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ABSTRACT

We show that the homotopy groups of a Moore space Pn(pr), where

pr �= 2, are Z/ps-hyperbolic for s ≤ r. Combined with work of Huang–

Wu, Neisendorfer, and Theriault, this completely resolves the question of

when such a Moore space is Z/ps-hyperbolic for p ≥ 5, or when p = 2 and

r ≥ 6. We also give a criterion in ordinary homology for a space to be

Z/pr-hyperbolic, and deduce some examples.

1. Introduction

Given a space X , one can ask about the behaviour of the partial sum of homo-

topy groups
m⊕
i=1

πi(X) as m → ∞.

Rationally, deep results have been obtained, notably the famous dichotomy of

Félix, Halperin and Thomas [FHT15, Chapter 33]. Interpreted integrally, this

dichotomy says that if X is a simply connected finite CW -complex with finite

rational category then either

• the rank of
⊕∞

i=1 πi(X) is finite, and X is called rationally elliptic,

or

• the rank of
⊕m

i=1 πi(X) grows exponentially with m, and X is called

rationally hyperbolic.
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Study of the corresponding behaviour for the torsion parts of these groups,

which is the subject of this paper, was initiated by Huang and Wu in [HW20].

Let M be a Z-module, let p be a prime and let t ∈ N. The Z/pt-dimension

or Z/pt-rank of M , denoted dimZ/pt(M), is the greatest d ∈ N ∪ {0,∞} such

that there is an isomorphism

M ∼= (Z/pt)d ⊕ C

for some complementary module C. Said another way, dimZ/pt(M) is the num-

ber of Z/pt-summands in M .

Definition 1.1: Let M be a graded Z-module, let p be a prime, and let S ⊂ N.

We say that X is p-hyperbolic concentrated in (the set of exponents) S

if

am :=
∑
t∈S

dimZ/pt

( m⊕
i=1

Mi

)

grows exponentially, in the sense that

lim inf
m

ln(am)

m
> 0.

For a space X we will say that X is p-hyperbolic concentrated in S if π∗(X)

is p-hyperbolic concentrated in S. If X is p-hyperbolic concentrated in N then

we will say simply that X is p-hyperbolic.

This definition generalises and interpolates between two definitions due to

Huang and Wu [HW20]. Namely, their Z/ps-hyperbolicity is precisely our p-

hyperbolicity concentrated in the singleton set {s}, and their p-hyperbolicity is

precisely our p-hyperbolicity concentrated in N, as defined above.

It follows immediately from a result of Henn [Hen86, Corollary of Theorem 1]

that the lim infs appearing in the above definitions must be finite if X is a

simply connected finite CW -complex. In particular, in our results on infinite

complexes, it is possible that the growth is greater than exponential. I am

grateful to Jie Wu for pointing this out.

Definition 1.2: Let Pn(�) denote the mod-� Moore space, which we take to

be the cofibre

Sn−1 �−→ Sn−1 −→ Pn(�)

of the degree � map.
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Huang and Wu show that for p prime, n≥3, and r≥1 the Moore space Pn(pr)

is Z/pr- and Z/pr+1-hyperbolic, and additionally that Pn(2) is Z/8-hyperbolic.

In [ZP21], Zhu and Pan show that Pn(pr) is also Z/p-hyperbolic. Our first

main result fills in the gap between these exponents:

Theorem 1.3: Let p be a prime, and r ∈ N with pr 
= 2. If n ≥ 3, then Pn(pr)

is Z/ps-hyperbolic for all s ≤ r.

The key is to show that the stable homotopy of Pn(pr) contains a Z/ps-

summand for each s ≤ r. This follows from work of Adams on the J-homomor-

phism [Ada65, Ada66], which allows us to find such summands in the stable

homotopy of spheres, and classical work of Barratt [Bar60], which allows us

to transplant these summands to Moore spaces. Once this is done, the proof

follows the same lines as those in [HW20] and [ZP21].

For p > 3 Huang andWu’s results and Theorem 1.3 together are best possible,

in the following sense. In [Nei87], Neisendorfer shows that π∗(Pn(pr)) contains

no element of order ps for s > r + 1. In fact, Neisendorfer claimed in [Nei87]

that this result also holds when p = 3, but later, with Brayton Gray, discovered

some mistakes in the proof (see the unpublished [Nei]). These mistakes were

repaired apart from when p = 3. In [Nei], Neisendorfer shows that the 3-primary

exponent of Pn(3r) is either 3r+1 or 3r+2.

Neisendorfer’s result allows us to combine Huang and Wu’s result with The-

orem 1.3 to obtain the following (using Proposition 3.1):

Corollary 1.4: For p 
= 2, 3 prime, s, � ∈ N and n ≥ 3, the following are

equivalent:

(1) Pn(�) is Z/ps-hyperbolic.

(2) π∗(Pn(�)) contains a class of order ps.

(3) pmax(s−1,1)|�.
Theriault [The08] has shown that for n ≥ 4 and r ≥ 6, π∗(Pn(2r)) con-

tains no element of order 2r+2. The result of Corollary 1.4 therefore holds also

when p = 2 and � is divisible by 26 = 64.

Our second main result is a homological criterion for hyperbolicity:

Theorem 1.5: Let Y be a simply connected CW -complex, let p 
= 2 be prime,

and let s ≤ r ∈ N. If there exists a map

μ : Pn+1(pr) −→ Y
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such that the induced map

(Ωμ)∗ : H∗(ΩPn+1(pr);Z/ps) −→ H∗(ΩY ;Z/ps)

is an injection, then Y is p-hyperbolic concentrated in exponents s, s+1, . . . , r.

In particular, if s = r then Y is Z/pr-hyperbolic.

We will see (using Proposition 10.12) that the hypotheses of Theorem 1.5

simplify in the case that Y = ΣX is a suspension, as follows:

Theorem 1.6: Let X be a connected CW -complex, let p 
= 2 be prime, and

let s ≤ r ∈ N. Suppose that H∗(X ;Z/ps) has finite type. If there exists a map

μ : Pn+1(pr) −→ ΣX

such that

μ∗ : H̃∗(Pn+1(pr);Z/ps) −→ H̃∗(ΣX ;Z/ps)

is an injection, then ΣX is p-hyperbolic concentrated in exponents s, s+1, . . . , r.

In particular, if s = r then ΣX is Z/pr-hyperbolic.

Theorem 1.6 is substantially more elementary than existing criteria for Z/pr-

hyperbolicity: the criterion given in [HW20] requires knowledge of a homotopy

decomposition of ΩY , while that of [Boy21] is given in terms of K-theory, and

only gives p-hyperbolicity. Here, by contrast, we only need ordinary homology.

Together, Theorems 1.3 and 1.6 may be thought of as doing for Moore spaces

what [Boy21] did for wedges of spheres. The main difference between the ho-

mological results of that paper and this is that the Hurewicz map is enough to

detect pr-torsion in the homotopy groups of the Moore space Pn(pr). In con-

trast, one needs more sophisticated machinery to see pr-torsion in a wedge of

spheres; [Boy21] used Adams’ e-invariant. This meant that the theorems of that

paper had to be stated in terms of K-theory, rather than ordinary homology,

and that the spaces under consideration had to be finite complexes.

This document is organized as follows. The proof of Theorem 1.3 may be

read independently of the proof of Theorems 1.5 and 1.6, and vice versa. Sec-

tion 2 contains applications of our results. Section 3 contains definitions needed

throughout. Sections 4, 5 and 6 prove Theorem 1.3, while Sections 7, 8, 9

and 11 prove Theorem 1.5, and Section 10 shows that Theorem 1.5 implies

Theorem 1.6.
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2. Applications

2.1. Spaces containing a Moore space as a retract. Various spaces

have been shown to contain wedges of Moore spaces and spheres as p-local

retracts after looping. This section collects some examples of this form.

Example 2.1: Let M be an (oriented) (n − 1)-connected (2n + 1)-manifold

for n ≥ 2. By Poincaré duality, the homology of M is determined entirely by

Hn(M) ∼= Zr ⊕
�⊕

i=1

Z/prii .

When r ≥ 1, Basu [Bas19, Theorem 5.4] gives a decomposition of ΩM , which

shows in particular that ΩM contains a retract

Ω

( ∨
r−1

Sn ∨
∨
r−1

Sn+1 ∨
�∨

i=1

Pn(prii )

)
.

By Theorem 1.3 and the work of Huang–Wu [HW20] and Zhu–Pan [ZP21], it

follows that M is Z/ps-hyperbolic whenever pmax(s−1,1) divides the order of the

torsion part of Hn(M). In fact, if r ≥ 2 then ΩM contains Ω(Sn ∨ Sm) as

a retract, so is Z/ps-hyperbolic for all p and s by [Boy21]. Conversely, if M

is not Z/ps hyperbolic for any p and s (and is not the sphere S2n+1) then we

must have Hn(M) ∼= Z. An example of such a manifold is Sn−1 × Sn, whose

homotopy groups satisfy

πi(S
n−1 × Sn) ∼= πi(S

n−1)× πi(S
n).

Determining hyperbolicity for these examples is therefore as difficult as deter-

mining hyperbolicity of Sn.

In order to use Basu’s result, we require that there be a Z-summand inHn(M).

In contrast, our next example has Hn(M) a torsion group.
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Example 2.2: Let p be an odd prime, let r ∈ N, and let M be a 5-dimensional

spin manifold with H2(M ;Z) isomorphic to a direct sum of copies of Z/pr.

In [The20] Theriault notes that his Theorem 1.3, together with a classifica-

tion of simply connected 5-dimensional Poincaré duality complexes by Stöcker

[Stö82], gives a decomposition of ΩM . This decomposition shows that ΩM con-

tains ΩP 3(pr) as a retract. In particular, by Theorem 1.3, M is Z/ps-hyperbolic

for all 1 ≤ s ≤ r.

2.2. Suspensions. This section deduces some examples of Theorem 1.6. As a

first example, note that the identity map on the Moore space Pn(pr) satisfies

the hypotheses of that theorem, and so we recover the s = r case of Theorem 1.3.

Let h : πn(Y ) −→ Hn(Y ;Z) be the Hurewicz map, which sends a homotopy

class f : Sn −→ Y to the image f∗(ξn) of a generator ξn of Hn(S
n;Z) under

the map induced on homology by f .

Corollary 2.3 (of Theorem 1.6): Let p be an odd prime and let s∈N. Suppose

that Hn−1(ΣX ;Z) contains a Z/ps-summand, generated by a class z∈Im(h).

Let ν : Sn−1 −→ ΣX be a map with h(ν) = z, and let r ∈ N be such that

the order of ν is equal to prc, for c coprime to p. Then ΣX is p-hyperbolic

concentrated in exponents s, s+ 1, . . . , r.

Before proving this Corollary, we note that by the Hurewicz Theorem it

immediately implies the following.

Corollary 2.4: Let n be the least natural number for which H̃n(ΣX ;Z)

is nontrivial. If H̃n(ΣX ;Z) contains a Z/ps-summand, for p an odd prime

and s ∈ N, then ΣX is Z/ps-hyperbolic.

Proof of Corollary 2.3. By replacing ν with cν (and z with cz) we may assume

without loss of generality that c = 1. Since ν has order pr, it extends to a

map μ : Pn(pr) −→ ΣX .

Let x generate Hn(P
n(pr);Z/ps), and let y generate Hn−1(P

n(pr);Z/ps).

The Bockstein β satisfies β(x) = y. We have μ∗(y) = h(ν) = z, and

β(μ∗(x)) = μ∗(β(x)) = μ∗(y) = z.

This implies that μ∗(x) and μ∗(y) must both have order ps, hence that

μ∗ : H∗(Pn(pr);Z/ps) −→ H∗(ΣX ;Z/ps)

is an injection. Thus, by Theorem 1.6, ΣX is p-hyperbolic concentrated in

exponents s, s+ 1, . . . , r, as required.
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A first example of this sort highlights how much bigger the homotopy of an

Eilenberg–MacLane space becomes upon suspending.

Example 2.5: The least-dimensional homology of ΣK(Z/ps, n) is isomorphic

to Z/ps, so Corollary 2.4 implies that ΣK(Z/ps, n) is Z/ps-hyperbolic for p

odd.

More generally, we have:

Example 2.6: Let G be a finite group. Atiyah [Ati61, Theorem 13.1] has shown

that the cohomology of G (which is the cohomology of K(G, 1)) is nonvanish-

ing in infinitely many degrees. Since the cohomology of G is annihilated by

multiplication by | G | [AM04, Corollary II.5.4] the lowest-dimensional non-

trivial cohomology Hn(K(G, 1);Z) must contain a Z/ps-summand for some ps

dividing | G |. By the universal coefficient theorem, the least nontrivial ho-

mology is Hn−1(K(G, 1);Z), which must also contain such a summand. By the

suspension isomorphism and Corollary 2.4, ΣK(G, 1) is Z/ps-hyperbolic, pro-

vided that p 
= 2. In particular, this means that if | G | is odd, then ΣK(G, 1)

is Z/ps-hyperbolic for some ps dividing the order of G.

If the (co)homology of G is known in least nontrivial dimension, then we can

be more precise. Algebraic interpretations exist for the first few nontrivial ho-

mology groups: H1(K(G, 1),Z) is the abelianization Gab, and H2(K(G, 1),Z) is

known as the Schur multiplier. Consider the Alternating groups An for n ≥ 5.

These are simple, hence have trivial abelianization, and the Schur multiplier

is Z/2 unless n = 6, 7, in which case it is Z/6 [Sch11]. In particular, Corollary 2.4

implies that the suspended Eilenberg–MacLane spaces of A6 and A7 are Z/3-

hyperbolic. Another example is the Suzuki group Suz, which is one of the spo-

radic simple groups, and has Schur Multiplier Z/6 [Gri72], so again ΣK(Suz, 1)

is Z/3-hyperbolic.

3. Common preamble

This section collects some foundational material which will be used in the proofs

of both main results. First, we have the following well-known proposition, which

we use to deduce Corollary 1.4 from Theorem 1.3.
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Proposition 3.1: Let n ≥ 3. If � ∈ N has a prime power factorization

� = pr11 pr22 · · · prmm then

Pn(�)  Pn(pr11 ) ∨ Pn(pr22 ) ∨ · · · ∨ Pn(prmm ),

and furthermore Pn(pr) is q-locally contractible for any prime q 
= p.

Proof. Define a map f : Pn(pr11 ) ∨ Pn(pr22 ) ∨ · · · ∨ Pn(prmm ) −→ Pn(�) which is

given on the wedge summand Pn(prii ) as degree 1 on the top cell and degree �
p
ri
i

on the bottom cell; that is, according to the following diagram of defining

cofibrations.

Sn−1
p
ri
i

Sn−1

�

p
ri
i

Pn(prii )

f |
Pn(p

ri
i

)

Sn−1 �
Sn−1 Pn(�)

By the Chinese Remainder Theorem, f induces an isomorphism on integral

homology. Thus, by Whitehead’s theorem [Whi49], f is in fact a homotopy

equivalence.

To see that Pn(pr) is contractible after localization at q 
= p, note that the

homology with coefficients in the integers localized at q, H∗(Pn(pr);Z(q)), is

trivial, and thus by Whitehead’s theorem the inclusion of the basepoint is a

homotopy equivalence.

3.1. The Witt Formula and the Hilton–Milnor Theorem. We will be

interested in counting the dimension of various ‘weighted components’ of free

Lie algebras. These Lie algebras will be ungraded in the proof of Theorem 1.3

and will be graded for the proof of Theorems 1.5 and 1.6. In both cases, the

quantities we wish to count are determined by the Witt formula, which we now

define.

Let μ : N −→ {−1, 0, 1} be the Möbius inversion function, defined by

μ(s) =

⎧⎪⎪⎨
⎪⎪⎩
1, s = 1,

0, s > 1 is not square free,

(−1)�, s > 1 is a product of � distinct primes.
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The Witt Formula Wn(k) is then defined by

Wn(k) =
1

k

∑
d|k

μ(d)n
k
d .

The Witt formula feeds into the proof of Theorem 1.3 via Theorem 3.3, and

into the proof of Theorems 1.5 and 1.6 via Theorem 8.3. The asymptotics of

the Witt formula are as follows:

Lemma 3.2 ([BO15, Introduction]): The ratio

Wn(k)
1
kn

k

tends to 1 as k tends to ∞.

We now introduce the Hilton–Milnor Theorem. Let L be the free (ungraded)

Lie algebra over Z on basis elements x1, . . . , xn. For an iterated bracket B of

the elements xi, let ki(B) ∈ N∪{0} be the number of instances of the generator

xi occurring in B. The sum

k(B) =

n∑
i=1

ki(B)

is called the weight of B, following Hilton [Hil55]. By induction on k, Hilton

defines a subset Lk of the brackets of weight k, which he calls the set of basic

products of weight k. The basic products of weight 1 are precisely the xi. The

union L =
⋃∞

k=1 Lk is a free basis for L (see for example [Ser06, Theorem 5.3],

but note that what we call basic products, Serre calls a Hall basis).

Theorem 3.3 ([Hil55, Theorems 3.2, 3.3]): Let L be the free Lie algebra over

Z on basis elements x1, . . . , xn. Then the cardinality |Lk| of the set of basic

products of weight k is equal to Wn(k).

We are now ready to state the Hilton–Milnor Theorem. Write X∧k for the

smash product of k copies of the space X .

Theorem 3.4 ([Hil55, Mil72]): Let X1, X2, . . . , Xn be connected CW -com-

plexes. There is a homotopy equivalence

ΩΣ(X1 ∨ · · · ∨Xn) 
∏

B∈L

ΩΣ(X
∧k1(B)
1 ∧ · · · ∧X∧kn(B)

n ),

where the right hand side is the weak infinite product.
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4. Decompositions of Moore spaces

In this section we make the first step in the proof of Theorem 1.3. Namely,

we will see that it follows from work of Cohen, Moore, and Neisendorfer that a

Moore space Pn(pr) with pr 
= 2 contains Pn1(pr) ∨ Pn2(pr) as a retract after

looping, and so it suffices to prove that Pn1(pr) ∨ Pn2(pr) is Z/ps-hyperbolic.

We will also record Corollary 4.6, which describes the behaviour of Moore spaces

under iterated smash products.

When p is odd, the loop-decomposition of Pn(pr) depends on the parity

of n. We have the following three theorems, which give the three cases of the

decomposition.

Theorem 4.1 ([CMN79, Theorem 1.1]): Let p be an odd prime, and let n > 0.

Then

ΩP 2n+2(pr)  S2n+1{pr} × Ω
∞∨

m=0

P 4n+2mn+3(pr).

Theorem 4.2 ([CMN87]): Let p be an odd prime, and let n > 0. Then there

is a space T 2n+1{pr} so that

ΩP 2n+1(pr)  T 2n+1{pr} × ΩΣ
∨
α

Pnα(pr),

where
∨

α Pnα(pr) is an infinite bouquet of mod-pr Moore spaces, and each nα

satisfies nα ≥ 4n− 1.

Lemma 4.3 ([Coh89, Lemma 2.6]): Let n ≥ 3 and r ≥ 2. Then there exist

spaces T n{2r} such that

ΩPn(2r)  T n{2r} × Ω
∨
α

Pmα(2r),

where
∨

α Pmα(2r) is an infinite bouquet of mod-2r Moore spaces, and each mα

satisfies mα ≥ n.

Theorems 4.1 and 4.2, together with Lemma 4.3 immediately imply the fol-

lowing corollary.

Corollary 4.4: Let p be prime and let r∈N. Suppose that pr 
=2, and let n≥3.

Then ΩPn(pr) has Ω(Pn1(pr)∨Pn2(pr)) as a retract for some n1, n2 ≥ n.

Smash powers of Moore spaces are well-understood, by means of the following

Lemma.
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Lemma 4.5 ([Nei80]): Let p be prime, and let r ∈ N, with pr 
= 2. For n,m ≥ 2,

Pn(pr) ∧ Pm(pr)  Pm+n(pr) ∨ Pm+n−1(pr).

For a space X , write X∨i for the wedge sum of i copies of X . Applying

Lemma 4.5 repeatedly gives the following binomial-type formula.

Corollary 4.6: Let p be prime, and let r ∈ N, with pr 
= 2. For n,m ≥ 2,

and k1, k2 ∈ N, letting k = k1 + k2, we have

Pn(pr)∧k1 ∧ Pm(pr)∧k2 
k−1∨
i=0

(P k1n+k2m−i(pr))∨(
k−1
i ).

5. Classes in the homotopy groups of Pn(pr)

In this section, we identify some stable classes in the homotopy groups of Pn(pr).

The identification of these classes is the way in which we go beyond Huang and

Wu’s work. We will transfer known classes from the stable homotopy groups

of spheres (Lemma 5.4) into the stable homotopy groups of Moore Spaces by

means of the stable homotopy exact sequence of the cofibration defining the

Moore space. To show that the resulting classes have the correct order, we need

assurances about the maximum order of the torsion in the stable homotopy

groups of Moore spaces, and these assurances are provided by Corollary 5.2.

Cohen, Moore, and Neisendorfer have shown that the homotopy groups

of Pn(pr) contain classes of order pr+1 [CMN79]. However, these classes are all

outside the stable range; the stable homotopy groups of Pn(pr) were already

known to be annihilated by multiplication by pr. The proof of this fact is due

to Barratt.

Lemma 5.1 ([Bar60]): Let A be (n − 1)-connected, and let p be a prime.

Suppose that we have psidΣA  ∗ in the group [ΣA,ΣA], for some s ∈ N.

Then psπn+j(ΣA) = 0 for j ≤ (p− 1)n.

Corollary 5.2: Let p be prime, and let s ∈ N such that ps 
= 2. Then we

have psπn+j(P
n(ps)) = 0 for j ≤ (p− 1)(n− 2)− 2.

Proof. By definition, Pn(ps)  ΣPn−1(ps), and Pn−1(ps) is (n− 3)-connected.

By Lemma 5.1 the result therefore follows from the fact that the identity map

on Pn(ps) has order ps [Nei10, Proposition 6.1.7].
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We continue in a similar vein. In general, the degree � map on Sn does not

induce multiplication by � on homotopy groups. However, it follows from the

Hilton–Milnor Theorem (Theorem 3.4) that it must do so in the stable range,

as in the next lemma.

Lemma 5.3: The degree � map Sn �−→ Sn induces multiplication by � on πj(S
n)

for j ≤ 2n− 2.

Proof. Write n = m+ 1 and j = i+ 1. By the adjoint isomorphism, it suffices

to show that Ω� induces multiplication by � on πi(ΩS
m+1) for i < 2m. The

map � is the composition

Sm+1 c−→
�∨

i=1

Sm+1 ∇−→ Sm+1

of the �-fold suspension comultiplication c on Sm+1 with the fold map ∇. Let L

be the free Lie algebra on � generators, as in Subsection 3.1. The Hilton–Milnor

Theorem (Theorem 3.4) gives a decomposition

Ω

�∨
i=1

Sm+1  Ω
∏
B∈L

Skm+1,

where k is the weight of B ∈ L , so in particular is implicitly a function of B.

Let f ∈ πi(ΩS
m+1). Applying the above decomposition to (Ω�)∗(f) = (Ω�)◦f

gives factorizations ϕ and θ as in the following diagram:

ΩSm+1 Ωc
Ω
∨�

i=1 S
m+1 Ω∇

ΩSm+1

Si
ϕ

f

Ω
∏

B∈L Skm+1.

� θ

We must show that θ ◦ ϕ  �f . Since i < 2m, cellular approximation tells us

that ϕ factors through the sub-product Ω
∏�

i=1 S
m+1 consisting of those terms

where k = 1. Hilton [Hil55] tells us that the restriction of the Hilton–Milnor

map to these summands is given by the product under the loop multiplication

of the looped wedge factor inclusions ΩSm+1 −→ Ω
∨�

i=1 S
m+1. Thus, the

restriction of θ to these summands is the �-fold loop multiplication map

m : Ω
�∏

i=1

Sm+1 −→ ΩSm+1.
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Furthermore, this restriction of the Hilton–Milnor map is a left homotopy in-

verse to the looped inclusion Ωι : Ω
∨�

i=1 S
m+1 −→ Ω

∏�
i=1 S

m+1 of the wedge

into the product, so θ ◦ ϕ is homotopic to θ ◦ Ωι ◦ Ωc ◦ f .
To finish, we note that by the axiomatic definition of a comultiplication

[Ark11] we have that Ωι ◦ Ωc = Δ, the diagonal map into the �-fold prod-

uct, and the composition m◦Δ is by definition the map inducing multiplication

by � in the group structure on [Si,ΩSm+1] = πi(ΩS
m+1) coming from the fact

that ΩSm+1 is an H-group. But this group structure coincides with that of the

homotopy group [Ark11], and so we are done.

Let πS
j denote the j-th stable homotopy group of spheres. Work of Adams

[Ada65, Ada66] on the J-homomorphism implies that any cyclic group of prime

power order occurs as a summand in some πS
j :

Lemma 5.4 ([Boy21, Lemma 3.4]): For any prime p and any s ∈ N, there

exists j such that Z/ps is a direct summand in πS
j . That is, for a fixed choice

of such a j, Z/ps is a direct summand in πn+j(S
n) for all n ≥ j + 2.

These summands can be transplanted to Pn(pr) as in the next two corollaries.

Corollary 5.5: Let p be prime, and let r ≥ s ∈ N. If ps 
= 2, then there

exists j such that Z/ps is a direct summand in πn+j(P
n(pr)) for all n > j + 3.

Zhu and Pan [ZP21] have already proven the case s = 1, and Huang and Wu

[HW20] have already proven the case s = r.

Proof. The cofibration Pn(pr) −→ Sn pr

−→ Sn gives a truncated long exact

sequence on homotopy groups [Hil65]:

π2n−3(P
n(pr)) −→ π2n−3(S

n) −→ π2n−3(S
n) −→ π2n−4(P

n(pr)) −→ · · ·
· · · −→ πn(P

n(pr))−→πn(S
n)−→πn(S

n) −→ πn−1(P
n(pr)) −→ 0.

By Lemma 5.4, there exists j such that Z/ps is a direct summand in πn+j(S
n)

for all n ≥ j + 2. Fix n ≥ j + 4, and let f : Sn+j −→ Sn generate a Z/ps-

summand. By Lemma 5.3, since we are in the stable range, the composite ps ◦f
is homotopic to psf , and by assumption f has order ps. Thus, since n ≥ j + 3,

the exact sequence applies, and taking r = s we obtain a lift f̃ ∈ πn+j(P
n(ps))
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making the following diagram commute:

Pn(ps) Sn
ps

Sn

Sn+j .

f �∗f̃

We also have, for each r ≥ s, a diagram

Sn−1
pr

Sn−1

Sn−1
ps

Sn−1.

pr−s

Extending the rows of this diagram to cofibre sequences and combining with

the previous one gives a diagram

Sn−1 Pn(pr)
ρ

Sn
pr

Sn

Sn−1

pr−s

Pn(ps)
ρ

ϕ

Sn
ps

Sn

pr−s

Sn+j.

f �∗f̃

We have that

ρ∗(ϕ ◦ f̃) = f,

so the image of ρ∗ : πn+j(P
n(pr)) −→ πn+j(S

n) contains f . Since f generates

a Z/ps-summand, this gives a surjection πn+j(P
n(pr)) −→ Z/ps, and it suffices

to argue that this surjection is split. From the diagram, it further suffices to do

so in the case r = s.

By Corollary 5.2, since n ≥ j + 4 we have psπn+j(P
n(ps)) = 0. This means

that the above surjection πn+j(P
n(ps)) −→ Z/ps is a map of Z/ps-modules.

Since it has free codomain it is split as required.

Corollary 5.6: Let r ∈ N. For n ≥ 32, the group πn+28(P
n(2r)) is isomorphic

to Z/2.

This result has already been shown by Zhu and Pan [ZP21], but it is easy to

give the more explicit argument below.
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Proof. We will take a similar approach to Corollary 5.5. The argument differs

slightly because Corollary 5.2 fails when ps = 2; we compensate for this us-

ing knowledge of the 2-components of the stable homotopy groups of spheres.

Specifically, from [MT67, Theorem 1.1.1 and Table 1.1.8], we know that the

2-localization of πS
28 is isomorphic to Z/2, while the 2-localization of πS

29 is

trivial.

Let n ≥ 32. As in the proof of Corollary 5.5, consider the cofibration

Pn(2r) −→ Sn 2r−→ Sn. The truncated long exact sequence on homotopy groups

contains the segment

πn+29(S
n) −→ πn+28(P

n(2r)) −→ πn+28(S
n).

It follows that the 2-localization of πn+28(P
n(2r)) is isomorphic to Z/2.

6. Proof of Theorem 1.3

In this section, we will prove Theorem 1.3. In Section 4, we reduced the problem

to showing Z/ps-hyperbolicity of the wedge Pn(pr) ∨ Pm(pr). By the Hilton–

Milnor Theorem (Theorem 3.4) and Corollary 4.6, we will see that each of the

stable classes identified in Section 5 will give exponentially many summands in

the homotopy groups of Pn(pr) ∨ Pm(pr), which will suffice.

Proof of Theorem 1.3. By Corollary 4.4, it suffices to prove that if n,m ≥ 2

then Ω(Pn+1(pr) ∨ Pm+1(pr)) is Z/ps-hyperbolic for all s ≤ r. Let L be the

free ungraded Lie algebra over Z on two generators. The Hilton–Milnor theorem

(Theorem 3.4) gives

Ω(Pn+1(pr) ∨ Pm+1(pr))  ΩΣ(Pn(pr) ∨ Pm(pr))


∏

B∈L

ΩΣPn(pr)∧k1 ∧ Pm(pr)∧k2 ,

where we have written ki = ki(B), leaving the fact that ki is a function of B

implicit. Applying Lemma 4.6 factor-wise, this last is homotopy equivalent to

Ω
∏

B∈L

Σ

k−1∨
i=0

(P k1n+k2m−i(pr))∨(
k−1

i )  Ω
∏

B∈L

k−1∨
i=0

(P k1n+k2m+1−i(pr))∨(
k−1
i ),

where k = k1 + k2 is also implicitly a function of B.
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By Corollaries 5.5 and 5.6, let j be such that πN+j(P
N (pr)) contains a Z/ps-

summand for all N > j+3. For each B ∈ L , the associated factor of the above

decomposition contains 2k−1 Moore spaces. Supposing without loss of generality

that n ≤ m, the dimensions of these Moore spaces are at least k(n − 1) + 2.

Thus, for k > j+1
n−1 , the homotopy groups of each factor

k−1∨
i=0

(P k1n+k2m+1−i(pr))∨(
k−1

i )

contain 2k−1 summands isomorphic to Z/ps in dimensions at most km+ 1+ j.

The number of factors for which the weight of B is k is equal to W2(k)

(Theorem 3.3), so we may conclude that

km+1+j⊕
i=1

πi(P
n+1(pr) ∨ Pm+1(pr))

contains at least 2k−1W2(k) summands isomorphic to Z/ps. The sequence

2k−1W2(k) certainly grows exponentially in k (in fact, by Lemma 3.2, it grows

like 1
2k4

k) and this completes the proof.

7. Modules over Z/ps

The purpose of this section is to prove various elementary facts about modules

over Z/ps which we will use later. These facts are mostly intuitively clear, so

we recommend that the reader skip this section on first reading, referring back

only as necessary.

7.1. Injections. The main point of this subsection is to develop the ‘linear

algebra’ to prove Lemma 7.4, which says that injections from free Z/ps-modules

are split, and that therefore the ‘dimension’ of the codomain must be at least

the ‘dimension’ of the domain.

Let p be prime and let s ∈ N. LetM be a finitely generated module over Z/ps.

By the structure theorem for finitely generated Z-modules (for example as in

[Lan02, Theorem 7.5]) M decomposes as a direct sum

M ∼=
n⊕

i=1

Z/psi ,

where each si satisfies 1 ≤ si ≤ s. Further, if we order the summands so

that si+1 ≥ si, then the sequence (si | 1 ≤ i ≤ n) is uniquely determined. In
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particular, if we fix t ∈ N, then the number of values of i for which si = t

is uniquely determined. This number is then precisely the Z/pt-dimension

dimZ/pt(M) of Definition 1.1. We will often use without comment the fact

that a Z/ps-module is equivalently a Z-module M satisfying psM = 0.

We will wish to mimic the approach of ordinary linear algebra as far as

possible. We will wish to be able to ‘change basis’, and to do so we need

a notion of basis, which must generalize the idea of a free basis in that our

elements may have variable order.

Definition 7.1: Let M be a Z/ps-module. A basis of M is a list

((ei, si) ∈ M × N | 1 ≤ i ≤ n),

such that the following conditions are satisfied:

• Each x ∈ M is expressible as x =
∑n

i=1 λiei for λi ∈ Z/ps (spanning).

• ∑n
i=1 λiei = 0 if and only if psi | λi for each i (linear independence).

Lemma 7.2: Any finitely generated Z/ps-module has a basis. Conversely, if

((ei, si) | 1 ≤ i ≤ n) is a basis of M , then the map

n⊕
i=1

Z/psi −→ M

defined by sending the generator of the i-th summand to ei is an isomorphism.

Proof. To see that M has a basis write M ∼= ⊕n
i=1 Z/p

ti , taking ei to be a

generator of the i-th summand, and taking si = ti. It follows immediately that

this is a basis.

Conversely, let ϕ :
⊕n

i=1 Z/p
si −→ M be as in the theorem statement. By

linear independence of the basis, psiei = 0 for each i, so ϕ is well-defined. Sur-

jectivity of ϕ follows immediately from the spanning condition, while injectivity

follows immediately from linear independence. Thus, ϕ is an isomorphism, as

required.

Lemma 7.3: Let ((ei, si) | 1 ≤ i ≤ n) be a basis of M .

• If λ is a unit in Z/ps, then replacing the basis element (ek, sk) with

(λek, sk) again yields a basis.

• If j 
= k and sj ≤ sk, then replacing the basis element (ek, sk) with

(ek + μej , sk) for any μ ∈ Z/ps again yields a basis.
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Proof. We will show only that the basis obtained by the second replacement is

linearly independent; the other parts are similar.

Write (e′i, si) for the new basis, and suppose that
∑n

i=1 λie
′
i = 0. We must

show that psi divides λi for each i. Substituting in, we have( ∑
i
=j,k

λiei

)
+ λjej + λk(ek + μej) = 0.

Since the original basis was linearly independent, we have that psi | λi for i 
= j.

In particular, psk | λk. We also have psj | (λj + μλk). Since sj ≤ sk we

have psj | λk, so psj | λj . Thus, psi | λi for all i, and thus the (e′i, si) form a

basis, as required.

It is always true that a surjection onto a free module splits; over Z/ps, it is

additionally true that an injection from a free module splits.

Lemma 7.4: Let M and N be finitely-generated Z/ps-modules, with M free.

The image of any injection of Z/ps-modules ϕ : M −→ N is a summand,

and dimZ/ps(N) ≥ dimZ/ps(M).

Proof. Let (x1, t1), . . . , (xm, tm) be a basis of M , and let

(e1, s1), . . . , (en, sn), (e
′
1, s

′
1), . . . (e

′
n′ , s′n′)

be a basis of N , such that each si = s and each s′i < s.

Thus we have f(x1) =
∑n

i=1 λiei +
∑n′

i=1 λ
′
ie

′
i for some coefficients λi and λ′

i.

In particular, since f(x1) has order ps, there must be some λj which is not

divisible by p. By repeated use of Lemma 7.3 we may change basis in M by

replacing ej by
∑n

i=1 λiei +
∑n′

i=1 λ
′
ie

′
i. After this change we have f(x1) = ej,

and by renumbering we may assume that j = 1.

We repeat this procedure inductively: at the j-th stage we have f(xi) = ei

for all i < j and we wish to arrange that f(xj) = ej. We have that

f(xj) =

n∑
i=1

λiei +

n′∑
i=1

λ′
ie

′
i

for some coefficients λi and λ′
i, and the set f(x1), . . . , f(xj−1) spans the sub-

module 〈e1, . . . , ej−1〉 ⊂ M . By changing basis in M according to Lemma 7.3,

we may arrange that λi = 0 for i < j, and this does not change the fact

that f(xi) = ei for these values of i. Again, f(xj) has order ps, so there

must be i ≥ j with λi not divisible by p, and by renumbering we may assume
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that i = j. By changing basis we may arrange that f(xj) = ej . This completes

the inductive step, hence the proof that Im(f) is a summand. Since after this

procedure we have f(xi) = ei for i = 1, . . . ,m we must have n ≥ m, which is

the other part of the theorem statement.

We also have the following technical lemma, which will be used in the proof

of Proposition 10.12.

Lemma 7.5: Let X , A, B, and Y be Z/ps-modules, with X free and ps−1B = 0.

Let f : X −→ A⊕ B and g : A ⊕ B −→ Y be homomorphisms. Let iA be the

inclusion of A in A⊕B, and let πA be the projection A⊕ B −→ A. If g ◦ f is

injective, then the composite g ◦ iA ◦ πA ◦ f is also injective.

Proof. Since X is free, a map defined on X is an injection if and only if

its restriction to ps−1X is an injection. It therefore suffices to show that if

g ◦ iA ◦ πA ◦ f(ps−1x) = 0 then ps−1x = 0.

Thus, suppose that g ◦ iA ◦ πA ◦ f(ps−1x) = 0. Write f(x) = a+ b ∈ A⊕B,

for a ∈ A and b ∈ B. Then f(ps−1x) = ps−1a, since ps−1B = 0. In particular,

f(ps−1x) = iA ◦πA ◦f(ps−1x). Thus, g ◦f(ps−1x) = 0, and g ◦f is an injection,

so ps−1x = 0, as required.

7.2. Surjections. The main result of this subsection is Lemma 7.9, which is

the basic algebraic scaffolding for the proof of Theorem 1.5.

Lemma 7.6: Let ϕ : M −→ N be a surjection of Z/ps-modules. Then

dimZ/ps(M) ≥ dimZ/ps(N).

Proof. Write N = F ⊕ C, where F is free over Z/ps, and the complementary

module C satisfies ps−1C = 0. Let π : N −→ F be the projection. The map π◦ϕ
is a composite of surjections, hence a surjection, so is split by freeness of F .

Thus, we have an isomorphism M ∼= F ⊕D for some complementary module D,

so

dimZ/ps(M) ≥ dimZ/ps(F ) = dimZ/ps(N),

as required.

Lemma 7.7: Let A be a submodule of a Z/ps-module N , such that A+pN = N .

Then A = N .
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Proof. Because N is a Z/ps-module, we have psN = 0, so certainly A ⊃ psN .

We will now show that if A ⊃ pkN then A ⊃ pk−1N . By induction, this implies

that A ⊃ p0N = N , which suffices.

Assume that A ⊃ pkN , and let z ∈ N . We have by assumption that z = x+py

for x ∈ A and y ∈ N . Thus, pk−1z = pk−1x+ pky. But now, pky ∈ pkN , which

by induction is a subset of A, so pk−1z ∈ A, and since z is an arbitrary element

of N , this implies that pk−1N ⊂ A. This completes the inductive step, hence

the proof.

Lemma 7.8: Let M,M ′, N be Z-modules. Let p be prime and let s ≤ r ∈ N.

Suppose that prM = 0, so M may be regarded as a module over Z/pr, and

that psN = 0. Let ϕ : M −→ N be a map which admits a factorization

M ′

ϕ̃

M
ϕ

ι

N.

Then
r∑

t=s

dimZ/pt(M ′) ≥ dimZ/ps(Im(ϕ)).

Proof. We will first argue that we may assume prM ′ = 0 without loss of

generality. Replacing N by Im(ϕ̃), we may assume that ϕ̃ is a surjection.

Write M ′ = A⊕B, where prA = 0, and B is a direct sum of copies of Z, Z/qt

for various q 
= p and t ∈ N, and Z/pt for t > r. This gives a decomposition

M = ι−1(A)⊕ ι−1(B).

The restriction of ι to ι−1(B) must have image contained in pB, so the same re-

striction of ϕ̃◦ι has image contained in pN . Furthermore, since ϕ̃ is a surjection,

we have that Im(ϕ̃ ◦ ι |ι−1(A)) + Im(ϕ̃ ◦ ι |ι−1(B)) = N , so in particular

Im(ϕ̃ ◦ ι |ι−1(A)) + pN = N.

By Lemma 7.7 we then have Im(ϕ̃ ◦ ι |ι−1(A)) = N . We may therefore re-

strict M ′ to A and M to ι−1(A) in the diagram without affecting the hypothe-

ses. Since prA = 0, this means that it suffices to prove the lemma in the case

that prM ′ = 0.
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We now tensor the diagram with Z/ps; since psN=0, we have N ⊗ Z/ps∼=N .

Since prM ′ = 0, we have dimZ/ps(M ′ ⊗ Z/ps) =
∑r

t=s dimZ/pt(M ′). By

Lemma 7.6, since ϕ̃⊗ Z/ps is a surjection we have

dimZ/ps(M ′ ⊗ Z/ps) ≥ dimZ/ps(N ⊗ Z/ps).

By Lemma 7.4, dimZ/ps(N ⊗ Z/ps) ≥ dimZ/ps(Im(ϕ) ⊗ Z/ps). This completes

the proof.

By applying Lemma 7.8 in each degree we immediately obtain the following.

Corollary 7.9 (The ‘Sandwich’ Lemma): LetM,M ′, N be graded Z-modules.

Let p be prime and let r ≥ s ∈ N. Suppose that prM = 0 and that psN = 0.

Let ϕ : M −→ N be a map which admits a factorization

M ′

M
ϕ

N.

If Im(ϕ) is Z/ps-hyperbolic then M ′ is p-hyperbolic concentrated in expo-

nents s, s+ 1, . . . , r.

Lemma 7.10: Let ϕ : M −→ N be a map of Z/ps-modules, with N free. Then

dimZ/ps(Im(ϕ)) = dimZ/p(Im(ϕ⊗ Z/p)).

Proof. Let (e1, s1), . . . , (em, sm), (e′1, s
′
1), . . . , (e

′
m′ , s′m′) be a basis of M (Defi-

nition 7.1) where si = s and s′i < s. Let S be a maximal subset of the ei

such that the restriction of ϕ to the submodule of M generated by S is an

injection. Denote this submodule by 〈S〉. By renumbering we may assume

that S = {e1, . . . ek} for some k ≤ n. We clearly have Im(ϕ |〈S〉) ⊂ Im(ϕ), and

we will now show that Im(ϕ) ⊂ Im(ϕ |〈S〉) + pN .

Since N is assumed free, and the elements e′i have order p
si for si < s, we must

have ϕ(e′i) ∈ pN . Now consider ej , for k+1 ≤ j ≤ m. By construction of S, the

restriction of ϕ to 〈S ∪ {ej}〉 is not injective, so there exist λ1, . . . λk, λ ∈ Z/ps

with λ 
= 0 such that

ϕ

( k∑
i=1

λiei + λej

)
= 0.

This implies that λϕ(ej)∈Im(ϕ |〈S〉). Thus, ptϕ(ej)∈Im(ϕ |〈S〉) for some t < s.

By Lemma 7.4 we may write N = Im(ϕ |〈S〉) ⊕ C for some complementary
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module C, and under this correspondence we have ϕ(ej) = (β, γ) for γ ∈ C

and β ∈ Im(ϕ |〈S〉). Since ptϕ(ej) ∈ Im(ϕ |〈S〉), we have ptγ = 0, so by freeness

of N , t < s implies that γ ∈ pN , so ϕ(ej) ∈ Im(ϕ |〈S〉) + pN . We have now

shown that all elements of the basis of M are carried under ϕ to Im(ϕ |〈S〉)+pN ,

so Im(ϕ) ⊂ Im(ϕ |〈S〉) + pN , as claimed.

Now, ϕ |〈S〉 is split by Lemma 7.4, so dimZ/ps(Im(ϕ |〈S〉)) = k. Furthermore,

by taking the inclusion on each summand there is a surjection

Im(ϕ |〈S〉)⊕ pN −→ Im(ϕ |〈S〉) + pN ⊂ N,

and pN is annihilated by multiplication by ps−1, so by Lemma 7.6

dimZ/ps(Im(ϕ |〈S〉) + pN) ≤ k.

Since dimZ/ps(Im(ϕ |〈S〉) + pN) ≥ dimZ/ps(Im(ϕ |〈S〉)), this implies that the

former is equal to k. Thus, since

Im(ϕ |〈S〉) ⊂ Im(ϕ) ⊂ Im(ϕ |〈S〉) + pN,

applying Lemma 7.4 to the inclusions gives

k = dimZ/ps(Im(ϕ |〈S〉)) ≤ dimZ/ps(Im(ϕ)) ≤ dimZ/ps(Im(ϕ |〈S〉) + pN) = k,

so dimZ/ps(Im(ϕ)) = k.

To finish the proof we must show that dimZ/p(Im(ϕ ⊗ Z/p)) = k. Since the

images of ϕ and ϕ |〈S〉 differ only by at most pN , we have

Im(ϕ⊗ Z/p) = Im(ϕ |〈S〉 ⊗Z/p).

Since ϕ |〈S〉 is split injective, ϕ |〈S〉 ⊗Z/p is injective, so

dimZ/p(Im(ϕ |〈S〉 ⊗Z/p)) = k,

which completes the proof.

7.3. Tor and the Universal Coefficient Theorem. The purpose of this

section is to prove that for t < s a map inducing an injection on homology with

Z/ps-coefficients also induces an injection on homology with Z/pt-coefficients

(Lemma 7.13) provided that the domain is free. This follows straightforwardly

from the Universal Coefficient Theorem for homology, where we regard Z/pt as

a module over Z/ps. The inclusion of the bottom cell of a Moore space provides

an easy counterexample to the converse; the algebraic point being that the

converse of Lemma 7.12 is false.
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Lemma 7.11: For any finitely generated Z/ps-modules M , N we have

ps−1TorZ/ps(M,N) = 0,

and furthermore if M or N is free then

TorZ/ps(M,N) = 0.

Proof. For any ring R and R-module M we have TorR(R,M) = 0, since R is

free as an R-module. If 1 ≤ t < s, then a free resolution of Z/pt over Z/ps is

given by

0 −→ Z/ps
·pt

−−→ Z/ps −→ 0,

so, for any Z/ps-module M ,

TorZ/ps(Z/pt,M) = Ker(M
·pt

−−→ M),

which is annihilated by multiplication by pt, hence in particular is annihilated

by multiplication by ps−1. Since any Z/ps-module decomposes as a direct sum

of modules isomorphic to Z/pt for 1 ≤ t ≤ s, both parts of the Lemma now

follow by additivity of Tor.

Lemma 7.12: Let ϕ : M −→ N be a map of Z/ps-modules, with M free.

Let t < s. If ϕ is injective then ϕ⊗Z/pt : M ⊗ Z/pt −→ N ⊗Z/pt is injective.

Proof. Note that M ⊗Z/pt is a free Z/pt-module. Suppose that ϕ⊗Z/pt is not

injective. Then there exists x ∈ M which is not divisible by pt such that ϕ(x) is

divisible by pt. By freeness of M , ps−tx is not divisible by ps, hence is nonzero,

but ϕ(ps−tx) = ps−tϕ(x) is divisible by ps, hence is zero. That is, ϕ is not

injective.

Lemma 7.13: Let t < s ∈ N. Let f : X −→ Y be a map of spaces, and suppose

that H∗(X ;Z/ps) is a free Z/ps-module. If

f∗ : H∗(X ;Z/ps) −→ H∗(Y ;Z/ps)

is injective then

f∗ : H∗(X ;Z/pt) −→ H∗(Y ;Z/pt)

is injective.
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Proof. Write f t
∗ for the induced map on homology with Z/pt-coefficients, and

likewise fs∗ . Applying the universal coefficient theorem for the module Z/pt

over the ring Z/ps we get a map of short exact sequences

0 Hn(X ;Z/ps)⊗ Z/pt

fs
∗⊗Z/pt

Hn(X ;Z/pt)

ft
∗

0 0

0 Hn(Y ;Z/ps)⊗ Z/pt Hn(Y ;Z/pt) Tor(Hn−1(Y ;Z/ps),Z/pt) 0.

The Tor term in the top row vanishes by the freeness hypothesis

on H∗(X ;Z/ps). Since the first map in each exact sequence is an injection,

f t
∗ is injective if and only if f s

∗ ⊗ Z/pt is injective. By Lemma 7.12, if fs
∗ is

injective, then f s
∗ ⊗ Z/pt is injective, so f t

∗ is injective, as required.

8. Free differential Lie algebras

In this section we will show that the module of boundaries BL(x, dx) in the free

differential Lie algebra L(x, dx) over Z/pr is Z/pr-hyperbolic. In the situation

of Theorem 1.5 we will obtain a factorization of the tensor map

BL(x, dx) −→ π∗(ΩY ) −→ BL(x, dx) ⊗ Z/ps,

which will imply by Corollary 7.9 (The ‘Sandwich’ Lemma) that ΩY must

be p-hyperbolic concentrated in exponents s, s + 1, . . . , r. The desired Z/pr-

hyperbolicity of BL(x, dx) will follow from Cohen, Moore, and Neisendorfer’s

description of the homology of L(x, dx), which is Proposition 8.4.

Throughout this section we work over a ground ring R = Z/pr for p 
= 2. The

next definitions are as in [CMN79].

Definition 8.1: A graded Lie algebra is a graded Z/pr-module L, together

with a Z/pr-bilinear pairing

[ , ] : Ln × Lm −→ Ln+m,

called a Lie bracket which satisfies the relations of

• (antisymmetry): [x, y] = −(−1)deg(x)deg(y)[y, x] for all x and y in L.

• (the Jacobi identity): [x, [y, z]] = [[x, y], z]+ (−1)deg(x)deg(y)[y, [x, z]] for

all x, y, and z in L.

• [x, [x, x]] = 0 for all x of odd degree.
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Let V be a graded Z/pr-module. Denote by L(V ) the free Lie algebra on V .

There is a linear map j : V −→ L(V ) and L(V ) is characterized up to canonical

isomorphism as follows. For any map f : V −→ L where L is a graded Lie

algebra, there is a unique map g : L(V ) −→ L so that g ◦ j = f . The Lie

algebra L(V ) may be constructed as follows.

Let L′(V ) be the free nonassociative graded algebra on V , where we think

of the operation as a bracket. Precisely, let Bk be the set of bracketings

of a string of k symbols. Concatenation of bracketings gives an operation

Bk1 ×Bk2 −→ Bk1+k2 , which makes B =
⋃∞

i=1 Bi into a magma. As a module,

L′(V ) =

∞⊕
k=1

( ⊕
b∈Bk

V ⊗k

)
,

where we think of each copy of V ⊗k as being bracketed according to b. The

bracket operation on L′(V ) is obtained by extending the operation on B bilin-

early.

The free Lie algebra L(V ) is obtained as the quotient of L′(V ) by the relations

of Definition 8.1, and automatically has the desired universal property. Denote

by θ the quotient map L′(V ) −→ L(V ). It follows that for s < r, we have

L(V ⊗ Z/ps) = L(V )⊗ Z/ps.

Note also that any map from V into a graded Z/pr-module A with a bilinear

operation (that is to say, a nonassociative Z/pr-algebra) extends uniquely to a

map of graded nonassociative algebras L′(V ) −→ A. The map θ is a map of

nonassociative algebras, hence is uniquely determined by its effect on V , and

we call it the natural quotient.

Definition 8.2: A differential Lie algebra is a graded Lie algebra together

with an Z/pr-linear map d : L −→ L of degree −1, which

• is a differential: d2(x) = 0 for all x in L.

• is a derivation: d[x, y] = [dx, y] + (−1)deg(x)[x, dy] for all x and y in L.

If V carries a differential d, then we may define a differential on L′(V ) which

is the unique derivation extending d. This differential can be seen to satisfy the

relations of Definition 8.1, and therefore descends to give a differential on L(V ),

which makes L(V ) into a differential Lie algebra.

When p = 3, Samelson products in π∗(ΩX ;Z/3r) fail to satisfy the Jacobi

identity, so L′(V ) will also serve as a version of L(V ) which does not satisfy
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the Jacobi identity. For p 
= 3, L′(V ) may be replaced with L(V ) everywhere

in this paper, which slightly simplifies things [CMN79, Remark 6.3].

Write L(V )k for the weight-k component of L(V ), that is, the submodule

generated by brackets of length k in the elements of V . It follows from our

construction of the free Lie algebra L(V ) that

L(V ) ∼=
∞⊕
k=1

L(V )k,

so weight gives a second grading on L(V ), and we shall write wt(x) = k when-

ever x ∈ L(V )k. We will use subscripts (as in L(V )i) for ordinary grading, and

superscripts (as in L(V )k) for weight. The dimension of the weighted compo-

nents is given by the Witt formula, which we defined in Section 3.

Theorem 8.3 ([Hil55, Theorems 3.2, 3.3]): Let V be a free graded Z- or Z/ps-

module of total dimension n. Then the total dimension of L(V )k is Wn(k).

8.1. Homology and boundaries. Let x be an even-dimensional class in a

graded Lie algebra L over Z/pr for p 
= 2. Let

τk(x) = adp
k−1(x)(dx),

so

deg(τk(x)) = pk deg(x) − 1

and let

σk(x) =
1

2

pk−1∑
j=1

1

p

(
pk

j

)
[adj−1(x)(dx), adpk−1−j(x)(dx)],

so

deg(σk(x)) = pk deg(x) − 2,

where we understand the coefficients 1
p

(
pk

j

)
to be computed in the integers and

then reduced mod p.

Proposition 8.4 ([CMN79, Proposition 4.9]): Let V be an acyclic differential

Z/p-vector space. Write L(V ) ∼= HL(V ) ⊕K, for an acyclic module K. If K

has an acyclic basis, that is, a basis

{xα, yα, zβ, wβ},
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where α and β range over index sets I and J respectively, and we have

d(xα) = yα, deg(xα) even,

d(zβ) = wβ , deg(zβ) odd,

then HL(V ) has a basis

{τk(xα), σk(xα)}α∈I ,k≥1.

Remark 8.5: An acyclic basis for K may always be chosen, by the following

inductive procedure. Write Ki for the i-th graded component of K. Then

d : Ki+1 −→ Ki, and since K is acyclic we have Im(d) = Ker(d) in each Ki.

Assume that we have a basis of Ker(d) ⊂ Ki. Because Ker(d) = Im(d), d

induces an isomorphism Ki+1�Ker(d) −→ Im(d). Choose representatives of this

basis in Ki+1, and choose a basis of Ker(d) ⊂ Ki+1. Combining these two sets

gives a basis of Ki+1, and the subset which forms a basis of Ker(d) is precisely

what we need to continue the induction. The induction can be started using

the fact that K−1 = 0.

Recall that we write L(V )k for the weight-k component of L(V ), that is, the

submodule generated by brackets of length k in the elements of V , and recall

also that weight defines a grading. Note that the differential d preserves weight.

The operations τk and σk satisfy

wt(τk(x)) = pkwt(x),

wt(σk(x)) = pkwt(x).

We will use weight to produce a modified dimension function which makes

precise the idea that ‘most’ of the decomposition of L(V ) in Proposition 8.4

consists of the summand K; the summand HL(V ) is comparatively small.

Definition 8.6: Let M be a Z/pr-module, together with a grading wt, which we

think of as a weight, such that each weight-component M i is free and finitely

generated. Define dimk(M) ∈ R by setting

dimk(M) =

k∑
i=1

dim(M i)

i
.

It follows immediately from the definition that

dimk(A⊕B) = dimk(A) + dimk(B).
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We will be concerned with evaluating the functions dimk on submodules of

the free Lie algebra L(V ). We write BM for the module Im(d) of boundaries

in a differential module (M,d).

Lemma 8.7: Let V be an acyclic differential Z/p-vector space. For all k ∈ N

we have:

• dimk(HL(V )) < 1
p dim

k(L(V )), and

• dimk(BL(V )) > p−1
2p dimk(L(V )).

Proof. Decompose L(V ) ∼= HL(V ) ⊕ K as in Proposition 8.4, and choose a

basis {xα, yα, zβ, wβ} of K as in Remark 8.5, where α and β run over indexing

sets I and J respectively. The differential preserves weight, so by choosing

such a basis in each weighted component separately, we may assume that the

basis vectors are homogenous in weight. Let Sk be the set of those α ∈ I with

wt(xα) ≤ k. Proposition 8.4 gives that

dimk(HL(V )) <
∑
α∈Sk

∞∑
j=1

1

wt(τj(xα))
+

1

wt(σj(xα))

=
∑
α∈Sk

∞∑
j=1

1

pjwt(xα)
+

1

pjwt(xα)

=
∑
α∈Sk

2

wt(xα)

∞∑
j=1

1

pj
=

1

p− 1

∑
α∈Sk

2

wt(xα)
.

On the other hand, the contribution of the xα and yα to the dimension of K

gives that

dimk(K) ≥
∑
α∈Sk

2

wt(xα)
,

so

dimk(K) > (p− 1) dimk(HL(V )).

Since L(V )∼=HL(V )⊕K, we have that dimk(L(V ))=dimk(K)+dimk(HL(V )), so

dimk(L(V )) > p dimk(HL(V )),

which proves the first inequality. This also implies that

dimk(K) >
p− 1

p
dimk(L(V )),

and since K is acyclic, we must have

dimk(BL(V )) ≥ 1

2
dimk(K).

Combining these proves the second inequality and completes the proof.
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All we will require for our application is the case when V is the free Z/pr-

module on two generators x and y satisfying d(x) = y. In this case we will

write

L(x, dx) = L(V ) and L′(x, dx) = L′(V ).

Note that L(x, dx)⊗ Z/ps is the free Lie algebra on V ⊗ Z/ps.

Lemma 8.8: Let V be a graded acyclic Z/pr-module, free and finitely gen-

erated in each dimension, of total dimension at least 2. Then the module of

boundaries BL(V ) is Z/pr-hyperbolic. In particular, the module of bound-

aries BL(x, dx) in the free differential Lie algebra L(x, dx) is Z/pr-hyperbolic.

Proof. Since it has the correct universal property, L(V ) ⊗ Z/p is the free Lie

algebra over Z/p on V ⊗Z/p. Thus, by Lemma 7.10 applied to the differential d

it suffices to prove the r = 1 case, for which we can use Proposition 8.4, in the

guise of Lemma 8.7.

By Lemma 8.7, we know that

dimk(BL(V )) >
p− 1

2p
dimk(L(V )).

Thus,

k∑
i=1

dim(BL(V )i) ≥
k∑

i=1

dim(BL(V )i)

i
>

p− 1

2p

k∑
i=1

dim(L(V )i)

i

≥ p− 1

2p

k∑
i=1

dim(L(V )i)

k
.

Let n be the maximum i for which Vi 
= 0. The leftmost term is equal to

dim(
⊕k

i=1 BL(V )i), and BL(V )i ⊂ L(V )i ⊂ L(V )ni, so we have

dim

( nk⊕
j=1

BL(V )j

)
>

p− 1

2pk

k∑
i=1

dim(L(V )i) ≥ p− 1

2pk
dim(L(V )k)

=
p− 1

2pk
W�(k),

by Theorem 8.3, where we let � = dim(V ), so

dim

( k⊕
i=1

BL(V )i

)
>

p− 1

2p� k
n�

W�(�k
n
�) ∼ p− 1

2p� k
n�2

��
k
n �
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by Lemma 3.2. Now, � is assumed greater than 1, so

p− 1

2p� k
n�2

��
k
n � ≥ p− 1

2p( kn )
2
�

k
n−1,

so for any ε > 0, once k is large enough we have

dim

( k⊕
i=1

BL(V )i

)
> (�

1
n − ε)k.

That is, dim(
⊕k

i=1 BL(V )i) grows faster than an exponential in any base smaller

than �
1
n . In particular, if dim(V ) = � ≥ 2, then BL(V ) is Z/p-hyperbolic, as

required.

Since θ : L′(V ) −→ L(V ) is surjective and commutes with d, we immediately

obtain the following corollary.

Corollary 8.9: The submodule Im(θ ◦ d) in the free differential Lie alge-

bra L(x, dx) is Z/pr-hyperbolic.

9. Loop-homology of Moore spaces

In this section we will study the question ‘what part of H∗(ΩPn+1(pr);Z/pr)

can be shown to consist of integral Hurewicz images?’ The answer is ‘the mod-

ule of boundaries in a differential sub-Lie algebra isomorphic to L(x, dx)’. In

Section 8 we have seen that such a module is Z/pr-hyperbolic. The hypotheses

of Theorem 1.5 are really conditions under which the image of this module under

the map (Ωμ)∗ remains Z/ps-hyperbolic, and we thus obtain a Z/ps-hyperbolic

submodule of the image of the Hurewicz map.

We follow the notation from Neisendorfer’s book [Nei10]. Let p be a prime

and let s ≤ r ∈ N. For a space Y , recall that the homotopy groups of Y

with coefficients in Z/ps, denoted πn(Y ;Z/ps), are the based homotopy sets

[Pn(ps), Y ], which are groups for n ≥ 3. There are a number of useful operations

relating the integral and mod-ps homotopy groups, which we introduce next.

Let βs : Sn−1 −→ Pn(ps) be the inclusion from the cofibration sequence of

Definition 1.2. This defines a map of degree −1

βs : πn(Y ;Z/ps) −→ πn−1(Y )

f �−→ f ◦ βs.
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Similarly, let ρs : Pn(ps) −→ Sn be the pinch map, which is obtained by

extending the cofibration sequence of Definition 1.2 to the right. This defines a

map of degree 0
ρs : πn(Y ) −→ πn(Y ;Z/ps)

f �−→ f ◦ ρs.
Lastly, let redr,s : Pn(ps) −→ Pn(pr) be the map defined by the diagram of

cofibrations

Sn−1
ps

Sn−1

pr−s

Pn(ps)

redr,s

Sn−1
pr

Sn−1 Pn(pr),

and let
redr,s : πn(Y ;Z/pr) −→ πn(Y ;Z/ps)

f �−→ f ◦ redr,s.
It follows from the definitions that βs, ρs and redr,s are all natural in Y .

We will now use these operations to produce elements u and v of

π∗(ΩPn+1(pr);Z/ps). The Hurewicz images of v and u will play the roles of the

elements x and dx of Section 8. Although these elements are easily described

in terms of things we already have, we will give them new names for clarity.

Let

v′ : Pn(ps) −→ Pn(pr)

be equal to redr,s.

Let

u′ : Pn−1(ps) −→ Pn(pr)

be the composite

Pn−1(ps)
ρs

−→ Sn−1
βr

−→ Pn(pr).

Recall that for any space X there is a natural map η : X −→ ΩΣX , which is

the unit of the adjunction Σ � Ω and sends x ∈ X to the loop γx = (t �−→ 〈t, x〉)
on ΣX . Let

v = η ◦ v′ : Pn(ps) −→ ΩPn+1(pr),

and let

u = η ◦ u′ : Pn−1(ps) −→ ΩPn+1(pr).

Now let G be anH-group, and suppose that the prime p is odd. As in the inte-

gral setting, the homotopy groups with coefficients π∗(G;Z/ps) carry a Samelson
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product; a bilinear operation which resembles a Lie bracket [CMN79]. In partic-

ular, loop spaces are H-groups, so we have Samelson products in π∗(ΩX ;Z/ps)

for any X .

Lemma 9.1: Let p be an odd prime. The map

π∗(ΩX ;Z/ps)
βs

−→ π∗(ΩX)
ρs

−→ π∗(ΩX ;Z/ps)

is a differential (that is, (ρs ◦βs)2 = 0) of degree −1, which satisfies the Leibniz

identity relative to Samelson products.

Proof. By [CMN79, Section 7], we have the Leibniz identity. To see that it is a

differential, note that βs ◦ ρs = 0, so (ρs ◦ βs)2 = ρs ◦ (βs ◦ ρs) ◦ βs = 0.

By construction of u and v we have

(ρs ◦ βs)(v) = pr−su

in π∗(ΩPn+1(pr);Z/ps). Let L′(x, dx) and L(x, dx) be as in Section 8, where

we let deg(x) = n and deg(y) = n − 1. Let 〈x, dx〉 be the free graded Z/pr-

module of dimension 2 on basis {x, dx}, so that L(x, dx) = L(〈x, dx〉), and with

this notation note that L′(x, dx) ⊗ Z/ps = L′(〈x, dx〉 ⊗ Z/ps), the analogous

construction over Z/ps.

We define a map of Z/ps-modules φr,s
π :〈x, dx〉⊗Z/ps−→π∗(ΩPn+1(pr);Z/ps)

by sending x �−→ v and dx �−→ u. Samelson products in π∗(ΩPn+1(pr);Z/ps)

are bilinear, so by the universal property of L′(x, dx) ⊗ Z/ps, φr,s
π extends to a

map

Φr,s
π : L′(x, dx) ⊗ Z/ps −→ π∗(ΩPn+1(pr);Z/ps)

of graded (nonassociative) Z/ps-algebras.

The following lemma relates Φr,s
π to Φr,r

π .

Lemma 9.2: If s ≤ r then pr−sΦr,s
π ◦ d = ρs ◦ βs ◦ Φr,s

π . In particular, if s = r,

then Φr,s
π = Φr,r

π is a map of differential Lie algebras.

Proof. It suffices to show that the composites pr−sΦr,s
π ◦ d and ρs ◦ βs ◦ Φr,s

π

agree on brackets of length k in L′(x, dx) ⊗ Z/ps for each k ∈ N. We will do

this by induction.

In the case k = 1, the restriction of Φr,s
π to brackets of length 1 is φr,s

π . By

construction of u and v we have (ρs ◦ βs)(v) = pr−su in π∗(ΩPn+1(pr);Z/ps),

so φr,s
π satisfies pr−sφr,s

π ◦ d = ρs ◦ βs ◦ φr,s
π , as required.
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Now let a ∈ L′(x, dx)⊗Z/ps be a bracket of length k > 1. We have a = [b, c]

for brackets b, c of lengths i and j respectively with i + j = k, i < k, j < k.

Thus

ρs ◦ βs ◦ Φr,s
π (a)=ρs ◦ βs ◦ Φr,s

π ([b, c]) = ρs ◦ βs([Φr,s
π (b),Φr,s

π (c)])

=[ρs ◦ βs ◦ Φr,s
π (b),Φr,s

π (c)]+(−1)deg b[Φr,s
π (b), ρs ◦ βs ◦ Φr,s

π (c)],

where the last equality is by Lemma 9.1. By induction we have

ρs ◦ βs ◦ Φr,s
π (b) = pr−sΦr,s

π ◦ d(b)

and

ρs ◦ βs ◦ Φr,s
π (c) = pr−sΦr,s

π ◦ d(c),

so the above is equal to

[pr−sΦr,s
π ◦ d(b),Φr,s

π (c)] + (−1)deg b[Φr,s
π (b), pr−sΦr,s

π ◦ d(c)]
= pr−sΦr,s

π ([d(b), c] + (−1)deg b[b, d(c)])

= pr−sΦr,s
π ◦ d([b, c]).

This completes the induction, and hence the proof.

Lemma 9.2 identifies a factor of pr−s. The next lemma makes precise the idea

that this factor comes from the map βs, rather than the map ρs, by relating

each Φr,s
π to Φr,r

π .

Lemma 9.3: The following diagram commutes:

L′(x, dx)

d

Φr,r
π

π∗(ΩPn+1(pr);Z/pr)

βr

π∗(ΩPn+1(pr))

ρs

L′(x, dx) ⊗ Z/ps
Φr,s

π
π∗(ΩPn+1(pr);Z/ps).

In particular,

Im(ρs) ⊃ Im(Φr,s
π ◦ d).
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Proof. By Lemma 9.2, the top face of the following diagram commutes,

and the bottom face commutes up to a factor of pr−s, in the sense that

pr−sΦr,s
π ◦ d = ρs ◦ βs ◦ Φr,s

π :

L′(x, dx)

quotient
Φr,r

πd

L′(x, dx)

quotient

Φr,r
π

L′(x, dx) ⊗ Z/ps

d Φr,s
π

π∗(ΩPn+1(pr);Z/pr)

redr,s

βr

π∗(ΩPn+1(pr))

ρr

L′(x, dx) ⊗ Z/ps

Φr,s
π

π∗(ΩPn+1(pr);Z/pr)

redr,s

π∗(ΩPn+1(pr);Z/ps)

βs

π∗(ΩPn+1(pr))

ρs

π∗(ΩPn+1(pr);Z/ps).

Commutativity of the back left face is clear. We now check commutativity

of the front left and back right faces, which are identical. Since the reduction

map redr,s is a map of Lie algebras, both composites are maps of nonassociative

algebras, and by the uniqueness part of the universal property of L′(x, dx), it
suffices to show that the restrictions to 〈x, dx〉 agree, and this is easily seen by

direct calculation.

We now turn to the front right face. The square involving ρs commutes, since

the composite

Pm(ps)
redr,s

−−−−→ Pm(pr)
ρr

−→ Sm

is equal to ρs : Pm(ps) −→ Sm. For the square involving βs, we have that the

composite

Sm−1
βs

−→ Pm(ps)
redr,s

−−−−→ Pm(ps)

is equal to pr−sβr : Sm−1 −→ Pm(pr).

Putting all of this together, we have that

Φr,s
π ◦ d ◦ quotient = redr,s ◦ Φr,r

π ◦ d = redr,s ◦ ρr ◦ βr ◦ Φr,r
π = ρs ◦ βr ◦ Φr,r

π ,

as required.
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Let s ≤ r. The homology H̃∗(Pm(pr);Z/ps) is free over Z/ps; in particular

we have

H̃i(P
m(pr);Z/ps) =

⎧⎨
⎩Z/ps, i = m,m− 1,

0, otherwise.

Write em for a choice of generator of Hm(Pm(pr);Z/ps), and sm−1 = β(em),

where β is the homology Bockstein. The group Hm−1(P
m(pr);Z/ps) is gener-

ated by sm−1.

The Pontrjagin product makes H̃∗(ΩPn+1(pr);Z/ps) into a Z/ps-algebra.

Any graded associative algebra carries a Lie bracket, defined by setting

[x, y] = xy − (−1)deg(x) deg(y)yx,

and this is what will be meant by ‘the bracket on H∗(ΩPn+1(pr);Z/ps)’.

Recall that an element of πm(Y ;Z/pr) is a homotopy class of maps

Pm(pr) −→ Y . Let h : π∗(Y ;Z/ps) −→ H∗(Y ;Z/ps) be the Hurewicz map,

which sends f ∈ π∗(Y ;Z/ps) to f∗(em) ∈ H∗(Y ;Z/ps). By [CMN79, Proposi-

tion 6.4], the generators em may be chosen so that h carries Samelson products

to commutators; that is, so that h([f, g]) = [h(f), h(g)] ∈ H∗(ΩPn+1(pr);Z/ps).

Thus, the composition h ◦ Φr,s
π respects brackets, and the codomain,

H∗(ΩPn+1(pr);Z/ps) carries a (genuine) Lie algebra structure. We therefore

obtain a factorization of h ◦ Φr,s
π through θ to give a map of Lie algebras Φr,s

H

which satisfies the following lemma:

Lemma 9.4: The following diagram commutes:

L′(x, dx) ⊗ Z/ps
Φr,s

π

θ

π∗(ΩPn+1(pr);Z/ps)

h

L(x, dx) ⊗ Z/ps
Φr,s

H
H∗(ΩPn+1(pr);Z/ps).

9.1. Tensor algebras and the Bott–Samelson Theorem. The purpose

of this section is to introduce some notation for dealing with tensor algebras,

and to recall the Bott–Samelson Theorem (Theorem 9.5). We define the tensor

algebra on a graded R-module V to be T (V ) =
⊕∞

k=1 V
⊗k, where V ⊗k is

the tensor product of k copies of V . In particular, this definition is ‘reduced’

since we do not insert a copy of R in degree 0. The multiplication is given

by concatenation of tensors, and makes T (V ) into the free graded associative
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algebra on V . Let A be an algebra and let ϕ : V −→ A be a homomorphism.

We write ϕ̃ : T (V ) −→ A for the map of algebras induced by ϕ. Let

ιi : V
⊗i −→ T (V )

be the inclusion, and let

ζi : T (V ) −→ V ⊗i

be the projection.

Bott and Samelson first proved their theorem in [BS53]; we give the formu-

lation from Selick’s book [Sel97].

Theorem 9.5 (Bott–Samelson): Let R be a PID, and let X be a connected

space with H̃∗(X ;R) free over R. Then

H̃∗(ΩΣX ;R) ∼= T (H̃∗(X ;R))

and η : X −→ ΩΣX induces the canonical map H̃∗(X ;R) −→ T (H̃∗(X ;R)).

The Bott–Samelson Theorem immediately allows us to find a free Lie algebra

in the loop-homology of a Moore space.

Lemma 9.6: The map Φr,s
H : L(x, dx) ⊗ Z/ps −→ H∗(ΩPn+1(pr);Z/ps) is an

injection.

Proof. Since r ≥ s, the module H∗(Pn(pr);Z/ps) is free over Z/ps. By the

Bott–Samelson Theorem 9.5, H̃∗(ΩPn+1(pr);Z/ps) ∼= T (x, dx)⊗Z/ps, and this

isomorphism identifies Φr,s
H with the natural map

L(x, dx) ⊗ Z/ps −→ T (x, dx)⊗ Z/ps.

But this latter map is an injection by Proposition 2.9 and Corollary 2.7 of

[CMN79].

We have the following corollary, which will be the main ingredient in the

proof of Theorem 1.5.

Corollary 9.7: Let Y be a simply connected CW -complex, let p be an odd

prime, and let r ∈ N. Let μ : Pn+1(pr) −→ Y be a continuous map. If the

induced map

(Ωμ)∗ : H∗(ΩPn+1(pr);Z/ps) −→ H∗(ΩY ;Z/ps)

is an injection, then the module Im((Ωμ)∗ ◦Φr,s
H ◦θ◦d) is Z/ps-hyperbolic.
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Proof. By Lemma 9.6, Φr,s
H is an injection, and by Corollary 8.9, the module

Im(θ ◦ d) is Z/ps-hyperbolic. It follows that
(Ωμ)∗ ◦ Φr,s

H (Im(θ ◦ d)) = Im((Ωμ)∗ ◦ Φr,s
H ◦ θ ◦ d)

is also Z/ps-hyperbolic.

10. The suspension case

The purpose of this section is to show that Theorem 1.5 implies Theorem 1.6.

This will be accomplished by means of Proposition 10.12, whose proof is the

goal of this section. The main point is that even if H̃∗(X ;Z/ps) is not free

over Z/ps, the canonical map of the Bott–Samelson Theorem (Theorem 9.5)

is still an injection. That is, the homology H̃∗(ΩΣX ;Z/ps) always contains

the tensor algebra on H̃∗(X ;Z/ps), but if H̃∗(X ;Z/ps) is not free then it will

contain other things too.

In Subsection 10.1, we recall the James splitting

ΣΩΣX 
∞∨
k=1

ΣX∧k.

This gives us Proposition 10.5, which describes the structure of the Pontrjagin

algebra H̃∗(ΩΣX ;Z/ps), in particular identifying the tensor algebra

T (H̃∗(X ;Z/ps)) as a subalgebra. Subsection 10.2 proves Lemma 10.9, which

describes the effect of the evaluation map on H∗(ΩΣX ;Z/ps). Subsection 10.3

draws these ingredients together to prove Proposition 10.12.

Let σ : H̃∗(Y ) −→ H̃∗+1(ΣY ) denote the suspension isomorphism. For a

space X , let Xk denote the product of k copies of X , and let X∧k denote the

smash product. Let ∼ be the relation on Xk defined by

(x1, . . . , xi−1, ∗, xi+1, xi+2, . . . xk) ∼ (x1, . . . , xi−1, xi+1, ∗, xi+2, . . . xk).

Let Jk(X) be the space Xk
�∼. There is a natural inclusion

Jk(X) −→ Jk+1(X)

(x1, . . . , xk) �→ (x1, . . . , xk, ∗).
The James construction JX is defined to be the colimit of the diagram

consisting of the spaces Jk(X) and the above inclusions. Notice that JX carries

a product given by concatenation, which makes it into the free topological

monoid on X , and that a topological monoid is in particular an H-space.
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The adjunction isomorphism [ΣX,Y ] ∼= [X,ΩY ] will be written in both di-

rections as f �−→ f . Recall that η denotes the unit of the adjunction, which is

the map X −→ ΩΣX sending x ∈ X to (t �→ 〈t, x〉) ∈ ΩΣX . We will write ev

for the evaluation map; the counit ΣΩY −→ Y , which sends 〈t, γ〉 ∈ ΣΩY

to γ(t) ∈ Y .

10.1. The tensor algebra inside H∗(ΩΣX). In this section we will gener-

alise the Bott–Samelson Theorem to suit our purpose. Specifically, the map

η : X −→ ΩΣX induces a map η∗ : H̃∗(X) −→ H̃∗(ΩΣX) on homology. By the

universal property of the tensor algebra, η∗ extends to a map of algebras

η̃∗ : T (H̃∗(X)) −→ H̃∗(ΩΣX).

The Bott–Samelson Theorem (Theorem 9.5) says that if the homology

H∗(X ;Z/ps) is free then η̃∗ is an isomorphism. We will show that even if

H∗(X ;Z/ps) is not free, the map η̃∗ is still an injection. This is by no means

new, but follows reasonably easily from better-known results, so we shall derive

it in this way. In this section homology is taken with Z/ps-coefficients (unless

otherwise stated).

Lemma 10.1: Suppose that H∗(X) has finite type. The cross product map

H̃∗(X)⊗k ×−→ H̃∗(X∧k) is injective, split (although not naturally) and its cok-

ernel C satisfies ps−1C = 0.

Proof. For spaces A and B the Künneth Theorem gives an exact sequence

0 −→ H∗(A)⊗H∗(B)
×−→ H∗(A×B) −→ Tor(H∗(A), H∗−1(B)) −→ 0,

where the Tor is taken over Z/ps, and this sequence is (unnaturally) split. By

Lemma 7.11 we have ps−1Tor(H∗(A), H∗−1(B)) = 0.

Let a0 : pt −→ A denote the inclusion of the basepoint of A and let b0 denote

the inclusion of the basepoint of B. Let j : H∗(A)⊕H∗(B) −→ H∗(A)⊗H∗(B)

be the composite

H∗(A)⊕H∗(B)
∼=−→ H∗(A)⊗H∗(pt)⊕H∗(pt)⊗H∗(B)

(idA)∗⊗(b0)∗⊕(a0)∗⊗(idB)∗−−−−−−−−−−−−−−−−−−→ H∗(A)⊗H∗(B).
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To relate the reduced and unreduced situations we have the following diagram

(which we take to define the reduced cross product) where i, i1 and i2 are the

inclusions and p is the quotient:

0 H∗(A) ⊕H∗(B)

j

(i1)∗⊕(i2)∗
H∗(A ∨B)

i∗

0 0

0 H∗(A) ⊗H∗(B)
×

H∗(A×B)

p∗

Tor(H∗(A), H∗−1(B)) 0

0 H̃∗(A) ⊗ H̃∗(B)
×

H̃∗(A ∧B) Tor(H∗(A), H∗−1(B)) 0.

The top map is an isomorphism, so the bottom row is exact, and it therefore

suffices to check that the top two squares commute. The top right square

commutes because the map (i1)∗ ⊕ (i2)∗ is an isomorphism, so the composite

of i∗ with the map into the Tor term factors through two terms of an exact

sequence, hence is zero, as required.

We now check that the top left square commutes. It suffices to check commu-

tativity on each summand of the domain individually. We will do so for H∗(A);
the case of H∗(B) is analogous. Identifying H∗(A) with H∗(A) ⊗ H∗(pt), the
restriction of j becomes (idA)∗ ⊗ (b0)∗. The composite with the cross product

is written (idA)∗ × (b0)∗, and by bilinearity of the cross product this is the

same as (idA × b0)∗, where now the product is taken in spaces. But under the

identification A ∼= A×{pt}, this is just the inclusion A −→ A×B, which is the

map obtained by going the other way round the square, as required.

Since the middle row is split, the bottom row is also split. The result then

follows by induction, setting A = X and B = X∧k.

The understanding of the cross product from Lemma 10.1 allows us to under-

stand part of the homology of JX , by constructing a map ϕ as in the following

lemma.

Lemma 10.2: Suppose that H∗(X) has finite type. The maps

H̃∗(X)⊗k −→ H∗(X)⊗k ×−→ H∗(Xk) −→ H∗(Jk(X)) −→ H∗(J(X))

define an injection of algebras T (H̃∗(X))
ϕ−→ H̃∗(J(X)). Furthermore, Im(ϕ) is

a direct summand, and we may write H̃∗(J(X)) ∼= T (H̃∗(X))⊕C such that the

complementary module C satisfies ps−1C = 0.
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Proof. We use a modified version of Hatcher’s argument in [Hat02, Proposi-

tion 3C.8]. First, ϕ is a ring homomorphism, because the product in J(X)

descends from the natural map X i ×Xj −→ X i+j . To see that we have an in-

jection, we consider the following diagram, where we follow Hatcher’s notation

and set Tk(M) =
⊕k

i=1 M
⊗i:

0 Tk−1(H̃∗(X))

ϕ

Tk(H̃∗(X))

ϕ

(H̃∗(X))⊗k

×

0

0 H̃∗(Jk−1(X)) H̃∗(Jk(X)) H̃∗(X∧k) 0.

Commutativity of the diagram follows from the definition of ϕ. Exactness

of the top row is clear. The bottom row is obtained from the long exact se-

quence of the pair (Jk(X), Jk−1(X)), applying excision to pass to the quo-

tient Jk(X)/Jk−1(X)  X∧k. This sequence is split because the quotient

Xk −→ X∧k factors through the map Jk(X) −→ X∧k, and the former map is

split after suspending. Thus we get that H̃∗(Jk(X)) ∼= H̃∗(Jk−1(X))⊕H̃∗(X∧k).

Lemma 10.1 tells us that H̃∗(X∧k) ∼= (H̃∗(X))⊗k ⊕ C with ps−1C = 0, so the

result follows immediately by inducting over k.

Our next job is to translate this understanding of JX into an understanding

of ΩΣX . It is well-known that the two are homotopy equivalent, but we wish

to be precise about the maps. For a based space Y , let Ω′Y denote the space

of loops of any length in Y , so that ΩY is the subspace of Ω′Y consisting of

loops of length 1. We will write γ1#γ2 for the concatenation of loops γ1 and γ2.

For γ ∈ Ω′Y and � ∈ R>0, let γ
� denote the linear reparameterization of γ which

has length �. Note that γ �−→ γ1 is a continuous map Ω′Y −→ ΩY , which is a

retraction for the inclusion ΩY ⊂ Ω′Y . For x ∈ X , let γx ∈ ΩΣX be the loop

defined by γx(t) = 〈t, x〉, which is equal to η(x).

Now let X be a connected CW -complex, which we take without loss of gen-

erality to have a single 0-cell, which is the basepoint. Let d : X −→ [0, 1] be

any continuous map such that d−1(0) = {∗}. Define a map

λ : J(X) −→ ΩΣX

(x1, . . . xk) �−→ (γd(x1)
x1

#γd(x2)
x2

# · · ·#γd(xk)
xk

)1.

The reparameterization is necessary so that λ is well-defined when some xi=∗.
Hatcher proves the following as [Hat02, Theorem 4J.1].
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Lemma 10.3: The map λ is a weak homotopy equivalence for any connected

CW -complex X . Furthermore, λ is an H-map, so it induces a map of algebras

on homology.

The following lemma is immediate from the definition of λ.

Lemma 10.4: The composite

Xk → Jk(X) → J(X)
λ−→ ΩΣX

is homotopy equivalent to m ◦ ηk, where m is any choice of k-fold loop multi-

plication on ΩΣX .

Recall from Subsection 9.1 that ιk : V ⊗k −→ T (V ) is the inclusion.

We are now ready to prove the main result of this subsection.

Proposition 10.5: Suppose that H∗(X) has finite type. The map

η̃∗ : T (H̃∗(X)) −→ H∗(ΩΣX)

is an injection onto a summand, each restriction η̃∗ ◦ ιk is equal to

H̃∗(X)⊗k ×−→ H̃∗(Xk)
(ηk)∗−−−→ H̃∗((ΩΣX)k)

m∗−−→ H̃∗(ΩΣX),

and we may write

H∗(ΩΣX) ∼= T (H̃∗(X))⊕ C

such that the complementary module C satisfies ps−1C = 0.

Proof. By Lemmas 10.2, 10.3 and 10.4, it suffices to show that λ∗◦ϕ = η̃∗. Since
both maps are algebra maps, by the universal property of the tensor algebra it

further suffices to show that the composite

H̃∗(X)
ι1−→ T (H̃∗(X))

ϕ−→ H̃∗(JX)
λ∗−→ H̃∗(ΩΣX)

is equal to η∗.
To see this, first note that the composite H̃∗(X)

ι1−→ T (H̃∗(X))
ϕ−→ H̃∗(JX)

is equal to the map induced by the inclusion X −→ J1(X) ⊂ J(X) which

carries x ∈ X to the equivalence class of x in J(X). By definition of λ we then

have λ(x) = γx, which by definition is η(x), as required.
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10.2. The effect of the evaluation map. The goal of this section is to

prove Lemma 10.9, which says that up to suspension isomorphisms, the eval-

uation map ev : ΣΩΣX −→ ΣX induces the projection onto the tensors of

length 1. Our strategy is to first prove Lemma 10.6, the point of which is that

when one evaluates a concatenation of k loops at some time t, the result only

depends on one of the loops—this is the i appearing in the proof. We will then

see that this, together with simple formal properties of the cross product, is

enough to prove Lemma 10.9.

In this section, for a co-H-space Y , c : Y −→ Y ∨ Y denotes the comulti-

plication, and for a product
∏k

i=1 Xi, the map πi is the projection onto the

i-th factor. In the next lemma we take the iterated comultiplication c and the

iterated multiplication m to be parameterized so as to spend equal time on each

component—this does not change anything up to homotopy.

Lemma 10.6: The following diagram commutes:

ΣXk

c

Σηk

Σ(ΩΣX)k
Σm

ΣΩΣX

ev

(ΣXk)∨k

∨k
i=1 Σπi

ΣX

(ΣX)∨k fold
ΣX

Ση
ΣΩΣX.

ev

Proof. We will evaluate both composites. A point of ΣXk may be written in

suspension coordinates as 〈t, x1, x2, . . . , xk〉, for t ∈ I and xi ∈ X . There exists

some integer i with 1 ≤ i ≤ k so that i−1
k ≤ t ≤ i

k .

For the top right composite,

ev ◦ Σm ◦ Σηk〈t, x1, . . . , xk〉 = ev〈t,m(γx1 , . . . , γxk
)〉

= (γx1# . . .#γxk
)(t) = γxi(kt− (i− 1)).

For the bottom left composite, we first introduce some notation. For a point y

of a space Y , we write (y)i for the image of y under the inclusion of the i-th

wedge summand in Y −→ Y ∨k. With this notation, taking Y = ΣXk, we have

c〈t, x1, . . . , xk〉 = (〈kt− (i− 1), x1, . . . , xk〉)i.
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Therefore,

ev ◦ Ση ◦ fold ◦
( k∨

i=1

Σπi

)
◦ c〈t, x1, . . . , xk〉 = ev ◦ Ση ◦ fold(〈kt− (i − 1), xi〉)i

= ev ◦ Ση〈kt− (i − 1), xi〉
= γxi(kt− (i − 1)),

as required.

Lemma 10.7: Let X be a space. The composite

H̃∗(X)⊗k ×−→ H̃∗(Xk)
(πi)∗−−−→ H̃∗(X)

of the cross product with any projection is trivial for k ≥ 2.

Proof. Up to homeomorphism, X may be regarded as the space
∏k

j=1 Yj ,

where Yj = ∗ for j 
= i and Yi = X . Under this identification, πi is identi-

fied with the map
k∏

j=1

fj : X
k −→

k∏
j=1

Yj ,

where fj is the identity on X when j = i, and is the trivial map otherwise.

The composite of maps (
∏k

j=1 fj)∗◦× is the cross product of homomorphisms

(f1)∗×(f2)∗×· · ·×(fk)∗. The cross product of homomorphisms is k-multilinear,

and since k ≥ 2 there is at least one j with fj equal to the constant map,

hence (fj)∗ = 0. This means that (
∏k

j=1 fj)∗ ◦ × is trivial for k ≥ 2, as

required.

Corollary 10.8: Let X be a space. The composite

H̃∗(X)⊗k ×−→ H̃∗(Xk)
σ−→ H̃∗(ΣXk)

c∗−→ H̃∗((ΣXk)∨k)
(
∨k

i=1 Σπi)∗−−−−−−−−→ H̃∗((ΣX)∨k)

is trivial for k ≥ 2.

Proof. For a space Y , let pi : Y
∨k −→ Y be the projection onto the i-th wedge

summand. The comultiplication c satisfies pi ◦ c  idΣXk for each i, so on

homology we have

c∗ : H̃∗(ΣXk) −→ H̃∗((ΣXk)∨k) ∼=
k⊕

i=1

H̃∗(ΣXk)

x �−→ (x, x, . . . , x).
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That is, c∗ may be identified with the diagonal map

Δ : H̃∗(ΣXk) −→
k⊕

i=1

H̃∗(ΣXk).

Thus,

( k∨
i=1

Σπi

)
∗
◦ c∗ ◦ σ ◦ ×(x1 ⊗ · · · ⊗ xk) =

( k∨
i=1

Σπi

)
∗
◦ c∗(σ(x1 × · · · × xk))

=

k⊕
i=1

(Σπi)∗ ◦Δ(σ(x1 × · · · × xk)) = 0,

since by Lemma 10.7 we have

(Σπi)∗(σ(x1 × · · · × xk)) = σ ◦ (πi)∗(x1 × · · · × xk) = 0.

This completes the proof.

Lemma 10.9: The composite

T (H̃∗(X))
η̃∗−→ H̃∗(ΩΣX)

σ−→ H̃∗(ΣΩΣX)
ev∗−−→ H̃∗(ΣX)

σ−1−−→ H̃∗(X)

is equal to the projection ζ1.

Proof. Write Γ for the above composite. We must show that Γ◦ιk is the identity

map on H∗(X) when k = 1, and is 0 otherwise.

For the k = 1 statement, note that η̃∗ ◦ ι1 = η∗ (this is the definition of η̃∗).
We may therefore write

Γ ◦ ι1 = σ−1 ◦ ev∗ ◦ σ ◦ η̃∗ ◦ ι1 = σ−1 ◦ ev∗ ◦ σ ◦ η∗
= σ−1 ◦ ev∗ ◦ (Ση)∗ ◦ σ,

and by the triangle identities for the adjunction Σ � Ω we have a commuting

diagram

ΣX
idΣX

Ση
ΣΩΣX

ev

ΣX.

Thus, Γ ◦ ι1 = σ−1 ◦ σ = idH∗(X), as we required.
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Now let k > 1. Juxtaposing the diagram of Lemma 10.6 (after taking homol-

ogy) with the result of Corollary 10.8 gives a commuting diagram

H̃∗(X)⊗k ×

0

H̃∗(Xk)
σ

H̃∗(ΣXk)

c∗

(Σηk)∗
H̃∗(Σ(ΩΣX)k)

(Σm)∗
H̃∗(ΣΩΣX)

ev∗

H̃∗((ΣXk)∨k)

(
∨k

i=1 Σπi)∗

H̃∗(ΣX)

H̃∗((ΣX)∨k)
fold∗

H̃∗(ΣX)
(Ση)∗

H̃∗(ΣΩΣX).

ev∗

The description of η̃∗ ◦ ιk of Proposition 10.5 implies that the top-right route

round the diagram is equal to σ ◦ Γ ◦ ιk. The diagram shows that this factors

through the zero map, so σ ◦ Γ ◦ ιk = 0, and since σ is an isomorphism, this

implies that Γ ◦ ιk is itself zero, which completes the k > 1 case and hence the

proof.

10.3. Loops on homology injections. The goal of this section is to prove

Proposition 10.12. We first prove two lemmas. Recall that ιi : V
⊗i −→ T (V )

is the inclusion, and that ζi : T (V ) −→ V ⊗i is the projection. Similarly, let ι≤k

and ζ≤k be the inclusion and projection associated to the submodule
⊕k

i=1 V
⊗i

of T (V ).

Lemma 10.10: Let a1, a2, . . . , ak be elements of a tensor algebra T (V ). We

have that

ζi(a1 ⊗ · · · ⊗ ak) =

⎧⎨
⎩ζ1(a1)⊗ · · · ⊗ ζ1(ak), i = k,

0, i < k.

Proof. By definition, T (V ) ∼= ⊕∞
i=1 V

⊗i, and the maps ζi are precisely the

projections onto these summands. Further, the multiplication in T (V ) restricts

to maps V ⊗i ⊗ V ⊗j −→ V ⊗(i+j), which is to say that it is additive in weight.

This gives the formula

ζk(a⊗ b) =

k−1∑
i=1

ζi(a)⊗ ζk−i(b),

which we will use to induce.
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When k = 1 the result is automatic. Assuming the result for k − 1, we have

ζj(a1 ⊗ · · · ⊗ ak) =

j−1∑
i=1

ζi(a1 ⊗ · · · ⊗ ak−1)⊗ ζj−i(ak).

By induction ζi(a1⊗· · ·⊗ak−1) = 0 for i < k−1, so the above is 0 when j < k

and when j = k it becomes

ζk−1(a1 ⊗ · · · ⊗ ak−1)⊗ ζ1(ak) = ζ1(a1)⊗ · · · ⊗ ζ1(ak−1)⊗ ζ1(ak),

by induction, as required.

The following lemma does not depend on the algebra structure in the tensor

algebras; only on the fact that tensor algebras are graded by weight. Nonethe-

less, we will state it only for tensor algebras because we already have the neces-

sary notation. It formalizes the sort of ‘leading terms’ argument that we wish

to make in proving Proposition 10.12.

Lemma 10.11: Let f : T (A) −→ T (B) be a homomorphism of Z/ps-modules

(not necessarily of algebras) with A free. Suppose that ps−1ζj ◦ f ◦ ιk = 0

whenever j < k and that for each k ∈ N, the map ζk ◦ f ◦ ιk is an injection.

Then f is also an injection.

Proof. Firstly, since T (A) is a free Z/ps-module, it suffices to show that if

f(ps−1x) = 0, for x ∈ T (A), then ps−1x = 0. This is precisely showing injec-

tivity of the restriction of f to ps−1T (A). The module T (A) is filtered by the

submodules
⊕k

i=1 A
⊗i for k ∈ N, so it further suffices to show that each map

ζ≤k ◦ f ◦ ι≤k : ps−1
k⊕

i=1

A⊗i −→ ps−1
k⊕

i=1

B⊗i

is injective.

We proceed by induction. The case k = 1 is immediate, so assume that the

result is known for k − 1. Write
⊕k

i=1 A
⊗i ∼= ⊕k−1

i=1 A⊗i ⊕ A⊗k, so that ι≤k is

identified with ι≤(k−1) ⊕ ιk. Suppose that f(y) = 0 for y ∈ ps−1
⊕k

i=1 A
⊗i, so

that there exists x ∈ ⊕k
i=1 A

⊗i with y = ps−1x. We must show that y = 0.

Write x = x′ + xk, for x
′ ∈ ⊕k−1

i=1 A⊗i and xk ∈ A⊗k. Now,

ζ≤(k−1) ◦ f ◦ ι≤k(y) = ps−1ζ≤(k−1) ◦ f ◦ ι≤k(x)

= ps−1ζ≤(k−1) ◦ f(ι≤(k−1)x
′ + ιk(xk))

= ζ≤(k−1) ◦ f(ps−1ι≤(k−1)x
′),
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since ps−1ζj ◦ f ◦ ιk = 0 for j < k. By inductive hypothesis, this implies

that ps−1x′ = 0, so y = ps−1xk, and

ζk ◦ f ◦ ι≤k(y) = ζk ◦ f ◦ ιk(ps−1xk).

By assumption, ζk ◦ f ◦ ιk is an injection, so ps−1xk = 0, and therefore y = 0,

as required.

Proposition 10.12: Let X be a connected CW -complex, let p be an odd

prime, and let s ≤ r ∈ N. Suppose that H∗(X ;Z/ps) has finite type. Let

μ : Pn+1(pr) −→ ΣX be a continuous map. If the induced map

μ∗ : H∗(Pn+1(pr);Z/ps) −→ H∗(ΣX ;Z/ps)

is an injection, then

(Ωμ)∗ : H∗(ΩPn+1(pr);Z/ps) −→ H∗(ΩΣX ;Z/ps)

is also an injection.

The principal difficulty in the proof is that Im(μ∗) might not be contained

in the tensor algebra T (H̃∗(X ;Z/ps)) inside H̃∗(ΩΣX ;Z/ps). We navigate this

using the condition ps−1C = 0 of Proposition 10.5, which prevents the comple-

mentary part C from interfering too much. This proposition is much simpler

to prove if one assumes that the map μ is a suspension, but this assumption is

not necessary.

Proof. Homology is taken with Z/ps-coefficients throughout. By the Bott–

Samelson Theorem (Theorem 9.5), we have an isomorphism

η̃∗ : T (H̃∗(Pn(pr))) −→ H∗(ΩPn+1(pr)),

so it suffices to show that (Ωμ)∗ ◦ η̃∗ is an injection. By definition, (Ωμ)∗ ◦ η̃∗ is

the unique map of algebras extending

(Ωμ)∗ ◦ η∗ : H̃∗(Pn(pr)) −→ H∗(ΩΣX),

and by the triangle identities for the adjunction Σ � Ω, we have that

(Ωμ) ◦ η = μ.

Thus, (Ωμ)∗ ◦ η̃∗ is the unique map of algebras extending μ∗.
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The other triangle identity tells us that we have a commuting diagram

Pn+1(pr)
Σμ

μ

ΣΩΣX

ev

ΣX.

By assumption, μ induces an injection on homology, so ev ◦ (Σμ) must also

induce an injection on homology.

The next step is to turn the problem into one about tensor algebras. Using

Proposition 10.5, choose a module decomposition of H̃∗(ΩΣX) as a direct sum

T (H̃∗(X))⊕ C with ps−1C = 0. Under this decomposition, the inclusion asso-

ciated to the factor T (H̃∗(X)) is η̃∗. Write τ for the projection. Consider the

diagram

T (H̃∗(X))

σ◦η̃∗

H̃∗(Pn+1(pr))
(Σμ)∗

μ∗

H̃∗(ΣΩΣX)

ev∗

τ◦σ−1

H̃∗(ΣX).

The maps σ ◦ η̃∗ and τ ◦ σ−1 differ from η̃∗ and τ only up to suspension

isomorphisms, so they are the inclusion and projection associated to the de-

composition of H̃∗(ΣΩΣX) obtained by suspending that of Proposition 10.5.

Lemma 7.5 (with g = ev∗, f = (Σμ)∗, iA = σ ◦ η̃∗, and πA = τ ◦ σ−1) then

tells us that the whole composite ev∗ ◦ (σ ◦ η̃∗) ◦ (τ ◦ σ−1) ◦ (Σμ)∗ is an injec-

tion. Furthermore, by Lemma 10.9, the composite ev∗ ◦ (σ ◦ η̃∗) is identified via

suspension isomorphisms with the projection ζ1 : T (H̃∗(X)) −→ H̃∗(X), so the

composite ζ1 ◦ τ ◦ μ∗ is an injection.

Let a and b form a basis of the free Z/ps-module H̃∗(Pn(pr)). By Lemma 7.4,

the images of a and b under ζ1◦τ ◦μ∗ generate a summand isomorphic to (Z/ps)2

inside H̃∗(X).

Since H̃∗(Pn(pr)) is free on a and b, a basis of T (H̃∗(Pn(pr))) consists of the

elements x1 ⊗ · · · ⊗ xk, for k ∈ N, where each xi is equal to a or b. We will

show that the image of this basis under (Ωμ)∗ ◦ η̃∗ is the basis of a free Z/ps-

submodule of H∗(ΩΣX), which will imply the result. Firstly, since (Ωμ)∗ ◦ η̃∗
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is the unique map of algebras extending μ∗, we have

ps−1ζj ◦ τ ◦ (Ωμ)∗ ◦ η̃∗(x1 ⊗ · · · ⊗ xk) = ps−1ζj ◦ τ(μ∗(x1)⊗ · · · ⊗ μ∗(xk))

= ζj ◦ τ(ps−1(μ∗(x1)⊗ · · · ⊗ μ∗(xk))).

By Proposition 10.5, we may write each μ∗(xi) as η̃∗(ti) + ci, for

ti = τ(μ∗(xi)) ∈ T (H̃∗(X)) and some ci with ps−1ci = 0. The above is therefore

equal to

ζj ◦ τ(ps−1((η̃∗(t1) + c1)⊗ · · · ⊗ (η̃∗(tk) + ck))

= ζj ◦ τ(ps−1(η̃∗(t1)⊗ · · · ⊗ η̃∗(tk))) = ζj(p
s−1t1 ⊗ · · · ⊗ tk)

=

⎧⎨
⎩ps−1ζ1(t1)⊗ · · · ⊗ ζ1(tk), j = k

0, j < k

by Lemma 10.10. Since ti = τ(μ∗(xi)), we have

ps−1ζ1(t1)⊗ · · · ⊗ ζ1(tk) = ps−1(ζ1 ◦ τ(μ∗(x1)))⊗ · · · ⊗ (ζ1 ◦ τ(μ∗(xk))).

Now, each xi is equal to a or b, and we have seen that the images of a and b

under ζ1 ◦ τ ◦ μ∗ generate a (Z/ps)2-summand inside H̃∗(X). It follows that

the elements ζ1 ◦ τ(μ∗(x1))⊗ · · · ⊗ ζ1 ◦ τ(μ∗(xk)) generate a copy of T ((Z/ps)2)

inside T (H̃∗(X)).

The above calculation therefore tells us that the map ζk ◦ τ ◦ (Ωμ)∗ ◦ η̃∗ ◦ ιk
carries ps−1 times a basis of H̃∗(Pn(pr))⊗k ⊂ T (H̃∗(Pn(pr))) to ps−1 times a

basis of ((Z/ps)2)⊗k ⊂ T ((Z/ps)2) inside T (H̃∗(X)). This implies that the

restriction of ζk ◦ τ ◦ (Ωμ)∗ ◦ η̃∗ ◦ ιk to ps−1H̃∗(Pn(pr))⊗k is an injection,

so ζk ◦ τ ◦ (Ωμ)∗ ◦ η̃∗ ◦ ιk must itself be an injection and we have also seen

that

ps−1ζj ◦ τ ◦ (Ωμ)∗ ◦ η̃∗ ◦ ιk = 0

for j < k

Thus, by Lemma 10.11, τ ◦ (Ωμ)∗ ◦ η̃∗ is an injection, so (Ωμ)∗ ◦ η̃∗ is an

injection, as required.
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11. Proof of Theorems 1.5 and 1.6

In this section we will prove Theorem 1.5, and then from that, together with

Proposition 10.12, deduce Theorem 1.6.

Proof of Theorem 1.5. Combining Lemmas 9.3, 9.4, and naturality of the

maps βr , ρs, and h with respect to the map of spaces Ωμ, we obtain the following

commuting diagram:

L′(x, dx)

d

Φr,r
π

π∗(ΩPn+1(pr);Z/pr)

βr

(Ωμ)∗
π∗(ΩY ;Z/pr)

βr

π∗(ΩPn+1(pr))

ρs

(Ωμ)∗
π∗(ΩY )

ρs

L′(x, dx) ⊗ Z/ps
Φr,s

π

θ

π∗(ΩPn+1(pr);Z/ps)

h

(Ωμ)∗
π∗(ΩY ;Z/ps)

h

L(x, dx)⊗ Z/ps
Φr,s

H
H∗(ΩPn+1(pr);Z/ps)

(Ωμ)∗
H∗(ΩY ;Z/ps).

By Corollary 9.7, Im((Ωμ)∗◦Φr,s
H ◦θ◦d) is Z/ps-hyperbolic. By commutativity

of the diagram,

(Ωμ)∗ ◦ Φr,s
H ◦ θ ◦ d = h ◦ ρs ◦ (Ωμ)∗ ◦ βr ◦ Φr,r

π ,

so the image of the latter map is also Z/ps-hyperbolic.

We thus obtain a diagram

π∗(ΩY )

h◦ρs

Im((Ωμ)∗ ◦ βr ◦ Φr,r
π )

h◦ρs

Im(h ◦ ρs).

The image of the bottom map is Im(h ◦ ρs ◦ (Ωμ)∗ ◦ βr ◦Φr,r
π ), which we have

seen is Z/ps-hyperbolic. The domain of (Ωμ)∗ ◦ βr ◦ Φr,r
π is L′(x, dx), which

is a Z/pr-module, hence is automatically annihilated by multiplication by pr.

Therefore, the group in the bottom left, Im((Ωμ)∗ ◦βr ◦Φπ), is also annihilated

by multiplication by pr. The group in the bottom right, Im(h◦ρs), is contained
in H∗(ΩY ;Z/ps), hence is annihilated by multiplication by ps. This means that
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we can apply Corollary 7.9 (The ‘Sandwich’ Lemma) to see that

π∗(ΩY ) ∼= π∗+1(Y )

is p-hyperbolic concentrated in exponents s, s + 1, . . . , r, so by definition Y

is p-hyperbolic concentrated in exponents s, s + 1, . . . , r, which completes the

proof.

Theorem 1.6 now follows.

Proof of Theorem 1.6. By Proposition 10.12, (Ωμ)∗ is an injection, so by The-

orem 1.5, ΣX is p-hyperbolic concentrated in exponents s, s + 1, . . . , r, as re-

quired.
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[Bar60] M. G. Barratt, Spaces of finite characteristic, Quarterly Journal of Mathematics 11

(1960), 124–136.

[Bas19] S. Basu, The homotopy type of the loops on (n − 1)-connected (2n + 1)-

manifolds, in Algebraic Topology and Related Topics, Trends in Mathematics,
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