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The Boundary Element Method (BEM), a numerical method developed in engineer-
ing fields, is capable of modelling complex geometrical domains. In this thesis, the
BEM is described from an electrochemical perspective and applied to simulation of
electrochemical systems.

The properties of the BEM for electrochemical simulation are compared to the
most common numerical methods used in electrochemistry and engineering fields;
the Finite Difference Method, and the Finite Element Method respectively. The
mathematical relation of these three methods is highlighted through a Weighted
Residual formulation.

Steady state diffusion at a generator-collector double microband for a diffusion
limited reaction is used to validate a two-dimensional BEM model, and investigate
mesh discretisation effects. Optimisation of the mesh and implementation of higher
order boundary elements are reported.

The two-dimensional steady state model is applied to simulate a variety of
microband systems, including Inter-Digitated Arrays, realistic (imperfect) electrode
geometries and a novel generator-collector microband array.

An advanced variation of the BEM, the Dual Reciprocity Method (DRM), is
described and applied to model a channel fiow cell. Due to instability, the method is
found inadequate to simulate this system. The details required to extend the DRM
for transient systems are also described.

The three-dimensional BEM is implemented and validated. The ability to
model any three-dimensional domain has significant potential for simulation of com-
plex geometrical systems in electrochemistry. The extension of the BEM to model
multiple species and electrochemical mechanisms, and the future direction and rel-
evance of the BEM as an electrochemical simulation method are discussed.
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Introduction

The aim of the work presented in this thesis was to investigate the applicability

and possible benefits of the Boundary Element Method to simulate electrochemical

systems.

This technique has primarily been developed through engineering research; the pre-
sentation contained herein is intended to explain the theory and implementation of
the Boundary Element Method in terms that are familiar to an audience with an

electrochemistry background.

To facilitate understanding the significance of the Boundary Element Method for
electrochemistry the technique is placed within the context of alternative simulation
methods. Further, conclusions are drawn on which simulation techniques will be

most useful for future electrochemical simulation development.

Theoretical Electrochemistry

An electrochemical experiment is described by an experimental technique and a
theoretical model. A description of experimental techniques is beyond the scope
of this thesis; details may be found in various standard texts.’? The model usu-
ally consists of an equation or set of equations which describe the system. Solving
these equations provides a comprehensive theoretical description. A solution may
be obtained either analytically, by derivation, or approximately by use of an ana-
lytical approximation or numerical method. It is only possible to derive analytical
solutions for relatively simple systems, thus approximations are required for many

electrochemical models.



Introduction Theoretical Electrochemistry

An approximate analytical solution involves derivation of a semi-analytical solu-
tion through the use of defined approximations. It is important to distinguish the
definition of this term from that of an analytical solution. An analytical solution
may be derived from a simplified set of equations, which have been obtained using
an approximation of the original equations which describe the model. This solu-
tion is exact for the simplified equations. An approximate analytical solution uses

approximations as part of the derivation, and is not exact.

Approximate numerical methods reduce the degrees of freedom of the concentration
field (and any other fields) described by the original equations to a finite number; the
manner in which this is achieved depends on the particular method. This concept is
explained in detail in section 1.4 on page 34. The application of a numerical method

is referred to as a simulation.

Numerical Methods

Electrochemical simulation is an important tool for modelling electrochemical sys-
tems, enabling a solution to theoretical models that are analytically intractable.
There are a wide variety of numerical methods, ranging from simple direct approx-
imation of the original equations' to complex integral equation techniques® and
statistical methods.* Simple numerical methods were applied to electrochemistry®
as far back as the 1960’s, significant breadth of application and more advanced tech-
niques® occurred during the 1980s, with the advent of inexpensive computers. There
has been continued development of electrochemical simulation techniques’ through-

out the 1990s. A variety of free”® and commercial® software is now available.

The equations used to describe an electrochemical system are often related to equa-
tions in models used in physical science and engineering disciplines. Frequently,
developments in approximate numerical methods in related fields may be applied
to electrochemistry. However, transferring application of numerical methods is of-
ten complex, due to the unique nature of electrochemical problems. The equations
describing an electrochemical system often include mixed boundary conditions and
boundary singularities, chemical reaction terms, possibly leading to non-linear equa-
tions, and multiple coupled partial differential equations. Thus electrochemical sim-

ulations represent a challenging class of models for application of numerical methods.
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The following section describes the reasons why the BEM was chosen for this work.
A detailed explanation of fundamental concepts and relevant terms of numerical
methods applied to electrochemistry, some of which are mentioned in the following

section, is given in section 1.2 on page 10.

Why use the Boundary Element Method?

Initial work completed at the beginning of the period of study involved develop-
ment of three-dimensional Finite Difference Methods'?. Investigations into suitable

algorithms and mesh optimisations were undertaken.

The Finite Difference Method is well understood within the electrochemistry
field.%%7 It approximates an electrochemical domain at a series of points, known
as a mesh*. Recent research has developed two-dimensional simulations for a vari-
ety of mechanisms and different electrochemical techniques. Optimised conformal
mappings, which alter the distribution of mesh points, are available for common
electrode geometries. Three dimensional Finite Difference was a natural progres-

sion considering this wealth of accessible literature.

The necessity for a three dimensional simulation is caused by a lack of symmetry in
the domain which prevents description by lower dimensional models. For example,
specific electrode shapes or orientations, such as two microbands on opposite sides
of a thin channel or domains incorporating extra features in addition to a basic

electrode geometry; for instance, a Scanning Electrochemical Microscope!! imaging

a substrate.

The transition from two to three dimensions dramatically increases the number of
points required to discretise a domain. The maximum number that may be sim-
ulated is limited, in practice, by the speed of computation. Assuming the code
written is efficient this is dependent upon the computer hardware available. To
obtain accurate results there must be a sufficient density of points near boundary
singularities.'? These occur where there is an abrupt change in boundary conditions,
such as the edge of a microdisc, and the value of concentration flux approaches in-

finity. The problem of the large number of points required to describe a domain

* Mesh is a general term for how a domain is approximated by a numerical method.
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was addressed in two ways: Firstly, the maximum number of points that may be
simulated in reasonable time was increased by the use of parallel computing.!3-1
Secondly, exponential spacing'® and conformal mappings!” were investigated to de-

termine optimal positioning of mesh points.

A successful transient three dimensional simulation of a simple redox reaction af-
ter a potential step at a microdisc was completed.'® This was validated with a
two dimensional version. Further investigations were made to extend the work to
more complex domains, however it was found that the implementation of conformal
maps for domains which contained several areas requiring high mesh densities’ was

problematic.

The most significant limitation of the Finite Difference Method is the inherent in-
flexibility of mesh optimisations; they are specific to a particular domain and often
cannot be adapted. A new optimisation is usually time-consuming to implement and
is always required to obtain accurate results for complex electrochemical geometries.
Additionally, their implementation requires significant simulation and programming
knowledge, limiting the usefulness of a completed simulation to electrochemists who

do not have experience in this particular field.

For these reasons, the conclusion was reached that Finite Difference Methods are
unsuited to some two dimensional and all three dimensional electrochemical simula-
tions. An alternative numerical method was thus required, and a range of techniques
which had been applied in electrochemistry as well as related scientific and engineer-

ing fields were assessed. Two methods were of note for two different reasons.

Firstly, the Finite Element Method!® (FEM); this had previously been applied in
electrochemistry,?®?! but had not become as popular as Finite Difference, due to
a more advanced formulation. However, it was the most popular approximate nu-
merical method in engineering, where it originated, with a wide range of literature
and introductory texts. FEM approximates the domain with a series of primitive
shapes?, for example triangles. Optimisation of the mesh is required for boundary

singularities, however, due to the FEM formulation (see below) optimisation is far

tFor some electrochemical models other features in addition to boundary singularities must also

be considered during mesh optimisation, for example reaction layers.
#The most common shapes used for FEM are triangles or quadrilaterals in two dimensions and

tetrahedrons in three dimensions.
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more flexible than FDM.

Secondly, the Boundary Element Method?? (BEM); also developed in engineering,
this method offered particular advantages for simulation of complex geometries due
to its inherent reduction in dimensionality of the domain mesh. Thus a three dimen-
sional domain is described by a mesh of surface primitives®. This also may require
optimisation for boundary singularities, however, as for FEM, due to its formulation

this optimisation is extremely flexible.

Details on both the FEM and BEM formulations are given in section 1.4.4 on

page 42, a comparison of optimisations is given in section 1.4.3 on page 38.

The Boundary Element Method was chosen as it appeared the most elegant solution
to simulating complex systems. Additionally, it was relatively unknown within the
electrochemistry field, and exhibited the potential to model electrochemical systems

that had proved intractable using established methods.

The terms complex system or complex geometry are used throughout this thesis in
the context of electrochemical systems or electrode geometries that are difficult to

simulate using numerical methods. This is not intended to reflect the complexity of

other considerations.

Background of the Boundary Element Method

The basic principles of numerical methods date back to the pre-computer era. Finite
Difference Methods in particular may be traced to the early part of the twentieth
century. With the development of computer technology in the 1950’s and 1960’s
there was a significant growth in research of numerical methods. Integral equation
techniques, which led to the Finite Element Method and later Boundary Element
Method, originated at this time.3 Boundary Element Methods were developed in
the 1970’s and 1980’s in mechanical engineering.?> The amount of research was
significantly smaller than in Finite Element, which by this time had become the

most popular numerical method in engineering. A significant growth in research of

$For BEM the most common primitives are line segments in two dimensions and triangles and

quadrilaterals in three dimensions.
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Boundary Element Methods occurred in the 1990°s. Towards the end of the decade
some of the advanced formulations of FEM, such as adaptive meshing,?* were incor-
porated into BEM.?® There is a perception within engineering fields that Boundary
Element Methods are more complex than equivalent Finite Element Methods.326
The paucity of accessible introductory and advanced texts is a hindrance to the
uptake of the BEM, although this is improving as the method becomes more main-

stream.2”29

At the time of writing Boundary Element research continues to be a dynamic and

stimulating field, with a wide range of useful application.



Chapter 1

Numerical Simulation of

Electrochemical Processes

1.1 Characteristics of Electrochemical Systems

The behaviour of an electrochemical system is defined by the electrochemical tech-
nique used, its mass transport regime and the mechanism of reactions occurring.
In this introductory section basic electrochemistry concepts are defined to place the

numerical modelling which forms the basis of this work in context.

1.1.1 Electrochemical Techniques

Electrochemical experiments may be divided into those which are potentiostatic
(controlled potential) and galvanostatic (controlled current). For potentiostatic
techniques the waveform applied will typically be either a potential step or a po-
tential sweep. More complicated waveforms are used; for example, a square wave

or staircase shape, however only the potential step waveform is considered in this

work.

A transient state exists while the behaviour of the system is dependent upon time. A

steady state is reached when no changes occur to the flux of a species at the electrode
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surface. The mathematical basis for these states is described in section 1.2.4 on

page 17.

The Boundary Element Method simulations in this work were of a steady state
potential step experiment. In practice this is obtained at long times after a step in
the potential from a value where no reaction occurs to a value which is sufficient
that the reaction is diffusion controlled. For example, for a 1 pm radius microdisc,
the current typically reaches 110% of its steady state limiting value at times greater

than approximately 0.1s. Transient Boundary Element Method simulations are also

possible.??

1.1.2 Electrode Geometry

Many electrode geometries are used within the electrochemistry field.'2 Which
geometry is chosen depends upon the application; for instance, microelectrodes used

in the laboratory for kinetic analysis, or Thin Layer Cells used in industry for bulk

electrolysis.

Analytical theories have been developed for geometries which are relatively simple
to model, such as the Thin Layer Cell and Rotating Disc Electrode.! However, more
complex geometries are usually intractable. Numerical approximation methods are
a useful alternative to solve these problems. The complexity often arises due to a
lack of symmetry of the system. This may be inherent to the system, for example a
Scanning Electrochemical Microscope,!! or due to manufacturing techniques causing

variations from the expected geometry.

A class of electrodes which are of particular interest for electroanalytical research
are microelectrodes.?>:3! These are generally defined as electrodes with a dimension
smaller than the diffusion length of converted species. Typically this is less than
30 pwm. This small size, known as a characteristic length, leads to useful properties

such as high rates of steady state diffusion, decreased distortion from iR drop and

lower charging currents.

This study is concerned with the simulation of complex microelectrode geometries.
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1.1.3 Mechanism

In addition to the electrochemical reactions taking place at the electrode, chemi-
cal processes are often of central importance when considering an electrochemical
system. Reactions occurring in solution are called homogeneous; for example, the
decay of an unstable species, or reaction of the product with another species. Those

reactions occurring on the surface of the electrode (including electron transfer and

ion transfer) are heterogeneous.
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1.2 Mathematical Modelling of the Electrochemical
System

Typically in electrochemistry mathematical models describe the concentration dis-
tribution of species in an electrochemical system, from which the current may be
obtained. The distribution is affected by a number of processes, including mass
transport, homogeneous and heterogeneous reactions. A mathematical description

of all processes present is necessary to understand the cases simulated in this study.

1.2.1 Mass Transport

Mass transport is a fundamental part of all electrochemical systems. It consists
of three components: diffusion, migration and convection. Mathematically, it is
described by the Nernst-Planck equation,’ which in one dimension is

0C(z,t)  zF 0¥(z,1)

F(z,t) = -D———+~

oe BT or T C@N@Y) (1.1)

where  F(x,t) mol cm™% s7! flux of species at distance z from the
electrode at time ¢

D em? 571 the diffusion coefficient of species

C(z,t) mol cm™? concentration of species at time ¢ and
position z

z no units the charge on species

F Cmol™? the faraday constant

R Jmol ' K~'  the gas constant

T K temperature

O(z,t) V potential at a distance x from the
electrode at time ¢

v(z,t) cms! velocity of a volume element at a distance

z from the electrode at a time ¢
The negative signs in the Nernst-Planck equation are due to the direction of flux

opposing the direction of increasing potential and of increasing concentration.

Diffusion of a species is driven by differences in chemical potential. If a concentra-
tion gradient is present species will, on average, move to areas of lower concentration.

Note that molecules continue moving randomly at all times, including once equi-

10
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librium is reached. A simple example is the classic bromine experiment3? where a
gas jar of brown bromine species may clearly be distinguished diffusing through an

adjoining jar until, after a short time, equal concentration is achieved throughout.

Migration is the movement of charged species due to an external electric field, in the
presence of a potential gradient. The presence of the field is caused by the drop in
potential between electrodes in a cell. Experimentally the effect of migration may be
rendered negligible by addition of excess supporting electrolyte. If the concentration
of species under investigation is at least two orders of magnitude lower than that of
the electrolyte then the majority of movement of ions due to migration, and thus

current transfer, may be attributed to the supporting electrolyte species.

Convection consists of two components. Forced convection is created by an ex-
ternal mechanical force, for example stirring, pumping or gas bubbles. Natural
convection is due to thermal gradients or density differences. It is an undesirable
feature of an electrochemical system as it is difficult to predict. This effect becomes
significant after approximately 30 seconds, which means most electrochemical exper-
iments, having shorter timescales, are not affected. Convection may be eliminated
by careful experimental design, however a class of electroanalytical systems, known

as hydrodynamic methods, use forced convection as a significant component of mass

transport.

The example system used in subsequent sections is a potential step experiment which
drives the oxidation of a redox species R, in the presence of an excess electrolyte
solution. Electron transfer is assumed to be fast, so the system is mass transport
controlled. Homogeneous reactions are ignored and convection is assumed to be
negligible. The potential is initially set so that no reaction occurs. It is then
stepped to a positive value, such that all species R on the surface of the electrode
immediately reacts. The concentration of the oxidised form is irrelevant to the

current measured, thus only R is modelled.

1.2.2 Domains

A domain is the physical description of the geometry of the electrochemical system.

It consists of boundary and interior areas. Boundary Conditions are prescribed

11



Chapter 1 1.2 Mathematical Modelling of the Electrochemical System

values of concentration and flux at the boundary. A boundary condition of fixed
concentration is also known as a Dirichlet condition, of fixed flux a Neumann condi-
tion. Mixed boundaries where both concentration and flux are prescribed are known
as Robin conditions. Initial Conditions describe concentration and flux values over

the whole domain, for a time dependent system, at time ¢ = 0.

1.2.3 Fick’s Second Law

When convection and migration are neglected equation 1.1, the Nernst-Planck equa-

tion, applied to species R simplifies to

DRM (1.2)

FR(xat):_‘ or

where Fp is the flux of species R, Dg is the diffusion coefficient, Cr is concentration

of species R, x is distance and ¢ is time.

This is Fick’s first law of diffusion which states that the rate of diffusion at a given

point is proportional to the concentration gradient at that point.

Consider the variation of concentration in the region x to x+ dz, shown in figure 1.1

on the next page. If the number of moles entering the region of cross sectional area

A, per unit time, is

Nin = Fg(z,t)A (1.3)
and an analogous equation, /V,,;, is used for the number of moles leaving the region,

the net change is

OCg(z,t) _ N; _ Now Fr(z,t) — Fp(z+dz,t) (1.4)
ot - Adz  Adz dz ’

where Cp  is concentration of species R
N; is flux in
Nowt is flux out
A is area
Fr  is flux of species R

12
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Flux In Flux Out
Area
F(x,t) A F(x+dx,t)
X x+dx

Figure 1.1: The flux of species R through a volume of area A and
width dz. The total flux through this volume, assuming one di-
mensional diffusion in the z direction, is F(z,t) — F(z+dz,1t).

Substituting equation 1.2 for x and z + dz

BC'Ra—(tx,t) _ _5; {_DRacé(\z,t) ~ (_DRacR(a;dx,t))] w5)

An expression for the flux at z+ dz may be found using the approximation theorem??

M — 2 [OR(IE) +

or oz

(‘3C'R(x)
nt)] o

substituting equation 1.6 into equation 1.5 gives

OCn(a,t) _ 1 [ ) OCalat) , | 8 (CR(x,tHQQ_@M)] (1.7)

ot dz ox Rox oz

rearranging gives

0Cr(z,1t) 0*Cr(z, t)
RN T Z ram 1.8
ot Dr—5.2 (1-8)

13
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where C'g is concentration of species R, Dpg is the diffusion coefficient, z is distance

and t is time. This equation is known as Fick’s Second Law.

This describes the planar diffusion of species R in one dimension. Analogous ex-
pressions for diffusion in two or three dimensions or using alternative coordinate

systems, such as radial or spherical, may also be derived.3

1.2.4 Governing Partial Differential Equation

Fick’s Second Law is a type of partial differential equation. The three dimensional

version of equation 1.8 is

OCr(z,y,2,t) - O*Cr(z,y, 2, ) +DR626‘R(:13, Y, 2, 1) +DR5‘2CR(x, Y, 2, 1)

ot B o2 oy? 022 (1.9

where Dp, is the diffusion coefficient of species R and is assumed to be in an isotropic
medium. This type of equation is the fundamental starting point for mathematical
models of many electrochemical systems. By solving, or approximately solving this

equation the electrochemical terms of interest, concentration and flux, may be found.

Some properties of equation 1.9 are now defined, as understanding of terms relating
to differential equations is required for later explanations. This equation is second
order because the highest derivative is two. It is also linear as the Cg terms are
all to the first power and no products, such as COC/0z occur. If each term of the
partial differential equation contains the dependent variable (in this case Cg) or one
of its derivatives, the equation is said to be homogeneous.®®> Note this concept is

separate and unrelated to homogeneous reactions.

Multiple Species

Each species in an electrochemical mechanism has a governing partial differential

equation. For example, a redox couple, shown here as a reduction

O+e =R (1.10)

14
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where O, R are different chemical species and e~ is an electron.

This reaction, which is used throughout this thesis, is described by two governing

partial differential equations. For a one dimensional, diffusion only, system these

would be
8C’R(:v,t) . 82CR(I,t)
800(:1', t) B 8200(£C,t)
o = Do——7 = (1.12)

where Cg is concentration of species R, Dpg is the diffusion coefficient of species R,

z is distance and ¢ is time.

Hydrodynamics

Convection terms describe the rate of flow of a volume element of solution. They are
significant in hydrodynamic experiments such as rotating disc electrodes and channel
flow systems. For example, a three dimensional diffusion model with convective flow

in the x direction only may be cast as follows

(‘3CR($,y,z, t) _ ach($7 y,Z,t) 82CR($7ya 2, t) ach(.’L‘,y,Z,t)
e v L  E
_vzaCR(a77y7z7t) (113)
ox

where C, is concentration of species R, Dg, is the diffusion coefficient, v, is a velocity
coefficient, x,y, z are cartesian coordinates and ¢ is time. The fourth term on the

right hand side describes convection.

Homogeneous Reactions

Chemical reactions in the mechanism lead to extra terms in the partial differential
equations to account for the production or loss of species. This often gives a set

of coupled equations which are linked through homogeneous reaction terms. For

15
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example, an E,C; reaction

A+e =B (1.14)

B—=C (1.15)

where A, B, C are different chemical species, e™ is an electron and k£ a chemical rate
constant. E signifies an electron transfer reaction, C a chemical reaction, of which

r is reversible and i irreversible.

The partial differential equation of species A will be unchanged, however the equa-
tion for species B includes the homogeneous term; there is also a corresponding

equation for species C

80,4(:12,75) . (’)ZCA(x, t)
o DA o (1.16)
aCB(fL’, If) . BZCB(SU,t)
BC’C(x,t) o 82CC($,t)
o = Dom—p = 4 kCa(x, 1) (1.18)

where Cy4, Cp, Cc are concentrations of species A, B and C respectively and k the

chemical rate constant.

The inclusion of homogeneous reaction terms may change the type of the partial

differential equation, for example, for a second order E,.Cy; reaction

A+e =B (1.19)

2B 5 C (1.20)
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the governing equations are

OCy(z,t) - 0?Cu(z,1)

5 =Da—p; (1.21)
(‘BCB(x,t) o 62CB($,t) 9

o = Ds—— 7 = 2%Ch(x,1) (1.22)
80(;(95,75) o 8200(117,t) 2

The partial differential equations of species B and C are now non-linear. This will

lead to additional problems when attempting to solve this set of equations.

Transient and Steady State

A partial differential equation which contains a time derivative, such as Fick’s second
law, is called a transient equation. For a system at a steady state the concentration
profile does not change with time. Thus the time derivative term of the differential
equation is equal to zero. If only diffusion is considered this gives the steady state

diffusion equation, known as the Laplace equation, which for one dimension is

d2CR(5E) —

=0 (1.24)

1.2.5 Solution of Partial Differential Equations

A solution to a partial differential equation is any function that satisfies the equation
in question for a specified integral. The integral limits are defined by the domain.
For a one dimensional diffusion equation this would be the z coordinates of two end
points. Often this requires the function to be continuous on the boundary of the

region and to have derivatives in the interior of the region.

A partial differential equation will have many solutions as integration introduces an

arbitrary constant. A function involving this arbitrary constant is called a general

17
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solution. A solution where a specific value of the constant is used is known as a

particular solution.

The unique solution of a partial differential equation is obtained by considering addi-
tional conditions that are specific to the problem. In the case of an electrochemistry
domain, some boundary conditions are known in advance, and if the problem is
time dependent, initial conditions when ¢t = 0 will also be known. These types of

partial differential equation problems are known as boundary value and initial value

problems respectively.

This was a brief definition of some important terms found in partial differential equa-
tions related to electrochemistry problems. The reader is directed to mathematical

texts®>3¢ for rigorous definitions.

1.2.6 Current

The current at an electrode may be obtained from the flux (the concentration gra-

dient) at the electrode surface.!

i(t) = nFAD, 2R&:Y (1.25)
oz 0
where ¢ A current

n  n/a number of electrons

F  Cmol™! faraday constant

A em? area

Dr mol cm? s=!  the diffusion coefficient of species R

Cr mol cm™? concentration of species R

x m distance

t s time

Using the analytical solution to the diffusion equation in one dimension (derived in

the next section) and substituting its derivative into equation 1.25 gives the Cottrell

equation

_ nFDRACR (1.26)

1.1
Tat2

i(t)
where C}, is the bulk solution concentration of species 2 and other parameters are
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defined in the previous equation.

1.2.7 Analytical Solution of the Diffusion Equation in One

Dimension

For a limited number of electrochemical systems a solution to the partial differential
equation and boundary conditions that describe the model may be derived. This
is called an analytical solution. For the one dimensional diffusion equation, equa-
tion 1.8, an analytical solution may be derived.3%37 This gives the concentration of
species Cg at any time, anywhere in the domain. Various methods of solving partial

differential equations are available,?®38 a common method found in electrochemistry

is the Laplace Transform.?®

The Laplace Transform technique consists of three steps
1. Perform a Laplace Transform on the original partial differential equation tak-
ing into account initial conditions.

2. Solve the resulting ordinary differential equation in Laplace space considering

the boundary conditions.

3. Convert back to real space using the inverse transform, which may be found

in tables or using a numerical approximation.

A Laplace Transform converts a function, f, to an ordinary differential equation

with the Laplace space variable, s

£(f)(s) = / oy (1.27)

=0

where £(f)(s) is the Laplace Transform of f(x).

Applying this to equation 1.8, the diffusion equation, gives

< 0Cg(x,1) 0*Cr(z, s)
st ) — -~ 7 1.28
/t:O € ot dt DR 8.7,'2 ( )
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where the bar indicates a Laplace transform. Integration by parts gives

o 2
s / e *Cr(z,t) dt + [e *'Cr(z,1)], = DR%%Q (1.29)
t=0
therefore
_ o*C
sCr(z,s) — Cgr(z,0) = DR——&(&Q (1.30)
Ox?
Using the initial conditions
C‘f C* _ D azéR($5 8) 1
sCgr(z, s) — Ch(z, s) = R g (1.31)
rearranging gives
O?Cr(z, s - .
DR—(;-Z—C(—z——-—2 — sCg(z,s) = —C5 (1.32)

where C% is constant. The solution of the above equation may be found in tables?

OR(LL', 8) =

St 1 A(s)exp {_ (DiR)x +B(S)exp{(§;>%4 (1.33)

The coefficients A and B may be found by applying boundary conditions. At large
distances from the electrode (z = oo) then Cg(o0,t) = C}, where Cj, is the bulk
solution value. In Laplace space

_Ck

L(Ck) (1.34)

equation 1.33 becomes

Cr _Ck

%+ B(s) exp [— (DiR)éxJ (1.35)
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therefore at = oo, B(s) must equal zero, which gives

Crlz, ) = (’} + A(s) exp {_ (Fi;) : x} (1.36)

The boundary conditions at the electrode allow evaluation of A. At z = 0 then

C(0,t) = 0 so in Laplace space

L£(0)=0 (1.37)
thus
A(s) = — iR (1.38)
so the solution in Laplace space is
CYR(LC,S) = iR — CS’R exp [-— (i) IJ (1.39)

Using tabulated results!! the inverse transform gives

(1.40)

T
Crlx,t) = Cherf | —*
1, ) = Cer [Q(DRt)J

The function may be verified by substituting known boundary conditions. At z =

00, erf(co) =150 Cp = C5. At z =0, erf(0) =0so Cr = 0.

This gives a solution which is a function of space and time. The values of concen-

tration may be directly found at any given point in space and time.

1.2.8 Simple Simulation of the Diffusion Equation in One

Dimension

For any systems other than the most basic models an analytical solution is often

impractical. An alternative is to find an approximate solution by utilising a numer-
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ical simulation. The simplest possible simulation, Explicit Finite Difference (EFD)

is outlined here, for the one dimensional diffusion equation.

Finite Difference

The concept of a domain has been introduced in section 1.2.2 on page 11, and a
simulation domain for a one dimensional system is shown in figure 1.2. This example
uses the point collocation method, readers are referred to the text by Britz® for
alternative views of the EFD technique. Concentration values are calculated at a
series of discrete points; figure 1.2. This illustrates the concept of discretisation,

where a domain is divided into separate points or sections.

Ax

—

Figure 1.2: Discretisation of a one dimensional domain into equally
spaced collocation points.

The differentials present in equation 1.8 may be approximated, giving a value for
concentration at each point, figure 1.3 on the next page. The points are separated
by equal size intervals, AX, so the X coordinate is given by X = iAX, where i
is an integer, starting at zero. Unequal size intervals may also be used allowing
efficiency savings, see section 1.4.3 on page 38. Time may also be discretised in the

same manner giving ¢t = jAL.

The rate of change of concentration with respect to distance, that is the concen-
tration gradient, may be represented using a two point approximation.® There are

three possible equations:
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Colivt) Crp(i+1,1)
Cr(i-1,1)
C
(i-1) 1 (i+1) X
L AX  AX

Figure 1.3: The concentration profile at time ¢ may be discretised
into distinct points. Variation of concentration between points is
assumed to be linear. Thus problems may be caused if the flux
(rate of change of concentration) relative to AX is too large.

backward difference

oz AX ’
forward difference
Oz AX .
or a central difference
oz 2AX )

where C, is concentration of species R, AX is the distance increment, ¢ is the spatial

integer counter, j is the temporal integer counter and X is distance.
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Recalling a second order derivative may also be written

ax?  0X X

&*Crinj) _ (3CR(i»j)) (1.44)

then combining equations 1.42 and 1.41 and differentiating gives

0°Cr(i,4) _ Cr(i+1,j) — 2Ck(i,5) + Cr(i~1,) (1.45)
0z? AX? )

where C is concentration of species R, AX is the distance increment, ¢ is the spatial

integer counter, j is the temporal integer counter and X is distance.

This gives an approximation for Cy at each timestep. To link timesteps the same
approximating functions may be used to discretise the temporal term. If a forward
or backward difference approximation is used for the timestep, the method is known
as explicit as it uses the previous timesteps result. If we use a central difference the

method is known as implicit, as we are using the values of C' at a current, unknown,

timestep.

The simplest method, which may be directly extended to two and three dimensions,
is explicit finite difference. Substituting a backward difference approximation, equa-
tion 1.41, for the temporal derivative and equation 1.45 for the spatial term into the

diffusion equation, equation 1.8, gives the explicit finite difference approximation in

one dimension

Cr(i,j+1) — Cr(i,7) _ Cr(i+1,J) — 2Cr(i, 5) + Cr(i=1,7)
- = Dy = (1.46)

where Cp is concentration of species R, AX is the distance increment, At is the

time increment, ¢ is the spatial integer counter and j is the time integer counter.

This equation may be used to simulate concentration at discrete points in space and
time. Any point may be calculated either by ensuring it coincides with a simulated

point or interpolating between points.

Transient and Steady State Simulations The Explicit Finite Difference meth-

od applied to the diffusion equation is a transient simulation. At long times the con-
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centration will approach a near-steady-state equal to the true steady state value.

There are also alternative simulation methods which calculate the steady state di-

rectly, see section 1.3 on page 29.

Stability

The Explicit Finite Difference equation may be written in terms of a stability coef-
ficient, A, which is defined as

 DpAt

NG (1.47)

A
where At is the time increment and AX is the distance increment. Equation 1.46

becomes
Crli, j+1) = ACk(i+1,7) + (1 — 2\)Cr(z, 5) + ACrli~1,4) (1.48)

where Cp, is concentration of species R, A is the stability coeflicient, 7 is the spatial

integer counter and j is the time integer counter.

The stability coefficient relates space and time increments, and effectively puts a
limit on the maximum timestep interval that is permissible while maintaining sta-

bility. If this limit is exceeded the simulation starts to oscillate, giving incorrect

results.

For one dimensional EFD® then A < 0.5. It is possible, from this simple example, to
directly comprehend the effect of the stability coefficient. Substituting the maximum

A value into equation 1.48 one may see that the second term on the right hand side,

Cr(i,7), is equal to zero, giving

Cr(i+1,j) — Cr(i—1,5) (1.49)
2

CR(l7.7+1) =

Thus the new concentration value, Cg(4, j+1), cannot exceed the average of the old

concentrations on either side.

An analytical theory predicting the theoretical stability of different finite difference
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schemes, known as Von Neumann analysis, has been published for a variety of

schemes.*?

The stability limitation means that large numbers of timesteps are required to reach
near steady state times. This is often prohibitive due to the computing resources
available. Thus more efficient finite difference models are required. Finite difference
approximations which are theoretically stable for all values of A are reviewed in
section 1.3.1 on page 29. Although they may be theoretically stable many of these

approximations still exhibit some instability, often due to additional factors such as

large kinetic parameters.

Stability is a problem for most numerical simulation techniques, not just finite dif-
ference. However as the simulation formulation becomes more complex, so does the
theoretical treatment required to prove stability. Often analytical stability theory
is unavailable, requiring numerical validation of the model to achieve a degree of

confidence of the accuracy of the model under certain conditions.

1.2.9 Dimensionless Parameters

When working with electrochemical models it is often advantageous to normalise
parameters to remove dependence of the model on specific values. For example
removing the diffusion coefficient, Dy, enables the same model to be applied to any

species [£. The details of normalisation for the one dimensional diffusion equation

are outlined below.

Concentration is normalised with respect to the bulk solution concentration value.

c=—=- (1.50)

where c¢ is dimensionless concentration, C is dimensional concentration and C* is

bulk concentration.

Distance parameters such as X are normalised with respect to a characteristic

length, [. For example, for a microdisc system the radius of the disc is used, for a
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microband the width of the band.

T = % (1.51)

where z is dimensionless distance, X is dimensional distance and [ is the length of

the domain.

Time is usually normalised with respect to the diffusion coefficient, Dg, and a
characteristic length

Dyt
-

= (1.52)

where 7 is dimensionless time, Dpg is the diffusion coefficient, ¢ is dimensional time

and [ is the length of the domain.

Substituting these parameters into the diffusion equation gives the dimensionless

form of the diffusion equation

oc(z, 1)  9c(x,T)
or 02?2 (1.53)

where ¢ is dimensionless concentration, 7 is dimensionless time and z is dimensionless

distance.

Note the original parameters are also known as dimensional parameters.

Dimensionless Current

The equation describing current at an electrode, equation 1.25, may be cast in
dimensionless form by normalising with respect to a characteristic current. For

example, for the microband electrode
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inorm -
where  tuorm
n n/a
F Cmol™t
A m?2

Dr  cm?s7!

Cr mol cm™
Cr  molcem™

3
3

w cm
XY m
{ none

Zz,y  none

to give

v 9CR(X,Y, t)

nFwlD / dx
B/ Y

Y=0 (1.54)

. /1 Ocr(z,y,7)
tnorm = R —
0

dimensionless current

number of electrons

Faraday constant

area of electrode

diffusion coefficient of species R
concentration of species R
concentration of bulk solution of species R
width of microband electrode

distance

electrode length normalised with respect
to the electrode width

distance normalised with respect to the
electrode width

time

dz (1.55)

y=0

dy

where parameters are as defined above.
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1.3 Review of Simulation Techniques

Electrochemical simulation is a broad and diverse topic. A brief review of some al-
ternative simulation techniques is included, to place the Boundary Element Method

within the general electrochemical numerical modelling field.

Finite Difference Methods are by far the most popular simulation techniques in
electrochemistry. The main simulation algorithms are summarised here. The op-
timisations of these FDM techniques, applicable to all algorithms, are covered in

section 1.4.3 on page 38.

For all methods mentioned, except random walk™*3 and BEM,?%*4 interested readers

are referred to the excellent review by Speiser,” and for FDM basics in particular,
Y

the text by Britz.

A detailed comparison of three of these methods, the Finite Difference Method,

Finite Element Method and Boundary Element Method is covered in section 1.4 on

page 34.

1.3.1 Finite Difference Method

The concept of finite difference approximation, where a differential equation is re-
duced to a series of algebraic equations, was presented in section 1.2.8 on page 21. A
specific finite difference formulation yields an algorithm. Explicit Finite Difference
(EFD) is the simplest algorithm for the solution of a partial differential equation,

however it is not particularly efficient. Alternative finite difference algorithms are

briefly reviewed here.

Hopscotch A slight extension of the EFD algorithm gives the Hopscotch method,
which has a degree of implicitness without the complexity of Crank-Nicolson. It
it stable for all A and simple to implement. However it produces disappointing

accuracy. %46

Crank-Nicolson (CN) A simple one dimensional semi-implicit scheme,® this

leads to a tri-diagonal matrix and is theoretically stable for all values*” of A\. A

29



Chapter 1 1.3 Review of Simulation Techniques

method implemented by Heinze*® and Britz,*® FIFD (see below) has proved more

popular.

Du-Fort Frankel (DFF) or Fast Quasi-Explicit Finite Difference (FQEFD)
An improvement to EFD, the Du-Fort Frankel method®®5! yses concentration values
at C(z,t—At) in addition to C(z,t) to calculate new values at C(z,t+At). This
is found to be stable for varying A, but has also proved disappointing as it must be

started near equilibrium conditions to avoid initial oscillations.5?

Fast Implicit Finite Difference (FIFD) This is also known as the Backward
Difference Method, and was applied to channel flow systems by Compton et al.5334
It was introduced as FIFD by Rudolph.5%3¢ This algorithm uses only values of
C(z,t + At) in addition to C(xz,t). Recently it has been modified by Feldberg®
to simulate large values of the diffusion coefficient, and is still being developed by
Rudolph.%® FIFD is the basis of the commercial electrochemical simulation program,

Digisim@®),” which is capable of simulating general electrochemical mechanisms.

Alternating Direction Implicit (ADI) A semi-implicit two dimensional sche-
me,%® ADI is unconditionally stable for all values of A. It is effectively a two-
dimensional CN algorithm. Two half-steps are used, the first half-step is implicit in
one axis and explicit in the other. These are then exchanged for the second half-
step, when the final concentration values are calculated.®® ADI has been successfully
applied to a number of electrochemical problems, particularly microdiscs, by Unwin

et al,57%* Taylor% and Amphlett et al.56

Recently a three dimensional ADI algorithm has been developed.!®

Strongly Implicit Procedure (SIP) and Multi Grid Method (MGM) In-
troduced by Alden et al®"®® SIP is a fully implicit two dimensional method, that
allows direct solution of steady state problems. This gives a significant efficiency
gain.% An initial approximate solution must be given for the concentration values
of all mesh points and an iterative solution found. Transient simulations are also

possible, and SIP has been found to be more stable than ADI due to its fully implicit

nature.”®
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Alden later found the Multi Grid Method,” which is also implicit and uses a larger
number of mesh points in the finite difference approximation, to have superior con-
vergence properties than SIP for some problems.” Additionally, a wider range of

conformal mappings are possible as the original partial differential equation mod-

elled is more general.

Matrix Solvers

Of particular note is the generalisation of two dimensional FD methods, with appli-
cation to wide ranging electrochemical mechanisms, enabled by a number of matrix
solving techniques collectively known as Pre-conditioned Krylov Subspace (PKS)
solvers. A non-generalised form of Krylov integration technique was originally used

by Bard et al™ for SECM simulation.

The finite difference method formulation may be written in matrix form leading to a
diagonal sparse matrix. For example, an EFD approximation produces a tri-diagonal
matrix. If homogeneous reactions are also included in the formulation, additional
diagonal lines appear. The FDM is an efficient way of solving these matrices. Each

method produces a specific matrix, and may only be used to solve that matrix.

Pre-conditioned Krylov Subspace methods allow any linear sparse matrix to be
solved. Therefore they are a general method which may be used with a finite differ-
ence approximation. Although not as efficient as specific solvers, for example SIP,

they are much more flexible.

A general electrochemical simulator has been proposed by Alden™ based on the PKS
method, which will allow any mechanism to be simulated. This has been applied to

simulation of a wide variety of mechanisms for microdiscs and microbands.”™

1.3.2 Random Walk

Random Walk methods simulate the possible paths taken by a species, noting
where a particle hits a boundary. The number of particles hitting an electrode,
per timestep, gives the current. It is more complex, although possible, to calculate

a concentration profile.*> The path taken is determined by moving the particle in
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a random direction and care must be taken to ensure a sufficiently random number
generation routine. A distinct advantage of the method is that a general three di-
mensional boundary may be simulated in addition to a moving boundary. Nagy et
al*®76 applied the random walk method to growing arrays of hemi-spherical elec-
trodes. There is no mesh or primitive elements to restrict the description of the
boundary, however recent research”” suggests problems due to the assumption of
zero flux perpendicular to the boundary, when a curved boundary is modelled.

Therefore the advantages of application to general boundary shapes may not be as

significant as first thought.

1.3.3 Weighted Residual Methods

Orthogonal Collocation

Orthogonal Collocation™ " uses a polynomial of degree N to interpolate between
concentration points. The polynomial is forced to be exact at certain points called
collocation points. The weighting function used is related to the polynomial function
and its order. The space derivatives are therefore replaced, leading to a system of

ordinary differential equations of the form

dC
- =/ (1.56)

where C is concentration, f a polynomial function, 7 an integer counter and ? is

time.

These equations are then integrated on a discrete time grid. Far fewer discretisation
steps are required than Finite Difference.3%® Care must be taken to use suitable

numerical integration to maintain stability.®?2 A comparison is given by Bieniasz.%?

Finite Element Method

This technique divides the domain into a mesh of primitive shapes such as triangles,
rather than discrete points as used in OC methods. The concentration variation

over each element is calculated. Complex geometries may be simulated although
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mesh generation is not simple. The Finite Element Method has been applied to

electrochemistry®:# and is described in more detail in section 1.4 on the following

page.

Boundary Element Method

The Boundary Element Method requires only discretisation of the boundary of the
domain into elements. Recently applied to electrochemistry by Fulian et al®6 it
allows modelling of complex shapes. A detailed description of BEM is given in the

next chapter. It is compared to two popular alternative methods in section 1.4 on

the next page.
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1.4 Comparison of Finite Difference, Finite Element

and Boundary Element Methods

1.4.1 Introduction

The two numerical simulation methods, Finite Difference (FDM) and Finite Ele-
ment (FEM), most widely used in electrochemistry and engineering respectively,
are compared to the Boundary Element Method (BEM). This section initially sum-

marises each method after which specific properties of interest to electrochemists

are compared.

The formulation of each method are related mathematically, through a Method of

Weighted Residuals (MWR) technique in Appendix A on page 188.

Finite Difference

This method has been comprehensively developed within the electrochemistry
field®” with many optimisations implemented. Finite difference (FDM) techniques
approximate the derivatives of the partial differential equation in question using a
form of truncated Taylor expansion. This leads to a mesh of concentration points,
represented by a series of algebraic equations, to which boundary conditions are
applied to solve the problem. The regular FDM grid is unable to accurately re-
produce the geometry of many problems. Hence some form of expanding grid or
conformal mapping is applied to increase the number of concentration points in ar-
eas of high flux. These have been successfully applied to many problems including
both microband®®87:% and microdisc geometries'®8992 the latter using a two di-
mensional axisymmetric domain. However the domain mesh is relatively inflexible
even if some kind of adaptive grid technique is used and it is difficult to incorpo-
rate complex shapes. Three dimensional simulations have been limited to simple
geometries. Electrochemical finite difference methods are a broad and varied area

of research, a summary of different algorithms is given in section 1.3.1 on page 29.

Finite difference codes can be extremely efficient to run, due to the sparse matrix

produced, however for two and particularly three dimensions this is often offset by
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the large number of points required to maintain accuracy.

Transient effects and chemical reactions may be included with relative ease once the

mesh transformation has been derived.

Finite Element

There has been some application of the Finite Element Method to electrochemical
problems although the technique has not proved as popular as FDM. The FEM
model involves the approximation of the variables over small elements of the domain,
in terms of polynomial interpolation functions. A weighted residual formulation may
be written in order to distribute the error introduced by this approximation over
each element. This results in matrices which express the properties of each element
in terms of a discrete number of nodal values. Assembling these into a global
matrix then represents the whole domain. Various shapes of elements may be used
to discretise the model, including triangles and quadrilaterals in two dimensions,

tetrahedrons and cuboids in three dimensions.

Regular grids in FEM models are insufficient to account for boundary singularities.
Expanding grids have been successfully implemented,*® however altering the geom-
etry of the mesh is not a simple matter. Distortion of the original shape of the
elements must be avoided to ensure accuracy. Recent developments of adaptive grid
FEM techniques® % allow for various geometries and boundary conditions, while
accounting for boundary singularities. Current electrochemical FEM simulations
have been limited to two dimensional domains. Three dimensional FEM is possible,

but leads to more complex integrals and difficulties in generating suitable element

meshes.

The FEM is a powerful technique and has been extensively researched in engineering

fields.!%97 Tt is also possible to include transient effects and chemical reactions.

Boundary Element

The Boundary Element Method??% %% requires only discretisation of the boundary

of the domain. The variables at different boundary points are related by the use of
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an analytical function (the fundamental solution) resulting in a series of influence
coefficient matrices. Boundary conditions are then applied to solve for all variables

at all boundary points. Subsequently, values at internal points may be obtained.

Boundary elements can be of various types, including curvilinear shaped boundaries,
enabling a wide range of domains to be accurately modelled. A regular mesh is
normally sufficient to model boundary singularities. A distinct advantage of the
method is a reduction in dimension by one. Thus a three dimensional model is
described using two dimensional surface elements. This greatly simplifies generation
of the mesh, although it does lead to more complex integral equations. Many model
geometries may be described as only the cartesian coordinates of the surrounding
boundary are required as input. Therefore once developed a BEM program is highly

flexible in its application.

The BEM was applied to common electrochemistry problems by Fulian et a/86:99100

during the course of this Ph.D.

Time-dependent terms in the partial differential equation may be incorporated,?2 101,102
additionally some coupled chemical reactions (represented by multiple differential

equations) may be simulated.!%3

1.4.2 Domain Discretisation

The three types of basic domain discretisation are shown in figure 1.4 on the follow-

ing page.

Finite Difference Finite Difference meshes divide the domain into a sequence of
points (figure 1.4a) and boundary conditions are applied to points on the edge of
the domain. The placement of mesh points has been shown to have a significant
effect on accuracy.!® The distribution of points and distances between them are
related to the original partial differential equation; any alteration in mesh spacing
changes the form of this equation. This causes restrictions on the geometry that may
be modelled, in addition to rendering each mesh specific to a particular geometry.

However many electrochemical systems may be accurately approximated by an ideal

36



1.4 Comparison of Finite Difference, Finite Element

Chapter 1 and Boundary Element Methods

[
1 T 1T 1

® © o & & o 4 J

¢ o o & & o . J -

® & © & & o —_ P .

@ @ o o o o . —

e o0 0 0 0 D I T

d) e)

Figure 1.4: Typical two dimensional discretisations for a) Finite
Difference, b) Finite Element and ¢) Boundary Element. The
greater flexibility of the latter two methods is demonstrated in more
complex domain shapes d) and e). The Boundary Element Method,
e), gives the easiest domain discretisation due to a reduction in di-
mension, allowing description of the domain with line elements.

(simple) geometry, enabling optimised finite difference simulations to successfully

model a wide variety of electrochemical problems.”

Finite Element The Finite Element domain is described by a mesh of primitive
elements. In two dimensions either triangles (shown in figure 1.4b) or quadrilaterals.
These cover the entire domain with the nodes on the edges of elements on the
boundary having boundary conditions applied to them. The placement of elements
does not directly affect the partial differential equation. Thus they may be different
sizes and shapes and if for instance, triangles, do not have to be congruent. However,
the aspect ratio of the sides of the elements must be reasonably close to unity, to
prevent elongated, thin elements which reduce accuracy. These FEM meshes can

model a wide variety of domain shapes and are much more flexible than FDM meshes

(figure 1.4d).

37



1.4 Comparison of Finite Difference, Finite Element
Chapter 1 and Boundary Element Methods

Boundary Element A Boundary Element mesh requires only discretisation of
the boundary of a domain (figure 1.4c), due to a reduction in dimension by the
BEM formulation. Thus line elements are used in two dimensions. Complex domain

shapes may be more easily modelled due to this simplified discretisation (figure 1.4e).

Three Dimensions

In three dimensions a finite difference mesh is also described simply by a mesh of
points. A single point and those neighbours which contribute to calculation of con-
centration at that point is shown in figure 1.5a on the next page. A very large
number of points is generated leading to problems with obtaining a realistic com-
putational time, and difficult optimisation. Finite Element meshes consist of either
tetrahedra (figure 1.5b) or cuboid primitives. Meshing is much more complex, es-
pecially when optimisation is required. Significantly fewer points are required than
with FDM for the same accuracy, although computational time may still be a factor.
Due to a reduction in dimension three dimensional primitives for the Boundary Ele-
ment Method are surfaces,?? such as triangles or quadrilaterals (figure 1.5¢). Meshes
are still fairly complex as the elements must still be defined in three dimensional

space. However this is markedly simpler than volume meshing.

1.4.3 Optimisation for Electrochemical Geometries

Electrochemical simulations of two dimensions or higher usually have one or more
boundary singularities. These are caused by an abrupt change in boundary condi-
tions at the edge of an electrode, for example at the edge of a microdisc. The flux
tends to infinity at this point, which is called a singularity. Around this region rapid
changes in concentration occur which often require some form of optimisation to be

modelled accurately.!?

If one is simulating homogeneous chemical reactions, it may also be necessary to
consider rapid and highly localised changes in concentration caused by the reaction,
in a region known as the reaction layer. A reaction layer is analogous to a diffusion

layer.® The size of the reaction layer may be a different order of magnitude to
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a) b) )

Figure 1.5: The simplest discretisation possible in three dimen-
sional space for each of the three methods compared. a) Finite
Difference uses the six neighbouring points, these must be mutu-
ally perpendicular unless some sort of conformal mapping is used.
b) For FEM the volume may be divided into tetrahedrons; these
do not need to be of a specific shape, although they must remain
reasonably close to a pyramid shape to maintain accuracy. ¢) BEM
may use a triangular surface, although this must be defined in three

dimensional space.

the diffusion layer; additionally it may be some distance away from the electrode

surface,%7197 Jeading to conflicting optimisation requirements.

Finite Difference

A basic two dimensional finite difference mesh is rectangular; all boundaries are
at right angles to one another. To increase the number of points near a boundary

singularity several optimisation strategies have been implemented.

Exponential Meshes Exponential meshes increase the density of points® in a
single dimension at an area or several areas defined by the specific equations used.
When applied in two dimensional domains the number of points near the singularity
can be significantly increased. This also has the side effect of increasing point density
in some regions far away from the singularity - this does not adversely affect accuracy

although it does increase computational time.
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Local Approximation A special formulation immediately adjacent to the sin-
gularity may be implemented'®® (a locally valid series expansion) which reduces

computational time.

Conformal Mapping A transformation of coordinate system (known as con-
formal mapping) may be applied to obtain a high density of points in real space
with equally spaced points in transformed space, where the FDM calculation is per-
formed. An ideal conformal map will have points distributed in a similar manner to
the diffusion field'® (in a diffusion only system). A wide variety of conformal maps

have been considered®® %112 not just limited to rectangular domains but also more

challenging geometries.'”> 113

These optimisations are specific to each geometry and to implement any optimisation
the finite difference method must be fully understood. Three dimensional conformal
mapping is complex, and still an active area of research in both mathematics!!4-116
and electrochemistry related fields.!'”!8 However limitations due to the inherent
inflexibility of the FDM optimisations often mean that the amount of effort involved

cannot be justified.

Finite Element

Optimisations include techniques analogous to Finite Difference. Exponential grids
have been employed to increase the density of elements near boundary singularities.
Alternatively an automatic adaptive mesh routine increases the number of elements

in areas of high flux.%* These may be based on either optimising concentration or

flux.

Recently an error-bounding technique has been introduced in addition to adap-
tive meshing.!1%120 This gives a global error limit, and the actual error is often
significantly below this. This has distinct advantages over alternative methods as
convergence testing is not required, and the possibility of unforseen problems with a
new geometry is removed. This has so far been limited to two dimensions. Adaptive
routines used in electrochemistry have relied on a rectangular discretisation strategy.
A rectangular mesh of triangles, figure 1.4b on page 37, (two triangles per rectangle)

is used as the base discretisation. In areas of high flux existing triangles are divided
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to form two new triangles (figure 1.6). However this type of strategy limits domains
that may be modelled to rectangular types. An improved technique, allowing more
complex meshes, is Delauney triangulation.'?"12? This allows generalised domains

to be meshed, while restricting the aspect ratio of triangles used.

Figure 1.6: The adaptive meshing strategy used in previous electro-
chemical FEM simulations by Gavaghan et al.%° A rectangle is split
in half to form two triangles. One of these triangles is split into two
further triangles if required. A similar strategy could be used for
three dimensional BEM simulations, however superior alternative
techniques, such as Delaunay triangulation are also available.!??

Higher order approximations over elements may also improve accuracy, allowing an

improved description of concentration variations.%”

Usually semi-infinite boundary conditions are used, with a domain that extends
far enough from the area of interest that the influence of the infinite boundary is
negligible. Alternatively special infinite elements may be incorporated. These use

an approximating function that decays to the specified value at infinity.!®

Three dimensional optimisations are analogous to the two dimensional techniques
already mentioned. However they are more complex and some advanced stategies,

such as error-bounding and Delauney triangulation have not been fully developed.

Boundary Element

Boundary Element optimisations include many procedures analogous to previous
methods. Exponential element spacing is described in section 2.5.2 on page 80.

Adaptive meshes are a current area of research in specialised BEM fields.'?® Thus
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far, there has been limited development analogous to FEM error-bounding although

this would be a desirable future direction.

Higher order approximations to describe concentration and flux variations over the
primitive element may be implemented. Linear elements are described in detail
in section 2.10.1 on page 123. Additionally an analytical element may be used
adjacent to a boundary singularity. This is a high-order element which optimises the
approximation over the element, for a known variation of flux near the singularity.03

Analytical elements were not considered in this work.

Semi-infinite boundaries are usually used in the same manner as FEM and FDM.
A significant optimisation unique to BEM is to model a genuine infinite domain,
discretising the object of interest in the same way as a closed domain, but considering
the concentration field exterior to this discretised domain. The infinite boundary is

incorporated in the BEM formulation and does not require discretisation.

1.4.4 Formulations of the Methods

The system to be modelled is described by a partial differential equation as explained
in section 1.2.4 on page 14. The relation of the formulation of each method to this
partial differential equation is outlined below. The implementation details of each
method will change if the partial differential equation is changed. The relation

between the formulations of the three methods is summarised in figure 1.7 on the

next page.

FEM and BEM are often derived through a weighted residual approach as this is
perhaps the easiest to understand, although both may be derived through alternative
formulations. FDM methods are usually derived directly (section 1.2.8 on page 21),
however they may also be derived through a weighted residual method allowing a
direct relationship between the three methods to be established. The mathematical
details of these relationships are covered in Appendix A on page 188. A brief
summary of the Method of Weighted Residuals follows.
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Basis functions for Basis functions for
¢ and W are the same c and W are different

Weighted Residual
Equation

Finite Difference
Methods (FDM)

Weak Formulation

Finite Element
Method (FEM)

Inverse (Strong)
Formulation

Boundary Element
Method (BEM)

------ Integration

Figure 1.7: The three methods under discussion may be related
through a Method of Weighted Residuals (MWR) formulation. The
choice of weighting function is of fundamental importance for both
the Finite Element Method and Boundary Element Method, how-
ever, it is inherent within a finite difference method which is more
usually derived directly. c¢ is a concentration field approximation
function, W is a MWR weighting function.

Method of Weighted Residuals

Diffusion in one dimension is described by Fick’s second law, equation 1.8, which in

dimensionless form and dropping the species subscripts is

dc(z,t)  O%c(z,t)
= 1.57
ot o0r? (1.57)

Substituting an approximation function, é, for ¢ in the diffusion equation, equa-

tion 1.8, gives a Residual, or error function, R, such that

_ é(x,t)  0¢(z,1) 20 (1.58)

R 02 ot

where R is the residual, ¢ is concentration, z is distance and ¢ is time.
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The aim of the weighted residual method is to force R to be zero in an average
sense, over the entire domain. To achieve this a weighting function W is used to

distribute the error. For equation 1.58 this gives

4 Pe(x,t)  0é(x, 1)
/0< 52 T 5 )Wda:—O (1.59)

where W is an arbitrary weighting function, ¢ is the concentration, d is the length

of the domain, x is distance and ¢ is time.

This equation is known as a weighted residual, which in this case has been applied
to the one dimensional diffusion equation. The same procedure may be used for any

partial differential equation by replacing equation 1.57.

Finite Difference

Finite Difference methods are a direct approximation of the diffusion equation, giv-
ing concentration and flux values at a series of points. FDM is related to MWR in
Appendix A. A large number of FDM algorithms (section 1.3 on page 29) have been
derived, many of which have been optimised (section 1.4.3 on page 38) and applied
to electrochemistry. Although possessing different properties the basic form of these
methods is the same; for example the simplest algorithm, explicit finite difference,
may be written as a tri-diagonal matrix. More advanced algorithms have additional

diagonal components but always lead to a sparse matrix form.

Concentration values are obtained at each discrete point. The flux may be calculated
from adjacent points and the current from the flux at the electrode surface. Two
point Taylor approximations®® are usually used for this calculation, although higher

order approximations are possible.

Relatively few three-dimensional formulations have been developed, two examples

are EFD and ADI.10
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Finite Element

FEM methods start from what is known as the weak form of the partial differential
equation, where the weighted residual form of the partial differential equation has
been integrated by parts. Concentration is replaced with an approximation func-
tion often using linear basis functions. The most common FEM methods use the
same weighting function as approximation function; these are known as Galerkin
techniques. Each element is numerically integrated and the values combined to as-
semble a global matrix and vector (known from FEM’s engineering origin as the
stiffness matrix and load vector). The boundary conditions are then applied and
the resulting matrix system solved. The FEM leads to a sparse matrix which may

be solved by standard optimised solvers, such as Conjugant Gradient.?*

All unknown concentration values are thus obtained and flux values may be calcu-

lated by substituting any previously unknown concentration values.

Boundary Element

The BEM method starts from the inverse (also known as strong) form of the partial
differential equation. The weighted residual form is integrated by parts twice to ob-
tain the inverse form. The weighting function used is a free space Green’s function,
called the fundamental solution. The fundamental solution is derived from the origi-
nal partial differential equation, and is therefore specific to that equation. A method
to use the same fundamental solution for different partial differential equations is
described in Chapter 3 on page 130. The elements are numerically integrated and
resulting values assembled into influence coefficient matrices. Boundary conditions
are then applied and the resulting matrix system solved. The BEM leads to a fully

populated matrix which may be solved by standard linear algebra solvers such as

LU factorisation.1?*

Concentration and flux values are both obtained directly by the method. Thus
current may simply be calculated from the flux value. A full derivation of the BEM
for one dimension is contained in Chapter 2 on page 48, which includes details of

implementation for two dimensions.
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1.4.5 Application of the methods to typical electrochemical

partial differential equations

This section highlights some of the applications of the three methods to electrochem-
istry. It is not intended to be a review of all applications but aims to emphasize
the advantages and disadvantages of each method in solving particular classes of

electrochemical problems.

For diffusion only systems all three methods perform well, provided FD and FE
meshes have sufficient optimisation for boundary singularities. The discussion of

additional factors that follows assumes such optimisations have been included.

When convection is introduced this often causes problems for numerical methods due
to the nature of the governing partial differential equation changing from parabolic
to hyperbolic when convection dominates diffusion at higher flow rates. The FDM
performs well as long as a suitable algorithm is chosen,® such as Backward Implicit
in one dimension and Strongly Implicit in two dimensions. The standard FEM
and BEM are often adequate for low flow rates but require special formulations for
convection dominated flow. For the former this is known as Streamline-Diffusion

Finite Element Method.!?® The latter, the BEM formulation, must usually resort

to domain discretisation.!?%126

The inclusion of homogeneous reactions is perhaps the most challenging of electro-
chemical systems to simulate. There has been a significant amount of development,
for a wide range of mechanisms, of simulations utilising the FDM. This has led to
generalised algorithms in one dimension,?® and more recently in two dimensions,” "
which have the potential to simulate any electrochemical mechanism. This is a dis-
tinct advantage compared to present development of FEM and BEM. The FEM has

been successfully applied to several homogeneous reactions.% 127129

The BEM has been applied to simple homogeneous reactions in the field of chemical
engineering,'% however it is more complex to implement and greater research is

required into electrochemical applications.
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1.4.6 Summary

In summary, the relative merits of FDM, FEM and BEM have been assessed.

FDM has been most widely applied in electrochemistry. It is reasonably easy to
understand and implement, and is capable of simulating a variety of electrochemical
reactions, linear, non-linear and coupled. In one dimension any mechanism may be
simulated; commerical packages® and open source packages’ are available. In two
dimensions a more general class of finite difference type methods, matrix methods,
also allows general mechanistic simulations. However these methods are inflexible
with regard to the geometry modelled and specific optimisations are usually required.

It is often not possible to find a suitable optimisation for complex domains.

The FEM method is more suitable to simulate complex geometries, especially if
some kind of adaptive mesh routine is implemented. It may be applied to a wide
range of electrochemical reactions and flow effects. Although uptake has not been
rapid in electrochemistry, it is now the most popular method in related fields, partic-
ularly engineering, and a wide range of literature and texts are available. However,
three dimensional simulations are complex and optimisations are required for elec-

trochemical problems.

The BEM method is ideally suited for complex geometries in two or three dimen-
sions. Defining a domain mesh is easier than the alternative methods due to a
reduction in dimension by one. However there are some drawbacks. The depth of
research and availability of texts is much reduced compared to the two alternative
methods. Incorporating multiple species is involved and general techniques are only

appropriate for linear systems of equations.
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The Application of the Boundary
Element Method in Electrochemistry

In this chapter the concepts of the Boundary Element Method (BEM) are illustrated
with a simple electrochemical problem, the simulation of the steady state current in
a Thin Layer Cell (TLC). In this system mass transport occurs by planar diffusion.
A TLC may be modelled as a steady state generator-collector system, figure 2.1 on
the following page, and has an analytically determined current which will be used
to validate the Boundary Element Method. The terms generator and collector orig-
inate from a description of electrochemical systems in terms of feedback, a concept
described in section 2.5.1 on page 76. In practice the steady state would be observed
at long times after applying a potential step from a value where no reaction occurs

to one where the reaction is diffusion controlled.

Thin Layer Cells are typically operated in either potential step or potential sweep
configurations. Uses include adsorption, electrodeposition and spectrochemical stud-
ies. TLC theory and mathematical analysis may also be applied to a number of other

electrochemical problems.!

Initially the fundamental BEM theory is derived in one dimension, then a two
dimensional model of a TLC is used to expand upon the implementation of the

method. The BEM procedure is summarized in figure 2.2 on the following page.
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4

collector electrode

Figure 2.1: Representation of a Thin Layer Cell (TLC). Diffusion is
uniformly planar, thus transport in the TLC may be modelled with
a one dimensional equation along the z axis. c¢ is concentration of
species A.

Partial Differential Equation
(p.d.e.) and Boundary Domain
Conditions (b.c.) Solution
\
. ) Back substitution
Welghted Residual In[egra[i()n by parts into BIE.
form
A
Inverse Equation Boundary
Solution
N 5 A
Apply fundamental L Apply boundary
solution _.x‘"/ conditions and solve
>3
/"/-f’
lD Discretisation
Boundary Integral | .~ BEM
Equation (BIE) 2D/3D formulation
Assemble
matrices

Figure 2.2: A summary of the Boundary Element Method proce-
dure. The one dimensional case may be solved directly from the
third stage by applying boundary conditions. For the two and three

dimensional cases additional steps are required.

49



Chapter 2 2.1 Fundamentals of the Boundary Element Method

2.1 Fundamentals of the Boundary Element Method

Transport of reactant and product within the Thin Layer Cell system is described

by the one dimensional steady state diffusion equation

d?c(z)

T2 =0 (2.1)

where c¢(z) is the dimensionless concentration of species A at coordinate z. Note
the subscript A is omitted for clarity. This is known as the Laplace equation in one

dimension.

The weighted residual form, as described in section 1.4.4 on page 43, is

/ oI (2.9)

dz?

where W is an arbitrary weighting function, 0 and [ are the coordinates of the

electrodes, see figure 2.1 on the preceding page.

Integrating by parts twice gives

/Ol @) 1) o = [W(x) dc(:c)}‘ ~ [dW(x)c(w)]: N /O’ PWE) g (2.3

dz? dz |, dz dz?

where ¢ is concentration of species A, W is a weighting function and [ is a distance

between two electrodes.

This is known as the Inverse Form* of the original partial differential equation. Note

the first two terms are boundary only values; calling this part

B= {W(m)dc(w) ]l - [Mc(x)y (2.4)

dz |, dz 0

*Equation 2.3 is also known as the adjoint form. The Laplacian operator on W is the same as

the original operator, the equation is thus self-adjoint.!%
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gives the more compact form

/(; ddcagj)W(x) dz =B +/O é—dvg-gi)c(x) dz (2.5)

If we ensure W fulfills certain conditions the differential operator may be simplified

or eliminated, leading to a boundary only formulation.

2.1.1 The Fundamental Solution

Obtaining a suitable equation for the weighting function is an important prerequi-
site of the Boundary Element Method. A special function, called the Dirac delta

function, gives one of the properties required.

The Dirac delta function A Heaviside step function, #, has the properties

shown in figure 2.3 on the next page,

0 ifz<s
H(z —3s) = 2.6
( ) {1 ifz>s (2.6)

The derivative of the Heaviside step function is the Dirac delta function

0 ifz<s
dz—s)=4¢ 0o ifz=s (2.7)
0 ifz>s

When used within an integral equation this has a sifting property for any function

f(z).

/_ " f @) — s)dz = f(s) (2.8)

The weighting function, W(z, &), is chosen such that it satisfies the Dirac delta
property and is independent of boundary conditions. This type of weighting func-
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H (x-s
(s) a) Heaviside step
function
s X
O (x-s
(x-5) b) Dirac delta
function
s X

Figure 2.3: Functions used in the derivation of the fundamental
solution. The Dirac delta function is the derivative of the Heaviside
step function.

tion, of central importance to the Boundary Element Method, is called the funda-
mental solution. Strictly, it is the fundamental solution to the Laplacian operator.
The fundamental solution may be thought of as a generalized Green’s function.?
Physically it represents steady state diffusion of any species from a source point to
infinity.

The fundamental solution to the one dimensional Laplace equation is*

W(z,&)=6(z—s) = g (2.9)

where 7 = |z|.

The sifting property of the fundamental solution means the final term of the inverse
form, equation 2.5, is zero everywhere except at the point where the equation is

applied. This point, for historical reasons, is called the source point. The equation
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is reduced to

[mx,&)dc@”)}l - [dW(““"’&)cu)]l f () =0 (2.10)

dzx 0 dz 0

which is known as the Boundary Integral Equation (BIE). This equation is valid
anywhere in the domain. As the aim is to obtain a boundary only solution the

source point is moved to the boundaries.

This stage is the third box in figure 2.2 on page 49 and is a boundary only for-
mulation. The remaining stages in figure 2.2 do not apply to the one dimensional

case; as the boundaries are simply two points, discretisation is not required and the

solution may be obtained directly.

This gives two equations, one for each end of the domain, and two unknowns, hence

one can solve to find the unknown values.
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2.2 BEM Implementation in Two Dimensions

The advantages of the BEM over alternative simulation methods become useful for
two and three dimensional problems. A two dimensional model of a Thin Layer Cell,

figure 2.4, is considered here to introduce the two dimensional BEM implementation.

T, &=}
m/
FZ
q=0 ’ Q o q=0
L,

c=0 I

Figure 2.4: A model domain of a Thin Layer Cell. €2 is the internal
domain, I' is the entire boundary, which consists of 2 boundary
conditions: I';y and I's are known concentrations, I'y and I'y are
known fluxes. This diagram shows the simplest discretisation of
the domain; into four elements. Concentration and flux have a

constant value along each element.
" The boundary of the TLC domain is described in terms of four regions, table 2.1.

Region Boundary Condition Boundary Value Description

I Dirichlet & =1) generator
D) Neumann g=20 insulator
I's Dirichlet o= ] collector

ry Neumann g=10 insulator

Table 2.1: Definition of the domain boundary for the Thin Layer
Cell model shown in figure 2.4

The governing partial differential equation is the two dimensional form of the Laplace
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equation

Pc(z,y)  0Pclr,y)
3t o =0 (2.11)

The weighted residual form of this is

0?c(z, d%c(z,
/( g;y)_*" Ca(jzy))w(i’:%&,é:g) dzdy =0 (2.12)

where c¢(z,y) is the dimensionless concentration, W (z, y, &, &) is the fundamental

solution and &1, & are source point coordinates.

This is integrated by parts, twice, to give the Boundary Integral Equation

dclern) + [ el TAELE8) gp (O gy g ar (213
T

r on on
where d is a geometry coefficient caused by moving the
source point to the boundary, explained below
c(&1,8) is the concentration at the source point
r is the domain boundary
c(z,y) is the concentration around the boundary

Wi(z,y,&,&) is the fundamental solution

n the element unit outward normal

&1,6 are source point coordinates.
The source point is the point of application of the entire equation. This may be
applied anywhere but is chosen to be moved to the boundary. The field point is
used to integrate over the boundary, thus is restricted to the boundary only. The

fundamental solution is defined as a function of both source and field points.

The BIE consists of three terms. The first is a geometry coefficient term, explained
below. The second and third are boundary terms which account for the infiuence of

concentration and flux respectively, along the boundary, upon the source point.

The Geometry Coefficient When equation 2.13 is applied at a point on the

boundary, the integrals behave differently than inside the domain. This is accounted
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for by a geometry coefficient, d, which is defined??

= — 2.
d= (2.14)

where 6 is the internal angle at the boundary, in radians. The internal angle is
illustrated in figure 2.5 on the next page. It is found that

e d=: on asmooth boundary

N =

e d=1 ifin the interior of the domain

The term ‘smooth’ is used in the mathematical context meaning that the boundary
does not have any sharp corners about the source point. Constant elements, which
are used throughout this section, by their definition will always have a smooth
boundary and therefore d = 1/2. Section 2.10.1 on page 123 describes higher order

variations of variables along elements.

The unit outward normal is defined as the direction perpendicular to an element,

facing outward, when elements are defined in a consistent manner, figure 2.6 on

page 58.
Defining
dc
= — 2.15
¢=5 (2.15)
ow
* = 2.16
¢ =5 (2.16)

yields a more compact version of equation 2.13, the Boundary Integral Equation,
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Internal Geometry

Angle Coefficient

b= d=} e
p=3r  4=1

0= 2w d=1 e

Figure 2.5: Examples of internal angles. Definition of the internal
angle, @ is given in equation 2.14. Shaded areas are boundaries, the
final row is an internal point.

dc(§1a€2)+/I:C(xay)q*(xaya€17§2) dF:/I‘Q(x7y)W(x7y7§1>£2) dr’ (217)

where

d is the geometry coeflicient
c is concentration
q is flux
r is the domain boundary
w is the fundamental solution
q* is the derivative of the fundamental solution
&1,&2  are source point coordinates.
a subscript indicating the source point
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direction of definition
of the boundary

Figure 2.6: The direction of the outward normal is perpendicular
to the element facing away from the interior domain. The direction
of the definition of the boundary must be consistent.

Discretisation of the boundary A practical way to solve the integrals over the
boundary is required. To enable this the boundary is split into sections, called
elements, in a process known as discretisation. The simplest possible discretisation
of the TLC domain is shown in figure 2.4 on page 54. Concentration and flux values

are defined as constant along each element.

The boundary integration is performed by integrating over a small element, then
over the next element and proceeding all the way around the boundary, figure 2.7 (i-

iv) on the next page. Thus the integral terms are represented as the sum of the

integrals over these elements.

Each boundary element has one source point at its centre. When the boundary is
discretised into N elements there will be NV source points, each of which is considered

in turn, figure 2.7(1-4) on the following page, leading to a set of N equations 2.18.
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b 2) 3 4

. source point

— element over which boundary
integration is performed

Figure 2.7: Numerical integration is performed over each element
in turn, including the element containing the source point. Choice
of a clockwise direction is arbitrary.

The discrete BIE is thus

1 N N
Ecs(§1a§2) + ch(:c, ZJ)/ 44;(z,y, &1, &) dI' = ZQj(-Ta y)/ Wii(@,y, &1, &) dT
j=1 Ly j=1 rj

(2.18)
where ¢ is concentration
q is flux
I'y is an element boundary
w is the fundamental solution

q* is the derivative of the fundamental solution

&1,69  are source point coordinates.

S is the source point integer counter

J is the field point integer counter
Any shape boundary may be modelled by constant elements, although a geomet-
ric approximation is required to model curved boundaries. More advanced BEM
formulations consider higher order variations of concentration and flux along the el-

ement. Section 2.10 on page 123 describes elements that more accurately represent

boundary values.
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2.2.1 2D Fundamental Solution and its Derivative

For two dimensions the fundamental solution is chosen such that

W ) ,575 W ) 7§7§
(fvéhz;/2 L&) | (93852 Lé) ~8(z — &)d(y — &) (2.19)

where ¢ is the Dirac function, &;,& are source point coordinates, z,y are field point

coordinates.
For the Laplace equation in two dimensions®? W (z,y, £1,&) is

W(m7y7§17§2) = —"2}7;1117“ (220)

where 7 is the distance between source and field points

r=[@-&)2+@w-&)7° (2.21)

The derivative of W with respect to the outward normal is

ow 1

on o (z—&)ng + (y — 52)”1;] (2.22)

where 7 is the distance between source and field points and n,,n, are directional

cosines.

2.2.2 Singular Integration

When integration is performed over an element containing the source point, a sin-
gularity occurs at this point. Ordinary numerical integration techniques are not
capable of integrating singular elements. There are a variety of ways to approach
this problem. For specific types of element an analytical solution may be avail-
able. Alternatively many specific types of quadrature may be used, if available; for
example the logarithmic behaviour of the two dimensional Laplace fundamental so-

lution may be integrated by logarithmic Gaussian quadrature.!3® If neither of these
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approaches is suitable a Telles transformation'®! may be used.

In the case of the two dimensional Laplace fundamental solution, with constant

elements, an analytical solution is available, as the integral is symmetrical about

the centre point.??

L L,
/F]’ Wss(wv y7§1a§2) dI' = 57_1_ (1 —In (’i’)) (223)

where L, = length of element.

For the derivative of the fundamental solution, since the line element and normal

are orthogonal, the dot product is zero, so equation 2.22 is always zero.

2.2.3 Numerical Integration

A standard numerical integration technique,'?* Gaussian quadrature, is used to

integrate over non-singular boundary elements.

The integral is approximated as a sum of the values at specific points, figure 2.8 on
the following page. The location of these points is dictated by the technique used,

and has a significant effect on accuracy.

/f(w) dz ~ Z fo(x)wy (2.24)

where w is the quadrature weighting factor, NI is the number of integration points

and g is an integer counter.
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Figure 2.8: Gaussian quadrature integration over element e; from
source point s;

Applying Gaussian quadrature to the boundary integrals gives

NI

L.

/1:' Wsj(x7 Y, 517 52) dI' = —21 Z (W(.CL’, Y, 517 62))9 Wy (225)
J g=1
L. NI

/F' 03(2,9,60,&) AU = > (q* (2,9, €1, 62)), Wy (2.26)
J g=1

where L; is the length of the element, NI is the number of integration points, and w,
are the quadrature weighting factors. Weighting factors are calculated in the range

-1 to 1. A local coordinate transform is used leading to the coefficient of L;/2.

Note that singular and numerical integration are the first introduction of numerical

approximation in the BEM formulation.

62



Chapter 2 2.2 BEM Implementation in Two Dimensions

2.2.4 Formation of Influence Coefficient Matrices

The symbols Zsj and my; are defined to represent the two types of integrals over the

boundary. ¢ and ¢ have been removed from the integrals as they are constant.

i, = / 05,9, 61,6) T (2.27)
Iy

Msj =/ Wsj(x7y7§17§2) dr (2-28)
Ty

where I'; is the length of the element.

Equation 2.18 may be cast in matrix form using the following rules

lsj = lsj when s ?é ] (229)

when s = j (2.30)

Thus equation 2.18 becomes

N N
7j=1 j=1
which in matrix notation is
Lc = Mg (2.32)

where L and M are known as influence coefficient matrices, and are of dimension

N x N. They are dependent solely on the geometry of the domain.

2.2.5 Boundary Solution

We now have a system with 2N variables of which N are known, as a boundary
condition is prescribed for each element. This leaves /N unknowns. Equation 2.32

may be resolved by multiplying known boundary values with influence coefficients
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to form

Az = B (2.33)

where A are the combined unknown boundary value influence coefficients, & the
unknown values and B the combined known influence coefficients and boundary

values. Equation 2.33 may be solved using standard matrix algebra routines.!?*

At this stage, the penultimate box in figure 2.2 on page 49, all unknown boundary
values have been found. Note both concentration and flux values have been found
directly, in contrast to FDM and FEM techniques when flux must be calculated from
concentration values. The flnal, optional, stage is to calculate any values required

for the interior domain.

2.2.6 Internal Points

Concentration and flux values may be obtained anywhere within the domain, once
the boundary solution is known, simply by defining the coordinates of the points
required. As many points as required may be placed anywhere in the domain. An
example distribution of points to obtain a concentration map covering the entire
domain is shown in figure 2.9 on the next page. However if a certain area is of par-
ticular interest values may be calculated only in this area, unlike domain simulation

methods which always require simulation over the entire domain.

As for the boundary, flux values in the interior may be obtained directly. For the

two dimensional system these will be vectors consisting of  and y components.

Rearranging equation 2.17 gives an expression for concentration (note that d = 1

for internal points).

C(§17§2) = £Q(xay)w(xay7£17§2) dr—/c(xazl)q*(x>y7§17§2) dF (234)

T

which in compact form is

Cs = Mszs - szcs (235)
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e o mesh of

e o internal points
discretised —

o
boundary /

T

Figure 2.9: Internal points may be placed anywhere in the domain,
here an equally spaced mesh is used to observe concentration val-
ues. In contrast to the FDM and FEM techniques values may be
obtained only where required, not everywhere in the domain. Both
concentration and flux values are found directly.

L, and M, must be calculated for each point, however, as all boundary values are
now known each internal point may be calculated sequentially. A matrix solving

step is not required.

The derivatives of equation 2.34 give the flux

&) oo [ w

Oc / [BW- / r8q*]
— | = —| dI'= [ ¢ dr'
(3?/)3 I 4 oy | g r LOy 5

2.2.7 Application to a Simple Case

To illustrate the implementation of the Boundary Element Method to electrochem-
ical problems, the method is applied to the simple two dimensional TLC domain,

figure 2.4 on page 54.

Results for the model are shown in table 2.2 on the next page. With as few as four
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elements, remarkably accurate concentration and flux values are obtained. Doubling
the total number of elements to eight gives less than one percent error in concen-
tration and six percent error in flux. Increasing the number of elements further
continues to increase accuracy; for example 400 elements gives less than 0.1% error
in both concentration and flux near the centre of the sides of the domain. The ele-
ments immediately adjacent to the corners of the domain have a significantly higher
error, up to 6% for both concentration and flux. However, within three elements

this has reduced to under 0.5% error.

Element Known Analytical BEM
boundary N=4
condition

c q c q
1 c 0.000 —1.000 - —-1.175
2 q 50.000 0.000  50.000 -
3 c 1.000 1.000 - 1.175
4 q 50.000 0.000  50.000 =
a)
Internal point Analytical BEM
coordinates N=4

z Yy c Gz gy c Gz Qy

0.333 0.333 0.333 0.000 1.000 0.354 —0.095 0.902
0.5 0.5 0.500 0.000 1.000 0.499 0.000 0.900

0.667 0.667 0.667 0.000 1.000 0.650 —0.036  0.962

b)
Table 2.2: Concentration and flux values for the simplest possi-

ble two dimensional domain, figure 2.4. N is the total number of
elements. Continued on the following page.
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Element Known Analytical BEM
boundary N=8
condition
¢ q ¢ q
1 c 0.000 —1.000 - —1.059
2 c 0.000 —1.000 - —1.059
3 q 0.250 0.000 0.241 -
4 q 0.750 0.000 0.759 -
5 c 1.000  1.000 - 1.059
6 c 1.000  1.000 - 1.059
7 q 0.750  0.000 0.759 -
8 q 0.250 0.000 0.241 -
c)
Internal Point Analytical BEM
Coordinates N=8
z Yy c Gz Gy c Gz Gy
0.333 0.333 0.333 0.000 1.000 0.331 0.015 0.999
0.5 0.5 0.500  0.000 1.000 0.500 0.000 1.012

0.667 0.667 0.667 0.000 1.000 0.669 0.014 0.998

d)

Table 2.2: continued.
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2.3 Domain Meshing

A mesh is a particular discretisation of boundary elements. The input for a BEM
program consists of the coordinates of the boundary elements’, plus known boundary
conditions and values. These must be specified in a consistent direction to ensure
flux is defined identically for all elements. Additionally the coordinates of any

internal points may be included if these are desired.

The behaviour of concentration and flux for two different types of domain will not

be identical thus one particular mesh is not necessarily valid for both domains.

Finite Difference'®16:91:92 and Finite Element'3? experience has shown that efforts
to increase the number of points near areas of high flux have a considerable effect
on accuracy. Expanding grids and conformal maps have proven to be most effective
in this regard. Increasing the density of boundary elements may have an analogous
effect. This problem may be addressed in a number of ways. For example, empiri-
cally, increasing the number of elements near known areas of high flux, or using an
automatic adaptive mesh, which calculates an error value at each element. If this is

greater than a threshold error, then the element size is reduced.!337135

An important feature of modelling microelectrodes is the boundary singularity
caused by the abrupt change in boundary conditions at the edge of the electrode.
At the point of singularity the magnitude of the flux approaches infinity. Therefore
the variation of flux across the electrode contains large flux gradients. There is
very little concerning BEM mesh optimisation and discretisation behaviour in the
literature. The effect of different discretisation strategies for the BEM applied to
microelectrode problems is investigated in sections 2.5.3 on page 98 and 2.7.1 on

page 110.

A mesh input routine is required to generate a suitable boundary mesh for the do-
main to be modelled. It is advantageous if the number of elements over different
parts of the boundary are flexible. The mesh generated should be exactly repro-
ducible when the same input is used. To exploit the benefits of the BEM a variety
of geometries need to be described. Programming a flexible input routine for the

BEM involves considerable effort. Preferably, the routine should also be extensible

For linear or higher order elements the connections of elements must also be specified.
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to unforseen geometries. Two and three dimensional mesh generation is currently

an active area of research.!36
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2.4 Computational Aspects

The steps in a typical Boundary Element Method program are described in table 2.4
on the following page. The second and third steps, the core of the method, are
shown in more detail using pseudo-code. Any programming language may be used

to create a BEM program. However, both the core method and a flexible input

137-139

routine benefit from the advantages of an object-oriented language such as

C++140.141 or Java.'*? Double precision floating point variables were used at all

times.

2.4.1 Matrix Solving Routines

Solving the matrix equation, equation 2.33, is the slowest step in the BEM sim-
ulation. The size of A is determined by the total number of source points used
to discretise the domain. If higher order elements are used, this may increase the
number of source points thus enlarging A. For linear elements the number of source
points is equal to the number of elements, and although flux components are com-

puted separately, they are combined before the matrix inversion step.

In contrast to FDM and FEM methods there is no banded structure to the matrix,
it is always fully populated. Although it takes longer to solve an equation with a
fully populated matrix, the discretisation of the domain requires fewer elements than
these alternative methods, resulting in much smaller matrices. Matrix solving is an
O(N?®) processt, so the practical limit on the total number of elements is reached
fairly quickly. It is possible to increase the speed of the process!?143 if specific

character traits are present in A.

Some limited investigations were made as to the character of matrix A, as it is
important to ascertain the possibility of any errors arising from the matrix solv-
ing procedure. For all domains tested A was found to be stable and was not ill-
conditioned, and all were diagonally dominant. Both pivoting Gaussian elimination

and LU decomposition were used in the simulations herein.

{The Gaussian elimination algorithm has a computational cost which scales with O(N?) and a

memory requirement which scales with O(N?).
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S

1. Input the boundary geometry, boundary conditions and associated values.

2. Loop source point, s =1to s =N
Loop element, j =1toj =N
If integration is non-singular (s # j)
Loop gaussian integration g = 1 to g = NI
L(s.9) = L(s.) + k [a} (,v,1,)], (ean. 2.27)
M (s, j) = M(s,j) + &k [W}(z,y,&,&)], (eqn. 2.28)
Else integration is singular (s = 7)
L(s, j) = analytical solution (eqn. 2.23)
M(s,j) =1/2

3. Apply boundary conditions to form matrix A and vector B.

Loop source point, s =1to s =N
Loop element, j =1toj =N

4. Standard linear algebraic equation solver, for example, Gaussian
Elimination, obtains the unknown values .

5. Order boundary values obtained into vectors ¢ and g which already
contain known values. All boundary values are now known.

6. Repeat step 2 for each internal point if any exist, which become the
source points, remembering d, = 1. Obtain concentration and flux values
from equations 2.34 and 2.36 respectively.

Table 2.3: A description of the steps in a constant element Boundary Element
Method program. Symbols used in the table are; N total number of boundary
elements, s source point integer counter, j element integer counter, g gaussian
integration integer counter, k gaussian integration constant, NI number of
integration points, L, M influence coefficient matrices, A, B matrix and vector
used for linear algebra solver input, W fundamental solution, ¢* derivative of
fundamental solution, ¢ concentration, ¢ flux.
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For validation of the BEM, section 2.5.3 on page 98, each simulation took less than

0.1 seconds.

Programming was completed in a mixture of C'** and C++, using Microsoft Visual
C+-+6. Simulations were run on various computers including an IBM® SP2, Silicon

Graphics® Origin, and Intel® Pentium® 650MHz.
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2.5 Validation of the Method

To investigate the properties of the BEM and validate the accuracy of the method an
electrochemical system which is described by the Laplace equation in two dimensions
is chosen. A double microband is a suitable system for which previous results are

available for comparison.

2.5.1 The Double Microband

The double microband (DMB) consists of two microband electrodes situated in
close proximity, figure 2.10. The magnitude of the current is affected by the elec-

trode width, the distance between electrodes, and the geometry surrounding the

electrodes.
< ceil >
Ywall 4
solution
wall
v
collector I
'xfbl 0 xgen xgap Xeoll xﬂ;r

t—insul —>¢—pw—P¢—g—P¢—p—>¢—jnsul—>

Figure 2.10: The double microband domain. Electrodes are solid
coloured, the dotted lines are semi-infinite boundaries and a dashed

pattern corresponds to the insulator.
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A Note on Boundary Conditions

The double microband system can operate in generation-collection mode where one
microband acts as a generator while the other acts as a collector. However, the
current obtained at the electrodes will depend on the boundary conditions chosen.

Hence it is necessary to distinguish between theoretical, simulated and experimental

conditions.

Theory The concentration is equal to bulk concentration and flux is equal to zero

at an infinite distance from the electrodes; ¢ = ¢* and ¢ = 0.

Simulation The bulk concentration condition or zero flux condition apply at a

large, but finite, distance from the electrodes; ¢ = ¢* or ¢ = 0.

Experimental We may consider that concentration is equal to the bulk value at

a finite distance from the electrodes due to natural convection;!%® ¢ = c*.

In terms of simulation, the current obtained is expected to depend on the far field
boundary conditions chosen. For a double microband, inlaid in a flat insulating
surrounding material, the steady state reached after a diffusion controlled potential
step is considered. One may distinguish three situations corresponding to the three

paragraphs above:

Case 1 - A quasi-steady-state, where the current is a function of time;
i= f(1/Int), when ¢ = ¢* and g = 0 at infinite distance.

Case 2 — A true steady state, when ¢ = 0 at a finite distance.

Case 3 — A true steady state, when ¢ = ¢* at a finite distance.

The Simulation Model

The electrochemical reaction simulated at the generator electrode is

A+e = B (2.37)
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where the assumption of equal diffusion coefficients is made to simplify the treat-
ment, D4 = Dg. The system is assumed to be diffusion controlled, and only species
A is considered. Applying a conservation of matter principle, the concentration of

species B is equal to Cj — C4, where C is the concentration of A in bulk solution.

Steady state diffusion gives the Laplace partial differential equation

2 2
pPCXY) | POXY)

0X? g 0 (2.38)

Dimensionless Parameters Standard non-dimensional parameters are used!

and the following variables are defined,

C:'g;: x:.i_f_, y:g (2.39)

where ¢ dimensionless concentration no units

C  real concentration mol cm ™3

C* bulk concentration mol cm ™3

x  dimensionless distance along the z axis no units

X actual distance along z axis cm

y  dimensionless distance along the y axis no units

Y  actual distance along y axis cm

w  width of the generator and collector electrodes cm

This gives a dimensionless original partial differential equation

?c(z,y) O%c(z,y)
’ LA 2.4
Ox? + Oy? 0 (2.40)

For simplicity, current is normalised by the steady state current at a Thin Layer
Cell, where the distance separating the electrodes in the TLC is equal to the width
of the electrodes in the DMB.

. Z.Tea.l
fnorm = L FDC*L (241)

where i, is current in A, n is the number of electrons, F' the Faraday constant

and L the length of the electrodes.
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The Feedback Effect

In a generator-collector double microband configuration the collector electrode is
placed in close enough proximity to impinge upon the diffusion field of the generator
electrode. The collector is set at a potential sufficient to instantaneously convert
all of species A which comes into contact with it to species B. The regeneration
of species B by the collector leads to an increase in current at the generator. This

effect is called positive feedback.

Conversely if a physical object in some way obstructs the natural shape of the
diffusion field the amount of species reaching an electrode may be restricted, leading

to a reduction in current, known as negative feedback or hindered diffusion.

These phenomena are also seen in other electrochemical systems; for example, Scan-
ning Electrochemical Microscopy (SECM). Depending upon the nature of the sub-
strate (conducting or insulating) positive or negative feedback, respectively, are

observed.

A similar feedback effect is of course observed in electrochemical simulations. How-
ever, feedback may also occur (erroneously) if a semi-infinite boundary is set too
close to the electrodes. If a bulk concentration value is set, positive feedback occurs;

with a zero flux condition negative feedback is observed.

This is a common problem with all simulation methods; as part of the validation
process, one must ensure that semi-infinite boundaries are at a sufficient distance

to have a negligible effect on electrode response.

The positive feedback from concentration boundaries not only affects the magnitude
of the current, but will also determine whether two currents are equal and opposite,

at steady state, or whether they are slightly different, at quasi-steady-state.

Analytical Solution for the Steady State

In each case, simulation results were compared to the exact solution given by Am-
atore and Fosset.!*6 This was obtained using a specific conformal mapping for

the double microband, and solving the steady state diffusion equation in confor-

76



Chapter 2 2.5 Validation of the Method

mal space. The solution is in terms of elliptic integrals which must be numerically

integrated.

Current Calculation

The current is simple to calculate from the Boundary Element Method as flux values
are obtained directly. Using the dimensionless form of current and discretising the

electrode boundary the integral in equation 1.55 becomes a summation of element

fluxes giving

w ac(x y) NE cpec
Inorm = — dz = qdi (242
/0 Oy y=0 ; )

where inomy is current, w width of the electrode, c(x,y) concentration, i element
number along the electrode, NE . number of elements along the electrode and g¢;

the flux at element 1.

2.5.2 Discretisation Effects

Discretisation of the domain is an important consideration. Convergence must be
shown when increasing the number of elements and optimal parameters for element
spacing were investigated. There are singularities at both edges of both electrodes.
Exponential grids have proven effective at increasing accuracy in alternative simu-
lation techniques,” and their effect within the BEM is considered here. Convergence
should also be shown when increasing the distance from the electrode outer edges

of the system to the semi-infinite boundary.

Boundary Conditions

The nature of the boundary condition (Dirichlet or Neumann) and its value must be
prescribed for each element around the domain. On the generator electrode, as the
reaction is diffusion controlled, all species A is instantaneously reduced to species B,
giving zero concentration of A. Likewise all of B is instantaneously oxidised back to

A at the collector electrode, giving a bulk concentration of A. It is impossible for any
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species to cross through the material surrounding the electrodes, thus a boundary
condition of zero flux perpendicular to the insulator surface is set. The semi-infinite
boundaries, figure 2.10 on page 73, are assumed to be at a far enough distance from
the electrodes that the flux is negligible and concentration remains at their bulk
value, ¢ = c¢*. Alternatively one may consider the semi-infinite situation as a zero
flux, ¢ = 0, condition. Although both conditions are true it is possible to prescribe
only one boundary condition. The other is obtained from the simulation and may
be compared to the expected value. To test the algorithm, the effect of setting each

condition was examined and will be discussed in section 2.5.2 on page 89.

Assuming a zero flux condition for the far field boundaries, the boundary conditions

are summarised in table 2.4.

‘2‘% =0 y=20 —xp <z <0 (2.43a)
Tgen <T < Tgap (2.43b)

Teotl <T < Tppr (2.43c)

Y = Yuwa —Zpr ST < Tppr (2.43d)

0 <y < Yuau T = —Tm (2.43¢)

T = Tppr (2.43f)

c=0 y=0 0 <z < Zyen (2.43g)
c=1 Zgap ST < Zeonr (2.43h)

Table 2.4: Boundary conditions for the double microband simula-
tion. m is the direction normal to the boundary. These conditions
would, in practice, require an initial solution of 50% reactant and
50% product if using a two electrode system.

Under these conditions the double microband modelled reaches a steady state as
only the electrodes act as source and sink. The simulated collection efficiency should
be 100% as the generator current should be identical to the collector current. In
the following results only generator currents are shown as all collector currents
were within 0.01% of the respective generator current. It should be noted that
experimentally this is not the case, as the collection efficiency of the collector is
less than 100%. This is due to a proportion of the generated species, B, escaping
to the bulk solution, in addition to positive feedback from bulk solution which

is transported near to the electrodes by natural convection. For the simulation,
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assuming a zero flux far field boundary condition, no matter is allowed to escape

giving a 100% collection efficiency.

Equal Spacing

Collector, generator and gap widths were set to the same value, w. The semi-infinite

boundaries were initially set at 10w, then 1000w.

A simple discretisation with equal length elements and zero flux semi-infinite bound-
ary conditions, Figure 2.11, appears to converge with an error, relative to Amatore’s
analytical solution,'*® of less than two per cent. This error is due to the proximity
of the semi-infinite boundaries, zfp, Zspr and Yyeu in figure 2.10 on page 73. See

section 2.5.2 on page 89 for additional details.

0.8 5
analytical value} -=-------=-----rmmm s Pl ebstiette ttlsilstlstnissilst st
number of elements per unit length
0.6 - o [ 5 10 15 20 25 30
2]
o
i 0.4 - ]
norm § -8
@
-t °\° -10
0.2 - 1o
IGJ-
0.0 T T ' T T T T T T T T 1
0 5 10 15 20 25 30

number of elements per unit length

Figure 2.11: A convergence test for the double microband model,
using equal sized elements. Parameters used were w = 1, g = 1,
wall = insul = 10. Comparison is made with an exact value of
0.7817, calculated using the analytical solution of Amatore and
Fosset. 146
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When elements of equal size are used computing limitations prevent positioning
the far field boundary far away, as required to reach convergence. Using current
computer hardware® the number of elements needed give long simulation times,
which are impractical. As seen in section 2.4, on page 70, on computational aspects,
the time taken to complete a simulation is of O(/N?), where N is the total number of
elements. To allow sufficiently large semi-infinite boundary distances different types

of mesh discretisation were investigated.

Exponential Mesh Spacing

There has been a significant amount of research undertaken into exponential mesh
effects in the electrochemical Finite Difference field.®7>%6 This has shown that when
exponential mesh optimisation is implemented the function used must be continuous
and the smallest mesh spacings should be equal. Similar Finite Element investiga-
tions'*” have also found that a continuous function must be used. The effect of these
properties on the BEM are presented below. An advantage of BEM is that the for-
mulation is unaffected by element spacing, in contrast to FD where the governing

partial differential equation is directly affected.

A logarithmic expansion, previously used in Finite Difference simulations,® %1% was

applied with two variations in implementation.
y = In(1+ ax) (2.44)

The coeflicient « affects the relative size of elements within a section of the boundary,

figure 2.12 on the following page.

A large « value increases the number of elements near the edge of the section. If
higher densities of elements are required at both ends of a section, for example on
an electrode, the distance may be divided by two and a variation of equation 2.44

applied to both halves.

The expansion between different sections of the boundary may be related in one

of two ways, shown in figure 2.13 on page 82. Either the smallest size elements

$Typical computer used for simulation: Intel® Pentium® IIT 650MHz, 192Mb Memory.
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Figure 2.12: The effect of @ on exponential spacing. A constant
interval of Ay is used to calculate each element length. A small
a value corresponds to virtually equal size elements, larger values
give significant variation in size.

are identical (fixed ratio) and the number of elements is dependent upon section
length or there are the same number of elements within each section (fixed shape)
regardless of section length. A consequence of setting the smallest element size is
that for a given « value the expansion will probably not fit a given length exactly.
Thus the final element size must be truncated. This was done by checking the
truncated length with the previous element length to ensure the final element was

of comparable size.

Figure 2.14 on page 83 shows the effects of applying exponential spacing to different
sections. The number of elements over the electrodes was fixed at ten. The o
coefficient was varied from 0.01, which gives virtually equal size elements, to 100

which gives a large variation in size within a section.

As expected accuracy increases when the number of elements near the edge of the
microband is increased. However, examining the two components of this - the elec-
trode side and the outer side - shows that increasing the number of elements on the

outer side seems to have little effect and the increase in accuracy is due solely to
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Fixed Ratio
smallest elements have
the same size on either final element truncated
side of the boundary to meet required length
Hl | i il 1| | | I l | [
MrrT 1T 1 [ | | | |
0 1 3 5 7 9 11
electrode insulator
Fixed Shape
different size elements on length of final element
either side of the boundary as dictated by
singularity exponential formula
IM | ‘\[
NN ‘
0 1 3 5 7 9 11
electrode insulator

Figure 2.13: Two types of exponential mesh were implemented. In
the fixed ratio type expansion the smallest elements in adjacent
sections were identical and the final element may be truncated.
The fixed shape type expansion fitted a given number of elements
exactly to the section length.

the electrode side discretisation. The type of exponential distribution, fixed ratio
or fixed shape, affects the discretisation on the insulator relative to the electrode.
The element size on the insulator is found to have little effect, thus the difference

between types of distribution is negligible.

This is a surprising result as both sides of the singularity could be presumed to have
equal influence. Large concentration gradients surround the whole area near the

edge of the electrode, including the part of the insulator immediately adjacent.

This behaviour was confirmed by looking at the ratio of number of elements in

different sections.

Section Element Ratios

The number of elements over one or more sections of the boundary was fixed, and the

effect of increasing and decreasing the number of elements around the fixed section(s)
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equal spaced elements
simulation value 0.76 —

observed. Within each boundary section the elements were of equal length.

where

analytical value

0.78 —

= g

e = + ]
.

i Exponential Spacing Type
electrodes + gap + insulator ~ fixed ratio

electrodes + gap + insulator ~ fixed shape
electrodes n/a

insulator fixed shape
gap fixed shape

0.75

T
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Figure 2.14: The effect of using an exponential mesh over various
boundary sections. The expansion type is explained in figure 2.13
on the preceding page. w = g = 1, wnsul = wall = 10, NE gec =
NE;p = 10, NE you = 100, NE .y = 200. NE;p. depends upon
the exponential mesh used varying from 96 to 19. Two limits are
given, the analytical value for this geometry from reference'*® and
the value simulated with all equally spaced elements. The number
of elements over the semi-infinite boundaries was fixed as varying
these had a negligible effect on current response.

E variable

Ratio = ————
atio NE oea

NE yorianie number of elements in variable section per
unit length

NE fizeq number of elements in fixed section per
unit length

1
100

(2.45)

Table 2.5 on the next page shows that only the number of elements over the elec-
trodes seems to have a discernible effect on the total fluxes at the electrodes. This

behaviour may be due to this particular geometry, but as little as one element over

each non-electrode section seems to be sufficient.
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Ratio Fixed Section(s)
electrodes electrodes/gap electrodes/gap/
insulator
fewer elements ind 0.1 0.7610 0.7610 0.7613
variable section 0.2 0.7608 0.7608 0.7605
relative to fixed 0.3 0.7608 0.7608 0.7605
section 0.5 0.7607 0.7607 0.7607
1 0.7607 0.7607 0.7607
. 2 0.7607 0.7607 0.7607
more elements in | g 0.7607 0.7607 0.7606
Z;Ziif:f‘ﬁ;‘;ﬁ 4 0.7607 0.7607 0.7606
section 5 0.7607 0.7607 0.7606
Y 10 0.7607 0.7607 0.7608

Table 2.5: The effect of section ratio discretisation. Znorm values
are given. The sections of the double microband are defined in
figure 2.10 on page 73. Fixed sections each had 10 elements, and
the ceiling section had an additional ratio to give equal size elements
to the two side sections. w = ¢ = 1, insul=wall=10.

A convergence test was performed increasing the number of elements over the two

electrodes, while fixing the number of elements over the rest of the domain. This

allows a significant increase in the maximum number of elements over the electrodes

before computing limitations become relevant.

Table 2.6 shows convergence to four decimal places with a 0.02% error using 1000

elements.

NEelec inorm error /%
1 0.6612 —15.41
2 0.7088 —9.32
3 0.7317 —6.39
4 0.7437 —4.86
5 0.7510 —-3.92
8 0.7623 —2.48
10 0.7662 -1.99
15 0.7713 -1.33
20 0.7739 —1.00
30 0.7765 —0.67

NEelec inorm error /%
20 0.7786  —0.40
79 0.7796  —0.27
100 0.7801  —0.20
150 0.7807  —-0.13
200 0.7809  —0.10
300 0.7812  -0.07
400 0.7813  —0.05
500 0.7814  —0.04
750 0.7815 —0.03
1000 0.7815  —0.02

Table 2.6: Increasing the number of elements over the electrodes
only. All other sections have a fixed number of elements. w = g =
1, insul = wall = 1000, NEmsul = NEgap = NEceil = NEwall = 10.
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Exponential Discretisation Over Electrodes Only

To simulate a larger number of microband electrodes it is preferable to reduce the
number of elements required to maintain accuracy. The effect of an exponential
mesh over the electrodes only, with other boundary sections equally spaced and the

number of elements fixed, is shown in table 2.7.

24 NE elec inorm error /%

0.01 20 0.7739 —1.00
0.1 20 0.7742 —0.96
0.5 22 0.7753  —0.82
24 0.7762 —0.71

26 0.7773  —0.57

0.7779  —0.48
28 0.7788  —0.38

7.5 30 0.7793  —0.30
10 30 0.7797 —0.26

20 32 0.7804 —0.17

30 32 0.7807 —0.13

40 34 0.7809 —0.10

o0 34 0.7810 —0.09

75 34 0.7812 -0.07

100 34 0.7813 —-0.05
200 36 0.7814 -0.03
300 36 0.7815 -0.02
500 36 0.7816  —0.02
1000 36 0.7816 —0.01

CT L0 B
[\l
(@)

Table 2.7: The effect of exponential spacing over both electrodes
only, all other boundary sections have a fixed number of elements.
w =g =1, insul = wall = 1000, NEpsy = NEgop = NE oy =
NE o = 10.

Significantly increased accuracy is obtained relative to the same number of equally
spaced elements. The greater the severity of the exponential mesh (larger « values)
the greater the increase in accuracy. An equally spaced mesh with 36 elements
gives an error of approximately 0.5% compared to 0.01% for the exponential mesh
with the same number of elements. As the a value increases the size of the initial
element immediately adjacent to the boundary singularity decreases. At o = 1000
the smallest element [, = 10™%. There is a danger with larger a values and therefore

smaller [, values that roundoff errors may cause problems. Matrix solving routines
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are particularly susceptible to very small numbers leading to problems with ill-

conditioning (see section 2.4.1 on page 70).

An advantage of using an exponential mesh is the significant reduction in the number
of elements required for a given accuracy. For the double microband model 54
elements over each electrode produced the same accuracy as 1000 equally spaced

elements; table 2.8.

Equal Mesh Exponential Mesh
NE .. error /% NEg error /%

20 1.00 6 0.60
100 0.20 10 0.20
200 0.10 54 0.01

1000 0.02

Table 2.8: A comparison of equal and exponential mesh spacing
over the electrodes. w = g = 1, insul = wall = 1000, NE s =
NEgap = NEceil = NEwa” = 10, a = 500.

Local Mesh Refinement

To confirm, contrary to Finite Difference and Finite Element experience, that the
continuity of exponential functions is not important in BEM, a local mesh refinement

on the insulator, and also on the generator, was simulated as shown in figure 2.15

on the following page.

The number of elements over the outer section of the insulator was fixed at 10
while the number on the local section was varied. Table 2.9 on the next page shows
that local refinement on the insulator has no effect on the simulated current. The
simulation was repeated, observing the effect of local refinements on the generator
electrode. Here accuracy does improve as the number of elements near the generator
edges increases. This emphasises the conclusion that using continuous functions for

the expansion of element length is unimportant.
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insulator

electrode
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local inner local

Figure 2.15: Local mesh refinement for a) insulator; section insul
and b) electrode; section w. Refer to figure 2.10 on page 73 for
section definitions. The number of elements on the local mesh was
varied while keeping the outer/inner mesh fixed. This tests whether
a continuous function is required for mesh refinement.

insulator generator
NE local inorm NE local 7;norm

1 0.760776 1 0.74915

2 0.760773 2 0.758824

4 0.760772 4 0.763577

8 0.760771 5 0.76453

10 0.760771 8 0.765961

12 0.760771 10 0.766439

14 0.760771 12 0.766757

20 0.760771 14 0.766985

25 0.760771 16 0.767155

30 0.760771 20 0.767394

40 0.760771 25 0.767585

50 0.760771 30 0.767713

40 0.767872
50 0.767968

Table 2.9: The effect of local mesh refinement over insulator and
generator boundary sections respectively. w = g = 1, insul =
wall = 10, NEceil == NEwalls e NEinsul = 100, NEgap:I(], NEouter —
90. NEiiner = 9.

Mesh Discretisation Conclusions

The microband current, the parameter used here to assess accuracy, is dependent on

the flux at elements over the electrode (refer to equation 1.25). Results show that
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Chapter 2 2.5 Validation of the Method

two factors contribute to determining accurate fluxes; the number of elements over
the electrode and a higher density of elements in areas of high flux. The influence of
the number of elements over sections not used to determine current is small. This
implies that singular integration is the dominant component of the influence coef-
ficient matrices in the Boundary Element Method. For inlaid generator-collector
microband models simply providing sufficient elements over the electrodes is ade-
quate to ensure accuracy. However this domain is a special case, and this discretisa-
tion behaviour does not hold for other domains. Investigations of discretisation for
raised microbands (see section 2.7.1 on page 110) shows that the mesh must have
enough elements to adequately describe local geometric features. A point to empha-

size is that for each new type of domain some form of confirmation of discretisation

behaviour should be made.
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Semi-Infinite Boundary Conditions

Boundary Condition Simulations thus far have used a semi-infinite boundary
condition of zero flux, ¢ = 0. If the alternative boundary condition of fixed con-
centration, ¢ = 1, is used for simulation, the two electrodes have unequal currents,
even for large values of insul (> 10%w). This is due to significant feedback from the
far field boundaries increasing the current at the generator electrode. Alternatively
one may consider that both the collector electrode and the far field boundaries act

as sources, while the generator electrode acts as a sink.

Figure 2.16 on the next page shows concentration profiles for a fixed concentration
boundary condition. These behave as one would expect for a double microband
at steady state; values smoothly approach ¢ = 1 near semi-infinite boundaries. A
concentration map, figure 2.17 on page 91, uses bilinear interpolation'*® between
internal point values to visualise variation of concentration across the entire xy

plane of the simulation domain.

89



Chapter 2 2.5 Validation of the Method

1.0 —

0.8

0.6

0.4 -

0.2 4

0.0 +——1— . — —
0 200 400 600 800 1000 1200 1400 1600 1800 2000

X

a)
1.0
0.8
0.6

0.4 -

0.2

0.0 ' ; . } . y . r
990 995 1000 1005 1010

b)

Figure 2.16: The concentration profile along the surface of the mi-
croband and surrounding insulator, y = 0. The semi-infinite bound-
ary condition was a fixed concentration value equal to one, ¢ = 1.
a) is the profile of the whole domain, b) the area immediately adja-
cent to the electrodes. Additional parameters used were w = g = 1,
insul = wall = 1000, NE ;ecii0n = 50 with 1 : 1 ratio spacing be-
tween sections. For b) additional elements along two sections 40w
either side of the electrodes were used.
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Figure 2.17: a) A concentration map of the entire domain for a
fixed concentration, ¢ = 1, boundary condition. Values were inter-
polated between internal points. b) A flux map with concentration

The length of the flux arrows are proportional to the

flux magnitude. However, the arrow heads are fixed in size.

contours.

The

number of internal points, N;,:, was 3588 for an equal spaced grid
of 92 x 39. Semi-infinite boundaries were set at a distance of 10w.

Additional parameters; w
the entire domain.

g =1, NE 4. = 4 equal spaced around
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For the zero flux boundary condition, concentration profiles show that values at the
far boundaries converge to ¢ = 0.5, figure 2.18.
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Figure 2.18: The concentration profile along the surface of the mi-
croband and surrounding insulator, y = 0. The semi-infinite bound-
ary condition was a zero flux condition, ¢ = 0. a) is the profile of the
whole domain, b) the area immediately adjacent to the electrodes.
Parameters are identical to figure 2.16 on page 90.

The double microband system may be compared to a Thin Layer Cell (TLC), fig-
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Chapter 2 2.5 Validation of the Method

ure 2.19a below, which has planar collector and generator electrodes opposite each
other. Species diffuse linearly at a steady state. The DMB at steady state may
be thought of in terms of a Thin Layer Cell that is opened out, split in the centre
where ¢ = 0.5. In regions far from the electrodes, the concentration converges to
this value. The contour map for the zero flux boundary condition, figure 2.20 on
the following page, supports this interpretation; ¢ = 0.5 at distant regions from the
electrodes, figure 2.20a on the next page, and the ¢ = 0.5 contour line splits the

DMB domain in half, 2.20b.

% generator electrode
generator electrode
®
g*| x=04 ~ x=too
d

an

T ollector elecimode

a 1" b
W*

a) b)

Figure 2.19: a) Schematic of a Thin Layer Cell. Boundary con-
ditions are ¢ = 0 along the lower electrode and ¢ = 1 along the
upper electrode. A concentration of ¢ = 0.5 is found at d/2. b)
The transform space used by Amatore et al.'46

This view of the double microband at steady state in terms of a Thin Layer Cell may
be related to a previous finite difference simulation by Amatore and Fosset.!%6 They
used a conformal mapping to convert a double microband from cartesian coordinates
to a transformed space, which was identical to a TLC. The centre of the DMB and

infinite boundaries, in transformed space, were located either side of the domain at

z = 0.5, figure 2.19b on this page.
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b)

Figure 2.20: a) A concentration map of the entire domain for a zero
flux, ¢ = 0, boundary condition. Values were interpolated between
internal points. b) A flux map with concentration contours. The
length of the flux arrows are proportional to the flux magnitude.
However, the arrow heads are fixed in size. Parameters are identical
to figure 2.17 on page 91.
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Boundary Distance If the semi-infinite boundary, sy, s, and Yy in fig-
ure 2.10 on page 73, is not sufficiently far from the generator electrode it will influ-
ence the electrode current. If the boundary condition prescribed is concentration,
set at the bulk solution value, species A will diffuse from the semi-infinite boundary
to react at the generator electrode, creating positive feedback between the boundary
and the generator, and the current will be artificially raised. This is analogous to

convection bringing the infinite boundary to a finite distance from the electrode.

This effect is observed by comparing the effect of semi-infinite boundary distances
of insul = 10 and insul = 1000 on concentration and flux values, figure 2.21 on
the following page. The discretisation used was a constant number of elements
along each boundary section, equally spaced within the section. Details are given in
table 2.10. Variation of concentration and flux values with element number allows

direct comparison of a small and very large semi-infinite boundary distance.

Element Type of Domain coordinate range
number, boundary

65

T Yy
0—50 insulator —Tm < <0 y=0
51 — 100 generator 0< 7< Then

101 — 150 gap Tgen < T < Tgap
151 - 200 collector Zgap < T < Zou
201 — 250 insulator Teotl < T < Tppr
251 — 300 far field T = Zppy 0 < ¥y < Yuail
301 — 350 Tr < T < —Tpnl Y = Yuall
351 — 400 T=—Tm  Ywar < Y<0

Table 2.10: The correlation between element number, and bound-
ary sections for the simulations used in figures 2.21 and 2.22. A
total of 400 elements were used, with 50 over each boundary sec-
tion. Within sections the elements were equally spaced. Additional
simulation parameters are given with the figures.

When the boundary is too close, the flux at the generator electrode increases signif-
icantly, while the flux at the collector decreases, figure 2.21c, compared to the large

distance, figure 2.21d.

If the semi-infinite boundary condition is set to zero flux, hindered diffusion occurs,

reducing the current. The corresponding results for zero flux semi-infinite boundary
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Figure 2.21: The variation of concentration and flux as a function
of element number, for a semi-infinite boundary condition of fixed
concentration, ¢ = 1. A total of 400 elements were used; 50 over
each boundary section, with a boundary distance for a) and c¢) of
insul = 10 and for b) and d) of insul = 1000. c is concentration, g
is flux, e, is element number. Additional parameters; w = g = 1,
NE g = 50. The relation of element number, e, to boundary
section is given in table 2.10 on the page before.

condition, figures 2.22a-d on the following page, show the concentration does not
converge to ¢ = 0.5 at regions near the semi-infinite boundary; figure 2.22a. The

flux values are equal at both electrodes, but lower than the correct value.

It was found that the distance from the double microband to the edge of the domain
sufficient for there to be negligible effect on the current occurred at distances greater

than 1000w, assuming a zero flux semi-infinite boundary condition.

These results used equal insul and wall length. When the semi-infinite boundary
lengths are altered independently the generator and collector currents diverge, both

becoming significantly erroneous.
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Figure 2.22: The variation of concentration and flux as a function of
element number, for a semi-infinite boundary condition of zero flux,
g = 0. Parameters were identical to figure 2.21 on the preceding

page.

This is due to the hemi-cylindrical shape of the diffusion field at long distances from
the double microband. Therefore far field boundary lengths must be identical to

prevent interference from these boundaries.

Steady States As mentioned at the start of section 2.5.1, it is important to
distinguish between definitions of steady state, which depend upon the system under

consideration.

Theoretically the double microband should reach a quasi-steady-state at long times
after a potential step.'® At these long timescales, effects such as natural convection
should also be taken into account. Natural convection will bring the bulk concen-
tration condition near the electrode and affect the current. The quasi-steady-state

current will become a steady state current.
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The Boundary Element Method is a mathematical model, which in this case solves
the Laplace equation. Thus the method is a simulation of a mathematical steady
state. The choice of boundary condition at the semi-infinite boundary is important.
A zero flux condition imposes a steady state upon the double microband; when the
boundary is at a sufficient distance it may be considered an approximation of an
infinite zero flux boundary. A fixed concentration condition allows feedback from the
semi-infinite boundary; this is analogous to the boundary layer imposed by natural

convection.14?

2.5.3 Validation

Based on the results presented above the optimal parameters for the inlaid double
microband BEM simulation were chosen as follows. A value of oz = 500 was used as,
although higher values are permissible, the risk of errors arising from roundoff prob-
lems increases. The number of elements over each electrode was set at NE .. = 54
while all other boundary sections are fixed at NE = 10. The semi-infinite boundaries

were prescribed a zero flux condition, and a distance of 1000w.

The simulation program was initially validated for a simple heat flow domain by

comparing values for individual elements with values in Brebbia et al.?

Using the parameters outlined above results were compared to Amatore and Fos-
sett’s'*6 analytical solution, figure 2.23 on the next page. Excellent accuracy is
achieved, with less than 0.1 per cent error for all values of g, the gap length between

generator and collector electrodes.

As expected the simulated current decays significantly as the gap between the two
electrodes increases. This is analogous to the positive feedback approach curves
observed in SECM where tip current decreases when the tip moves away from a

conducting substrate.
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—— BEM simulation
1.00 - -+ Amatore and Fosset et al.

norm

Figure 2.23: Validation of the double microband BEM method.
Values are compared to the analytical solution of Amatore and
Fosset.'4¢  Simulation parameters used were w = g = 1, insul =
wall = 1000, NEinsul = NEgap = NEcez’l = NEwa“ = 10, a = H00.
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2.6 Microband Arrays

Arrays of microband electrodes have been studied for some years in the labora-
tory.'5%151 They are now commercially produced'®? and have started to be used
for industrial applications. An array may consist of two to ten to many hundreds
of separate bands. When a large number of bands is used, the array is considered
for theoretical purposes to be of infinite length. An array has two modes of po-
tentiostatic operation: identical potential and generator-collector. The latter mode
is more commonly used, these electrodes are also known as Interdigitated Arrays
(IDA). In this section the Boundary Element Method is used to investigate the
properties of various generator-collector microband array geometries. The simplest

system is the double microband electrode (DMB), described in detail in section 2.5.1

on page 73.

The response of a particular cell geometry depends upon the relative size of certain
characteristic dimensions with respect to the diffusion layer size. The characteristic
dimensions of a microband array are the width of the electrodes, the gap between
adjacent electrodes and the overall width of the entire system, which depends upon

the previous two dimensions and the number of electrodes.

Previously, finite difference simulations utilising either exponential grids or confor-
mal mapping, and random walk simulations have simulated inlaid double and triple
microband systems,”» 146133 in addition to infinite arrays.'® However, intermediate
numbers of bands cannot practically be simulated by these methods, as the number
of mesh points required becomes prohibitive. New conformal mappings are required
(if one can be found) for each increase in the number of electrodes or change in
electrode geometry. Due to the advantages of the BEM the same computer pro-

gram may be used to simulate an intermediate number of bands and more realistic

geometries.

In the next section inlaid microband arrays are investigated, with two common
variations of operation; generator-collector pairs and a central generator surrounded
by pairs of collectors. The following section considers deviations from ideal (for

simulation) geometries and the effect this has on current response.
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For all geometries the reaction simulated is the reduction
A+e — B (2.46)

The system is at steady state and assumed to be diffusion controlled.

2.6.1 Arrays of Generator-Collector Pairs

A pair of generator-collector electrodes is the base unit of the array simulated. The
electrode system consists of Npeirs pairs as shown in figure 2.24 on the next page.
The far boundaries are given a boundary condition of zero flux, ¢ = 0, to impose a
steady state and the optimal discretisation parameters determined in section 2.5.3

on page 98 are used. These are shown in table 2.11

Parameter Value

w 1
g 1
insul 1000
wall 1000
o 200
NEelec 10
NE 40, 1
NEinsul 10
NEwall 10
NEceil 20

Table 2.11: Parameters used for multiple electrode simulations.

The current response as the number of electrode pairs is increased is shown in
figure 2.25 on the following page. The current increases from the value for a double
microband to that approaching the value found by Amatore et al'® for an infinite
array. Current values for individual electrodes are given in table 2.12 on page 103.
The outermost electrode can be seen to have the lowest current, as it is adjacent to
only one electrode, rather than surrounded by two as for all other electrodes. The
next electrode, one away from the edge, has a higher than average current. This is
influenced by the increased flux of species at the edge of the array, as more species

have access to the electrode. The same effect is found at the edge of a microelectrode.
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Figure 2.24: A schematic of the first type of multiple electrode do-
main simulated; generator-collector pairs. G=generator electrode,
C=collector electrode. Npgirs is the number of generator-collector
pairs, therefore the total number of electrodes is 2Npgirs-

The average generator and collector currents are equal, as expected, as the system is

at steady state. The individual electrode currents are symmetrical about the centre

of the array.
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Figure 2.25: Increasing the number of generator-collector pairs,
Npairs, from 1 (a double microband, DMB) to 100 (effectively an
interdigitated array, IDA). i,,, is the average current value at the
generator and collector electrodes. The dotted lines are current
values calculated by Amatore and Fosset for a DMB!4¢ and IDA.15°
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Electrode Nopairs
1 2 3 4 5 8 10
G1 0.7800 0.7310 0.7197 0.7147 0.7120 0.7082 0.7070
C1 0.7800 1.0283 1.0443 1.0493 1.0517 1.0545 1.0553
G2 - 1.0283  0.9868 0.9790 0.9759 0.9728 0.9720
C2 - 0.7310 0.9868 1.0023 1.0069 1.0108 1.0116
G3 - - 1.0443  1.0023  0.9946 0.9894  0.9884
C3 - - 0.7197 0.9790 0.9946 1.0022 1.0033
G4 - - - 1.0493  1.0069 0.9948 0.9934
C4 - - - 0.7147  0.9759 0.9982  0.9999
G5 - - - - 1.0517 0.9982  0.9959
Ch - - - - 0.7120 0.9948 0.9978

Table 2.12: The current at each electrode of generator-collector
arrays. Electrode numbering starts on the left side of the array.
Npgirs is the number of generator-collector pairs. The current at
the collector is equal and opposite to the generator; these values
have been omitted.

Electrode currents at larger arrays are shown in table 2.13 on the following page.
The current at electrodes more than approximately four away from the edge of the
array remains constant. As Npes increases the influence of edge currents becomes

less significant and i, the average current, approaches the value for an infinite

array.

All the results thus far have used a gap distance of g = w = 1. The average current
of an array may be normalised by either of the two limits of the number of pairs;
a double microband and an infinite array. The double microband normalisation,
figure 2.26 on page 105, shows that current is dependent on gap distance. For the
alternative normalisation with respect to an infinite array (an InterDigitated Array,
IDA), figure 2.27, the difference in current response is most marked at small gap
values. As the number of pairs increases the current will approach the values found
for an infinite array, giving a staight line (i449/%1p4 = 1). Normalising with respect
to an infinite array is most logical due to the inherent symmetry of the diffusion field.
At any array the diffusion field at the outer electrodes is asymmetrical (assuming
a bulk concentration of one species exists). This is most pronounced with a single
pair of electrodes, the double microband, and the effect becomes negligible with an

increasing number of pairs of electrodes, vanishing completely at an infinite array.
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Electrode Npgirs
20 50 100

G1 0.7047 0.7033 0.7029

C1 1.0567 1.0574 1.0577

G2 0.9708 0.9702 0.9700

C2 1.0128 1.0134 1.0135

G3 0.9871 0.9866 0.9865

C3 1.0047 1.0052 1.0053

G4 0.9919 0.9914 0.9912

C4 1.0016 1.0021 1.0023

G5 0.9940 0.9935 0.9933

C5 1.0001 1.0006 1.0008
G(Npairs/2) — 1 0.9968 0.9973 0.9974
C(Npairs/2) =1 0.9978 0.9974 0.9974
G(Npairs/2) 0.9971 0.9973 0.9974
C(Npairs/2)  0.9974 09974  0.9974
G(Npairs/2) +1  0.9974 0.9974 0.9974
C(Npairs/2) +1  0.9971 0.9973 0.9974

Table 2.13: Selected electrode currents, inorm, for large values of
Npgirs. Electrodes at the edge and centre are shown. Numbering
starts at the left side of the array. Npqrs is the number of generator-

collector pairs.
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lavg/ldmb

Figure 2.26: The variation of the ratio of average generator current,
tavg, to double microband current, ¢4y,s, with gap distance, g. Npqirs
is the number of generator-collector pairs.
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Figure 2.27: The variation of the ratio of average generator current,
tavg, tO an infinite array (IDA) current, i;ps, with gap distance, g.
i1pa is calculated from the empirical equation given by Aoki et al.1%
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2.6.2 Arrays of Collectors Surrounding a Central Generator

The second array type studied is based on a generator surrounded by pairs of col-
lector electrodes, figure 2.28. The simplest of these arrays is the triple microband
(TMB). As more collector pairs are added the generator current increases rapidly,
figure 2.29 on the next page, until after approximately five pairs, when the current
starts to plateau. The distance to the extra electrode pairs is large enough and
the diffusion field is not greatly affected until eventually the additional feedback

becomes negligible. Note the current for a triple microband agrees with the value

found by Amatore et al.'53

I [ [ N [ ] [ ]

Figure 2.28: A schematic of the second type of multiple electrode
domain simulated; a central generator electrode surrounded by col-
lector electrodes. G=generator electrode, C=collector electrode.
Npairs is the number of collector electrodes, so the total number of

electrodes is 2Npgirs + 1.

Table 2.14 on page 108 gives the current at individual electrodes. The array and
diffusion field produced is symmetrical about the centre of the generator electrode,
and only half the array is shown. The system is at steady state and, as expected, the
sum of the collector currents equals the generator current. The current at the outer
electrodes drops off quickly; the probability of species B reaching these electrodes
is relatively small due to their distance from the generator combined with the fact

many other collector electrodes are placed inbetween.

As found with the previous IDA system, the relation of current to gap distance, fig-
ure 2.30 on page 108, is not directly proportional. As the gap distance increases the
influence of additional collector electrodes has a greater effect on generator current.
This may be due to inner collectors shielding outer electrodes. The magnitude of

this effect decays with increasing distance.
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Figure 2.29: The effect of increasing the number of surrounding
collector electrodes. The generator electrode current (igen) is nor-

malised with respect to the current at a triple microband electrode
(4tmb), Npairs is half the number of surrounding electrodes.

Experimentally one would expect feedback from the outermost electrodes becomes
negligible as their distance from the generator surpasses the radius of the hemi-
cylindrical generator diffusion layer. In practice this layer is of a finite size due
to limiting factors, such as natural convection. The steady state BEM method
simulates infinite time, and has an infinite diffusion field; in this case reaching a
finite boundary set at a sufficiently large distance. Thus simulation of very large

generator-collector gap distances will produce some feedback current, but of negli-

gible magnitude.

The TMB current ratio to DMB was also found not to be directly proportional.
This is as expected; the TMB has a symmetrical diffusion field whereas the DMB

does not.
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Electrode N give
1 2 2 4 5 10 30 50

G 1.1745 1.2393 1.2554 1.2616 1.2646 1.2689 1.2703 1.2704
C1 0.5872 0.4593 0.4393 0.4324 0.4291 0.4247 0.4233 0.4232

C2 = 0.1604 0.1058 0.0954 0.0913 0.0864 0.0850 0.0849
C3 e = 0.0825 0.0507 0.0441 0.0380 0.0365 0.0364
C4 = = = 0.0523 0.0309 0.0219 0.0204 0.0203
C5 3 - - = 0.0369 0.0147 0.0130 0.0129
C6 - = = = 5= 0.0110 0.0091 0.0090
C7 = - = — = 0.0089 0.0067 0.0066
C8 = = - - = 0.0080 0.0052 0.0051
C9 = = - = = 0.0082 0.0041 0.0040
C10 = = = = = 0.0127 0.0034 0.0033
C20 = - = = = = 0.0011  0.0009
C30 - = = = = -~ 0.0024 0.0004
C40 = = - - = = o 0.0003
C50 - = - = = -~ = 0.0011

Table 2.14: The current at electrodes for the second type of array,
shown in figure 2.28 on page 106. Nprs is the number of electrodes
surrounding the generator.
1.20
1.18

1.16

1.14

1.12

bea o 1.10-

1.08 -
1.06
E pai
1.04 - —— Npai:s=30
1.02
1.00 . . . - : ; . .
0 5 10 15 20

4

Figure 2.30: The variation of the ratio of the generator current,
igen, and triple microband current, iy, with gap distance. The
array type is a generator surrounded by collectors.
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2.7 Raised and Recessed Double Electrodes

The actual shape of real microband electrodes often differs from the ideal perfectly
flat electrode inlaid in an insulating surround. The most common cause of these
deviations is the method of manufacture. Lithographic techniques typically lead
to slightly raised electrodes, which are electroactive over their entire surface area;
figure 2.31a below. Recessed electrodes may also be produced which are electroac-
tive only along the base of the recess. When electrodes produced by sandwiching
methods are polished, if one of the electrode and insulator material is softer than the

other, the softer surface may be eroded, leading to a raised or recessed electrodes,

figure 2.31b.
insul w g w insul
a) ‘All’
insulating
sides
P i S collector :ljhe
' | | -
insul w 8 w insul
b) “Top’

Figure 2.31: A description of the two types of electrodes simulated.
The electroactive area is shaded, the white area is insulated. Note
a positive value of h, signifies a raised electrode, a negative value a
recessed electrode (only raised are shown). A practical example of
a raised ‘All’ electrode may be found in figure 2 of Alden et al.%

These more complex geometries are difficult to simulate using alternative numerical
techniques, particularly if large numbers of electrodes are involved, but are easily
dealt with by the Boundary Element Method. It is important to quantify the effect

on current response and understand the behaviour of realistic systems.
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The following section investigates the steady state chronoamperometric response of
raised and recessed rectangular double microband electrodes, as shown in figure 2.31
on the page before. These are the geometries produced by the most common meth-
ods of manufacture. The BEM may be used to simulate any shape microband, not

necessarily rectangular, as described in section 2.3 on page 68.

2.7.1 Discretisation of the Domain

It is important to determine the discretisation appropriate for each new type of do-
main shape simulated. Inlaid microband electrodes were investigated in section 2.5.2
using an analytical solution, and in the previous section specific results confirmed
values from previously reported alternative simulation techniques. When a novel
domain shape is simulated, although a known solution will not be available, there
are still some verifications that may be made. These may be based on mathe-
matical modelling requirements, such as convergence with increasing numbers of
elements, or on electrochemical knowledge, for instance convergence with increas-
ing semi-infinite boundary distance. Further verifications may be made concerning

discretisation optimisation.

For the raised/recessed domain basic tests confirmed convergence, however analysis
of different boundary sections showed that, contrary to results for a inlaid system,
the number of elements over the gap between electrodes and the number of elements
near electrodes on the insulator affected the current. The number of elements a large

distance from the electrodes was insignificant.

To obtain sufficient distance of the semi-infinite boundary, insul, discretisation op-
timisation is necessary. It was found that exponential mesh spacing, which ensured
the smallest element was the same size as the equally spaced elements over the
electrodes (referred to as type FixedRatio in section 2.5.2 on page 80) allowed a
large reduction in the number of elements required, with an insignificant change in
current. The value of the expansion coefficient, v, was important as values larger

than o > 10 led to oscillations of flux values on the electrodes.

The simulation domain chosen is described in figure 2.32 on the following page. The

parameters used for all following simulations are given in table 2.15.
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. ceil —
y wall 3

_xfbr .xj:b
Figure 2.32: The far field domain parameters used for this section.
Local electrode features are described in figure 2.31 on page 109.
The parameters used are given in table 2.15 below.

r

Parameter Value Element Spacing Parameter Value

w 1 equal(A) NE 1500

g 1 equal(A) NE elee 50
insul 1000 exponential N E‘.’ % 137
wall 1000 equal(B) NE’"S“I 50

B 1 equal(B) NE'”“_” 100

a 3 _ ceil

250 for electrode
type ‘Top’.
a) b)

Table 2.15: Parameters used for raised and recessed microband sim-
ulations. Equal(A) and equal(B) signify two different equal spac-

ings.

There has been a limited amount of research into discretisation optimisation and in
this area BEM lags behind alternative techniques. FD optimisations are well under-
stood within electrochemistry and FEM optimisations have a much wider range of
publication. As described in section 2.5.1 on page 77, the current at an electrode is
obtained from the summation of fluxes at each element, equation 2.42, these fluxes
being obtained directly through the BEM procedure. A possible explanation for
the effects of BEM discretisation found for these systems is that the influence on
element flux has two components. Firstly the element singular integration is the

dominant factor - hence the number of elements over the electrodes has the greatest
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effect. Secondly non-singular integration - geometrical features close to the element

have greater influence than distant features and there must be sufficient elements

to describe these shapes.

Element discretisation analysis is time consuming, but essential to confirm the ve-
racity of the simulation for a novel electrochemical domain. An attractive solution to
reduce the efforts involved are adaptive mesh techniques.!?313%134 These automati-
cally refine the element mesh based on an error estimation. This would greatly aid
discretisation optimisation although electrochemical based tests, such as increasing

the distance to semi-infinite boundaries, would still need to be carried out manu-

ally.

2.7.2 The Effect of Electrode Height

Two types of electrode were simulated with different electroactive areas, defined in
figure 2.31 on page 109. h, is the dimensionless height/depth of the microband
above/below the surrounding flat insulator, where h. is normalised with respect
to the width of the electrode. Positive values describe raised microbands whereas

negative values describe recessed microbands.

The current response normalised with the current at a inlaid double microband is
shown in figure 2.33 on the next page. A significant deviation from the current at
an inlaid DMB is observed, which is most pronounced at small values of h.. For
instance electrodes raised 0.05w above the insulator give a 10% increase in current

compared to a inlaid DMB.

The system is at steady state and the feedback loop between the two electrodes
is the origin of the current response. Raising the microbands exposes the edges
which have the greatest effect on flux of species to the electrode. If the entire raised
band is electroactive the current is greater than if only the top is electroactive,
due to a larger surface area. At higher values of h. planar diffusion between the
two facing electrode sides becomes the dominant factor, giving a current that is
directly proportional to h.. When only the top is electroactive the current reaches a
plateau as the electrode is raised away from the insulating surround which no longer

inhibits diffusion between the two bands. When the bands are recessed the current
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. —a— 'All' electrode type
—sv— "Top' electrode type

icol/ idmb

-10 -08 -06 -04 -02 0.0 0.2 04 0.6 0.8 1.0

Figure 2.33: The effect of raised or recessed electrode geometries.
Current is normalised with the current at a inlaid double mi-
croband. h is the height above the insulating surface, thus negative
values correspond to recessed electrodes. Electrode types are de-
fined in figure 2.31 on page 109. Parameters used were w = g = 1.

is lowered, if the sides of the trough are electroactive the effect is less significant as
dominant diffusion occurs between the static sides. If only the base of the recess is

electroactive then the current continues to reduce as h, decreases.

For the generator-collector system short range diffusion is the dominant factor at
long times thus the shape of the electrodes and precise dimensions of the surrounding

area are of crucial importance in determining an accurate current.

Figure 2.34 on the following page shows the variation of generator current with gap
distance for different values of h.. As expected the current falls with increasing
distance between electrodes. This is most pronounced at small gap values. At large
gap distances the electrode shape (raised or recessed) has only a relatively small

effect on current response.

As seen from figure 2.35 on page 115 the variation of current as a function of gap dis-
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Figure 2.34: The effect of varying gap distance, g on the generator
currrent for the ‘All’ type of electrode. h, is the height above a flat
surface, thus positive h, is a raised electrode and negative h, is a
recessed electrode. Parameters were as described in table 2.15 on
page 111.

tance is not constant, hence each curve in figure 2.34 must be simulated individually.
When the width of the electrode is of comparable size to the gap between electrodes
the highest contribution to current comes from linear diffusion between the electrode
sides. The extra distance species must travel from the far edges of the microbands
is substantial. However, as the gap increases this distance, which is fixed, has much
less significance. Therefore at large gap values the current approaches that found

at a inlaid microband.
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Figure 2.35: The relation of current to gap distance relative to an
inlaid DMB. Electrode type ‘All’. Parameters were as described in
table 2.15 on page 111.
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2.8 Novel Raised Band Configurations

The BEM simulation was applied to a novel electrode configuration, consisting of
an insulating block above a raised electrode. Such a system may be manufactured
by lithographic techniques. The two sides of the raised geometry are electroactive,
as described in figure 2.36. This configuration was compared to raised microband

of type ‘All’ (see previous section) and a inlaid double microband.

insulating insulating %
block block L
collector h .
f o+
insul 8 w insul

Figure 2.36: A description of electrode type ‘sides’. Parameters
used for all simulation in this section are identical to those used in
the previous section, table 2.15 on page 111. Discretisation over the
insulating block was equal(A) spaced, as described in that table.

Two variations of electrode type ‘sides’ were simulated; firstly an insulating block
of equal height to the electrode, h, = h;, secondly a fixed block height of one,
h; = 1. The variation of current with increasing electrode height for a raised double

microband is shown in figure 2.37 on the next page.

As expected the current for a raised electrode with only electroactive sides is lower
than when the entire surface is electroactive. Despite initial appearances the curve is
not directly proportional to h.. Both electrode types approach direct proportionality
of %norm VS he, as h. increases and linear diffusion between sides dominates. At
very large values of h, one would expect types ‘all’ and ‘sides’ to converge as non-
linear diffusion becomes negligible. However, at small values of h., when non-linear
diffusion is significant, proportionality does not hold. Simulation of h. < 0.1 was

not possible due to discretisation restraints; sufficient elements must be allocated

over the electrode sides and top.

The difference in current response between the two ‘sides’ type of electrode is rel-
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Figure 2.37: The variation of current with increasing electrode
height for three configurations of double raised microbands. Elec-
trode types and domain discretisation are described in figure 2.36
on the page before.

atively small, becoming more pronounced as h, decreases. This is due to hindered
diffusion from the outer sides of the electrodes. Table 2.16 on the following page
shows the contribution to current from different areas of the generator electrode
surface. The major contribution may be seen to arise from the electrode side facing
the collector. When a larger insulating block is present the facing electrode side flux

is virtually unchanged, however the far side decreases.

Total electrode flux at raised ‘sides’ electrodes is greater than flat geometries with
the same surface area. This is true even when an insulating block hinders diffusion

to half the raised area, and is due to the much greater flux present at facing surfaces

than coplanar ones.
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Electrode h., h; Electrode area, Total
Type Flux
Left side Centre Right side

inlaid 0.0 0.0 - 0.780 — 0.78
All 0.5 0.0 0.185 0.606 0.600 1.39
Sides 0.5 0.5 0.291 - 0.717 1.01

0.5 1.0 0.263 - 0.719 0.98
All 1.0 0.0 0.244 0.593 1.100 1.94
Sides 1.0 1.0 0.317 - 1.218 1.54

Table 2.16: Components of the total flux at different configurations
of raised microbands, from figure 2.37 on the preceding page.

2.8.1 Multiple Bands

Results were also obtained for two pairs of generator-collector microbands, for the
three configurations. The variation of current with increasing electrode height for
four raised microbands is shown in figure 2.38 on the next page. The behaviour is
analagous to the raised double microband system, with higher currents due to the

larger number of electrodes.

These simulations show the flexibility and versatility of the Boundary Element
Method. To extend the simulation to multiple raised band configuration required
alteration of only the input data describing the geometry of the domain and the

boundary conditions.

The method enables solution of novel complex electrode geometry systems which

are otherwise intractable with established techniques.
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— All
Sides hi=he
Sides hl,:l

norm

Figure 2.38: The variation of current with increasing electrode
height for three configurations of four raised microbands. Npgirs =
2. Electrode types and domain discretisation are described in fig-

ure 2.36 on page 116.

119



Chapter 2 2.9 Double Microband Scan

2.9 Double Microband Scan

A scanning probe may be used to image a double microband substrate. If the probe
is moved slowly, then the system is allowed to reach a steady state and convection is
assumed to be negligible. A feedback loop between probe (generator) and substrate
features (collector) is achieved, figure 2.39. Diffusion is physically inhibited by the
presence of the substrate, therefore the geometry and proximity of the substrate is
important. This is analogous to a Scanning Electrochemical Microscope!! (SECM),
here using a microband instead of a microdisc. This system demonstrates the power
and flexibility of the BEM method. Each position of the probe along the scan
represents one simulation, which for the BEM simply requires a shift in the definition
of electrode coordinates. Concentration maps are easily obtained using an equally

spaced rectangular mesh of internal points.

probe

«—W,—>

A+e—B

()

B — A+e B — A+e

| EEE

g b4
Wb 8 Wamp™

double microband

Figure 2.39: The scanning probe domain showing the feedback loop
between the probe and the conducting substrate features, in this
case a double microband.

Figure 2.40 on the next page shows the current response of the probe for parameters

Wp = 1, Wamp = 1, g = 2, h = 0.5. As it passes over the double microband two

bands are clearly discernible.

A concentration map of the domain may be generated by interpolating the bound-
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ary and internal mesh data, figure 2.41. The influence of the substrate features is
significant at this close range of A = 0.5w. Lines between concentration values are

due to the limited number of colours.

2.0+
1.5+
inarm 1.0
0.5
0.0 T T v T T T T T T T T 1
5 10 15 20 25 30 35

distance scanned

Figure 2.40: The current response of the probe. A total of 120
simulations are plotted. wp = 1, wamp =1, g = 2, h = 0.5.
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Figure 2.41: A series of concentration maps for a probe scanned over
a double microband. w, = 1,wgms = 1,9 = 2,h = 0.5. The map
is centered on the scanning probe. The blue region corresponds to
the region below the tip where the product species is generated, the
two red spots correspond to the two microbands where the redox
mediator is regenerated.
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In practice it would be difficult to perform this experiment with a microband. If the
band is not lined up exactly parallel to the substrate, one end of the band would
pass over before the other, leading to a blurred image and decreasing resolution. A
microdisc electrode would be better suited to this task. The size of the surrounding
sheath has been shown to have an effect on the current obtained,’® and would be

expected to have an analogous effect for the microband.
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2.10 Refinements and Limitations

The basic Boundary Element Method may be enhanced when considering accuracy
and speed of computation. Linear elements, where concentration and flux vary
linearly along the length of the element, increase accuracy or allow fewer elements
giving faster simulation times. The theoretical aspects of applying linear element
types to the BEM is described in the next section. Implementation of alternative
linear algebra routines, described in section 2.4.1 on page 70, does not affect the

accuracy of the method, but does increase the speed of computation.

2.10.1 Linear Elements

One of the approximations made in section 2.2 on page 54 was to assume that
concentration and flux values were constant over the entire length of a given ele-
ment. Elements of higher order variation, which are more accurate, may be defined.

Typical element types are shown in figure 2.42 on the next page.

Linear elements were implemented for the two dimensional Laplace equation. Dif-

ferences in implementation from section 2.2 on page 54 are outlined below.

BEM Theory

As concentration and flux are no longer constant they cannot be removed from the

Boundary Integral Equation integrals. The discrete BIE is therefore
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Constant
Nodal value of corg

The variables are constant along the
length of the element’

Nodal value
of corg Linear

The variables are linear along the length
of the element
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@
@ The variables are a function of distance

along the element

Figure 2.42: Increasing order of variation of concentration and flux
along the boundary element. Both constant and linear types were

implemented.

N N
dscs + Z/ qu:j dI' = Z / . Qstj dr (247)
j=1 "1 =171

where d is the geometry coefficient
c is concentration
q is flux
I'; is an element boundary
w is the fundamental solution
* is the derivative of the fundamental solution

q

£1,€  are source point coordinates.
is the source point integer counter
is the field point integer counter

124



Chapter 2 2.10 Refinements and Limitations

A local coordinate system, 7, is used for integration over each element. This is

defined as

~1<p<1 (2.48)

Concentration and flux over each element vary linearly, analogous to linear interpo-

lation. The variations are defined as follows

C= @1C1 + Pacy (2.49)

q = ¢1q1 + ¢2q2 (2.50)

where ¢ is concentration, ¢ is flux and ¢ are basis functions. These functions are

defined

b= (1) (251)
P2 = % (1+mn) (2.52)

where 7 is a local coordinate.

Linear elements have nodes at each end of the elementY. A comparison of linear

and constant element discretisation is given in figure 2.43 on the next page.

The integrals in equation 2.47 may be written in matrix notation by defining
= [ ¢ng"dl (2.53)
rj

m = [ ¢aW dl (2.54)
Ty

TLinear elements may also have one or both nodes offset from the end of the element, known as a

discontinuous element. This variation may be used to avoid integrating at a boundary singularity.??
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+—+

Figure 2.43: A comparison of constant and linear element discretisa-~
tion. Constant elements have one node per element, linear elements
have two nodes per element. However, as linear element nodes co-
incide with each other the total number of nodes is identical.

where [,m are influence coefficients
W is the fundamental solution
g*  is the derivative of the fundamental solution
0] are basis functions
n is the interpolation node number, for linear
elements n =1, 2
is an element boundary
is the source point integer counter
is the field point integer counter

Sl

The expression d = —21— is valid only if the boundary is smooth about the source point.
This may no longer be true as source points are located at the ends of the element.

As defined in section 2.2 on page 54 the geometry coefficient, d, is given by

d= ——6— (2.14)
27

where 0 is the internal angle. However there is an easier way to calculate this term,
without reference to the element geometry. When a uniform concentration is applied
over a bounded region, the sum of all the derivatives must be zero. Therefore d may

be calculated by summation of the non-singular Zsj terms.

The summation is thus

N

lss - Z lsj (255)
j=1
J#s
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where N is the number of elements. This only applies to internal Laplace regions.

External regions have a summation of one

N
s=1— Y Iy (2.56)
=1
=

. S,

The use of the term [;; (without the hat) indicates the summation rule for singular

terms is incorporated.

These terms may be substituted into the Boundary Integral Equation, equation 2.47,

> () (%) = zN: Y (qm) (2.57)

j=1 Cn2 j=1 Gn2

where nl and n2 are nodes 1 and 2 respectively, of element j.
When written in matrix form this equation reduces to equation 2.32, identical to
the constant element formulation,

Le = Mg (2.32)

which may be solved with standard linear algebra techniques.

Corner Nodes

A single value for flux is inadequate at corner junctions in the boundary. The two
perpendicular components of flux must be calculated separately, figure 2.44 on the

next page. Thus matrix L has dimensions Nx2N and vector ¢ is of length 2.V.

Alternative singular integration is required, solutions for which are available in the

literature.22.103
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Figure 2.44: Components of flux must be calculated separately for
linear elements. The components are defined perpendicular to the
element, facing outward form the boundary.

Comparison of Element Types

Linear elements were implemented for the direct BEM simulation. Figure 2.45 on the
following page shows that convergence is faster than for constant elements. Using a

linear variation of variables increases accuracy, requiring fewer elements.

The effort involved in implementing linear element types is substantial, mostly due to
the increased programming complexity involved. The benefits of linear elements are
limited by the behaviour of boundary discretisation, when applied to electrochemical
problems. These discretisation effects, described in detail in section 2.5.2 on page 77,

have a far greater influence than the element type.

2.10.2 Limitations

A detailed analysis of the BEM for the one and two dimensional Laplace equation
has been given in this chapter. However, to model a different geometry, for instance
axisymmetric or three dimensional, requires implementation of a suitable funda-
mental solution and derivative, and suitable elements types. Also to account for
additional terms in the original partial differential equation, such as convection or

homogeneous chemical reactions, requires implementation of a suitable fundamental

solution.

Although various fundamental solutions are available??2% 103 these changes involve
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Figure 2.45: A comparison of the effect linear and constant element
types, for the double microband. Discretisation used was a con-
stanst number of elements over each boundary section. Within each
section elements were equally spaced. [V is the total number of ele-
ments around the entire boundary. w = g = 1, insul = wall = 200.

substantial effort. An appealing alternative is a technique which allows simulation
of a wide variety of additional terms, based on the Laplace fundamental solution.
This is known as the Dual Reciprocity Method and is described in the following
chapter.
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Chapter Three - The Dual
Reciprocity Method

3.1 Introduction

The standard Boundary Element Method requires a fundamental solution to be
derived for each partial differential equation modelled. It would be advantageous to
apply the BEM principles to different partial differential equations without recourse
to new fundamental solutions, whether for reasons of difficulty of derivation or the

complexity of implementing a function already obtained.

An advanced addition to the BEM, the Dual Reciprocity Method (DRM) enables
just such a generalisation. This has significant potential for application to electro-
chemical problems which are otherwise intractable. The vast majority of BEM and
related research has taken place in various fields of engineering. However, electro-
chemical systems represent a unique class of often complex problems, with features
such as mixed boundary conditions, convection and diffusion combined with reac-
tions in solution. Although simplified electrochemical problems have direct analogies
in some engineering fields, the majority do not. With its extensible nature, the DRM

offers the opportunity to solve a range of complex electrochemical problems.

The Dual Reciprocity Method allows evaluation of a variety of partial differential

equations using a formulation based on the fundamental solution to the Laplace

130



Chapter 3 3.1 Introduction

equation. This is achieved by approximating the remaining derivatives (non-Lapla-
cian terms) with a series of interpolation functions. Some internal points are used,
however discretisation of the internal domain is not required, thus retaining the

geometrical advantages of the Boundary Element Method.

3.1.1 Historical Background

The Dual Reciprocity Method was first introduced in 1982 by Nardini and Breb-
bia.’5” A steady stream of advances were made in the 1980’s including transient
diffusion,®® axisymmetric diffusion’®® and others.'%%*61 Further investigations were
carried out in the following decade,'%! the 1990’s, with significant improvements in
understanding the approximating functions used,'%%163 a wider variety of applica-
tions and efficiency of implementation.!64165 At this time alternative related meth-
ods such as the Multiple Reciprocity Method'®® and the Method of Fundamental

Solutions'®” were developed.

During the period of study of the author the Dual Reciprocity Method was a novel

method to electrochemists. It has since been applied by Fisher et al.19

There are still a number of areas with regard to aspects of the DRM formulation
which need to be addressed, including combining the DRM with closely related

methods. These are currently active areas of research.!67-170

3.1.2 The DRM Applied to Electrochemistry

In the following two sections the procedure for solving the steady state diffusion-
convection equation, in two dimensions, is outlined. An example of an electrochem-
ical application which is governed by this equation is the channel flow system,'™
described in section 3.5 on page 147. This is a suitable example to test and validate
the DRM as approximate analytical solutions are available, in addition to results

from alternative simulation methods, for comparison.

A fundamental solution to the diffusion-convection equation, assuming a constant
flow velocity, has been derived.!”> However, this assumption is not valid for the

channel flow system due to its flow profile; this is described in section 3.5 on page 147.
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The general DRM formulation is described in the next section, the specific appli-

cation of the DRM to the diffusion-convection equation is covered in the following

section.
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3.2 Dual Reciprocity Method Formulation

In terms of the BEM formulation, if the additional convection term in the governing
partial differential equation cannot be moved to the boundary, through derivation
of a suitable fundamental solution, it introduces internal domain integrals. These

must be approximated by domain discretisation.

The DRM formulation is an alternative approach which removes the need to discre-
tise the domain by approximating the convection term using a linear interpolation
formulation. These integrals may then be moved to the boundary, without requiring
a fundamental solution, via the Inverse Form of the partial differential equation, in

an analogous manner to the standard BEM.

3.2.1 Governing Partial Differential Equation

The Dual Reciprocity Method solves partial differential equations of the general

form

O c(z,y) | Pelz,y)
52 + ay? = b(z,y,c,t) (3.1)

where ¢ is concentration, z, y are cartesian coordinates and ¢ is time. The term on
the right hand side is known as an internal domain term, as it will not be described
by the boundary terms of the standard BEM. Note that the right hand term may

include a time derivative and a convection term.

Writing the governing partial differential equation in this form allows the funda-
mental solution of the Laplace equation to be utilized to solve the left hand side of
equation 3.1, while using an approximating function to account for the right hand

side and still retain the boundary method characteristics.

As an example for this derivation the dimensionless steady state diffusion-convection
equation is used. This equation is described in detail in section 3.5.1 on page 148.

However, the procedure applies to any domain integral term from equation 3.1.
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The governing partial differential equation for diffusion-convection is

0%c(z, 0%c(x, de(x,
50 o) g, 28 3.2

where v is the dimensionless flow rate coefficient. Refer to section 3.5.1 on page 148

for the model and assumptions used to derive this equation.

Equation 3.2 may be rearranged and written in a form suitable for the DRM

Oc(z,y)

O?c(z,y) n &c(z,y) = (s, y)T (3.3)

Ox? 0y?

where the left hand side may be recognised as part of the Laplace equation.

A solution to equation 3.3 may be written as

= vz, 242Y) (3.4

0%é(z,y)  0%¢(z,y)
+
oz

ox? oy?

where ¢ is a series of particular solutions. An approximating function for the internal
domain term, which is valid over the entire domain, may be defined by this series
of particular solutions. Calling this function f, gives

dc(z,y)

V(ﬂ«"ay)"—a“x“— ~ Y afilz,y) (3.5)
P

where « are initially unknown coefficients, ¥ are DRM summation points (see fig-

ure 3.2 on page 139) and f is an approximating function, defined by

_ P(z,y) | Pér(w,y)

3.2.2 The f Approximating Function
The choice of a suitable approximating function is important as the basis of the

DRM is the approximation of domain integrals by these interpolation functions.

Therefore which function is used will have a direct effect on accuracy.

134



Chapter 3 3.2 Dual Reciprocity Method Formulation

There were a variety of functions originally proposed,'®” including elements of Pas-

cal’s triangle, sine series and radial basis functions. For example

1,z,y, 22 2y, 92, ... (3.7)
1,sinz,siny, sin 2z, sinzy, . . . (3.8)
and
L+r+r24+ri4... (3.9)
where
r=y@—&)’+@-&) (3.10)

&1, & are the cartesian coordinates of the source point, s while x, y are the cartesian

coordinates of the field point, k. 7 is thus the distance from the source to field

points.

Some of these original functions include r, the same parameter as that used in the
Laplace fundamental solution. These were later found to be a form of Radial Basis
Functions (RBF).162 Strictly, RBF’s of the series, equation 3.9, are odd powers of
r only. If even powers are included in the function it does not seem to affect the

solution, but they should be avoided.!™

The function f = 1 + r became the most widely used from the introduction of the
method until the mid 1990’s. At this time, with increasing interest in the Dual
Reciprocity technique, investigations of the behaviour, accuracy and mathematical
basis'®? of a variety of approximating functions were performed.'®3 7 Convergence
of the r series was proved!”® and a variety of functions were proposed,!”® some of

which are summarised in table 3.1 on the next page.

The functions tested in this work were the radial basis functions of equation 3.9.
Variation of concentration and flux with increasing series terms was found to be

very small. The function f = 1+ r + 72 + 3 was selected for use throughout this

work.
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Name Example Function
Thin Plate Spline (TPS) r?logr
Higher Order Thin Plate 4

. r*logr
Spline
Augmented Thin Plate 1421
Spline (ATPS) rlogr
Multiquadric* (r2 + a2)2

* a is a user defined constant dependent on the

specific mesh used.!™
Table 3.1: A variety of approximating functions have been pro-
posed, some of which are summarised here.

To understand the behaviour and significance of the approximating function, f may
be thought of in terms of an interpolation function which describes the variation
of a variable, for example the concentration gradient, over the entire domain. A
number of nodes are required in the interior of the domain to calculate this interpo-

lation. This is in contrast to the standard BEM which only required nodes on the

boundaries.

A recent by paper by Partridge,'™ published after the DRM studies reported here,
suggests optimal functions for various types of partial differential equations. It is
found that a single r function is often least accurate, although higher order RBF
series are accurate. The reader is referred to this text when choosing a specific
approximation function. The optimal functions for a range of electrochemical prob-
lems are summarised in table 3.2 on the following page. Two dimensional DRM only
is covered, although three dimensional equivalents exist for most functions, optimal

two dimensional versions are not necessarily optimal in three dimensions.

Note that in the literature radial basis functions are often referred to as ‘local’

functions, whereas other functions such as sine expansions are ‘global’ functions.!

3.2.3 Formation of the Boundary Integral Equation

The inverse form of the modified partial differential equation is used to obtain a

Boundary Integral Equation in an analogous manner to the standard BEM. Substi-
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Chapter 3
Problem Type Optimal f functions
3
steady state convection 14+ r
% logr
transient diffusion no optimal function

transient diffusion and ) ;
no optimal function

convection

imple h 1 3
simple homogeneous +7r
reaction, e.g. E,C; rtlogr

Table 3.2: Optimal functions for various electrochemical related
problems. Reference!”™ describes optimal functions for a range of
engineering partial differential equation systems.

tuting equations 3.5 and 3.6 into equation 3.3 gives

c(z,y) | Pc(z,y) Pe(z,y) | O%e(z,y)
o T o —;ozk< PR ) (3.11)

where « is an unknown coefficient, ¢ and § are particular solutions.

The weighted residual form of this equation is integrated twice, and applied at a

source point on the boundary producing the Boundary Integral Equation

dc(€17§2) + / q*(:c, y,§1,§2)6(33,y) dl' — /I"‘W(x’ y7§17 fQ)Q(-flf, y) dI' =

r

‘Lk:ak (dkék(x7y) +/Fq*($)y;§1752)ék(37ay) dF-/FW(m7y7£17€2)qu(x7y) dF)
(3.12)

is the fundamental solution to the Laplace equation
equals OW/0n (n is the unit outward normal)
is a series of particular solutions

equals 0¢/0n
is the geometry coefficient (defined in section 2.2)

is the DRM summation point number
is the domain boundary

where

oa QL Q)'Q* g

This equation contains no explicit internal domain integral; the three terms on the
left hand side are all boundary terms, recognisable from standard BEM, the domain

integral term now has equivalent boundary integrals, the terms on the right hand
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side.

The discrete Boundary Integral Equation is obtained by defining I internal points

and discretising the boundary into N elements, as shown in figure 3.1.

| IR S S o 4

Q ./F
—’— @ @ —@—
@
-0 @ L —@—

A S S SN

Figure 3.1: Discretisation of the domain for the DRM formula-
tion. Boundary discretisation is the same as in the standard BEM
but additional internal points are added to approximate domain
integrals. Linear elements are shown here; alternatively constant
elements may also be used. ) is the internal domain and T is the

boundary.

The discrete form of equation 3.5 including summation limits is thus

N+I
k=1

where « are initially unknown coefficients and f is an approximating function and

k are DRM summation points.

The Boundary Integral Equation is applied at each source point to give the discrete
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Boundary Integral Equation

N
dscs(§1; 52) =+ Z/quﬁ(x’ Y, gla §2)Csj($7 y) dl’

N+T
’“Z/ ng z,Y, §1)£2)QS] x, U dP Za’k (d Csk z, y)
Ty

N

+Z/rj q:j(xa y, &, &)Cr(x, y) AT

J=1

N
Z/ 5 (%, Y, &, &) G, ) dF) (3.14)

where N is the number of boundary elements, I is the number of internal points,

j is the element number and all other terms are defined in the equation 3.12 on

page 137.

The difference between source points, s and DRM summation points, & is emphasised

in figure 3.2.
source point
s
—a—
\
\
AN
AN
Q b
N
N\
N,
r L
\\
y )’ J element
- //./"
e -+
P
//
o
—e—1
k
DRM summation
point

Figure 3.2: A schematic showing the difference in source point, s
and DRM summation point, k. The vector ¥ is used for calculation
of 4y; and gy;. However the influence coefficients [,; and m,; use
the vector r. Letting ¥ = s it may be seen that vector » may
be used for calculation of 4 and ¢ provided the sign of the vector
is changed. Note that for simplicity constant elements are shown
here although linear elements were implemented. (2 is the internal
domain and I' is the boundary.
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It is more efficient to approximate ¢ and § over each element with interpolation
functions dependent on the element type. For example, if linear elements are used
to discretise the boundary, using linear interpolation functions for the particular
solutions allow identical functions to be used on both sides of equation 3.14. Con-
stant element types are used in the following derivation. Linear elements, which
were implemented, require similar alterations to the formulation as described for

the standard BEM in section 2.10.1 on page 123.

The same definitions as used previously in section 2.2.4 for matrix elements enable
a more concise version of equation 3.14 to be written in matrix form. They are

repeated here to maintain continuity

lsj:/ ¢ (2,9, &, &) AT (3.15)
rj

msj = W(m7y7§17§2) dF (228)

rj
where [, m are matrix elements and I'j is the length of the element.

A,

The use of | (as opposed to ) indicates the dscs term has been incorporated in the

leading diagonal of matrix L as described in section 2.2.4 on page 63.
Applying this notation to equation 3.14 gives

N N N+I N N

S e =3 M= ( Lt -3 Msquk) 316

F=1 j=1 k=1 7=1 j=1
which may be written in matrix form

N+I
Le—Mg = oy (L& — Mgy) (3.17)

k=1

where L, M are influence coefficient matrices.

One may write this in a more compact form by placing vectors é and g, as columns
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of matrices C and Q respectively to give

Le — Mg = (LC - MQ) (3.18)

This is the general DRM formulation. The right hand side of equation 3.18 is the
domain integral approximation and is dealt with differently depending on the specific

domain integral term of the governing partial differential equation.

The vector e may be found from equation 3.5. The general form of this is
b(a:,y,c, t) - Zakfk(xa y) (319)
k

This equation may be applied at each source point to give a vector of domain values,
b. Note that F is a matrix because b; and f; have different subscripts, as shown in

figure 3.2 on page 139.

b=Fa (3.20)
This allows the initially unknown vector a to be found

a=F'b (3.21)

The specific form of equation 3.21 will depend on the domain terms of b(x,y, ¢, t).

For the case of the diffusion-convection equation this form is described in the fol-

lowing section
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3.3 Application to the Steady State

Diffusion-Convection Equation

The formulation derived thus far is general and may by applied to any function
b(z,y,c,t). For each form of function b it is necessary to find a way of expressing
this function in terms of the approximating function f;, to enable a to be found.

This section describes how to include a convection term which contains a flow profile

which is a function of z and y.

The following procedure allows the convection term to be expressed in terms of
e(z,y) and fr(z,y). The domain integral term is approximated by equation 3.19.

In an analogous way an additional approximation may be defined for concentration
c(z,y) = Y felz, v)Br (3.22)
k

where f is the approximating function, and £ an unknown coefficient. Differentiating

this equation gives

8c(m, y) —~ afk (SC, y)
0w~ e O (3:23)

Rearranging equation 3.22 and substituting into equation 3.23 gives

oc(z, Ofel(z, 1
(8:): ) ~ c(z,y) Z f(gx v) Fo@,9) (3.24)

k

where 0f/0x may be obtained by differentiating the specific f function used.

The coefficient « may be found by rearranging equation 3.5, in which the general

term b(z,y, ¢, t) has been replaced by the convection term, giving

1

) (3.25)

0
O =~ z/(l",y) c(a:z; y) ; fk(
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Substituting equation 3.24 yields

R VBN D G Foa)

Applying this equation to each source point gives the required vector a

a = F“l—a—EF_luc

ox

Substituting for « in the general DRM equation, equation 3.12 gives

A oF
. — - —1______ -1
Le — Mg (Lc MQ) F oo lve
Defining the domain part as D
A oF
_ _ -1 -1
D= (Lc MQ) FiooF

and substituting equation 3.29 into equation 3.28 gives

(L—D)e=Mg

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

This equation has the same form as that derived for the boundary element method,

and may be solved by applying prescribed boundary conditions and standard matrix

solving techniques.
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3.4 Program Structure

The structure of a DRM program is similar to the standard BEM algorithm with the
addition of several sub-routines to account for integral approximation. A diagram

of the program structure is given in figure 3.3 on the next page.

3.4.1 Efficiency and Performance

Computational efficiency of the BEM, which highlights that the matrix solving rou-
tine is the slowest step, was covered in section 2.4 on page 70. The DRM requires
extra calculations therefore it is slower than an equivalent standard BEM formula-
tion. The approximating functions matrix F must be inverted, in addition to the
solution of the final linear matrix equation. These are the two slowest steps in the

procedure; the efficiency of matrix solving is addressed in the next section.

It is important to use maximum precision floating point variables especially when
dealing with matrix equations where round off error may accumulate and become

significant.'?*

Internal points are required, and in the case of convection a substantial number of
points are required to approximate the domain integral behaviour. For alternative
terms, such as the time derivative from the diffusion equation, significantly fewer

points are required.!92:158

3.4.2 DRM Linear Matrix Solving Routines

The time taken to solve the matrix equation Az = b for a fully populated unsym-
metrical matrix A is of the order O(e?), where e is the number of elements for an
e x e matrix. For the DRM formulation the internal points must be calculated as
part of the boundary solution, thus the number of matrix elements is e = N + [
where N is the number of boundary elements and I the number of internal points.
In contrast to the BEM increasing the number of internal points has a dramatic

effect on the speed of the simulation.
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BEM routines

Input

l

Mesh
generation

Domak Yes

DRM routines

Integral?

Assemble Influence
Coefficient matrices

Solve <

-+ Calculate F

l

Assemble Influence
Coefficient matrices

l

Finish

CeilculateA
LC-MQ

Figure 3.3: Schematic of the DRM program, emphasizing the sim-
ilarities to the standard BEM program. However, implementation

of the DRM procedure is a complex effort.
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The DRM leads to two significant matrix calculations with direct relevance to the
speed of computation. Firstly the inversion of matrix F. Secondly the calculation

of Az = b. Both matrices are fully populated and unsymmetrical.

For this work an LU decomposition routine was used.'*®* However, it is possible
to implement faster routines,'®* such as Conjugant Gradient Squared'’” and Gen-
eralised Minimum Residual.'”® When implemented for the DRM!' these resulted
in simulations an order of magnitude faster than LU decomposition. These meth-
ods also required pre-conditioners, which alter the matrix in some way, such as

exchanging rows, to improve its solvability and aid convergence.
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3.5 Channel Flow Electrodes

A group of electrochemical techniques which has been the focus of considerable
efforts towards theoretical understanding in recent years is that of hydrodynamic
electrodes, in particular the channel flow electrode. These are especially useful for

mechanistic analysis, allowing simple alterations of mass transport parameters by

controlling the flow rate.

This class of electrodes originated with the Rotating Disc Electrode (RDE). The
technique may be modelled by a one dimensional diffusion-convection equation. The
solution flow rate is determined by the rate of rotation of the disc, and parameters

such as the rate of mass transport and rate of electron transfer may be obtained.

The maximum flow rate that may be attained is restricted by the requirement to

maintain laminar flow, which is assumed in the theoretical treatment.

Alternative hydrodynamic methods, such as tube and channel flow, wall jet and wall

pipe, which overcome some of the disadvantages of the rotating disc electrode, have

been developed.!™

A typical channel flow cell is shown in figure 3.4. Channel flow systems often
utilize microband electrodes which provide an additional means to control the mass
transport regime to be studied by altering the characteristic electrode dimension; in

this case the electrode width.

Yy
e s mE Z
direction of flow
X
2h —_—
g 4 A 4
xus xo xw xds

Figure 3.4: A typical channel flow cell.

The cell is designed to eliminate the possibility of convection in the direction perpen-
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dicular to the electrode (the yz plane in figure 3.4). Also, by ensuring the electrode
length is sufficient to ignore effects from the ends and sufficient separation from
the walls of the cell, the mathematical description is reduced to a two dimensional

diffusion-convection equation with only one convection term.

Idealised channel flow systems are particularly amenable to finite difference simu-

lation!™ 18 due to their rectangular geometry. A considerable number of advances

have been made in this area.”» ™7

3.5.1 Governing Partial Differential Equation

The steady state diffusion-convection equation with a flow of species in the z direc-
tion is?

8C(X,Y)

BC(X,Y)  PC(X,Y)
D -D o

e e =0 (3.31)

+ v,(Y)

where C is dimensional concentration, D is the diffusion coefficient and v, is the

solution flow rate.

The flow is assumed to be laminar, thus the flow profile is parabolic in the zy plane,
as shown in figure 3.5 on the following page. This is also known as Poiseuille flow,

with the flow rate defined by

ve(Y) = g (1 - @-—%—gf) (3.32)

where 2h is the height of the channel and vy is the flow rate at the centre of the
channel (at Y = h).

Dimensionless Form of the Diffusion-Convection Equation

To generalise simulation results the dimensionless form of the diffusion-convection
equation is used. The velocity coefficient is normalised with respect to the diffusion
coefficient and electrode width. In line with standard procedure in the literature a

further dimensionless parameter, the Peclet number is defined. This is a ratio of
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flow

Figure 3.5: The parabolic flow profile of a channel flow technique.
The blue lines represent solution flow velocity, v,. The flow is
assumed to be laminar.

the rates of diffusion and convection, which simplifies the dimensionless treatment

when approximations are made.

One may define

o) =S2), g Xy L =20 a3y
where ¢ dimensionless concentration no units
C  dimensional concentration mol cm ™3
C* bulk concentration mol cm ™3
z  dimensionless distance along the z axis no units
X actual distance along z axis cm
y  dimensionless distance along the y axis no units
Y  actual distance along y axis cm
T, width of the electrode cm
v dimensionless velocity coefficient no units
vy velocity coefficient cm st
D  diffusion coefficient cm? 57!
The dimensionless diffusion-convection equation is therefore
2 2
e - (3.34)

Oz a—yz—f‘llw(y)—a—:; =0
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Peclet Number The Peclet number, P; is an indication of the relative importance

of diffusion and convection. It is defined as

3
P, = §p§p2 (3.35)

where p1, po are defined below.

Following the standard form in the literature,'?® the additional normalising param-

eters are defined

4dh
oy = A (3.36)
3
and
_ Tw _ s
A ) (3.37)

where d is the width of the channel.

The dimensionless flow rate parameter may be defined in terms of the Peclet number

1
Vg = 5 sY(2 — p1y) (3.38)

When P; < 1 diffusion dominates. At larger values then convection dominates.

Approximations

To simplify the solution of the two dimensional convection diffusion equation, two
approximations may be made. The first is often used with two dimensional finite

difference simulations, the second allows an analytical solution to be found.

Leveque Approximation Close to the floor of the cell the parabolic flow profile
may be approximated by a linear dependence of velocity with y. This assumption

is valid when the diffusion layer is small with respect to h; for example using a
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microelectrode

This is known as the Leveque approximation'®! and leads to

~ 2’(}0 (Y)Y

Vg R ; (3.40)
equation 3.38 becomes
1
vy = 5 Py(2 = py) = Py (3.41)

Dominant Axial Diffusion To simplify further one may assume convection dom-
inates flow in the z direction. In this case equation 3.31 reduces to one dimensional

diffusion

—D— 4+ 1,(Y)=—=0 (3.42)

This approximation is valid with reasonably fast flow rates and large electrodes,

where edge effects are negligible. However, it often does not hold for microbands.

Applying both these approximations leads to an analytical solution analogous to

the Levich equation® for rotating disc electrodes.

Dual Reciprocity Method When the Leveque approximation is made, the ve-
locity coefficient, v,, is still a function of y, hence the fundamental solution avail-
able for the BEM cannot be used. The DRM is capable of modelling any function

b(z,y,c,t), thus it is possible to simulate the channel flow model with and without

the Leveque approximation.
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3.5.2 Simulation Domain and Boundary Conditions

The simulation domain is shown in figure 3.6.

ceil >

r'S

1 Yan T

—>
Iwall solution flow rwall

Xus 0 Xy Xas

v

US> ds
Figure 3.6: The channel microband simulation domain. N;,; is
defined as the number of internal points. These may have a distri-

bution over the entire domain or in a local region near the electrode.
These terms are defined in figure 3.8 on page 159 of section 3.6.3.

The boundary conditions for the channel flow cell are as follows

Oc

Tus < T < Tp ez 0 — =0 (3.43a)
oy
To < T < Ty y=20 c=0 (3.43Db)
0
Tw < T < Tgs =1 —a—;— = ) (3.43c)
= 0<y<2h @—0 (3.43d)
T = ds y ax - G
Top, L 08 oL =2h &—0 (3.43e)
us x Tds Yy = ay = .
TE= . 0<y<2h g =1 (3.43f)
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Current

The dimensionless form of the current equation used throughtout this chapter is

Z' — /w 80(.’,3, y)
norm 0 8y

where %, is current and w is the width of the electrode.

dz (3.44)
y=0
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3.6 Validation of the Dual Reciprocity Method
Applied to Convection

The Dual Reciprocity Method program was validated against a one dimensional
heat flow test case'®! with a known analytical solution. This enabled individual

concentration and flux values, at both boundary and internal nodes, to be checked.

The method was then applied to a channel flow simulation for which analytical
approximations, described in the next section, and previous simulation results'?® are
available. Unfortunately, the method proved unstable and boundary discretisations

could not be found for which concentration and flux values would converge.

Results for diffusion-dominated flow (low P; values) using the Leveque approxima-
tion are presented. For convection-dominated flow meaningful results could not be

found. Possible reasons for the behaviour of the DRM applied to the channel flow

technique are also given.

3.6.1 Analytical Approximations

Several analytical approximations have been derived for the channel flow cell, mak-
ing use of the Leveque approximation to simplify the partial differential equation.
Solutions have been found for the low and high flow rate cases, however no single
approximation describes the current accurately over the entire range of practical

flow rates.

Ackerberg used asymptotic expressions'®? to obtain an approximation valid for

P <1

i = mg(P,) (1 — 0.04633P,9(P,)) (3.45)
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where

1
g(Ps) -
log (——4—) +1.0559

VP

and 7 is the steady state current to the band electrode.

(3.46)

Two expressions for high speed flow have been derived. Newman!®® takes into ac-

count both upstream and downstream edge effects to give an expression valid for

P,o>1

2 1 _1
i = 0.8075P% + 0.7085P % — 0.1984P; 3 (3.47)

Aoki et al'®* decided that downstream edge effects were small compared to upstream

edge effects, and obtained

o

1
6

2 — _
i = 0.8075PF + 0.4558P, ° — 0.1984P; (3.48)

They also gave a correction term for the downstream edge effect.
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3.6.2 Semi-Infinite Boundary Distances

The effect of the distance of semi-infinite boundaries is an important indicator of
simulation properties. Feedback from boundaries which are positioned too closely to
electrodes is a common feature of electrochemical simulation methods, as described

in section 2.5.1 on page 76. The behaviour of each boundary must be observed

individually to ensure effects are not cancelled out.

The current response as a function of semi-infinite boundary distance for the channel

microband domain is shown in figure 3.7. The errors for these results are given in

table 3.3 on the following page.

norm

boundary

T Yo
el g

length

Figure 3.7: The current response when increasing semi-infinite
boundary length. The remaining two semi-infinite boundaries were
kept at a fixed distance of 10w. Elements were equally spaced
around the entire boundary, therefore as the length of the semi-
infinite boundary increases the number of elements increases pro-
portionally. Parameters were w = 1, us = ds = yop, = 10. Internal
points had a local distribution (see figure 3.8 on page 159 for def-
inition). NEge = 2, NEy, = NEj; = NEwai = NEyan = 20,
NEceil = 42 and NE,‘nt =09. Ps =0.1.
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length Yon
Inorm % change A% change

3 0.4652  —49.55 -

5 0.7515  —18.50 31.05

7 0.8813 —4.43 14.07

10 0.9221 0.00 4.43

15 0.9161 —0.65 —0.65

20 0.9225 0.04 0.69

30 0.9553 3.60 3.56

50 0.9511 3.15 —0.45

75 0.9327 1.15 —2.00

100 0.9268 0.50 —0.64

a)
length Tys Zds
inorm % A% inorm % A%
change change change change
3 1.0245 11.14 - 0.8821  —4.34 -
5 0.872 —5.40 —16.54 0.9963 8.04 12.38
7 08352 —9.42 —4.02 1.0089 9.41 1.37
10 0.9221 0.00 9.42 0.9221 0.00 —9.41
15 1.0689 15.92 15.92 0.7551 —18.11 —18.11
20  0.9725 5.47 —10.45 0.8177 —11.32 6.79
30 08723 541 —10.87 0.8865  —3.86 7.46
50 0.8429  —-8.59 —3.18 0.8951  —2.94 0.92
75 0.8396  —8.95 —0.36 0.8928  —3.18 —0.24
100 0.8390 -9.01 —0.06 0.8915 —3.33 —0.15
b)

Table 3.3: The effect of increasing the semi-infinite boundaries of
the channel flow cell. The value for current should converge to a
small A% change value when a sufficient distance to ensure negligi-
ble feedback is reached. However none of these boundaries converge
satisfactorily. Parameters used for these results are defined in fig-

ure 3.7 on the preceding page.

Upstream z,, Severe oscillations are observed initially, followed by dampened
oscillations at larger distances. The expected behaviour would be significant positive
feedback at small distances, leading to smooth convergence to a current value where

the boundary influence is negligible. This kind of current response is an indication
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of an inherent problem with the simulation, rather than simply an insufficient semi-

infinite boundary distance.

Downstream x4 Increasing distance also shows severe oscillations, whereas neg-

ative feedback at small distances would be expected because Ps < 1.

Relation between Upstream and Downstream Effects The current res-
ponses due to the upstream and downstream boundaries appear to be mirroring
one another. The suspected cause of this is the distance between the semi-infinite
boundary and internal points, which are fixed above the electrode. The effect of

internal points is discussed in section 3.6.3 on the next page.

Height yo;, The behaviour of increasing the height of the channel flow cell is closer
to the expected response; at small distances negative feedback is observed as would
be predicted. However, the curve also exhibits oscillations throughout the distance
range simulated. This also implies a flaw within the method’s ability to model
convection. If the distance between semi-infinite boundary and internal points is
causing this instability one might expect the behaviour of the cell height to be
linked to upstream and downstream effects, as they are to one another. However,
convection occurs only in the z direction, thus the inaccuracy of response due to

the y axis boundary may be independent.

Concentration Values Concentration values, both on the boundary and at in-
ternal points were also found to oscillate. At times they gave completely erroneous

results; values larger than one or less than zero.

In summary, the current response does not converge with increasing semi-infinite
boundary distances. Additionally erroneous concentration values were found. This
suggests that the DRM is unable to interpolate the convection term of the governing
differential equation satisfactorily. The effect of internal points distribution was

investigated in detail to clarify the behaviour of the method.
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3.6.3 Internal Points

The basis of the treatment of convection is interpolation across the domain using
both boundary and internal points. Thus the placement of internal points has the
potential to be of significant importance to the accuracy of the Dual Reciprocity
Method. At least one point is required for the method to function, however a larger

number of points would be expected to increase the accuracy of the interpolation.

There are a number of strategies which may be used to define the position of points.

1) The points may be spread equally across the entire domain
2) They may be distributed randomly

3) A mesh may be positioned locally in the region of the electrode

These meshes may be equally spaced or follow a predicted diffusion field. For the
following results the first and third strategies were used, with equally spaced points,

as shown in figure 3.8.

entire domain local

©ee o000 leCaI
©eo o000

electrode electrode

Figure 3.8: The two types of internal point distribution tested. The
local mesh distribution routine enabled a variable rectangular mesh,
of dimensions Zjoe; and Yigear-

The placement of internal points is an area that has received limited investigation
within the DRM field; most authors preferring to distribute them equally across the

entire domain.!01,125,164,173
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Number of points As the number of internal points is increased one would expect
an increase in accuracy as more points are used for interpolation. The current
response should converge. In contrast to the standard BEM, DRM internal points
are inherent in the method and as such are incorporated as part of the boundary
solution. Thus increasing the number of internal points also increases the time
required to calculate boundary values, placing an upper limit on the number of

points that may be used.

The effect of increasing the number of internal points, for a mesh distributed over

the entire domain and local to the electrode is shown in figure 3.9.

1.00 -

horm

—x— Entire Domain
—x— Local Mesh

int
Figure 3.9: The current response produced by increasing the num-
ber of internal points, N;,;. The types of point distribution are
shown in figure 3.8 on the page before. Parameters used for

these results were w = 1, us = ds = y9p, = 10. NEge = 2,
NEus = NEds = NElwall = NErwall = 20a NEceil = 42 and
NEgi = 9. Py=10D.1.

The number of points has an enormous influence on current response. Severe oscilla-

tions are observed for both types of distribution, with neither converging to a value.

These results confirm that the DRM interpolation is inadequate to describe the
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convection term in the governing differential equation of the channel flow electrode,
even for low flow rates. Increasing the number of internal points, for instance by
improving the performance of the program, is unlikely to provide sufficient accuracy

as there is no indication of convergence.

Varying local Mesh Distribution The local distribution of points was altered
by varying the size of the mesh rectangle, table 3.4.

Tiocal  Yiocal Z.norm
1 0.5 0.9369
2 1 0.9536
4 2 0.9788
5 2.5 0.9854
) 3 0.5887
7 3.5 0.9895
8 4 0.9884
9 4.5 0.9861
10 ) 0.9833

Table 3.4: The effect of varying local internal point distribution.
This is defined in figure 3.8 on page 159. Simulation parameters
used were as described in figure 3.9 on the preceding page.

The size of the local mesh is seen to have a significant effect on current response.

For all internal point distributions tested erroneous concentration and flux values

occurred within the domain.

Collectively these results show that it does not appear possible to find an internal

point distribution that accurately simulates the convection term in the diffusion-

convection equation using the DRM.

3.6.4 The f Approximating Function

The effect of using different approximating functions for interpolation was investi-
gated. The results, in table 3.5 on the next page, show a wide variation of current
response, depending on the f function used. All functions result in oscillating cur-

rents and erroneous concentration and flux values. Note that using even terms in
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radial basis functions (refer to section 3.2.2 on page 134) produces very small changes
in the current, which concurs with the behaviour found by Partridge.!” It is not

possible to select an optimum approximating function, considering the inaccuracy

of the model.

f function Mesh Discretisation
NE g, 2 2 4 6
NE,wu 244 244 488 732
Ning 9 25 25 25
i morm 0.8778  0.8928 0.8695  0.8617
Lr % error  0.536 9950  —0419  —1.307
i norm 0.8771 0.8942 0.8705  0.8626
LA+’ g or 0456 2412  —0.305  —1.202
i morm 0.0270  0.5842 0.8850  0.8346
L7441 g ror —96.906  —33.006 1362 —4.412
imorm 0.8230  0.8749 0.8494  0.8508
L % error  —5.739 0.198  —2.717  —2.552
i norm 0.8229  0.8748 0.8526  0.8451
r % error  —5.749 0.198  —2.352  —3.205
s i morm 0.0430  0.5867 0.8843  0.8344
TET Y error —95.070  —32.808 1286  —4.438

Table 3.5: The behaviour of several f approximating functions, for
a selection of mesh discretisations. Values are compared to the
approximate analytical function of Ackerberg et al;'¥? for Ps=0.1,
i=0.87312. Parameters used were w = 1, us = ds = yq, = 20.
Boundary elements were equal spaced. P, = 0.1.

3.6.5 Parabolic Flow and High Flow Rates

The behaviour of the simulation was also investigated for a parabolic flow profile.
As expected only small variations occurred in current response compared to results
using the Leveque approximation. However, as values oscillate in exactly the same
manner as those obtained with the Leveque approximation, parabolic flow results

are omitted.
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Similarly, high flow velocities (large P; values) gave meaningless concentration and

flux values and results are not presented.
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3.7 Conclusions

A summary is given in the next section of pertinent aspects of the results of the chan-
nel flow model and possible explanations for simulation behaviour. The following

section discusses the validity and relevance of the general DRM method.

3.7.1 Channel Flow Cell Model

The Dual Reciprocity Method is unable to model the channel flow microband accu-

rately for either low or high flow rates, with or without the Leveque approximation.

The position of the DRM internal points was found to have a significant effect on
boundary values. The model suffered from severe instability and erroneous con-
centration and flux values. Altering the boundary discretisation affects the field

point-internal point distance, thus mesh optimisation investigation is not possible

due to this instability.

The channel flow electrode attains a steady state due to the influx of material
from the bulk solution arriving upstream of the microband. Species generated at
the electrode are swept away by convection; thus for a given flow rate a static

concentration profile and a steady state current are achieved.

However, at low flow rates diffusion is the dominant mass transfer process. For the
generator-collector, diffusion only, microband system in section 2.5.2 of chapter 2,
when a bulk concentration semi-infinite boundary condition was used, the electrode
pair did not have equal currents when a steady state was imposed. Therefore for
the convection system, at a diffusion-dominated flow rate, feedback may occur with
the upstream boundary. In this case one would expect the microband current to
decrease as the upstream boundary recedes. It was not possible to observe whether

this occurred however, due to instability and erroneous results.

The particular solution interpolation was inadequate to describe the convection
term, despite testing a variety of radial basis functions. Although not tested for
this work, the use of global approximation functions does not appear to increase the

accuracy of the DRM for convection systems.!"®
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The diffusion-convection partial differential equation is complex to model using nu-
merical methods as the nature of the equation changes depending upon the flow
rate. At low flow rates (diffusion dominated flow) the equation is parabolic, at high

flow rates (convection dominated flow) the equation becomes hyperbolic.

There are some additional techniques available to improve the behaviour of the
DRM applied to convection. Zhang and Zhu'?6:1%® suggest a Laplace transform of
the partial differential equation to obtain an internal domain term that is a function
of z,y only. This improves concentration values by an order of magnitude, however,

flux values, which are also of importance to electrochemists, are not improved.

Wrobel et al'® split the convection term into a constant velocity component and
a variational component; using the fundamental solution for the constant velocity

riational part. This

diffusion-convection equation and applying the DRM to the w.
has the advantage of transforming at least some of the convection term to a boundary
integral. However, they found a domain discretisation was still required for high flow

rates.

3.7.2 General Dual Reciprocity Method

The Dual Reciprocity technique enables Boundary Element principles to be applied
to a wide variety of partial differential equations, without requiring a specific fun-

damental solution.

There are a number of approximate particular solutions which have been applied
to the method and research continues to prove convergence and find the optimum

function for different classes of differential equations.

The DRM, using a variety of radial basis functions, has proven inadequate to model
electrochemical diffusion-convection domains accurately. However, this is only one
application of the method, from which conclusions cannot be drawn as to the validity

of the technique for alternative partial differential equations.

The method has been successfully applied to model the time derivative in the dif-
fusion equation.1021%8,18 Ugyally a time stepping scheme, for instance Galerkin'?

or Crank-Nicolson,’ is utilised in conjunction with the DRM. This greatly simpli-
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fies mesh generation for complex domains, removing the requirement for internal

domain discretisation.

The extension of the DRM for three dimensional domains is comparatively sim-
ple, provided a suitable approximating function is found. The mesh generation
advantages of BEM become especially advantageous for three dimensional systems.
However, the majority of research into the properties of approximating functions
has been for two dimensional domains. There is no guarantee that for functions

that converge in two dimensions the analogous three dimensional version will also

converge.

In conclusion, the Dual Reciprocity Method provides a flexible advanced addition
to the Boundary Element Method. However, accurate integral domain term inter-
polation is found for only a proportion of possible partial differential equations; care
must be taken to ensure the accuracy of the technique is established for a particular

governing differential equation and domain.
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Conclusion: The Future of BEM in

Electrochemistry

The Boundary Element Method was described in detail in the first part of chapter 2.
In the second part it was applied to various flat and irregular multiple microband
geometries. These domains, which contain large numbers of microelectrodes, could
not be simulated using domain techniques such as FDM or FEM due to practical
considerations; for each electrode there are two boundary singularities, and domain

techniques require optimisation for each of these. Thus the computational time

required becomes prohibitive.

The Boundary Element Method has proved to be a flexible simulation technique

capable of successfully simulating these systems.

An advanced formulation, the Dual Reciprocity Method, showed the potential to
model a wider variety of governing partial differential equations. This was im-
plemented and described in chapter 3. It was applied to steady state diffusion-
convection systems, however, it proved unstable and inadequate. Subsequently, it
has been shown to be successful when applied to time dependent systems.!%? A
description of relatively simple alterations to the formulation given in chapter 3 to

model these systems, is included in the following section.

The most notable feature of the BEM is the potential to model complex three-

dimensional systems. Initial investigations were made in this area and a success-
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ful test program developed. The implementation of three dimensional BEM and

preliminary results are presented in section 4.2 on page 173.

The majority of practical electrochemistry systems involve more than two species
and one or more chemical reactions; in section 4.4 on page 183 incorporation of
these factors into the BEM is considered. Finally, the distinguishing features of the

BEM which are of particular interest to electrochemists are summarised.
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4.1 Time-Dependent Systems

The majority of electrochemical techniques are time dependent, thus the capabil-
ity to model partial differential equations containing a time derivative is important
for numerical methods applied to electrochemistry. To apply the standard Bound-
ary Element Method, as outlined in chapter 2, a suitable weighting function (the
fundamental solution) must be found. Additionally, a time integration strategy is
required.’®” For simple equations, such as the diffusion equation, it may be possible
to derive a fundamental solution;?? this depends upon the individual governing equa-
tion in question. Assuming a fundamental solution is found the standard Boundary
Element Method, depending upon the time integration scheme used, may require

internal discretisation.

The Dual Reciprocity Method represents a viable alternative, requiring only mi-
nor modifications to incorporate a time derivative term. The domain integrals are
transferred to the boundary, retaining a boundary-only formulation. The original
partial differential equation may also contain additional terms, assuming these can
be approximated accurately using the DRM method. However, considering the poor
performance of the method applied to convection (see chapter 3), a direct BEM ap-

proach, if possible, is preferable.

Research into the behaviour of different f approximating functions is currently on-
going.1™ 176 Singh and Kalra!® have investigated optimal time integration schemes
for various domains. Qiu and Fisher!?? have recently applied the DRM to diffusion

at microelectrodes.

The DRM procedure is described in detail in chapter 3 and an outline of additional

details required for the diffusion equation is given below.

4.1.1 The DRM Applied to the Diffusion Equation

The procedure for time dependent terms is analogous to that described for a con-

vection term in chapter 3, and is outlined below.

The DRM may be used to approximate non-Laplacian terms by posing the governing

equation in a suitable form; separating the Laplacian terms. This gives the general
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form

Pela,y,t) | Pela,n.)

2 o = b(z,y,c,t) (3.1)

where b is any internal domain term, ¢ is concentration, x, y are cartesian coordinates

and t is time.

The diffusion equation, in two dimensions, is

826($7y7t) -+ 5zc(x,y,t) _ 5c(x,y,t) (41)
ox? Oy? ot

The generic DRM equation, before application to a specific b term, is given by

equation 3.18 in section 3.2.3 on page 136

Le — Mq = (Lé - MQ) « (3.18)
where L,M are influence coefficient matrices
c is a concentration vector
q is a flux vector
C, Q are vectors of particular solution vectors
« is a vector of initially unknown coefficients

A series of approximating functions is defined for the time derivative term

dc(z,y,t) pAzs
o e =3 flmu (4.2)

where ¢ is a time derivative, f are approximating functions and « are initially

unknown coefficients.

Using matrix notation equation 4.2 becomes
¢ =Fa (4.3)

which is substituted into equation 3.18
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Defining the term A as follows

then equation 4.4 may be rearranged to form

A¢ + Le = Mg (4.6)

Finite Difference Time Approximation A one dimensional finite difference
scheme may be applied to approximate the time derivative term. Standard € nota-
tion'® is used here and is defined as follows
c=(1-6.)c?+ 0,7t (4.7)
¢=(1-0,)¢" +0,q""" (4.8)
where @ is a constant whose value determines the type of finite difference scheme.

For example, § = 1/2 gives the Crank-Nicolson algorithm® and § = 2/3 gives the

Galerkin algorithm.!®

A forward difference is used for the time derivative

oc(x,y,t 1 : -
T = g @ =) (4.9
When applied to equation 4.6 this gives

% (P =) +L((1—0)e! + 0.7 =M ((1-6,)q” +0,q°"")  (4.10)

Taking a two-step scheme as an example, where 6, = 0.5 and §, = 1 gives

. . ALY
(% + !2:) It — Mgit! = (E _ 5) e’ (4.11)
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Summary The DRM applied to transient governing equations has proved suc-
cessful. However, the approximation of domain terms by an interpolation function
(the basis of the DRM technique) is inferior to the exact representation obtained
through use of a fundamental solution. Thus, for transient systems, a direct BEM

approach is likely to yield more accurate results.
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4.2 Three Dimensional Boundary Element Method

The Boundary Element Method formulation may be applied in three dimensional
space. The Boundary Integral Equation obtained contains only surface integrals,

and is exact within the interior domain. A description of the three dimensional

BEM is given below.

The boundary may be discretised using suitable surface elements, also known as
primitives; basic element types are given in figure 4.1. Thus domain meshing is
greatly simplified when compared to volume discretisation, however, elements must
be orientated correctly within three spatial dimensions so mesh generation is more

complex than for a two dimensional domain.

4_-—/1

a) b) c)
Figure 4.1: Boundary element types for three-dimensional surface
discretisation. Concentration and flux variation over the element is
a) constant b) linear ¢) quadratic. The quadratic element shown is
curvilinear, using quadratic shape functions.

4.2.1 Three Dimensional BEM Formulation

The formulation of the Boundary Element Method for three dimensions is analogous
to the two dimensional procedure, explained in chapter 2. Differences and alternative

equations required are described below for the Laplace equation.

The Laplace equation in three dimensions is

Oc(z,y,z)  Oc(z,y,2) 0%(z,v,2)
Y - P —_ 4.12
o T o P 0 (4.12)

The Boundary Integral Equation (BIE) is derived by integrating the weighted resid-

ual form of the Laplace equation twice. It is identical to equation 2.13 in section 2.2
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on page 54, although parameters are now functions of three spatial dimensions

dc(€17§2’€3) + / c(a:,y; Z) 8W($, y’az,;Lgl’g% 53) dl =

r
/aC(x,y,Z) W (CE, Y, z, §I7§27§3) dF (413)
T 8711

is a geometry coefficient

is the concentration at the source point
is the domain boundary

is the concentration around the boundary
is the fundamental solution

the element unit outward normal

, &2, & are source point coordinates.

is a surface integral

where

%Qﬁ&&,

oS

This BIE may be discretised in an analogous fashion to section 2.2, using any of the

element types described above.

A definition of the fundamental solution and a technique for boundary integration
are required to proceed to assembly of the influence coefficient matrices. These are

described in the following two sections.

Fundamental Solution

The fundamental solution for the three dimensional Laplace equation?? is

1

W(m,y,z, 61752753) - 4—7:’: (414)

where W is the fundamental solution, £ are source point coordinates and r is the

distance between source and field points;

r=VE-a)+ - &7+ (z - &)? (4.15)

The element outward normal is defined as perpendicular to the element surface, in

a direction exterior to the domain. The derivative of the fundamental solution with

174



Chapter 4 4.2 Three Dimensional Boundary Element Method

respect to the outward normal is

L

q on  4nr3 (4.16)

where p is the perpendicular distance from the source point to the plane passing

through the field point element. Thus p = 7.7, where 7 is the element unit outward

normal.

Boundary Integration

To simplify boundary integration a local coordinate transform is performed which
is dependent upon the type of element. Triangular elements with constant field

variables are considered here.

The transformation of coordinates requires a parameter known as a Jacobian

where I' is the surface boundary, J is the Jacobian and 7 is the local coordinate
system.

For a triangle the Jacobian is equal to twice the area of the triangle.!%

Applying this transformation to the boundary integrals from equation 4.13, and

removing the concentration and flux parameters (which are constant) from their

respective integrals gives

L ar=1l /01 (/01—772 W (n) dm) dny (4.18)

/Fj g dr = |J| /01 (/01”"2 £ dm) an, w1)

The element unit normal, 7, required for calculation of ¢* = O0W/0n may be calcu-
lated from the cross-product of two sides of the element, which are vectors in three

dimensional space.
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Non-Singular Integration (s # j) When the boundary integrals are not singu-
lar, numerical integration may be used; in the case of constant triangular elements

a suitable scheme is Hammer’s quadrature.'® This is defined as

1 1-m2
/O (/0 f(m,m2,m3) dm) dn = Zf (nf, 1 i w (4.20)

where f is an arbitrary function, A is an integer counter, w are quadrature weighting

factors and NI are the number of integration points.

Specific coordinates and weighting factors may be found in the literature.?? 188

The notation of section 2.2.4 on page 63 is used to define influence coefficient ma-

trices. Their components, applying Hammer’s quadrature are

- Jp” Z (4.21)

A i 1
My = —w 4.22
87 o Z o h ( )
h=1
where A; is the area of triangular element j, p is the perpendicular distance from
the source point, s, to the plane passing through element j and other terms are

defined above.

Singular Integration (s = j) The two boundary integrals are considered sep-
arately: The derivative of the fundamental solution is equal to zero, leaving only
the contribution of the geometry coefficient, d. This is equal to a half because the
element is smooth; L, (see ‘The Geometry Coefficient’ paragraph in section 2.2 of
chapter 2). For integration of M,, an analytical solution may be derived using polar

coordinates.??

The assembled influence coefficient matrices are of identical size to those obtained
with two dimensional elements. After application of boundary conditions, they may
be solved in the same way with standard matrix solvers. As this is the slowest step in
the BEM procedure, the three dimensional BEM is as efficient as a two dimensional

version with the same number of elements.
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To solve for concentration and flux values at internal points, after the boundary

solution is known, an analogous procedure to section 2.2.6 on page 64 may be used.

4.2.2 Results

The results presented here validate the three dimensional BEM using a simple planar

diffusion test case. Constant elements were used and a typical discretisation is shown

in figure 4.2.

Figure 4.2: A typical mesh discretisation for the planar diffusion
test case. The surface is divided into equal size triangular elements.

It is important that boundary elements are defined in a consistent manner to ensure
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that element normals are correctly aligned. For the planar diffusion case outward
element normals and boundary conditions are shown in figure 4.3. For constant ele-
ment types field variables may be discontinuous in adjoining elements, thus elements

may be defined in any order and are unconnected.

Figure 4.3: Simple discretisation of the cube domain used for the
planar diffusion test case. The direction of element outward nor-
mals are depicted by arrows, which originate from the element cen-
troid. The colours show boundary conditions; blue is ¢ = 0, red is
c =1 and green is ¢ = 0.

The concentration and flux values for nodes covering two faces of the cube are
evaluated for a discretisation of 8 triangular elements per face; a total of 48 elements.

The nodal coordinates are defined in table 4.1, and table 4.2 on page 180 shows BEM

results and error analysis.

The accuracy of the results is remarkably good considering the sparsity of the mesh
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Node Centroid

n x Y z

9 0.3333 0.0000 0.1667
10 0.1667 0.0000 0.3333
11 0.8333 0.0000 0.1667
12 0.6667 0.0000 0.3333
13 0.3333 0.0000 0.6667
14 0.1667 0.0000 0.8333
15 0.8333 0.0000 0.6667
16 0.6667 0.0000 0.8333
17 1.0000 0.3333 0.1667
18 1.0000 0.1667 0.3333
19 1.0000 0.8333 0.1667
20 1.0000 0.6667 0.3333
21 1.0000 0.3333 0.6667
22 1.0000 0.1667 0.8333
23 1.0000 0.8333 0.6667
24 1.0000 0.6667 0.8333

Table 4.1: The coordinates of the centroids of the triangles covering
two faces of the cube modelled. These are shown in figure 4.3 on
the preceding page

discretisation used. Note the error of concentration values are an order of magni-
tude better than corresponding flux values. Preliminary results showed convergence
with increasing number of elements. Unfortunately, the three dimensional BEM
simulation developed could not be applied to more complex domains due to study

time constraints.

The BEM was applied to three dimensional SECM simulations by other research
groups'%%18% during the course of this work. There is a huge variety of possibilities
for application of a three-dimensional simulation in electrochemistry. BEM is ideally
placed as a simulation method which has the capability to solve complex geometric

domains.

However, incorporating reaction mechanisms is an involved task; this is discussed in

section 4.4.1 on page 183.
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Node Analytical BEM Error /%
n c q c q c q

9 0.3333 0.0000 0.3109 0.0000 6.72 =
10 0.1667 0.0000 0.1557 0.0000 6.59 -
11 0.8333 0.0000 0.8203 0.0000 1.56 -
12 0.6667 0.0000 0.6706 0.0000  —0.59 -
13 0.3333 0.0000 0.3323 0.0000 0.31 -
14 0.1667 0.0000 0.1751 0.0000  —5.01 -
15 0.8333 0.0000 0.8439 0.0000  -1.27 -
16 0.6667 0.0000 0.6879 0.0000  —-3.18 -
17 1.0000 1.0000 1.0000 1.0913 - -9.13

18 1.0000 1.0000 1.0000 1.1594 - —15.94
19 1.0000 1.0000 1.0000 1.2366 - —23.66
20 1.0000 1.0000 1.0000 0.9563 - 4.37
21 1.0000 1.0000 1.0000 0.9563 - 4.37
22 1.0000 1.0000 1.0000 1.2366 - —23.66
23 1.0000 1.0000 1.0000 1.1594 - —15.94
24 1.0000 1.0000 1.0000 1.0913 - -9.13

Table 4.2: The concentration and flux values at triangle element
centroids. Node coordinates are given in table 4.1 on the preceding

page.

180



Chapter 4 4.3 Computational Aspects of Numerical Methods

4.3 Computational Aspects of Numerical Methods

The implementation of numerical methods in electrochemical simulation is becom-
ing increasingly involved. Therefore, the choice of programming paradigm is an
important consideration. Additionally, the performance of algorithms is often a
factor. The programming and computational aspects of the implementation of the

Boundary Element Method are discussed in this section.

The use of modern programming techniques enable a program to be designed which
is flexible and extensible. The advantages of object-oriented design, regression test-

ing and format independent data are outlined below.

Object-Oriented Design The use of an object-oriented language,® such as
C+-+140 or Java,'*? encourages good program design; for example, separating in-
terface and implementation. This allows alterations to be made to specific parts of
a program, without interfering with the rest of the program. For instance, a Gaus-
sian integration routine could be re-implemented as an adaptive routine completely
independently from matrix formation. Additionally, some parts of the program,

such as mesh generation, are simplified through the use of objects and class library

resources. 4!

Testing Comprehensive testing increases confidence in results, in addition to re-
ducing time spent debugging. There are two types of testing relevant to a BEM
program such as described in this thesis: Firstly, functional tests; for example, sim-
ulation of a simple model with a known analytical solution. Secondly, at a lower
level, unit tests; these verify that each individual method* behaves as expected. Au-
tomating these tests will save a significant amount of time. A variety of frameworks

to automate testing, such as xUnit,'%° are available for several languages.

eXtensible Markup Language (XML) The use of XML as a data format

removes the problem of adhering to specific formatting conventions, which may

*The term method is used in the context of object-oriented languages. For the purposes of this

discussion it may be thought of as analogous to a function or sub-routine.
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require alteration as the program develops. Additionally, this simplifies importing

files for use with data analysis software.

The Boundary Element Method program may be split into two primary compo-
nents. Firstly, the mesh input data; either input directly or obtained from a mesh
generation routine. Secondly, the core simulation; boundary integration, applying
boundary conditions and reordering the matrices, and solving to obtain unknown

values. Internal points, if required, are also calculated during this stage.

Mesh Generation The generation of specific boundary meshes, including bound-
ary conditions, is a broad and varied topic, and a current area of research.?* The
time taken to calculate mesh generation is negligible compared to the core simula-

tion, thus ease of use and flexibility is of greater importance than performance.

Core Simulation The most important consideration for the core simulation is
optimal performance. Assuming a reasonably large number of boundary elements
are simulated, the matrix solving routine is the slowest step. Several optimised

routines are available in the literature.!24143

Due to the significant amount of effort involved in implementing a Boundary El-
ement Method program, it would be advantageous if the program were accessible
to electrochemists without requiring detailed knowledge of implementation of the
technique. This is possible, to some degree, through the use of a clearly documented
data format which allows direct input of boundary data. However, as mentioned in
the previous paragraph, mesh generation is often an involved task. Thus a simpli-
fied generation routine is desirable. For example, the user defines boundary sections
and coordinates, such as the ends of an electrode, and the discretisation of individ-

ual elements is then automatic. This allows easier convergence testing of various

parameters.
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4.4 The Boundary Element Method

in Electrochemistry

The electrochemical technique simulated throughout this thesis was a diffusion con-
trolled potential step, for a single redox reaction. This is the most common model
in electrochemical simulation when considering complex geometrical domains. The
electrochemical mechanism and experimental technique are kept simple, in order

to investigate the behaviour of a particular numerical method, when altering the

geometric features.

The behaviour of the Boundary Element Method for several different geometries
was described in this and the preceding chapters. The method proved successful

and flexible for modelling a range of complex geometries.

For a numerical method to be of relevance to a broad spectrum of the electro-
chemistry field, it must possess the ability to model a variety of electrochemical
mechanisms and practical techniques. In the following sections the potential of the

Boundary Element Method to model these considerations is addressed.

4.4.1 Electrochemical Mechanisms

A system involving several chemical species is described by a set of partial dif-
ferential equations consisting of one equation for each species. A description of
types of governing partial differential equations, and the basic terminology used to
describe electrochemical mechanisms was covered in section 1.2.4 on page 14. Mul-
tiple equations which are coupled may be incorporated in the BEM in two ways.
Firstly, a sequential solution; an approximate value is initially substituted for the
first equation unknown and each equation solved sequentially using the previous
result. Iteration is performed until a preset tolerance achieved. Secondly, using
a method known as the Matrix of Fundamental Solutions (MFS); a fundamental
solution is derived for each equation, forming a fundamental solution matrix which
couples the equations. This method is only applicable to linear equations.!® The

two types of reactions common in electrochemical systems are now discussed.
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Homogeneous Reactions These lead to extra terms of the form +kc(z;) in the
governing equations. A fundamental solution may be derived which incorporates
such a chemical term, however, the set of equations describing the system are usu-
ally coupled; to account for sets of coupled equations with BEM a method such as
MFS must be used. Second-order reactions lead to non-linear partial differential
equations. These may be modelled using quasi-linearisation or using a transforma-

tion and iterative solution.1%®

Heterogeneous Reactions Reactions on the surface of the electrode, for ex-
ample electron transfer, are described by suitable boundary conditions along the
electrode. Dirichlet and Neumann conditions have been described in chapter 1,
boundary conditions of a third kind involving a concentration and flux, known as
a Robin boundary condition, are of the form dc/0n = f(c) + k. These may easily
be incorporated in the BEM formulation in an analogous manner to the former two

conditions.

4.4.2 Electrochemical Techniques

There are a wide variety of electrochemical techniques for which an analytical so-
lution does not exist, and a numerical solution is required. The application of the
BEM to two common techniques is discussed below. Hydrodynamic systems were

considered in chapter 3 on page 130.

Potentiostatic Control Simulation of the diffusion limited chronoamperometric
potential step has been described in detail; the Boundary Element Method has been
applied to simulate the steady state attained, and additional alterations for the tran-
sient case outlined. To model techniques which utilise other potential waveforms,
for example cyclic voltammetry (CV), the boundary condition at the electrode is
calculated according to the specific system under consideration. For instance, a
reversible CV may be modelled using the Nernst equation to relate the ratio of
concentrations on electrode surface to the potential at a particular moment in time.

Finite Difference Methods use a conservation of flux property to obtain the surface
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concentration in terms of adjacent concentrations on the finite difference mesh.

Thus, this technique is not applicable to the BEM.

Galvanostatic Control The current through an electrode is set, usually held
constant, and the resulting potential observed. The flux at the electrode surface
may be deduced from the current applied. For the BEM a Neumann boundary

condition is thus prescribed along the electrode surface.

4.4.3 Distinguishing Features of the Boundary Element
Method

In summary, electrochemical simulation techniques developed before the present pe-
riod of study, mostly based on finite difference, proved insufficient to model complex
electrochemical domains. Thus alternative numerical methods developed in related
fields were investigated. The Boundary Element Method was shown to be a viable
alternative numerical method for specific electrochemical applications. A compari-
son of BEM and FEM with finite difference was presented in chapter 1 on page 7.

The former two methods exhibited potential benefit for electrochemical simulations.

BEM or FEM? The numerical method selected depends upon the particular
electrochemical system under consideration. For three dimensional domains, and
two dimensional systems with many boundary singularities, the BEM requires less
complex meshing and offers possible performance advantages. However, incorpo-
ration of multiple species is currently a significant limitation; these aspects are
discussed in detail below. For two dimensional domains FEM can model a variety
of electrochemical mechanisms and practical techniques. Advanced automatic mesh

generation allows optimisation for boundary singularities and complex shapes.

The Boundary Element Method possesses several properties of interest to electro-
chemists. Three of these, of a particular importance for electrochemical simulation
are discussed below. For each a description of the practical consequence of the

property is given, followed by an explanation of the origin of the property.
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Less Complex Meshing

Only the domain boundary is described using a mesh of simple elements. No ele-

ments or points are required in the domain interior.

The use of the inverse form and a suitable weighting function (the fundamental so-
lution) produces a formulation containing only boundary integrals. The formulation

is exact in the domain interior.

Accurate Simulation of Boundary Singularities

Boundary singularities are often described accurately without mesh optimisation.
When optimisation is required, the process is relatively easy due to less complex

meshing, described above, and the fact that globally continuous mesh spacing is not

required.

The Laplacian operator is transferred to the weighting function, thus the depen-
dent variable (concentration) is not required to be continuous between elements.
Boundary singularities are often discontinuities in the concentration gradient, and

therefore may be accurately described.

Infinite Domains and Multiple Regions

An infinite domain may be described simply by discretising the boundary of the
object in question; the domain is thus external to this boundary. The element

outward normal must be defined in the correct direction.

The infinite boundary is incorporated in the BEM formulation. By ensuring that
certain regularity conditions?? are fulfilled these extra terms cancel out. The bound-
ary conditions at infinity are usually ¢ = 0 and ¢ = 0, however, non-zero values may

also be incorporated in the formulation.??

In an infinite domain, multiple boundary regions may be modelled. For constant

elements this is achieved simply by ensuring each region is closed when the mesh is

defined.
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Field variables may be discontinuous between constant elements, thus by defining
each end point of the element and ensuring the boundary is closed, data connecting

elements is not required and multiple regions may be defined.

Present Limitations

The Boundary Element Method shows significant potential for application to elec-
trochemical simulation. However, the incorporation of multiple species, described
in section 4.4.1, has received limited attention within the engineering field.}® This
is of particular importance for electrochemical simulation; the ability to model mul-
tiple species and various mechanisms are likely to be the most challenging future

developments of the BEM in electrochemistry.
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The Formulation of Weighted
Residual Numerical Methods

A.1 Numerical Methods

The majority of physical problems expressed as differential equations can only be
solved in an approximate manner. The most widely known techniques are Finite Dif-
ference (FDM) and Finite Element Method (FEM). The Finite Difference technique
defines a series of nodes at which the discrete version of the differential equation
is satisfied. For the Finite Element Method the differential equation, or rather its
inner product formulation, is satisfied in an average sense over an element. These
two techniques discretise the interior domain in addition to the boundaries of the
region under consideration. The third technique considered here, the Boundary El-
ement Method (BEM), satisfies the differential equation exactly over the interior
domain, through use of the inverse form of the partial differential equation. Thus

discretisation of the boundary only is required.

The three techniques are closely related if one focuses on the approximation in-

volved.

This appendix relates the formulation of each of the three approaches in detail
through the Method of Weighted Residuals (MWR). The discussion is initiated by

defining an approximate solution and the properties of these types of function. We
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proceed by stating the Weighted Residual, a technique used to distribute the error
arising from the use of an approximate solution. A particular type of MWR is
the collocation method, which is utilised for all three methods considered here. A
simple form of the FDM may be derived as a special type of collocation method,
although it is more often derived directly. The FEM and BEM methods may be

derived through either one or two integrations of the MWR equation respectively.

The aim of this appendix is to emphasise the relation between the formulation of

the three methods. Details of implementation are not considered.

A.2 Notation

To simplify the presentation of formulae the following notation is defined.

The Laplacian operator, L,

a,?
o? 02
o? o? 0?

Einstein’s summation of indices. The subscript, 4, is the number of dimensions.

2 xX; a
’ 8:81

0
il A2

1 T gy (A.2a)
0 0
— A2b

2 z+y p + 3y ( )
0 3] 0
—_— —— A — A2

3 r+y+z 81:+3y+8z (A.2¢c)
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A.3 Approximate Solutions

The following set of equations are defined
L(cg) =0 on Q (A.3)

where L is the Laplacian operator, {2 is the domain under consideration, with bound-

ary conditions

Dirichlet c=d on Iy (A.4)

Neumann go=n on I (A.5)

¢ represents the eract solution of the problem which is usually impossible to find.
g is a derivative of the dependent variable on the boundary; for instance, for one
dimension ¢ = d/dz, for two dimensions ¢ = 0/0n where n is the outward normal

to the boundary.
The function ¢y can be approximated by a set of functions ¢(z) such that
n
Co R Cc= Z apdr + ag (A.6)
k=1

oy, are undetermined parameters and ¢ are linearly independent functions taken

from a complete sequence of functions (these terms are defined in the next section)

such as
¢1(xi)a ¢2(xi)7 teey ¢n(xz) (A7)

x; represents the spatial coordinates in the () domain. These functions are usually
chosen to satisfy certain given conditions relating to the boundary conditions and
the degree of continuity (see section A.4.3 on page 195). They are known as basis

functions or shape functions.

190



Appendix A.4 Method of Weighted Residuals

A.3.1 Linear Independence and Completeness
A sequence of functions such as the ones defined in equation A.7 is said to be linearly
independent if a; ¢y + oy + - - - + @, = 0 is true only when all ¢; are zero.

A sequence of linearly independent functions is said to be complete if a number of
terms, n, and a corresponding set of constants, aj, may be found for which the
difference between an arbitrary function ¢y and its approximation can be made as

small as one requires. This may be expressed

{ [tco- C)de}uz <p (A8)

where S is a small positive quantity.

A.4 Method of Weighted Residuals

Substituting an approximating function for ¢y into equation A.3 gives a Residual or

error function R such that

R=L(c)#0 (A.9)

If the function ¢ does not satisfy all the boundary conditions one may define two

additional residual functions, one for each boundary type

Ri=c—¢#0 on Iy (A.10)
Ry=q—-q#0 on I’y (A.11)

where I'; + 'y = T, ¢ and ¢ are known concentration and flux boundary values

respectively.

The aim is to make errors as small as possible over the domain and on the boundary.
These errors will be forced to be zero in an average sense. To achieve this errors

will be distributed; and the way in which this is done produces different types of

approximate methods.
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We now define another set of linearly independent functions ¥y such as

() ¥a(:) W3 (i), - - on(2) (A.12)

One can now define a set of arbitrary coefficients £; which allow us to write the set

1 in a compact form as a function w;

w = By + Botpo + Bathz + - - (A.13)

Assuming for simplicity that c identically satisfies all the boundary conditions of
the problem (i.e. R; = Ry = 0), one can distribute the error R in §2 by multiplying

it by a weighting function w and integrating over the domain.
/ RwdQ) =0 (A.14)
Q

This ensures the error R is distributed with the functions in w. This equation (an

inner product) may be written in compact form as

(R,w)z/ﬁRwdQ (A.15)

A.4.1 The Collocation Method

Instead of satisfying the equations in an average form we try to satisfy them at a

series of chosen points.

Defining an approximating function
n
k=1

In principle the number of a; has to be the same as the number of collocation
points chosen. We have a residual function, equation A.9, which must be satisfied
at n points in the domain . One can express this condition in a weighted residual

form by defining the ¢; functions as Dirac delta functions. The collocation method
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at a series of points ¢ can now be represented by equation A.14
/ RwdQ =0 (A.14)
Q
where the weighting function
w = $101 + P2be + P303 + - - - + Brli (A.17)

0; represents the Dirac delta functions at the collocation points.

Relation to the Finite Difference Method

A special type of collocation method produces the finite difference method. Con-
sider a region around the node 7 under consideration. One can propose a local

approximating function over each region as follows:
€= Cp1¢1 + CkP2 + Cr4103 (A.18)
¢, are the values of the function at the nodes of the finite difference grid. The

functions ¢, are quadratic functions, such that referring to the dimensionless system

of coordinates 7 one can write

b= 5100 -1) (A19)
6= (L= m)(1+1) (420
85 = (1 +n) (A21)

Differentiating equation A.18 twice for the one dimensional Laplace equation, taking

into consideration the above shape functions, and collocating at % gives

d’c 1
"’(Ck—l — 2¢; + Ck—H) =0 (AQQ)

B=92=5

known as the central finite difference expression.
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A.4.2 Galerkin’s Method

Galerkin’s Method is a particular weighted residual method for which the weighting

functions belong to the same set as the approximating functions.

As the same functions are used for ¢ and w and the ’s are arbitrary it is common

to write the w function as a variation of ¢, i.e.

w=0c= (50(1¢1 + (5052¢2 —+ 50&3¢3 -+ e (A23)

where 0o = Sg.

The property of having the same functions for the weighting and approximating
functions is important in practice as it produces symmetrical coefficients in many

cases. Most finite element models are based on Galerkin type techniques.

A.4.3 Properties of Approximating Functions and Weighting

Functions

The approximating and weighting functions chosen must possess two properties:
Firstly, as previously stated, they must be linearly independent from a complete

set. Secondly, they must have a sufficient order of continuity.

Consider the 1-D Laplace equation, which is second order

2
L(c) = g-:c; =0 for O0<z<1 (A.24)

and its weighted residual statement

b d2e
—wdzr =0 A.25
g (A.25)

A different order of continuity is required for ¢ than for w. To define these continuity

requirements we need to introduce a classification for the degree of continuity of a

function.
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Order of Continuity

Assume a function f is discontinuous at discrete points but is finite throughout the

region, its norm satisfying the following condition
/f2 dr < 0o (A.26)

The function f is then said to be square integrable. If we impose conditions on the
first derivative, the function is said to be a first derivative square integrable function

and the following norm has to be bounded

/{f%(\%f} dz < 00 (A.27)

o\

We can continue defining higher order continuity. For example, functions whose

second derivative is square integrable have the following norm

/{F + (%)2 + (%;)2} dz < 0o (A.28)

The above definitions can be extended to two and three dimensional problems by

replacing the scalar products with vector products.

Thus the approximating function ¢ in equation A.25 needs to be second derivative
square integrable while the weighting function w is required only to be square inte-
grable. In many cases it is preferable to reduce the order of continuity required for c
and this can be done by integrating by parts. Consider equation A.25 and integrate
by parts
1 g2 1 1
d°c de dw dec
—wdr = — ——dz —w A.29
/0 dz? o dz dz * {d:c L ( )

This is the weak formulation. Now both functions ¢ and w need to be continuous

up to their first derivatives. Therefore we can take a set of first derivative square
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integrable basis functions for ¢ and de/dx

c = Cl¢1 + CQ¢2 + - <A30)
w=0c= 561¢1 -+ 502¢2 + e (A31)

The weak formulation is the basis for the Finite Element Method. The generalized

weak formulation, and additional concepts to obtain the FEM formulation are given

in following section.

A.5 The Weak Formulation

The finite element method is based upon the weak formulation of the governing
partial differential equation. The weak formulation is obtained by integrating the
original equation. If Dirichlet boundary conditions are given and the approximate
functions satisfy them the functions w also identically satisfy these conditions. One

must take into account the remaining two residual functions

R = L(c¢) in the domain (2 (A.9)
Ry = q— g on the I's part of the boundary (A.11)

A general weighted residual for a Laplacian operator, for any number of dimensions,

18

/Q(ﬁ(c))w dQ :/ (g — Qwdl (A.32)

I'a

Integrating the operator L() gives

0c O 40 = / qu dT’ (A.33)
Q 833'2 8$Z T

where the operator of ¢ and w is of a reduced order, q is a derivative of the dependent
variable on the boundary, (2 is the interior domain and I' the boundary. z; are the

Einstein summation indices defined in equations A.2
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The right hand side of the equation is a boundary flux term. On the left hand
side are interior domain terms, which are integrated through domain discretisation.
Integration is performed over each individual element at collocation points. The
values at overlapping nodes on adjacent elements are combined to assemble a global
matrix. The matrix equation obtained may be solved using standard methods.

Details of FEM implementation may be found in the text by Reddy.'®

The method considered so far utilises an approximate function which satisfies the
Dirichlet boundary conditions of the system and is approximate in the domain,
not satisfying exactly the governing equations. The remaining Neumann boundary
condition is also approximate. This is the most common method used in FEM,

although it is alternatively possible to use a solution which satisfies the Neumann

condition.

In contrast, the Boundary Element Method is a formulation which is exact in the
domain, using an approximate function for both boundary conditions. This is briefly

outlined in the following section.

A.6 The Inverse Formulation

The Boundary Element Method is based upon the inverse formulation (also known
as the strong formulation) of the governing partial differential equation; where the
equation is integrated twice. This process has the effect of transferring the Laplacian
operator from the problem variable (the concentration in electrochemistry problems)
to the weighting function. Both boundary conditions are approximate and three

residuals are considered

R = L(c) in the domain Q (A.9)
R, =c—¢ on the I'] part of the boundary (A.10)
Ry =q— g on the T'y part of the boundary (A.11)
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Taking a weighted residual approach for any dimension Laplace equation over an

arbitrary domain gives

(¢ — Qwdl — / (c— c)%% dr (A.34)

Ty Ty

/Q (L(c)wdQ =

This generalised equation uses residual approximations for the domain, €2, and both

boundaries, I'y, I's. Integrating twice produces the inverse form

JFQ

/E(w)ch: —dF+/ c—dI‘ / qwdl — / gwdl’ (A.35)
Q I,

The right-hand side terms may be combined to give

L(w)cdQ = c——dI‘ qwdl (A.36)
fetean= [egtar- |

where it is implicitly assumed that ¢ and ¢ are substituted on their respective bound-

aries.
This is the inverse form used in the BEM derivation in chapter 2.

The resulting operator which acts on w (z) is called the adjoint operator, £*. In

this case £ = L*, therefore L is self-adjoint or symmetric.

It is common in BEM literature to see the inverse form written in a more concise

manner using inner product notation. An inner product is defined as
< a,b>= / ab dQ (A.37)
Q

where a and b arbitrary functions.

We also define

B = c(‘?_’w dr — /qw dr (A.38)
on T

which gives

<W(z),Lc(x) >=B+<c(z), LW (z) > (A.39)
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where B are the boundary integrals.

This equation is the basis of the Boundary Element Method. To obtain the direct
BEM formulation (also known as the singular BEM) the weighting function is chosen
such that it satisfies the governing partial differential equation and the residual over
the domain, R, is zero. Thus the formulation is exact over the domain. This type

of weighting function is known as a fundamental solution.

The implementation of the direct BEM is described in detail in chapter 2 on page 48.

A.7 Classification of Approximate Methods

The mathematical aspects of the formulation of three approximate methods has
been compared in this appendix. The fundamental difference between all these
methods may be summarised based upon the initial treatment of the governing

partial differential equation.

Taking the Poisson equation as an example
Lc)=b=0 (A.40)
the weighted residual statements can be classified as follows:

i Weighted Residual Statement

2 o _ _ow
Q(V c—bwdQ = Fz(q—q)wdf‘—/rl(c—c)%df‘ (A.41)

ii Weak Formulation

dc Ow ow
————dQ—%-/bwdQ:f “wdF+/ wdF+/ c—¢)—dI' (A.42
Q 3xk axk Q qu qu Fl( )877, ( )
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iii Inverse Statement

/(V2w)ch—/bwdQ:——/ ”q'de‘—/ qwdf+/ c-———dF—i—/ -dF
2 J 0 JI'y JI'1 s T

7 ’ A43

Another essential difference between techniques lies in the type of basis function
used for the approximation ¢ and for the weighting w. We can divide numerical
methods according to those for which the same basis functions are used for ¢ and w

and those for which they are different.

1. Finite Differences Normally one has different basis functions for ¢ and w, the

latter being taken in the form of Dirac delta functions. Most FDM schemes

are based on statement (i).

2. Finite FElements Usually the same basis functions for ¢ and w are taken to

obtain symmetric matrices. FEM schemes are based on weak formulations
(ii).

3. Boundary Elements Boundary element schemes are based on inverse statement
(iii). For weighting functions w they use a set of basis functions which enable

elimination of the domain integrals and reduce the problem to a boundary

only system. These functions (for the direct BEM technique) are known as

fundamental solutions.
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bilinear interpolation, 89
boundary, 11
downstream, 158
upstream, 157
boundary condition, 11, 18, 74, 78, 98,
152, 178
abrupt change, 3
Dirichlet, 12, 77
double microband, 74, 77
Neumann, 12, 77, 185
Robin, 2, 12
semi-infinite, 89
boundary element, 58

209

Boundary Element Method, 5, 33, 47,

48
accuracy, 85, 123
adaptive mesh, 41
analytical element, 42
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introduction, 35
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formulation, 136
three-dimensional, 173
boundary integration, 58
boundary layer, 98
boundary singularity, 2, 3, 35, 36, 38,
42, 68, 186, see singularity
boundary value problem, 18

C

C, 72
C+-+, 70, 72, 181
central difference, 23, 24



INDEX

channel flow, 15, 30, 147, 151, 152,
154, 164

characteristic
dimension, 100

length, 8, 26
charging current, 8
chemical reaction term, 2
collector, 48, 76, 77, 102
commercial software, 2
complex

geometry, 4, 5, 8

system, 5
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conformal
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Conjugant Gradient method, 45
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dimensionless, 27
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D

degree of freedom, 2
Delauney triangulation, 41
density
gradient, 11
of elements, 88
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non-linear, 116
steady state, see steady state
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analytical approximations, 154

equation, dimensionless, 148
Digisim, 30
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domain, 11
discretisation, 36, 46, 133
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domain integral term, 141
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domain, 73
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discretisation, 110
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Du-Fort Frankel, 30
Dual Reciprocity Method, 130, 165
application to diffusion-convection
equation, 142
approximating function, 161
background, 131
boundary conditions, 152
computational aspects, 144
current, 153
diffusion equation, 169
formulation, 133, 141
general method, 165
internal point, 164
introduction, 130
mesh optimisation, 164
program structure, 144
simulation domain, 152
three-dimensional, 166
transient, 169
validation, 154

E

electric field, 11
electroanalytical, 8, 11

electrochemical
mechanism, 7, 14

model, 1
reaction, 74, see mechanism
simulation, 2
review, 29
system, 2, 7
technique, 7
electrochemistry
theoretical, 1

electrode
geometry, 8

surface, 11
electrodeposition, 48
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electron transfer, 9, 11
element, 58
elliptic integral, 77
engineering, 2, 5, 130
mechanical, 5
equal spacing, 79
error-bounding, 40
excess electrolyte, 11
expanding mesh, see exponential mesh
experiment, 11
experimental technique, 7, 183
explicit, 24
ExplicitQSinite Difference, 22, 24, 25,

exponential
mesh, 68, 81, 85, 86
spacing, 4, 80
extensible, 181
eXtensible Markup Language, 181

F

far field, 74, 80, 89
Fast Implicit Finite Difference, 30
Fast Quasi-Explicit Finite Difference,

30
feedback, 76, 89, 95, 98, 107, 120, 156,
157, 164

Fick
first law of diffusion, 12
second law of diffusion, 12-14, 17,
see diffusion equation
field point, 55
finite difference, 171, see Finite Differ-

ence Method
simulation of DMB and TMB, 100

Finite Difference Method, 3, 5, 22, 29,

47
accuracy, 36

algorithms, 29-31
chemical reaction, 35
comparison with FEM and BEM,

34
conformal mapping, 40

discretisation, 36

distribution of points, 36

exponential mesh, 39

formulation, 44

introduction, 34

local approximation, 40

matrix solvers, 31

mesh, 68

optimisation, 39

three-dimensional, 3
transient, 4

transient, 35

two-dimensional, 3

Finite Eill,?ment Method, 4, 5, 32, 35,
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adaptive mesh, 40
chemical reaction, 35
comparison with FDM and BEM,

34
discretisation, 37

formulation, 45
higher order element, 41
introduction, 35
mesh, 68
optimisation, 40
transient, 35
fixed ratio, 81, 82
fixed shape, 81, 82
flow rate, 147, 148, 150, 154, 162, 164
flux, 18, 64, see concentration gradient
component, 127
error, 66
infinite, 3, 68
internal point, 65
forced convection, 11
forward difference, 23, 24, 171
free software, 2
free space Green’s function, 45, see

fundamental solution
fully populated, 144, 146

functional test, 181
fundamental solution, 36, 45, 51, 52,
55, 151, 172
diffusion-convection, 131, 165
Laplace equation, 133
one dimensional Laplace equation,

52
three-dimensional, 174
two dimensional, 60

G

Galerkin, 165, 171
method, 45
galvanostatic, 7, 185
Gaussian
elimination, 70
quadrature, 61, 62
general solution, 18
generator, 48, 76, 77, 102
geometry coefficient, 55, 126, 176
global
approximating function, 136, 164
matrix, 35, 45
grid, see mesh

H

Hammer’s quadrature, 176
Heaviside step function, 51
hemi-cylindrical, 97, 107
heterogeneous reaction, 9, 10, 184
higher order element, 70

Higher Order Thin Plate Spline, 135
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hindered diffusion, 76, 117, see feed-

back
homogeneous reaction, 9-11, 15, 16,

38, 46, 184
Hopscotch, 29
hydrodynamic, 11, 147

I

ideal geometry, 109
ill-conditioning, 70, 86
imaging, 120, see Scanning
Electrochemical Microscope
implicit, 24
infinite
array, 101
diffusion field, 107
domain, 42
element, 41
time, 107
influence coefficient, 63, 64
matrix, 36, 45, 63, 140, 176
formulation, 63
initial condition, 12, 18
initial value problem, 18
inlaid, 74, 88, 98, 109
instability, 154, 164, see stability
insulating block, 116, 117

insulator surface
boundary condition, 78

integration, 175
Interdigitated Array, 100, see
microband, array
interior, 11
domain, 64
nodes, 136
internal
angle, 56
domain integral, 133
domain term, 133, 134
point, 64, 120, 144, 158-160, 164
DRM distribution, 159
interpolation, 120, 131, 134, 136, 140,
158, 161, 164, 172
inverse form, 45, 50, 52, 133, 136
iR drop, 8

J

Jacobian, 175
Java, 70, 181

L

laminar flow, 147, 148
Laplace equation, 17, 75

two dimensional, 55
Laplace Transform, 19-21, 165
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Leveque approximation, 150, 151, 154,
162, 164

Levich, 151

linear algebra solver, 64, 70, 127, 144

linear element, 70, 123, 125

lithography, 116, see manufacture,
lithography

load vector, 45

local i i
approximating function, 136

mesh refinement, 86
logarithmic
expansion, 80, see exponential

mesh
Gaussian quadrature, 60

LU decomposition, 45, 70, 146

M

manufacture, 109, 116
lithography, 109
sandwich, 109
manufacturing technique, 8
mass transport, 7, 10, 147, 164
mass transport controlled, 11
mathematical model, 10-28

matrix
inversion, 144, 146

pre-conditioner, 146
solver, see linear algebra solver
Matrix of Fundamental Solutions, 183
mechanism, 46, 183
mesh, 3, 68
generation, 68, 69, 166, 173
optimisation, 68
Method of Weighted Residuals, 43, see
weighted residual
microband, 122, 147
array, 100, 106
collector surrounding a genera-
tor, 106
collector-generator, 101
infinite, 100
multiple, 100
novel configuration, 116, 118
realistic geometry, 109
microdisc, 3, 8, 122
microelectrode, 8, 68, 101, 151, 169
migration, 10-12
mixed boundary condition, see bound-
ary condition, Robin
model, 1
electrochemical, see electrochemi-
cal, model
Multi Grid Method, 30
Multiquadric, 135
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N

natural convection, 11, 97, 98
near-steady-state, 25

Nernst, 184

Nernst-Planck equation, 10, 12
Neumann, see boundary condition,

Neumann
Newman, 155

non-linear, 2, 116
novel domain, 110

numerical
integration, 60-62, 112, 176

method, 1, 2, 181
computational aspects, 181
method formulation, 42

O

object-oriented, 70, 181

Orthogonal Collocation, 32

oscillation, 157, 158, 160, see instabil-
ity

outward normal, 56, 175, 178

P

parabolic flow, 148, 150, 162, 165
paradigm, 181

parallel computing, 4

partial differential equation, 14-17,

133
analytical solution, 19

coupled, 2
diffusion-convection, 148, 165
domain integral term, 141
DRM form, 133, 169
homogeneous, 14
hyperbolic, 46, 165
inverse form, see inverse form
linear, 14
method formulation, 42
non-linear, 17
parabolic, 46, 165
second order, 14
solution, 17-18
strong form, see inverse form
three-dimensional, 14
weak form, see weak form
particular solution, 18, 134, 164, 165
series of, 134
Pascal’s triangle, 135
Peclet number, 148, 150
planar diffusion, 14, 48, 177, 178
point collocation, 22
Poiseuille flow, 148
potential, 11
gradient, 11
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step, 4, 7, 11, 48, 74, 97, 183
sweep, 7, 48
waveform, 184
potentiostatic, 7, 100, 184
Pre-conditioned Krylov Subspace, 31
primitive, 173
element, 32, 37
shapes, 4
probe, 120

Q

quadrature, 60-62, 176
quasi-steady-state, 74, 76, 97

R
radial basis function, 135, 136, 164,

165
Random Walk, 31

reaction )
heterogeneous reaction, see hetero-

geneous
homogeneous reaction, see homo-
geneous

layer, 4, 38

second order, 16
rectangular mesh, 39
redox reaction, 4
reduction in dimensionality, 5, 36
regression testing, 181
regularity conditions, 186
Residual, 43
Robin, 184
rotating disc electrode, 8, 15, 147, 151
roundoff, 98

S

sandwich manufacture, see manufac-
ture, sandwich

Scanning Electrochemical Microscope,
3,8, 76, 98, 120

section element ratio, 82

self-adjoint, 50

semi-analytical solution, 2

semi-implicit, 30

semi-infinite boundary, 76, 78, 95, 156

series of particular solutions, see par-
ticular solution, series of

sifting property, 51, 52

simulation, 22

electrochemical, see electrochemi-

cal, simulation

sine series, 135

singular integration, 60, 62, 111, 176

singularity, 60, see boundary singular-
ity

sink, 78, 89



INDEX

smooth, 56
source, 78, 89
source point, 52, 55, 58
sparse matrix, 31, 34, 45
spectrochemistry, 48
stability, 25, see instability
coeflicient, 25, 29, 30
standard matrix solver, see linear al-
gebra solver
steady state, 7, 8, 17, 25, 30, 48, 76,
78, 97, 164
diffusion-convection, 133
stiffness matrix, 45
Streamline-Diffusion Finite Element
Method, 46
Strongly Implicit Procedure, 30, 46
substrate, 120, 121

surface
element, 36, 173

primitive, 5
symmetry, 3, 8, 107
system, 1
electrochemical, see electrochemi-
cal, system

T

Taylor approximation, 34, 44
Telles transformation, 61
testing framework, 181
thermal gradient, 11
Thin Layer Cell, 8, 48, 50, 54, 65, 75,
92, 93
discretisation, 58
domain, 54
Thin Plate Spline, 135
time integration, 169
timescale, 11
timestep, 24
transient, 7, 12, 17, 24, 133, 169, 172
triple microband, 106, 107
true steady state, 74

U
unit test, 181

v

velocity coefficient, 148, 151
Von Neumann analysis, 26

i

weak form, 45
weighted residual, 32, 42, 44, 50, 55,
see Method of Weighted Resid-

uals
Weighted Residual Method, 32, see
Method of Weighted Residuals
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X

XML, see eXtensible Markup
Language
xUnit, 181



