectric patch, it was not possible to experimentally evaluate
the unconstrained constant thickness active termination configuration and, therefore,
the results are only presented for the constrained case where the peak-to-peak voltage
is consistent for both the AABH and the constant thickness termination. The control
performance and control effort results for this real-time implementation are presented
in Figure 3.13.

In general, the real-time results shown in Figure 3.13 are consistent with the offline
simulations presented in Section 3.2.5. Both the offline and real-time results show that
when the performance of both control systems is compared, the beam with an AABH
termination outperforms the beam with an active constant thickness termination at al-
most all frequencies, with the most significant performance benefit being shown below
3 kHz. The AABH termination is also shown to be more efficient, requiring a reduced
control effort to give superior performance. A general observation from comparing
the offline and real-time results is that the peaks in the controlled responses are more
significant in the real-time results. For example, there are two peaks in the reflection
coefficient of the active constant thickness termination at 2.4 kHz and 3.7 kHz where
there is enhancement. These peaks in the reflection coefficient are related to the rapid
phase changes that occur due to the lightly damped resonances in the structure and
lead to narrowband errors between the modelled and physical plant. Despite these
narrowband differences between the predictions and measurement results, the broad-
band, reflection coefficient differs by only 0.1 in the case of the constant thickness beam
results and 0.06 in the case of the AABH, therefore demonstrating that the offline pre-
dictions provide a reliable estimation of the real-time performance. The effects of this
are exacerbated in the real-time results due to finite precision effects. Despite this, it is
clear that the AABH termination offers significant performance benefits over the con-
stant thickness active termination and the nature of the practical implementation will
determine whether the AABH is suitable.
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FIGURE 3.13: (a) The reflection coefficient of the uncontrolled constant thickness active
termination (black line), controlled constant thickness active termination (dashed red
line), uncontrolled AABH termination (dark blue line) and controlled AABH termina-
tion (light blue line). (b) The control effort required for each control case is shown in
the respective colour. The control effort has been plotted with respect to the maximum

broadband peak-to-peak input to the piezo.

3.3 Summary

This chapter has presented a detailed investigation into a hybrid control solution, con-
sisting of an ABH with a piezoelectric transducer attached to the taper. A feedforward
control strategy has been implemented where the piezoelectric transducer has been
driven to minimise the flexural wave reflected from the termination. The characteristic
behaviour of the AABH termination has been compared to a constant thickness active
termination. Initially, a plant modelling study has been carried out in order to assess
how the number of FIR filter coefficients affects the accuracy of the plant model. It has
been shown that the AABH termination requires fewer FIR filter coefficients to achieve
the same plant modelling error. This study has, therefore, shown that the AABH can be
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implemented with a lower computational requirement compared to the constant thick-
ness active termination, whilst achieving the same level of NMSE in the plant model.

A study of the control filter length for each case study has then been presented, which
shows how the broadband average attenuation varies with the control filter length. It
has been shown that, for a specific level of attenuation, the AABH termination requires
significantly fewer control filter coefficients than the constant thickness termination.
It has also been shown that the total attenuation achieved by using the AABH ter-
mination is not matched by the constant thickness termination until 500 control filter
coefficients are used. However, despite matching the total broadband attenuation, the
peak-to-peak voltage required by the constant thickness termination to achieve this per-
formance is significantly higher than the peak-to-peak voltage required by the AABH
termination, far exceeding the maximum input of the piezoelectric transducer. There-
fore, the controller has been regularised for the constant thickness active termination
so it requires the same maximum peak-to-peak voltage as the AABH termination. This
constraint decreases the performance of the constant thickness termination so that the
total broadband attenuation is approximately 10 dB lower than the AABH termination
for all control filter lengths. The performance advantage of the AABH is, therefore, sig-
nificantly greater than the level of control provided by the passive ABH effect alone,
which was shown to be 4 dB for the investigated configuration. Consequently, the
AABH offers a performance advantage above that expected from simply combining
the levels of control offered by the constant thickness active termination and the pas-
sive ABH effect.

A set of control performance results have then been presented from an offline study.
Over frequency, it has been shown that the reflection coefficient can be controlled at
all frequencies using either the AABH termination or the constant thickness active ter-
mination. For both terminations, there were some poorly controlled frequencies that
corresponded to resonances in the plant responses, however this only occurs at one
frequency for the AABH termination compared to three frequencies for the constant
thickness active termination. It has been shown that the performance of the AABH ter-
mination is significantly better than the regularised constant thickness active termina-
tion above 4.1 kHz. At lower frequencies, the performance of the regularised constant
thickness active termination was notably worse to the extent that, below 2 kHz, the
performance was similar to the uncontrolled AABH termination, thus demonstrating
a clear performance advantage of the AABH termination at lower frequencies. It has
also been shown that the constant thickness termination could, theoretically, perform
almost as well as the AABH at lower frequencies, however the control effort required to
do so would exceed the power limitations of the piezoelectric transducer. The control
effort required for the constant thickness active termination to perform optimally was
higher at almost all frequencies when compared to the AABH termination, regardless
of constraints. This is reflected in the average level of control effort, which is at least 6
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dB less for the AABH termination. Therefore, even if a more powerful transducer was
used, the AABH would require significantly less energy to achieve a superior level of
control. These results have then been validated experimentally in real-time where, due
to the power limitations of the piezoelectric transducer, the constant thickness active
termination could only be implemented for the regularised case.

In order to further understand how this feedforward wave-based control strategy af-
fects the termination, the response of each controlled termination has been investigated
and it has been shown that the AABH undergoes a significant vibration enhancement
in the taper compared to the constant thickness termination. This has been linked to the
energy focussing effect observed in passive ABHs and it has been highlighted that the
resulting structural fatigue issues should be considered when implementing an AABH
in practice.

This chapter has clearly shown the performance advantages of using an AABH termi-
nation over a constant thickness termination. In applications where feedforward active
control is already used, implementing an AABH could provide significant performance
enhancements and reduce power requirements. However, the enhanced vibration in
the termination, produced by actively improving the performance of the termination,
may cause problems. The following chapter of this thesis will address the tradeoff
between actively improving the performance of an AABH termination and reducing
vibration in the termination.
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Chapter 4

Feedback Control using an Acoustic
Black Hole Termination

In Chapter 3, it has been shown that a feedforward control strategy can be used to
realise an AABH termination. It has also been shown that the AABH termination pro-
vides better performance than a constant thickness active termination and requires less
computational and electrical power to implement. However, this increase in perfor-
mance has also been shown to significantly increase the level of vibration in the AABH
termination itself. In addition, the use of a feedforward control strategy requires time-
advanced information in the form of a reference signal and this is not always available
in real-time applications. This might occur, for example, in the control system pre-
sented in Chapter 3, if the propagation time of a wave from the wave decomposition
error sensors to the taper is smaller than the signal processing time, which would re-
sult in a loss of causality. Another limitation may be that the primary source or sources
cannot be measured and, in such cases, a feedback control architecture may provide a
solution [1, 81].

In the case of an AABH, the most straightforward feedback control case would be to
implement disturbance rejection using a local loop about the taper to control the vi-
bration in the ABH. This would be beneficial because the reduction in vibration would
reduce structural fatigue and prolong the life of the ABH. However, if the goal of con-
trol is to actively reduce the reflection coefficient of the termination, thus improving the
performance of the termination, it has been shown in Chapter 3 that the vibration in the
taper is enhanced. An ideal control strategy would be to simultaneously minimise the
reflected wave, to increase performance, and the local taper vibration, to reduce struc-
tural fatigue.

A geometric controller design approach has been presented in [85], which can be ap-
plied to tackle this AABH control problem. In [85], it is shown how a feedback com-
pensator can be calculated that can be used to control both a local and remote error
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signal simultaneously, or reach a trade-off between controlling the two variables. This
controller design method is further discussed in [86,87] in the context of a robust broad-
band controller. However, for the broadband case the controller design becomes com-
plex and for the purpose of this study, physical insight can be gained into the control
performance and potential trade-offs between local and remote control by considering
a tonal controller. To implement the tonal controller, a recursive least squared (RLS)
based instantaneous harmonic control (IHC) architecture can be used [85, 88].

In this chapter, the geometric controller design process presented in [85] has been ap-
plied to the AABH to provide further insight into the tradeoff between controlling the
reflected wave and enhancing the local taper vibration in an AABH. The chapter is or-
ganised as follows. Section 4.1 presents the controller formulation that can be used to
calculate an appropriate compensator and the limitations of the tonal remote damping
controller. Section 4.2 contains a description of the experimental setup used and the ge-
ometric controller design process has been used to select four control strategies. These
four control strategies are control of the local taper vibration, control of the reflected
wave component, control of the local taper vibration without enhancing the reflected
wave component and control of the reflected wave component without enhancing the
local taper vibration. This is followed by the control performance results from a fre-
quency domain implementation of each control strategy. Finally, a time domain imple-
mentation of each control strategy is presented in Section 4.2.4 and a summary of the
chapter is given in Section 5.4.

4.1 Tonal Remote Damping

In this section, a remote damping controller that can simultaneously consider the local
taper vibration and the reflected wave component has been designed using the ge-
ometric approach described in [85]. The limitations of this control strategy are also
discussed.

The control system examined in this investigation is shown in Figure 4.1 and has two
error signals. The first error signal, el , is the local vibration that is measured on the ABH
taper using an accelerometer and the second error signal, eφ− , which is denoted as the
remote variable, and is the reflected wave component that is estimated using two ac-
celerometers located on the beam. In this investigation, the reflected wave component
has been estimated using the same method described in Section 3.1.1.

By examining Figure 4.1 it can be seen that there are two primary paths and two sec-
ondary paths that have a corresponding frequency response. The frequency response
function between the signal driving the control source, u, and the local error, el , will be
referred to as g11; the frequency response function between the control signal driving
the control source, u, and the remote error, eφ− , will be referred to as g21; the frequency
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FIGURE 4.1: A diagram of an active ABH termination on one end of a beam. The
primary disturbance is driven using the signal d, the control source is driven using the
control signal u, the local error signal el is measured using accelerometer a3 and the

remote error signal eφ− is estimated using accelerometers a1 and a2.

response function between the signal driving the primary disturbance, d, and the local
error, el , will be referred to as g12; and the frequency response function between the
signal driving the primary disturbance, d, and the remote error, eφ− , will be referred
to as g22. A block diagram that shows these responses as part of the control system is
shown in Figure 4.2. It can be seen that the control signal, u, is produced by applying a
compensator, κ, to the local error signal. The control signal is used to drive the piezo-
electric patch, which contributes to each error signal via the respective control path. In
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FIGURE 4.2: A block diagram showing the feedback control system. The local signal
from accelerometer 3 is fed back through a compensator, κ, to obtain the control signal,
u. The control signal is used to drive the piezoelectric transducer and the control of

both the taper vibration and the reflected wave component can be examined.

the frequency domain, the frequency response function of the system shown in Figure
4.2 can be written in matrix form as[

el(ω)

eφ−(ω)

]
=

[
g11(ω) g12(ω)

g21(ω) g22(ω)

] [
u(ω)

d(ω)

]
. (4.1)
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Applying the feedback control law for disturbance rejection [81], the control signal can
be written as

u(ω) = −κ(ω)el(ω), (4.2)

where −κ is the negative feedback compensator, which can be set to reduce each error
signal. By substituting Equation 4.2 into Equation 4.1 and re-arranging, the local and
remote closed loop transfer functions can be written as

el(ω)

d(ω)
=

g12(ω)

1 + g11(ω)κ(ω)
(4.3)

eφ−(ω)

d(ω)
= g22(ω)− κ(ω)g12(ω)g21(ω)

(1 + g11(ω)κ(ω))
. (4.4)

The frequency dependency is suppressed from this point forward for clarity, but it
should be assumed unless stated otherwise.

In order to determine the conditions required to control either the local or remote error,
the closed loop transfer functions can be rewritten as

el

d
= fl(κ)g12 (4.5)

eφ−

d
= fφ−(κ)g22, (4.6)

where

fl(κ) =
1

1 + g11κ
(4.7)

fφ−(κ) = 1− κg12g21

g22(1 + g11κ)
. (4.8)

It can be seen that if κ = 0, fl(κ) and fφ−(κ) become equal to 1 and Equations 4.5 and
4.6 become the open loop transfer functions for the local and remote error respectively.
To reduce each error signal, the magnitude of the closed loop transfer function has to
be less than the magnitude of the open loop transfer function, requiring that

| fl(κ)g12| < | fl(0)g12| (4.9)∣∣ fφ−(κ)g22
∣∣ < ∣∣ fφ−(0)g22

∣∣ , (4.10)

or equivalently ∣∣∣∣ 1
1 + g11κ

∣∣∣∣ < 1 (4.11)∣∣∣∣1− κg12g21

g22(1 + g11κ)

∣∣∣∣ < 1. (4.12)
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By defining the sensitivity as α, such that Equation 4.11 becomes |α| < 1 [85], the sensi-
tivity can be expressed in terms of a compensator as

κ =
(1− α)

αg11
. (4.13)

Substituting Equation 4.13 into Equation 4.12 gives∣∣∣∣(α− 1)
g12g21

g11g22
+ 1
∣∣∣∣ < 1, (4.14)

which can be simplified to
|β + 1| < 1, (4.15)

where
β = (α− 1)

g12g21

g11g22
. (4.16)

α can then be expressed in terms of β1 by rearranging Equation 4.16, to give

α = β
g11g22

g12g21
+ 1, (4.17)

which means Equation 4.11 can be expressed in terms of β as∣∣∣∣β g11g22

g12g21
+ 1
∣∣∣∣ < 1. (4.18)

Equation 4.18 can be simplified to

|γ + 1| < 1, (4.19)

where
γ = β

g11g22

g12g21
. (4.20)

Both Equation 4.15 and Equation 4.19 describe a unit circle with a centre point (-1, 0)
on the complex β-plane and complex γ-plane respectively. Equation 4.20 shows that
Equation 4.16 can be mapped onto the γ-plane as a circle with a centre point at −g̃ and
radius |g̃| [85], where

g̃ =
g11g22

g12g21
(4.21)

An example of the two circles on the γ-plane is shown in Figure 4.3. To calculate a
compensator from a specific point on the γ-plane, referred to as γ0, Equation 4.16 can
be substituted into Equation 4.20 to give

γ0 = (α− 1) =
1

1 + g11κ0
− 1, (4.22)

1Note that the use of β in this chapter is distinct from its use in the rest of this thesis, where it is a
positive control effort coefficient-weighting parameter
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FIGURE 4.3: Mapping of |β + 1| = 1 onto the complex γ-plane. The black circle cor-
responds to the local error signal, the red circle corresponds to the remote error signal
and the yellow highlighted area where the circles intersect represents a simultaneous

reduction in both error signals.

which can be rearranged as
κ0 =

γ0

(1 + γ0)g11
. (4.23)

Referring to Figure 4.3, the centre point of each of these circles corresponds to a point
of the γ-plane that can be used to calculate a compensator that completely cancels,
or annihilates the respective error signal. Likewise, if a point on the γ-plane is selected
from the edge of one of the circles then this value can be used to calculate a compensator
that neither attenuates nor enhances the error corresponding to that circle. Both circles
will also intersect at the origin (0,0) of the γ-plane and by referring to Equation 4.23 it
can be seen that when γ0 is equal to zero, κ0 is equal to zero and there is subsequently
no control. If, say, a point is chosen that falls within both circles, then a compensator
can be calculated that reduces both the local and remote error. However, if a point is
chosen from outside one of the circles then that error signal will be enhanced. It should
be noted that due to the formulation of Equation 4.23, annihilation of the local error is
impractical because it requires an infinitely large gain. This could be solved by using,
for example, an IHC architecture [85].

The controller design presented here is tonal, which means that for each frequency γ0

must be selected from the γ-plane in order to calculate κ0. If this selection process is
carried out over a broad range of frequencies, a vector of compensator values can be
calculated that can be used to design a broadband controller. However, this process is
not straightforward, since both the causality and stability of this broadband controller
must be considered and this is explored in [85–87].



4.1. Tonal Remote Damping 69

To avoid predicting unrealistic levels of control, each compensator has been regularised
so that the attenuation produced using the feedback controller is limited to 20 dB. To
achieve this, Equation 4.23 has been modified by adding a constant number to the plant
response. This regularisation number is different for each frequency, however by mak-
ing this number proportional to the magnitude of the plant response, a general solution
can be expressed as

κ0 =
γ0

(1 + γ0 + ξ)g11
. (4.24)

Through an iterative approach, it was found that when ξ was assigned a value of 0.111,
the compensator calculated using Equation 4.24 was limited to producing a maximum
attenuation of 20 dB.

In order to implement the tonal compensator in the time domain, a recursive least
squares (RLS) control architecture based on [88] is used here. The RLS controller re-
quires a complex tonal reference signal to be generated artificially, which is used in ad-
dition to the error signal to determine the gain and phase difference of the correspond-
ing tonal component of the error signal relative to the reference. Therefore, although a
time-advanced reference signal from the disturbance is not required to implement this
controller, an estimate of the frequency of the disturbance is required and the tonal ref-
erence signal can then be generated at this frequency. A block diagram of this controller
is shown in Figure 4.4. In the block diagram shown, el(n) is the n-th sample of the error

×

−𝜅

×

e!"#$

ℑ𝑚{… }
𝑢(𝑛)𝑒%(𝑛)

𝑧(𝑛) RLS Estimator

𝑒̂%(𝜔) 𝑢(𝜔)

FIGURE 4.4: A block diagram showing the RLS based IHC. The inputs are the local
error signal (el(n)) and a tonal reference signal (z), which are used to calculate the gain
(ν) and phase (φ) of the tonal component of the error signal relative to the reference
signal. The compensator (κ) is then applied in the frequency domain and the signal is
transformed back into the time domain. The imaginary, sinusoidal, part of this signal

is taken as the control signal.

signal, z(n) is the n-th sample of an artificially generated reference signal and u is the
control signal. êl(ω) is an estimate of the gain and phase of the error signal relative to
the reference signal, which can be expressed as

êl(ω) = νeiφ, (4.25)

where ν is the gain relative to the reference and φ is the phase shift relative to the refer-
ence. In order to calculate êl(ω), the n-th sample of the error signal can be expressed as
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a sinusoidal tone relative to the reference,

el(n) = ν sin(ωnT + φ) + ε(n), (4.26)

where T is the sampling time period, ω is the angular frequency, and ε represents ran-
dom white measurement noise with zero mean. Equation 4.26 can be expanded as

el(n) = ν sin(ωnT) cos(φ) + cos(ωnT) sin(φ) + ε(n), (4.27)

which is condensed to
el(n) = θ(n)Tz(n) + ε(n), (4.28)

where
θ(n)T =

[
ν cos(φ) ν sin(φ)

]
(4.29)

is the vector containing the real and imaginary parts of the error signal with respect
to the real and imaginary parts of the reference signal, which are contained within the
vector

z(n) =
[
sin(ω0nT) cos(ω0nT)

]T
. (4.30)

θk can be estimated from the exponential forgetting RLS algorithm [89] as

θ(n) = θ(n− 1) + K(n)
(

el(n)− θ(n− 1)Tz(n)
)

, (4.31)

where
K(n) =

(
1 + λ−1z(n)TP(n− 1)z(n)

)−1
λ−1P(n− 1)z(n) (4.32)

and
P(n) = λ−1P(n− 1) + λ−1K(n)z(n)TP(n− 1). (4.33)

The λ term in Equations 4.32 and 4.33 is a forgetting factor and takes a real value be-
tween 0 and 1. Although it is possible to implement the controller using a gradient
descent method as shown in [88], in this study the compensator has been calculated
earlier in this section and is implemented directly. An instantaneous inverse Fourier
transform is then applied to the frequency domain control signal, u(ω), and the sinu-
soidal imaginary part of the subsequent signal is taken as the time domain control sig-
nal. Taking the feedback control law from Equation 4.2 and the estimated error signal
from Equation 4.25, the time domain control signal [88] can be expressed as

u(n) = −κν sin(ωnT + φ). (4.34)

In this study, the focus has been on a tonal implementation to obtain further insight
into how the different feedback compensators affect the taper vibration and reflected
wave component. The first limitation to consider arises from the wave component esti-
mation method, which has a low and high frequency limit. These have been previously



4.2. An Experimental Investigation of a Feedback AABH 71

discussed in Sections 2.2 and 3.1.1 and the resulting frequency limits are highlighted in
Section 4.2.1 for this investigation.

Another limitation of this study is that the robustness of the system and the power
requirements have not been considered. However, since the purpose of this study is
to provide insight into the tradeoff between minimising the local taper vibration and
minimising the reflected wave component in an ABH, rather than implementing the
controller in real-time, the robustness and power requirements have not been investi-
gated.

4.2 An Experimental Investigation of a Feedback AABH

This section presents an investigation into the application of the feedback remote damp-
ing controller described in Section 4.1. The experimental setup used is presented in
Section 4.2.1 and the frequency response functions are shown for g11 g12 g21 and g22.
The remote damping circles are then presented for two example frequencies to demon-
strate how a compensator is chosen and four compensators are then chosen for each
frequency. Section 4.2.3 follows on with the performance results for each compensator,
presented over frequency in terms of the reflected wave component and the local taper
vibration. The initial analysis has been carried out in the frequency domain. Follow-
ing this, an IHC architecture [85, 88] has been used to assess the performance of each
compensator in the time domain.

4.2.1 Experimental Setup

FIGURE 4.5: A picture showing the experimental setup used in this investigation.

The experimental setup presented in Figure 4.1 has been implemented and a picture
can be seen in Figure 4.5. This setup is very similar to the setup presented in Section
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TABLE 4.1: The dimensions of the experimental setup. Each parameter has a tolerance
of ± 0.1 mm.

Parameter Beam ABH termination Constant thickness termination
Height 10 mm (9.5(1-(x/70))4 + 0.5) mm 10 mm
Length 300 mm 70 mm 70 mm
Width 40 mm 40 mm 40 mm

3.2.1, which was used to carry out a feedforward control strategy. However, in this case
an extra accelerometer has been attached to the termination to provide a measure of
the local termination vibration. An identical setup has also been used for a beam with
a constant thickness termination, which has been included for reference. The signals
from the accelerometers were filtered with a 10 kHz low pass filter to prevent aliasing
and the signals used to drive the shaker and piezoelectric patch were filtered with a 10
kHz low pass reconstruction filter. The DAC/ADC was performed using dSPACE, a
rapid prototyping hardware. In addition to the figure showing the setup, the dimen-
sions of the beam with the ABH termination and the beam with the constant thickness
termination are shown in Table 4.1. These are the same as the dimensions used in the
experimental studies presented in Chapters 2 and 3, and have been reproduced here for
convenience. The piezoelectric transducer is also the same component that was used in
Chapter 3 and has a length of 61 mm, a height of 0.4 mm, a width of 33 mm and a mass
of 2 g. Note that, however, the effective mass of the piezoelectric patch is actually 4 g,
which takes into account the mass of the resting wires.

The frequency limits of this investigation are, therefore, the same as those used in Chap-
ter 3, which have been calculated as 400 Hz – 10 kHz. Using a sampling frequency
of 22 kHz, the primary responses between the disturbance signal used to drive the
shaker and the three accelerometers were measured. The measurements were then re-
peated whilst driving the piezoelectric transducer to obtain the secondary responses.
The frequency responses were then calculated using the H1-estimator. The frequency
responses of the accelerometers on the beam section were then used to estimate the
frequency response of the reflected wave component using the method described in
Section 4.1. The resulting frequency responses are presented in Figure 4.6.

From the frequency responses shown in Figure 4.6, it can be seen that the plant re-
sponses of each termination are lower than the primary responses at lower frequencies
and higher than the primary responses at higher frequencies. This is partially due to
the cut-on frequency of the piezoelectric patch, which is 250 Hz, and also due to the
coupling between the piezoelectric patch and the structure at higher frequencies. The
cross-over frequency is, however, much lower for the beam with the AABH termina-
tion (approximately 1 kHz compared to 2.5 kHz). This implies that the coupling be-
tween the piezoelectric patch and the AABH is better at lower frequencies compared
to the constant thickness termination. The benefit of this is that low frequency control
will require less input energy, which has been demonstrated previously in Chapter 3.
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(a) AABH local taper vibration

2000 4000 6000 8000 10000

Frequency (Hz)

-40

-20

0

20

40

60

M
a
g
n
it
u
d
e
 R

e
s
p
o
n
s
e
 (

d
B

)

(b) Beam local taper vibration
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(c) AABH reflected wave component
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(d) Beam reflected wave component

FIGURE 4.6: The local (local taper vibration) and remote (reflected wave component)
frequency responses for the (a, c) beam with the ABH termination and (b, d) the beam
with the constant thickness termination. The primary responses are shown by the red
lines and the secondary responses are shown by the blue lines. Two frequencies have
been highlighted by the black dashed lines and correspond to the examples given in

Figure 4.7.

In order to perform the time domain analysis that is presented later in this chapter, FIR
filters with 2 coefficients were used to model the frequency responses at each chosen
frequency. These FIR filters were estimated using the MATLAB function invfreqz.

4.2.2 Compensator Selection

To demonstrate how a compensator can be selected from the controller design method
presented in Section 4.1, two examples are given in Figure 4.7 at 582 Hz (on resonance)
and at 3384 Hz (off resonance). These have been marked on Figures 4.6(a) and 4.6(c)
using black dashed lines. The results presented in Figure 4.7 show a solid-lined black
circle that has been plotted in the γ-plane using Equation 4.19 and a solid-lined red
circle that has been plotted by mapping Equation 4.15 onto the γ-plane. The asterisks
at the centre of each circle represent the minimisation of the respective error and the
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FIGURE 4.7: The red circle representing control of the reflected wave component plot-
ted with respect to the black unit circle representing control of the local vibration at
(a) 582 Hz and (b) 3384 Hz. The solid lines represent 0 dB of attenuation, the dot-dash
lines represent 6 dB of attenuation, the dashed lines represent 6 dB of enhancement
and the asterisk represents minimisation of the respective quantity. The cyan circle
represents the best possible control of the local taper vibration without enhancing the
reflected wave and the blue circle represents the best possible control of the reflected
wave without enhancing the local taper vibration. The magenta circle in (a) is the point

that gives an equal reduction in both error signals.

small blue and cyan circles represent the best control cases possible without enhancing
either the local taper vibration or the reflected wave component. Finally, the dot-dashed
lines represent 6 dB of attenuation and the dashed lines represent 6 dB of enhancement
in the respective error signal.

In Figure 4.7(a), it can be seen that the (-1,0) point that corresponds to minimisation of
the local vibration lies within the -6 dB circle of control of the reflected wave. Therefore,
at 582 Hz, minimising the local taper vibration will also attenuate the reflected wave, in
this case by approximately 10 dB. Minimising the reflected wave component will also
result in attenuation of the local taper vibration because the red asterisk lies within the
-6 dB dot-dashed black line. At this frequency, either of the two errors can be minimised
without enhancing the other and therefore the cyan circle, that represents reducing the
local taper vibration without enhancing the reflected wave, and the blue circle, that
represents reducing the reflected wave without enhancing the local taper vibration, are
both located on the minimisation asterisks. The final control case highlighted in Figure
4.7(a) is marked by a magenta circle. This point lies midway between the centres of both
circles and can be used to calculate a compensator that equally controls the reflected
wave component and the local taper vibration.

The results in Figure 4.7(b) show a different set of circles for this control system, at a
frequency where minimising either quantity will result in enhancement of the other.
From these results it can be seen that a compensator that minimises the local taper vi-
bration (from the (-1,0) point) will slightly enhance the reflected wave component (by
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approximately 5 dB), whilst a compensator that minimises the reflected wave compo-
nent (from the -g̃ point) will enhance the local taper vibration by approximately 3 dB.
At this frequency, it can be seen that the largest reduction in the local taper vibration
that can be achieved without enhancing the reflected wave component will occur if a
compensator is calculated using the point at (-0.5,0.3), which is highlighted by a cyan
circle. In this case, approximately 4 dB of attenuation is achieved in the local taper vi-
bration without enhancing the reflected wave component. It can also be seen that if a
compensator is calculated using the point (-0.2,0.5), highlighted by a blue circle, then
approximately 6 dB of attenuation can be achieved in the reflected wave component
without enhancing the local taper vibration.

4.2.3 Frequency Domain Performance

Using the four control compensator selection criteria described previously, the com-
pensator responses have been calculated over frequency and their performance can be
seen in Figure 4.8 over a bandwidth of 400 Hz to 10 kHz. In each case, regularisation
has been added to the selected local plant response, g11, to constrain the maximum at-
tenuation to approximately 20 dB for clarity and to avoid predicting unrealistic levels
of control. From the results presented in Figure 4.8, it can be seen that when control is
set to minimise the local taper vibration (shown by the solid blue lines), the vibration
in the taper is reduced by approximately 20 dB at all frequencies, which is simply lim-
ited by the level of regularisation used in the study. The corresponding reflected wave
component is generally unchanged, varying by approximately ± 1 dB over the band-
width presented. However, there are specific frequencies and frequency bands that are
attenuated or enhanced slightly more. For instance, at 582 Hz, the resonant frequency
used as an example in Figure 4.7(a), there is approximately 10 dB of attenuation, which
is consistent with the prediction. Additionally, there is also a simultaneous reduction
at 4198 Hz, which is situated very close to a large enhancement detailed below. The
frequency bands 600 Hz – 1 kHz, 1.4 kHz – 1.8 kHz and 2.8 kHz – 4.5 kHz are en-
hanced by up to 30 dB. The largest of these enhancements occurs around 4190 Hz and,
by referring back to Figure 4.6(c), it can be seen that there is a strong anti-resonance
in the primary response of the reflected wave component at this frequency. The en-
hancement in the reflected wave component occurs because, although minimising the
vibration in the taper perfectly dampens the taper, this control strategy introduces a
high impedance change at the ABH junction, which can be considered as a zero veloc-
ity boundary condition. This essentially truncates the termination at the ABH junction,
making it equivalent to a flat termination. This study has shown that minimising vi-
bration in the taper is not a suitable control strategy if the objective is to maintain or
improve the damping performance of the ABH.
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FIGURE 4.8: Feedback control implemented for the four cases and presented in terms
of the responses and attenuation. The effect that each compensator has in the local
vibration is shown in the top plots and the effect that each compensator has in the
reflected wave is shown in the bottom plots. The uncontrolled case is represented by
0 dB of attenuation, the local minimisation case is represented by a solid blue line,
the reflected wave minimisation case is represented by a solid yellow line, the local
reduction without enhancement of the reflected wave case is represented by a dashed
red line and the reflected wave reduction without enhancement of the local vibration

is represented by a purple dashed line.

When control is set to minimise the reflected wave component (shown by the solid yel-
low lines), the results in Figure 4.8 show that the reflected wave component is reduced
by approximately 20 dB at all frequencies, which is again limited by the selected level
of regularisation. It can be seen from the response in the taper, that this control strategy
leads to a significant increase in the taper vibration of up to 30 dB. There are, however,
three narrow frequency bands where the local vibration is reduced by up to 10 dB and
these are around 582 Hz, 620 Hz and 4198 Hz. This control strategy is of particular in-
terest because one of the key performance criteria of an ABH is its reflection coefficient.
It has been previously shown that the reflection coefficient can be controlled using a
feedforward control architecture in Chapter 3 and that this control strategy resulted in
an enhancement of the taper response. This study demonstrates the same relationship
between the reflection coefficient and the taper vibration amplitude.

In order to reduce effects of structural fatigue, the results from the two control strategies
that focus on minimising the reflected wave without enhancing the level of vibration
in the taper or, alternatively, minimising the local vibration in the taper without en-
hancing the reflected wave component have been presented. In the former case, the
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performance is shown by the dashed purple line in Figure 4.8 and it can be seen that
there are a number of narrow bandwidths where the reflected wave can be reduced by
up to 20 dB (limited by the regularisation) without enhancing the taper vibration. These
narrow bandwidths can all be seen to occur below 5 kHz, except one small reduction
at approximately 7.5 kHz. Although this control strategy is not particularly effective
at higher frequencies, it should be noted that the uncontrolled ABH already provides
a high level of damping and so high frequency vibrations are unlikely to cause issues
in practice. When the latter control strategy is implemented to reduce the local taper
vibration without enhancing the reflected wave component, it can be seen from the red
dashed line in Figure 4.8 that a reduction in the local vibration can be achieved over a
number of frequency bands, covering the full bandwidth presented. In application, the
choice of control strategy will depend on the nature of the problem and a combination
of the different control strategies will likely produce the best solution to a broadband
problem.
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(a) Beam control responses
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(b) Beam control attenuation

FIGURE 4.9: Feedback control implemented for the four compensators presented in
terms of the responses and attenuation. The effect of control on the local taper vibra-
tion is shown in the top plots and the effect of control on the reflected wave component
is shown in the bottom plots. The uncontrolled case is represented by 0 dB of attenua-
tion, the local minimisation case is represented by a solid blue line, the reflected wave
minimisation case is represented by a solid yellow line, the local reduction without
enhancement of the reflected wave case is represented by a dashed red line and the
reflected wave reduction without enhancement of the local vibration is represented by

a purple dashed line.

The results presented in Figure 4.9 show the same four control strategies implemented
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for a beam with the constant thickness termination. These results provide a compar-
ison, however they do not take into account the benefits of the AABH that were dis-
cussed in Chapter 3, namely the lower computational cost required for real-time imple-
mentation and the lower control effort required to perform control. It can be seen from
the results in Figure 4.9 that when the local taper vibration is minimised, the reflected
wave component is enhanced at some frequencies and attenuated at other frequencies.
However, the magnitude of the enhancement is smaller than that shown in Figure 4.8
for the AABH termination. When the reflected wave component is minimised, it can
be seen that there is a large enhancement in the response of the termination between
2.5 kHz and 5 kHz, however this has occurred because over this frequency band the
primary response, shown in Figure 4.6(b), is very low. At all other frequencies, there is
generally only a small amount of enhancement or attenuation. These results are consis-
tent with the findings of the feedforward control study presented in Chapter 3. If the
reflected wave component is controlled without enhancing the local taper vibration, it
can be seen that there is a simultaneous reduction of both error signals over some nar-
row bands, particularly around 2.5 kHz and 7.75 kHz. In addition, there are a number
of frequency bands where the reflected wave component can be minimised without en-
hancing the local taper vibration. Similarly, when the local taper vibration is controlled
without enhancing the reflected wave, minimisation of the taper vibration can occur
without enhancing the reflected wave at the majority of frequencies presented.

Compared to the AABH termination, it is clear that the constant thickness active termi-
nation is more effective for simultaneous control because the reflected wave component
and termination vibration level are more strongly coupled due to there being no signif-
icant impedance change between the beam and the termination. Referring back to the
uncontrolled reflection coefficient presented in Chapter 3, the constant thickness termi-
nation exhibits near perfect reflection, which demonstrates that an incident wave is not
significantly changed as it reflects from the termination. In contrast, the wavelength
change and absorption that occurs along the length of the ABH makes the coupling be-
tween the reflected wave component and the local taper vibration more complex. Fur-
thermore, these results do not take into account the reduced computational and elec-
trical power requirements of the AABH termination that have been demonstrated in
Chapter 3. The most appropriate termination for a specific application will, therefore,
depend on the requirements of the application, the resources available and the con-
straints imposed on the stress of the termination. For example, the increased vibration
in the ABH may result in increased stress, however a constant thickness termination
may require more powerful components to achieve a suitable level of control. A solu-
tion could, therefore, be to use an AABH termination with a limit set on the acceptable
level of vibration in the system.
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4.2.4 Time Domain Performance

The results presented in this section serve to demonstrate the performance of each of
the control strategies in the time domain via simulation. The results are presented
in terms of the AABH as a proof of concept and so no results for the standard beam
are shown. The compensators used to obtain the results in Section 4.2.3 have been
implemented at each frequency using the RLS based IHC architecture [88] that was
described in Section 4.1. A pure sinusoidal tone was used as the disturbance signal.
The two frequencies, 582 Hz and 3384 Hz, presented as an example in Section 4.2.2
have been used to demonstrate each of the compensator selections in the time domain.
The local taper vibration and reflected wave component error signals are shown before
and after control, which has been turned on at t = 1s, in Figure 4.10 for each of the cases.
The error signal has been normalised so that the pre-control level is ±1 in each case to
improve the clarity of the results. Each factor of 2 represents an increase or decrease of
6 dB in the error signal. For each case, Table 4.2 shows the increase or decrease in the
error signal in decibels relative to the respective uncontrolled level.

TABLE 4.2: The change in the local and reflected wave component (φ−) error signals
before and after control.

Frequency Control Case Error Level Change
3384 Hz Local Minimisation el -20 dB

eφ− +5 dB
3384 Hz Local Reduction Without el -4 dB

Enhancing φ− eφ− ±0 dB
3384 Hz φ− Minimisation el +3 dB

eφ− -20 dB
3384 Hz φ− Reduction Without el ±0 dB

Enhancing Local Vibration eφ− -6 dB
582 Hz Simultaneous Reduction el -15 dB

eφ− -15 dB

From the results shown in Figure 4.10(a) and Table 4.2, it can be seen that at 3384 Hz
the local taper vibration can be reduced by 20 dB, which causes a 5 dB enhancement of
the reflected wave component. These levels are consistent with the frequency domain
results shown in Section 4.2.3. The results in Figure 4.10(b) and Table 4.2 show that
approximately 4 dB of attenuation can be achieved in the local taper vibration without
enhancing the reflected wave component. These results are also consistent with the fre-
quency domain simulation results presented in Section 4.2.3. If, instead, the reflected
wave component is minimised then from the results shown in Figure 4.10(c) it can be
seen that there is an enhancement in the local taper vibration. Referring to Table 4.2, it
can be seen that this enhancement is 3 dB. If it is ensured that there is no enhancement
in the local taper vibration, the controller can achieve approximately 6 dB of attenua-
tion in the reflected wave component, which is shown both in Table 4.2 and in Figure
4.10(d). Examining the implementation of control at 582 Hz, it was shown in Sections
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(a) 3384 Hz Local Minimisation
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(b) 3384 Hz Local Control
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(c) 3384 Hz Remote Minimisation
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(d) 3384 Hz Remote Control
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FIGURE 4.10: The local and remote error signals for each of the time domain cases,
normalised with respect to the pre-control level.
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4.2.2 and 4.2.3 that simultaneous reduction could be achieved in both the local taper
vibration and the reflected wave component. To demonstrate this, a compensator has
been calculated from the midpoint on the γ-plane between the two circles, which was
highlighted by the magenta circle in Figure 4.7(a). Implementing this compensator in
the time domain gives the results presented in Figure 4.10(e), which show the simul-
taneous reduction in both error signals. Referring to Table 4.2, it can be seen that each
error signal is attenuated by approximately 15 dB. This specific case was not presented
in the frequency domain implementation, however, the results are very similar to those
obtained by implementing the compensators that minimise each error signal and so are
considered consistent.

It is also interesting to note that for each control case, the decay profile is different
and this can be linked to the γ-plane circles presented previously in Figure 4.7. For
example, at 3384 Hz, to control the taper response without enhancing the reflected
wave component the controller must converge from the (0,0) point on the γ-plane to
the location on the 0 dB reflected wave response circle closest to the centre of the local
taper response circle (highlighted by the cyan circle in Figure 4.7(b)). Drawing a straight
line between these two points will bisect the 0 dB reflected wave response circle and
therefore the convergence in Figure 4.10(b) shows a slight attenuation in the reflected
wave response before returning to the original level. At each frequency, the dynamics
between the reflected wave component and the local taper vibration will be different,
resulting in a unique decay profile for each case.

4.3 Summary

An investigation into the use of feedback control in an active ABH has been presented
in this chapter. A geometric controller design used for remote damping control has
been used to examine the tradeoff between controlling the local taper vibration and
controlling the reflected wave component. Four different control cases were chosen
at each frequency and a compensator was calculated for each. A frequency domain
implementation has shown that minimising the local taper vibration produces a small
amount of unwanted enhancement in the reflected wave at frequencies below 5 kHz.
Intuitively, minimising the taper vibration imposes a zero velocity boundary condition
at the ABH junction, which can therefore be approximated as a constant thickness flat
termination. This indicates that a control strategy such as pure velocity feedback con-
trol is unlikely to have any significant performance benefits, except perhaps at one or
two very specific frequencies, and an alternative controller is required. It has also been
shown that if the reflected wave component is minimised, similarly to the feedforward
control strategy presented in Chapter 3, the local vibration in the taper is greatly en-
hanced. Although this leads to an improvement in ABH performance in terms of a
low reflection coefficient, the subsequent enhancement of vibration in the thin region
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of the taper may lead to early failure due to increased structural fatigue. In addition,
designing a stable and robust feedback controller that greatly enhances the local vi-
bration may be difficult. If a constraint is set so that the reflected wave is controlled
without enhancing the taper vibration, it has been shown that some level of reduction
in the reflected wave can be achieved below 5 kHz, however there are only two fre-
quencies where a simultaneous reduction is possible. It should be noted that one of
these frequencies is a resonance and so this control strategy may be of use if examin-
ing the radiated sound from the structure. Above 5 kHz, this control strategy provides
very little benefit. If a constraint is set so that the taper vibration is controlled without
enhancing the reflected wave, a reduction in the local taper vibration is achievable at a
significant number of frequencies across the full 400 Hz – 10 kHz bandwidth presented,
including resonances. This control strategy may, therefore, be useful in applications
where the ABH provides enough damping passively but is suffering from fatigue due
to high amplitude vibration in the taper. These final two control strategies have shown
that a controller can be designed for applications where there are constraints on the
performance or maximum vibration level. The same investigation has been carried out
using a beam with a constant thickness termination, and it has been found that simul-
taneous control of both error signals can be achieved at more frequencies compared to
the AABH termination, which has been linked to the near perfect reflection from the
uncontrolled termination. However, it has also been noted that these results do not
take into account the main benefits of using an AABH, namely the reduced computa-
tional and electrical power requirements. Finally, a time domain study has shown that
a RLS based IHC can be used to implement each of the compensators effectively in the
time domain and the results shown were consistent with the results from the frequency
domain implementation.

So far, Chapters 3 and 4 of this thesis have provided detailed insight into the imple-
mentation of active control using an AABH beam termination. Whilst this termination
has been shown to be effective, many vibration problems occur in plates and Chapter 5
will, therefore, extend the concept of the AABH to a plate.
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Chapter 5

Feedforward Active Control of a
Plate with Embedded ABHs

Up to this point in this thesis, the focus of the work has been on ABHs operating as
beam terminations. Although this provides interesting physical insight into the mech-
anisms by which ABHs and AABHs can achieve effective vibration control, many prac-
tical vibrating structures have more complex geometries. Therefore, this chapter will
present an extension of the ABH concept, and particularly the AABH concept devel-
oped within this thesis, to a two-dimensional plate structure. In a two-dimensional
structure, an ABH can be manufactured into the plate as a revolved taper that results
in a disk-like indentation. An example of an embedded ABH can be seen in Figure

ℎ(𝑟)

𝑟!"#

ℎ$

ℎ%&'()

FIGURE 5.1: A diagram showing how an ABH is embedded into a plate.

5.1, where rABH is the radius of the ABH, h0 is the difference between the height of the
plate, hplate, and the minimum taper height of the ABH, hmin, and h(r) is the height
function used to define the taper of the ABH. Alternatively, ABHs can be attached
to the surface of the plate with designs such as those proposed in [32–34]. Similarly
to ABHs on beams, a power law (or other function [22, 49]) is usually used to define
the taper and damping is required to achieve good performance. Unlike the beam-
based literature, there has been significant focus on the radiated sound from plate based
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ABHs [53, 90–93], as well as developments to understand the way that vibrational en-
ergy propagates though the circular ABHs [41, 43, 44]. The low frequency performance
of ABHs has been shown in previous chapters to be characterised by the narrow bands
of low reflection which, as frequency is increased, become wider and thus the damp-
ing effect becomes more broadband. Although the low frequency performance of ABH
plates can be improved by, for example, increasing the size of the ABHs to decrease the
local modal frequencies or by integrating the ABHs into a sandwich structure [94], these
solutions are not always practical due to constraints on the size and weight of the host
structure. Chapters 3 and 4 have presented an active solution to this problem, where it
has been shown that feedforward and feedback active control strategies can be applied
to a beam with an AABH termination to improve the performance. Both control strate-
gies examined the capability of the active system to reduce the reflected wave compo-
nent and thus the reflection coefficient of the termination. For a plate with embedded
ABHs, the reflection coefficient with respect to structural waves is less obviously de-
fined and, therefore, previous research on ABHs embedded in plates has focused on
different structural metrics, such as surface mobility [32, 43] and mean-squared accel-
eration/velocity [49, 53, 91].

To examine the performance of plate based AABHs, this chapter presents an investi-
gation into the active control of a plate with five embedded AABHs and the perfor-
mance is compared to an equivalent active control system applied to a conventional
flat plate. The performance of both structures has also been examined when passive
damping treatments are applied. Since, as mentioned above, the reflection in a plate is
not well defined with respect to structural waves, the mean-squared acceleration has
been adopted as a performance metric. A multichannel, feedforward, global control
strategy has been utilised and an investigation has been carried out into the minimisa-
tion of the vibration of the plate. This chapter is organised as follows. The experimental
setup is presented in Section 5.1 and the multichannel feedforward controller formula-
tion is presented in Section 5.2. Section 5.3 presents the experimental results, starting
with an analysis of the structural responses. A plant modelling study has subsequently
been carried out to examine the computational requirements associated with modelling
the plant responses and the results from this study are presented in Section 5.3.2. The
required control filter length has then been investigated in Section 5.3.3 and this study
is followed by the results from a time domain investigation into the minimisation of
the global vibration of the plate, which is presented in Section 5.3.4. Finally, the work
presented in this chapter has been summarised in Section 5.4.

5.1 Experimental Setup

The experimental setup used to investigate the performance of a plate with embed-
ded AABHs is shown in Figure 5.2 and a more detailed diagram of the top surface of
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FIGURE 5.2: The plate mounted on a perspex box that can be driven by both the
shaker and each of the piezoelectric patches attached to the ABHs. A high voltage
amplifier is required to drive the piezoelectric patches and low pass filters have been

used for signal anti-aliasing and reconstruction.

the plate is shown in Figure 5.3. The dimensions of the system and some information
about the damping and piezoelectric patches are shown in Table 5.1. The plate has been
bolted onto the top surface of a perspex box using a metal edge clamp, which is 63 mm
wide and reduces the effective surface area of the plate from 475 mm by 375 mm to 412
mm by 312 mm. The shaker has been connected to the underside of the plate using a
stinger and the accelerometers have been attached to the top surface of the plate using
wax. The piezoelectric patches have also been attached to the top surface of the plate,
co-located with the centre of each embedded ABH. By referring to the damping place-
ment optimisation presented in [53], covering the central region of the ABH produces
the optimal vibration absorption below the cut-on frequency of the ABH. Addition-
ally, the central location gives better coupling between the piezoelectric patch and the
plate due to the thin region of the ABH. The primary disturbance has been generated
by driving the shaker with white noise and the control sources have been generated
by driving the piezoelectric patches via a feedforward control strategy that will be de-
scribed in Section 5.2. The structural response of the plate can be measured using the
evenly distributed array of 12 accelerometers. This arrangement of accelerometers has
been chosen so that the separation of the sensors is 6 cm, which corresponds to the flex-
ural wavelength of a 16 kHz wave in the plate with the properties described in Table
5.1. The signals used to drive the shaker and piezoelectric patches have been passed
through low pass reconstruction filters and the signals from the accelerometers have
been passed through low pass anti-aliasing filters. dSpace, a rapid prototyping DSP
system, has been used to connect the setup to a computer. The upper frequency of in-
terest in this investigation has been defined by the cutoff frequency of the filters as 10
kHz and so the separation of the sensors is small enough to meet the Nyquist spatial
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TABLE 5.1: Information about the plates and treatments used in the experimental
setup.

Variable Value
Plate length 475 mm ± 1 mm

(412 mm with baffle)
Plate width 375 mm ± 1 mm

(312 mm with baffle)
Plate height 6 mm ± 0.1 mm
ABH radius 50 mm ± 0.1 mm

ABH minimum height 0.5 mm ± 0.1 mm
ABH power law 3 ± 0.1

Plate mass with ABHs 2.545 kg
Plate mass without ABHs 2.886 kg

Henley’s damping mass per ABH 17 g ± 0.5 g
Piezoelectric patch mass 2 g ± 0.5 g

(4 g including resting wire mass)
Piezoelectric patch radius 25 mm
Piezoelectric patch height 0.5 mm

Piezoelectric patch cut-on frequency 250 Hz

sampling limit. In order to contextualise the performance, two plates have been used,
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FIGURE 5.3: The surface of the plate showing the location of the accelerometers,
ABHs, piezoelectric patches and stinger mount.

one embedded with ABHs and one without ABHs. The ABHs have been manufactured
into the plate in five locations; one located at the centre of the plate and the other four
located at the centre of each of the four quadrants as shown in Figure 5.3. The lay-
out of these ABHs is based on the layout of control actuators presented in [95], which
considers a clamped plate with similar dimensions and shows that this arrangement of
actuators can be used to effectively control low order plate modes. This layout is also
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representative of a segment of the 13 ABH plate from [41], which has been shown to
perform similarly to the plate with a more dense layout of ABHs. In total, 8 different
variations of the experimental setup have been used. Each plate has been tested with no
treatment, treatment with Henley’s yellow compound [77], treatment with piezoelec-
tric patches, and treatment with both Henley’s compound and piezoelectric patches.
The Henley’s damping material has been applied to the curved side of the ABH so
that the piezoelectric patches could be applied to the flat side to reduce pre-stress. The
piezo patches have been custom made by PI ceramic, but share the same operating
characteristics and thickness as the P-876.A12 patch shown in [82]. When compared to
the rectangular piezoelectric patches used on the ABH beam termination in Chapters
3 and 4, these circular piezoelectric patches are 0.1 mm thicker and contain a piezoce-
ramic layer that is twice as thick, which gives an operating voltage range that is twice
that of the rectangular patches. The cut-on frequency of the patches is 250 Hz, which
introduces a low frequency limit for control. Anti-aliasing and reconstruction filters
have been used in this investigation and are all KEMO low pass filters set with a cut-off
frequency of 10 kHz. Therefore, in order to measure the responses of each plate, a sam-
pling frequency of 22 kHz has been chosen because it equates to a Nyquist frequency
of 11 kHz and accommodates for the 0 – 10 kHz frequency range of interest. In addi-
tion to the sampling frequency used to measure the plate responses, a second sampling
frequency of 4 kHz (equating to a 2 kHz Nyquist frequency) has been selected to im-
plement the control strategy that will be presented in Section 5.2. The justification for
this second control frequency will be made in Section 5.3.1.

Each of the ABH indentations has been defined by revolving a 2D taper about its tip.
Each taper has been defined as

h(r) = ε

(
1− r

rABH

)µ

+ hmin, (5.1)

where ε = hplate − hmin is a scaling factor, hplate is the plate height, hmin is the minimum
height that the taper reaches, rABH is the radius of the taper, r ranges from 0 to rABH

and µ is the power law used to define the taper gradient. The taper dimensions have
been selected by considering similar examples in the literature [43, 44, 57] as well as
with guidance from the parametric study presented in Chapter 2 for a one-dimensional
taper, which showed that for a taper length of 5 cm (and thus a 10 cm diameter if
revolved) and a tip height of 0.5 mm, the optimum power law would be approximately
3. It may be appropriate to conduct a similar study to that presented in Chapter 2 for
the two-dimensional plate ABH, however, in order to focus this thesis on the novel
AABH technology, this has not been conducted here. The cut-on frequency of an ABH
with the dimensions detailed above can be estimated as the frequency at which the
wavelength in the ABH becomes comparable to the size of the ABH [43, 46, 47]. Using
the method outlined in [46, 47], this gives a value of approximately 1.4 kHz. From the
difference in the plate mass with and without the ABH features, shown in Table 5.1,
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it can be seen that each embedded ABH removes 68.2 g of aluminium from the plate,
which is significantly more that the mass of either the Henley’s damping compound
or piezoelectric patch that is added to improve the passive performance. With both
damping and piezoelectric patches applied, the total mass of the ABH plate is 246 g
lighter than the constant thickness plate with no treatment. If treatment is applied to
both plates, the ABH plate is 341 g lighter than the constant thickness plate. Regardless
of the damping added, the ABH plate offers a lighter weight structure with superior
passive broadband performance.

Figure 5.4(a) shows a photo of the full setup of the box with the mounted plate and the
large shaker inside the box that has been driven with the primary disturbance signal.
This photo also shows the locations of the 12 accelerometers and the 5 piezoelectric

(a) Piezo and accelerometer locations (b) Undamped ABHs

(c) Damping placement (d) Stinger location

FIGURE 5.4: The experimental setup used to measure the structural responses of the
plate with embedded ABHs and the constant thickness plate.
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patch actuators mounted on the top surface of the clamped plate. Figure 5.4(b) shows
a photo of the underside of the plate where the ABHs have been embedded and Figure
5.4(c) shows a photo of the ABHs with Henley’s yellow compound applied over the
surface of each ABH indentation. Figure 5.4(d) shows a photo of the stinger attached
to the underside of the plate.

5.2 Controller Formulation

A block diagram of the feedforward control system used in this study is shown in Fig-
ure 5.5. The reference signal, x, is taken from the signal that is used to drive the shaker

𝑷 ∑

𝑾

𝒅(𝑛)𝑥(𝑛)

!𝑹(𝑛)

𝒖(𝑛)

×

𝑮

𝒆(𝑛)

$𝑮

FIGURE 5.5: A block diagram showing the feedforward control system that has been
used to control the structural vibration of the plate with AABHs.

and thus a perfect reference signal is assumed in this case. The reference signal is fil-
tered by Ĝ, which is the matrix of estimated plant responses between the voltage inputs
to the piezoelectric patches and the output signals from the accelerometers. The matrix
of filtered reference signals, R̂, and the vector of error signals from the accelerome-
ters, e, are then used to update the controller, W . The reference signal is filtered by
the controller to generate the vector of control signals, u, which are used to drive the
piezoelectric patches to minimise the primary disturbance. Although the controller can
be implemented adaptively using, for example, the FxLMS algorithm, to ensure that
the limitations on the maximum control performance are clearly demonstrated the op-
timum matrix of control filter coefficients can be calculated using the derivation shown
in Section 5.2.1 of [81]. In this investigation, only one reference signal is used and so
the controller formulation is slightly simplified. To start, the error signal measured at
the l-th accelerometer can be written as

el(n) = dl(n) +
M

∑
m=1

J−1

∑
j=0

glmjum(n− i), (5.2)
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where glmj is the j-th coefficient of a J-th order FIR filter that represents the plant re-
sponse between the m-th piezoelectric patch and the l-th accelerometer. The control
signal used to drive the m-th piezoelectric patch can be expressed as

um(n) =
I−1

∑
i=0

wmix(n− i), (5.3)

where wmi is the i-th coefficient of an I-th order FIR filter. The error signal of the l-th
sensor can be rewritten by substituting Equation 5.3 into Equation 5.2 to give

el(n) = dl(n) +
M

∑
m=1

J−1

∑
j=0

I−1

∑
i=0

glmjwmix(n− i− j). (5.4)

Assuming that the filters are time invariant, Equation 5.4 can be rewritten as

el(n) = dl(n) +
M

∑
m=1

I−1

∑
i=0

wmi r̂lm(n− i), (5.5)

where the filtered reference signal is given by

r̂lm(n) =
J−1

∑
j=0

glmjx(n− j). (5.6)

Equation 5.5 can be expressed in vector form as

el(n) = dl(n) +
I−1

∑
i=0

wi(n)r̂l(n− i), (5.7)

where
wi =

[
w1i w2i · · · wMi

]T
(5.8)

and
r̂l(n) =

[
r̂l1(n) r̂l2(n) · · · r̂lM(n)

]T
. (5.9)

The error signals at all L sensors can be written as

e(n) =
[
e1(n) e2(n) · · · eL(n)

]T
, (5.10)

and the disturbance signal at all L sensors can be written as

d(n) =
[
d1(n) d2(n) · · · dL(n)

]T
. (5.11)

When the sum of wi(n)r̂l(n− i) is performed over all I control filter coefficients, as in
Equation 5.7, the multichannel generalisation of Equation 5.7 can be expressed as

e(n) = d(n) + R̂(n)w, (5.12)
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where the matrix of filtered reference signals corresponding to all M control sources
and all L sensors can be written as

R̂(n) =


r̂T

1 (n) r̂T
1 (n− 1) · · · r̂T

1 (n− I + 1)
r̂T

2 (n) r̂T
2 (n− 1) · · · r̂T

2 (n− I + 1)
...

r̂T
L(n) r̂T

L(n− 1) · · · r̂T
L(n− I + 1)

 (5.13)

and the vector of I control filter coefficients can be written as

w =
[
wT

0 wT
1 · · · wT

I−1

]T
. (5.14)

The objective of this control strategy, as noted above, is to minimise the sum of the
squared error signals. In this case, an expression can be formed using Equation 5.12 for
the cost function defined as the expectation, E, of the sum of the squared error signals,
which can be weighted with a positive control effort coefficient-weighting parameter
and can be expressed as,

J = E
[
eT(n)e(n)

]
+ βwTw. (5.15)

The inclusion of the β term in the cost function has a number of practical benefits, which
include constraining the control effort and improving the robustness of the control sys-
tem as discussed in Section 3.4.7 of [81], but it has been included here to specifically
enable a constraint to be imposed on the peak-to-peak magnitude of the control sig-
nals to avoid overdriving the piezoelectric patch actuators, as discussed in Chapter 3.
Substituting Equation 5.12 into Equation 5.15 gives the full cost function as

J = wTE
[

R̂T(n)R̂(n)
]

w + 2wTE
[

R̂T(n)d(n)
]
+ E

[
dT(n)d(n)

]
+ βwTw. (5.16)

Partially differentiating this cost function with respect to w and setting each element to
0 allows the optimum set of control filter coefficients that minimise this cost function to
be calculated as

wopt = −
{

E
[

R̂T(n)R̂(n)
]
+ βI

}−1
E
[

R̂T(n)d(n)
]

. (5.17)

5.3 Experimental Results

This section presents an implementation of the experimental setup and control strategy
that have been outlined in the previous sections of this chapter. Initially, the responses
of the experimental system are presented and a plant modelling study has been carried
out to determine the FIR filter lengths required to accurately model the plant response
of each plate, as previously conducted for the beam structure in Chapter 3. An investi-
gation into how the broadband average level of structural vibration attenuation varies
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with the control filter length is then presented. Finally, the performance of the feedfor-
ward controller is assessed for the different AABH and constant thickness active plate
configurations, and the results are presented in terms of both structural response and
control effort.

5.3.1 Structural Responses

Using the setup described in Section 5.1, the shaker has been driven with broadband
white noise at a sampling frequency of 22 kHz. The primary response has been mea-
sured at each accelerometer for 30 seconds and the H1-estimator has been used to
calculate the response between the signal driving the primary shaker and each ac-
celerometer. In addition, the power spectral density (PSD) of the signal measured at
each accelerometer has been calculated using the Welch method. The global structural
response of the plate has then been estimated by summing the PSDs corresponding
to each accelerometer signal and these results can be seen in Figure 5.6 for both the
constant thickness plate and the plate with embedded ABHs without damping, with
Henley’s yellow compound, with piezoelectric patches and with both Henley’s and
piezoelectric patches. In addition, the broadband average vibration level for each plate
configuration is shown in Table 5.2. From the primary responses presented in Figure
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FIGURE 5.6: The structural responses of the plate with ABHs and the constant thick-
ness plate with each type of damping applied.

5.6, it can be seen that all combinations of damping reduce the vibration level of the
plate with ABHs. All combinations of damping also reduce the vibration level of the
plate without ABHs, however the reduction is less significant. Figure 5.6(a) shows that
the addition of Henley’s damping material to the ABHs dampens the resonances above
1.4 kHz, which is consistent with the cut-on frequency estimated in Section 5.1 and
Table 5.2 shows that this brings the broadband average vibration level down by 2 dB.
Below 1.4 kHz, the addition of Henley’s does not have much effect on the structural
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TABLE 5.2: The broadband level of vibration for each plate configuration with respect
to 1 mm/s2

Plate type Damping type Broadband level
Plate No Damping 27 dB
with Henley’s 25 dB

ABHs Piezoelectric patches 25 dB
Henley’s and piezoelectric patches 24 dB

Constant No Damping 28 dB
Thickness Henley’s 26 dB

Plate Piezoelectric patches 27 dB
Henley’s and piezoelectric patches 26 dB

response. It can be seen that at some frequencies, such as around 4.5 kHz, there is a
slight shift in the frequency response of the ABH plate treated with Henley’s, which is
likely due to the mass and stiffness that the Henley’s compound adds to the structure.

Figure 5.6(b) shows that when the same amount and distribution of Henley’s com-
pound is added to the constant thickness plate, the damping effect is significantly
smaller, although the frequency range affected is approximately the same as for the
ABH plate (1.4 kHz to 10 kHz). Figures 5.6(a) and 5.6(b) show that if Henley’s damping
material is replaced with piezoelectric patches, which are effectively 13 grams lighter
per patch and cover a slightly smaller surface area compared to the Henley’s damping
treatment, the level of damping is approximately the same for the ABH plate. This is
because the majority of the damping in an ABH occurs within the thinnest region of the
tip, which is covered by the Henley’s compound or piezoelectric patch. However, for
the constant thickness plate the level of damping provided by the piezoelectric patches
is lower compared to Henley’s damping material.

From Table 5.2, it can be seen that the combination of both Henley’s compound and
the un-driven piezoelectric patches dampens the ABH plate by 1 dB more than either
individual treatment. The specific frequency bands where there is a difference in the
level can be seen in Figure 5.6(a); for example, the peak at 2.1 kHz which is partially
dampened by the addition of either treatment but fully dampened by the combination
of both treatments. In contrast, the constant thickness plate does not benefit from the
combination of Henley’s compound and piezo patches. By examining the broadband
levels shown in Table 5.2, it can be seen that the combination of both treatments gives
the same broadband average level as the Henley’s treatment. In addition to the differ-
ences introduced by ABHs and different configurations of damping, there is a similar
drop in the structural response of both plates between 2 kHz and 3 kHz. This drop
occurs around the critical frequency of each plate, which can be estimated as the fre-
quency at which the flexural wavelength matches the acoustic wavelength [2]. At and
above the critical frequency, the radiation efficiency of the plate significantly increases.



94 Chapter 5. Feedforward Active Control of a Plate with Embedded ABHs

Since both plates are manufactured from the same material and share the same thick-
ness profile, with the exception of the ABHs, they will approximately share the same
critical frequency, which has been calculated as 2.2kHz.

These passive structural results have shown that, in the case of the ABH plate, an ac-
tive solution should focus on the 0 Hz to 2 kHz frequency band, where the passive
damping of the ABHs is less effective. In contrast, an active solution for the constant
thickness plate would be required over the full frequency range presented, or a larger
quantity of passive damping treatment would be initially required to match the passive
performance of the ABH embedded plate.

Using the same setup, each of the 5 piezoelectric patches has been driven separately
with white noise using a sampling frequency on 22 kHz. Again, 30 second measure-
ments have been made at each accelerometer and the H1-estimator has been used to
calculate the plant responses between the input to each piezoelectric patch and each
accelerometer. Two examples are given in Figure 5.7; the first is the plant response be-
tween the input to piezoelectric patch 1 and accelerometer 1 (see Figure 5.3) and the
second is the plant response between the input to piezoelectric patch 2 and accelerom-
eter 1. Accelerometer 1 has been chosen because it is located near the corner of the
clamped plate and will thus detect a greater number of structural modes than, say,
the centrally located accelerometer; piezoelectric patch 1 is located at the centre of the
plate, whilst piezoelectric patch 2 is located towards one corner of the plate, thus pro-
viding an overview of the different plant response characteristics. From the results
shown in Figure 5.7, it can be seen that the plant responses for each plate configura-
tion are relatively similar at frequencies below 1 kHz, which is expected because the
cut-on frequency of the ABHs has been shown to be at approximately 1.4 kHz by the
results presented in Figure 5.6(a). Figures 5.7(a) and 5.7(c) show that the centrally lo-
cated piezoelectric patch (m = 1) effectively excites the plate at frequencies above 250
Hz, which corresponds to the cut-on frequency of the piezoelectric patches. These re-
sults are not surprising since the central actuator will couple into the first mode of the
plate well. However, it can be seen from Figures 5.7(b) and 5.7(d) that piezoelectric
patch l = 2, which is located nearer the edge of the clamped plate, is less effective at
exciting the lower frequencies and this is reflected in the noisy phase and low magni-
tude of the signal below 650 Hz. This may cause issues when trying to control the first
two structural resonances of the plate shown in Figure 5.6, which occur below 650 Hz.
Between 1 kHz and 2 kHz, the response of the plate configurations with ABHs is up
to 20 dB higher than the constant thickness plate configurations, which indicates that
the ABH plate configuration, both with or without the Henley’s compound applied, is
more receptive to energy input from the piezoelectric patches. Thus, based on both the
structural responses due to the primary excitation, shown in Figure 5.6, and the sec-
ondary plant responses, the ABH embedded plate offers both higher passive damping
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FIGURE 5.7: The plant response between the input to piezoelectric patch m = 1 and
accelerometer l = 1 and also the input to piezoelectric patch m = 2 and accelerometer

l = 1 for each of the plate configurations.

at higher frequencies and greater coupling between the piezoelectric patch actuators
and the structural response when compared to the constant thickness plate.

5.3.2 Plant Modelling

In this section, a plant modelling study, similar to the one presented for the active beam
in Chapter 3, has been carried out to determine the different plant modelling filter re-
quirements for the plates with and without ABHs. In this study and the following
control implementation a sampling frequency of 4 kHz has been used, which is justi-
fied based on the results presented in Section 5.3.1 because the passive damping of the
ABHs is poor below 2 kHz and thus requires the use of active control. From this point
the term broadband will refer to the full 0 – 10 kHz frequency range, whilst the 400
Hz – 2 kHz frequency band will be referred to the control bandwidth for clarity. This
frequency range has been chosen because it captures the resonances that fall above the
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cut-on frequency of the piezoelectric patches, but is below the frequency at which the
passive damping becomes effective.

For each plate setup with piezoelectric patches, the plant frequency responses have
been modelled as FIR filters using the MATLAB function invfreqz, which fits a dis-
crete time filter to a frequency response. In order to examine the effect of plant model
accuracy, FIR filters have been calculated with between 2 and 150 coefficients (corre-
sponding to durations of 0.5 ms to 37.5 ms at the 4 kHz sample rate). The frequency
responses that have been estimated using the H1-estimator have been used as the ideal
plant responses and these have been compared to each of the plant models using the
normalised mean-squared error (NMSE), which has been calculated as an average over
frequency and both the control actuators and error sensors, which gives

NMSE =
1

ML

ωmax

∑
ω=0

M

∑
m=1

L

∑
l=1

|gml(ω)− ĝml(ω)|2

|gml(ω)|2
, (5.18)

where ĝml is the frequency response of the FIR filter modelling the plant response
between the m-th actuator and l-th sensor, gml is the corresponding identified plant
frequency response and there are M piezoelectric patches and L accelerometers. The
NMSE has been calculated for each of the 4 different plate configurations with piezo-
electric patches attached (with and without Henley’s) and the results from this study
are presented in Figure 5.8. From these results, it can be seen that as the number of FIR
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FIGURE 5.8: The normalised mean-squared error (NMSE) for the plant responses
between the piezo patches and the accelerometer array.

coefficients increases, the error in the plant model decreases for all cases, as expected.
It can also be seen that for the plate with undamped ABHs, the NMSE is lower than for
the constant thickness plate configurations for filter lengths of between 0 and 60 coeffi-
cients. For filter lengths greater than 60 coefficients, the change in the error plateaus and
increasing the length of the plant model further does not give any significant improve-
ment in the plant modelling accuracy. The plate with ABHs and Henley’s compound
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has a lower NMSE than all of the other configurations up to 80 filter coefficients, above
which the error plateaus and becomes comparable to either of the constant thickness
plate configurations. Additionally, the plateau of the error in these three configurations
is approximately 2 dB lower than the plate with undamped ABHs. The configura-
tions with ABHs have both plate modes and local ABH modes, which increases the
complexity of the plant responses and may contribute to the higher NMSE plateau,
particularly when there is no added damping to suppress the local ABH modes. In
all cases, the plant model accuracy is not improved significantly by increasing the filter
length beyond 128 coefficients and so this filter length will be used in the control perfor-
mance evaluation. Comparing this plant modelling study to the plant modelling study
conducted for the beams, which was presented in Chapter 3, it can be seen that the
modelling error for the plates has plateaued at a lower number of FIR filter coefficient,
approximately 200 less than for the beams. This may be attributed to the high level of
damping added by clamping the plates to the box, which results in a similarly damped
response at frequencies below 2 kHz. Comparatively, the beams are cantilevered and
so less damping has been introduced into the system via its boundary conditions. In
this case, the passive damping of the ABH beam termination was clearly higher than
the passive damping of the constant thickness beam termination.

5.3.3 Control Filter Length Study

Having established the plant modelling requirements for each plate configuration as
128 FIR filter coefficients, the effect of the control filter length can now be investigated.
To determine how many coefficients are required for the optimum controller, wopt, the
attenuation in the structural response at each frequency has been calculated for a range
of control filter lengths as

Attenuation(ω) =
trace(Sdd(ω))

trace(See(ω))
, (5.19)

where Sdd is the matrix of cross and power spectral densities of the disturbance signals
and See is the matrix of cross and power spectral densities of the error signals, each
at the frequency ω. An average over the frequencies examined has then been taken
to obtain the mean control bandwidth attenuation for a particular control filter length.
The optimal control performance has been calculated using the formulation presented
in Section 5.2. These calculations have been performed using a range of between 2
to 80 FIR filter coefficients and in each case the peak-to-peak voltage of the control
signal has been constrained to be within the operating limits of the piezoelectric patch
actuator using the β weighting parameter shown in Equation 5.17. The mean control
bandwidth attenuation with respect to the uncontrolled constant thickness plate has
been plotted against the number of control filter coefficients used and the results are
shown in Figure 5.9. From these results, it can be seen that the two constant thickness
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FIGURE 5.9: The mean attenuation over the control bandwidth achieved with respect
to the uncontrolled constant thickness plate, using a control filter with between 2 and

80 FIR coefficients.

plate configurations reach a slightly higher level of attenuation than either of the ABH
plate configurations. However, this is at most 1.5 dB and may be due to the higher level
of passive damping present in the ABH plate configurations. It can also be seen that
in all cases, the mean control bandwidth attenuation increases most between 0 and 10
control filter coefficients, above which the attenuation plateaus. Increasing the control
filter beyond 32 FIR coefficients gives less than 0.2 dB performance benefits and so this
filter length will be used in the performance evaluation.

5.3.4 Control Performance

The control strategy described in Section 5.2 has been implemented offline to determine
the performance of each of the plates under ideal conditions using filtered white noise
between 400 Hz and 2 kHz. This frequency range has been justified in Section 5.3.2.
The plant model filters for each case have been implemented with 128 FIR coefficients
based on the study presented in Section 5.3.2 and the control filters have been set to
contain 32 FIR coefficients based on the study presented in Section 5.3.3. The maxi-
mum peak-to-peak voltage of the control signals has been limited to just within the
operating range of the piezoelectric patches for all cases by the use of the β weighting
parameter in Equation 5.17 to provide a direct and realistically achievable comparison
of the performance. The results are presented in terms of the control performance and
associated control effort and can be seen in Figures 5.10 and 5.11 respectively. The con-
trol bandwidth level, between 400 Hz and 2 kHz, before and after each control strategy
is implemented is shown in Table 5.3; it should be noted that these levels differ from
those presented in Table 5.2, which show the broadband (0 – 10 kHz) levels before con-
trol and include the passive performance of the different treatments. From the results
presented in Figure 5.10, it can be seen that effective structural control can be achieved
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(c) Plate with ABHs and Henley’s

500 1000 1500 2000

Frequency (Hz)

15

20

25

30

35

40

S
tr

u
c
tu

ra
l 
R

e
s
p
o
n
s
e
 (

d
B

 w
.r

.t
. 
1
 m

m
/s

2
)

Control off

Control on

(d) Plate without ABHs and with Henleys

FIGURE 5.10: The global structural response with respect to 1 mm/s2 after minimising
the structural response for (a) the plate with ABHs, (b) the plate with no ABHs, (c) the

plate with ABHs and Henley’s and (d) the plate with no ABHs and Henley’s.

for all plate configurations. When structural control is performed on the plate with em-
bedded ABHs (Figure 5.10(a)), it can be seen that the resonance at 500 Hz is reduced
by approximately 4 dB, the resonance at 840 Hz is reduced by approximately 10 dB
and the smaller resonances above 1 kHz have been reduced by approximately 5 dB.
It can also be seen from the results presented in Table 5.3 that the active control strat-
egy reduces the average structural control bandwidth level of the ABH plate by 4 dB.
From the control effort results presented in Figure 5.11, it can be seen that the ABH
plate configuration without Henley’s requires up to 3 dB more energy to control the
500 Hz mode compared to any of the other configurations, but less energy than the
constant thickness plate configurations to achieve control at higher frequencies. The
mean control effort required for this configuration is -4 dB. When structural control is
performed on the plate with ABHs that also have Henley’s compound applied, it can
be seen from the results presented in Table 5.3 that the control bandwidth level after
control is the same as for the configuration without Henley’s, and that the controller
has reduced the control bandwidth level by 3 dB to achieve this performance. Once
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TABLE 5.3: The mean control bandwidth (400 Hz – 2 kHz) level of the structural
vibration of each plate with piezoelectric patches attached, with and without active

control.

Control off Control on
Plate type 400 Hz – 2 kHz 400 Hz – 2 kHz

ABHs 26 dB 22 dB
ABHs with Henley’s 25 dB 22 dB
Constant thickness 26 dB 21 dB

Constant thickness with Henley’s 26 dB 21 dB

again, this reduction is attributed to the active control strategy and does not take into
account the passive damping of the ABHs above 2 kHz, which has been shown in Sec-
tion 5.3.1. The results in Figure 5.10(c) show that the resonances at 480 Hz and 830
Hz are reduced by 5 dB and 8 dB respectively. The resonances above 1 kHz are re-
duced by up to 5 dB. Figure 5.11 shows that the control effort required to control the
480 Hz mode is approximately the same as for both constant thickness plate configura-
tions and at all frequencies above 500 Hz, the ABH plate configuration with Henley’s
treatment requires the least control effort, which is reflected by a mean control effort
level of -9 dB. This demonstrates that applying a viscoelastic damping material to the
structure can give an additional performance benefit that is not necessarily apparent
from the structural response results. The results presented in Figure 5.10(b) show that
when structural control is performed on the constant thickness plate without Henley’s,
the resonance at 515 Hz is reduced by 3 dB and the resonance at 880 Hz is reduced by
3 dB. The resonances above 1 kHz are reduced by up to 8 dB and the average control
bandwidth level shown in Table 5.3 is reduced by approximately 5 dB. The required
control effort for this implementation is shown to be similar to the ABH plate configu-
rations below 800 Hz but significantly larger at higher frequencies. The mean control
effort in this case is 0 dB, which is considerably higher than either of the ABH plate
configurations. When structural control is performed on the constant thickness plate
with Henley’s damping, the results presented in Figure 5.10(d) show that the resonance
at 505 Hz is reduced by 4 dB, the resonance at 870 Hz is reduced by 10 dB and the res-
onances above 1 kHz are reduced by up to 8 dB. The average control bandwidth level,
which is shown in Table 5.3, is reduced by approximately 5 dB, which is less than the
constant thickness plate without Henley’s treatment, however, the controlled level is
the same. It should be noted that this additional damping treatment also had minimal
affect on the structural response at higher frequencies, which has been shown in Section
5.3.1. The control effort shown in Figure 5.11 is very similar to the constant thickness
plate without Henley’s and this is reflected in the mean control effort, which is also 0
dB. These results have shown that there is very little difference between the two con-
stant thickness plate configurations, both of which require more control effort than the
ABH plate configurations, but achieve a comparable post control vibration level. This
is consistent with the observations regarding the passive attenuation provided by the
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FIGURE 5.11: The control effort required for each control case.

TABLE 5.4: The mean broadband level of the structural vibration of each plate with
no damping applied (undamped, control off), with piezoelectric patches and Henley’s
treatment applied (damped, control off) and with piezoelectric patches, Henley’s treat-

ment and active control (damped, control on).

Undamped Damped Damped
Plate type Control off Control off Control on

0 – 10 kHz 0 – 10 kHz 0 – 10 kHz
ABHs 27 dB 24 dB 22 dB

Constant thickness 28 dB 26 dB 25 dB

Henley’s compound as presented in Section 5.3.1, which demonstrated that the passive
damping on the constant thickness plate is not particularly effective. When Henley’s is
added to the ABH plate, however, there is a significant reduction in the energy required
for control, especially towards the upper end of the presented control bandwidth. This
is consistent with the increased passive performance shown in Section 5.3.1 and shows
that the additional damping has benefits in both the passive and also active perfor-
mance. Interestingly, considering that the plant modelling error for the AABH plate
configuration without Henley’s has been shown in Section 5.3.2 to be approximately 2
dB higher than the other configurations, there is no indication that this has significantly
affected the optimal performance results.

To give an indication of the wider bandwidth performance of each plate, Figure 5.12
presents the structural responses when the hybrid of the passive and active control
strategies are used. From these results it can clearly be seen that the AABHs provide
an effective hybrid control solution and considerably dampen the structure over the
full bandwidth presented, whereas the constant thickness plate is only damped over
the bandwidth that active control is applied. Table 5.4 shows that the mean broadband
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(b) Constant thickness plate

FIGURE 5.12: The global structural response with respect to 1 mm/s2 over the ex-
tended bandwidth when a combination of active and passive control is used.

vibration level is reduced from 27 dB to 22 dB in the ABH plate and from 28 dB to 25 dB
in the constant thickness plate. These results demonstrate that the plate with AABHs
achieves a 3 dB performance benefit over the constant thickness active plate and a 6
dB performance benefit over the uncontrolled and undamped constant thickness plate.
Taking into account the reduced control effort of the AABHs, these results have clearly
highlighted the performance benefits gained from embedding AABHs into a plate.

5.4 Summary

Previously, in Chapters 3 and 4, it has been shown that active control can be used to
reduce the reflection coefficient or vibration of an ABH termination. This chapter has
presented an investigation into the active control of a plate with embedded ABHs and
compared it to the active control of a constant thickness plate. To realise the AABHs,
circular piezoelectric patches have been attached to the flat side of each ABH and Hen-
ley’s damping compound has been applied to the curved side of each ABH. The same
treatment has also been applied to the constant thickness plate in the same distribution.
Before control is performed, it has been shown that the mass of the plate with AABHs
is lower than the mass of the constant thickness active plate. In addition, the passive
damping provided by the AABHs has been shown to significantly attenuate the higher
frequency resonances of the plate.

To address the limited passive performance at lower frequencies, a feedforward mul-
tichannel control strategy has been considered over a control bandwidth of 400 Hz
– 2 kHz where the piezoelectric patches are driven to minimise the global structural
response of the plate. Prior to investigating the active control performance, a study
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has been carried out to examine the requirements of the FIR filter in order to accu-
rately model the plant responses. The results have shown that the error between the
plant model and the measured plant response plateaus at a similar level for both of
the constant thickness plate configurations and the AABH plate configuration with
damping. The error associated with the plant model for AABH plate configuration
without damping plateaus 2 dB higher. However, prior to the plateau the plant model
for both AABH plate configurations is more accurate. A control filter length study has
subsequently been performed and the results showed that the number of control filter
coefficients required to achieve optimal control is approximately the same for all plate
configurations.

When active control is performed on each of the plates, it has been shown that the struc-
tural response can be reduced at the resonant frequencies by up to 10 dB. Interestingly,
the lower plant model accuracy of the AABH plate configuration without Henley’s did
not translate into any notable difference in control performance. The average level of
attenuation achieved over the controlled bandwidth has been shown to be within 1
dB for each of the plate configurations, therefore demonstrating that there is no par-
ticularly advantageous configuration in terms of attenuation. However, the control
effort required by each of the AABH plate configurations, particularly the design with
damping material added, has been shown to be significantly lower than the control ef-
fort required by either of the constant thickness active plate configurations. When the
performance is assessed over the full 0 – 10 kHz bandwidth, it has been shown that the
hybrid of active and passive damping provided by the AABHs reduces the structural
response of the plate by 3 dB more than simply performing active control on a constant
thickness plate. Therefore, the work in this chapter has been shown that integrating
active control into an embedded ABH suitably addresses the low frequency limitation
imposed by the size of the ABH. In addition, it has been shown that a plate with em-
bedded AABHs is lighter than a standard plate with active components and offers a
performance advantage in terms of both broadband damping and control effort. This
chapter has shown that, similarly to the beam cases presented in Chapters 3 and 4, the
addition of AABHs to a structure can give performance advantages in a wide variety
of ways which will be summarised in the following and final chapter of this thesis.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Structural vibrations, specifically flexural vibrations, can cause damage to structures
and can cause the radiation of undesired noise. This thesis has focussed on the de-
sign of a lightweight damping solution for structural vibrations called an ABH and has
examined how active control can be integrated into an ABH in order to improve the
broadband performance.

Previous work has shown for a small number of discrete ABH geometries that the re-
flection coefficient of a beam based ABH termination can be reduced by extending the
length of the taper, reducing the tip height and increasing the power law. It has also
previously been shown that the bands of low reflection of an ABH termination are
linked to the local modes of the taper, which are dependent on the design parameters.
The dimensions of the investigated configurations, specifically the tip height, have not
always been practical and so the work presented in Chapter 2 of this thesis has first
addressed some of the limitations of previous studies and provided a fine resolution
parametric study and modal analysis of an ABH termination over a practical design
parameter range. It has been shown in detail how modifying each of the geometrical
parameters of an ABH termination influences the reflection coefficient and it has been
highlighted that as each parameter is varied, the local minima within the bands of low
reflection vary in magnitude as well as frequency. The local taper modes of the ABH
have been shown to align with the bands of low reflection, which is consistent with pre-
vious investigations but has, in this case, been shown over a wider range of parameters
and frequencies. Therefore, for a tonal problem, the parameters can be tuned so that the
most absorbing mode occurs at the problematic frequency. Finally, it has been shown
that when two parameters are varied simultaneously, the power law and tip height can
be optimised for a particular design, whilst the taper length should just be made longer
to improve performance. From this finding, it has been demonstrated that, although
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reducing the tip height and increasing the power law of the ABH increases the modal
density of the ABH, it will also increase the reflection from the ABH junction and will,
therefore, not necessarily result in the maximum performance. The parametric study
has been used to design an ABH with practical dimensions, which has then been tested
experimentally to validate the model.

The work presented in Chapter 3 has taken the practically designed ABH beam ter-
mination and introduced active components to the taper. The objective of this novel
combination is to create a hybrid damping solution, where the passive damping of the
ABH is combined with active control, resulting in a performance increase that is greater
than the simple summation of the active or passive treatments operating in isolation.
To realise the AABH, a piezoelectric patch actuator has been attached to the ABH ta-
per to act as both the passive damping strip and also as the secondary source and a
feedforward wave-based control strategy has been used to control the reflected wave
component, which is estimated using two error sensors on the beam. The performance
of the AABH termination has been compared to a beam with a constant thickness ac-
tive termination. This investigation has demonstrated that, due to the passive damp-
ing of the ABH, the AABH termination requires significantly fewer FIR coefficients to
achieve the same plant model accuracy as the constant thickness termination. In ad-
dition, it has been found that to achieve a specific level of broadband attenuation, the
AABH termination requires significantly fewer control filter coefficients compared to
the constant thickness termination. This means that the AABH is more computationally
efficient to implement than the constant thickness active beam termination. It has also
been shown that the constant thickness termination requires a significantly higher con-
trol effort than the AABH termination and when the peak-to-peak control voltages for
the two configurations are constrained to match, the AABH significantly outperforms
the constant thickness active termination. In fact, the AABH termination offers a per-
formance advantage above that expected from simply combining the levels of control
offered by the constant thickness active termination and the passive ABH effect. In ad-
dition to the performance results, it has also been noted that controlling the reflection
coefficient using the AABH termination caused an enhancement in the tip vibration,
which has been linked to the energy focussing effect of the ABH and may cause accel-
erated structural fatigue when implementing an AABH in practice. These results have
then been validated experimentally.

The work presented in Chapter 4 has taken the beam with an AABH termination and
has investigated the use of a remote damping feedback control strategy. This study
demonstrates the potential for a feedback control implementation, but provides fur-
ther insight into the link between controlling the reflection coefficient and enhancing
the vibration of the tip of the ABH. In this case, an accelerometer has been added to the
underside of the taper to provide a measurement of the local vibration in the AABH.
The signal from this accelerometer has been used to drive the piezoelectric patch using
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a local feedback loop with an added compensator. Through a geometrical controller
design method, it has been shown that a compensator can be selected that can provide
a tradeoff between reducing the reflected wave component and reducing the local ta-
per vibration. Simultaneous minimisation of both the reflected wave component and
the taper vibration could not be achieved at any frequency examined for the AABH
termination. However, it has been shown that it is possible at a small number of fre-
quencies to significantly reduce both the reflected wave component and the taper vi-
bration simultaneously. Four specific compensator cases have then been investigated
to demonstrate some possible control strategies and provide further insight into the
control tradeoff. It has been shown that at most frequencies, the performance benefits
achieved by minimising the reflected wave component are not possible without signif-
icantly enhancing the taper vibration. It has also been shown that minimising the taper
vibration enhances the reflected wave component, particularly at lower frequencies.
Although it is not possible to minimise either error signal without enhancing the other,
it is possible to achieve a moderate reduction in each error signal without enhancing
the other. This approach can, therefore, be used to potentially extend the life of an
AABH whilst maintaining the passive performance.

The work presented in Chapter 5 extends the concept of an AABH to a plate and consid-
ers a configuration with five ABHs embedded in a plate. The plate has been mounted
on a box and configured with no damping, with viscoelastic damping material applied
to the curved side of the ABHs, with circular piezoelectric patches attached to the flat
side of the ABHs and with both the viscoelastic damping material and piezoelectric
patches attached. The first advantage that has been demonstrated prior to any control
is that the mass of the plate with embedded ABHs is lower than the mass of a plate
with identical dimensions but without ABHs, regardless of the treatment applied. It
has also been shown that the passive performance of the plates is similar up to 2 kHz,
above which the ABH plate is more damped. To improve the performance below 2
kHz, a global multichannel feedforward control strategy has been implemented. Over
this control bandwidth, it has been shown that the plate with embedded AABHs and
the constant thickness active plate have similar requirements in terms of plant mod-
elling and control filter length. The strong similarity between the two plates has been
attributed to clamping each plate, which provides a higher level of damping than for
the beam considered in Chapters 3 and 4. The damping from the ABHs is, therefore,
small below 2 kHz compared to the damping from clamping the plate. Control has then
been implemented for each plate configuration and it has been shown that the global
response could be significantly reduced in each case. The difference in the structural
response between each plate configuration has been shown to be less than 1 dB aver-
aged over the control bandwidth, however, the control effort required by the AABH
plate has been shown to be significantly lower, especially when viscoelastic damping
material has also been applied to the ABHs. In addition, when the performance is
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assessed up to 10 kHz, taking into account the passive damping, the AABH plate sig-
nificantly outperforms the constant thickness plate. The constant thickness plate per-
formed poorly above the active bandwidth. To match the performance of the AABH
plate, either significantly more damping material would be required, adding signifi-
cant mass to the structure, or a more complex active control system would be required
to extend the control bandwidth, however, this is likely to become quickly impractical
due to the increased number of sensors and actuators required.

To conclude, the work in this thesis has shown that ABHs can be designed effectively
for practical applications where space and weight are limited by using the power law
and tip height to tune the performance. It has also been shown that active control can be
integrated into both beam based ABHs and plate based ABHs to achieve a significant
performance increase over either an active solution or passive solution in isolation, and
that the computational resources and electrical power required to implement control
are lower when AABHs are used. Because of this, cheaper components can be used,
which is beneficial for implementing AABHs in practice. In addition, all ABH and
AABH control solutions have been shown to reduce the mass of the structure.

6.2 Future Work

There are a number of possible extensions of this work for the future, which have not
been followed due to the time available and the direction of this thesis. The first exten-
sion could be to use the finite element model to investigate the radiated sound power
from an ABH on a beam and the overall kinetic energy of the system. The radiated
sound power and kinetic energy of the system could also be used to assess the design
tradeoff, and may not follow the same trend as minimising the reflection coefficient.
The finite element model could also be used to assess stresses on the system, so that the
effect of vibration induced fatigue could be estimated. This could also lead to exper-
imentally stress testing ABHs in industrial environments, and would be particularly
useful for the transition of ABHs into industry.

A second extension to the modelling work would be to perform a similar parametric
study to that presented in Chapter 2 but for a plate based ABH, which would require a
different performance criteria such as surface mobility, radiated sound power or total
kinetic energy within the plate. Although this would require significant computational
power, this study would highlight whether the design parameters have similar tun-
ing capabilities as for the beam based ABH. The model could, in addition, be used to
investigate the optimum configuration of ABHs in a plate.

A third extension to the modelling work could be to perform a detailed modal study,
exploring how the complex eigenmodes are linked to the behaviour of the ABH. This
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could tie in with the work presented in [76] and could also encompass how the eigen-
modes are affected by the active control strategies presented in Chapters 3 and 4. Active
control could also be investigated as a means to achieve critical coupling of low order
modes [76]. Similarly to the previous suggestion, this modelling work could also be
extended to a plate, where the model behaviour is more complex.

With regards to AABHs, the work presented in this thesis could be extended in a
number of ways. The feedforward control strategy used in Chapter 3 could be mod-
ified to control the radiated sound power. To achieve this, an estimate of the radi-
ated sound power is required, which can be calculated using the particle velocity and
sound pressure level measured at a number of discrete points that enclose the AABH
and beam [96]. Simulations could then be performed offline to determine the possi-
ble performance benefits by directly controlling the estimated sound power. If this
proves successful, structural sensors could be added to the AABH and beam and an
active structural acoustic control (ASAC) strategy could be implemented, which would
require the identification of the radiation resistance matrix [81, 97].

The control of the radiated sound power using an AABH will result in some change in
the response of the taper, similarly to what has been demonstrated when controlling
reflection. The remote damping geometric controller design [85] presented in Chapter
4 could be used to investigate the relationship between controlling the radiated sound
power and the local vibration in the taper. Furthermore, this study could also include
the reflected wave component as a third error signal, which would provide further
insight into a three-way tradeoff between controlling the reflected wave component,
controlling the radiated sound power and controlling the vibration of the taper. This
work would then be extended to a realtime implementation using the time domain RLS
controller presented in Chapter 4, which would require further work to ensure that the
controller is both stable and robust.

The work presented in Chapter 5 could be extended by examining a control strategy
that minimises the radiated sound power. Initially, similarly to the suggestion regard-
ing sound power control for the beam based AABH, the radiated sound power could
be estimated by measuring the particle velocity and sound pressure over an enclos-
ing surface [96]. This sound power estimate could be directly controlled in an offline
simulation and, if shown to be effective, an ASAC control strategy could be imple-
mented [81, 97].

The work presented in Chapter 5 could also be extended by using the remote damping
controller presented in Chapter 4 [85] to investigate the relationship between structural
control, acoustic control and the vibration of the AABHs. This would provide insight
into whether there is any performance tradeoff between the two control strategies and
whether either control strategy causes significant vibration within the AABH.
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Finally, different geometries, arrangements, or numbers of AABHs could be studied
as, due to time limitations, only one design has been chosen to be investigated in this
thesis. This could tie in with the earlier suggested modelling extensions and other ABH
designs presented in the ABH literature, such as the resonant beam damper [33]. For ex-
ample, this design could then be extended to create a meta-surface of attached AABHs.
The damping optimisation procedures presented in [53], or focussing effect presented
in [7], could also be applied to optimise the distribution of piezoelectric patches on the
AABH for both passive and active performance.

These suggestions are only a few of the many possibilities that are now available with
the use of the AABH vibration damping design and it will be interesting to observe
developments in the fields of ABHs and active control that may present new opportu-
nities for hybrid AABH damping solutions.
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Appendix A

Equipment Lists

A.1 Chapter 2: Parametric Study Experimental Validation Setup

− Computer running MATLAB 2011a and Control desk version 3.7.

− dSpace, Double Autobox 1005, DAC: DS2103, ADC: DS2002, SN: 46310.

− Fylde, FE93PA, Power Amplifier with Low Pass Filters, SN: 115/081.

− Data Physics, IV46, Shaker, SN: CRAC202.

− Fylde, MA32/40, ICP MicroAnalogue with Low Pass Filters, SN: 214/201.

− Polytec, PDV 100, Laser Vibrometer, Version AO, SN: 0266782.

A.2 Chapter 3: Feedforward Active ABH Beam Setup

− Computer running MATLAB 2011a and Control desk version 5.4.

− dSpace, Single Autobox 1005, DAC: DS2103, ADC: DS2002, SN: 22319.

− Benchmaster, 21M Kemo, Filter Bank with ICP conditioning, SN: 107523.

− Fylde, FE93PA, Power Amplifier with Low Pass Filters, SN: 115/081.

− PCB–AV, 790-A01, High Voltage Power Amplifier, SN: 139.

− Data Physics, IV46, Shaker, SN: CRAC202.

− PCB, 352A24, ICP Shear Accelerometers, SNs: LW147291, LW147292.

− PI Ceramic, PI-876.A11, DuraAct Patch Transducers, SNs: 37/5, 37/6.
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A.3 Chapter 4: Feedback Active ABH Beam Setup

− Computer running MATLAB 2011a and Control desk version 5.4.

− dSpace, Single Autobox 1005, DAC: DS2103, ADC: DS2002, SN: 22319.

− Benchmaster, 21M Kemo, Filter Bank with ICP conditioning, SN: 107523.

− Fylde, FE93PA, Power Amplifier with Low Pass Filters, SN: 115/081.

− PCB–AV, 790-A01, High Voltage Power Amplifier, SN: 139.

− Data Physics, IV46, Shaker, SN: CRAC202.

− PCB, 352A24, ICP Shear Accelerometers, SNs: LW147291, LW147292, LW147556.

− PI Ceramic, PI-876.A11, DuraAct Patch Transducers, SNs: 37/5, 37/6.

A.4 Chapter 5: Feedforward Active ABH Plate Setup

− Computer running MATLAB 2011a and Control desk version 5.4.

− dSpace, Single Autobox 1005, DAC: DS2103, ADC: DS2002, SN: 22319.

− Benchmaster, 21M Kemo, Filter Bank with ICP conditioning, SN: 107523.

− Benchmaster, 21M Kemo, Filter Bank with ICP conditioning, SN: 107524.

− Data Physics, PA30E, Power Amplifier, SN: 09/A6Q/24985.

− Ling Dynamic Systems, V457, Shaker, SN: 338.

− PCB–AV, 790-A01, High Voltage Power Amplifier, SN: 139.

− PCB, 352A24, ICP Shear Accelerometers, SNs: LW147557, LW147287, LW147556,
LW147291, LW147399, LW147400, LW147289, LW147549, LW147286, LW145761,
LW147553, LW147292.

− PI Ceramic, PI-876.K004, DuraAct Patch Transducers, SNs: 4106, 4107, 4108, 4109,
33.
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