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by John Neil Angus 

The Boundary Element Method (BEM), a numerical method developed in engineer-
ing fields, is capable of modelling complex geometrical domains. In this thesis, the 
BEM is described from an electrochemical perspective and applied to simulation of 
electrochemical systems. 

The properties of the BEM for electrochemical simulation are compared to the 
most common numerical methods used in electrochemistry and engineering fields; 
the Finite DiEerence Method, and the Finite Element Method respectively. The 
mathematical relation of these three methods is highlighted through a Weighted 
Residual formulation. 

Steady state diffusion at a generator-collector double microband for a diffusion 
limited reaction is used to validate a two-dimensional BEM model, and investigate 
mesh discretisation effects. Optimisation of the mesh and implementation of higher 
order boundary elements are reported. 

The two-dimensional steady state model is applied to simulate a variety of 
microband systems, including Inter-Digitated Arrays, realistic (imperfect) electrode 
geometries and a novel generator-collector microband array. 

An advanced variation of the BEM, the Dual Reciprocity Method (DRM), is 
described and applied to model a channel fiow cell. Due to instability, the method is 
found inadequate to simulate this system. The details required to extend the DRM 
for transient systems Eire also described. 

The three-dimensional BEM is implemented and validated. The ability to 
model any three-dimensional domain has significant potential for simulation of com-
plex geometrical systems in electrochemistry. The extension of the BEM to model 
multiple species and electrochemical mechanisms, and the future direction and rel-
evance of the BEM as an electrochemical simulation method are discussed. 
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Introduction 

The aim of the work presented in this thesis was to investigate the applicability 

and possible benefits of the Boundary Element Method to simulate electrochemical 

systems. 

This technique has primarily been developed through engineering research; the pre-

sentation contained herein is intended to explain the theory and implementation of 

the Boundziry Element Method in terms that are familiar to an audience with an 

electrochemistry background. 

To facilitate understanding the significance of the Boundary Element Method for 

electrochemistry the technique is placed within the context of alternative simulation 

methods. Further, conclusions are drawn on which simulation techniques will be 

most useful for future electrochemical simulation development. 

Theoretical Electrochemistry 

An electrochemical experiment is described by an experimental technique and a 

theoretical model. A description of experimental techniques is beyond the scope 

of this thesis; details may be found in various standard texts. The model usu-

ally consists of an equation or set of equations which describe the system. Solving 

these equations provides a comprehensive theoretical description. A solution may 

be obtained either analytically, by derivation, or approximately by use of an ana-

lytical approximation or numerical method. It is only possible to derive analytical 

solutions for relatively simple systems, thus approximations are required for many 

electrochemical models. 



ZntroducdoD Tieoredca] Ejectrocbemfstiy 

An approximate analytical solution involves derivation of a semi-analytical solu-

tion through the use of defined approximations. It is important to distinguish the 

definition of this term from that of an analytical solution. An analytical solution 

may be derived from a simplified set of equations, which have been obtained using 

an approximation of the original equations which describe the model. This solu-

tion is exact for the simplified equations. An approximate analytical solution uses 

approximations as part of the derivation, and is not exact. 

Approximate numerical methods reduce the degrees of freedom of the concentration 

field (and any other fields) described by the original equations to a finite number; the 

manner in which this is achieved depends on the particular method. This concept is 

explained in detail in section 1.4 on page 34. The application of a numerical method 

is referred to as a simulation. 

Numerical Methods 

Electrochemical simulation is an important tool for modelling electrochemical sys-

tems, enabling a solution to theoretical models that are analytically intractable. 

There are a wide variety of numerical methods, ranging from simple direct approx-

imation of the original equations^ to complex integral equation techniques^ and 

statistical methods.^ Simple numerical methods were applied to electrochemistry® 

as far back as the 1960's, significant breadth of application and more advanced tech-

niques® occurred during the 1980s, with the advent of inexpensive computers. There 

has been continued development of electrochemical simulation techniques^ through-

out the 1990s. A variety of free^'^ and commercial® software is now available. 

The equations used to describe an electrochemical system are often related to equa-

tions in models used in physical science and engineering disciplines. Frequently, 

developments in approximate numerical methods in related fields may be applied 

to electrochemistry. However, transferring application of numerical methods is of-

ten complex, due to the unique nature of electrochemical problems. The equations 

describing an electrochemical system often include mixed boundary conditions and 

boundary singularities, chemical reaction terms, possibly leading to non-linear equa-

tions, and multiple coupled partial differential equations. Thus electrochemical sim-

ulations represent a challenging class of models for application of numerical methods. 
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The following section describes the reasons why the BEM was chosen for this work. 

A detailed explanation of fundamental concepts and relevant terms of numerical 

methods applied to electrochemistry, some of which are mentioned in the following 

section, is given in section 1.2 on page 10. 

Why use the Boundary Element Method? 

Initial work completed at the beginning of the period of study involved develop-

ment of three-dimensional Finite Difference Methods^°. Investigations into suitable 

algorithms and mesh optimisations were undertaken. 

The Finite Difference Method is well understood within the electrochemistry 

field.It approximates an electrochemical domain at a series of points, known 

as a mesh*. Recent research has developed two-dimensional simulations for a vari-

ety of mechanisms and different electrochemical techniques. Optimised conformal 

mappings, which alter the distribution of mesh points, are available for common 

electrode geometries. Three dimensional Finite Difference was a natural progres-

sion considering this wealth of accessible literature. 

The necessity for a three dimensional simulation is caused by a lack of symmetry in 

the domain which prevents description by lower dimensional models. For example, 

specific electrode shapes or orientations, such as two microbands on opposite sides 

of a thin channel or domains incorporating extra features in addition to a basic 

electrode geometry; for instance, a Scanning Electrochemical Microscope^^ imaging 

a substrate. 

The transition from two to three dimensions dramatically increases the number of 

points required to discretise a domain. The maximum number that may be sim-

ulated is limited, in practice, by the speed of computation. Assuming the code 

written is efficient this is dependent upon the computer hardware available. To 

obtain accurate results there must be a sufficient density of points near boundary 

singularities.^^ These occur where there is an abrupt change in boundary conditions, 

such as the edge of a microdisc, and the value of concentration flux approaches in-

finity. The problem of the large number of points required to describe a domain 

* Mesh is a general term for how a domain is approximated by a numerical method. 
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was addressed in two ways; Firstly, the maximum number of points that may be 

simulated in reasonable time was increased by the use of parallel computing. 

Secondly, exponential spacing^® and conformal mappings^^ were investigated to de-

termine optimal positioning of mesh points. 

A successful transient three dimensional simulation of a simple redox reaction af-

ter a potenticil step at a microdisc was completed. This was validated with a 

two dimensional version. Further investigations were made to extend the work to 

more complex domains, however it was found that the implementation of conformal 

maps for domains which contained several areas requiring high mesh densities^ was 

problematic. 

The most significant limitation of the Finite Difference Method is the inherent in-

flexibility of mesh optimisations; they are specific to a particular domain and often 

cannot be adapted. A new optimisation is usually time-consuming to implement and 

is always required to obtain accurate results for complex electrochemical geometries. 

Additionally, their implementation requires significant simulation and programming 

knowledge, limiting the usefulness of a completed simulation to electrochemists who 

do not have experience in this particular field. 

For these reasons, the conclusion was reached that Finite Difference Methods are 

unsuited to some two dimensional and all three dimensional electrochemical simula-

tions. An alternative numerical method was thus required, and a range of techniques 

which had been applied in electrochemistry as well as related scientific and engineer-

ing fields were assessed. Two methods were of note for two different reasons. 

Firstly, the Finite Element Method^® (FEM); this had previously been applied in 

e l e c t r o c h e m i s t r y , b u t had not become as popular as Finite Difference, due to 

a more advanced formulation. However, it was the most popular approximate nu-

merical method in engineering, where it originated, with a wide range of literature 

and introductory texts. FEM approximates the domain with a series of primitive 

shapes*, for example triangles. Optimisation of the mesh is required for boundary 

singularities, however, due to the FEM formulation (see below) optimisation is far 

I'For some electrochemical models other features in addition to boundary singularities must also 

be considered during mesh optimisation, for example reaction layers. 
*The most common shapes used for FEM are triangles or quadrilaterals in two dimensions and 

tetrahedrons in three dimensions. 
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more Sexible than FDM. 

Secondly, the Boundary Element Method^^ (BEM); also developed in engineering, 

this method offered particular advantages for simulation of complex geometries due 

to its inherent reduction in dimensionality of the domain mesh. Thus a three dimen-

sional domain is described by a mesh of surface primitives^. This also may require 

optimisation for boundary singularities, however, as for FEM, due to its formulation 

this optimisation is extremely flexible. 

Details on both the FEM and BEM formulations are given in section 1.4.4 on 

page 42, a comparison of optimisations is given in section 1.4.3 on page 38. 

The Boundary Element Method was chosen as it appeared the most elegant solution 

to simulating complex systems. Additionally, it was relatively unknown within the 

electrochemistry field, and exhibited the potential to model electrochemical systems 

that had proved intractable using established methods. 

The terms complex system or complex geometry are used throughout this thesis in 

the context of electrochemical systems or electrode geometries that are difficult to 

simulate using numerical methods. This is not intended to reflect the complexity of 

other considerations. 

Background of the Boundary Element Method 

The basic principles of numerical methods date back to the pre-computer era. Finite 

Difference Methods in particular may be traced to the early part of the twentieth 

century. With the development of computer technology in the 1950's and 1960's 

there was a significant growth in research of numerical methods. Integral equation 

techniques, which led to the Finite Element Method and later Boundary Element 

Method, originated at this time.^ Boundary Element Methods were developed in 

the 1970's and 1980's in mechanical engineering.^^ The amount of research was 

significantly smaller than in Finite Element, which by this time had become the 

most popular numerical method in engineering. A significant growth in research of 

^For BEM the most common primitives are line segments in two dimensions and triangles and 

quadrilaterals in three dimensions. 
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Boundary Element Methods occurred in the 1990's. Towards the end of the decade 

some of the advanced formulations of FEM, such as adaptive meshing,were incor-

porated into BEM.^ There is a perception within engineering fields that Boundary 

Element Methods are more complex than equivalent Finite Element Methods.^' 

The paucity of accessible introductory and advanced texts is a hindrance to the 

uptake of the BEM, although this is improving as the method becomes more main-

stream.^^'^ 

At the time of writing Boundary Element research continues to be a dynamic and 

stimulating field, with a wide range of useful application. 



Chapter 1 

Numerical Simulation of 

Electrochemical Processes 

1.1 Characteristics of Electrochemical Systems 

The behaviour of an electrochemical system is defined by the electrochemical tech-

nique used, its mass transport regime and the mechanism of reactions occurring. 

In this introductory section basic electrochemistry concepts are defined to place the 

numerical modelling which forms the basis of this work in context. 

1.1.1 Electrochemical Techniques 

Electrochemical experiments may be divided into those which are potentiostatic 

(controlled potential) and galvanostatic (controlled current). For potentiostatic 

techniques the waveform applied will typically be either a potential step or a po-

tential sweep. More complicated waveforms are used; for example, a square wave 

or staircase shape, however only the potential step waveform is considered in this 

work. 

A transient state exists while the behaviour of the system is dependent upon time. A 

steady state is reached when no changes occur to the flux of a species at the electrode 
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surface. The mathematical basis for these states is described in section 1.2.4 on 

page 17. 

The Boundary Element Method simulations in this work were of a steady state 

potential step experiment. In practice this is obtained at long times after a step in 

the potential from a value where no reaction occurs to a value which is sufficient 

that the reaction is diffusion controlled. For example, for a 1 fim radius microdisc, 

the current typically reaches 110% of its steady state limiting value at times greater 

than approximately 0.1s. Transient Boundary Element Method simulations are also 

possible. 

1.1.2 Electrode Geometry 

Many electrode geometries are used within the electrochemistry f i e l d . W h i c h 

geometry is chosen depends upon the application; for instance, microelectrodes used 

in the laboratory for kinetic analysis, or Thin Layer Cells used in industry for bulk 

electrolysis. 

Analytical theories have been developed for geometries which are relatively simple 

to model, such as the Thin Layer Cell and Rotating Disc Electrode.^ However, more 

complex geometries are usually intractable. Numerical approximation methods are 

a useful alternative to solve these problems. The complexity often arises due to a 

lack of symmetry of the system. This may be inherent to the system, for example a 

Scanning Electrochemical Microscope/^ or due to manufacturing techniques causing 

variations from the expected geometry. 

A class of electrodes which are of particular interest for electroanalytical research 

are m i c r o e l e c t r o d e s . T h e s e are generally defined as electrodes with a dimension 

smaller than the diffusion length of converted species. Typically this is less than 

30 jjim. This small size, known as a characteristic length, leads to useful properties 

such as high rates of steady state diffusion, decreased distortion from iR drop and 

lower charging currents. 

This study is concerned with the simulation of complex microelectrode geometries. 
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1.1.3 Mechanism 

In addition to the electrochemical reactions taking place at the electrode, chemi-

cal processes are often of central importance when considering an electrochemical 

system. Reactions occurring in solution are called homogeneous-, for example, the 

decay of an unstable species, or reaction of the product with another species. Those 

reactions occurring on the surface of the electrode (including electron transfer and 

ion transfer) are heterogeneous. 
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1.2 Mathematical Modelling of the Electrochemical 

System 

Typically in electrochemistry mathematical models describe the concentration dis-

tribution of species in an electrochemical system, from which the current may be 

obtained. The distribution is affected by a number of processes, including mass 

transport, homogeneous and heterogeneous reactions. A mathematical description 

of all processes present is necessary to understand the cases simulated in this study. 

1.2.1 Mass Transpor t 

Mass transport is a fundamental part of all electrochemical systems. It consists 

of three components: diffusion, migration and convection. Mathematically, it is 

described by the Nernst-Planck equation/ which in one dimension is 

f ( . , , ) . + ^ ( z , ()(. ,«) (1.1) 

where F{x,t) mol cm~^ s~^ flux of species at distance a: from the 
electrode at time t 

D cm^ s~^ the diffusion coefficient of species 
C(a;, t) moZ concentration of species at time t and 

position X 
z no the charge on species 
F Cmol~^ the faraday constant 
R Jmol~^K~^ the gas constant 
T K temperature 
$(a;, t) y potential at a distance a; from the 

electrode at time t 
v{x, t) cm velocity of a volume element at a distance 

a; from the electrode at a time ( 

The negative signs in the Nernst-Planck equation are due to the direction of flux 

opposing the direction of increasing potential and of increasing concentration. 

of a species is driven by differences in chemical potential. If a concentra-

tion gradient is present species will, on average, move to areas of lower concentration. 

Note that molecules continue moving randomly at all times, including once equi-

10 
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librium is reached. A simple example is the classic bromine experiment^^ where a 

gas jar of brown bromine species may clearly be distinguished diffusing through an 

adjoining jar until, after a short time, equal concentration is achieved throughout. 

Migration is the movement of charged species due to an external electric field, in the 

presence of a potential gradient. The presence of the field is caused by the drop in 

potential between electrodes in a cell. Experimentally the effect of migration may be 

rendered negligible by addition of excess supporting electrolyte. If the concentration 

of species under investigation is at least two orders of magnitude lower than that of 

the electrolyte then the majority of movement of ions due to migration, and thus 

current transfer, may be attributed to the supporting electrolyte species. 

Convection consists of two components. Forced convection is created by an ex-

ternal mechanical force, for example stirring, pumping or gas bubbles. Natural 

convection is due to thermal gradients or density differences. It is an undesirable 

feature of an electrochemical system as it is difficult to predict. This effect becomes 

significant after approximately 30 seconds, which means most electrochemical exper-

iments, having shorter timescales, are not affected. Convection may be eliminated 

by careful experimental design, however a class of electroanalytical systems, known 

as hydrodynamic methods, use forced convection as a significant component of mass 

transport. 

The example system used in subsequent sections is a potential step experiment which 

drives the oxidation of a redox species A, in the presence of an excess electrolyte 

solution. Electron transfer is assumed to be fast, so the system is mass transport 

controlled. Homogeneous reactions are ignored and convection is assumed to be 

negligible. The potential is initially set so that no reaction occurs. It is then 

stepped to a positive value, such that all species R on the surface of the electrode 

immediately reacts. The concentration of the oxidised form is irrelevant to the 

current measured, thus only R is modelled. 

1.2.2 Domains 

A domain is the physical description of the geometry of the electrochemical system. 

It consists of boundary and interior areas. Boundary Conditions are prescribed 

11 
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values of concentration and flux at the boundary. A boundary condition of fixed 

concentration is also known as a Dirichlet condition, of fixed flux a Neumann condi-

tion. Mixed boundaries where both concentration and flux are prescribed are known 

as Robin conditions. Initial Conditions describe concentration and flux values over 

the whole domain, for a time dependent system, at time t = 0. 

1.2.3 Pick's Second Law 

When convection and migration are neglected equation 1.1, the Nernst-Planck equa-

tion, applied to species R simplifies to 

f) = (1.21) 

where FR is the flux of species R, DR is the diffusion coefficient, CR is concentration 

of species A, a; is distance and ( is time. 

This is Pick's first law of diffusion which states that the rate of diffusion at a given 

point is proportional to the concentration gradient at that point. 

Consider the variation of concentration in the region x to x + dx, shown in figure 1.1 

on the next page. If the number of moles entering the region of cross sectional area 

A, per unit time, is 

= (1.3) 

and an analogous equation, Ngut, is used for the number of moles leaving the region, 

the net change is 

aCA(a;,() ^ _ ATpuf ^ ^ ( z , ( ) - f^(z-l-ck,t) _ 

where C is concentration of species R 
Nin is flux in 

Nout is flux out 
A is area 
FR is flux of species A 

12 
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Flux In / 
Area 

A 

Flux Out 

F(x+dx,t) 

x+dx 

Figure 1.1: The flux of species R through a volume of area A and 
width dx. The total flux through this volume, assuming one di-
mensional diffusion in the x direction, is F{x, t) — F{x+dx, t). 

Substituting equation 1.2 for a; and x+dx 

% ck 
-D R- -D R-

90^(3;+da;, 
9a; 

(1.5) 

An expression for the flux aX x+dx may be found using the approximation theorem 33 

-t-ck) _ 9 
9a; 9a; 

9CA(a;) 
9a; 

(1.6) 

substituting equation 1.6 into equation 1.5 gives 

9Cjz(a;, () _ 1 
9t da; 

(1.7) 

rearranging gives 

9Cj;(a;,t) 9^(7^(3;,^) 
— Dr-

dt 9a;̂  
(1.8) 

13 
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where CR is concentration of species R, DR is the diffusion coefficient, x is distance 

and t is time. This equation is known as Pick's Second Law. 

This describes the planar diffusion of species R in one dimension. Analogous ex-

pressions for diffusion in two or three dimensions or using alternative coordinate 

systems, such as radial or spherical, may also be derived. 

1.2.4 Governing Partial Differential Equation 

Pick's Second Law is a type of partial differential equation. The three dimensional 

version of equation 1.8 is 

at = V " C'S) 

where DR is the diffusion coefficient of species R and is assumed to be in an isotropic 

medium. This type of equation is the fundamental starting point for mathematical 

models of many electrochemical systems. By solving, or approximately solving this 

equation the electrochemical terms of interest, concentration and flux, may be found. 

Some properties of equation 1.9 are now defined, as understanding of terms relating 

to differential equations is required for later explanations. This equation is second 

order because the highest derivative is two. It is also linear as the CR terms are 

all to the first power and no products, such as CdC/dx occur. If each term of the 

partial differential equation contains the dependent variable (in this case CR) or one 

of its derivatives, the equation is said to be homogeneous.^^ Note this concept is 

separate and unrelated to homogeneous reactions. 

Multiple Species 

Each species in an electrochemical mechanism has a governing partial differential 

equation. Por example, a redox couple, shown here as a reduction 

4-,3-

14 
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where (9, R are different chemical species and e is an electron. 

This reaction, which is used throughout this thesis, is described by two governing 

partial differential equations. For a one dimensional, diffusion only, system these 

would be 

at - •°° dx' 

where CR is concentration of species R, DR is the diffusion coefficient of species R, 

X is distance and t is time. 

Hydrodynamics 

Convection terms describe the rate of How of a volume element of solution. They are 

significant in hydrodynamic experiments such as rotating disc electrodes and channel 

flow systems. For example, a three dimensional diffusion model with convective flow 

in the x direction only may be cast as follows 

a^CA(a;,2/,z,f) 2/, 
at dl- + Sf + 

2/, z, . 
— W x — 

where CR is concentration of species R, DR is the diffusion coefficient, is a velocity 

coefficient, x, y, z are cartesian coordinates and t is time. The fourth term on the 

right hand side describes convection. 

Homogeneous Reactions 

Chemical reactions in the mechanism lead to extra terms in the partial differential 

equations to account for the production or loss of species. This often gives a set 

of coupled equations which are linked through homogeneous reaction terms. For 

15 
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example, an ErC; reaction 

A + e ^ B (1.14) 

j8 (7 (1J15) 

where A, B, C are different chemical species, e~ is an electron and k a chemical rate 

constant. E signifies an electron transfer reaction, C a chemical reaction, of which 

r is reversible and i irreversible. 

The partial differential equation of species A will be unchanged, however the equa-

tion for species B includes the homogeneous term; there is also a corresponding 

equation for species C 

at -

= (1.17) 

= + (1.18) 

where Ca,Cb,Cc are concentrations of species A, B and C respectively and k the 

chemical rate constant. 

The inclusion of homogeneous reaction terms may change the type of the partial 

differential equation, for example, for a second order ErC2i reaction 

A + (1.19) 

2B A C (1.20) 

16 
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the governing equations are 

G% -- ^ obf 

= (1.22) 

+ (1.23) 

The partial differential equations of species B and C are now non-linear. This will 

lead to additional problems when attempting to solve this set of equations. 

Transient and Steady State 

A partial differential equation which contains a time derivative, such as Pick's second 

law, is called a transient equation. For a system at a steady state the concentration 

profile does not change with time. Thus the time derivative term of the differential 

equation is equal to zero. If only diffusion is considered this gives the steady state 

diffusion equation, known as the Laplace equation, which for one dimension is 

dz^ 
(1.24) 

1.2.5 Solution of Partial Differential Equations 

A solution to a partial differential equation is any function that satisfies the equation 

in question for a specified integral. The integral limits are defined by the domain. 

For a one dimensional diffusion equation this would be the x coordinates of two end 

points. Often this requires the function to be continuous on the boundary of the 

region and to have derivatives in the interior of the region. 

A partial differential equation will have many solutions as integration introduces an 

arbitrary constant. A function involving this arbitrary constant is called a general 

17 
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solution. A solution where a specific value of the constant is used is known as a 

pofizctzJar 

The unique solution of a partial differential equation is obtained by considering addi-

tional conditions that are specific to the problem. In the case of an electrochemistry 

domain, some boundary conditions are known in advance, and if the problem is 

time dependent, initial conditions when t = 0 will also be known. These types of 

partial differential equation problems are known as boundary value and initial value 

problems respectively. 

This was a brief definition of some important terms found in partial differential equa-

tions related to electrochemistry problems. The reader is directed to mathematical 

textŝ ®'̂ ® for rigorous definitions. 

1.2.6 Current 

The current at an electrode may be obtained from the Sux (the concentration gra-

dient) at the electrode surface.^ 

(1.25) 
z=0 

where i A current 
n n/a number of electrons 
F faraday constant 
A area 

moZ the diffusion coefficient of species R 
concentration of species R 

X distance 
t s time 

Using the analytical solution to the diffusion equation in one dimension (derived in 

the next section) and substituting its derivative into equation 1.25 gives the Cottrell 

equation 

^ 26) 

where CJj is the bulk solution concentration of species R and other parameters are 

18 
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defined in the previous equation. 

1.2.7 Analytical Solution of the Diffusion Equation in One 

Dimension 

For a limited number of electrochemical systems a solution to the partial differential 

equation and boundary conditions that describe the model may be derived. This 

is called an analytical solution. For the one dimensional diffusion equation, equa-

tion 1.8, an analytical solution may be d e r i v e d . T h i s gives the concentration of 

species Cr at any time, anywhere in the domain. Various methods of solving partial 

differential equations are a v a i l a b l e , a common method found in electrochemistry 

is the Laplace Transform. 

The Laplace Transform technique consists of three steps 

L Perform a Laplace Transform on the original partial differential equation tak-

ing into account initial conditions. 

2. Solve the resulting ordinary differential equation in Laplace space considering 

the boundary conditions. 

3. Convert back to real space using the inverse transform, which may be found 

in tables or using a numerical approximation. 

A Laplace Transform converts a function, / , to an ordinary differential equation 

with the Laplace space variable, s 

OO 
£ ( / ) W = / (1-27) 

Jt=Q 

where £ ( / ) ( s ) is the Laplace Transform of f{x). 

Applying this to equation 1.8, the dlGiision equation, gives 

g b f ' (128) 

19 



Chapter j Mathematical ModeiZicg of the EVectrocbejnicaj System 

where the bar indicates a Laplace transform. Integration by parts gives 

f=0 

g) 
(1.29) 

therefore 

gC^(2;, g) - Cg(z, 0) = (1.30) 

Using the initial conditions 

8(7^(3;, g) - Cĵ (a;, g) = 
^Ca(a;,g) 

(1.31) 

rearranging gives 

0„^^^^^-sC^(x,s)=~C R (1.32) 

where is constant. The solution of the above equation may be found in tables'"' 

^^(37, g) = ^ + v4(g) exp 
s 

X + B(g) exp 
D R 

X (1.33) 

The coefficients A and B may be found by applying boundary conditions. At large 

distances from the electrode {x = oo) then CR(oo,t) = C^, where is the bulk 

solution value. In Laplace space 

£ ( c a = ^ (1.34) 

equation 1.33 becomes 

c* 
— + B(g) exp 

s 
% X (1.35) 
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therefore at % = oo, B(s) must equal zero, which gives 

a) = ^ + A(g) exp 
D R 

X (1.36) 

The boundary conditions at the electrode allow evaluation of A. At x = 0 then 

C(0, = 0 so in Laplace space 

r(o) = 0 (1.37) 

thus 

C 
A(g) = (1.38) 

so the solution in Laplace space is 

Cdx, «) = _ S exp 
DA 

X (1.39) 

Using tabulated results the inverse transform gives 

CA(j;, ̂ ) - C^erf 
X 

(1.40) 

The function may be verified by substituting known boundary conditions. At x = 

oo, erf(oo) = 1 so At a; — 0, erf(0) = 0 so C/z = 0. 

This gives a solution which is a function of space and time. The values of concen-

tration may be directly found at any given point in space and time. 

1.2.8 Simple Simulation of the Diffusion Equation in One 

Dimension 

For any systems other than the most basic models an analytical solution is often 

impractical. An alternative is to find an approximate solution by utilising a numer-

21 
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ical simulation. The simplest possible simulation, Explicit Finite Difference (EFD) 

is outlined here, for the one dimensional diffusion equation. 

Finite Difference 

The concept of a domain has been introduced in section 1.2.2 on page 11, and a 

simulation domain for a one dimensional system is shown in figure 1.2. This example 

uses the point collocation method, readers are referred to the text by Britz® for 

alternative views of the EFD technique. Concentration values are calculated at a 

series of discrete points; figure 1.2. This illustrates the concept of discretisation, 

where a domain is divided into separate points or sections. 

Ax 

< X X X X X 

Figure 1.2: Discretisation of a one dimensional domain into equally 
spaced collocation points. 

The differentials present in equation 1.8 may be approximated, giving a value for 

concentration at each point, figure 1.3 on the next page. The points are separated 

by equal size intervals, AX, so the X coordinate is given by X = zAX, where i 

is an integer, starting at zero. Unequal size intervals may also be used allowing 

efficiency savings, see section 1.4.3 on page 38. Time may also be discretised in the 

same manner giving t = j'At. 

The rate of change of concentration with respect to distance, that is the concen-

tration gradient, may be represented using a two point approximation.^ There are 

three possible equations; 

22 
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C 

Q ( 4 r ) 
Ci^{i+l,t) 

0-7) i (f+7) 
, AX , AX , 

X 

Figure 1.3: The concentration profile at time t may be discretised 
into distinct points. Variation of concentration between points is 
assumed to be linear. Thus problems may be caused if the flux 
(rate of change of concentration) relative to is too large. 

backward difference 

A X 
(1.41) 

forward difference 

dCad,]) C R ( 8 + l . i ) - C „ ( i . j ) 
A X 

(1.42) 

or a central difference 

aCA(2, j ) C^(2+l , ; ) - Cjz(2-1,;) 
2AX 

(1.43) 

where CR is concentration of species i?, A X is the distance increment, i is the spatial 

integer counter, j is the temporal integer counter and X is distance. 
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Recalling a second order derivative may also be written 

a /aCa(2,;) 

then combining equations 1.42 and 1.41 and differentiating gives 

(1.44) 

(1.45) 

where CR is concentration of species i?, AX is the distance increment, i is the spatial 

integer counter, j is the temporal integer counter and is distance. 

This gives an approximation for CR at each timestep. To link timesteps the same 

approximating functions may be used to discretise the temporal term. If a forward 

or backward difference approximation is used for the timestep, the method is known 

as explicit as it uses the previous timesteps result. If we use a central difference the 

method is known as implicit, as we are using the values of C at a current, unknown, 

timestep. 

The simplest method, which may be directly extended to two and three dimensions, 

is explicit finite difference. Substituting a backward difference approximation, equa-

tion 1.41, for the temporal derivative and equation 1.45 for the spatial term into the 

diffusion equation, equation 1.8, gives the explicit finite difference approximation in 

one dimension 

CA(%, j + 1 ) — j) _ /CA(%+l,j) — 2Cg(2,j) 4-CA(z — l , j ) \ ^ 

where CR is concentration of species R, AX is the distance increment. At is the 

time increment, i is the spatial integer counter and j is the time integer counter. 

This equation may be used to simulate concentration at discrete points in space and 

time. Any point may be calculated either by ensuring it coincides with a simulated 

point or interpolating between points. 

Transient and Steady State Simulations The Explicit Finite Difference meth-

od applied to the diffusion equation is a transient simulation. At long times the con-
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centration will approach a near-steady-state equal to the true steady state value. 

There are also alternative simulation methods which calculate the steady state di-

rectly, see section 1.3 on page 29. 

Stability 

The Explicit Finite Difference equation may be written in terms of a stability coef-

ficient, A, which is defined as 

A = ^ (1.47) 

where At is the time increment and AX is the distance increment. Equation 1.46 

becomes 

i + 1 ) = XCR{i+l, j) + (1 — 2A)Cii(z, j ) + AC_R(i —1, j ) (1-48) 

where CR is concentration of species R, A is the stability coefficient, i is the spatial 

integer counter and j is the time integer counter. 

The stability coefficient relates space and time increments, and effectively puts a 

limit on the maximum timestep interval that is permissible while maintaining sta-

bility. If this limit is exceeded the simulation starts to oscillate, giving incorrect 

results. 

For one dimensional EFD® then A < 0.5. It is possible, from this simple example, to 

directly comprehend the effect of the stability coefficient. Substituting the maximum 

A value into equation 1.48 one may see that the second term on the right hand side, 

j), is equal to zero, giving 

+ (1,49) 

Thus the new concentration value, j + l ) , cannot exceed the average of the old 

concentrations on either side. 

An analytical theory predicting the theoretical stability of different finite difference 
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schemes, known as Von Neumann analysis, has been published for a variety of 

schemes.'^ 

The stability limitation means that large numbers of timesteps are required to reach 

near steady state times. This is often prohibitive due to the computing resources 

available. Thus more efficient finite difference models are required. Finite difference 

approximations which are theoretically stable for all values of A are reviewed in 

section 1.3.1 on page 29. Although they may be theoretically stable many of these 

approximations still exhibit some instability, often due to additional factors such as 

large kinetic parameters. 

Stability is a problem for most numerical simulation techniques, not just finite dif-

ference. However as the simulation formulation becomes more complex, so does the 

theoretical treatment required to prove stability. Often analytical stability theory 

is unavailable, requiring numerical validation of the model to achieve a degree of 

confidence of the accuracy of the model under certain conditions. 

1.2.9 Dimensionless Parameters 

When working with electrochemical models it is often advantageous to normalise 

parameters to remove dependence of the model on specific values. For example 

removing the diffusion coefficient, Dr, enables the same model to be applied to any 

species R. The details of normalisation for the one dimensional diffusion equation 

are outlined below. 

Concentration is normalised with respect to the bulk solution concentration value. 

c = ^ (1-50) 

where c is dimensionless concentration, C is dimensional concentration and C* is 

bulk concentration. 

Distance parameters such as X are normalised with respect to a characteristic 

length, I. For example, for a microdisc system the radius of the disc is used, for a 
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microband the width of the band. 

X 
X (1.51) 

where x is dimensionless distance, X is dimensional distance and I is the length of 

the domain. 

Time is usually normalised with respect to the diffusion coefficient, Dr, and a 

characteristic length 

r = - ^ r (152) 

where r is dimensionless time, Dr is the diffusion coefficient, t is dimensional time 

and I is the length of the domain. 

Substituting these parameters into the diffusion equation gives the dimensionless 

form of the diffusion equation 

ac(2;,T) _ a^c(a;,T) . » 
ar azs I ' ^ 

where c is dimensionless concentration, r is dimensionless time and x is dimensionless 

distance. 

Note the original parameters are also known as dimensional parameters. 

Dimensionless Current 

The equation describing current at an electrode, equation 1.25, may be cast in 

dimensionless form by normalising with respect to a characteristic current. For 

example, for the microband electrode 
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where 

HFWIDR 
a y 

dX 
Y=0 

'norm — (M%ZC*) 

n̂orm dimensionless current 
n n/a number of electrons 
F Faraday constant 
A area of electrode 
DR diffusion coefficient of species R 
Cjz moZ cm"^ concentration of species R 

mo/ concentration of bulk solution of species R 
w cm width of microband electrode 

%,y distance 
I none electrode length normalised with respect 

to the electrode width 

a;, 3/ none distance normalised with respect to the 
electrode width 

t s time 

(1.54) 

to give 

da; (1.55) 
j / = 0 

where parameters are as defined above. 
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Electrochemical simulation is a broad and diverse topic. A brief review of some al-

ternative simulation techniques is included, to place the Boundary Element Method 

within the general electrochemical numerical modelling field. 

Finite Difference Methods are by far the most popular simulation techniques in 

electrochemistry. The main simulation algorithms are summarised here. The op-

timisations of these FDM techniques, applicable to all algorithms, are covered in 

section 1.4.3 on page 38. 

For all methods mentioned, except random walk^'^ and interested readers 

are referred to the excellent review by Speiser/ and for FDM basics in particular, 

tlie toct hgf ESritz.G 

A detailed comparison of three of these methods, the Finite Difference Method, 

Finite Element Method and Boundary Element Method is covered in section 1.4 on 

page 34. 

1.3.1 Finite DiHierence Method 

The concept of finite difference approximation, where a differential equation is re-

duced to a series of algebraic equations, was presented in section 1.2.8 on page 21. A 

specific finite difference formulation yields an algorithm. Explicit Finite Difference 

(EFD) is the simplest algorithm for the solution of a partial differential equation, 

however it is not particularly efficient. Alternative finite difference algorithms are 

briefly reviewed here. 

Hopscotch A slight extension of the EFD algorithm gives the Hopscotch method, 

which has a degree of implicitness without the complexity of Crank-Nicolson. It 

it stable for all A and simple to implement. However it produces disappointing 

Crank-Nicolson (CN) A simple one dimensional semi-implicit scheme,® this 

leads to a tri-diagonal matrix and is theoretically stable for all values"^^ of A. A 
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method implemented by Heinze^^ and Britz,^^ FIFD (see below) has proved more 

popular. 

Du-Fort Frankel (DFF) or Fast Quasi-Explicit Finite Difference (FQEFD) 

An improvement to EFD, the Du-Fort Frankel method^°'^^ uses concentration values 

at C{x,t — At) in addition to C(x,t) to calculate new values at C{x,t+At). This 

is found to be stable for varying A, but haa also proved disappointing as it must be 

started near equilibrium conditions to avoid initial oscillations.®^ 

Fast Implicit Finite Difference (FIFD) This is also known as the Backward 

Difference Method, and was applied to channel flow systems by Compton et 

It was introduced as FIFD by Rudolph.®®'̂ ® This algorithm uses only values of 

C{x,t + At) in addition to C{x,t). Recently it has been modified by Feldberg®^ 

to simulate large values of the diffusion coefficient, and is still being developed by 

Rudolph.^® FIFD is the basis of the commercial electrochemical simulation program, 

Digisim@,^ which is capable of simulating general electrochemical mechanisms. 

Alternating Direction Implicit (ADI) A semi-implicit two dimensional sche-

me,®® ADI is unconditionally stable for all values of A. It is effectively a two-

dimensional CN algorithm. Two half-steps are used, the first half-step is implicit in 

one axis and explicit in the other. These are then exchanged for the second half-

step, when the final concentration values are c a l c u l a t e d . A D I has been successfully 

applied to a number of electrochemical problems, particularly microdiscs, by Unwin 

Taylor^^ and Amphlett 

10 Recently a three dimensional ADI algorithm has been developed. 

Strongly Implicit Procedure (SIP) and Multi Grid Method (MGM) In-

troduced by Alden et SIP is a fully implicit two dimensional method, that 

allows direct solution of steady state problems. This gives a significant efficiency 

gain.®® An initial approximate solution must be given for the concentration values 

of all mesh points and an iterative solution found. Transient simulations are also 

possible, and SIP has been found to be more stable than ADI due to its fully implicit 

nature. 
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Alden later found the Multi Grid Method/^ which is also implicit and uses a larger 

number of mesh points in the finite difference approximation, to have superior con-

vergence properties than SIP for some problems/^ Additionally, a wider range of 

conformal mappings are possible as the original partial differential equation mod-

elled is more general. 

Matrix Solvers 

Of particular note is the generalisation of two dimensional FD methods, with appli-

cation to wide ranging electrochemical mechanisms, enabled by a number of matrix 

solving techniques collectively known as Pre-conditioned Krylov Subspace (PKS) 

solvers. A non-generalised form of Krylov integration technique was originally used 

by Bard for SECM simulation. 

The finite difference method formulation may be written in matrix form leading to a 

diagonal sparse matrix. For example, an EFD approximation produces a tri-diagonal 

matrix. If homogeneous reactions are also included in the formulation, additional 

diagonal lines appear. The FDM is an eSBcient way of solving these matrices. Each 

method produces a specific matrix, and may only be used to solve that matrix. 

Pre-conditioned Krylov Subspace methods allow any linear sparse matrix to be 

solved. Therefore they are a general method which may be used with a finite differ-

ence approximation. Although not as efficient as specific solvers, for example SIP, 

they are much more flexible. 

A general electrochemical simulator has been proposed by Alden^^ based on the PKS 

method, which will allow any mechanism to be simulated. This has been applied to 

simulation of a wide variety of mechanisms for microdiscs and microbands.^^ 

1.3.2 Random Walk 

Random Walk methods simulate the possible paths taken by a species, noting 

where a particle hits a boundary. The number of particles hitting an electrode, 

per timestep, gives the current. It is more complex, although possible, to calculate 

a concentration p r o f i l e . T h e path taken is determined by moving the particle in 
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a random direction and care must be taken to ensure a sufficiently random number 

generation routine. A distinct advantage of the method is that a general three di-

mensional boundary may be simulated in addition to a moving boundary. Nagy 

^̂ 43,76 applied the random walk method to growing arrays of hemi-spherical elec-

trodes. There is no mesh or primitive elements to restrict the description of the 

boundary, however recent researchsugges ts problems due to the assumption of 

zero flux perpendicular to the boundary, when a curved boundary is modelled. 

Therefore the advantages of application to general boundary shapes may not be as 

significant as first thought. 

1.3.3 Weighted Residual Methods 

Orthogonal Collocation 

Orthogonal Collocation^^'uses a polynomial of degree to interpolate between 

concentration points. The polynomial is forced to be exact at certain points called 

collocation points. The weighting function used is related to the polynomial function 

and its order. The space derivatives are therefore replaced, leading to a system of 

ordinary differential equations of the form 

— = / ( Q ) (1.56) 

where C is concentration, / a polynomial function, i an integer counter and t is 

time. 

These equations are then integrated on a discrete time grid. Far fewer discretisation 

steps are required than Finite Difference.®"'®^ Care must be taken to use suitable 

numerical integration to maintain stability.®^ A comparison is given by Bieniasz.®^ 

Finite Element Method 

This technique divides the domain into a mesh of primitive shapes such as triangles, 

rather than discrete points as used in OC methods. The concentration variation 

over each element is calculated. Complex geometries may be simulated although 
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mesh generation is not simple. The Finite Element Method has been applied to 

electrochemistry®'' 'and is described in more detail in section 1.4 on the following 

page. 

Boundary Element Method 

The Boundary Element Method requires only discretisation of the boundary of the 

domain into elements. Recently applied to electrochemistry by Fulian et it 

allows modelling of complex shapes. A detailed description of BEM is given in the 

next chapter. It is compared to two popular alternative methods in section 1.4 on 

the next page. 
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1.4 Comparison of Finite DiSerence, Finite Element 

and Boundary Element Methods 

1.4.1 Introduction 

The two numerical simulation methods, Finite Difference (FDM) and Finite Ele-

ment (FEM), most widely used in electrochemistry and engineering respectively, 

are compared to the Boundary Element Method (BEM). This section initially sum-

marises each method after which specific properties of interest to electrochemists 

are compared. 

The formulation of each method are related mathematically, through a Method of 

Weighted Residuals (MWR) technique in Appendix A on page 188. 

Finite Difference 

This method has been comprehensively developed within the electrochemistry 

field®'̂  with many optimisations implemented. Finite difference (FDM) techniques 

approximate the derivatives of the partial differential equation in question using a 

form of truncated Taylor expansion. This leads to a mesh of concentration points, 

represented by a series of algebraic equations, to which boundary conditions are 

applied to solve the problem. The regular FDM grid is unable to accurately re-

produce the geometry of many problems. Hence some form of expanding grid or 

conformal mapping is applied to increase the number of concentration points in ar-

eas of high flux. These have been successfully applied to many problems including 

both microband®®'® '̂®® and microdisc g e o m e t r i e s ^ ® ' t h e latter using a two di-

mensional axisymmetric domain. However the domain mesh is relatively inflexible 

even if some kind of adaptive grid technique is used and it is difficult to incorpo-

rate complex shapes. Three dimensional simulations have been limited to simple 

geometries. Electrochemical finite difference methods are a broad and varied area 

of research, a summary of different algorithms is given in section 1.3.1 on page 29. 

Finite difference codes can be extremely efficient to run, due to the sparse matrix 

produced, however for two and particularly three dimensions this is often offset by 
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the large number of points required to maintain accuracy. 

Transient effects and chemical reactions may be included with relative ease once the 

mesh transformation has been derived. 

Finite Element 

There has been some application of the Finite Element Method to electrochemical 

problems although the technique has not proved as popular as FDM. The FEM 

model involves the approximation of the variables over small elements of the domain, 

in terms of polynomial interpolation functions. A weighted residual formulation may 

be written in order to distribute the error introduced by this approximation over 

each element. This results in matrices which express the properties of each element 

in terms of a discrete number of nodal values. Assembling these into a global 

matrix then represents the whole domain. Various shapes of elements may be used 

to discretise the model, including triangles and quadrilaterals in two dimensions, 

tetrahedrons and cuboids in three dimensions. 

Regular grids in FEM models are insufficient to account for boundary singularities. 

Expanding grids have been successfully implemented,^^ however altering the geom-

etry of the mesh is not a simple matter. Distortion of the original shape of the 

elements must be avoided to ensure accuracy. Recent developments of adaptive grid 

FEM techniques®^"®® allow for various geometries and boundary conditions, while 

accounting for boundary singularities. Current electrochemical FEM simulations 

have been limited to two dimensional domains. Three dimensional FEM is possible, 

but leads to more complex integrals and difficulties in generating suitable element 

meshes. 

The FEM is a powerful technique and has been extensively researched in engineering 

fields. It is also possible to include transient efi'ects and chemical reactions. 

Boundary Element 

The Boundary Element M e t h o d ^ ' r e q u i r e s only discretisation of the boundary 

of the domain. The variables at different boundary points are related by the use of 
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an analytical function (the fundamental solution) resulting in a series of inEuence 

coefficient matrices. Boundary conditions are then applied to solve for all variables 

at all boundary points. Subsequently, values at internal points may be obtained. 

Boundary elements can be of various types, including curvilinear shaped boundaries, 

enabling a wide range of domains to be accurately modelled. A regular mesh is 

normally sufficient to model boundary singularities. A distinct advantage of the 

method is a reduction in dimension by one. Thus a three dimensional model is 

described using two dimensional surface elements. This greatly simpliBes generation 

of the mesh, although it does lead to more complex integral equations. Many model 

geometries may be described as only the cartesian coordinates of the surrounding 

boundary are required as input. Therefore once developed a BEM program is highly 

flexible in its application. 

The BEM was applied to common electrochemistry problems by Fulian et a/se, 99,100 

during the course of this Ph.D. 

Time-dependent terms in the partial differential equation may be incorporated,^^' 101,102 

additionally some coupled chemical reactions (represented by multiple differential 

equations) may be simulated. 

1.4.2 Domain Discretisation 

The three types of basic domain discretisation are shown in figure 1.4 on the follow-

ing page. 

Finite Difference Finite Difference meshes divide the domain into a sequence of 

points (figure 1.4a) and boundary conditions are applied to points on the edge of 

the domain. The placement of mesh points has been shown to have a significant 

effect on accuracy. The distribution of points and distances between them are 

related to the original partial differential equation; any alteration in mesh spacing 

changes the form of this equation. This causes restrictions on the geometry that may 

be modelled, in addition to rendering each mesh specific to a particular geometry. 

However many electrochemical systems may be accurately approximated by an ideal 
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a) 

# # # # # # / / / / / / \ 1 1 1 1 / 

# # # # # # / / / / / / 
# # # # # # / / / / / / 
0 O 9 9 9 9 / / / / / / 
9 9 9 9 9 9 / / 1 1 1 1 \ 

b) 

/ I I I I I \ 

c) 

d) e) 

Figure 1.4: Typical two dimensional discretisations for a) Finite 
Difference, b) Finite Element and c) Boundary Element. The 
greater flexibility of the latter two methods is demonstrated in more 
complex domain shapes d) and e). The Boundary Element Method, 
e), gives the easiest domain discretisation due to a reduction in di-
mension, allowing description of the domain with line elements. 

(simple) geometry, enabling optimised finite difference simulations to successfully 

model a wide variety of electrochemical problems.^ 

Finite Element The Finite Element domain is described by a mesh of primitive 

elements. In two dimensions either triangles (shown in figure 1.4b) or quadrilaterals. 

These cover the entire domain with the nodes on the edges of elements on the 

boundary having boundary conditions applied to them. The placement of elements 

does not directly affect the partial differential equation. Thus they may be different 

sizes and shapes and if for instance, triangles, do not have to be congruent. However, 

the aspect ratio of the sides of the elements must be reasonably close to unity, to 

prevent elongated, thin elements which reduce accuracy. These FEM meshes can 

model a wide variety of domain shapes and are much more flexible than FDM meshes 

(figure 1.4d). 
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Boundary Element A Boundary Element mesh requires only discretisation of 

the boundary of a domain (figure 1.4c), due to a reduction in dimension by the 

BEM formulation. Thus line elements are used in two dimensions. Complex domain 

shapes may be more easily modelled due to this simplified discretisation (figure 1.4e). 

Three Dimensions 

In three dimensions a finite difference mesh is also described simply by a mesh of 

points. A single point and those neighbours which contribute to calculation of con-

centration at that point is shown in figure 1.5a on the next page. A very large 

number of points is generated leading to problems with obtaining a realistic com-

putational time, and difficult optimisation. Finite Element meshes consist of either 

tetrahedra (figure 1.5b) or cuboid primitives. Meshing is much more complex, es-

pecially when optimisation is required. Significantly fewer points are required than 

with FDM for the same accuracy, although computational time may still be a factor. 

Due to a reduction in dimension three dimensional primitives for the Boundary Ele-

ment Method are sur faces , such as triangles or quadrilaterals (figure 1.5c). Meshes 

are still fairly complex as the elements must still be defined in three dimensional 

space. However this is markedly simpler than volume meshing. 

1.4.3 Optimisation for Electrochemical Geometries 

Electrochemical simulations of two dimensions or higher usually have one or more 

boundary singularities. These are caused by an abrupt change in boundary condi-

tions at the edge of an electrode, for example at the edge of a microdisc. The flux 

tends to infinity at this point, which is called a singularity. Around this region rapid 

changes in concentration occur which often require some form of optimisation to be 

modelled accurately. 

If one is simulating homogeneous chemical reactions, it may also be necessary to 

consider rapid and highly localised changes in concentration caused by the reaction, 

in a region known as the reaction layer. A reaction layer is analogous to a diffusion 

layer.® The size of the reaction layer may be a different order of magnitude to 

38 



1.4 Comparison of Finite Difference, Finite Element 
Chapter j and Boundary Element Methods 

a) b) ^ 

Figure 1.5: The simplest discretisation possible in three dimen-
sional space for each of the three methods compared, a) Finite 
Difference uses the six neighbouring points, these must be mutu-
ally perpendicular unless some sort of conformal mapping is used. 
b) For FEM the volume may be divided into tetrahedrons; these 
do not need to be of a speciGc shape, although they must remain 
reasonably close to a pyramid shape to maintain accuracy, c) BEM 
may use a triangular surface, although this must be defined in three 
dimensional space. 

the di@usion layer; additionally it may be some distance away from the electrode 

s u r f a c e , l e a d i n g to conflicting optimisation requirements. 

Finite Difference 

A basic two dimensional finite difference mesh is rectangular; all boundaries are 

at right angles to one another. To increase the number of points near a boundary 

singularity several optimisation strategies have been implemented. 

Exponential Meshes Exponential meshes increase the density of points^® in a 

single dimension at an area or several areas defined by the specific equations used. 

When applied in two dimensional domains the number of points near the singularity 

can be significantly increased. This also has the side effect of increasing point density 

in some regions far away from the singularity - this does not adversely afkct accuracy 

although it does increase computational time. 
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Local Approximation A special formulation immediately adjacent to the sin-

gularity may be implemented^®^ (a locally valid series expansion) which reduces 

computational time. 

Conformal Mapping A transformation of coordinate system (known as con-

formal mapping) may be applied to obtain a high density of points in real space 

with equally spaced points in transformed space, where the FDM calculation is per-

formed. An ideal conformal map will have points distributed in a similar manner to 

the diffusion field^°^ (in a diffusion only system). A wide variety of conformal maps 

have been considered^^' 110-112 just limited to rectangular domains but also more 

challenging geometries. 

These optimisations are speci6c to each geometry and to implement Einy optimisation 

the finite difference method must be fully understood. Three dimensional conformal 

mapping is complex, and still an active area of research in both mathematics^^"^"^^® 

and electrochemistry related fields.However limitations due to the inherent 

inflexibility of the FDM optimisations often mean that the amount of effort involved 

cannot be justified. 

Finite Element 

Optimisations include techniques analogous to Finite Difference. Exponential grids 

have been employed to increase the density of elements near boundary singularities.®^ 

Alternatively an automatic adaptive mesh routine increases the number of elements 

in areas of high fiux.®^ These may be based on either optimising concentration or 

&UX. 

Recently an error-bounding technique has been introduced in addition to adap-

tive m e s h i n g . T h i s gives a global error limit, and the actual error is often 

significantly below this. This has distinct advantages over alternative methods as 

convergence testing is not required, and the possibility of unforseen problems with a 

new geometry is removed. This has so far been limited to two dimensions. Adaptive 

routines used in electrochemistry have relied on a rectangular discretisation strategy. 

A rectangular mesh of triangles, figure 1.4b on page 37, (two triangles per rectangle) 

is used as the base discretisation. In areas of high flux existing triangles are divided 
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to form two new triangles (figure 1.6). However this type of strategy limits domains 

that may be modelled to rectangular types. An improved technique, allowing more 

complex meshes, is Delauney triangulation.^^^'^^^ This allows generalised domains 

to be meshed, while restricting the aspect ratio of triangles used. 

Figure 1.6: The adaptive meshing strategy used in previous electro-
chemical FEM simulations by Gavaghan et al.^^ A rectangle is split 
in half to form two triangles. One of these triangles is split into two 
further triangles if required. A similar strategy could be used for 
three dimensional BEM simulations, however superior alternative 
techniques, such as Delaunay triangulation are also available. 

Higher order approximations over elements may also improve accuracy, allowing an 

improved description of concentration variations.^'' 

Usually semi-infinite boundary conditions are used, with a domain that extends 

far enough from the area of interest that the influence of the infinite boundary is 

negligible. Alternatively special infinite elements may be incorporated. These use 

an approximating function that decays to the specified value at infinity. 

Three dimensional optimisations are analogous to the two dimensional techniques 

already mentioned. However they are more complex and some advanced stategies, 

such as error-bounding and Delauney triangulation have not been fully developed. 

Boundary Element 

Boundary Element optimisations include many procedures analogous to previous 

methods. Exponential element spacing is described in section 2.5.2 on page 80. 

Adaptive meshes are a current area of research in specialised BEM fields. Thus 
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far, there has been limited development analogous to FEM error-bounding although 

this would be a desirable future direction. 

Higher order approximations to describe concentration and flux variations over the 

primitive element may be implemented. Linear elements are described in detail 

in section 2.10.1 on page 123. Additionally an analytical element may be used 

adjacent to a boundary singularity. This is a high-order element which optimises the 

approximation over the element, for a known variation of flux near the singularity. 

Analytical elements were not considered in this work. 

Semi-infinite boundaries are usually used in the same manner as FEM and EDM. 

A significant optimisation unique to BEM is to model a genuine infinite domain, 

discretising the object of interest in the same way as a closed domain, but considering 

the concentration field exterior to this discretised domain. The infinite boundEiry is 

incorporated in the BEM formulation and does not require discretisation.^ 

1.4.4 Formulations of t he Methods 

The system to be modelled is described by a partial diflFerential equation as explained 

in section 1.2.4 on page 14. The relation of the formulation of each method to this 

partial differential equation is outlined below. The implementation details of each 

method will change if the partial differential equation is changed. The relation 

between the formulations of the three methods is summarised in figure 1.7 on the 

next page. 

FEM and BEM are often derived through a weighted residual approach as this is 

perhaps the easiest to understand, although both may be derived through alternative 

formulations. FDM methods are usually derived directly (section 1.2.8 on page 21), 

however they may also be derived through a weighted residual method allowing a 

direct relationship between the three methods to be established. The mathematical 

details of these relationships are covered in Appendix A on page 188. A brief 

summary of the Method of Weighted Residuals follows. 
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Basis functions for 
c and W are the same 

Finite Element 
Method (FEM) 

Weighted Residual 
Equation 

Weak Formulation 

Inverse (Strong) 
Formulation 

Integration 

Basis functions for 
c and W are different 

Finite Difference 
Methods (FDM) 

Boundary Element 
Method (BEM) 

Figure 1.7: The three methods under discussion may be related 
through a Method of Weighted Residuals (MWR) formulation. The 
choice of weighting function is of fundamental importance for both 
the Finite Element Method and Boundary Element Method, how-
ever, it is inherent within a finite difference method which is more 
usually derived directly, c is a concentration Geld approximation 
function, W is a MWR weighting function. 

Method of Weighted Residuals 

Diffusion in one dimension is described by Fick's second law, equation 1.8, which in 

dimensionless form and dropping the species subscripts is 

(1.57) 

Substituting an approximation function, c, for c in the diffusion equation, equa-

tion 1.8, gives a Residual, or error function, R, such that 

% 
(1.58) 

where R is the residual, c is concentration, x is distance and t is time. 
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The aim of the weighted residual method is to force R to be zero in an average 

sense, over the entire domain. To achieve this a weighting function W is used to 

distribute the error. For equation 1.58 this gives 

where W is an arbitrary weighting function, c is the concentration, d is the length 

of the domain, x is distance and t is time. 

This equation is known as a weighted residual, which in this case has been applied 

to the one dimensional diffusion equation. The same procedure may be used for any 

partial differential equation by replacing equation 1.57. 

Finite Difference 

Finite Difference methods are a direct approximation of the diffusion equation, giv-

ing concentration and flux values at a series of points. FDM is related to MWR in 

Appendix A. A large number of FDM algorithms (section 1.3 on page 29) have been 

derived, many of which have been optimised (section 1.4.3 on page 38) and applied 

to electrochemistry. Although possessing different properties the basic form of these 

methods is the same; for example the simplest algorithm, explicit finite difference, 

may be written as a tri-diagonal matrix. More advanced algorithms have additional 

diagonal components but always lead to a sparse matrix form. 

Concentration values are obtained at each discrete point. The flux may be calculated 

from adjacent points and the current from the flux at the electrode surface. Two 

point Taylor approximations^® are usually used for this calculation, although higher 

order approximations are possible. 

Relatively few three-dimensional formulations have been developed, two examples 

are EFD and ADI.^° 
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Finite Element 

FEM methods start from what is known as the weak form of the partial differential 

equation, where the weighted residual form of the partial differential equation has 

been integrated by parts. Concentration is replaced with an approximation func-

tion often using linear basis functions. The most common FEM methods use the 

same weighting function as approximation function; these are known as Galerkin 

techniques. Each element is numerically integrated and the values combined to as-

semble a global matrix and vector (known from FEM's engineering origin as the 

stiffness matrix and load vector). The boundary conditions are then applied and 

the resulting matrix system solved. The FEM leads to a sparse matrix which may 

be solved by standard optimised solvers, such as Conjugant Gradient. 

All unknown concentration values are thus obtained and flux values may be calcu-

lated by substituting any previously unknown concentration values. 

Boundary Element 

The BEM method starts from the inverse (also known as strong) form of the partial 

differential equation. The weighted residual form is integrated by parts twice to ob-

tain the inverse form. The weighting function used is a free space Green's function, 

called the fundamental solution. The fundamental solution is derived from the origi-

nal partial differential equation, and is therefore specific to that equation. A method 

to use the same fundamental solution for different partial differential equations is 

described in Chapter 3 on page 130. The elements are numerically integrated and 

resulting values assembled into influence coefficient matrices. Boundary conditions 

are then applied and the resulting matrix system solved. The BEM leads to a fully 

populated matrix which may be solved by standard linear algebra solvers such as 

LU factorisation.^^ 

Concentration and flux values are both obtained directly by the method. Thus 

current may simply be calculated from the flux value. A full derivation of the BEM 

for one dimension is contained in Chapter 2 on page 48, which includes details of 

implementation for two dimensions. 
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1.4.5 Application of the methods to typical electrochemical 

partial diSierential equations 

This section highlights some of the applications of the three methods to electrochem-

istry. It is not intended to be a review of all applications but aims to emphasize 

the advantages and disadvantages of each method in solving particular classes of 

electrochemical problems. 

For diffusion only systems all three methods perform well, provided FD and FE 

meshes have sufficient optimisation for boundary singularities. The discussion of 

additional factors that follows assumes such optimisations have been included. 

When convection is introduced this often causes problems for numerical methods due 

to the nature of the governing partial diHerential equation changing from parabolic 

to hyperbolic when convection dominates diffusion at higher flow rates. The FDM 

performs well ag long aa a suitable algorithm is chosen/" such as Backward Implicit 

in one dimension and Strongly Implicit in two dimensions. The standard FEM 

and BEM are often adequate for low flow rates but require special formulations for 

convection dominated flow. For the former this is known as Streamline-Difli'usion 

Finite Element M e t h o d . T h e latter, the BEM formulation, must usually resort 

to domain discretisation, 126 

The inclusion of homogeneous reactions is perhaps the most challenging of electro-

chemical systems to simulate. There has been a significant amount of development, 

for a wide range of mechanisms, of simulations utilising the FDM. This has led to 

generalised algorithms in one d imens ion , and more recently in two dimensions/'^' 

which have the potential to simulate any electrochemical mechanism. This is a dis-

tinct advantage compared to present development of FEM and BEM. The FEM has 

been successfully applied to several homogeneous reactions.127-129 

The BEM has been applied to simple homogeneous reactions in the field of chemical 

engineer ing ,however it is more complex to implement and greater research is 

required into electrochemical applications. 
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1.4.6 Summary 

In summary, the relative merits of FDM, FEM and BEM have been assessed. 

EDM has been most widely applied in electrochemistry. It is reasonably easy to 

understand and implement, and is capable of simulating a variety of electrochemical 

reactions, linear, non-linear and coupled. In one dimension any mechanism may be 

simulated; commerical packages^ and open source packages^ are available. In two 

dimensions a more general class of finite difference type methods, matrix methods, 

also allows general mechanistic simulations. However these methods are inflexible 

with regard to the geometry modelled and specific optimisations are usually required. 

It is often not possible to find a suitable optimisation for complex domains. 

The FEM method is more suitable to simulate complex geometries, especially if 

some kind of adaptive mesh routine is implemented. It may be applied to a wide 

range of electrochemical reactions and flow eSects. Although uptake has not been 

rapid in electrochemistry, it is now the most popular method in related fields, partic-

ularly engineering, and a wide range of literature and texts are available. However, 

three dimensional simulations are complex and optimisations are required for elec-

trochemical problems. 

The BEM method is ideally suited for complex geometries in two or three dimen-

sions. Defining a domain mesh is easier than the alternative methods due to a 

reduction in dimension by one. However there are some drawbacks. The depth of 

research and availability of texts is much reduced compared to the two alternative 

methods. Incorporating multiple species is involved and general techniques are only 

appropriate for linear systems of equations. 
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Chapter 2 

The Apphcation of the Boundary 

Element Method in Electrochemistry 

In this chapter the concepts of the Boundary Element Method (BEM) are illustrated 

with a simple electrochemical problem, the simulation of the steady state current in 

a Thin Layer Cell (TLC). In this system mass transport occurs by planar diffusion. 

A TLC may be modelled as a steady state generator-collector system, figure 2.1 on 

the following page, and has an analytically determined current which will be used 

to validate the Boundary Element Method. The terms generator and collector orig-

inate from a description of electrochemical systems in terms of feedback, a concept 

described in section 2.5.1 on page 76. In practice the steady state would be observed 

at long times after applying a potential step from a value where no reaction occurs 

to one where the reaction is diffusion controlled. 

Thin Layer Cells are typically operated in either potential step or potential sweep 

configurations. Uses include adsorption, electrodeposition and spectrochemical stud-

ies. TLC theory and mathematical analysis may also be applied to a number of other 

electrochemical problems.^ 

Initially the fundamental BEM theory is derived in one dimension, then a two 

dimensional model of a TLC is used to expand upon the implementation of the 

method. The BEM procedure is summarized in figure 2.2 on the following page. 
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Chapter 2 

Figure 2.1: Representation of a Thin Layer Cell (TLC). Diffusion is 
uniformly planar, thus transport in the TLC may be modelled with 
a one dimensional equation along the x axis, c is concentration of 
species A. 

Back substitution 
into BIE. Weighted Residual 

form 
Integration by parts 

Apply fundamental 
solution 

Apply boundary 
conditions and solve 

ID Discretisation 

2D/3D Assemble 
matrices 

BEM 
formulation 

Inverse Equation 

Domain 
Solution 

Boundary 
Solution 

Boundary Integral 
Equation (BIE) 

Partial Differential Equation 
(p.d.e.) and Boundary 

Conditions (b.c.) 

Figure 2.2: A summary of the Boundary Element Method proce-
dure. The one dimensional case may be solved directly from the 
third stage by applying boundary conditions. For the two and three 
dimensional cases additional steps are required. 
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2.1 Fundamentals of the Boundary Element Method 

Transport of reactant and product within the Thin Layer Cell system is described 

by the one dimensional steady state diffusion equation 

d^c(a;) 

da;̂  
= 0 (2.1) 

where c(x) is the dimensionless concentration of species A at coordinate x. Note 

the subscript A is omitted for clarity. This is known as the Laplace equation in one 

dimension. 

The weighted residual form, as described in section 1.4.4 on page 43, is 

' d^c(a;) 

da;̂  
da; = 0 (2.2) 

where W is an arbitrary weighting function, 0 and I are the coordinates of the 

electrodes, see figure 2.1 on the preceding page. 

Integrating by parts twice gives 

Jo d 

d c(a;) 
dz^ 

M (̂a;) da; = 
dc(T) 

da; 

d1V(a;) 

da; 
c(a;) 

0 ^0 

' d̂ M (̂a;) 

da;̂  
c(a;) da; (2.3) 

where c is concentration of species A, W is a. weighting function and / is a distance 

between two electrodes. 

This is known as the Inverse Form* of the original partial differential equation. Note 

the first two terms are boundary only values; calling this part 

B ;V(a;) 
dc(a;) 

da; 
d^(a;) 

da; 
c{a:) (2.4) 

* Equation 2.3 is also known as the adjoint form. The Laplacian operator on W is the same as 

the original operator, the equation is thus self-adjoint.^"^ 
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gives the more compact form 

0 dzS 
i y ( z ) d z = B + ^ (2.5) 

Vo dz2 

If we ensure W fulfills certain conditions the differential operator may be simplified 

or eliminated, leading to a boundary only formulation. 

2.1.1 The Fundamental Solution 

Obtaining a suitable equation for the weighting function is an important prerequi-

site of the Boundary Element Method. A special function, called the Dirac delta 

function, gives one of the properties required. 

The Dirac delta funct ion A Heaviside step function, II, has the properties 

shown in figure 2.3 on the next page. 

- f ) = < 0 < * (2 6) 
1 II %> a 

The derivative of the Heaviside step function is the Dirac delta function 

— a) = 1 0 i f z < s 

oo if a; = s (Z7) 

0 i f % > s 

When used within an integral equation this has a sifting property for any function 

/(%)-

roo 
/(a;)(^(j; - g)da; = / (g ) (2.8) 

The weighting function, W{x,^i), is chosen such tha t it satisfies the Dirac delta 

property and is independent of boundary conditions. This type of weighting func-
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H (x-5) 
a) Heaviside step 

function 

X 

6 (%-j) 
b) Dirac delta 

function 

Figure 2.3: Functions used in the derivation of the fundamental 
solution. The Dirac delta function is the derivative of the Heaviside 
step function. 

tion, of central importance to the Boundary Element Method, is called the funda-

mental solution. Strictly, it is the fundamental solution to the Laplacian operator. 

The fundamental solution may be thought of as a generalized Green's function. 

Physically it represents steady state diffusion of any species from a source point to 

infinity. 

The fundamental solution to the one dimensional Laplace equation is 23 

^(3;, &) = — 5) = (2.9) 

where r z . 

The sifting property of the fundamental solution means the final term of the inverse 

form, equation 2.5, is zero everywhere except at the point where the equation is 

applied. This point, for historical reasons, is called the source point. The equation 
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is reduced to 

I f (z, 6 ) 
dc(a;) 

dx da; 
c(z) + c(6) = 0 (2.10) 

which is known as the Boundary Integral Equation (BIE). This equation is valid 

anywhere in the domain. As the aim is to obtain a boundary only solution the 

source point is moved to the boundaries. 

This stage is the third box in Egure 2.2 on page 49 and is a boundary only for-

mulation. The remaining stages in figure 2.2 do not apply to the one dimensional 

case; as the boundaries are simply two points, discretisation is not required and the 

solution may be obtained directly. 

This gives two equations, one for each end of the domain, and two unknowns, hence 

one can solve to find the unknown values. 
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2.2 BEM Implementation in Two Dimensions 

The advantages of the BEM over alternative simulation methods become useful for 

two and three dimensional problems. A two dimensional model of a Thin Layer Cell, 

figure 2.4, is considered here to introduce the two dimensional BEM implementation. 

r . 
C = 1 

q = 0 

c = 0 

q = 0 

Ti 

Figure 2.4: A model domain of a Thin Layer Cell. 0 is the internal 
domain, F is the entire boundary, which consists of 2 boundary 
conditions; Fi and F3 are known concentrations, F2 and F4 are 
known fluxes. This diagram shows the simplest discretisation of 
the domain; into four elements. Concentration and flux have a 
constant value along each element. 

The boundary of the TLC domain is described in terms of four regions, table 2.1. 

Region Boundary Condition Boundary Value Description 
Fi 
F2 
F3 
F4 

Dirichlet 
Neumann 
Dirichlet 
Neumann 

c — 0 
q = 0 
c = 1 
q = 0 

generator 
insulator 
collector 
insulator 

Table 2.1: Definition of the domain boundary for the Thin Layer 
Cell model shown in figure 2.4 

The governing partial differential equation is the two dimensional form of the Laplace 
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equation 

The weighted residual form of this is 

+ = 0 (2.12) 

where c{x,y) is the dimensionless concentration, W(x,y, ^1,^2) is the fundamental 

solution and ^1,^2 are source point coordinates. 

This is integrated by parts, twice, to give the Boundary Integral Equation 

&(6,6) +1 c(x, dr = ^ y, &, &) dr (2.13) 

where d is a geometry coefficient caused by moving the 
source point to the boundary, explained below 
is the concentration at the source point 

r is the domain boundary 
c(x, y) is the concentration around the boundary 

&) is the fundamental solution 
n the element unit outward normal 
1̂,̂ 2 are source point coordinates. 

The source point is the point of application of the entire equation. This may be 

applied anywhere but is chosen to be moved to the boundary. The field point is 

used to integrate over the boundary, thus is restricted to the boundary only. The 

fundamental solution is defined as a function of both source and field points. 

The BIB consists of three terms. The first is a geometry coefficient term, explained 

below. The second and third are boundary terms which account for the infiuence of 

concentration and flux respectively, along the boundary, upon the source point. 

The Geometry Coefl&cient When equation 2.13 is applied at a point on the 

boundary, the integrals behave differently than inside the domain. This is accounted 
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for by a geometry coefficient, d, which is defined^^ 

d = A (2.14) 

where 9 is the internal angle at the boundary, in radians. The internal angle is 
illustrated in figure 2.5 on the next page. It is found that 

# = 2 ^ smooth boundary 

® d = 1 if in the interior of the domain 

The term 'smooth' is used in the mathematical context meaning that the boundary 

does not have any sharp corners about the source point. Constant elements, which 

are used throughout this section, by their definition will always have a smooth 

boundary and therefore d= 1/2. Section 2.10.1 on page 123 describes higher order 

variations of variables along elements. 

The unit outward normal is defined as the direction perpendicular to an element, 

facing outward, when elements are defined in a consistent manner, figure 2.6 on 

page 58. 

Defining 

q = ^ (2.15) 

^ ( 2 . 1 6 ) 

yields a more compact version of equation 2.13, the Boundary Integral Equation, 
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Internal 
Angle 

Geometry 
Coefficient 

0 = TT d = ^ 

J — 3 

0 = 27V d = 1 

Figure 2.5; Examples of internal angles. Definition of the internal 
angle, 6 is given in equation 2.14. Shaded areas are boundaries, the 
final row is an internal point. 

dc{^i,^2) + J c{x,y)q*{x,y,^i,^2) dV = J q{x,y)W{x,y,^i,^2) dT (2.17) 

where d is the geometry coefiScient 
c is concentration 

is flux 
is the domain boundary 
is the fundamental solution 
is the derivative of the fundamental solution 

^1,̂ 2 are source point coordinates. 
s a subscript indicating the source point 

Q 
r 
w 
q* 
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direction of definition, 
of the boundary 

Figure 2.6: The direction of the outward normal is perpendicular 
to the element facing away from the interior domain. The direction 
of the definition of the boundary must be consistent. 

Discretisation of the boundary A practical way to solve the integrals over the 

boundary is required. To enable this the boundary is split into sections, called 

elements, in a process known as discretisation. The simplest possible discretisation 

of the TLC domain is shown in figure 2.4 on page 54. Concentration and flux values 

are defined as constant along each element. 

The boundary integration is performed by integrating over a small element, then 

over the next element and proceeding all the way around the boundary, figure 2.7(i-

iv) on the next page. Thus the integral terms are represented as the sum of the 

integrals over these elements. 

Each boundary element has one source point at its centre. When the boundary is 

discretised into N elements there will be N source points, each of which is considered 

in turn, figure 2.7(1-4) on the following page, leading to a set of N equations 2.18. 
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i) 

source point 

element over which boundary 
integration is performed 

/ i i i ) \ y i v ) \ 

3) \ 

Figure 2.7: Numerical integration is performed over each element 
in turn, including the element containing the source point. Choice 
of a clockwise direction is arbitrary. 

The discrete BIE is thus 

xCs(6,6) + ^ Cj{x, y) f q*j{x, y, 6) dF = V qj(x, y) [ Wsj(x, y, 6, dV 
j=i -/rj Jrj 

(2.18) 

where c is concentration 
q is flux 
Tj is an element boundary 
W is the fundamental solution 
q* is the derivative of the fundamental solution 
^1,̂ 2 are source point coordinates. 
s is the source point integer counter 
j is the fleld point integer counter 

Any shape boundary may be modelled by constant elements, although a geomet-

ric approximation is required to model curved boundaries. More advanced BEM 

formulations consider higher order variations of concentration and flux along the el-

ement. Section 2.10 on page 123 describes elements that more accurately represent 

boundary values. 
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2.2.1 2D Fundamental Solution and its Derivative 

For two dimensions the fundamental solution is chosen such that 

^ ^ (2.19) 

where S is the Dirac function, ^1,̂ 2 are source point coordinates, x,y are field point 

coordinates. 

For the Laplace equation in two dimensions^ W{x, y, ^1, ̂ 2) is 

W(x, y, ^1,^2) = (2.20) 

where r is the distance between source and field points 

r = [(a; - + (2/ - 6 ) ^ ] ' (2.21) 

The derivative of W with respect to the outward normal is 

1 
^ " 2 ^ + (2/ - 6 )%] (2.22) 

where r is the distance between source and field points and nx,ny are directional 

cosines. 

2.2.2 Singular Integration 

When integration is performed over an element containing the source point, a sin-

gularity occurs at this point. Ordinary numerical integration techniques are not 

capable of integrating singular elements. There are a variety of ways to approach 

this problem. For specific types of element an analytical solution may be avail-

able. Alternatively many specific types of quadrature may be used, if available; for 

example the logarithmic behaviour of the two dimensional Laplace fundamental so-

lution may be integrated by logarithmic Gaussian q u a d r a t u r e . I f neither of these 
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approaches is suitable a Telles transformation^^^ may be used. 

In the case of the two dimensional Laplace fundamental solution, with constant 

elements, an analytical solution is available, as the integral is symmetrical about 

the centre point. 

2/, 1̂, dr = ^ - In ^ (2.23) 

where Lg = length of element. 

For the derivative of the fundamental solution, since the line element and normal 

are orthogonal, the dot product is zero, so equation 2.22 is Eilways zero. 

2.2.3 Numerical Integration 

A standard numerical integration t e c h n i q u e , G a u s s i a n quadrature, is used to 

integrate over non-singular boundary elements. 

The integral is approximated as a sum of the values at specific points, figure 2.8 on 

the following page. The location of these points is dictated by the technique used, 

and has a significant effect on accuracy. 

„ NI 

/ / (a ; )da; -^ /g (a ; )wg (2.24) 
9=1 

where w is the quadrature weighting factor, NI is the number of integration points 

and g is an integer counter. 
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Figure 2.8: Gaussian quadrature integration over element e2 from 
source point Si 

Applying Gaussian quadrature to the boundary integrals gives 

f 1,6) dr = ^ ^ y. f,, &)), 0), 
9=1 

m 

(2.25) 

(2.26) 

where is the length of the element, 7V7 is the number of integration points, and Wp 

are the quadrature weighting factors. Weighting factors are calculated in the range 

-1 to 1. A local coordinate transform is used leading to the coefficient of Lj/2. 

Note that singular and numerical integration are the first introduction of numerical 

approximation in the BEM formulation. 
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2.2.4 Formation of Influence Coefficient Matrices 

The symbols and mgj are deHned to represent the two types of integrals over the 

boundary, c and g have been removed 6om the integrals as they are constant. 

hj ~ f 2/) Ci) C2) d r (2.27) 

(2.28) 

where Fj is the length of the element. 

Equation 2.18 may be cast in matrix form using the following rules 

Zg; = Zgj when 8 ^ j (2.29) 

Zg; = ^ when a = j (2.30) 

Thus equation 2.18 becomes 

^sjCj — ^sjQj (2.31) 
i=i i=i 

which in matrix notation is 

Lc = Mg (2.32) 

where L and M are known as influence coefficient matrices, and are of dimension 

N X N. They are dependent solely on the geometry of the domain. 

2.2.5 Boundary Solution 

We now have a system with 2N variables of which N are known, as a boundary 

condition is prescribed for each element. This leaves N unknowns. Equation 2.32 

may be resolved by multiplying known boundary values with influence coefficients 

63 



Chapter 2 2.2 BEM fmpjementatioD m TVo Djiaensiozia 

to form 

Aa; = g (2.33) 

where A are the combined unknown boundary value influence coefficients, x the 

unknown values and B the combined known influence coeflicients and boundary 

values. Equation 2.33 may be solved using standard matrix algebra routines. 

At this stage, the penultimate box in figure 2.2 on page 49, all unknown boundary 

values have been found. Note both concentration and flux values have been found 

directly, in contrast to FDM and FEM techniques when Sux must be calculated from 

concentration values. The flnal, optional, stage is to calculate any values required 

for the interior domain. 

2.2.6 Internal Points 

Concentration and flux values may be obtained anywhere within the domain, once 

the boundary solution is known, simply by deflning the coordinates of the points 

required. As many points as required may be placed anywhere in the domain. An 

example distribution of points to obtain a concentration map covering the entire 

domain is shown in figure 2.9 on the next page. However if a certain area is of par-

ticular interest values may be calculated only in this area, unlike domain simulation 

methods which always require simulation over the entire domain. 

As for the boundary, flux values in the interior may be obtained directly. For the 

two dimensional system these will be vectors consisting of a; and components. 

Rearranging equation 2.17 gives an expression for concentration (note that d = 1 

for internal points). 

c(&, 6 ) = y 9(a;, 3/)^(a;, ?/, 6 , 6 ) ^ c(a;, 2/)g*(3;, 2/, 6 , 6 ) dF (2.34) 

which in compact form is 

Cs — MgjQg LgjCg (2.35) 
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discretised 
boundary 

mesh of 
internal points 

Figure 2.9: Internal points may be placed anywhere in the domain, 
here an equally spaced mesh is used to observe concentration val-
ues. In contrast to the FDM and FEM techniques values may be 
obtained only where required, not everywhere in the domain. Both 
concentration and flux values are found directly. 

Ls and Ms must be calculated for each point, however, as all boundary values are 

now known each internal point may be calculated sequentially. A matrix solving 

step is not required. 

The derivatives of equation 2.34 give the flux 

dx 

dc 

d F -
ag*' 

dx _ 
d F -

JT dx 

d F - L 
L <^Y \ JT . ^Y\ 

dP 

dr 

(2.36) 

2.2.7 Application to a Simple Case 

To illustrate the implementation of the Boundary Element Method to electrochem-

ical problems, the method is applied to the simple two dimensional TLC domain, 

figure 2.4 on page 54. 

Results for the model are shown in table 2.2 on the next page. With as few as four 
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elements, remarkably accurate concentration and Sux values are obtained. Doubling 

the total number of elements to eight gives less than one percent error in concen-

tration and six percent error in flux. Increasing the number of elements further 

continues to increase accuracy; for example 400 elements gives less than 0.1% error 

in both concentration and flux near the centre of the sides of the domain. The ele-

ments immediately adjacent to the corners of the domain have a signiScantly higher 

error, up to 6% for both concentration and flux. However, within three elements 

this has reduced to under 0.5% error. 

Element Known 
boundary 
condition 

Analytical BEM 
N=4 

c q c q 
1 c 0.000 -1.000 — -1.175 

2 q 50.000 0.000 50.000 

3 c 1.000 1.000 - 1.175 

4 q 50.000 0.000 50.000 -

a) 

Internal point 
coordinates 

Analytical BEM 
N=4 

X y c Qx % c Qx Qy 

0.333 
0.5 
0.667 

0.333 
0.5 
0.667 

0.333 
0.500 
0.667 

0.000 
0.000 
0.000 

1.000 
1.000 
1.000 

0.354 
0.499 
0.650 

-0.095 
0.000 

-0.036 

0.902 
0.900 
0.962 

b) 

Table 2.2: Concentration and flux values for the simplest possi-
ble two dimensional domain, figure 2.4. N is the total number of 
elements. Continued on the following page. 
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Element Known Analytical BEM 
boundary N =8 
condition 

c q c Q 

1 c 0.000 -1.000 -1.059 
2 c 0.000 -1.000 - -1.059 
3 q &250 0.000 0.241 -

4 q 0.750 0.000 0.759 -

5 c LOOO 1.000 - 1.059 
6 c LOOO 1.000 - 1.059 
7 q 0.750 0.000 0.759 -

8 q &.250 0.000 0.241 -

c) 

Internal Point Analytical BEM 
Coordinates N=8 

a; 2/ c Qx Qy c Qy 

0.333 0.333 0.333 0.000 1.000 0.331 0.015 0.999 
0.5 (15 0.500 0.000 1.000 0.500 0.000 1.012 
0.667 0.667 0.667 0.000 1.000 0.669 0.014 0.998 

d) 

Table 2.2: contmuecf. 
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2.3 Domain Meshing 

A mesh is a particular discretisation of boundary elements. The input for a BEM 

program consists of the coordinates of the boundary elements^, plus known boundary 

conditions and values. These must be specified in a consistent direction to ensure 

flux is defined identically for all elements. Additionally the coordinates of any 

internal points may be included if these are desired. 

The behaviour of concentration and flux for two different types of domain will not 

be identical thus one particular mesh is not necessarily valid for both domains. 

Finite Difi"erence^ '̂̂ ®'® '̂®^ and Finite E l e m e n t e x p e r i e n c e has shown that eSbrts 

to increase the number of points near areas of high flux have a considerable effect 

on accuracy. Expanding grids and conformal maps have proven to be most effective 

in this regard. Increasing the density of boundary elements may have an analogous 

effect. This problem may be addressed in a number of ways. For example, empiri-

cally, increasing the number of elements near known areas of high flux, or using an 

automatic adaptive mesh, which calculates an error value at each element. If this is 

greater than a threshold error, then the element size is reduced. 

An important feature of modelling microelectrodes is the boundary singularity 

caused by the abrupt change in boundary conditions at the edge of the electrode. 

At the point of singularity the magnitude of the flux approaches infinity. Therefore 

the variation of flux across the electrode contains large flux gradients. There is 

very little concerning BEM mesh optimisation and discretisation behaviour in the 

literature. The eflkct of difierent discretisation strategies for the BEM applied to 

microelectrode problems is investigated in sections 2.5.3 on page 98 and 2.7.1 on 

page 110. 

A mesh input routine is required to generate a suitable boundary mesh for the do-

main to be modelled. It is advantageous if the number of elements over different 

parts of the boundary are flexible. The mesh generated should be exactly repro-

ducible when the same input is used. To exploit the benefits of the BEM a variety 

of geometries need to be described. Programming a flexible input routine for the 

BEM involves considerable effort. Preferably, the routine should also be extensible 

^For linear or higher order elements the connections of elements must also be specified. 
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to unforseen geometries. Two and three dimensional mesh generation is currently 

an active area of research. 
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2.4 Computational Aspects 

The steps in a typical Boundary Element Method program are described in table 2.4 

on the following page. The second and third steps, the core of the method, are 

shown in more detail using pseudo-code. Any programming language may be used 

to create a BEM program. However, both the core method and a flexible input 

routine benefit from the advantages of an object-oriented language^^^"^^^ such as 

q_I^^i4o,i4i qj, Java.̂ ^^ Double precision floating point variables were used at all 

times. 

2.4.1 Matrix Solving Routines 

Solving the matrix equation, equation 2.33, is the slowest step in the BEM sim-

ulation. The size of A is determined by the total number of source points used 

to discretise the domain. If higher order elements are used, this may increase the 

number of source points thus enlarging A. For linear elements the number of source 

points is equal to the number of elements, and although flux components are com-

puted separately, they are combined before the matrix inversion step. 

In contrast to EDM and FEM methods there is no banded structure to the matrix, 

it is always fully populated. Although it takes longer to solve an equation with a 

fully populated matrix, the discretisation of the domain requires fewer elements than 

these alternative methods, resulting in much smaller matrices. Matrix solving is an 

O(N^) process*, so the practical limit on the total number of elements is reached 

fairly quickly. It is possible to increase the speed of the process^^^'^'^^ if specific 

character traits are present in A. 

Some limited investigations were made as to the character of matrix A, as it is 

important to ascertain the possibility of any errors arising from the matrix solv-

ing procedure. For all domains tested A was found to be stable and was not ill-

conditioned, and all were diagonally dominant. Both pivoting Gaussian elimination 

and LU decomposition were used in the simulations herein. 

^The Gaussian elimination algorithm has a computational cost which scales with 0{N^) and a 

memory requirement which scales with O ( N ^ ) . 

70 



Chapter 2 2 4 ComputadoJiaj Aspects 

1. Input the boundary geometry, boundary conditions and associated values. 

Loop source point, s = 1 to s = N 
Loop element, j = 1 to j = N 

If integration is non-singular (s / j ) 
Loop gaussian integration g = 1 to g = NI 

^ 8 , ; ) = t (eqn. 2.27) 

M(g,;) = + A; (eqn. 2.28) 

Else integration is singular (s = j) 
L{s,j) = analytical solution (eqn. 2.23) 
M(g,j) = 1/2 

3. Apply boundary conditions to form matrix A and vector B. 

Loop source point, g = 1 to s = TV 
Loop element, j = 1 to j = TV 

If bc=known concentration: A{s,i) = —M(s,j) 
B(s) = -Z,(s, j)c(j) 

Else bc=kiiown dux: v4(g, ?) = ?) 
B(g) = M(g, j )g(;) 

4. Standard linear algebraic equation solver, for example, Gaussian 
Elimination, obtains the unknown values z . 

5. Order boundary values obtained into vectors c and q which already 
contain known values. All boundary values are now known. 

6. Repeat step 2 for each internal point if any exist, which become the 
source points, remembering = 1. Obtain concentration and flux values 
from equations 2.34 and 2.36 respectively. 

Table 2.3: A description of the steps in a constant element Boundary Element 
Method program. Symbols used in the table are; N total number of boundary 
elements, s source point integer counter, j element integer counter, p gaussian 
integration integer counter. A: gaussian integration constant, 7V7 number of 
integration points, L, M influence coefficient matrices, A, B matrix and vector 
used for linear algebra solver input, W fundamental solution, q* derivative of 
fundamental solution, c concentration, g Bux. 
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For validation of the BEM, section 2.5.3 on page 98, each simulation took less than 

0.1 seconds. 

Programming was completed in a mixture of and C++, using Microsoft Visual 

C++6. Simulations were run on various computers including an IBM® SP2, Silicon 

Graphics® Origin, and Intel® Pentium® 650MHz. 

72 



Chapter 2 2.5 Validation of the Method 

2.5 Validation of the Method 

To investigate the properties of the BEM and vahdate the accuracy of the method an 

electrochemical system which is described by the Laplace equation in two dimensions 

is chosen. A double microband is a suitable system for which previous results are 

available for comparison. 

2.5.1 The Double Microband 

The double microband (DMB) consists of two microband electrodes situated in 

close proximity, figure 2.10. The magnitude of the current is affected by the elec-

trode width, the distance between electrodes, and the geometry surrounding the 

electrodes. 

-ceil-

ywall 

solution 
wall 

generator collector 

0 gen X, coll 

- insul - -insul-

Figure 2.10: The double microband domain. Electrodes are solid 
coloured, the dotted lines are semi-infinite boundaries and a dashed 
pattern corresponds to the insulator. 
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A Note on Boundary Conditions 

The double microband system can operate in generation-collection mode where one 

microband acts as a generator while the other acts as a collector. However, the 

current obtained at the electrodes will depend on the boundary conditions chosen. 

Hence it is necessary to distinguish between theoretical, simulated and experimental 

conditions. 

Theory The concentration is equal to bulk concentration and flux is equal to zero 

at an infinite distance from the electrodes; c = c* and g = 0. 

Simulation The bulk concentration condition or zero flux condition apply at a 

large, but 6nite, distance from the electrodes; c = c* or g = 0. 

Experimental We may consider that concentration is equal to the bulk value at 

a flnite distance from the electrodes due to natural convection;^^ c = c*. 

In terms of simulation, the current obtained is expected to depend on the far field 

boundary conditions chosen. For a double microband, inlaid in a flat insulating 

surrounding material, the steady state reached after a diffusion controlled potential 

step is considered. One may distinguish three situations corresponding to the three 

paragraphs above: 

Case 1 - A quasi-steady-state, where the current is a function of time; 

i = / ( ! / Int), when c = c* and g = 0 at infinite distance. 

Case 2 - A true steady state, when g = 0 at a finite distance. 

Case 3 - A true steady state, when c = c* at a finite distance. 

The Simulation Model 

The electrochemical reaction simulated at the generator electrode is 

^ + e - -4. B (2.37) 
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where the assumption of equal diffusion coe@cients is made to simplify the treat-

ment, DA = DB- The system is assumed to be diffusion controlled, and only species 

is considered. Applying a conservation of matter principle, the concentration of 

species B is equal to where is the concentration of A in bulk solution. 

Steady state diffusion gives the Laplace partial differential equation 

+ (2.38) 

Dimensionless Parameters Standard non-dimensional parameters are used^ 

and the following variables are defined, 

c X y 
X 

C* w w 
Z/ = - (2.39) 

where c dimensionless concentration no units 
C real concentration mol cm" 
C* bulk concentration mol cm' 
X dimensionless distance along the x axis no units 
X actual distance along z axis cm 
y dimensionless distance along the y axis no units 
Y actual distance along y axis cm 
w width of the generator and collector electrodes cm 

This gives a dimensionless original partial differential equation 

0 (2.40) 

For simplicity, current is normalised by the steady state current at a Thin Layer 

Cell, where the distance separating the electrodes in the TLC is equal to the width 

of the electrodes in the DMB. 

(2.41) 
nFDC*L 

where ireai is current in A, n is the number of electrons, F the Faraday constant 

and L the length of the electrodes. 
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The Feedback Effect 

In a generator-collector double microband configuration the collector electrode is 

placed in close enough proximity to impinge upon the diffusion field of the generator 

electrode. The collector is set at a potential sufficient to instantaneously convert 

ail of species which comes into contact with it to species B. The regeneration 

of species B by the collector leads to an increase in current at the generator. This 

effect is called positive feedback. 

Conversely if a physical object in some way obstructs the natural shape of the 

diffusion field the amount of species reaching an electrode may be restricted, leading 

to a reduction in current, known as negative feedback or hindered diffusion. 

These phenomena are also seen in other electrochemical systems; for example, Scan-

ning Electrochemical Microscopy (SECM). Depending upon the nature of the sub-

strate (conducting or insulating) positive or negative feedback, respectively, are 

observed. 

A similar feedback effect is of course observed in electrochemical simulations. How-

ever, feedback may also occur (erroneously) if a semi-infinite boundary is set too 

close to the electrodes. If a bulk concentration value is set, positive feedback occurs; 

with a zero fiux condition negative feedback is observed. 

This is a common problem with all simulation methods; as part of the validation 

process, one must ensure that semi-infinite boundaries are at a sufficient distance 

to have a negligible effect on electrode response. 

The positive feedback from concentration boundaries not only affects the magnitude 

of the current, but will also determine whether two currents are equal and opposite, 

at steady state, or whether they are slightly different, at quasi-steady-state. 

Analytical Solution for the Steady State 

In each case, simulation results were compared to the exact solution given by Am-

atore and Fosset.^^^ This was obtained using a specific conformal mapping for 

the double microband, and solving the steady state diffusion equation in confor-
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mal space. The solution is in terms of elliptic integrals which must be numerically 

integrated. 

Current Calculation 

The current is simple to calculate from the Boundary Element Method as flux values 

are obtained directly. Using the dimensionless form of current and discretising the 

electrode boundary the integral in equation 1.55 becomes a summation of element 

fluxes giving 

!/=0 «=1 

where Znorm is current, w width of the electrode, 0(2;, 2/) concentration, % element 

number along the electrode, number of elements along the electrode and % 

the flux at element i. 

2.5.2 Discretisation Effects 

Discretisation of the domain is an important consideration. Convergence must be 

shown when increasing the number of elements and optimal parameters for element 

spacing were investigated. There are singularities at both edges of both electrodes. 

Exponential grids have proven effective at increasing accuracy in alternative simu-

lation techniques,^ and their effect within the BEM is considered here. Convergence 

should also be shown when increasing the distance from the electrode outer edges 

of the system to the semi-infinite boundary. 

Boundary Conditions 

The nature of the boundary condition (Dirichlet or Neumann) and its value must be 

prescribed for each element around the domain. On the generator electrode, as the 

reaction is diffusion controlled, all species A is instantaneously reduced to species S , 

giving zero concentration of A. Likewise all of B is instantaneously oxidised back to 

.4 at the collector electrode, giving a bulk concentration of .4. It is impossible for any 
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species to cross through the material surrounding the electrodes, thus a boundary 

condition of zero flux perpendicular to the insulator surface is set. The semi-infinite 

boundaries, hgure 2.10 on page 73, are assumed to be at a far enough distance from 

the electrodes that the flux is negligible and concentration remains at their bulk 

value, c = c*. Alternatively one may consider the semi-infinite situation as a zero 

flux, 9 = 0, condition. Although both conditions are true it is possible to prescribe 

only one boundary condition. The other is obtained from the simulation and may 

be compared to the expected value. To test the algorithm, the effect of setting each 

condition was examined and will be discussed in section 2.5.2 on page 89. 

Assuming a zero flux condition for the far field boundaries, the boundary conditions 

are summarised in table 2.4. 

% 
dn 

3/ = 0 — <a; < 0 (2.43a) 

^gen X gdp (2.43b) 

^ coll <a; < (2.43c) 

y — Vwall < z < az/br (2.43d) 

^ —V — Vwall a; = (2.43e) 

X — (2.43f) 

2/ = 0 0 '^X ^ Xggji (2.43g) 

^gap <a; < (2.43h) 

c = 0 

0 = 1 

Table 2.4; Boundary conditions for the double microband simula-
tion. n is the direction normal to the boundary. These conditions 
would, in practice, require an initial solution of 50% reactant and 
50% product if using a two electrode system. 

Under these conditions the double microband modelled reaches a steady state as 

only the electrodes act as source and sink. The simulated collection efiiciency should 

be 100% as the generator current should be identical to the collector current. In 

the following results only generator currents are shown as all collector currents 

were within 0.01% of the respective generator current. It should be noted that 

experimentally this is not the case, as the collection efficiency of the collector is 

less than 100%. This is due to a proportion of the generated species, .B, escaping 

to the bulk solution, in addition to positive feedback from bulk solution which 

is transported near to the electrodes by natural convection. For the simulation. 
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assuming a zero Aux far 6eld boundary condition, no matter is allowed to escape 

giving a 100% collection efficiency. 

Equal Spacing 

Collector, generator and gap widths were set to the same value, tu. The semi-inhnite 

boundaries were initially set at lOw, then lOOOw. 

A simple discretisation with equal length elements and zero flux semi-infinite bound-

ary conditions, Figure 2.11, appears to converge with an error, relative to Amatore's 

analytical s o l u t i o n , o f less than two per cent. This error is due to the proximity 

of the semi-infinite boundaries, Xfu, Xf^r and ywaii in figure 2.10 on page 73. See 

section 2.5.2 on page 89 for additional details. 

0.8-1 
analytical value 

0.6 

0.4 

0.2 

0.0 

number of elements per unit length 

-T" 
10 15 

—T" 
20 

-T" 
25 30 

number of elements per unit length 

Figure 2.11: A convergence test for the double microband model, 
using equal sized elements. Parameters used were w = 1, p = 1, 
wall = insul = 10. Comparison is made with an exact value of 
0.7817, calculated using the analytical solution of Amatore and 
Fosset.^^ 
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When elements of equal size are used computing limitations prevent positioning 

the far 6eld boundary far away, as required to reach convergence. Using current 

computer hardware^ the number of elements needed give long simulation times, 

which are impractical. As seen in section 2.4, on page 70, on computational aspects, 

the time taken to complete a simulation is of 0(]V^), where N is the total number of 

elements. To allow sufficiently large semi-infinite boundary distances different types 

of mesh discretisation were investigated. 

Exponential Mesh Spacing 

There has been a significant amount of research undertaken into exponential mesh 

effects in the electrochemical Finite Difference field.®'This has shown that when 

exponential mesh optimisation is implemented the function used must be continuous 

and the smallest mesh spacings should be equal. Similar Finite Element investiga-

tionŝ '̂ ^ have also found that a continuous function must be used. The effect of these 

properties on the BEM are presented below. An advantage of BEM is that the for-

mulation is unaffected by element spacing, in contrast to FD where the governing 

partial differential equation is directly affected. 

A logarithmic expansion, previously used in Finite Difference simulations,®'®®'̂ ®^ was 

applied with two variations in implementation. 

^ = ln(l + aa;) (2.44) 

The coefficient a affects the relative size of elements within a section of the boundary, 

figure 2.12 on the following page. 

A large a value increases the number of elements near the edge of the section. If 

higher densities of elements are required at both ends of a section, for example on 

an electrode, the distance may be divided by two and a variation of equation 2.44 

applied to both halves. 

The expansion between different sections of the boundary may be related in one 

of two ways, shown in figure 2.13 on page 82. Either the smallest size elements 

^Typical computer used for simulation: Intel® Pentium® III 650MHz, 192Mb Memory. 
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y 

Figure 2.12: The effect of a on exponential spacing. A constant 
interval of Ay is used to calculate each element length. A small 
a value corresponds to virtually equal size elements, larger values 
give significant variation in size. 

are identical (fixed ratio) and the number of elements is dependent upon section 

length or there are the same number of elements within each section (fixed shape) 

regardless of section length. A consequence of setting the smallest element size is 

that for a given a value the expansion will probably not fit a given length exactly. 

Thus the final element size must be truncated. This was done by checking the 

truncated length with the previous element length to ensure the final element was 

of comparable size. 

Figure 2.14 on page 83 shows the effects of applying exponential spacing to different 

sections. The number of elements over the electrodes was fixed at ten. The a 

coefficient was varied from 0.01, which gives virtually equal size elements, to 100 

which gives a large variation in size within a section. 

As expected accuracy increases when the number of elements near the edge of the 

microband is increased. However, examining the two components of this - the elec-

trode side and the outer side - shows that increasing the number of elements on the 

outer side seems to have little effect and the increase in accuracy is due solely to 
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smallest elements have 
the same size on either 
side of the boundary 

I 
{ l l i l ! 1 l ! j l i | l | l 1 j 1 1 1 

Fixed Ratio 

1 1 1 

final element truncated 
to meet required length 

1 
l l l l l l j l l l l l l l i l l 1 1 1 1 1 

0 1 3 
1 1 1 

5 7 9 11 
electrode insulator 

Fixed Shape 
different size elements on 

Fixed Shape 
length of final element 

either side of the boundary as dictated by 
singularity 

i 
exponential formula 

i 
0 1 3 5 7 9 11 
electrode insulator 

Figure 2.13: Two types of exponential mesh were implemented. In 
the fixed ratio type expansion the smallest elements in adjacent 
sections were identical and the final element may be truncated. 
The fixed shape type expansion fitted a given number of elements 
exactly to the section length. 

the electrode side discretisation. The type of exponential distribution, fixed ratio 

or fixed shape, affects the discretisation on the insulator relative to the electrode. 

The element size on the insulator is found to have little effect, thus the difference 

between types of distribution is negligible. 

This is a surprising result as both sides of the singularity could be presumed to have 

equal influence. Large concentration gradients surround the whole area near the 

edge of the electrode, including the part of the insulator immediately adjacent. 

This behaviour was confirmed by looking at the ratio of number of elements in 

different sections. 

Section Element Ratios 

The number of elements over one or more sections of the boundary was fixed, and the 

effect of increasing and decreasing the number of elements around the fixed section (s) 
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analytical value 
0 .78-1 

^norm 0 77 -

equal spaced elements 
simulation value 0.76 -

0.75' 

0.74-

10 

Exponential Spacing Type 
electrodes + gap + insulator fixed ratio 
electrodes + gap + insulator fixed shape 
electrodes n/a 
insulator fixed shape 
gap fixed shape 

"X" 
20 30 40 50 

a 

60 
—r 
70 80 

-T-
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Figure 2.14: The effect of using an exponential mesh over various 
boundary sections. The expansion type is explained in figure 2.13 
on the preceding page, w = g = 1, insul == wall — 10, NEeiec = 
NEgap = 10, NEyjaii = 100, NEceii = 200. NEinsui depends upon 
the exponential mesh used varying from 96 to 19. Two limits are 
given, the analytical value for this geometry from reference^^® and 
the value simulated with all equally spaced elements. The number 
of elements over the semi-infinite boundaries was fixed as varying 
these had a negligible effect on current response. 

observed. Within each boundary section the elements were of equal length. 

Ratio = 
NE variable 

NE fixed 
(2.45) 

where 

NE fixed 

number of elements in variable section per 
unit length 
number of elements in fixed section per 
unit length 

Table 2.5 on the next page shows that only the number of elements over the elec-

trodes seems to have a discernible effect on the total fluxes at the electrodes. This 

behaviour may be due to this particular geometry, but as little as one element over 

each non-electrode section seems to be sufficient. 
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fewer elements in 
variable section 
relative to fixed 
section 

more elements in 
variable section 
relative to Exed 
seduon 

Ratio Fixed Section (s) 

electrodes electrodes / gap electrodes / gap / 
insulator 

0.1 0.7610 0.7610 0.7613 
0.2 0.7608 0.7608 0.7605 
0.3 0.7608 0.7608 0.7605 
0.5 0.7607 0.7607 0.7607 
1 0.7607 0.7607 0.7607 
2 0.7607 0.7607 0.7607 
3 0.7607 0.7607 0.7606 
4 0.7607 0.7607 0.7606 
5 0.7607 0.7607 0.7606 
10 0.7607 0.7607 0.7608 

Table 2.5; The effect of section ratio discretisation. i„orm values 
are given. The sections of the double microband are defined in 
figure 2.10 on page 73. Fixed sections each had 10 elements, and 
the ceiling section had an additional ratio to give equal size elements 
to the two side sections, w = ^ = 1, 

A convergence test was performed increasing the number of elements over the two 

electrodes, while fixing the number of elements over the rest of the domain. This 

allows a significant increase in the maximum number of elements over the electrodes 

before computing limitations become relevant. 

Table 2.6 shows convergence to four decimal places with a 0.02% error using 1000 

elements. 

NEeiec ^norm error /% NEeiec '^norm error /% 

1 0.6612 -15.41 50 0.7786 -0 .40 
2 0.7088 -9 .32 75 0.7796 -0 .27 
3 0.7317 -6.39 100 0.7801 -0.20 
4 0.7437 —4.86 150 0.7807 -0 .13 
5 0.7510 -3.92 200 0.7809 -0.10 
8 0.7623 —2.48 300 0.7812 -0 .07 
10 0.7662 -1.99 400 0.7813 -0.05 
15 0.7713 -1 .33 500 0.7814 -0 .04 
20 0.7739 -1.00 750 0.7815 -0 .03 
30 0.7765 -0 .67 1000 0.7815 -0 .02 

Table 2.6; Increasing the number of elements over the electrodes 
only. All other sections have a fixed number of elements, w = g = 
1, insul = wall = 1000, NE insul WEcei! = = 10. 
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Exponential Discretisation Over Electrodes Only 

To simulate a larger number of microband electrodes it is preferable to reduce the 

number of elements required to maintain accuracy. The effect of an exponential 

mesh over the electrodes only, with other boundary sections equally spaced and the 

number of elements fixed, is shown in table 2.7. 

a NEetec '^norm error /% 

&01 20 0.7739 -1 .00 
0.1 20 0.7742 -0 .96 
0.5 22 0.7753 -0 .82 
1 24 0.7762 -0 .71 
2 26 0.7773 -0 .57 
3 26 0.7779 -0 .48 
5 28 0.7788 -0 .38 

7.5 30 0.7793 -0 .30 
10 30 0.7797 -0 .26 
20 32 0.7804 -0 .17 
30 32 0.7807 -0 .13 
40 34 0.7809 -0 .10 
50 34 0.7810 -0 .09 
75 34 0.7812 -0 .07 
100 34 0.7813 -0 .05 
200 36 0.7814 -0 .03 
300 36 0.7815 -0 .02 
500 36 0.7816 -0 .02 
1000 36 0.7816 -0 .01 

Table 2.7: The effect of exponential spacing over both electrodes 
only, all other boundary sections have a fixed number of elements. 
w = g = 1, insul — wall = 1000, NEi„sui = NEgap = NEceii — 

= 10. 

Significantly increased accuracy is obtained relative to the same number of equally 

spaced elements. The greater the severity of the exponential mesh (larger a values) 

the greater the increase in accuracy. An equally spaced mesh with 36 elements 

gives an error of approximately 0.5% compared to 0.01% for the exponential mesh 

with the same number of elements. As the a value increases the size of the initial 

element immediately adjacent to the boundary singularity decreases. At a = 1000 

the smallest element 1̂  = 10"^. There is a danger with larger a values and therefore 

smaller l̂  values that roundoff errors may cause problems. Matrix solving routines 
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are particularly susceptible to very small numbers leading to problems with ill-

conditioning (see section 2.4.1 on page 70). 

An advantage of using an exponential mesh is the significant reduction in the number 

of elements required for a given accuracy. For the double microband model 54 

elements over each electrode produced the same accuracy as 1000 equally spaced 

elements; table 2.8. 

Equal Mesh Exponential Mesh 

NEeiec error /% NEeiec error /% 

20 1.00 6 0.60 
100 &20 10 0.20 
200 &10 54 0.01 

1000 &02 

Table 2.8; A comparison of equal and exponential mesh spacing 
over the electrodes, w = g = 1, insul = wall = 1000, NEinsui — 

= 10, O! = 500. 

Local Mesh Refinement 

To confirm, contrary to Finite Difference and Finite Element experience, that the 

continuity of exponential functions is not important in BEM, a local mesh refinement 

on the insulator, and also on the generator, was simulated as shown in figure 2.15 

on the following page. 

The number of elements over the outer section of the insulator was fixed at 10 

while the number on the local section was varied. Table 2.9 on the next page shows 

that local refinement on the insulator has no effect on the simulated current. The 

simulation was repeated, observing the effect of local refinements on the generator 

electrode. Here accuracy does improve as the number of elements near the generator 

edges increases. This emphasises the conclusion that using continuous functions for 

the expansion of element length is unimportant. 
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insulator 
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Figure 2.15: Local mesh refinement for a) insulator; section insul 
and b) electrode; section w. Refer to figure 2.10 on page 73 for 
section definitions. The number of elements on the local mesh was 
varied while keeping the outer/inner mesh fixed. This tests whether 
a continuous function is required for mesh refinement. 

insulator generator 

NE local ^norm NE local ^norm 

1 0.760776 1 0.74915 
2 0.760773 2 0.758824 
4 0.760772 4 0.763577 
8 0.760771 5 0.76453 
10 0.760771 8 0.765961 
12 0.760771 10 0.766439 
14 0.760771 12 0.766757 
20 0.760771 14 0.766985 
25 0.760771 16 0.767155 
30 0.760771 20 0.767394 
40 0.760771 25 0.767585 
50 0.760771 30 0.767713 

40 0.767872 
50 0.767968 

Table 2.9: The efifect of local mesh refinement over insulator and 
generator boundary sections respectively, w = g = 1, insul = 
wall — 10, NE(.gii — NEfudiig 
90, NEinner — 5. 

NEinsui = 100, NE gap=10y NE outer 

Mesh Discretisation Conclusions 

The microband current, the parameter used here to assess accuracy, is dependent on 

the flux at elements over the electrode (refer to equation 1.25). Results show that 
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two factors contribute to determining accurate fluxes; the number of elements over 

the electrode and a higher density of elements in areas of high flux. The influence of 

the number of elements over sections not used to determine current is small. This 

implies that singular integration is the dominant component of the influence coef-

ficient matrices in the Boundary Element Method. For inlaid generator-collector 

microband models simply providing sufficient elements over the electrodes is ade-

quate to ensure accuracy. However this domain is a special case, and this discretisa-

tion behaviour does not hold for other domains. Investigations of discretisation for 

raised microbands (see section 2.7.1 on page 110) shows that the mesh must have 

enough elements to adequately describe local geometric features. A point to empha-

size is that for each new type of domain some form of confirmation of discretisation 

behaviour should be made. 
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Semi-Infinite Boundary Conditions 

Boundary Condition Simulations thus far have used a semi-infinite boundary 

condition of zero flux, g = 0. If the alternative boundary condition of fixed con-

centration, c = 1, is used for simulation, the two electrodes have unequal currents, 

even for large values of insul (> lO^w). This is due to significant feedback from the 

far field boundaries increasing the current at the generator electrode. Alternatively 

one may consider that both the collector electrode and the far field boundaries act 

as sources, while the generator electrode acts as a sink. 

Figure 2.16 on the next page shows concentration profiles for a fixed concentration 

boundary condition. These behave as one would expect for a double microband 

at steady state; values smoothly approach c = 1 near semi-infinite boundaries. A 

concentration map, figure 2.17 on page 91, uses bilinear interpolation^^ between 

internal point values to visualise variation of concentration across the entire xy 

plane of the simulation domain. 
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Figure 2.16: The concentration profile along the surface of the mi-
croband and surrounding insulator, y = 0. The semi-infinite bound-
ary condition was a fixed concentration value equal to one, c = 1. 
a) is the profile of the whole domain, b) the area immediately adja-
cent to the electrodes. Additional parameters used were w = p = 1, 
insul = wall = 1000, NEsection = 50 with 1 : 1 ratio spacing be-
tween sections. For b) additional elements along two sections 40w 
either side of the electrodes were used. 
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C 0.0 0.2 0.4 0.6 0.8 1.0 

b) 

Figure 2.17: a) A concentration map of the entire domain for a 
fixed concentration, c = 1, boundary condition. Values were inter-
polated between internal points, b) A flux map with concentration 
contours. The length of the flux arrows are proportional to the 
flux magnitude. However, the arrow heads are fixed in size. The 
number of internal points, iVmt, was 3588 for an equal spaced grid 
of 92 X 39. Semi-infinite boundaries were set at a distance of lOw. 
Additional parameters; tw = ^ = 1, NE^i^c = 4 equal spaced around 
the entire domain. 
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For the zero flux boundary condition, concentration profiles show that values at the 

far boundaries converge to c = 0.5, figure 2.18. 
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b) 

Figure 2.18: The concentration profile along the surface of the mi-
croband and surrounding insulator, y = 0. The semi-infinite bound-
ary condition was a zero flux condition, q = Q. a) is the profile of the 
whole domain, b) the area immediately adjacent to the electrodes. 
Parameters are identical to figure 2.16 on page 90. 

The double microband system may be compared to a Thin Layer Cell (TLC), fig-
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ure 2.19a below, which has planar collector and generator electrodes opposite each 

other. Species diffuse linearly at a steady state. The DMB at steady state may 

be thought of in terms of a Thin Layer Cell that is opened out, split in the centre 

where c = 0.5. In regions far from the electrodes, the concentration converges to 

this value. The contour map for the zero flux boundary condition, figure 2.20 on 

the following page, supports this interpretation; c = 0.5 at distant regions from the 

electrodes, figure 2.20a on the next page, and the c = 0.5 contour line splits the 

DMB domain in half, 2.20b. 

in 

a) 

generator electrode 

-- %=±po 

b) 

Figure 2.19: a) Schematic of a Thin Layer Cell. Boundary con-
ditions are c = 0 along the lower electrode and c = 1 along the 
upper electrode. A concentration of c = 0.5 is found at d/2. b) 
The transform space used by Amatore et al}^^ 

This view of the double microband at steady state in terms of a Thin Layer Cell may 

be related to a previous finite difference simulation by Amatore and Fosset.̂ ^® They 

used a conformal mapping to convert a double microband from cartesian coordinates 

to a transformed space, which was identical to a TLC. The centre of the DMB and 

infinite boundaries, in transformed space, were located either side of the domain at 

X = 0.5, figure 2.19b on this page. 
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Figure 2.20: a) A concentration map of the entire domain for a zero 
flux, g = 0, boundary condition. Values were interpolated between 
internal points, b) A flux map with concentration contours. The 
length of the flux arrows are proportional to the flux magnitude. 
However, the arrow heads are fixed in size. Parameters are identical 
to figure 2.17 on page 91. 
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Boundary Distance If the semi-infinite boundary, xju, Xf^r and ywaii in fig-

ure 2.10 on page 73, is not sufficiently far from the generator electrode it will influ-

ence the electrode current. If the boundary condition prescribed is concentration, 

set at the bulk solution value, species A will diffuse from the semi-infinite boundary 

to react at the generator electrode, creating positive feedback between the boundary 

and the generator, and the current will be artificially raised. This is analogous to 

convection bringing the infinite boundary to a finite distance from the electrode. 

This effect is observed by comparing the effect of semi-infinite boundary distances 

of insul = 10 and insul = 1000 on concentration and flux values, figure 2.21 on 

the following page. The discretisation used was a constant number of elements 

along each boundary section, equally spaced within the section. Details are given in 

table 2.10. Variation of concentration and flux values with element number allows 

direct comparison of a small and very large semi-infinite boundary distance. 

Element Type of Domain coordinate range 
number. boundary 

a; 2/ 

0 - 5 0 insulator < z < 0 ?/ = 0 
5 1 - 1 0 0 generator 0 ^ 37 ^ Xggn 

101--150 gap ^gen ^ X 
151--200 collector Xgap ^ X ^ XQQU 

201 -250 insulator Xcoll X Xffjj-
251 --300 far field X — Xfi)j- 0 ^ y ^ Vwall 
301 --350 Xfbr ̂  X Xfbl y = Vwall 
351 - 400 X = Xf})i Vwaii ^ y ^ 0 

Table 2.10: The correlation between element number, and bound-
ary sections for the simulations used in figures 2.21 and 2.22. A 
total of 400 elements were used, with 50 over each boundary sec-
tion. Within sections the elements were equally spaced. Additional 
simulation parameters are given with the figures. 

When the boundary is too close, the flux at the generator electrode increases signif-

icantly, while the flux at the collector decreases, figure 2.21c, compared to the large 

distance, figure 2.21d. 

If the semi-infinite boundary condition is set to zero flux, hindered diffusion occurs, 

reducing the current. The corresponding results for zero flux semi-infinite boundary 
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250 300 330 400 

a) b) 

c) d) 

Figure 2.21: The variation of concentration and flux as a function 
of element number, for a semi-infinite boundary condition of fixed 
concentration, c = 1. A total of 400 elements were used; 50 over 
each boundary section, with a boundary distance for a) and c) of 
insul = 10 and for b) and d) of insul = 1000. c is concentration, q 
is flux, Cg is element number. Additional parameters; w — g = 1, 
NEeiec — 50. The relation of element number, e^, to boundary 
section is given in table 2.10 on the page before. 

condition, figures 2.22a-d on the following page, show the concentration does not 

converge to c = 0.5 at regions near the semi-infinite boundary; figure 2.22a. The 

flux values are equal at both electrodes, but lower than the correct value. 

It was found that the distance from the double microband to the edge of the domain 

sufficient for there to be negligible effect on the current occurred at distances greater 

than lOOOw, assuming a zero flux semi-infinite boundary condition. 

These results used equal insul and wall length. When the semi-infinite boundary 

lengths are altered independently the generator and collector currents diverge, both 

becoming significantly erroneous. 
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a) b) 

c) d) 

Figure 2.22: The variation of concentration and flux as a function of 
element number, for a semi-infinite boundary condition of zero flux, 
q = 0. Parameters were identical to figure 2.21 on the preceding 

This is due to the hemi-cylindrical shape of the diffusion field at long distances from 

the double microband. Therefore far field boundary lengths must be identical to 

prevent interference from these boundaries. 

Steady States As mentioned at the start of section 2.5.1, it is important to 

distinguish between definitions of steady state, which depend upon the system under 

consideration. 

Theoretically the double microband should reach a quasi-steady-state at long times 

after a potential step.^^^ At these long timescales, effects such as natural convection 

should also be taken into account. Natural convection will bring the bulk concen-

tration condition near the electrode and affect the current. The quasi-steady-state 

current will become a steady state current. 
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The Boundary Element Method is a mathematical model, which in this case solves 

the Laplace equation. Thus the method is a simulation of a mathematical steady 

state. The choice of boundary condition at the semi-infinite boundary is important. 

A zero flux condition imposes a steady state upon the double microband; when the 

boundary is at a suflficient distance it may be considered an approximation of an 

infinite zero flux boundary. A fixed concentration condition allows feedback from the 

semi-infinite boundary; this is analogous to the boundary layer imposed by natural 

convection. 

2.5.3 Validation 

Based on the results presented above the optimal parameters for the inlaid double 

microband BEM simulation were chosen as follows. A value of a = 500 was used as, 

although higher values are permissible, the risk of errors arising from roundoff' prob-

lems increases. The number of elements over each electrode was set at = 54 

while all other boundary sections are fixed at NE = 10. The semi-infinite boundaries 

were prescribed a zero flux condition, and a distance of lOOOw. 

The simulation program was initially validated for a simple heat flow domain by 

comparing values for individual elements with values in Brebbia et 

Using the parameters outlined above results were compared to Amatore and Fos-

sett's^^^ analytical solution, figure 2.23 on the next page. Excellent accuracy is 

achieved, with less than 0.1 per cent error for all values of g, the gap length between 

generator and collector electrodes. 

As expected the simulated current decays significantly as the gap between the two 

electrodes increases. This is analogous to the positive feedback approach curves 

observed in SECM where tip current decreases when the tip moves away from a 

conducting substrate. 
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Figure 2.23; Validation of the double microband BEM method. 
Values are compared to the analytical solution of Amatore and 
F o s s e t . S i m u l a t i o n parameters used were w = g = 1, maitZ = 
wall = 1000, NEinsui — NE ceil wall 10, a = 500. 
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2.6 Microband Arrays 

Arrays of microband electrodes have been studied for some years in the labora-

tory. They are now commercially produced^^^ and have started to be used 

for industrial applications. An array may consist of two to ten to many hundreds 

of separate bands. When a large number of bands is used, the array is considered 

for theoretical purposes to be of infinite length. An array has two modes of po-

tentiostatic operation: identical potential and generator-collector. The latter mode 

is more commonly used, these electrodes are also known as Interdigitated Arrays 

(IDA). In this section the Boundary Element Method is used to investigate the 

properties of various generator-collector microband array geometries. The simplest 

system is the double microband electrode (DMB), described in detail in section 2.5.1 

on page 73. 

The response of a particular cell geometry depends upon the relative size of certain 

characteristic dimensions with respect to the diffusion layer size. The characteristic 

dimensions of a microband array are the width of the electrodes, the gap between 

adjacent electrodes and the overall width of the entire system, which depends upon 

the previous two dimensions and the number of electrodes. 

Previously, finite difi'erence simulations utilising either exponential grids or confor-

mal mapping, and random walk simulations have simulated inlaid double and triple 

microband s y s t e m s , ^ ' i n addition to infinite arrays.^^ However, intermediate 

numbers of bands cannot practically be simulated by these methods, as the number 

of mesh points required becomes prohibitive. New conformal mappings are required 

(if one can be found) for each increase in the number of electrodes or change in 

electrode geometry. Due to the advantages of the BEM the same computer pro-

gram may be used to simulate an intermediate number of bands and more realistic 

geometries. 

In the next section inlaid microband arrays are investigated, with two common 

variations of operation; generator-collector pairs and a central generator surrounded 

by pairs of collectors. The following section considers deviations from ideal (for 

simulation) geometries and the efi'ect this has on current response. 
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For all geometries the reaction simulated is the reduction 

.4 e - -» j? (2.4W)) 

The system is at steady state and assumed to be diffusion controlled. 

2.6.1 Arrays of Generator-Collector Pairs 

A pair of generator-collector electrodes is the base unit of the array simulated. The 

electrode system consists of pairs as shown in Ggure 2.24 on the next page. 

The far boundaries are given a boundary condition of zero flux, g = 0, to impose a 

steady state and the optimal discretisation parameters determined in section 2.5.3 

on page 98 are used. These are shown in table 2.11 

Parameter Value 

w 1 

a 1 
1000 

wall 1000 
a 500 

10 
AWgap 1 

insul 10 
NE yjall 10 
NE ceil 20 

Table 2.11: Parameters used for multiple electrode simulations. 

The current response as the number of electrode pairs is increased is shown in 

figure 2.25 on the following page. The current increases from the value for a double 

microband to that approaching the value found by Amatore et for an infinite 

array. Current values for individual electrodes are given in table 2.12 on page 103. 

The outermost electrode can be seen to have the lowest current, as it is adjacent to 

only one electrode, rather than surrounded by two as for all other electrodes. The 

next electrode, one away from the edge, has a higher than average current. This is 

influenced by the increased flux of species at the edge of the array, as more species 

have access to the electrode. The same efl'ect is found at the edge of a microelectrode. 
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•mmsi 

Figure 2.24: A schematic of the first type of multiple electrode do-
main simulated; generator-collector pairs. G=generator electrode, 
C=collector electrode. Npairs is the number of generator-collector 
pairs, therefore the total number of electrodes is I N pairs-

The average generator and collector currents are equal, as expected, as the system is 

at steady state. The individual electrode currents are symmetrical about the centre 

of the array. 
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Figure 2.25: Increasing the number of generator-collector pairs, 
Npairs, from 1 (a double microband, DMB) to 100 (effectively an 
interdigitated array, IDA), iavg is the average current value at the 
generator and collector electrodes. The dotted lines are current 
values calculated by Amatore and Fosset for a and IDA.^^^ 
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Electrode /V -
' pairs 

Electrode 

1 2 3 4 5 8 10 

G1 0.7800 0.7310 0.7197 0.7147 0.7120 0.7082 0.7070 
CI 0.7800 1.0283 1.0443 1.0493 1.0517 1.0545 1.0553 
G2 - 1.0283 0.9868 0.9790 0.9759 0.9728 0.9720 
C2 — 0.7310 0.9868 1.0023 1.0069 1.0108 1.0116 
G3 - - 1.0443 1.0023 0.9946 0.9894 0.9884 
C3 - - 0.7197 0.9790 0.9946 1.0022 1.0033 
G4 - — - 1.0493 1.0069 0.9948 0.9934 
C4 — — — 0.7147 0.9759 0.9982 0.9999 
G5 - - - - 1.0517 0.9982 0.9959 
C5 - - - - 0.7120 0.9948 0.9978 

Table 2.12; The current at each electrode of generator-collector 
arrays. Electrode numbering starts on the left side of the array. 
WpgiM is the number of generator-collector pairs. The current at 
the collector is equal and opposite to the generator; these values 
have been omitted. 

Electrode currents at larger arrays are shown in table 2.13 on the following page. 

The current at electrodes more than approximately four away from the edge of the 

array remains constant. As Npairs increases the influence of edge currents becomes 

less significant and the average current, approaches the value for an infinite 

array. 

All the results thus far have used a gap distance of ^ = w = 1. The average current 

of an array may be normalised by either of the two limits of the number of pairs; 

a double microband and an infinite array. The double microband normalisation, 

figure 2.26 on page 105, shows that current is dependent on gap distance. For the 

alternative normalisation with respect to an infinite array (an InterDigitated Array, 

IDA), figure 2.27, the difference in current response is most marked at small gap 

values. As the number of pairs increases the current will approach the values found 

for an infinite array, giving a staight line (zo«g/i/i)y4 = 1)- Normalising with respect 

to an infinite array is most logical due to the inherent symmetry of the diffusion field. 

At any array the diffusion field at the outer electrodes is asymmetrical (assuming 

a bulk concentration of one species exists). This is most pronounced with a single 

pair of electrodes, the double microband, and the eSiect becomes negligible with an 

increasing number of pairs of electrodes, vanishing completely at an infinite array. 
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Electrode /V -

20 50 100 

G1 0.7047 0.7033 0.7029 
CI 1.0567 1.0574 1.0577 
G2 0.9708 0.9702 0.9700 
C2 1.0128 1.0134 1.0135 
G3 0.9871 0.9866 0.9865 
C3 1.0047 1.0052 1.0053 
G4 0.9919 0.9914 0.9912 
C4 1.0016 1.0021 1.0023 
G5 0.9940 0.9935 0.9933 
C5 1.0001 1.0006 1.0008 

G {Npairs/'^) — 1 0.9968 0.9973 0.9974 
G(Wpoir«/2) — 1 0.9978 0.9974 0.9974 

G(iVpnj>s/2) 0.9971 0.9973 0.9974 
G(7Vpoirf/2) 0.9974 0.9974 0.9974 

G(A^ir«/2) + 1 0.9974 0.9974 0.9974 
G(7Vpoir,/2) + 1 0.9971 0.9973 0.9974 

Table 2.13: Selected electrode currents, for large values of 
TVpgira- Electrodes at the edge and centre are shown. Numbering 
starts at the left side of the array. Npairs is the number of generator-
collector pairs. 
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Figure 2.26: The variation of the ratio of average generator current, 
iavg, to double microband current, idmb, with gap distance, g. Npairs 
is the number of generator-collector pairs. 
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Figure 2.27: The variation of the ratio of average generator current, 
iavĝ  to an infinite array (IDA) current, iwA, with gap distance, g. 
iiDA is calculated from the empirical equation given by Aoki et al}^^ 
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2.6.2 Arrays of Collectors Surrounding a Central Generator 

The second array type studied is based on a generator surrounded by pairs of col-

lector electrodes, figure 2.28. The simplest of these arrays is the triple microband 

(TMB). As more collector pairs are added the generator current increases rapidly, 

figure 2.29 on the next page, until after approximately five pairs, when the current 

starts to plateau. The distance to the extra electrode pairs is large enough and 

the diffusion field is not greatly affected until eventually the additional feedback 

becomes negligible. Note the current for a triple microband agrees with the value 

found by Amatore et al}^^ 

Figure 2.28; A schematic of the second type of multiple electrode 
domain simulated; a central generator electrode surrounded by col-
lector electrodes. G=generator electrode, C=collector electrode. 
Npairs is the number of collector electrodes, so the total number of 
electrodes is 2Npairs + 1-

Table 2.14 on page 108 gives the current at individual electrodes. The array and 

diffusion field produced is symmetrical about the centre of the generator electrode, 

and only half the array is shown. The system is at steady state and, as expected, the 

sum of the collector currents equals the generator current. The current at the outer 

electrodes drops off quickly; the probability of species B reaching these electrodes 

is relatively small due to their distance from the generator combined with the fact 

many other collector electrodes are placed inbetween. 

As found with the previous IDA system, the relation of current to gap distance, fig-

ure 2.30 on page 108, is not directly proportional. As the gap distance increases the 

influence of additional collector electrodes has a greater effect on generator current. 

This may be due to inner collectors shielding outer electrodes. The magnitude of 

this effect decays with increasing distance. 
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Figure 2.29: The e@ect of increaaing the number of surrounding 
collector electrodes. The generator electrode current (igen) is nor-
malised with respect to the current at a triple microband electrode 
(itrnb), Npairs 18 half the number of surrounding electrodes. 

Experimentally one would expect feedback from the outermost electrodes becomes 

negligible as their distance from the generator surpasses the radius of the hemi-

cylindrical generator diffusion layer. In practice this layer is of a finite size due 

to limiting factors, such as natural convection. The steady state BEM method 

simulates infinite time, and has an infinite diffusion field; in this case reaching a 

8nite boundary set at a suEciently large distance. Thus simulation of very large 

generator-collector gap distances will produce some feedback current, but of negli-

gible magnitude. 

The TMB current ratio to DMB was also found not to be directly proportional. 

This is as expected; the TMB has a symmetrical diffusion field whereas the DMB 

does not. 
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Electrode N, 

1 2 3 4 5 10 30 50 

G 1.1745 1.2393 1.2554 1.2616 1.2646 1.2689 1.2703 1.2704 
CI 0.5872 0.4593 0XKW3 0.4324 0UW91 0.4247 0.4233 0^&32 
C2 - 0.1604 0.1058 0.0954 0.0913 0.0864 0.0850 0.0849 
C3 - - 0XW25 0.0507 0.0441 0.0380 0^#65 0.0364 
C4 - - - 0.0523 0.0309 0.0219 0.0204 0.0203 
C5 - - - - 0.0369 0.0147 0.0130 0.0129 
C6 - - - - - 0.0110 0.0091 0.0090 
C7 - - - - - 0.0089 0.0067 0.0066 
C8 - - - - - 0.0080 0.0052 0.0051 
C9 - - - - - 0Xm82 0.0041 0.0040 

CIO - - - - - 0.0127 0.0034 0.0033 
C20 - - - - - - 0.0011 0.0009 
C30 - - - - - - 0.0024 0.0004 
C40 - - - - - - - 0.0003 
C50 - - - - - — - 0.0011 

Table 2.14: The current at electrodes for the second type of array, 
shown in figure 2.28 on page 106. Npairs is the number of electrodes 
surrounding the generator. 
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Figure 2.30: The variation of the ratio of the generator current, 
, and triple microband current, itmb, with gap distance. The 

array type is a generator surrounded by collectors. 
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2.7 Raised and Recessed Double Electrodes 

The actual shape of real microband electrodes often differs from the ideal perfectly 

flat electrode inlaid in an insulating surround. The most common cause of these 

deviations is the method of manufacture. Lithographic techniques typically lead 

to slightly raised electrodes, which are electroactive over their entire surface area; 

figure 2.31a below. Recessed electrodes may also be produced which are electroac-

tive only along the base of the recess. When electrodes produced by sandwiching 

methods are polished, if one of the electrode and insulator material is softer than the 

other, the softer surface may be eroded, leading to a raised or recessed electrodes, 

figure 2.31b. 
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generator 

insulating 
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collector h. 
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Figure 2.31: A description of the two types of electrodes simulated. 
The electroactive area is shaded, the white area is insulated. Note 
a positive value of he signifies a raised electrode, a negative value a 
recessed electrode (only raised are shown). A practical example of 
a raised 'All' electrode may be found in figure 2 of Alden et al.^^ 

These more complex geometries are difiicult to simulate using alternative numerical 

techniques, particularly if large numbers of electrodes are involved, but are easily 

dealt with by the Boundary Element Method. It is important to quantify the effect 

on current response and understand the behaviour of realistic systems. 
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The following section investigates the steady state chronoamperometric response of 

raised and recessed rectangular double microband electrodes, as shown in figure 2.31 

on the page before. These are the geometries produced by the most common meth-

ods of manufacture. The BEM may be used to simulate any shape microband, not 

necessarily rectangular, as described in section 2.3 on page 68. 

2.7.1 Discretisation of the Domain 

It is important to determine the discretisation appropriate for each new type of do-

main shape simulated. Inlaid microband electrodes were investigated in section 2.5.2 

using an analytical solution, and in the previous section speciEc results conGrmed 

values from previously reported alternative simulation techniques. When a novel 

domain shape is simulated, although a known solution will not be available, there 

are still some verifications that may be made. These may be based on mathe-

matical modelling requirements, such as convergence with increasing numbers of 

elements, or on electrochemical knowledge, for instance convergence with increas-

ing semi-infinite boundary distance. Further verifications may be made concerning 

discretisation optimisation. 

For the raised/recessed domain basic tests confirmed convergence, however analysis 

of different boundary sections showed that, contrary to results for a inlaid system, 

the number of elements over the gap between electrodes and the number of elements 

near electrodes on the insulator aEected the current. The number of elements a large 

distance from the electrodes was insignificant. 

To obtain sufiicient distance of the semi-infinite boundary, insul, discretisation op-

timisation is necessary. It was found that exponential mesh spacing, which ensured 

the smallest element was the same size as the equally spaced elements over the 

electrodes (referred to as type FixedRatio in section 2.5.2 on page 80) allowed a 

large reduction in the number of elements required, with an insignificant change in 

current. The value of the expansion coefficient, a , was important as values larger 

than CK > 10 led to oscillations of flux values on the electrodes. 

The simulation domain chosen is described in figure 2.32 on the following page. The 

parameters used for all following simulations are given in table 2.15. 
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Figure 2.32: The far field domain parameters used for this section. 
Local electrode features are described in figure 2.31 on page 109. 
The parameters used are given in table 2.15 below. 

Parameter Value Element Spacing 

w 1 equal (A) 

9 1 equal (A) 
insul 1000 exponential 
wall 1000 equal (B) 
he 1 equal(B) 
a 3 — 

Parameter Value 

NEeiec 150* 
NEgap 50 

insul 137 

NE^all 50 

NE ceil 100 

"50 for electrode 

type 'Top', 

a) b) 

Table 2.15: Parameters used for raised and recessed microband sim-
ulations. Equal (A) and equal (B) signify two different equal spac-
ings. 

There has been a limited amount of research into discretisation optimisation and in 

this area BEM lags behind alternative techniques. FD optimisations are well under-

stood within electrochemistry and FEM optimisations have a much wider range of 

publication. As described in section 2.5.1 on page 77, the current at an electrode is 

obtained from the summation of fluxes at each element, equation 2.42, these fluxes 

being obtained directly through the BEM procedure. A possible explanation for 

the effects of BEM discretisation found for these systems is that the influence on 

element flux has two components. Firstly the element singular integration is the 

dominant factor - hence the number of elements over the electrodes has the greatest 
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effect. Secondly non-singular integration - geometrical features close to the element 

have greater inSuence than distant features and there must be suGcient elements 

to describe these shapes. 

Element discretisation analysis is time consuming, but essential to confirm the ve-

racity of the simulation for a novel electrochemical domain. An attractive solution to 

reduce the efforts involved are adaptive mesh t e c h n i q u e s . T h e s e automati-

cally refine the element mesh based on an error estimation. This would greatly aid 

discretisation optimisation although electrochemical based tests, such as increasing 

the distance to semi-infinite boundaries, would still need to be carried out manu-

ally. 

2.7.2 The Effect of Electrode Height 

Two types of electrode were simulated with different electroactive areas, defined in 

figure 2.31 on page 109. he is the dimensionless height/depth of the microband 

above/below the surrounding fiat insulator, where /ig is normalised with respect 

to the width of the electrode. Positive vEilues describe raised microbands whereas 

negative values describe recessed microbands. 

The current response normalised with the current at a inlaid double microband is 

shown in figure 2.33 on the next page. A significant deviation from the current at 

an inlaid DMB is observed, which is most pronounced at small values of he- For 

instance electrodes raised 0.05w above the insulator give a 10% increase in current 

compared to a inlaid DMB. 

The system is at steady state and the feedback loop between the two electrodes 

is the origin of the current response. Raising the microbands exposes the edges 

which have the greatest effect on flux of species to the electrode. If the entire raised 

band is electroactive the current is greater than if only the top is electroactive, 

due to a larger surface area. At higher values of he planar diffusion between the 

two facing electrode sides becomes the dominant factor, giving a current that is 

directly proportional to hg. When only the top is electroactive the current reaches a 

plateau as the electrode is raised away from the insulating surround which no longer 

inhibits diffusion between the two bands. When the bands are recessed the current 
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LA 

— 'Air electrode type 
9— Top' electrode type 

1 . 0 -

T ' r 
-1.0 -0 .8 -0 .6 

h 

Figure 2.33: The effect of raised or recessed electrode geometries. 
Current is normalised with the current at a inlaid double mi-
croband. h is the height above the insulating surface, thus negative 
values correspond to recessed electrodes. Electrode types are de-
fined in figure 2.31 on page 109. Parameters used were w = g = 1. 

is lowered, if the sides of the trough are electroactive the effect is less significant as 

dominant diffusion occurs between the static sides. If only the base of the recess is 

electroactive then the current continues to reduce as he decreases. 

For the generator-collector system short range diffusion is the dominant factor at 

long times thus the shape of the electrodes and precise dimensions of the surrounding 

area are of crucial importance in determining an accurate current. 

Figure 2.34 on the following page shows the variation of generator current with gap 

distance for different values of hg. As expected the current falls with increasing 

distance between electrodes. This is most pronounced at small gap values. At large 

gap distances the electrode shape (raised or recessed) has only a relatively small 

effect on current response. 

As seen from figure 2.35 on page 115 the variation of current as a function of gap dis-
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Figure 2.34: The effect of varying gap distance, g on the generator 
currrent for the 'All' type of electrode, he is the height above a flat 
surface, thus positive he is a raised electrode and negative he is a 
recessed electrode. Parameters were as described in table 2.15 on 
page 111. 

tance is not constant, hence each curve in figure 2.34 must be simulated individually. 

When the width of the electrode is of comparable size to the gap between electrodes 

the highest contribution to current comes from linear diffusion between the electrode 

sides. The extra distance species must travel from the far edges of the microbands 

is substantial. However, as the gap increases this distance, which is fixed, has much 

less significance. Therefore at large gap values the current approaches that found 

at a inlaid microband. 
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Figure 2.35: The relation of current to gap distance relative to an 
inlaid DMB. Electrode type 'All'. Parameters were as described in 
table 2.15 on page 111. 
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2.8 Novel Raised Band Configurations 

The BEM simulation was applied to a novel electrode configuration, consisting of 

an insulating block above a raised electrode. Such a system may be manufactured 

by lithographic techniques. The two sides of the raised geometry are electroactive, 

as described in figure 2.36. This configuration was compared to raised microband 

of type 'Air (see previous section) and a inlaid double microband. 

insulating 
block 

insulating 
block 

collector 

hi 

K 

insul w insul 

Figure 2.36: A description of electrode type 'sides'. Parameters 
used for all simulation in this section are identical to those used in 
the previous section, table 2.15 on page 111. Discretisation over the 
insulating block was equal (A) spaced, as described in that table. 

Two variations of electrode type 'sides' were simulated; firstly an insulating block 

of equal height to the electrode, he = hi, secondly a fixed block height of one, 

hi = 1. The variation of current with increasing electrode height for a raised double 

microband is shown in figure 2.37 on the next page. 

As expected the current for a raised electrode with only electroactive sides is lower 

than when the entire surface is electroactive. Despite initial appearances the curve is 

not directly proportional to h^. Both electrode types approach direct proportionality 

of inorm vs Ag, as Ag increases and linear diffusion between sides dominates. At 

very large values of he one would expect types 'all' and 'sides' to converge as non-

linear diffusion becomes negligible. However, at small values of he, when non-linear 

diffusion is significant, proportionality does not hold. Simulation of he < 0.1 was 

not possible due to discretisation restraints; sufficient elements must be allocated 

over the electrode sides and top. 

The difference in current response between the two 'sides' type of electrode is rel-
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Figure 2.37: The variation of current with increasing electrode 
height for three configurations of double raised microbands. Elec-
trode types and domain discretisation are described in figure 2.36 
on the page before. 

atively small, becoming more pronounced as he decreases. This is due to hindered 

diff'usion from the outer sides of the electrodes. Table 2.16 on the following page 

shows the contribution to current from different areas of the generator electrode 

surface. The major contribution may be seen to arise from the electrode side facing 

the collector. When a larger insulating block is present the facing electrode side flux 

is virtually unchanged, however the far side decreases. 

Total electrode flux at raised 'sides' electrodes is greater than flat geometries with 

the same surface area. This is true even when an insulating block hinders diffusion 

to half the raised area, and is due to the much greater flux present at facing surfaces 

than coplanar ones. 
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Electrode hi Electrode area Total 
Type Flux 

Left side Centre Right side 

inlaid 0.0 0.0 - 0.780 - &78 

All 0.5 0.0 0.185 0.606 0.600 1.39 
Sides 0.5 0.5 0.291 - 0.717 1.01 

0.5 1.0 0.263 - 0.719 0.98 

All 1.0 0.0 0.244 0.593 LTOO 1.94 
Sides 1.0 1.0 0.317 - 1.218 1.54 

Table 2.16: Components of the total flux at different configurations 
of raised microbands, from figure 2.37 on the preceding page. 

2,8.1 Mult iple Bands 

Results were also obtained for two pairs of generator-collector microbands, for the 

three configurations. The variation of current with increasing electrode height for 

four raised microbands is shown in figure 2.38 on the next page. The behaviour is 

analagous to the raised double microband system, with higher currents due to the 

larger number of electrodes. 

These simulations show the flexibility and versatility of the Boundary Element 

Method. To extend the simulation to multiple raised band configuration required 

alteration of only the input data describing the geometry of the domain and the 

boundary conditions. 

The method enables solution of novel complex electrode geometry systems which 

are otherwise intractable with established techniques. 
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Figure 2.38: The variation of current with increasing electrode 
height for three configurations of four raised microbands. Npairs = 
2. Electrode types and domain discretisation are described in fig-
ure 2.36 on page 116. 
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2.9 Double Microband Scan 

A scanning probe may be used to image a double microband substrate. If the probe 

is moved slowly, then the system is allowed to reach a steady state and convection is 

assumed to be negligible. A feedback loop between probe (generator) and substrate 

features (collector) is achieved, figure 2.39. Diffusion is physically inhibited by the 

presence of the substrate, therefore the geometry and proximity of the substrate is 

important. This is analogous to a Scanning Electrochemical Microscope^^ (SECM), 

here using a microband instead of a microdisc. This system demonstrates the power 

and flexibility of the BEM method. Each position of the probe along the scan 

represents one simulation, which for the BEM simply requires a shift in the definition 

of electrode coordinates. Concentration maps are easily obtained using an equally 

spaced rectangular mesh of internal points. 

probe 

-w„ p 

A+e — 

-w. dmb * * 5 '^dmb 

double microband 

-g-

Figure 2.39: The scanning probe domain showing the feedback loop 
between the probe and the conducting substrate features, in this 
case a double microband. 

Figure 2.40 on the next page shows the current response of the probe for parameters 

Wp = 1, Wdmb = 1, 5' = 2, = 0.5. As it passes over the double microband two 

bands are clearly discernible. 

A concentration map of the domain may be generated by interpolating the bound-
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ary and internal mesh data, figure 2.41. The influence of the substrate features is 

significant at this close range of h = O.dw. Lines between concentration values are 

due to the limited number of colours. 

20-1 

^norm 1.0-

distance scanned 

Figure 2.40; The current response of the probe. A total of 120 
simulations are plotted. Wp = 1, Wdmb = 1, 5 = 2, /t = 0.5. 
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Figure 2.41: A series of concentration maps for a probe scanned over 
a double microband. Wp = = 1,5' = 2,A, = 0.5. The map 
is centered on the scanning probe. The blue region corresponds to 
the region below the tip where the product species is generated, the 
two red spots correspond to the two microbands where the redox 
mediator is regenerated. 
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In practice it would be difficult to perform this experiment with a microband. If the 

band is not lined up exactly parallel to the substrate, one end of the band would 

pass over before the other, leading to a blurred image and decreasing resolution. A 

microdisc electrode would be better suited to this task. The size of the surrounding 

sheath has been shown to have an effect on the current obtained,®® and would be 

expected to have an analogous effect for the microband. 
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2.10 Refinements and Limitations 

The basic Boundary Element Method may be enhanced when considering accuracy 

and speed of computation. Linear elements, where concentration and flux vary 

linearly along the length of the element, increase accuracy or allow fewer elements 

giving faster simulation times. The theoretical aspects of applying linear element 

types to the BEM is described in the next section. Implementation of alternative 

linear algebra routines, described in section 2.4.1 on page 70, does not affect the 

accuracy of the method, but does increase the speed of computation. 

2.10.1 Linear Elements 

One of the approximations made in section 2.2 on page 64 was to assume that 

concentration and flux values were constant over the entire length of a given ele-

ment. Elements of higher order variation, which are more accurate, may be deflned. 

Typical element types are shown in figure 2.42 on the next page. 

Linear elements were implemented for the two dimensional Laplace equation. Dif-

ferences in implementation from section 2.2 on page 54 are outlined below. 

B E M Theory 

As concentration and flux are no longer constant they cannot be removed from the 

Boundary Integral Equation integrals. The discrete BIB is therefore 
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Nodal value W rof f 
Constant 

The variables are constant along the 
length of the elemait" 

Nodd value 

The variables are linear al(mg the length 
of the element 

cor̂  vanatKxi 
\ Quadratic 

. boundary 
element 

(]) 
The variables are a functiw of distance 
along the element 

(3) T 

Figure 2.42: Increasing order of variation of concentration and flux 
along the boundary element. Both constant and linear types were 
implemented. 

dgCs + u dr (2.47) 

where d 

c 

Q 

r , 
w 
q* 

a , 6 
s 
j 

is the geometry coefBcient 
is concentration 
is flux 
is an element boundary 
is the fundamental solution 
is the derivative of the fundamental solution 
are source point coordinates. 
is the source point integer counter 
is the field point integer counter 
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A local coordinate system, 77, is used for integration over each element. This is 

de8ned as 

--1 fC % 1 (2.4U3) 

Concentration and flux over each element vary linearly, analogous to linear interpo-

lation. The variations are defined as follows 

c = (^ici + ^C2 (2.49) 

9 = + ^92 (2.50) 

where c is concentration, q is flux and (j) are basis functions. These functions are 

defined 

== - (1 --??) (2-i)l) 

<t>2 = \(l + n) (2-52) 

where 77 is a local coordinate. 

Linear elements have nodes at each end of the element'. A comparison of linear 

and constant element discretisation is given in figure 2.43 on the next page. 

The integrals in equation 2.47 may be written in matrix notation by defining 

hj ^ / Yn g*dr (2^a) 
rj 

frCj == / dl" (2J)4) 

^Linear elements may also have one or both nodes offset from the end of the element, known as a 

discontinuous element. This variation may be used to avoid integrating at a boundary singularity.^^ 
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^ ̂ ^ ^ ^ ^ 

^ ^ ^ ^ ^ ^ 

Figure 2.43; A comparison of constant and linear element discretisa-
tion. Constant elements have one node per element, linear elements 
have two nodes per element. However, as linear element nodes co-
incide with each other the total number of nodes is identical. 

where /, m 
W 
q* 

n 

r . 
s 
j 

are influence coefficients 
is the fundamental solution 
is the derivative of the fundamental solution 
are basis functions 
is the interpolation node number, for linear 
elements n — 1,2 
is an element boundary 
is the source point integer counter 
is the field point integer counter 

The expression d = | is valid only if the boundary is smooth about the source point. 

This may no longer be true as source points are located at the ends of the element. 

As defined in section 2.2 on page 54 the geometry coe@cient, (f, is given by 

d = 
27r 

(2.14) 

where 9 is the internal angle. However there is an easier way to calculate this term, 

without reference to the element geometry. When a uniform concentration is applied 

over a bounded region, the sum of all the derivatives must be zero. Therefore d may 

be calculated by summation of the non-singular Igj terms. 

The summation is thus 

N 

E ' 
i = i 

a; (2.55) 
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where N is the number of elements. This only applies to internal Laplace regions. 

External regions have a summation of one 

N 

fas == 1 -- fs, (2.(56) 
j=l 

The use of the term Igj (without the hat) indicates the summation rule for singular 

terms is incorporated. 

These terms may be substituted into the Boundary Integral Equation, equation 2.47, 

where nl and M2 are nodes 1 and 2 respectively, of element j . 

When written in matrix form this equation reduces to equation 2.32, identical to 

the constant element formulation, 

Lc = Mg (2.32) 

which may be solved with standard linear algebra techniques. 

Corner Nodes 

A single value for flux is inadequate at corner junctions in the boundary. The two 

perpendicular components of flux must be calculated separately, figure 2.44 on the 

next page. Thus matrix L has dimensions Nx2N and vector q is of length 2N. 

Alternative singular integration is required, solutions for which are available in the 

literature.^' 
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Figure 2.44: Components of Sux must be calculated separately for 
linear elements. The components are defined perpendicular to the 
element, facing outward form the boundary. 

Comparison of Element Types 

Linear elements were implemented for the direct BEM simulation. Figure 2.45 on the 

following page shows that convergence is faster than for constant elements. Using a 

linear variation of variables increases accuracy, requiring fewer elements. 

The effort involved in implementing linear element types is substantial, mostly due to 

the increased programming complexity involved. The benefits of linear elements are 

limited by the behaviour of boundary discretisation, when applied to electrochemical 

problems. These discretisation ejects, described in detail in section 2.5.2 on page 77, 

have a far greater influence than the element type. 

2.10.2 Limitations 

A detailed analysis of the BEM for the one and two dimensional Laplace equation 

has been given in this chapter. However, to model a different geometry, for instance 

axisymmetric or three dimensional, requires implementation of a suitable funda-

mental solution and derivative, and suitable elements types. Also to account for 

additional terms in the original partial differential equation, such as convection or 

homogeneous chemical reactions, requires implementation of a suitable fundamental 

solution. 

Although various fundamental solutions are available^^' these changes involve 
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2.10 Refinements and Limitations 
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Figure 2.45: A comparison of the effect linear and constant element 
types, for the double microband. Discretisation used was a con-
stanst number of elements over each boundary section. Within each 
section elements were equally spaced. N is the total number of ele-
ments around the entire boundary, w = g = I, insul = wall = 200. 

substantial effort. An appealing alternative is a technique which allows simulation 

of a wide variety of additional terms, based on the Laplace fundamental solution. 

This is known as the Dual Reciprocity Method and is described in the following 

chapter. 
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Chapter Three - The Dual 

Reciprocity Method 

3.1 Introduction 

The standard Boundary Element Method requires a fundamental solution to be 

derived for each partial differential equation modelled. It would be advantageous to 

apply the BEM principles to different partial differential equations without recourse 

to new fundamental solutions, whether for reasons of difficulty of derivation or the 

complexity of implementing a function already obtained. 

An advanced addition to the BEM, the Dual Reciprocity Method (DRM) enables 

just such a generalisation. This has significant potential for application to electro-

chemical problems which are otherwise intractable. The vast majority of BEM and 

related research has taken place in various fields of engineering. However, electro-

chemical systems represent a unique class of often complex problems, with features 

such as mixed boundary conditions, convection and diffusion combined with reac-

tions in solution. Although simplified electrochemical problems have direct analogies 

in some engineering fields, the majority do not. With its extensible nature, the DRM 

ofiFers the opportunity to solve a range of complex electrochemical problems. 

The Dual Reciprocity Method allows evaluation of a variety of partial differential 

equations using a formulation based on the fundamental solution to the Laplace 
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equation. This is achieved by approximating the remaining derivatives (non-Lapla-

cian terms) with a series of interpolation functions. Some internal points are used, 

however discretisation of the internal domain is not required, thus retaining the 

geometrical advantages of the Boundary Element Method. 

3.1.1 Historical Background 

The Dual Reciprocity Method was first introduced in 1982 by Nardini and Breb-

bia.̂ ^^ A steady stream of advances were made in the 1980's including transient 

diffusion,axisymmetric diSiision^^^ and others.̂ ^ '̂̂ ^^ Further investigations were 

carried out in the following decade,^°^ the 1990's, with signifcant improvements in 

understanding the approximating functions used,̂ ^̂ '̂ ^̂  a wider variety of applica-

tions and efficiency of implementation. 1̂ 4,165 this time alternative related meth-

ods such as the Multiple Reciprocity Method^®® and the Method of Fundamental 

Solutions^^^ were developed. 

During the period of study of the author the Dual Reciprocity Method was a novel 

method to electrochemists. It has since been applied by Fisher et 

There are still a number of areas with regard to aspects of the DRM formulation 

which need to be addressed, including combining the DRM with closely related 

methods. These are currently active areas of research. 

3.1.2 The DRM Applied to Electrochemistry 

In the following two sections the procedure for solving the steady state diffusion-

convection equation, in two dimensions, is outlined. An example of an electrochem-

ical application which is governed by this equation is the channel flow system, 

described in section 3.5 on page 147. This is a suitable example to test and validate 

the DRM as approximate analytical solutions are available, in addition to results 

from alternative simulation methods, for comparison. 

A fundamental solution to the diffusion-convection equation, assuming a constant 

flow velocity, has been derived. However, this assumption is not valid for the 

channel flow system due to its flow profile; this is described in section 3.5 on page 147. 
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The general DRM formulation is described in the next section, the specific appli-

cation of the DRM to the difFusion-convection equation is covered in the following 

section. 
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3.2 Dual Reciprocity Method Formulation 

In terms of the BEM formulation, if the additional convection term in the governing 

partial differential equation cannot be moved to the boundary, through derivation 

of a suitable fundamental solution, it introduces internal domain integrals. These 

must be approximated by domain discretisation. 

The DRM formulation is an alternative approach which removes the need to discre-

tise the domain by approximating the convection term using a linear interpolation 

formulation. These integrals may then be moved to the boundary, without requiring 

a fundamental solution, via the Inverse Form of the partial differential equation, in 

an analogous manner to the standard BEM. 

3.2.1 Governing Partial Differential Equation 

The Dual Reciprocity Method solves partial differential equations of the general 

form 

= (3.1) 

where c is concentration, z, y are cartesian coordinates and t is time. The term on 

the right hand side is known as an internal domain term, as it will not be described 

by the boundary terms of the standard BEM. Note tha t the right hand term may 

include a time derivative and a convection term. 

Writing the governing partial differential equation in this form allows the funda-

mental solution of the Laplace equation to be utilized to solve the left hand side of 

equation 3.1, while using an approximating function to account for the right hand 

side and still retain the boundary method characteristics. 

As an example for this derivation the dimensionless steady state diffusion-convection 

equation is used. This equation is described in detail in section 3.5.1 on page 148. 

However, the procedure applies to any domain integral term from equation 3.1. 
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The governing partial differential equation for diffusion-convection is 

^ + (3.2) 

where v is the dimensionless flow rate coefficient. Refer to section 3.5.1 on page 148 

for the model and assumptions used to derive this equation. 

Equation 3.2 may be rearranged and written in a form suitable for the DRM 

d^c{x,v) cFc(x,y) .d<x,y) 
dx-i ^ V 

where the left hand side may be recognised as part of the Laplace equation. 

A solution to equation 3.3 may be written as 

where c is a series of particular solutions. An approximating function for the internal 

domain term, which is valid over the entire domain, may be deGned by this series 

of particular solutions. Calling this function / , gives 

(3.5) 
t 

where a are initially unknown coefBcients, A are DRM summation points (see 6g-

ure 3.2 on page 139) and / is an approximating function, defined by 

3.2.2 The / Approximating Function 

The choice of a suitable approximating function is important as the basis of the 

DRM is the approximation of domain integrals by these interpolation functions. 

Therefore which function is used will have a direct effect on accuracy. 
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There were a variety of functions originally proposed i nc lud ing elements of Pas-

cal's triangle, sine series and radial basis functions. For example 

(3.7) 

l,sina;, sin^, 8in2a;, sinz^/,... (3.8) 

and 

1 + r 4- + . . . (3.9) 

where 

r = \/(2: - (i)^ + (i/ - ^2)̂  (3.10) 

^1, 2̂ &re the cartesian coordinates of the source point, a while a;, %/ are the cartesian 

coordinates of the field point, k. r is thus the distance from the source to field 

points. 

Some of these original functions include r, the same parameter as that used in the 

Laplace fundamental solution. These were later found to be a form of Radial Basis 

Functions (RBF).^®^ Strictly, RBF's of the series, equation 3.9, are odd powers of 

r only. If even powers are included in the function it does not seem to affect the 

solution, but they should be avoided. 

The function f = 1 + r became the most widely used from the introduction of the 

method until the mid 1990's. At this time, with increasing interest in the Dual 

Reciprocity technique, investigations of the behaviour, accuracy and mathematical 

basiŝ ®^ of a variety of approximating functions were p e r f o r m e d . C o n v e r g e n c e 

of the r series was proved^^® and a variety of functions were p r o p o s e d , s o m e of 

which are summarised in table 3.1 on the next page. 

The functions tested in this work were the radial basis functions of equation 3.9. 

Variation of concentration and flux with increasing series terms was found to be 

very small. The function / = l + r + r^ + r^ was selected for use throughout this 

work. 
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Name Example Function 

Thin Plate Spline (TPS) log r 

Higher Order Thin Plate 
Spline log r 

Augmented Thin Plate 
Spline (ATPS) 

1 -f log r 

Multiquadric* 4-

* a is a user de&ned constant dependent on the 
specific mesh used.^^^ 

Table 3.1: A variety of approximating functions have been pro-
posed, some of which are summarised here. 

To understand the behaviour and significance of the approximating function, / may 

be thought of in terms of an interpolation function which describes the variation 

of a variable, for example the concentration gradient, over the entire domain. A 

number of nodes are required in the interior of the domain to calculate this interpo-

lation. This is in contrast to the standard BEM which only required nodes on the 

boundaries. 

A recent by paper by P a r t r i d g e , p u b l i s h e d after the DRM studies reported here, 

suggests optimal functions for various types of partial differential equations. It is 

found that a single r function is often least accurate, although higher order RBF 

series are accurate. The reader is referred to this text when choosing a speci6c 

approximation function. The optimal functions for a range of electrochemical prob-

lems are summarised in table 3.2 on the following page. Two dimensional DRM only 

is covered, although three dimensional equivalents exist for most functions, optimal 

two dimensional versions are not necessarily optimal in three dimensions. 

Note that in the literature radial basis functions are often referred to as 'local' 

functions, whereas other functions such as sine expansions are 'global' functions. 

3.2.3 Formation of the Boundary Integral Equation 

The inverse form of the modified partial differential equation is used to obtain a 

Boundary Integral Equation in an analogous manner to the standard BEM. Substi-
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Problem Type Optimal f functions 

steady state convection 

transient diffusion 

transient diffusion and 
convection 

simple homogeneous 
reaction, e.g. ErQ 

1 + 
log r 

no optimal function 

no optimal function 

1 + 
log r 

Table 3.2; Optimal functions for various electrochemical related 
problems. R e f e r e n c e d e s c r i b e s optimal functions for a range of 
engineering partial diSerential equation systems. 

tuting equations 3.5 and 3.6 into equation 3.3 gives 

2/) a^c(a;, Z/) ^ 

where a is an unknown coefficient, c and q are particular solutions. 

(3.11) 

The weighted residual form of this equation is integrated twice, and applied at a 

source point on the boundary producing the Boundary Integral Equation 

(^c(6,6) + y g*(a;,2/,(i,^2)c(a;,2/) dr = 

dr 

(3.12) 

where W is the fundamental solution to the Laplace equation 
q* equals dW/dn {n is the unit outward normal) 
c is a series of particular solutions 
q equals dc/dn 
d is the geometry coefficient (defined in section 2.2) 
k is the DRM summation point number 
r is the domain boundary 

This equation contains no explicit internal domain integral; the three terms on the 

left hand side are all boundary terms, recognisable from standard BEM, the domain 

integral term now has equivalent boundary integrals, the terms on the right hand 
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side. 

The discrete Boundary Integral Equation is obtained by defining / internal points 

and discretising the boundary into N elements, as shown in figure 3.1. 

r 

Figure 3.1: Discretisation of the domain for the DRM formula-
tion. Boundary discretisation is the same as in the standard BEM 
but additional internal points are added to approximate domain 
integrals. Linear elements are shown here; alternatively constant 
elements may also be used, is the internal domain and F is the 
boundary. 

The discrete form of equation 3.5 including summation limits is thus 

jV+f 

9a; 
(3.13) 

k=l 

where a are initially unknown coefBcients and / is an approximating function and 

k are DRM summation points. 

The Boundary Integral Equation is applied at each source point to give the discrete 
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Boundary Integral Equation 

6 ) + ^ ^ 3/, 6,6)c,X3:, 2/) dP 

(a;, ?/, 1̂, (2)9aj(a:, 2/) dP = ^ | ?/) 
Ml -/r; \ 

^ / gj; (:%:, 2/, 6 , (2)cj&(a;, ?/) dr 
;=i -/r; 

- ^ ^ 6 , 2 / ) dr (3.14) 

where N is the number of boundary elements, I is the number of internal points, 

j is the element number and all other terms are defined in the equation 3.12 on 

page 137. 

The difference between source points, s and DRM summation points, k is emphasised 

in figure 3.2. 

source point 

s 

j element 

DRM summation 
point 

Figure 3.2; A schematic showing the difference in source point, s 
and DRM summation point, k. The vector r is used for calculation 
of Ukj and However the influence coefficients Igj and nisj use 
the vector r. Letting A; = g it may be seen that vector r may 
be used for calculation of u and q provided the sign of the vector 
is changed. Note that for simplicity constant elements are shown 
here although linear elements were implemented. f2 is the internal 
domain and F is the boundary. 
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It is more efficient to approximate c and q over each element with interpolation 

functions dependent on the element type. For example, if linear elements are used 

to discretise the boundary, using linear interpolation functions for the particular 

solutions allow identical functions to be used on both sides of equation 3.14. Con-

stant element types are used in the following derivation. Linear elements, which 

were implemented, require similar alterations to the formulation as described for 

the standard BEM in section 2.10.1 on page 123. 

The same definitions as used previously in section 2.2.4 for matrix elements enable 

a more concise version of equation 3.14 to be written in matrix form. They are 

repeated here to maintain continuity 

(3.15) 

/ M:(a;,2/,6,6)dr (2.28) 
Vr; 

where I, m are matrix elements and Tj is the length of the element. 

The use of I (as opposed to I) indicates the dgCg term has been incorporated in the 

leading diagonal of matrix L as described in section 2.2.4 on page 63. 

Applying this notation to equation 3.14 gives 

^sjCj - ^ MsjQj = ^ ^ LsjCjk - ^ MsjQjk j (3.16) 
j=i j=i k=i \ i=i i=i / 

which may be written in matrix form 

Lc - Mg = (Let - f̂ Qk) (3.17) 
k=l 

where L, M are influence coefficient matrices. 

One may write this in a more compact form by placing vectors Ck and as columns 
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of matrices C and Q respectively to give 

Lc - IVIg = a L̂C - IVIQ̂  (3.18) 

This is the general DRM formulation. The right hand side of equation 3.18 is the 

domain integral approximation and is dealt with differently depending on the specific 

domain integral term of the governing partial differential equation. 

The vector a may be found from equation 3.5. The general form of this is 

(3.19) 
k 

This equation may be applied at each source point to give a vector of domain values, 

b. Note that F is a matrix because 6, and fk have different subscripts, as shown in 

6gure 3.2 on page 139. 

b = Fa (3.20) 

This allows the initially unknown vector a to be found 

a = F-^b (3.21) 

The specific form of equation 3.21 will depend on the domain terms of b{x,y,c,t). 

For the case of the diffusion-convection equation this form is described in the fol-

lowing section 
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3.3 Application to the Steady State 

DiEusion-Convection Equation 

The formulation derived thus far is general and may by applied to any function 

6(a;, ?/, c, t). For each form of function 6 it is necessary to End a way of expressing 

this function in terms of the approximating function / t , to enable at to be found. 

This section describes how to include a convection term which contains a flow profile 

which is a function of x and y. 

The following procedure allows the convection term to be expressed in terms of 

c{x,y) and fk{x,y). The domain integral term is approximated by equation 3.19. 

In an analogous way an additional approximation may be defined for concentration 

2/) - ^ A(3;, 3/) A (3.22) 
k 

where / is the approximating function, and /3 an unknown coefficient. Differentiating 

this equation gives 

Rearranging equation 3.22 and substituting into equation 3.23 gives 

where may be obtained by differentiating the specific / function used. 

The coefficient a may be found by rearranging equation 3.5, in which the general 

term 6(a;, c, t) has been replaced by the convection term, giving 

(3.25) 
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Substituting equation 3.24 yields 

, ) c ( . . , ) E p.26) 

Applying this equation to each source point gives the required vector a 

8F 
a = F-^—F-^i/c (3.27) 

oa; 

Substituting for a in the general DRM equation, equation 3.12 gives 

Lc-IVIg=^LC-IVIQ)F-^^F-^i /c (3.28) 

Defining the domain part as D 

D = L̂C - IViq) (3 29) 

and substituting equation 3.29 into equation 3.28 gives 

(L - D) c = IVIg (3.30) 

This equation has the same form as that derived for the boundary element method, 

and may be solved by applying prescribed boundary conditions and standard matrix 

solving techniques. 
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3.4 Program Structure 

The structure of a DRM program is similar to the standard BEM algorithm with the 

addition of several sub-routines to account for integral approximation. A diagram 

of the program structure is given in Bgure 3.3 on the next page. 

3.4.1 EfSciency and Performance 

Computational efficiency of the BEM, which highlights that the matrix solving rou-

tine is the slowest step, was covered in section 2.4 on page 70. The DRM requires 

extra calculations therefore it is slower than an equivalent standard BEM formula-

tion. The approximating functions matrix F must be inverted, in addition to the 

solution of the final linear matrix equation. These are the two slowest steps in the 

procedure; the efBciency of matrix solving is addressed in the next section. 

It is important to use maximum precision floating point variables especially when 

dealing with matrix equations where round oE error may accumulate and become 

signiGcant.^^ 

Internal points are required, and in the case of convection a substantial number of 

points are required to approximate the domain integral behaviour. For alternative 

terms, such as the time derivative from the diffusion equation, significantly fewer 

points are required. 

3.4.2 D R M Linear Matrix Solving Routines 

The time taken to solve the matrix equation Ax = & for a fully populated unsym-

metrical matrix A is of the order 0{e^), where e is the number of elements for an 

e X e matrix. For the DRM formulation the internal points must be calculated as 

part of the boundary solution, thus the number of matrix elements is e = 4- / 

where N is the number of boundary elements and I the number of internal points. 

In contrast to the BEM increasing the number of internal points has a dramatic 

effect on the speed of the simulation. 
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BEM routines 

DRM routines 

Domain 
Integral? 

Yes 

No 

Finish 

Input 

Solve 

Mesh 
generation 

Calculate F 

Calculate 
LC-MQ 

Assemble Influence 
Coefficient matrices 

Assemble Influence 
Coefficient matrices 

Figure 3.3: Schematic of the DRM program, emphasizing the sim-
ilarities to the standard BEM program. However, implementation 
of the DRM procedure is a complex effort. 
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The DRM leads to two significant matrix calculations with direct relevance to the 

speed of computation. Firstly the inversion of matrix F. Secondly the calculation 

of kx = b. Both matrices are fully populated and unsymmetrical. 

For this work an LU decomposition routine was used.̂ "^^ However, it is possible 

to implement faster r o u t i n e s , s u c h as Conjugant Gradient Squared^^^ and Gen-

eralised Minimum R e s i d u a l . W h e n implemented for the DRM^^° these resulted 

in simulations an order of magnitude faster than LU decomposition. These meth-

ods also required pre-conditioners, which alter the matrix in some way, such as 

exchanging rows, to improve its solvability and aid convergence. 
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3.5 Channel Flow Electrodes 

A group of electrochemical techniques which has been the focus of considerable 

efforts towards theoretical understanding in recent years is that of hydrodynamic 

electrodes, in particular the channel flow electrode. These are especially useful for 

mechanistic analysis, allowing simple alterations of mass transport parameters by 

controlling the flow rate. 

This class of electrodes originated with the Rotating Disc Electrode (RDE). The 

technique may be modelled by a one dimensional diffusion-convection equation. The 

solution flow rate is determined by the rate of rotation of the disc, and parameters 

such as the rate of mass transport and rate of electron transfer may be obtained. 

The maximum flow rate that may be attained is restricted by the requirement to 

maintain laminar flow, which is assumed in the theoretical treatment. 

Alternative hydrodynamic methods, such as tube and channel flow, wall jet and wall 

pipe, which overcome some of the disadvantages of the rotating disc electrode, have 

been developed. 

A typical channel flow cell is shown in figure 3.4. Channel flow systems often 

utilize microband electrodes which provide an additional means to control the mass 

transport regime to be studied by altering the characteristic electrode dimension; in 

this case the electrode width. 

2A 

• 
direction of 

^us X. ds 

y 

X 

Figure 3.4: A typical channel flow cell. 

The cell is designed to eliminate the possibility of convection in the direction perpen-
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dicular to the electrode (the yz plane in figure 3.4). Also, by ensuring the electrode 

length is sufiicient to ignore effects from the ends and sufficient separation from 

the walls of the cell, the mathematical description is reduced to a two dimensional 

diffusion-convection equation with only one convection term. 

Idealised channel flow systems are particularly amenable to finite difference simu-

due to their rectangular geometry. A considerable number of advances 

have been made in this area.̂ '̂̂ '̂̂ ^ 

3.5.1 Governing Partial Differential Equation 

The steady state diffusion-convection equation with a Sow of species in the a; direc-

tion is^ 

^ 0 (3.31) 

where C is dimensional concentration, D is the diffusion coefficient and % is the 

solution flow rate. 

The flow is assumed to be laminar, thus the flow profile is parabolic in the a;?/ plane, 

as shown in figure 3.5 on the following page. This is also known as Poiseuille flow, 

with the flow rate defined by 

where 2A is the height of the channel and fo is the flow rate at the centre of the 

channel (at Y = /i). 

Dimensionless Form of the DifFusion-Convection Equation 

To generalise simulation results the dimensionless form of the diffusion-convection 

equation is used. The velocity coefficient is normalised with respect to the diffusion 

coefficient and electrode width. In line with standard procedure in the literature a 

further dimensionless parameter, the Peclet number is defined. This is a ratio of 
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Figure 3.5: The parabolic flow profile of a channel flow technique. 
The blue lines represent solution flow velocity, %. The flow is 
assumed to be laminar. 

the rates of diffusion and convection, which simplifies the dimensionless treatment 

when approximations are made. 

One may define 

2/) 
%/) 

c* '• 
X 

X = 
X,, 

2/ = — = 
Xyj D 

(3.33) 

where c dimensionless concentration no units 
C dimensional concentration mol c m ' 
C* bulk concentration mol cm"' 
X dimensionless distance along the x axis no units 
X actual distance along x axis cm 
y dimensionless distance along the y axis no units 
Y actual distance along y axis cm 
Xyj width of the electrode cm 
u dimensionless velocity coefficient no units 
Vx velocity coefficient cm s"^ 
D diffusion coefficient cm^ s~^ 

The dimensionless diffusion-convection equation is therefore 

0^0 c^c 0c 
(3.34) 
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Peclet Number The Peclet number, Ps is an indication of the relative importance 

of diEusion and convection. It is deGned as 

(3.35) 

where Pi,P2 de&ied below. 

Following the standard form in the l i t e r a t u r e , t h e additional normalising param-

eters are deGned 

^ ( 3 . 3 6 ) 

and 

where (f is the width of the channel. 

The dimensionless flow rate parameter may be defined in terms of the Peclet number 

= (3.38) 

When Ps < 1 diffusion dominates. At larger values then convection dominates. 

Approximations 

To simplify the solution of the two dimensional convection diffusion equation, two 

approximations may be made. The first is often used with two dimensional finite 

difference simulations, the second allows an analytical solution to be found. 

Leveque Approximation Close to the floor of the cell the parabolic flow profile 

may be approximated by a linear dependence of velocity with y. This assumption 

is valid when the diffusion layer is small with respect to h; for example using a 
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microelectrode 

A (3.39) 

This is known as the Leveque approximation^^^ and leads to 

2^o(y)y 

h 
(3.40) 

equation 3.38 becomes 

-f%?/(2 - pi2/) ^ (3.41) 

Dominant Axial Diffusion To simplify further one may assume convection dom-

inates Bow in the a; direction. In this case equation 3.31 reduces to one dimensional 

diffusion 

This approximation is valid with reasonably fast How rates and large electrodes, 

where edge effects are negligible. However, it often does not hold for microbands. 

Applying both these approximations leads to an analytical solution analogous to 

the Levich equation^ for rotating disc electrodes. 

Dual Reciprocity Method When the Leveque approximation is made, the ve-

locity coefficient, is still a function of ?/, hence the fundamental solution avail-

able for the BEM cannot be used. The DRM is capable of modelling any function 

b{x,y,c,t), thus it is possible to simulate the channel flow model with and without 

the Leveque approximation. 
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3.5.2 Simulation Domain and Boundary Conditions 

The simulation domain is shown in figure 3.6. 

4 ceil—— 

y2h 

Iwall solution flow rwall 

electrode 

0 

us- -*4 W* W- -ds-

Figure 3.6: The channel microband simulation domain. Nint is 
defined as the number of internal points. These may have a distri-
bution over the entire domain or in a local region near the electrode. 
These terms are defined in figure 3.8 on page 159 of section 3.6.3. 

The boundary conditions for the channel fiow cell are as follows 

Zus < % < Zo y = 0 
dc 

a?/ 
= 0 (3.43a) 

370 < a; < y = 0 c = 0 (3.43b) 

< a; < a;dB y = 0 
dc 

2̂/ 
= 0 (3.43c) 

X = 0 < y < 2h 
dc 

dx 
— 0 (3.43d) 

< z < y — 2h 
dc 

= 0 (3.43e) 

X — ̂ us 0 < y < 2h c = 1 (3.43f) 
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Current 

The dimensionless form of the current equation used throughtout this chapter is 

ac(z, %/) i: a?/ 

where is current and w is the width of the electrode 

dx (3-44) 
y=0 
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3.6 Validation of the Dual Reciprocity Method 

Applied to Convection 

The Dual Reciprocity Method program was validated against a one dimensional 

heat flow test case^°^ with a known analytical solution. This enabled individual 

concentration and flux values, at both boundary and internal nodes, to be checked. 

The method was then applied to a channel flow simulation for which analytical 

approximations, described in the next section, and previous simulation results^^° are 

available. Unfortunately, the method proved unstable and boundary discretisations 

could not be found for which concentration and flux values would converge. 

Results for diGiision-dominated flow (low values) using the Leveque approxima-

tion are presented. For convection-dominated flow meaningful results could not be 

found. Possible reasons for the behaviour of the DRM applied to the channel flow 

technique are also given. 

3.6.1 Analytical Approximations 

Several analytical approximations have been derived for the channel flow cell, mak-

ing use of the Leveque approximation to simplify the partial difierential equation. 

Solutions have been found for the low and high flow rate cases, however no single 

approximation describes the current accurately over the entire range of practical 

flow rates. 

Ackerberg used asymptotic expressions^^^ to obtain an approximation valid for 

< 1 

= 7rp(f,) (1 - 0.04633;^p(f^)) (3.45) 
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r (3.46) 
log ( I + 1.0569 

where 

and z is the steady state current to the band electrode. 

Two expressions for high speed flow have been derived. Newman^®^ takes into ac-

count both upstream and downstream edge effects to give an expression valid for 

2 = 0.8075f7 + 0.7085fr^ - 0.1984^^^ (3.47) 

Aoki et decided that downstream edge effects were small compared to upstream 

edge effects, and obtained 

% = 0.8075f j + 0.4558fr= - 0.1984^!^= (3.48) 

They also gave a correction term for the downstream edge e@ect. 
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3.6.2 Semi-Infinite Boundary Distances 

The effect of the distance of semi-infinite boundaries is an important indicator of 

simulation properties. Feedback from boundaries which are positioned too closely to 

electrodes is a common feature of electrochemical simulation methods, as described 

in section 2.5.1 on page 76. The behaviour of each boundary must be observed 

individually to ensure effects are not cancelled out. 

The current response as a function of semi-infinite boundary distance for the channel 

microband domain is shown in figure 3.7. The errors for these results are given in 

table 3.3 on the following page. 

1.1 

1 . 0 -

0 . 9 -

0 . 8 -

0 . 7 -

0.6 -

0 . 5 -

0 . 4 

boundary 

2h 
- 4 - - us 
• + ds 

20 4 0 60 
-T— 
80 

—I 
100 

length 

Figure 3.7: The current response when increasing semi-infinite 
boundary length. The remaining two semi-infinite boundaries were 
kept at a fixed distance of IQw. Elements were equally spaced 
around the entire boundary, therefore as the length of the semi-
infinite boundary increases the number of elements increases pro-
portionally. Parameters were w = 1, us = ds = y2h = 10. Internal 
points had a local distribution (see figure 3.8 on page 159 for def-
inition). NEelec — 2, NEus = NEds = NEiyjall = NErwall = 20, 
NEceii = 42 and NEint = 9. = 0.1. 
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length !/2A length 

'^norm % change A% change 

3 0.4652 -49.55 -

5 0.7515 -18.50 31.05 
7 0.8813 -4.43 14.07 

10 0.9221 0.00 4.43 
15 0.9161 -0.65 -0.65 
20 0.9225 0.04 0.69 
30 0.9553 3.60 3.56 
50 0.9511 3.15 -0.45 
75 0.9327 1.15 -2.00 

100 0.9268 0.50 -0 .64 

a) 

length ^us ^ds 

n̂orm % A% '^norm % A% 
change change change cheinge 

3 1.0245 11.14 - 0.8821 -4.34 — 

5 0.872 -5.40 -16.54 0.9963 8.04 12.38 
7 0.8352 -9.42 -4.02 1.0089 9.41 1.37 

10 0.9221 0.00 9.42 0.9221 0.00 -9.41 
15 1.0689 15.92 15.92 0.7551 -18.11 -18.11 
20 0.9725 5.47 -10.45 0.8177 -11.32 6.79 
30 0.8723 —5.41 -10.87 0.8865 -3.86 7.46 
50 0.8429 -8.59 -3.18 0.8951 -2.94 0.92 
75 0.8396 -8.95 -0.36 0.8928 -3.18 -0.24 

100 0.8390 -9.01 -0.06 0.8915 —3.33 -0.15 

b) 

Table 3.3: The effect of increasing the semi-infinite boundaries of 
the channel flow cell. The value for current should converge to a 
small A% change value when a sufficient distance to ensure negligi-
ble feedback is reached. However none of these boundaries converge 
satisfactorily. Parameters used for these results are de&ned in 6g-
ure 3.7 on the preceding page. 

Upstream a;,,. Severe oscillations are observed initially, followed by dampened 

oscillations at larger distances. The expected behaviour would be significant positive 

feedback at small distances, leading to smooth convergence to a current value where 

the boundary influence is negligible. This kind of current response is an indication 
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of an inherent problem with the simulation, rather than simply an insufficient semi-

inGnite boundary distance. 

Downstream x^s Increasing distance also shows severe oscillations, whereas neg-

ative feedback at small distances would be expected because f g < 1. 

Relation between Upstream and Downstream Effects The current res-

ponses due to the upstream and downstream boundaries appear to be mirroring 

one another. The suspected cause of this is the distance between the semi-infinite 

boundary and internal points, which are fixed above the electrode. The eGect of 

internal points is discussed in section 3.6.3 on the next page. 

Height y2h The behaviour of increasing the height of the channel flow cell is closer 

to the expected response; at small distances negative feedback is observed as would 

be predicted. However, the curve also exhibits oscillations throughout the distance 

range simulated. This also implies a flaw within the method's ability to model 

convection. If the distance between semi-infinite boundary and internal points is 

causing this instability one might expect the behaviour of the cell height to be 

linked to upstream and downstream effects, as they are to one another. However, 

convection occurs only in the x direction, thus the inaccuracy of response due to 

the 2/ axis boundary may be independent. 

Concentration Values Concentration values, both on the boundary and at in-

ternal points were also found to oscillate. At times they gave completely erroneous 

results; values larger than one or less than zero. 

In summary, the current response does not converge with increasing semi-infinite 

boundary distances. Additionally erroneous concentration values were found. This 

suggests that the DRM is unable to interpolate the convection term of the governing 

differential equation satisfactorily. The effect of internal points distribution was 

investigated in detail to clarify the behaviour of the method. 
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3.6.3 Internal Points 

The basis of the treatment of convection is interpolation across the domain using 

both boundary and internal points. Thus the placement of internal points has the 

potential to be of significant importance to the accuracy of the Dual Reciprocity 

Method. At least one point is required for the method to function, however a larger 

number of points would be expected to increase the accuracy of the interpolation. 

There are a number of strategies which may be used to define the position of points. 

1) The points may be spread equally across the entire domain 

2) They may be distributed randomly 

3) A mesh may be positioned locally in the region of the electrode 

These meshes may be equally spaced or follow a predicted diffusion field. For the 

following results the first and third strategies were used, with equally spaced points, 

as shown in figure 3.8. 

entire domain local 

L J 
electrode electrode 

Figure 3.8: The two types of internal point distribution tested. The 
local mesh distribution routine enabled a variable rectangular mesh, 
of dimensions xiocai and yiocah 

The placement of internal points is an area that has received limited investigation 

within the DRM field; most authors preferring to distribute them equally across the 

entire domain.̂ ° '̂̂ ^®'̂ ® '̂̂ ^^ 
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Number of points As the number of internal points is increased one would expect 

an increase in accuracy as more points are used for interpolation. The current 

response should converge. In contrast to the standard BEM, DRM internal points 

are inherent in the method and as such are incorporated as part of the boundary 

solution. Thus increasing the number of internal points also increases the time 

required to calculate boundary values, placing an upper limit on the number of 

points that may be used. 

The effect of increasing the number of internal points, for a mesh distributed over 

the entire domain and local to the electrode is shown in figure 3.9. 

1.00-1 

0 . 9 8 -

l 0 .96 4 norm 

0 . 9 4 -

0 . 9 2 

Entire Domain 
Local Mesh 

T" 
20 

-T" 
4 0 60 

-1— 
80 100 

N. 

Figure 3.9; The current response produced by increasing the num-
ber of internal points, The types of point distribution are 
shown in figure 3.8 on the page before. Parameters used for 
these results were w = 1, us = ds = y2h = 10. NEeUc = 2, 
NEus = NEds = NEiyjaii — NErwaii = 20, NEceii = 42 and 
NEint = 9. Ps = 0.1. 

The number of points has an enormous influence on current response. Severe oscilla-

tions are observed for both types of distribution, with neither converging to a value. 

These results confirm that the DRM interpolation is inadequate to describe the 
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convection term in the governing differential equation of the channel flow electrode, 

even for low flow rates. Increasing the number of internal points, for instance by 

improving the performance of the program, is unlikely to provide sufficient accuracy 

as there is no indication of convergence. 

Varying local Mesh Distribution The local distribution of points was altered 

by varying the size of the mesh rectangle, table 3.4. 

^local y local ^norm 

1 0.5 0.9369 
2 1 0.9536 
4 2 0.9788 
5 2.5 0.9854 
6 3 0.9887 
7 3.5 0.9895 
8 4 0.9884 
9 4.5 0.9861 
10 5 0.9833 

Table 3.4: The effect of varying local internal point distribution. 
This is defined in figure 3.8 on page 159. Simulation parameters 
used were as described in figure 3.9 on the preceding page. 

The size of the local mesh is seen to have a significant effect on current response. 

For all internal point distributions tested erroneous concentration and flux values 

occurred within the domain. 

Collectively these results show that it does not appear possible to find an internal 

point distribution that accurately simulates the convection term in the diffusion-

convection equation using the DRM. 

3.6.4 The / Approximat ing Function 

The effect of using different approximating functions for interpolation was investi-

gated. The results, in table 3.5 on the next page, show a wide variation of current 

response, depending on the / function used. All functions result in oscillating cur-

rents and erroneous concentration and flux values. Note that using even terms in 
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radial basis functions (refer to section 3.2.2 on page 134) produces very small changes 

in the current, which concurs with the behaviour found by P a r t r i d g e . I t is not 

possible to select an optimum approximating function, considering the inaccuracy 

of the model. 

/ function Mesh Discretisation 

NEelec 2 2 4 6 

NE total 244 244 488 732 
9 25 25 25 

1 + r 
0.8778 0.8928 0.8695 0.8617 

1 + r 
% error 0.536 2.259 -0.419 -1.307 

'^norm 0.8771 0.8942 0.8705 0.8626 
1 + r + 

% error 0.456 2.412 -0.305 -1.202 

'^norm 0.0270 0.5842 0.8850 0.8346 
1 + r + 

% error -96.906 —33.096 1.362 -4.412 

'^norm 0.8230 0.8749 0.8494 0.8508 
1 + 

% error -5.739 0.198 -2.717 -2.552 

3 
0.8229 0.8748 0.8526 0.8451 

% error -5.749 0.198 -2.352 -3.205 

*norm 0.0430 0.5867 0.8843 0.8344 
1 + r + 

% error -95.070 -32.808 1.286 -4.438 

Table 3.5: The behaviour of several / approximating functions, for 
a selection of mesh discretisations. Values are compared to the 
approximate analytical function of Ackerberg et for Ps=0.1, 
i=0.87312. Parameters used were w = 1, = dg = 1/2/1 = 20. 
Boundary elements were equal spaced. Pg = 0.1. 

3.6.5 Parabol ic Flow and High Flow R a t e s 

The behaviour of the simulation was also investigated for a parabolic flow proflle. 

As expected only small variations occurred in current response compared to results 

using the Leveque approximation. However, as values oscillate in exactly the same 

manner as those obtained with the Leveque approximation, parabolic flow results 

are omitted. 
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Similarly, high Sow velocities (large values) gave meaningless concentration and 

flux values and results are not presented. 
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3.7 Conclusions 

A summary is given in the next section of pertinent aspects of the results of the chan-

nel flow model and possible explanations for simulation behaviour. The following 

section discusses the validity and relevance of the general DRM method. 

3.7.1 Channel Flow Cell Model 

The Dual Reciprocity Method is unable to model the channel flow microband accu-

rately for either low or high flow rates, with or without the Leveque approximation. 

The position of the DRM internal points was found to have a significant effect on 

boundary values. The model suffered from severe instability and erroneous con-

centration and flux values. Altering the boundary discretisation aflects the Held 

point-internal point distance, thus mesh optimisation investigation is not possible 

due to this instability. 

The channel flow electrode attains a steady state due to the influx of material 

from the bulk solution arriving upstream of the microband. Species generated at 

the electrode are swept away by convection; thus for a given flow rate a static 

concentration profile and a steady state current are achieved. 

However, at low flow rates difl'usion is the dominant mass transfer process. For the 

generator-collector, diffusion only, microband system in section 2.5.2 of chapter 2, 

when a bulk concentration semi-infinite boundary condition was used, the electrode 

pair did not have equal currents when a steady state was imposed. Therefore for 

the convection system, at a diffusion-dominated flow rate, feedback may occur with 

the upstream boundary. In this case one would expect the microband current to 

decrease as the upstream boundary recedes. It was not possible to observe whether 

this occurred however, due to instability ajid erroneous results. 

The particular solution interpolation was inadequate to describe the convection 

term, despite testing a variety of radial basis functions. Although not tested for 

this work, the use of global approximation functions does not appear to increase the 

accuracy of the DRM for convection systems. 
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The diffusion-convection partial differential equation is complex to model using nu-

merical methods as the nature of the equation changes depending upon the flow 

rate. At low flow rates (diffusion dominated flow) the equation is parabolic, at high 

flow rates (convection dominated flow) the equation becomes hyperbolic. 

There are some additional techniques available to improve the behaviour of the 

DRM applied to convection. Zhang and Zhû ®̂'̂ ®® suggest a Laplace transform of 

the partial differential equation to obtain an internal domain term that is a function 

of X, y only. This improves concentration values by an order of magnitude, however, 

flux values, which are also of importance to electrochemists, are not improved. 

Wrobel et gpiit the convection term into a constant velocity component and 

a variational component; using the fundamental solution for the constant velocity 

difliision-convection equation and applying the DRivl to the variational part. This 

has the advantage of transforming at least some of the convection term to a boundary 

integral. However, they found a domain discretisation was still required for high flow 

rates. 

3.7.2 General Dual Reciprocity M e t h o d 

The Dual Reciprocity technique enables Boundary Element principles to be applied 

to a wide variety of partial difl'erential equations, without requiring a specific fun-

damental solution. 

There are a number of approximate particular solutions which have been applied 

to the method and research continues to prove convergence and find the optimum 

function for different classes of differential equations. 

The DRM, using a variety of radial basis functions, has proven inadequate to model 

electrochemical diffusion-convection domains accurately. However, this is only one 

application of the method, from which conclusions cannot be drawn as to the validity 

of the technique for alternative partial differential equations. 

The method has been successfully applied to model the time derivative in the dif-

fusion equation. Usually a time stepping scheme, for instance Galerkin^® 

or Crank-Nicolson,® is utilised in conjunction with the DRM. This greatly simpli-
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fies mesh generation for complex domains, removing the requirement for internal 

domain discretisation. 

The extension of the DRM for three dimensional domains is comparatively sim-

ple, provided a suitable approximating function is found. The mesh generation 

advantages of BEM become especially advantageous for three dimensional systems. 

However, the majority of research into the properties of approximating functions 

has been for two dimensional domains. There is no guarantee that for functions 

that converge in two dimensions the analogous three dimensional version will also 

converge. 

In conclusion, the Dual Reciprocity Method provides a flexible advanced addition 

to the Boundary Element Method. However, accurate integral domain term inter-

polation is found for only a proportion of possible partial differential equations; care 

must be taken to ensure the accuracy of the technique is established for a particular 

governing differential equation and domain. 
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Conclusion: The Future of BEM in 

Electrochemistry 

The Boundary Element Method was described in detail in the first part of chapter 2. 

In the second part it was applied to various flat and irregular multiple microband 

geometries. These domains, which contain large numbers of microelectrodes, could 

not be simulated using domain techniques such as FDM or FEM due to practical 

considerations; for each electrode there are two boundary singularities, and domain 

techniques require optimisation for each of these. Thus the computational time 

required becomes prohibitive. 

The Boundary Element Method has proved to be a flexible simulation technique 

capable of successfully simulating these systems. 

An advanced formulation, the Dual Reciprocity Method, showed the potential to 

model a wider variety of governing partial diff'erential equations. This was im-

plemented and described in chapter 3. It was applied to steady state diffusion-

convection systems, however, it proved unstable and inadequate. Subsequently, it 

has been shown to be successful when applied to time dependent s y s t e m s . A 

description of relatively simple alterations to the formulation given in chapter 3 to 

model these systems, is included in the following section. 

The most notable feature of the BEM is the potential to model complex three-

dimensional systems. Initial investigations were made in this area and a success-
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ful test program developed. The implementation of three dimensional BEM and 

preliminary results are presented in section 4.2 on page 173. 

The majority of practical electrochemistry systems involve more than two species 

and one or more chemical reactions; in section 4.4 on page 183 incorporation of 

these factors into the BEM is considered. Finally, the distinguishing features of the 

BEM which are of particular interest to electrochemists are summarised. 
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4.1 Time-Dependent Systems 

The majority of electrochemical techniques are time dependent, thus the capabil-

ity to model partial differential equations containing a time derivative is important 

for numerical methods applied to electrochemistry. To apply the standard Bound-

ary Element Method, as outlined in chapter 2, a suitable weighting function (the 

fundamental solution) must be found. Additionally, a time integration strategy is 

r e q u i r e d . F o r simple equations, such as the diffusion equation, it may be possible 

to derive a fundamental solution;^^ this depends upon the individual governing equa-

tion in question. Assuming a fundamental solution is found the standard Boundary 

Element Method, depending upon the time integration scheme used, may require 

internal discretisation. 

The Dual Reciprocity Method represents a viable alternative, requiring only mi-

nor modifications to incorporate a time derivative term. The domain integrals are 

transferred to the boundary, retaining a boundary-only formulation. The original 

partial differential equation may also contain additional terms, assuming these can 

be approximated accurately using the DRM method. However, considering the poor 

performance of the method applied to convection (see chapter 3), a direct BEM ap-

proach, if possible, is preferable. 

Research into the behaviour of different / approximating functions is currently on-

going. Singh and Kalra^^® have investigated optimal time integration schemes 

for various domains. Qiu and Fisher^®^ have recently applied the DRM to diffusion 

at microelectrodes. 

The DRM procedure is described in detail in chapter 3 and an outline of additional 

details required for the diffusion equation is given below. 

4.1.1 The D R M Applied to the Diffusion Equa t ion 

The procedure for time dependent terms is analogous to that described for a con-

vection term in chapter 3, and is outlined below. 

The DRM may be used to approximate non-Laplacian terms by posing the governing 

equation in a suitable form; separating the Laplacian terms. This gives the general 
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% ^ + ^ ^ = Xz.V.c,,) (3.1) 

where b is any internal domain term, c is concentration, x, y are cartesian coordinates 

and ( is time. 

The diffusion equation, in two dimensions, is 

,9%2 " ^ ^ 

The generic DRM equation, before application to a specific b term, is given by 

equation 3.18 in section 3.2.3 on page 136 

Lc - (Li: -- MC)) c% (31.18) 

where L, M are influence coefficient matrices 
c is a concentration vector 
q is a flux vector 
C, Q are vectors of particular solution vectors 
a is a vector of initially unknown coefficients 

A series of approximating functions is defined for the time derivative term 

f ) f +\ N-^L 
^ = c(a;, == jFA(a;, (4.2) 

k=l 

where c is a time derivative, / are approximating functions and a are initially 

unknown coefficients. 

Using matrix notation equation 4.2 becomes 

c = Fa (4.3) 

which is substituted into equation 3.18 

Lc - = (Li: -- M()) p:-!,: 04.4) 
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Defining the term A as follows 

A = - L̂C - IViq) F-^ (4.5) 

then equation 4.4 may be rearranged to form 

Ac + Lc = Mq (4.6) 

Finite Difference Time Approximation A one dimensional finite diSerence 

scheme may be applied to approximate the time derivative term. Standard 9 nota-

tion̂ ®® is used here and is defined as follows 

c = (1 - c:' + (4.7) 

+ (4.8) 

where 0 is a constant whose value determines the type of finite difference scheme. 

For example, 9=1/2 gives the Crank-Nicolson algorithm® and 9 = 2/3 gives the 

Galerkin algorithm. 

A forward difference is used for the time derivative 

y£lM = J_ - c') (4.9) 
at A( ^ 

When applied to equation 4.6 this gives 

A (c^+i _ c^) + L ((1 - = IVI ((1 - 0,)g^ + (4.10) 

Taking a two-step scheme as an example, where 9c = 0.5 and 9g = 1 gives 

(A 4 ) 4 ^ 4 ) ' = ' 

171 



4.1 GTicaeLjjkijpeiickyit ^tysteuns 

Summary The DRM applied to transient governing equations has proved suc-

cessful. However, the approximation of domain terms by an interpolation function 

(the basis of the DRM technique) is inferior to the exact representation obtained 

through use of a fundamental solution. Thus, for transient systems, a direct BEM 

approach is likely to yield more accurate results. 
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4.2 Three Dimensional Boundary Element Method 

The Boundary Element Method formulation may be applied in three dimensional 

space. The Boundary Integral Equation obtained contains only surface integrals, 

and is exact within the interior domain. A description of the three dimensional 

BEM is given below. 

The boundary may be discretised using suitable surface elements, also known as 

primitives; basic element types are given in figure 4.1. Thus domain meshing is 

greatly simplified when compared to volume discretisation, however, elements must 

be orientated correctly within three spatial dimensions so mesh generation is more 

complex than for a two dimensional domain. 

b) ^ 

Figure 4.1; Boundary element types for three-dimensional surface 
discretisation. Concentration and flux variation over the element is 
a) constant b) linear c) quadratic. The quadratic element shown is 
curvilinear, using quadratic shape functions. 

4.2.1 Three Dimensional B E M Formulat ion 

The formulation of the Boundary Element Method for three dimensions is analogous 

to the two dimensional procedure, explained in chapter 2. Differences and alternative 

equations required are described below for the Laplace equation. 

The Laplace equation in three dimensions is 

2/, z) a^c(a;, ?/, z) ? / , ^ r/i 1 

The Boundary Integral Equation (BIE) is derived by integrating the weighted resid-

ual form of the Laplace equation twice. It is identical to equation 2.13 in section 2.2 
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on page 54, although parameters are now functions of three spatial dimensions 

d c i i t + z ) d r = 

(4.13) 

where d is a geometry coeScient 
c is the concentration at the source point 
r is the domain boundary 
c is the concentration around the boundary 
W is the fundamental solution 
n the element unit outward normal 
5 , &, & are source point coordinates. 
r is a surface integral 

This BIE may be discretised in an analogous fashion to section 2.2, using any of the 

element types described above. 

A definition of the fundamental solution and a technique for boundary integration 

are required to proceed to assembly of the influence coefficient matrices. These are 

described in the following two sections. 

Fundamental Solution 

The fundamental solution for the three dimensional Laplace equation is 

= (4.14) 
47rr 

where W is the fundamental solution, ^ are source point coordinates and r is the 

distance between source and field points; 

r = 1/(3: - 6)^ + (2/ - 6)^ + (-2: - (4 15) 

The element outward normal is defined as perpendicular to the element surface, in 

a direction exterior to the domain. The derivative of the fundamental solution with 
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respect to the outward normal is 

where p is the perpendicular distance from the source point to the plane passing 

through the field point element. Thus p = r.n, where n is the element unit outward 

normal. 

Boundary Integration 

To simplify boundary integration a local coordinate transform is performed which 

is dependent upon the type of element. Triangular elements with constant field 

variables are considered here. 

The transformation of coordinates requires a parameter known as a Jacobian 

dr = I J| drii dr]2 (4.17) 

where F is the surface boundary, J is the Jacobian and rj is the local coordinate 

system. 

For a triangle the Jacobian is equal to twice the area of the triangle 103 

Applying this transformation to the boundary integrals from equation 4.13, and 

removing the concentration and flux parameters (which are constant) from their 

respective integrals gives 

M^dr = | j | y :y(77)d77ijd% (4.18) 

g*dr = | J | ^ (4.19) 

The element unit normal, n, required for calculation of q* = dW/dh may be calcu-

lated from the cross-product of two sides of the element, which are vectors in three 

dimensional space. 

175 



Chapter 4 4.2 Three Dimensional Boundary Element Method 

Non-Singular Integration (s 7̂  j) When the boundary integrals are not singu-

lar, numerical integration may be used; in the case of constant triangular elements 

a suitable scheme is Hammer's q u a d r a t u r e . T h i s is defined as 

/(%,%, %) d;?! j d% ^ /(771,772, (4.20) 
0 / A=1 

where / is an arbitrary function, h is an integer counter, u are quadrature weighting 

factors and NI are the number of integration points. 

Specific coordinates and weighting factors may be found in the literature. 

The notation of section 2.2.4 on page 63 is used to define influence coefficient ma-

trices. Their components, applying Hammer's quadrature are 

h=l 

where Aj is the area of triangular element j, p is the perpendicular distance from 

the source point, s, to the plane passing through element j and other terms are 

defined above. 

Singular Integration (s = j ) The two boundary integrals are considered sep-

arately: The derivative of the fundamental solution is equal to zero, leaving only 

the contribution of the geometry coefiicient, d. This is equal to a half because the 

element is smooth; Lss (see 'The Geometry Coefficient' paragraph in section 2.2 of 

chapter 2). For integration of Mgs an analytical solution may be derived using polar 

coordinates.^^ 

The assembled influence coefficient matrices are of identical size to those obtained 

with two dimensional elements. After application of boundary conditions, they may 

be solved in the same way with standard matrix solvers. As this is the slowest step in 

the BEM procedure, the three dimensional BEM is as efficient as a two dimensional 

version with the same number of elements. 
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To solve for concentration and flux values at internal points, after the boundary 

solution is known, an analogous procedure to section 2.2.6 on page 64 may be used. 

4.2.2 Results 

The results presented here validate the three dimensional BEM using a simple planar 

difl'usion test case. Constant elements were used and a typical discretisation is shown 

in figure 4.2. 

Figure 4.2: A typical mesh discretisation for the planar diffusion 
test case. The surface is divided into equal size triangular elements. 

It is important that boundary elements are defined in a consistent manner to ensure 
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that element normals are correctly aligned. For the planar diffusion case outward 

element normals and boundary conditions are shown in figure 4.3. For constant ele-

ment types field variables may be discontinuous in adjoining elements, thus elements 

may be defined in any order and are unconnected. 

Figure 4.3: Simple discretisation of the cube domain used for the 
planar difi^usion test case. The direction of element outward nor-
mals are depicted by arrows, which originate from the element cen-
troid. The colours show boundary conditions; blue is g = 0, red is 
c = 1 and green is c = 0. 

The concentration and flux values for nodes covering two faces of the cube are 

evaluated for a discretisation of 8 triangular elements per face; a total of 48 elements. 

The nodal coordinates are defined in table 4.1, and table 4.2 on page 180 shows BEM 

results and error analysis. 

The accuracy of the results is remarkably good considering the sparsity of the mesh 
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Node 

n 

Centroid Node 

n X V z 

9 0.3333 0.0000 0.1667 
10 0.1667 0.0000 0.3333 
11 0.8333 0.0000 0.1667 
12 0.6667 0.0000 0.3333 
13 0.3333 0.0000 0.6667 
14 0.1667 0.0000 0.8333 
15 0.8333 0.0000 0.6667 
16 0.6667 0.0000 0.8333 
17 1.0000 0.3333 0.1667 
18 1.0000 0.1667 0.3333 
19 1.0000 0.8333 0.1667 
20 1.0000 0.6667 0.3333 
21 1.0000 0.3333 0.6667 
22 1.0000 0.1667 0.8333 
23 1.0000 0.8333 0.6667 
24 1.0000 0.6667 0.8333 

Table 4.1: The coordinates of the centroids of the triangles covering 
two faces of the cube modelled. These are shown in Bgure 4.3 on 
the preceding page 

discretisation used. Note the error of concentration values are an order of magni-

tude better than corresponding flux values. Preliminary results showed convergence 

with increasing number of elements. Unfortunately, the three dimensional BEM 

simulation developed could not be applied to more complex domains due to study 

time constraints. 

The BEM was applied to three dimensional SECM simulations by other research 

groups^°°'̂ ^® during the course of this work. There is a huge variety of possibilities 

for application of a three-dimensional simulation in electrochemistry. BEM is ideally 

placed as a simulation method which has the capability to solve complex geometric 

domains. 

However, incorporating reaction mechanisms is an involved task; this is discussed in 

section 4.4.1 on page 183. 
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Node Analytical BEM Error 

n c Q c Q c Q 

9 0.3333 0.0000 0.3109 0.0000 6.72 -

10 0.1667 0.0000 0.1557 0.0000 6.59 -

11 0.8333 0.0000 0.8203 0.0000 1.56 -

12 0.6667 0.0000 0.6706 0.0000 -0 .59 -

13 0.3333 0.0000 0.3323 0.0000 0.31 -

14 0.1667 0.0000 0.1751 0.0000 -5.01 -

15 0.8333 0.0000 0.8439 0.0000 -1 .27 -

16 0.6667 0.0000 0.6879 0.0000 -3 .18 -

17 1.0000 1.0000 1.0000 1.0913 — -9 .13 
18 1.0000 1.0000 1.0000 1.1594 - -15.94 
19 1.0000 1.0000 1.0000 1.2366 - -23.66 
20 1.0000 1.0000 1.0000 0.9563 - 4.37 
21 1.0000 1.0000 1.0000 0.9563 - 4.37 
22 1.0000 1.0000 1.0000 1.2366 - -23.66 
23 1.0000 1.0000 1.0000 1.1594 - -15.94 
24 1.0000 1.0000 1.0000 1.0913 — -9 .13 

Table 4.2: The concentration and flux values at triangle element 
centroids. Node coordinates are given in table 4.1 on the preceding 
page. 
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4.3 Computational Aspects of Numerical Methods 

The implementation of numerical methods in electrochemical simulation is becom-

ing increasingly involved. Therefore, the choice of programming paradigm is an 

important consideration. Additionally, the performance of algorithms is often a 

factor. The programming and computational aspects of the implementation of the 

Boundary Element Method are discussed in this section. 

The use of modern programming techniques enable a program to be designed which 

is Sexible and extensible. The advantages of object-oriented design, regression test-

ing and format independent data are outlined below. 

Object-Oriented Design The use of an object-oriented l a n g u a g e s u c h as 

or Java/'^ encourages good program design; for example, separating in-

terface and implementation. This allows alterations to be made to specific parts of 

a program, without interfering with the rest of the program. For instance, a Gaus-

sian integration routine could be re-implemented as an adaptive routine completely 

independently from matrix formation. Additionally, some parts of the program, 

such as mesh generation, are simpliEed through the use of objects and class library 

resources. 

Testing Comprehensive testing increases confidence in results, in addition to re-

ducing time spent debugging. There are two types of testing relevant to a BEM 

program such as described in this thesis; Firstly, functional tests; for example, sim-

ulation of a simple model with a known analytical solution. Secondly, at a lower 

level, unit tests; these verify that each individual method* behaves as expected. Au-

tomating these tests will save a significant amount of time. A variety of frameworks 

to automate testing, such aa xUnit,^^° are available for several languages. 

extens ib le Markup Language (XML) The use of as a data format 

removes the problem of adhering to specific formatting conventions, which may 

*The term method is used in the context of object-oriented languages. For the purposes of this 

discussion it may be thought of as analogous to a function or sub-routine. 
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require alteration as the program develops. Additionally, this simplifies importing 

files for use with data analysis software. 

The Boundary Element Method program may be split into two primary compo-

nents. Firstly, the mesh input data; either input directly or obtained from a mesh 

generation routine. Secondly, the core simulation; boundary integration, applying 

boundary conditions and reordering the matrices, and solving to obtain unknown 

values. Internal points, if required, are also calculated during this stage. 

Mesh Generation The generation of specific boundary meshes, including bound-

ary conditions, is a broad and varied topic, and a current area of r e s e a r c h . T h e 

time taken to calculate mesh generation is negligible compared to the core simula-

tion, thus ease of use and Bexibility is of greater importance than performance. 

Core Simulation The most important consideration for the core simulation is 

optimal performance. Assuming a reasonably large number of boundary elements 

are simulated, the matrix solving routine is the slowest step. Several optimised 

routines are available in the literature. 

Due to the significant amount of effort involved in implementing a Boundary El-

ement Method program, it would be advantageous if the program were accessible 

to electrochemists without requiring detailed knowledge of implementation of the 

technique. This is possible, to some degree, through the use of a clearly documented 

data format which allows direct input of boundary data. However, as mentioned in 

the previous paragraph, mesh generation is often an involved task. Thus a simpli-

fied generation routine is desirable. For example, the user defines boundary sections 

and coordinates, such as the ends of an electrode, and the discretisation of individ-

ual elements is then automatic. This allows easier convergence testing of various 

parameters. 
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4.4 The Boundary Element Method 

in Electrochemistry 

The electrochemical technique simulated throughout this thesis was a diffusion con-

trolled potential step, for a single redox reaction. This is the most common model 

in electrochemical simulation when considering complex geometrical domains. The 

electrochemical mechanism and experimental technique are kept simple, in order 

to investigate the behaviour of a particular numerical method, when altering the 

geometric features. 

The behaviour of the Boundary Element Method for several different geometries 

was described in this and the preceding chapters. The method proved successful 

and Bexible for modelling a range of complex geometries. 

For a numerical method to be of relevance to a broad spectrum of the electro-

chemistry field, it must possess the ability to model a variety of electrochemical 

mechanisms and practical techniques. In the following sections the potential of the 

Boundary Element Method to model these considerations is addressed. 

4.4.1 Electrochemical Mechanisms 

A system involving several chemical species is described by a set of partial dif-

ferential equations consisting of one equation for each species. A description of 

types of governing partial differential equations, and the basic terminology used to 

describe electrochemical mechanisms was covered in section 1.2.4 on page 14. Mul-

tiple equations which are coupled may be incorporated in the BEM in two ways. 

Firstly, a sequential solution; an approximate value is initially substituted for the 

first equation unknown and each equation solved sequentially using the previous 

result. Iteration is performed until a preset tolerance achieved. Secondly, using 

a method known as the Matrix of Fundamental Solutions (MFS); a fundamental 

solution is derived for each equation, forming a fundamental solution matrix which 

couples the equations. This method is only applicable to linear e q u a t i o n s . T h e 

two types of reactions common in electrochemical systems are now discussed. 
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Homogeneous Reactions These lead to extra terms of the form -^kc{xi) in the 

governing equations. A fundamental solution may be derived which incorporates 

such a chemical term, however, the set of equations describing the system are usu-

ally coupled; to account for sets of coupled equations with BEM a method such as 

MFS must be used. Second-order reactions lead to non-linear partial differential 

equations. These may be modelled using quasi-linearisation or using a transforma-

tion and iterative solution. 

Heterogeneous Reactions Reactions on the surface of the electrode, for ex-

ample electron transfer, are described by suitable boundary conditions along the 

electrode. Dirichlet and Neumann conditions have been described in chapter 1, 

boundary conditions of a third kind involving a concentration and flux, known as 

a Robin boundary condition, are of the form = / (c) -I- A;. These may easily 

be incorporated in the BEM formulation in an analogous manner to the former two 

conditions. 

4.4.2 Electrochemical Techniques 

There are a wide variety of electrochemical techniques for which an analytical so-

lution does not exist, and a numerical solution is required. The application of the 

BEM to two common techniques is discussed below. Hydrodynamic systems were 

considered in chapter 3 on page 130. 

Potentiostatic Control Simulation of the diffusion limited chronoamperometric 

potential step has been described in detail; the Boundary Element Method has been 

applied to simulate the steady state attained, and additional alterations for the tran-

sient case outlined. To model techniques which utilise other potential waveforms, 

for example cyclic voltammetry (CV), the boundary condition at the electrode is 

calculated according to the speciGc system under consideration. For instance, a 

reversible CV may be modelled using the Nernst equation to relate the ratio of 

concentrations on electrode surface to the potential at a particular moment in time. 

Finite Difference Methods use a conservation of flux property to obtain the surface 
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concentration in terms of adjacent concentrations on the finite difference mesh.® 

Thus, this technique is not applicable to the BEM. 

Galvanostatic Control The current through an electrode is set, usually held 

constant, and the resulting potential observed. The flux at the electrode surface 

may be deduced from the current applied. For the BEM a Neumann boundary 

condition is thus prescribed along the electrode surface. 

4.4.3 Distinguishing Features of the Boundary Element 

Me thod 

In summary, electrochemical simulation techniques developed before the present pe-

riod of study, mostly based on finite difference, proved insufficient to model complex 

electrochemical domains. Thus alternative numerical methods developed in related 

fields were investigated. The Boundary Element Method was shown to be a viable 

alternative numerical method for specific electrochemical applications. A compari-

son of BEM and FEM with finite difference was presented in chapter 1 on page 7. 

The former two methods exhibited potential benefit for electrochemical simulations. 

B E M or FEM? The numerical method selected depends upon the particular 

electrochemical system under consideration. For three dimensional domains, and 

two dimensional systems with many boundary singularities, the BEM requires less 

complex meshing and offers possible performance advantages. However, incorpo-

ration of multiple species is currently a significant limitation; these aspects are 

discussed in detail below. For two dimensional domains FEM can model a variety 

of electrochemical mechanisms and practical techniques. Advanced automatic mesh 

generation allows optimisation for boundary singularities and complex shapes. 

The Boundary Element Method possesses several properties of interest to electro-

chemists. Three of these, of a particular importance for electrochemical simulation 

are discussed below. For each a description of the practical consequence of the 

property is given, followed by an explanation of the origin of the property. 
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Less Complex Meshing 

Only the domain boundary is described using a mesh of simple elements. No ele-

ments or points are required in the domain interior. 

The use of the inverse form and a suitable weighting function (the fundamental so-

lution) produces a formulation containing only boundary integrals. The formulation 

is exact in the domain interior. 

Accurate Simulation of Boundary Singularities 

Boundary singularities are often described accurately without mesh optimisation. 

When optimisation is required, the process is relatively easy due to less complex 

meshing, described above, and the fact that globally continuous mesh spacing is not 

required. 

The Laplacian operator is transferred to the weighting function, thus the depen-

dent variable (concentration) is not required to be continuous between elements. 

Boundary singularities are often discontinuities in the concentration gradient, and 

therefore may be accurately described. 

Infinite Domains and Multiple Regions 

An infinite domain may be described simply by discretising the boundary of the 

object in question; the domain is thus external to this boundary. The element 

outward normal must be defined in the correct direction. 

The infinite boundary is incorporated in the BEM formulation. By ensuring that 

certain regularity conditions^^ are fulfilled these extra terms cancel out. The bound-

ary conditions at infinity are usually c = 0 and q = 0, however, non-zero values may 

also be incorporated in the formulation.^^ 

In an infinite domain, multiple boundary regions may be modelled. For constant 

elements this is achieved simply by ensuring each region is closed when the mesh is 

defined. 
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Field variables may be discontinuous between constant elements, thus by deBning 

each end point of the element and ensuring the boundary is closed, data connecting 

elements is not required and multiple regions may be defined. 

Present Limitations 

The Boundary Element Method shows significant potential for application to elec-

trochemical simulation. However, the incorporation of multiple species, described 

in section 4.4.1, hag received limited attention within the engineering field.This 

is of particular importance for electrochemical simulation; the ability to model mul-

tiple species and various mechanisms are likely to be the most challenging future 

developments of the BEM in electrochemistry. 
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The Formulation of Weighted 

Residual Numerical Methods 

A.l Numerical Methods 

The majority of physical problems expressed as differential equations can only be 

solved in an approximate manner. The most widely known techniques are Finite Dif-

ference (FDM) and Finite Element Method (FEM). The Finite Difference technique 

de&nes a series of nodes at which the discrete version of the diSerential equation 

is satisfied. For the Finite Element Method the differential equation, or rather its 

inner product formulation, is satisfied in an average sense over an element. These 

two techniques discretise the interior domain in addition to the boundaries of the 

region under consideration. The third technique considered here, the Boundary El-

ement Method (BEM), satisGes the diEerential equation exactly over the interior 

domain, through use of the inverse form of the partial differential equation. Thus 

discretisation of the boundary only is required. 

The three techniques are closely related if one focuses on the approximation in-

volved. 

This appendix relates the formulation of each of the three approaches in detail 

through the Method of Weighted Residuals (MWR). The discussion is initiated by 

defining an approximate solution and the properties of these types of function. We 
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proceed by stating the Weighted Residual, a technique used to distribute the error 

arising from the use of an approximate solution. A particular type of MWR is 

the collocation method, which is utilised for all three methods considered here. A 

simple form of the FDM may be derived as a special type of collocation method, 

although it is more often derived directly. The FEM and BEM methods may be 

derived through either one or two integrations of the MWR equation respectively. 

The aim of this appendix is to emphasise the relation between the formulation of 

the three methods. Details of implementation are not considered. 

A.2 Notation 

To simpli^ the presentation of formulae the following notation is de6ned. 

The Laplacian operator, £ , 

ID £() = ^ (A.la) 

Einstein's summation of indices. The subscript, i, is the number of dimensions. 

d 

1 X — (A.2a) 
oa; 

2 X y ——h — (A.2b) 

^ ^ ^ /A n \ 

3 D = ^ + + ^ (A.1C) 
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A.3 Approximate Solutions 

The following set of equations are dedned 

/Z(co) = 0 on 0 (A.3) 

where C is the Laplacian operator, 0 is the domain under consideration, with bound-

ary conditions 

Dirichlet CQ = d on Fi (A.4) 

Neumann % = n on r2 (A.5) 

Co represents the exact solution of the problem which is usually impossible to find, 

g is a derivative of the dependent variable on the boundary; for instance, for one 

dimension g = (Z/cfz, for two dimensions g = where n is the outward normal 

to the boundary. 

The function Co can be approximated by a set of functions such that 

Co % c = ^ + a o (A.6) 
A;=l 

ak are undetermined parameters and are linearly independent functions taken 

from a complete sequence of functions (these terms are deSned in the next section) 

such as 

(A.7) 

Xi represents the spatial coordinates in the 0 domain. These functions are usually 

chosen to satisfy certain given conditions relating to the boundary conditions and 

the degree of continuity (see section A.4.3 on page 195). They are known as basis 

functions or shape functions. 
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A.3.1 Linear Independence and Completeness 

A sequence of functions such as the ones deGned in equation A.7 is said to be linearly 

independent if + 0!2<̂ 2 4 1- = 0 is true only when all are zero. 

A sequence of linearly independent functions is said to be complete if a number of 

terms, and a corresponding set of constants, a*, may be found for which the 

difference between an arbitrary function cq and its approximation can be made as 

small aa one requires. This may be expressed 

X 1/2 

(co — c)^ (fa; > < (A.8) 

where is a small positive quantity. 

A.4 Method of Weighted Residuals 

Substituting an approximating function for Co into equation A.3 gives a Residual or 

error function R such that 

R = /2(c) ^ 0 (A.9) 

If the function c does not satisfy all the boundary conditions one may de5ne two 

additional residual functions, one for each boundary type 

i?! = c — c 7̂  0 on Fi (A.10) 

R2 = q — q 0 on Fg (A.11) 

where Fi 4- Fg = F, c and q are known concentration and flux boundary values 

respectively. 

The aim is to make errors as small as possible over the domain and on the boundary. 

These errors will be forced to be zero in an average sense. To achieve this errors 

will be distributed; and the way in which this is done produces different types of 

approximate methods. 
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We now de6ne another set of linearly independent functions such as 

(A.12) 

One can now define a set of arbitrary coefficients which allow us to write the set 

1/;̂  in a compact form aa a function w; 

w = + A'^2 + AV's + ' ' ' (A. 13) 

Assuming for simplicity that c identically satisfies all the boundary conditions of 

the problem (i.e. i?i = i?2 = 0), one can distribute the error i? in by multiplying 

it by a weighting function w and integrating over the domain. 

7(wdn = 0 (A. 14) 
a 

This ensures the error R is distributed with the functions in w. This equation (an 

inner product) may be written in compact form as 

(7i!,w>= / AwdO (A.15) 

A.4.1 The Collocation Method 

Instead of satisfying the equations in an average form we try to satisfy them at a 

series of chosen points. 

Defining an approximating function 

(A. 16) 
&=1 

In principle the number of has to be the same as the number of collocation 

points chosen. We have a residual function, equation A.9, which must be satisfied 

at n points in the domain Q. One can express this condition in a weighted residual 

form by defining the functions as Dirac delta functions. The collocation method 
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at a series of points i can now be represented by equation A. 14 

jStw df] == 0 
Jn 

where the weighting function 

W = + /32(52 + + - - - + (^-17) 

Si represents the Dirac delta functions at the collocation points. 

Relation to the Finite Difference Method 

A special type of collocation method produces the finite difference method. Con-

sider a region around the node i under consideration. One can propose a local 

approximating function over each region as follows: 

C = Ck_l<7̂ 1+Ck̂ 2 + Ct+l(̂ 3 (A.18) 

Ck are the values of the function at the nodes of the finite difference grid. The 

functions (pk are quadratic functions, such that referring to the dimensionless system 

of coordinates T) one can write 

- 1) (A.19) 

^2 = (1 - ?7)(1 + ??) (A.20) 

= ^77(1 + (A.21) 

Differentiating equation A.18 twice for the one dimensional Laplace equation, taking 

into consideration the above shape functions, and collocating at k gives 

Rk = ~ 2cfe + Cfe+i) = 0 (A.22) 

known as the central finite difference expression. 
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A.4.2 Galerkin's Method 

Galerkin's Method is a particular weighted residual method for which the weighting 

functions belong to the same set as the approximating functions. 

As the same functions are used for c and w and the are arbitrary it is common 

to write the w function as a variation of c, i.e. 

w = & = + 6oi2<̂ 2 + (̂ 0:3̂ 3 + - - - (A.23) 

where s 

The property of having the same functions for the weighting and approximating 

functions is important in practice as it produces symmetrical coefficients in many 

caaes. Most Bnite element models Eire based on Galerkin type techniques. 

A.4.3 Proper t ies of Approximat ing Functions and Weighting 

Functions 

The approximating and weighting functions chosen must possess two properties: 

Firstly, as previously stated, they must be linearly independent from a complete 

set. Secondly, they must have a suScient order of continuity. 

Consider the 1-D Laplace equation, which is second order 

/1(c) = = 0 for 0 < a; < 1 (A.24) 

and its weighted residual statement 

da; = 0 (A.25) 
0 dx 

A different order of continuity is required for c than for w. To define these continuity 

requirements we need to introduce a classiGcation for the degree of continuity of a 

function. 
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Order of Continuity 

Assume a function / is discontinuous at discrete points but is finite throughout the 

region, its norm satis^ng the following condition 

< oo (A.26) 

The function / is then said to be square integrable. If we impose conditions on the 

Erst derivative, the function is said to be a aguore function 

and the following norm has to be bounded 

We can continue defining higher order continuity. For example, functions whose 

aecoMcf is have the following norm 

r2 , , W ' ' 

The above deGnitions can be extended to two and three dimensional problems by 

replacing the scalar products with vector products. 

Thus the approximating function c in equation A.25 needs to be second derivative 

square integrable while the weighting function w is required only to be square inte-

grable. In many cases it is preferable to reduce the order of continuity required for c 

and this can be done by integrating by parts. Consider equation A. 25 and integrate 

by parts 

I ^ cFc . o(c (fw 
, -wdx = — / ——— dx 

dx JQ dx clx 

(fc 
— w (A.29) 

This is the weak formulation. Now both functions c and w need to be continuous 

up to their first derivatives. Therefore we can take a set of first derivative square 
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integrable basis functions for c and dc/(fa; 

C = Ci<^i + C2(^2 -I (A.30) 

w = & = &i^i+6c2^2 4 (A.31) 

The weak formulation is the basis for the Finite Element Method. The generalized 

weak formulation, and additional concepts to obtain the FEM formulation are given 

in following section. 

A.5 The Weak Formulation 

The finite element method is based upon the weak formulation of the governing 

partial dlGerential equation. The weak formulation is obtained by integrating the 

original equation. If Dirichlet boundary conditions are given and the approximate 

functions satisfy them the functions w also identically satisfy these conditions. One 

must take into account the remaining two residual functions 

^ = /Z(c) in the domain (A 9) 

R2 — q — q on the r2 part of the boundary (A. 11) 

A general weighted residual for a Laplacian operator, for any number of dimensions, 

is 

f { C ( c ) ) w d Q = f {q — q)wdT (A.32) 

Integrating the operator ) gives 

/ / gwdr (A.33) 

where the operator of c and w is of a reduced order, g is a derivative of the dependent 

variable on the boundary, is the interior domain and F the boundary. are the 

Einstein summation indices defined in equations A.2 
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The right hand side of the equation is a boundary flux term. On the left hand 

side are interior domain terms, which are integrated through domain discretisation. 

Integration is performed over each individual element at collocation points. The 

values at overlapping nodes on adjacent elements are combined to assemble a global 

matrix. The matrix equation obtained may be solved using standard methods. 

Details of FEM implementation may be found in the text by Reddy.̂ ^ 

The method considered so far utilises an approximate function which satisfies the 

Dirichlet boundary conditions of the system and is approximate in the domain, 

not satisfying exactly the governing equations. The remaining Neumann boundary 

condition is also approximate. This is the most common method used in FEM, 

although it is alternatively possible to use a solution which satisfies the Neumann 

condition. 

In contrast, the Boundary Element Method is a formulation which is exact in the 

domain, using an approximate function for both boundary conditions. This is briefly 

outlined in the following section. 

A.6 The Inverse Formulation 

The Boundary Element Method is based upon the inverse formulation (also known 

as the strong formulation) of the governing partial diSerential equation; where the 

equation is integrated twice. This process has the effect of transferring the Laplacian 

operator from the problem variable (the concentration in electrochemistry problems) 

to the weighting function. Both boundary conditions are approximate and three 

residuals are considered 

R = r(c) in the domain fl (A.9) 

Ri = c — c on the Fi part of the boundary (A.IO) 

R2 on the Fg peirt of the boundary (A.l l ) 
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Taking a weighted residual approach for any dimension Laplace equation over an 

arbitrary domain gives 

f { C ( c ) ) w = f {q~q)wdT~ f (c — c ) ^ dP (A.34) 
in JT2 JTI c/M 

This generalised equation uses residual approximations for the domain, 0 , and both 

boundaries, Fi, r2. Integrating twice produces the inverse form 

[ £{w)cdQ = [ c ^ d r + f c ^ d F — [ qwdV— [ qwdT (A.35) 

The right-hand side terms may be combined to give 

y / :Hcd^2 = y c ^ d r - ^ gwdr (A.36) 

where it is implicitly assumed that c and g are substituted on their respective bound-

aries. 

This is the inverse form used in the BEM derivation in chapter 2. 

The resulting operator which acts on w (x) is called the adjoint operator, C*. In 

this case JC = C*, therefore C is self-adjoint or symmetric. 

It is common in BEM literature to see the inverse form written in a more concise 

manner using inner product notation. An inner product is defined as 

< a , 6 > = f abdO, (A.37) 
JQ 

where a and b arbitrary functions. 

We also define 

/ c ^ d r - / gwdr (A.38) 
Vr Vr 

which gives 

< M/ M , r c (z) > = B - K c (a;), r W (a;) > (A.39) 
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where B are the boundary integrals. 

This equation is the basis of the Boundary Element Method. To obtain the direct 

BEM formulation (also known as the singular BEM) the weighting function is chosen 

such that it satisfies the governing partial differential equation and the residual over 

the domain, R, is zero. Thus the formulation is exact over the domain. This type 

of weighting function is known as a fundamental solution. 

The implementation of the direct BEM is described in detail in chapter 2 on page 48. 

A.7 Classification of Approximate Methods 

The mathematical aspects of the formulation of three approximate methods hag 

been compared in this appendix. The fundamental difference between all these 

methods may be summarised based upon the initial treatment of the governing 

partial differential equation. 

Taking the Poisson equation as an exeimple 

/:(c) - 6 = 0 (A.40) 

the weighted residual statements can be classiGed as follows: 

i Weighted Residual Statement 

/" (V^c — 6)w dO = f {q — q)wdr— f (c — c) ̂  dP (A.41) 
Jn Jv2 JTI on 

ii Weak Formulation 

/ dO+ f bw dQ = [ qw dT + f qwdT+ f (c — c) — dF (A.42) 
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iii Inverse Statement 

f ( V ^ w ) c d O — f bwdQ = — f qwdT— f qw dr+ [ c^dr+ [ dT 
Vn Vn Vrg Vri Vrg Vr, 

(A.43) 

Another essential difference between techniques lies in the type of basis function 

used for the approximation c and for the weighting w. We can divide numerical 

methods according to those for which the same basis functions are used for c and w 

and those for which they are different. 

1. Finite Differences Normally one has different basis functions for c and w, the 

latter being taken in the form of Dirac delta functions. Most FDM schemes 

are based on statement (i). 

2. Finite Elements Usually the same basis functions for c and w are taken to 

obtain symmetric matrices. FEM schemes are based on weak formulations 

(ii). 

3. Bottn(for;/ EfemeMfg Boundary element schemes are based on inverse statement 

(iii). For weighting functions w they use a set of basis functions which enable 

elimination of the domain integrals and reduce the problem to a boundary 

only system. These functions (for the direct BEM technique) are known as 

fundamental solutions. 
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tor, 106 

collector-generator, 101 
infinite, 100 

multiple, 100 
novel configuration, 116, 118 
realistic geometry, 109 

microdisc, 3, 8, 122 
microelectrode, 8, 68, 101, 151, 169 
migration, 10-12 
mixed boundary condition, see bound-

ary condition, Robin 
model, 1 

electrochemical, see electrochemi-
cal, model 

Multi Grid Method, 30 
Multiquadric, 135 
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N 
natural convection, 11, 97, 98 
near-steady-state, 25 
Nernst, 184 
Nernst-Planck equation, 10, 12 
Neumann, see boundary condition, 

Neumann 
Newman, 155 
non-linear, 2, 116 
novel domain, 110 
numerical 

integration, 60-62, 112, 176 
method, 1, 2, 181 

computational aspects, 181 
method formulation, 42 

O 
object-oriented, 70, 181 
Orthogonal Collocation, 32 
oscillation, 157, 158, 160, see instabil-

ity 
outward normal, 56, 175, 178 

parabolic flow, 148, 150, 162, 165 
paradigm, 181 
paralld computing, 4 
partial diSerential equation, 14-17, 

133 
analytical solution, 19 
coupled, 2 
diffusion-convection, 148, 165 
domain integral term, 141 
DRM form, 133, 169 
homogeneous, 14 
hyperbolic, 46, 165 
inverse form, see inverse form 
linear, 14 
method formulation, 42 
non-linear, 17 
parabolic, 46, 165 
second order, 14 
solution, 17-18 
strong form, see inverse form 
three-dimensional, 14 
weak form, see weak form 

particular solution, 18, 134, 164, 165 
series of, 134 

Pascal's triangle, 135 
Peclet number, 148, 150 
planar diffusion, 14, 48, 177, 178 
point collocation, 22 
Poiseuille Sow, 148 
potential, 11 

gradient, 11 

step, 4, 7, 11, 48, 74, 97, 183 
sweep, 7, 48 
waveform, 184 

potentiostatic, 7, 100, 184 
Pre-conditioned Krylov Subspace, 31 
primitive, 173 

element, 32, 37 
shapes, 4 

probe, 120 

Q 
quadrature, 60-62, 176 
quasi-steady-state, 74, 76, 97 

R 
radial basis function, 135, 136, 164, 

165 
Random Walk, 31 
reaction 

heterogeneous reaction, gee hetero-
geneous 

homogeneous reaction, aee homo-
geneous 

layer, 4, 38 
second order, 16 

rectangular mesh, 39 
redox reaction, 4 
reduction in dimensionality, 5, 36 
regression testing, 181 
regularity conditions, 186 
Residual, 43 
Robin, 184 
rotating disc electrode, 8, 15, 147, 151 
roundoff, 98 

sandwich manufacture, see manufac-
ture, sandwich 

Scanning Electrochemical Microscope, 
3, 8, 76, 98, 120 

section element ratio, 82 
self-adjoint, 50 
semi-analytical solution, 2 
semi-implicit, 30 
semi-infinite boundary, 76, 78, 95, 156 
series of particular solutions, see par-

ticular solution, series of 
sifting property, 51, 52 
simulation, 22 

electrochemical, see electrochemi-
cal, simulation 

sine series, 135 
singular integration, 60, 62, 111, 176 
singularity, 60, see boundary singular-

ity 
sink, 78, 89 
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smooth, 56 
source, 78, 89 
source point, 52, 55, 58 
sparse matrix, 31, 34, 45 
spectrochemistry, 48 
stability, 25, aee instability 

coefficient, 25, 29, 30 
standard matrix solver, see linear al-

gebra solver 
steady state, 7, 8, 17, 25, 30, 48, 76, 

78, 97, 164 
diffusion-convection, 133 

stiffness matrix, 45 
Streamline-Diffusion Finite Element 

Method, 46 
Strongly Implicit Procedure, 30, 46 
substrate, 120, 121 
surface 

element, 36, 173 
primitive, 5 

symmetry, 3, 8, 107 
system, 1 

electrochemical, see electrochemi-
cal, system 

X 
XML, see extensible Markup 

Language 
xUnit, 181 

T 
Taylor approximation, 34, 44 
Telles transformation, 61 
testing framework, 181 
thermal gradient, 11 
Thin Layer Cell, 8, 48, 50, 54, 65, 75, 

92, 93 
discretisation, 58 
domain, 54 

Thin Plate Spline, 135 
time integration, 169 
timescale, 11 
timestep, 24 
transient, 7, 12, 17, 24, 133, 169, 172 
triple microband, 106, 107 
true steady state, 74 

U 
unit test, 181 

V 
velocity coefficient, 148, 151 
Von Neumann analysis, 26 

W 
weak form, 45 
weighted residual, 32, 42, 44, 50, 55, 

see Method of Weighted Resid-
uals 

Weighted Residual Method, 32, aee 
Method of Weighted Residuals 
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