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The amperometric response of electrodes generally cannot be predicted with-

out taking into account mass transport eEects. These are described by partial 

differential equations that often require numerical solution. In this thesis the 

adaptive hnite element method is examined as a means to this end. 

Adaptive hnite element, while long used in engineering Belds, has not 

so far been signihcant in electrochemical simulation. Most simulations have 

been effected with finite difference or non-adaptive Snite element, with o 

p n o n mesh densities. Neither of these has the advantage of error control 

that the algorithm presented here has, nor do they allow the same geometric 

flexibility. An e&cient, and in many ways novel, implementation of adaptive 

hnite element is described, which allows a user-defined error bound to be met 

using Ein optimised machine-generated mesh. Rather than utilising generic 

error measures, the mesh is optimised specihcally for accuracy in the current 

using a new error estimation strategy. This yields a widely applicable steady 

state simulation program whose Sexibility is demonstrated with a variety of 

realistic problems. 
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Chapter 1 

Mass Transport Problems 

The aim of this work is to model certain electrochemical systems. In the 

quantitative interpretation of experimental results it is often found that, 

having formulated the equations describing the problem, one is left with a 

diScult mathematical challenge. We attempt here to solve some of these 

problems. 

Electrochemical experiments exist in both and 

forms, corresponding to controlled current and potential respectively. 

The ambit of this work extends to the latter only, where typically the current 

is measured, for instance to determine the concentration of an electroactive 

species, or a reaction rate constant. In order to relate a measured current to 

a chemical quantity, mass transport eSects must often be modelled, and it is 

on these that this thesis focuses. More peirticularly, we aim to model meiss 

transport to the now ubiquitous in electrochemistry. 

The factors governing mass transport rates are the mass transport mode— 

diHiision, convection or migration—and the electrode geometry—microdisc, 

microband, etc. The effect of each mass transport regime is discussed in 

§1.1.1; it governs the equation we formulate to model the movement of 

species. The electrode geometry determines the boundary conditions we 

impose on the aforesaid equation. A variety of electrode geometries are cov-

ered in this work, most with diEusive mass transport only, but convection is 

1 
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also considered. 

A determinant of how we approach the mass transport problem is whether 

or not experimental measurements (typically of the current) are time depen-

dent in the region of interest. If so, the concentration of reactant is generally 

varying, emd we must solve the problem. In reality, of course, all 

systems are transient, but frequently to within experimental accuracy the 

current is unchanging, and we assume this to be owing to a time indepen-

dent concentration held. This is termed a problem. We deal 

with only steady state problems in this thesis, which is an unfortunate limi-

tation, but an important simplihcation for our work. Extension to transients 

is considered in the hnal chapter. 

A Anal factor that cannot be ignored is the mechanism, which may involve 

heterogeneous reactions (at the electrode) and homogeneous reactions (in so-

lution). These are intimately coupled to the mass transport, and bear on the 

boundary conditions and governing equation respectively. The incorporation 

of arbitrary mechanisms is a difficult problem when considering more com-

plex geometries, with simulations usually only addressing a few cases. We 

consider only hrst order reactions, and a limited subset of these in practice, 

but wider applicability is one of our aims. 

1.1 The Problem 

Consider the elementary single electron electrode reaction (Figure 1.1 on the 

following page) 

r̂ed 
0 - k e - ^ R , (1.1) 

ôx 

where O and R are oxidised and reduced species respectively, and Ared â î d 

their reduction and oxidation rate constants. Regardless of the nature 

of 0 and R, Fick's hrst law (see [2] and § 1.1.1 on page 4) tells us that the 

Faradaic current is directly related to the gradient of the concentrations of 
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O R 

mass 
transport 

reaction 
(D + e-

mass 
transport 

electrode 

Figure 1.1: Schematic of an electrode reaction. 

0 and R. For instance, the cathodic current, ic-, is given in a one dimensional 

system extending along the positive x axis from an electrode at x = 0 by 

9co 
ic = AFDo (1.2) 

z=0 

with A being the electrode area, F Faraday's constant, Do the diffusion 

coefficient of species O, and cq its concentration. This statement is a rela-

tion between concentration gradients—and hence flux—and current; it says 

nothing about reaction kinetics, which we consider later. 

In order to predict the current, then, we must generally be able to cal-

culate ^ at the electrode.^ The obvious means of doing this is to find the 

concentration as a function of position (termed the concentration field), and 

differentiate it, which is what we in principle proceed to do. Since the con-

centration field depends on mass transport, and it is this aspect that concerns 

us, the next step is to consider the types of mass transport and the equations 

governing them. 

^In this work ^ denotes differentiation with respect to the ou tward normal. Here it 

is equal to - ^ . 
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1.1.1 Modes of Meiss Transport 

There are three types of solution mass transport, any and all of which can 

appear in electrochemical systems. They are diffusion, convection and mi-

gration, and are described below. 

Diffusion 

Diffusion is the most commonly importemt mode of mass transport. It is 

always present, and its eSect can only be neglected when that of convection 

or migration is overwhelmingly stronger. It arises from the random thermal 

motion of solvent molecules, as hypothesised in the 1905 analyses of Einstein 

and Smoluchowski (see, for instance, [3]). But this assumption is not neces-

sary for its mathematical analysis, and wag not made by Pick in 1855 when 

constructing his famous laws [4]. 

Fick made the experimental observation, now termed Zow, 

that 

jd = - D V c ; (1.3) 

or, in its more familieir one dimensional form, 

. (1.4) 

That is, the diEusive Hux density vector, ja, is negatively proportional to the 

concentration gradient, the constant of proportionahty being the diffusion 

coelScient^ Z). In other words, diffusion works to smooth out concentration 

gradients by equEilizing concentrations; it is an entropic, time-irreversible, 

effect. 

reality Z) is not always a constant, and can depend on the concentration of solute 

species [5]; but in many cases this is not a signiGcant factor, and henceforth we shall 

assume that it is not. We also note later that D need not be a scalar. 
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Convect ion 

Convection is the net movement of solvent and solute molecules caused by 

physically imparted momentum. It comes in two forms: natural and forced. 

The aim is usually to eliminate the former, as it is extremely difficult to 

predict, deriving from all manner of effects within the reaction solution— 

gravity, density gradients, temperature gradients, etc. 

Forced convection, conversely, is by dehnition induced by the cell design. 

Sometimes the resulting convection is deliberately chaotic and unpredictable, 

as with "turbulence promoters" in industrial cells, and in such cases would 

almost certainly be analytically unquantiSable. In forced convection experi-

ments, however, the velocity Held is designed to be predictable, and if it can 

be found as a function of spatial position then it can be incorporated into 

the mass transport equations. 

Ignoring fairly small effects such as density gradients, etc. caused by re-

actant mass transport or reaction, the Navier-Stokes equations (see [6] and 

the hnal chapter of this work) governing the velocity held v are independent 

of the reactant mass transport equation (s), and can therefore be solved in-

dependently. In a tiny number of cases, notably that of the Poiseuille 8ow 

(%6W.) in a channel Sow cell, the velocity 6eld may be determined exactly an-

alytically. In others, approximations are sometimes applicable, for instance 

with the wall jet cell [7-11]. In all the following work we assume that v or 

an approximation thereof is known, since solving the Euid dynamics prob-

lem is generally harder than the reactant mass transport one (some of the 

difBculties are mentioned in the final chapter). 

Under the assumption that we know v, its incorporation into the mass 

transport equation is simple. The convective Bux density, jc, clearly depends 

on the magnitude of the components of the velocity held and the concentra-

tion of the species with the aforesaid velocity. It is then 

jc = cv ; (1.5) 
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or, if only the z component of v is non-zero, 

jc — Cfz . (1.6) 

While a relatively small chemge to the mass transport equation, the convec-

tive term makes both analytical and numerical solution considerably harder, 

some of the reasons for which are discussed later. This is perhaps not en-

tirely surprising, as the character of convection is entirely different from that 

of diffusion—for example, it is, unlike di@Fusion, time-reversible. 

Migra t ion 

Migration is the effect of ions, eis a result of their charge, moving under the 

force from the electric Seld created by the potential difference between the 

cell's electrodes. It is commonly eliminated in experimental electrochemistry 

by the addition of a relatively large quantity of supporting electrolyte, and 

so will not be considered further. It could, however, become more important 

in simulations as new experiments without supporting electrolyte are per-

formed. Apart from contributing a term to the mass transport equation, it 

generally requires the solution to another coupled PDE governing the electric 

held. 

1.1.2 Electrode Geometries 

The choice of electrode geometry is in part tied to the mass transport regime, 

and is also related to whether or not the experiment is transient or steady 

state. Since the early 1980s have become important to many 

experiments [12]. These are generally held to be electrodes with a character-

istic dimension of less than 50//m, allowing a number of advantages. 

Firstly, of course, small electrodes can be used in situations where large 

ones wiU not fit. But other advantages include high rates of mass transport 

for studying fast mechanisms, and reduced capacitative charging and ohmic 
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drop (%6W.). However, while alleviating experimental problems, microelec-

trodes generally increase theoretical ones. Macroelectrode edge effects can 

often be ignored, allowing symmetric reduction to one dimension (see below), 

but with microelectrodes edge eSects are crucial to an accurate description 

of mass transport, and more dimensions must usually be incorporated into 

the mags transport equation. For example, diffusive trajisport to planar elec-

trodes and convective-diffusive transport to rotating disc electrodes are well 

served with simple (8emi-)analytical models, but even the simple case of the 

steady state current to a recessed microdisc lacks such a thing over the range 

of possible recess depths. 

As a result of these considerations, the simulations in this thesis primarily 

deal with microelectrodes. Two important cases of these are microbands 

and microdiscs, and both will be studied in a number of guises. For these 

purposes, either Cartesian or cylindrical coordinate systems wiU be adopted. 

This is concealed in the Laplacian in the coordinate system-independent 

formulation in §1.1.3, so we make the forms explicit here. 

For the purposes of microband-type simulations, with translational sym-

metry in the z direction, we use the simplihed Laplacian operator: 

In microdiac-type simulations, where the solution is taken as angularly inde-

pendent. 

The related grad and div operators, V and V-, also clearly vary. 

Whatever the precise geometry, the conception of the problem is of solving 

some transport equation within a domain whose shape is deEned by the 

extent of the solution in the cell. Since the scale of the problem we wish to 

solve is typically much smaller than the overall extent of solution, it is usual to 

approximate the simulation domain aa inhnite in one or more directions. This 

generally helps in analytical solution efforts, as it increases the symmetry of 

= ^ + (1.7) 
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the problem, but poses diSiculties with most numerical techniques. Thus 

often a Enite domeiin is simulated, but one much smaller than the true one, 

and this must be taken into account. 

Mathematically we can write the steady state problem as Ending c such 

that 

£c = d , (1.9) 

where vC is a differential operator, with appropriate boundary conditions for 

c on the boundary of the domain, F. Where multiple species are involved, 

we may take c to be a vector quantity. Before solving the problem, then, we 

must determine the nature of vC and the boundary conditions. 

1.1.3 The Reaction-DifTusion-Convection Equation 

We now formulate the governing equation that we shall spend the rest of 

this thesis trying to solve, in one form or another. There is a microscopic, 

stochastic approach to the derivation, going straight from hrst principles 

to the ultimate transport equation. But having given the constitutive laws 

above, we can immediately use the principle of conservation of mass to estab-

lish the without a microscopic model. 

Many non-stochastic derivations of the diEusion equation look at in-

hnitesimal blocks, and result in coordinate system-dependent formulae (e.g. 

see [2]). We shall take a mathematically more general tack, and incorporate 

convection and reaction as well, but fundamentally the idea is the same. 

Firstly, we require Theorem [13], which is also used 

several times later in this work. Essentially it states tha t , if a is a suitable 

vector held over an arbitrary volume V with a surface having an outward 

unit normal n, then 

/ n a c f S - / V a d y : (1.10) 
Js Jv 

it relates surface integrals to volume integrals. 
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The diEusive-convective Sux is, from equations (1.3) and (1.5), 

j = j d + j c = c v - D V c . ( I l l ) 

The Hux into V through the surface is then 

y n . ( D V c - c v ) d S (1.12) 

(since n is the outward normal we change the sign), giving, with the Diver-

gence Theorem, 

/ v . ( D V c - c v ) d y . (1.13) 

The rate of change of material within V is, by dehnition, 

(the interchange of limits is valid under reasonable assumptions). 

Heterogeneous electrode reactions clearly by their nature occur at the 

boundary of the domain within which mass transport is modelled, and thus 

do not come into the governing equation. Commonly, though, homogeneous 

reactions happen too, and manifest themselves as sources or sinks of the 

species whose concentration we are modelling. We denote a general source 

or sink of material by p = /)(a;, c) (its sign determines which—positivity 

implies a source). 

By conservation of mass, the molar rate of change of material within V 

must equal the quantity entering through its surface (1.13), plus the amount 

generated within V by sources. 

p d y . (1.15) 
V 

Therefore 

/ f V . (DVc - cv) (fy + / pcZy . (1.16) 
Jv Jv Jv 

Collapsing the integrals into one, and distributing the scalar product, 

^ ^ - V . ( D V c ) + V c . v - p ^ ( f y = 0 . (1.17) 
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Since the volume V is arbitrary, and has not been specified, (117) can 

only be true if the integrand is zero (again under reasonable mathematical 

Eissumptions). We thus arrive at the general reaction-dijfugion-convection 

equation—the basis for all the work presented in this thesis: 

Oc 
— = V . (DVc) - Vc . V + /). (1.18) 

It is a second order (PDE), which will be linear 

if p is (and if both D and v are independent of c, which we have already 

assumed). Often D is taken to be independent of spatial position, in which 

case we have a slightly more familiar form: 

— = D V ^ c - V c . v + p . (1.19) 

(We shall make this assumption, although it makes no difference to the nu-

merical solution formulation.) In this work, as has already been stated, only 

steady state problems are considered, which means solving 

- Vc . V + p = 0 . (1.20) 

A few things should be noted about (1.18) and its related forms. We have 

assumed that D, the diffusion coefBcient, is a scalar. E diffusion were faater 

in some directions than others—if it were anisotropic—then D would be a 

(GMaor [14,15]. In fact this usually complicates the theory only slightly,^ but 

it can make simulation more dilBcult in practice. In this work we assume 

isotropic diSFusion. 

Secondly, simply by reinterpreting c as a vector of concentrations, we 

have, the reaction-diEusion-convection equation for a sys-

tem of interdependent species. It should be remembered here that the term 

p can be complicated: it will usually be a function (cormnonly a polynomial) 

of c, and could have other dependencies. 

the tensor can be diagomaftaej, as is often possible, tensor analysis can be discarded 

entirely, and the coe@cient viewed simply as having three diEerent values for the three 

spatial axes [16]. 
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There are a number of special cases of (1.19). It is important to identify 

them, as certain commonly encountered forms and techniques for their so-

lution are well documented in the literature. Four important examples are 

given below. 

Diffusion E q u a t i o n 

Also known as aecoMtf /ow, the case where v = 0, p = 0 is, in most 

fields, called the 

^ - (1-21) 

For non-convective systems where homogeneous reactions are absent or negli-

gible, (1.21) is Ein important model. It is, according to the classification used 

for partial diEerential equations [13], a poroAo/zc equation. This is important 

for solving it numerically, aa parabolic partial di&rential equations have 

entirely diEerent properties from the other common time-dependent type, 

The distinction becomes important when dealing with mixed 

diffusion and convection problems. 

Because it governs many other phenomena, most notably heat conduction 

(for this reason it is also sometimes called the eg^^a^zon), (121) has been 

studied extensively. It forms a model transient problem, and its consideration 

is important for extension to transients, discussed in Chapter 6. 

Laplace E q u a t i o n 

A further specialisation of (121) assumes that the concentration held is 

unchanging—that the problem is steady state. Here ^ = 0, so 

V^c = 0 . (1.22) 

The Laplace Equation (1.22) is clearly only applicable where (1.21) is, but 

with the additional constraint that the concentration, and consequently cur-

rent, be unchanging. This never truly happens, but depending on the exper-

iment, can be approached quickly if mass transport is fast. 
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Unfortunately a complication arises when considering the relation with 

experiment. Experiments usually achieve a steady state, but not always 

a useful one purely described by diEusion: in practice, natural convection 

imposes a steady state in most potential step experiments, typically after 

about thirty seconds, limiting their meiximum duration. If a purely dlGFusive 

steady state is desired it must establish itself well before this time, and this 

constrains the combination of mechanism and electrode geometry for which 

steady state experiments are useful. With a simple ^ mechanism microdiscs 

achieve this but microbands do not, for instance. All of the cases simulated 

in this work are known to exhibit true experimental steady states. 

In common with the diSFusion equation, Laplace's equation describes a 

variety of phenomena, obviously including steady state heat conduction, but 

also electrostatics, for example. Consequently, many analytical and numer-

ical techniques have been applied to it. Lacking the time coordinate, it is 

of a radically different t y p e — t h i s time. Despite its apparent simphc-

ity, and the wealth of literature on the subject, even this problem can be 

challenging to solve, the major diSculty being the nature of the Aowndon/ 

imposed in electrochemical problems (see § 1.1.4 on the following 

page and § 1.1.5 on page 18). Much of this thesis is devoted solely to this 

problem. 

Poisson E q u a t i o n 

A slight generalisation of the Laplace Equation entails a known solution-

independent source term / , which may be a function of position: 

= - / . (1.23) 

The obvious interpretation is of a diEusant generated by a homogeneous 

chemical reaction at a rate /—i.e. with p = / in equation (1.19). This 

form of the Laplace equation arises in modelling mechanisms 

where species are coupled by homogeneous reactions emd one concentration 
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Aeld can be determined independently of the others (for instance, with the 

irreversible E'CE mechanism [2]), as well as with zero order reactions. 

Modif ied Helmhol tz E q u a t i o n 

A less commonly seen generalisation of (1.22) is the modified Helmholtz 

equation [17]. It has the form 

- Ac - 0 , (1.24) 

where A; is a positive constant (if A were negative, (1.24) would become the 

plain Helmholtz equation, but this is not of interest to electrochemists.). It 

can be used to model a hrst order mechanism [2], where the homogeneous 

rate constant is proportional to A;. Beyond this, it serves as a building block 

in the simulation of more complex mechanisms, and appears in some form 

wherever there is a hrst order homogeneous reaction of a disusing species. 

For instance, with the irreversible mechanism the chemically reactive 

species is governed by an equation of the form: 

DV^c-A;c = - / . (1.25) 

1.1.4 Boundary Conditions 

It is not dilBcult to End functions that satisfy PDEs like equations (121) or 

(1.22) or (1.23) or (1.24); unlike ordinary differential equations (ODEs), the 

general solutions contain arbitrary not constants, so there exists a 

multiplicity of candidates. The difBculty is in making such functions obey the 

imposed boundary conditions, which can be very complex in dimensionalities 

higher than one. 

In electrochemistry, spatial boundary conditions at cell walls are dehned 

by the reaction, or lack of, at the cell boundary/solution interface. Where 

the solution meets an active electrode, the reaction occurring there can be 

expected to impose some condition on the concentration that results in a 
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Hux of material. Depending on the rate of reaction, its order, and the mech-

anism, different conditions need to be imposed. Conversely, at an insulating 

wall—the glass surrounding a microdisc, for example—no reaction will be 

occurring, and we expect the Sux to be zero. Any number of reaction condi-

tions could be imposed, but here, as in most work on the subject, we restrict 

ourselves to linear boundary conditions. This limits what we do to Erst or-

der electrode processes, but these are by far the most common, and it avoids 

some complexity. Finally, where the simulation domain tends towards the 

bulk solution, conditions must be imposed there to reproduce this effect. 

Linear boundary conditions are usually categorised mathematically into 

three types: Dirichlet, Neumann, and Robin. However, unlike many phys-

ical problems governed by PDEs, electrochemical problems almost always 

have mzzai boundary conditions—that is, diSerent types of boundary con-

dition hold on diEerent parts of the boundary.^ Many of the problems of 

electrochemical simulation stem from this fact. 

For transient problems, which we do not simulate, one must also impose 

initial conditions. These are usually of obvious form, (e.g. c|t=o = c*, where 

c* is the bulk concentration), but do not aSFect the steady state solution. 

The General B o u n d a r y Condi t ion 

With one exception, all of the boundary conditions that we shall impose— 

even the one on insulators—can be thought of as special or limiting cases of 

the general [2]. Assuming in this section that 

we are referring to concentrations at the boundary, it can be written as 

(1.26) 

nFA\kfCo — . (1.27) 

^Some authors use "mixed boundary condition" to refer to a Robin condition, on the 

grounds that it is a "mixture" of Dirichlet and Neumann conditions. The terminology 

used here seems more modem, and less apt to confuse. 
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The or ro(e cofw^o»(, A;'̂ , is a potential-independent con-

stant determined by the electrode system. The forward and backward rate 

constants, Ay and do depend on the potential. The other symbols have 

their usual meanings (%6W.). 

By Pick's hrst law, as exemplihed in (1.2), the total current, %, is related 

to the concentration gradients of both species O and R. Thus we must, in 

general, impose the conditions 

= A/Co - (1.28) 

and 

- A/CO - (1.29) 

at electrodes. We note that they sat is^ the mass balance condition 

, (1.30) 

OM on 

mandated by conservation of mass; the one imphes the other in this sense. 

These two conditions are essentially conditions (although these are 

usually presented mathematically in the context of a single Seld) because 

they prescribe a linear combination of the concentration and its derivative. 

In the full general case the reactant and product concentrations are clearly 

inseparable—they must both be modelled and solved for—but often one can 

be considered in isolation, simplifying matters, if certain approximations are 

reasonable. It is also found that in the case of no reaction (at an insulator), 

the conditions reduce to ATeztmonn conditions; and conversely at electrodes 

where there are very fast reactions conditions are imposed instead. 

We now consider these important special cases. 

Insu la to rs and N e u m a n n Boundar i e s 

At the insulating surrounds of electrodes there is clearly no reaction and no 

current. By definition, then, = 0, and we immediately see that 

^ = ^ = 0 . (1.31) 
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These are examples of #ewmonn and specifically Aomogeneozw 

con(f%(2ong, because the prescribed derivative is zero. We note that 

the mass balance condition is inevitably satisfied by insulators with these 

conditions: no material travels either way. 

Non-zero prescribed derivatives would seem on the face of it to correspond 

to a galvanostatic experiment, and as such would not be relevant to our work. 

In a similar manner to the Poisson equation, however, they reappear when 

modelling species that can be solved for sequentially. Consider the mass 

balance relation of (1.30). If for instance, is known (i.e. the % held has 

been determined independently), then enforcement of mass balance reduces 

to imposition of an inhomogeneous Neumann condition on c^. 

Revers ible Sys tems and Dir ichlet Boundar ies 

In the hrst major special case at electrodes the intrinsic rate constant is 

very high, implying equilibrium of surface concentrations, and the system is 

termed [2]. 

If we take (1.26), divide by and let —> oo, we lose the current— 

and hence the concentration derivative—term, leaving 

% ^ (1 32) 

The exponential term is constant as far as we are concerned. The crucial 

point is that in this case we want to impose a ratio of concentrations: this is 

a type boundary condition (although, again, in the mathematical 

literature these are usually just values imposed on one 6eld). It must be 

remembered that, as well as enforcing (1.32), we must stiU satisfy the mass 

balance condition of equation (1.30), which is not implied by the Dirichlet 

condition. 

An approximation common to many theoretical treatments, where the 

concentration of reactant tends to zero, applies to the case where, on top of 

reversibility, we have a negligible backward reaction because we have a high 
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overpotential. This is a common simplihcation, attractive because it can 

mean the product species can be neglected entirely. Here, of course, mass 

balance is not a concern. 

Totally Irreversible Systems and Robin Boundar ies 

In the second class of special case the kinetics in both directions are slow. E 

only one of the reactions is signihcant, one of the terms in equation (1.26) 

can be dropped. This is termed the case [2]. For instance, 

we might have 

% = MFAAiyCo , (1.33) 

meaning 

- D o ^ = &yCo. (1.34) 

This is still a Robin boundary condition, and is simple to enforce with Enite 

element. 

In common with many practitioners, for the most part we will be assum-

ing one or the other of these special cases, not least because most of the 

approximate solutions with which we typically compare results do likewise. 

Bulk Boundar ies 

Bulk boundaries do not ht into the general scheme of (1.1.4). As has already 

been said, most simulations must deal with the fact that the full expanse 

of the solution in which the active species exist is far larger than the small 

region around electrodes of interest. On the scale of the electrodes it has 

been shown through many experimental validations that the solution may 

therefore usually be approximated as infinite in extent. 

While boundary and hnite element can, in fact, deal with in6nite domains, 

it is more usual to see simulations conducted on large but hnite spaces. 

This is done principally for simplicity, and we follow this practice. The 

question remains, then, of imposing boundary conditions for the bulk at a 



CHAPTER 1. MASS TRANSPORT PROBLEMS 18 

Snite distance that will mimic the effect of those imposed inSnitely far away. 

This is not a well investigated or documented area. 

It is clear that the concentration tends towards the bulk value as one 

travels away from the electrode(s), but this would imply both the concen-

tration tending to a constant and its derivative tending to zero. Thus one 

could arguably treat the bulk boundary either as an insulator (see above), 

or impose a Dirichlet condition for the bulk value. It would appear that 

the factor determining the best approximation is the effect on the quantity 

of interest—usually the current. Where the bulk boundary forms a crucial 

part of the system, for instance where it is the sole source of diffusant, then 

a Dirichlet condition would seem inescapable. With a generator-collector 

conhguration, however, where other more important sources also exist, the 

choice is less clear cut, and the difference in results can be signihcant [18]. 

For testing purposes it is sometimes useful to be able to rule out bulk 

boundaries as a source of error, so with some simulations run for validation 

purposes, where an analytical solution exists, the exact values can be imposed 

on the bulk boundary. This is of course not a realistic practice, and a better 

solution in Snite element might be [16]. These are not a 

panacea, however, and are not widely documented. Some of their possibilities 

and potential difBculties are discussed in the hnal chapter. 

1.1.5 Boundary Singularities 

As already suggested, the importance of modelling edge eEects in microelec-

trode experiments gives rise to simulation domains with mixed boundaries. 

Often, where an electrode is surrounded by insulating glass, and the electrode 

reaction is diffusion controlled, a Dirichlet boundary abuts a homogeneous 

Neumann boundary (see Figure 1.2). In the micro disc case illustrated we 

can expect there to be a non-zero Sux all along the surface of the microdisc; 

indeed the analytical solution shows that it increases to inSnity as the edge 

is reached. Next to this, however, is the insulating surround at which by 
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F i g u r e 1.2: T h e concentration field z derivative near t h e edge of a mi-

crodisc with a radius of unity. T h e electrode is a Dirichlet boundary 

(c = 0), whereas the insulator is a Neumann boundary: ^ = 0-

T h e flux is discontinuous where they touch at z = 0, r = 1. 

definition there is no flux. Thus, while the concentration field may be con-

tinuous at the point where they join, its normal derivative cannot be. This 

in turn means the concentration changes sharply, and can make its modelling 

difficult. This is a central problem of numerical microelectrode simulation, 

and is discussed below, when the solving methods are presented. 

1.2 Analytical Solution Methods 

The obvious place to start, as with most mathematical equations, is with 

analytical solutions. If such a thing can be found then we have the ideal 

case: a (presumably) quickly evaluable function then supplies the desired 

numbers. Unfortunately they are rare, and are almost entirely absent in 

domains with more than one spatial dimension. As stated earlier, this derives 

from the complexity of imposing boundary conditions where they can follow 

an arbitrarily complex line or surface in two or more dimensions. Important 
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to almost any successful attempt is symmetry of one type or another. 

The most obvious example of helpful symmetry is that of the translational 

variety, allowing the approximation of certain spatial derivatives in the Carte-

sian diEusion equation as zero. For instance, where a large enough electrode 

is employed, edge effects may be neglected, and if the surface normal points 

in the z; Eixis direction, the Cartesian diEusion equation 

reduces to 

There exist a reasonable number of analytical solutions to the one dimen-

sional transient problem posed by (1.36). Since, by a substitution, problems 

with spherical symmetry can be reduced to Cartesian one dimensional prob-

lems, these solutions also extend to hemispherical electrodes. However, less 

spatially symmetric geometries, for instance SECM tips, do not have this 

property, and solutions for even the simplest mechanisms do not exist. The 

only notable case of a truly geometrically Aexible method for two dimensional 

problems is that of conformal mapping [19-21], which is only applicable to 

the Cartesian Laplace equation. It has yielded, for instance, the solution to 

the dual microband generator-collector problem [22], but three dimensions, 

homogeneous terms and transients all defeat it. 

The inlaid microdigc does posses enough symmetry to allow some exact 

analytical solutions. In particular, the steady state mechanism problem 

is fairly easily solved if the right coordinate system is used, as shown in 

Appendix A. The EC" case, however, is rather harder [23,24], and the 

resulting solutions are unwieldy. As far as is known, no exact solution has 

been derived for the transient case, although approximations exist. Generally 

speaking, these approaches fall down as soon as the geometry of the problem 

changes, even slightly, as with a recessed microdisc. 

Whatever can be achieved with a given problem, a diSculty of the analyt-

ical approach remains in that all calculations must be thrown away for a new 
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problem; it can only ever be problem-speciBc. The length and speciGcity of 

Appendix A perhaps make the most eloquent case against analytical solution 

techniques for the problems under consideration: adaptation is diScult for 

the EC" mechanism, and impossible for the recessed microdisc. 

Relinquishing the hope of an exact formula for the desired answers, re-

searchers have also sought expressions that approximate in a useful way the 

system under study. We adopt the description for these. 

Semi-analytical methods approximate at a less fundamental level than the 

numerical techniques discussed below, often using preexisting exact solutions 

for related cases. Numerical methods tend to use non-problem specific ap-

proximations. 

For instance, since an analytical solution to the recessed microdisc E 

mechanism problem is unavailable, various approximations have been de-

rived. Bond aZ. [25], for example, assumed a constant concentration at 

the mouth of the recess, and derived a simple expression valid for relatively 

deeply recessed microdiscs. This can be a fruitful pursuit, but the speciScity 

remains. 

Since our aim is to solve general problems, and as a result of their limited 

applicability, the only use we shall make of analytical or semi-analytical ex-

pressions is in verifying the validity of the more general numerical techniques 

described next. 

1.3 Numerical Solution Methods 

Numerical techniques for solving the equations in which we are interested 

are manifold. They all share the characteristic of approximating to reduce 

the inhnite dimensional problem posed by (1.22), say, to a Bnite dimensional 

one. Thus the differential equation problem becomes an algebraic one, and 

this is solved instead. The key, of course, is to ensure that the essential 

nature of the former is rejected in the latter. There are many ways of 
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attempting this, with varying degrees of efEcacy and appropriateness, many 

of which we shall ignore completely: spectral, 6nite analytic, wavelet, for 

example. Most of these are simply not general enough for our problems. We 

shall only address the few techniques that have reasonable currency in the 

electrochemical world: Enite difference, hnite element, boundary element Emd 

random walk (Monte Carlo). 

In electrochemistry the one dimensional numerical simulation problem has 

essentially already been solved, in that there exist packages that solve the 

range of problems of interest [26]. This is because one spatial dimension is far 

easier to deal with than two or three. Unfortunately this limits simulations 

to only one microelectrode of interest, the hemisphere. In order to simulate 

a variety of microelectrode geometries, a program capable of incorporating 

at least two spatial dimensions is necessary, and it is the aim of this work to 

develop such. Therefore a key requirement of the numerical method used is 

geometric Sexibility. A second requirement is the eScient modelling of the 

boundary singularities mentioned above. The common simulation methods 

must therefore be evaluated with these in mind. 

1.3.1 Finite Difference 

One of the oldest numerical techniques for PDE solution—certainly predat-

ing computers (see [27], translated in [28])—is hnite difference (FD). Most 

electrochemical simulations to date have used it, principally on account of 

its simplicity, at leeist in its more rudimentary forms. 

Finite difference relies on the Taylor series approximation of derivatives 

in the dehning equation. For instance, 

c ( z ± A z ) = c ( a ; ) ± ^ A 3 ; + ^ ^ ^ + . . . (1.37) 

(assuming diEerentiabihty and convergence). 

Using such expansions, all the derivatives in (1.36) or any other PDE 

can be approximated. For example, using the 6rst two terms of (1.37), 
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one can produce the approximate equation, known as the forward difference 

approximation, 

^ _ c(z + Aa:) - c(z) 
az Az ' ^ ^ 

or the backward difference approximation 

^ c(z) — c(z; — Aa;) 

^ " A^ ' 

Both become exact as Az ^ 0, so their average, the central difference ap-

proximation, must too: 

c(a; + A3;) —cfz —Az) _ 

& " 2 A i • 

Of course, these expressions' accuracy is contingent on Aa; being small enough 

to render higher terms negligible. Assuming the solution is smooth enough, 

higher order methods will be more accurate. The forward and backward 

diSFerences are hrst order, as they discard second order terms and above. 

The central difference is second order, as it happens tha t the second order 

terms cancel, and only terms of third order and above are neglected. 

By writing another Taylor series for ^ and repeating the process, a second 

order central diSFerence approximation of the right-hand side of (1.36) can 

be derived: 
c(2; -t- Aa;) — 2c(a;) -I- c(a; — A z ) 

- (Aa;)2 ' 

This is used in many Snite di&rence schemes, the main difference between 

which is the approximation used for 0^. 

In the (EFD) scheme [29], the forward difference 

expression is used for to give 

c(z, t + A() — c(2;, f) 
A( -

c(a; -I- Aa;, () — 2c(r, t) -|- c(a; — Aa;, () 

{Axf • 

One overlays a grid on the domain, and uses this approximation at each grid 

point. The "explicit" part of the name is explained when (discarding the 

approximation sign) we rearrange in terms of c(a;, ( -t- A^): 

c(a;, t -I- A() = c(2;, () + [c(z 4- Aa;, () - 2c(a;, () + c(a; — Az, ()] . (1.43) 
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Assuming c is known at time it can be calculated for time t + At. In other 

words, the algebraic system associated with the approximation is diagonal 

[30], and trivial to solve. This holds with higher dimensional analogues. Note 

that, while the approximation of ^ is second order, the approximation of 

^ is only accurate to hrst order in time. 

It should be apparent that the type of analysis above can be extended 

to any PDE, including, in principle, (1.19) in its full generality. In general 

FD can incorporate any convective or homogeneous reaction terms, includ-

ing non-linear ones, so it is, pnma /ocze, attractive for simulation programs 

designed to handle arbitrary mechanisms. 

While EFD is simple, and important for illustrative purposes, it is not 

generally held to be a useful scheme, its widespread use in electrochemistry 

notwithstanding. It can be shown [30] that the scheme is only stable (that 

is, it only produces physically meaningful results) where 

and that even more stringent requirements exist for the two and three di-

mensional versions. For good spatial accuracy Aa; must be small, but this 

limits the size of At. Soon enough, the scheme becomes uselessly slow with 

even moderate problem requirements. 

With steady state problems, stability is not an issue. And with transient 

problems, the stability issues can be addressed by using backward or cen-

tral diSFerence approximations in time.^ The common feature here, however, 

is that the resulting algebraic systems are no longer diagonal, and can re-

quire slower and more complicated solvers. In the special case of one spatial 

dimension, the implicit and semi-implicit methods produce a trWmgonoZ ma-

trix [30], and can therefore be solved relatively easily. In higher dimensions, 

both transient and steady state approaches produce less tractable band diag-

onal matrices. One way around this is with the cfzrectzoM zmpZzczt 

^These are t e r m e d f u l l y i m p l i c i t a n d s e m i - i m p l i c i t (o r C r a n k - N i c o l s o n ) respec t i ve l y . 

The Crank-Nicolson scheme also carries the advantage that it is second order in time. 
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(ADI) algorithm This eEectively breaks the process into two or more 

one dimensional problems that are solved in turn. The central dilRculty of 

hnite difference remains, however: that of boundaries. 

Figure 1.3: A two dimensional Snite diSerence grid in a domain with a 

complicated boundary. SpeciGc Taylor series approximations are required 

near the boundary for Neumann or Robin BCs, aa well as higher order 

Dirichlet boundary approximations. 

Figure 1.3 illustrates the problem with imposing boundary conditions in 

hnite difference. To a hrst order approximation a Dirichlet condition can 

be imposed at a grid point near to the boundary. Lower order boundary 

conditions can pollute a higher order solution, however, and to be sure of 

second order spatial accuracy second order boundary conditions are needed, 

requiring separate Taylor series analyses. The case of Neumann or Robin 

conditions is even worse: Taylor series are necessary for any approximation at 

all. A boundary that irregularly intersects the grid therefore poses a difhcult 

^Others exist too: hopscotch, Du-Fort Frankel, fast implicit, strongly implicit, to name 

some of them—see Britz [29]. 
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challenge. Should one wish to raise the order of the method everything 

changes again. 

For one dimensional problems (that is, one spatial dimension), where 

only two boundary points can ever exist, hnite diGerence is a reasonable 

method, usually in its Crank-Nicolson form (although a popular commercial 

package [26]) uses fully implicit FD). For higher dimensional problems with 

very simple boundaries ADI could be appropriate, but is probably not worth 

the e@brt, as the simulation program would be very specihc to the system 

for which it was designed. The essential diSculty is that the formulation is 

dependent on geometry, and geometry can vary a great deal. For this reason, 

despite its initial attractiveness, FD lacks the geometric Sexibility to tackle 

many problems in electrochemistry, and we consequently discard it. We do 

not consider further, therefore, the vast body of literature on the subject, 

comprehensively referenced in, for instance, [31]. 

One rider should be attached to the above conclusions. They hold for spa-

tial discretisation, but for transient simulations that use hnite element for 

spatial discretisation, finite diSFerences ore usually employed for time discreti-

sation. Some of the same schemes and stability concerns reappear there, but 

even this type of temporal discretisation can be thought of in a hnite element 

framework, and doing so suggests some potentially superior alternatives [16]. 

Some of these issues are discussed in Chapter 6. 

1.3.2 Finite Element 

The 6nite element method (FEM) is a considerably more modem technique 

than 6nite difference, and requires more mathematics t o formulate. As a 

consequence it has been much less used in electrochemistry, but it is gaining 

popularity. It is possible to place FEM, FDM and BEM (described below) 

in a single wezgAW (MWR) framework, but in the case 

of FDM this is rather contrived, in the sense that the weight "functions" 

are not strictly functions at all. It is worth remembering, however, that in 
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a sense 6nite diEerence is a special case of finite element, so we can never 

expect Bnite diSFerence to be superior, except in its simplicity/ 

A full derivation of the Snite element method will be given in Chapter 

2; here it is enough to see the initial idea without its detailed consequences. 

Consider the steady state equation for the held if: 

V . ( o V « ) + gw = - / , (1.45) 

where a, g and / are known scalar functions of position dehned over the 

domain H with the boundary F, constrained by the Dirichlet boundary con-

ditions 

« = a on r^) (146) 

and the Robin boundary conditions 

3ll 
— = CKM + on Fg . (147) 
on 

If M satishes (1.45) then it must also satis:^ 

w[V - (oVtf) + + /jdfZ = 0 (1 48) 

for any function w. (Here w is the : the "W" of MWR.) 

Assuming the Dirichlet and Robin conditions of equations (1.46) and (147) 

are also imposed, this is an equivalent statement of the problem. So instead 

of approximating the derivatives of (1.45) as in FD, one can approximate the 

integral in (1.48). 

Since numerical differentiation is known as a difBcult and inaccurate pro-

cedure generally [30], and numerical integration is much easier (zAztf.), one 

might intuitively prefer this idea. But the real advantage is apparent in the 

second big idea of FE: 0 is broken (meshed) into simple shapes (e.g. trian-

gles), called and the held in each approximated by a simple (e.g. 

linear) function. Unlike FD, no mention is made of axes, and the spacing 

^It should also be born in mind that even with Galerkin weighting, certain uniform 

Gnite element meshes yield the same matrix as simple Gnite diEerence discretisations [32]. 
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elements 
nodes 

Figure 1.4: A Snite element mesh for an irregulaz two dimensional shape. 

The elements are linear triangles, which means their nodes are at the cor-

ners of elements—higher order elements have additional nodes elsewhere. 

A few example elements and nodes are labelled. Note that elements can 

be placed arbitrarily in an unstructured manner. 

of adjacent mesh points is not integral to the formulation, so any geometry 

can in principle be imposed. In Figure 1.4 a possible mesh is shown for an 

irregular shape diScult or impossible to treat with hnite difference. 

There are numerous formulations of Unite element, principally differing 

in the weight functions used. Unless otherwise noted, the most standard 

version, the Galerkin formulation, will be used here. This has the special 

advantage that with problems (see Appendix B on page 263), 

the resulting matrix is symmetric, which happens to be advantageous. There 

are also related, more theoretical, advantages. 

The idea behind (1.48) is clearly not contingent on any particular form 

for the PDE. It also happens that later in the formulation (see Chapter 2) 

no other assumptions about the PDE are made. So, as would be expected 
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elements 
nodes 

F i g u r e 1.5: A boundary element mesh for the same b o u n d a r y as Fig-

ure 1.4 on the page before. The elements reside entirely o n the boundary, 

and are demarcated by perpendicular lines. For the simplest elements, 

nodes are at the centres of elements. Again, a few example elements ajid 

nodes are highlighted. 
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from Gnite element being in a sense a generalised version of Gnite diEerence, 

it can also in principle deal with entirely arbitrary manifestations of (1.19), 

including convective, reaction and transient terms.^ The practicalities of this 

will be discussed later. 

A primary advantage of FE is the Sexibility of its mesh.^ Firstly, this 

means that non-axiaUy aligned and even curved domains can be modelled 

with relative ease without changing the simulation program. Secondly, the 

density of mesh nodes can be easily increased near the boundary singularities 

described in §1.1.5, allowing efBcient handling of them. (Expanding grid 

finite difference has long been used for this purpose, but reSnement is usually 

tied to an axial direction, making it indexible and as a consequence possibly 

ineScient.) 

Among other advantages, hnite element allows the possibility of estimat-

ing the error of the approximate answer—a crucial aspect that has so far 

gone unmentioned in this work, but which wiU prove essential later. This 

capability has seemingly not been developed for hnite diGFerence. Harriman 

a/, show [33-38] that the error for currents calculated from hnite element 

simulations can be controlled by adaptively adjusting the mesh. This idea is 

used extensively in Chapter 3. Finally, it is apparently easier to prove theo-

rems in relation to hnite element than hnite difference. A sense of this can be 

found in [32], where the relatively stringent assumptions required for simple 

proof of hnite diEerence's convergence are given. Very roughly, because finite 

element deals with "weak" solutions (see 2.1.1 on page 45), with lower dif-

ferentiability requirements, it is more permissive than finite difference, with 

its Taylor series basis. 

fact, as noted in §1.3.1, transient terms are usually handled diSerently, with Anite 

diSerences, but they can be treated in the same way as spatial derivations. 

^Here we use meaA to denote a generahsed version of the regular grid used in FD, but 

the distinction is blurred when expanding grid FD is compared with structured mesh FE. 

Perhaps the true diSerence is that unstructured (see later) FE meshes, which have no 

analogue in FD, are also used. 
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The disadvantages of FEM lie in its complexity. The most difhcult prac-

tical aspect of its implementation is indubitably mesh generation. Certainly, 

if a good mesh is available, hnite element will be an efEcient method; but 

generating snch a thing, particularly in three dimensions, is not a trivial un-

dertaking. In the work discussed later the two dimensional meshing problem 

is addressed with reasonable success, but the general problems of meshing 

are not to be dismissed lightly. It should be remembered, though, that hnite 

difference offers no solution to this either: the issue of how to eSciently mesh 

an arbitrary domain never arises because it is not possible. 

It is fairly clear then, that, provided the slightly more abstract formu-

lation of FE is acceptable, there is no compelhng reason to use FD: the 

geometric Sexibility and error estimation capabilities of Snite element are 

better-suited to handling outstanding electrochemical problems. The same 

clear-cut dismissal cannot be made of the next alternative that we discuss. 

1.3.3 Boundary Element 

Boundary element uses the same idea as hnite element: it solves the PDE 

integrated over a weight function. But instead of carving up the domain into 

pieces, and using a different weight function in each, it uses a specially chosen 

global weight function to eliminate the domain integral in an expression 

similar to (1.48). In fact, it eliminates the domain integral from the 

expression. 

There is no space to fully describe this, but an example gives the idea. 

Assume we wish to solve the weighted Laplace problem: 

= 0 , (1.49) 
n 

We can employ a trick, similar to one used later in the Enite element formu-

lation, to rewrite the integral as 

+ B = (1.50) 
a 
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where _B denotes boundary terms (see (2.10) for the sort of expression). 

If we wish to eliminate the domain integral in (1.50), one obvious approach 

is to use a w that identically satishes the governing equation. As has been 

noted, functions that sa t i s^ PDEs (but not their boundary conditions) are 

not hard to End. In the two dimensional Cartesian form of our example we 

need w to satisfy 

A host of possibilities suggest themselves, some more trivial (and useless) 

than others: 

w = 0 (1.52) 

w = a; (1.53) 

w = ^ (1 54) 

w = , etc. (1.55) 

A whole variety have been used with BEM—and indeed the best ones are a 

matter of dispute—but whatever the choice the domain integral essentially 

disappears, leaving solely boundary terms. This has profound implications 

for the meshing—see Figure 1.5 on page 29 for a comparison with hnite 

element. In Figure 1.5 it can be seen that two dimensional problems require 

only the discretisation of a /me rather than a potentially irregularly shaped 

area. 

Although it is relatively unimportant for our discussion, it should be men-

tioned that most BE work in electrochemistry—and most BE work generally— 

has been done with rather less arbitrary weight functions. Instead of weight 

functions that satisfy the governing equation everywhere, 

(zong (also called gmpw/or [16]) are used that obey it 

In our example, 

= (̂ (a; - a)<^(a; - 6 ) - (1-56) 

((̂  here is the Dirac delta functional [13].) The reasons for the diSerent 
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approaches are not important here; instead we note the obvious advantages 

Eind disadvantages over FEM. 

The greatest advantage of BEM is that the disappearance of the domain 

integral means that no domain meshing need be done: only the boundary 

need be discretised, meaning the meshing challenge in three dimensions, par-

ticularly, becomes far easier due to a reduction in dimensionality by one. 

Another is that high accuracy can often be achieved with few elements, and 

the algorithm can be more eScient than finite element. This is not alto-

gether surprising, since some of the nature of the analytical solution has 

been incorporated into the method. 

The beneht of a reduced number of degrees of freedom is not as clear cut 

as the size of the matrix suggests, however, as with BEM it is not sparse 

or symmetric or positive definite, necessitating computationally expensive 

general matrix solvers. If dense matrix LU factorisation is used to solve the 

linear system arising from discretisation, as it usually is, the computational 

effort scales with the cube of the number of elements (see Appendix C). This 

imposes a practical limit on normal computers of a few thousand degrees of 

freedom. Nor is there, to the author's knowledge, any equivalent of multigrid, 

which allows in hnite difference and element, in some cases, solution in 

(where M is the number of nodes) time. Finally, an important phenomenon 

used in hnite element error analysis, superconvergence, is also apparently 

absent in boundary element. 

Whatever the net advEintages of BEM may be, they come at a price 

in Sexibility: the obvious disadvantage—not shared by FEM—is that the 

weight function depends on the governing equation. If singular weight func-

tions are used, as they usually are in electrochemistry, then a fundamental 

solution must be found whenever the formulation, and hence the mecha-

nism or transport regime, changes. This is a major limitation of the baaic 

boundary element method. Further diSculties become apparent even when a 

fundamental solution is available, or non-singular weight functions are used. 

The neat elimination of domain integrals in the derivation of the adjoint 
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expression (1.50) commonly falls down when extra terms—time derivatives, 

convective terms, constant sources/sinks, etc.—appear. The BEM practi-

tioner must constantly walk a tight-rope to preserve its main advantage: the 

lack of a domain integral. 

In some cases, the problems are surmountable. E the convective veloc-

ity vector is constant, for instance, there does exist a usable fundamental 

solution. But fundamentally, as it stands, the method is too inflexible to 

be generally useful in electrochemistry. This is where the Dual Reciprocity 

Method (DRM) and its variants come in. 

Apparently the only hope for BEM as a generally useful electrochemical 

technique lies in modihcations like DRM. Essentially they separate out non-

Laplacian terms and approximate them, to allow solution of an equation of 

the form (in two dimensions): 

V''« = / (^ , z ,2 / , ( ) , (1.57) 

where / is an arbitrary function, allowing time and spatial derivatives. So 

convective, transient, and mechanistically more complicated problems can 

be solved. Unfortunately DRM is under-researched, and some recent End-

ings in electrochemistry [18] suggest that its additional complications and 

approximations destroy convergence in many important cases. While the 

transient ceise has met with some success [39], convection appears dilBcult 

to handle [18]. There always remains the difhculty of putting nodes in the 

right place on the boundary; and similarly with the internal nodes that DRM 

demands. 

The last point illustrates a recurring problem with numerical methods. 

In all techniques where a grid or mesh is used to discretise the domain, 

the eSect of the location of nodes on the accuracy of the result is known 

to be pronounced. Near boundary singularities it is usually necessary to 

have a high density of approximating nodes to capture the nature of the 

rapidly varying concentration Held. Much effort in hnite di&rence and non-

adaptive Suite element has been poured into Ending functions to describe, a 
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pnon, the locations of nodes. Recent BEM work persists with this. Research 

in electrochemistry and other areas has shown that FEM meshes can be 

eEectively tailored to the problem using eTTor that guide mesh 

rehnement. This is something so far largely undeveloped with BEM. For this 

and the other reasons, we conclude that FEM remains the most attractive 

option. 

1.3.4 Random Walk 

Unlike the numerical methods sketched above, random walk (RW) is not a 

standard means of solving partial differential equations. Nonetheless, a sur-

prising amount of electrochemical literature exists on using RW to solve 

diffusion problems. On the surface, it appears to offer an entirely non-

mathematical route to modelling numerical mass transport. Virtually none 

of the papers on the subject refers to the diS^usion equation, and they cer-

tainly do not use Taylor series, or weighted integral formulations. Instead, 

random walk is justihed solely with the familiar physical picture of diffusive 

mass transport: random molecular motion. Purely from the perspective of 

simplicity, then, one might wonder whether random walk offers something 

that hnite difference and hnite element and boundary element do not. 

It is not possible to give a standard mathematical formulation of the 

random walk simulation technique, as various algorithms are used—at least 

not without delving into stochastic differential equation theory [40]. Instead 

we give below a brief sketch of the previous work in this area. 

P rev ious Work 

An early paper [41] describes the simple random walk algorithm used in most 

subsequent papers. In a one dimensional problem the motion of a diSusing 

molecule is described by random, equally probable steps to the left or right, 

curtailed by rejecting or absorbing barriers corresponding intuitively to "zero 

Bux" or "zero concentration" boundary conditions respectively. The article 
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considers simulation particles as direct representations of physical molecules, 

which explains its mooting of a "more realistic picture" of reality, where parti-

cles' step lengtha are variable, being drawn from a Gaussian distribution—an 

approach also adopted by a recent paper [42]. In all other electrochemical 

papers mentioned, steps from a distribution with a hxed length are taken. 

Much early electrochemical use of random walk simulations was in fractal 

electrode investigations, a useful introduction to which is [43]. Witten and 

Meakin [44] used a lattice-based random walk to study the HausdorS dimen-

sionality of deposits in diffusion-hmited aggregation. In one model, particles 

diGused simultaneously; in the second particles diffused and deposited one 

at a time. Both yielded qualitative data of an unknowable accuracy. 

Nyikos and Pajkossy and co-workers published a number of papers [45-

48] with similar random walk simulations yielding semi-quantitative results 

(arbitrary constants remained). 

Voss and Tomkiewicz [49] describe a random walk model of diSusion-

Hmited aggregation with a "sticking coeScient" incorporating the effect of 

potential. They demonstrate a qualitative relation between simulation and 

experimental parameters. Their model was adopted by Fanelli ef aZ. to study 

growth of mono- and multi-layers [50], stripping voltammetry [51], and dif-

fusion to fractal electrodes, in all cases yielding qualitative insight. 

Further fractal-related work has appeared from Trigueros o/. [52] as 

well as Sapoval ef oZ. [53,54]. 

All of these mainly fractal-devoted papers claim to give insight into the 

relation between various parEimeters and the morphology of the resulting 

deposit or shape of the current transient, but do not yield numerical pre-

dictions of experimental results. Partly, of course, this is because computers 

were too slow to run full three dimensional simulations. Initially, nucleation 

and growth were treated in the same way [55], but Nagy ef oZ. [56,57], fol-

lowed by others [42,58], applied random walk to nucleation and growth in 

three dimensions, producing numerical answers limited only by model sim-

plifications and statistical variance. 



C E A P T E R i . MAgg TRANSPORT PROBZvEMS 37 

Difficulties w i th R a n d o m Walk 

It is impossible to go into detail here about the various algorithms. A number 

of simple points can be made, however. 

Firstly, while claims are made in various papers that the random walk 

method is "grid free", it is usually not. Where particles move a hxed step 

length in one of four or six directions (depending on dimensionality), they 

are of course moving on an implicit grid, much the same as that used in Enite 

difference. In fact, by considering the diSFerence equations governing move-

ment probabilities one can show that many simulations are in feict ea;ac% 

in the limit of an inhnite number of particles, to the ineGicient 

and inflexible explicit hnite difference scheme described above. This was ap-

parently not realised by the cited authors. (The relation is fairly easy to 

prove from equations given by Cox and Miller [59].) 

The diEerence, of course, is that there never is an inGnite number of 

particles, which raises the next point. The rate of convergence of all Monte 

Carlo methods is 0 ( l / \ / ]V) , where is the number of samples (typically in 

this case, the number of p a r t i c l e s ) . S i n c e TV is at best linearly proportional 

to computational effort, this means that the accuracy scales very poorly 

with simulation time. From the previous paragraph, however, a crucial point 

should be made: the "accuracy" of which we speak is of the approximation 

to the of the true solution. At best, with 

an inhnitely fast computer, we would achieve an explicit hnite difference 

approximation of limited accuracy. 

It should be clear, then, that grid-based random walk method is largely 

useless, unless the accuracy of deterministic methods is simply unattainable 

due to memory constraints (an unlikely scenario with an efhcient mesh). 

Monte Carlo methods as a whole, however, cannot be dismissed so eas-

ily. Numerous variants exist outside of electrochemistry, notably so-called 

do not have convergence in the usual sense, but a reasonable substitute definition 

is the standard deviation of results. This decreases with by the de&nition of variance. 
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/ZoG^mg mnc^om woJA aa described by Muller [60] and Haji-Sheikh and Spar-

row [61], and veirious other versions described by Sabelfeld [62]. It may be 

that these could prove useful for some special CEises, but they certainly bring 

new problems lessening their attractiveness for many simulations. Perhaps 

their ultimate purpose will be in simulations with random parameters (e.g. 

with a randomly perturbed potential). It should also be added that, among 

other techniques, "quasi-random" sequences have been used to increase the 

convergence rate, but these bring their own theoretical diSculties (see, e.g., 

Ogawa and L&ot [63]). 

For now, in the absence of any compelling demonstration of their useful-

ness, and without adequate documentation, random walk methods remain a 

curiosity. The best option, then, remains hnite element. 

1.4 Dimensionless Quantities 

To avoid numerical simulations being tied to one reeil-world situation, they 

are usually conducted with dimensionless quantities: various real-world di-

mensional parameters can be separated out beforehand from the problem 

statement, the simulation can be completed, and the dimensional quantities 

re-incorporated to give results applicable to a range of experiments. 

In the steady state simulations conducted hereafter, a dimensionless con-

centration, normalised with respect to the bulk concentration c*, or some 

related quantity, will be used. For instance, an obvious choice is 

u = — . (1.58) 
c* 

Typically, then, the concentration in the domain under simulation will vary 

from zero to unity. If, for example, material is consumed under pure diffusion 

control at an electrode, % = 0 there, while far away, towards the bulk, % —> 1. 

Where more than one species is being modelled it may be preferable to use 

some combined deSnition of concentrations. The deteiils vary according to 

the mechanism. 
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Dmiensionless spatial coordinates can also be of use, but the exact nor-

malisation will vary. It is often useful to define the spatial units in terms of 

some characteristic length of the simulation domain, Z. For a microdisc this 

characteristic length is the radius of the microdisc; for a microband, the mi-

croband width. Using this idea one can dehne the dimensionless coordinates 

for Cartesian domains: 

% = y ^ = y ; 59) 

and for cylindrical domains: 

R — y ^ = y . (1.60) 

Since there is little chance of confusion, lower case letters will signify di-

mensionless coordinates when used with dimensionless concentrations in the 

following chapters. 

The results of a microelectrode simulation thus conducted apply to all 

sizes of microelectrode, provided any other features of the domain scale with 

it (which is the case with an isolated electrode in an inhnite domain). Where 

other domain features also appear, such as with SECM simulations, we still 

normalise with respect to the electrode size, but the relative dimensions of 

other features limit the applicability of the results. 

Finally, we also work in terms of a dimensionless current, normalised 

with respect to a related analytical result. Here we take the example of 

the microdisc. The analytical, steady state, n electron diffusion controlled 

current to a microdisc of radius a is given by the famihar formula [12] 

% = 4nFDc*a . (1.61) 

Using Fick's hrst law^^ we dehne the normalised simulation current for a 

11 See equation 1.3 on page 4. 
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microdisc-type simulation as 

nFDc'2^ J::: 

TT ^ 

2 / ^ 0 
R(fR (1.63) 

g=o 

A comparable expression is used for microband simulations. 

1.5 Summary 

In §1.1.3 the problem that we set out to solve has been formulated. This boils 

down, in our case, to solving (1.20), in some form or another, in a domain 

rejecting the geometry of the cell in which we are interested. 

It is well known that seeking analytical solutions to (1.19) is generally a 

fruitless task, principally owing to the lack of symmetry of many important 

domains. When turning to numerical solution methods, one hnds that han-

dling the boundary singularities (§1.1.5) intrinsic to microelectrode geome-

tries is one of the major dilEculties faced, whichever discretisation method is 

used. 

Examining in turn four of the most common simulation algorithms in 

electrochemistry (Gnite diSerence in §1.3.1, Enite element in §1.3.2, bound-

ary element in §1.3.3 and random walk in §1.3.4) it is possible to make some 

clear decisions. Finite diEerence, despite its deep entrenchment, appears to 

have been applied to most electrochemical problems within its range—while 

suitable for one dimensional domains and other simple problems, it lacks the 

geometric Sexibihty to tackle outstanding problems; even the simulation of 

a tapered SECM [64] tip,^^ for example, is practically beyond it. Conversely, 

the basic form of boundary element, while exhibiting a level of geometric 

Sexibility greatest of all deterministic methods, cannot incorporate many 

important governing equation terms; in their generality, convective and ho-

mogeneously reactive and transient problems defeat it. On the face of it, 

^We do this with adaptive Suite element in Chapter 5. 
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dual reciprocity BEM solves these dilBculties—and retains the geometric 

Eexibility—but the results of its application have not met expectations, and 

with the current amount of research it is diScult to know if they will. To 

this objection may be added two other criticisms: BEM, and DRM BEM 

in particular, has had little work done on error adaptivity, as frequently 

practised with FEM; and secondly the method in its entirety is very poorly 

documented compared with FEM. 

Finite element may be viewed as a middle way between hnite di&rence 

and boundary element. Outside of electrochemistry, it is probably docu-

mented as well as, if not better than, hnite difference, and it shEires FD's 

equation Sexibility; but it also holds some of the promise for complete ge-

ometric SexibiHty that BEM clearly possesses (albeit with a more dilhcult 

meshing challenge). It comes in innumerable versions, some of which we 

might expect to be applicable to electrochemical problems. One of these, as 

documented in the important work of Harriman of. [33-38], is adaptive 

hnite element where, crucially, the error can be controlled, rather 

than some other arbitrary error measure. It is hard to see a better hope of 

Eexible deterministic electrochemical problem solver, and we pursue this goal 

in Chapters 2 and 3. 

The relation of random walk to other simulation methods is rather more 

dilBcult to explain with reference to preexisting literature, whether or not in 

electrochemistry. On the surface it offers promise of solving problems in a 

different way, and of solving problems intractable with other methods. But 

its inefficiency, and the paucity of documentation, make it difficult to recom-

mend at thia stage. Certainly the method as used so far in electrochemistry is 

diScult to just i^. It may be that some other algorithm, perhaps a non-grid 

based one, possibly using quaai-random sequences, may prove useful in the 

future. Certainly if randomly perturbed systems become of interest, it will 

be worth considering. For now, however, for the bulk of systems of practical 

interest, hnite element is clearly more attractive. 

Finally, in §1.4 the advantageous changes wrought by use of dimensionless 
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quantities are seen. Clearly there is no reason to perform simulations without 

them, so we shall adopt them exclusively. 

The next step, then, is to describe the adaptive hnite element method in 

detail. First, in Chapter 2, the basic 6nite element formulation is described, 

followed by the specihcs of a novel adaptive algorithm in Chapter 3. 



Chapter 2 

Finite Element Theory 

Since the fundamental FE theory is more complicated than that of Snite 

diEerence, and because hnite element is less common in electrochemistry, 

a presentation of the basic formulation is given in this chapter. This also 

allows the specihcs of our implementation to be made clear. The variational 

derivation [16,65] is not used eis it is precludes convection, and requires use 

of the calculus of variations;^ instead the more general Galerkin weighting 

approach is used. While this version of hnite element for purely diEusive, 

self-adjoint, problems appeeirs in numerous basic texts (e.g. [65, 66]), the 

discretisation applied to convective problems is less well documented. 

The Galerkin theory is in principle applicable to almost aU electrochem-

ical problems, steady state or transient, two or three dimensional, purely 

diffusive or diffusive-convective, linear or non-linear. In practice, however, 

certain cases may require special care or alterations. Specihcally, where con-

vection dominates maas transport, stabilisation schemes are often used to 

eliminate the unphysical oscillations that arise when the Galerkin scheme 

is applied. An attempt is made to explain these in this chapter, although 

the area is complicated. Essentially these amount to using modihed weight 

^Note that where a variational derivation exists, it gives the same result as Galerkin 

minimum weighted residual (see later). Note also that, as exempliEed in Chapter 3 and 

elsewhere, the variational approach cannot be entirely ignored, if only aa a theoretical tool. 

43 
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functions, so much of the theory remains the same, and the modihcations 

may be considered separately as an addition to the basic scheme. 

Where the shape of elements and other specihcs enter the theory, the 

formulation is specialised to two dimensional steady state problems, which 

of course limits its applicability. Nonetheless, it covers some important cases 

that we wish to study in detail. 

Substituting element-specihc expressions into the general formulation pro-

duces an algebraic system that must be solved in order to recover the con-

centration held. If, as here, the problem is linear, this system is most con-

veniently written as a matrix equation. The efScient assembly of the matrix 

requires some particular strategies, and some of the less obvious (or at least 

less well documented) issues relating to this are raised. After assembly, the 

linear system must be solved, taking into account the special matrix prop-

erties that allow efhcient practical solvers. Since this is a standard problem, 

only a brief sketch of the theory is given in Appendices C and D, but some 

computational aspects are related at the end of this chapter. 

2.1 The Galerkin FE Formulation 

Some of what follows in this section is not specihc to the Galerkin formu-

lation. Indeed much of it is generally applicable to any minimum weighted 

residual method. This is useful, as it happens that other formulations can 

be superior in certain situations. However, the Galerkin method is probably 

the best for the case of self-adjoint problems, which for our purposes means 

problems without a convective component to mass transport. 

Leaving aside radical alterations of hnite element such as the 

methods surveyed in the book by Zienkiewicz and Taylor [16], hnite element 

methods always require a mesh of broadly the same nature—as exempllEed 

in Figure 1.4 on page 28. In § 3.1 on page 82 our approach to this mesh 

generation question is presented in detail. Until then we assume we have a 
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suitable mesh available. 

2.1.1 The Weak Formulation 

As a starting point we set out to 6nd w i% w, the approximate solution of the 

partial di&rential equation 

V - (oV?z) — V - Vt( + = / , (2.1) 

where o, g and / are known scalar functions of position dehned over the 

domain n (which has the boundary T), and v is a known vector held. In 

addition, we impose the Dirichlet boundary conditions 

2/ = a on , (2.2) 

and the Robin boundary conditions 

— = CKM 4- ̂  on Tj; . (2.3) 

Although, as is shown in the previous chapter, the Dirichlet condition can 

be thought of as a limiting case of the Robin condition, it is implemented 

in an entirely diSerent manner in hnite element, so the two are separated. 

Neumann conditions, on the other hand, are treated as particular cases of 

Robin conditions with a = 0. 

Equation(2.1) is a form of (1.20) specialised to hrst order homogeneous 

reactions. For problems involving multiple species, several such equations 

would need to be solved. It incorporates diffusion (in the Laplacian-type 

term—a is essentially the diffusion coefBcient, although this appears to be 

given sometimes in differentiated form, outside the divergence operator), con-

vection of velocity v, a first order homogeneous reaction (in the term), 

and a homogeneous reaction whose rate is independent of (in the / term). 

Thus it can model several mechanisms, including E (g = / = 0), C E 

(g = 0 , / > 0), and EC" (g < 0 , / — 0). Alone it represents the most 
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general Erst order steady state system that can be modelled with a single 

concentration Seld. 

As mentioned in the previous chapter, if (2.1) is true, then it must also 

be so that 

/ w[V - (aV«) — V - = 0 (2.4) 

for any weight function to. It is here that the term "minimum weighted 

residual" is explained. If we substitute an approximate solution % into the 

version of the governing equation (2.1) rearranged to equate to zero, 

V - (aVw) - v . V « + g % - / = 0 , (2.5) 

we can expect that it will not be completely satisfied, giving a R: 

V - (aV«) - v . V « + # - / = R . (2.6) 

We cannot ensure that R is zero at the same time as satisfying the boundary 

conditions, because that would require knowing the solution %, so instead we 

attempt to minimise A by multiplying by a number of weight functions w, 

and insisting that the results equal zero. This will become more apparent as 

the derivation proceeds. 

Multiplying through by the to factor, we can break the integral into several 

pieces: 

/ wV - (aVti)(f(] — ^ tuv - Vttdn + / wgitdO = A w/cZrZ . (2.7) 

So far this is still a general weighted rewrite of (2.1). The hrst concession 

to approximation made is in reducing the order of diEerentiation in the inte-

grand of the 6rst of the integrals on the right-hand side. The result is termed 

the wmt /o rm of the problem [17], since the differentiability requirements on 

% are reduced. It is noted, however, that the weak form can produce more 

physically realistic results (%6W.), and fundamentally there is no reason to 

accord primacy to the PDE formulation. 
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To achieve the reduction in the order of derivatives a generalisation of 

the product rule is used: 

wV - (aV?/) = V - — Vw - aVtt . (2.8) 

In combination with the divergence theorem, this yields a standard result 

sometimes known as Green's Theorem [16] or Green's /orm«/o [67].̂  

Applying (2.8) to (2.7), produces hve integrals: 

V - (ioaV%)dr2 — / Vtf; - aVWO — / wv - + / wgtttfO = / 
n Vn Vn Vn Vn 

(2.9) 

The problem is now in weak form. 

There are at least three reasons for removing second order derivatives from 

the formulation. The Erst is that doing so allows element shape functions (see 

later) of lower order. Without this change the approximate solution % would 

have to be (7^ continuous.^ Rewriting in this way has the advantage that the 

solution need only be continuous, removing the need for inter-element 

derivative continuity. The second reason is that doing so in combination 

with Galerkin weight functions introduces symmetry tha t manifests itself 

advantageously in the system matrix. Thirdly, it allows Robin boundary 

conditions to be built into the formulation. This is an important change in 

view of the dilBculties of doing the same with Enite di%rence (see §1.3.1). 

The next step is to convert the leftmost integral of (2.9)—an integral 

over the domain—into a boundary integral. (This would have been combined 

with the previous step had the pre-packaged Green's Theorem been used.) 

Recognising this as of the form of the left-hand side of divergence theorem 

statement—see Equation 1.10 on page 8—we can write 

/ wo—(Zr— Vw oVWri— / wv / wgWn = / w / d n . (2.10) 
Vr / n Vn Vn Vn 

^Sources appear to diSer on terminology: alternative nomenclature includes Green'a 

and Green's TAeorem is also used to denote another result. 

continuity means that all the function's Grst order derivatives exist and are con-

tinuous. See, for instance, [13]. 
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(Remember here that the diEerentiation ^ is along the outward normal.) 

This change elegantly incorporates the Robin boundary conditions. It 

happens, as is seen later, that it is relatively easy to restrict tZ, the approxi-

mate solution, so that it satishes (2.2). At this stage we solely seek to impose 

(2.3), so we set w = 0 on r ^ , whence the slightly modified form: 

— / Vw - — / wv - = / w/d i l . 

(2.11) 

Since there is a Robin condition on ^ is known on that boundary, 

and can be substituted from (2.3) to give a total of six integrals: 

awaT/dr + / 

— / Vw - — / wv - VMoffl + / = / w/ffH . (2.12) 
Vn Vn Vn Vn 

No real approximations have yet been made, as signalled by (2.12) re-

ferring to M rather than %; but a lower order of diSerentiability of « has 

been conceded by adopting the weak formulation. The difference is subtle: 

all "strong" solutions—solutions to the PDE form of the problem—are ad-

missible by the weak formulation; it is just that (2.12) allows other, weak, 

solutions that do not formally satisfy (2.1). This distinction need not concern 

us. 

To proceed further we must adopt a particular type of weight function. 

With the Galerkin formulation this weight function is intimately tied to the 

shape function used for representing the solution, as described in the next 

section. 

2.1.2 Galerkin Weighting 

We dehne the approximate solution to be 

u = ^ 2 , (2.13) 
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with Oj the (as yet undetermined) value of « at node j , the a/tape 

associated with that node, Eind M being the number of nodes. If N is viewed as 

a row vector of nodal shape functions, and a Eis a column vector of unknowns, 

(2.13) may be written more compactly as 

% = N a . (2.14) 

In this we follow Zienkiewicz and Taylor [16]. 

Specihc types of shape functions will be presented below. For the moment 

we state that is only non-zero in the locahty of node dropping away 

to zero by the time any neighbouring nodes are reached. This is true of the 

linear shape functions of the next section. 

Substituting (2.14) into (2.12), 

awo:Na(fr — / Vw - aVNatff^ — / wv - VNadfZ + / wgNa^O = 

/ ^ aWjGiir . (2.15) 

This restriction on % conBnes the nature of the solution signihcantly—it has 

moved from an inhnite to a hnite dimensional space. 

In the Galerkin formulation one chooses to make « satisfy (2.15) with n, 

diSerent weight functions equalling each of the element shape functions 

except when the node % lies on Ff,. On the Dirichlet boundary the value 

of It is predetermined, so a degree of freedom is lost, and the weight function 

at such nodes is set to zero (but see below). Thus 

- aVNacfH - / - V N a + / A/^gNac^ri = 
PR vn Vn Vn 

/ oA/^/9dF (2.16) 

dehnes equations for z = 1 . . . M. 

The integrands may be expanded in order to see the form of the integrals. 
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For instance, the Erst integral of (2.16) is 

Fa 

n 
| | dT (2.17) 

i=i 

fliVjQ;(A^iCii + N2(i2 + • •. + iV„(2^)(ir (2.18) 
Tr 

(iNiQ.Nx(i\dX' j oJVgOfJVgagfir + . .. + / aN^aNnCindV 

(2.19) 

— (ii I (iNiCtNidr 0,2 I GTV;CKjVg(fr + . . . + On I ciN'icxNridr 

(2.20) 

Owing to the locality of the shape functions, most of these integrals, and the 

other ones deriving from (2.16), will be zero. Consider equation A; of the set 

1 . . . 71. The various integrands would entail multiplication of shape function 

TVt, or a derivative thereof, by each of the other shape functions 1 . . . n, or, 

again, a derivative thereof. Only if both shape functions were non-zero over 

the same domain would the result be non-zero. This is in turn deSned by 

the nodal connectivity in the mesh: if the nodes share an edge, their shape 

functions will overlap, and the respective integral wiU be non-zero. 

For instance, if node A: were connected to nodes r, g, t, then only the nodal 

shape functions A;,r, would be non-zero in the same range as TV̂ , so the 

integrals would disappear in all other cases. The four series of integrals of 

the type shown in (2.17) therefore collapse to four terms each, giving, for the 
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equation deEned by the weight function jVt, 

cij, I ciOiNj^dV — I (z||\7A^|| dil — 0,^ I Ni^v • JSfp^dil0,^ I qNf,dd-\-
Vrg Vn Vn Vn 

aWtCKTYrÔ T—Or / aVWf Ar / TV̂ v VTVrcZri+ar / 
Tg Vn Vn Vn 

oTVtaTVgffT—Ag / oVA^ V j V g d n — / TV̂ v VTVgfffZ+Og / ArtgNa(ZO+ 
Tj; Vn Vn Vn 

Of / oNtaATtdr-Ot / oVjVfVjVtdfl-Ot / ATtv VjV^cf^^+af / jVtgjVfdO = 
'r^ Vn Vn Vn 

/ aJVt^dr. (2.21) 

In spite of its length, the form of (2.21) is fairly simple. Since the only 

unknowns are a^, ^r, 0^, it is a linear relation between them. In general it 

can be written as 

^ Y + / AT̂ v . VA^ - / oAT̂ CKÂ jdr - / A^̂ gAT f̂in̂  ,_n Vn /rH Vn / j=0 

= / aA/^^tfT- / A^/c(r] (2.22) 

(here we have multiplied through by —1 in order to make the diffusive term 

positive). With M such equations, and M unknowns, there results an » dimen-

sional linear system. As (2.21) suggests, most of the coefBcients of will be 

zero. 

One hnal point remains to be made regarding Dirichlet boundary con-

ditions. Their imposition is discussed below, but we have already said that 

the weight function is set to zero at such nodes. Therefore (2.22) does not 

apply, and instead there is a tautologous equation of the form 0 = 0 for each 

case where node % lies on a Dirichlet boundary. The rest of the system of 

equations, however, would still refer to the node's value. This is of course 

resolved by substituting the known nodal value from the boundary condi-

tion, as is detailed presently, but in the interim, during the construction of 

the linear system, our program in fact ignores Dirichlet node weight function 
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diEerences entirely. Thus, the notion of setting = 0 at Dirichlet nodes is 

purely a formal one; in practice one need not be so fastidious. 

One of the reasons for choosing the weight functions to be the same ag 

the shape functions might be apparent from (2.22)—the symmetry for self-

adjoint problems described below (note that the Dirichlet node zero weight 

functions do not damage this symmetry). But there is another rationale 

for the Galerkin weight function choice. E the problem is self-adjoint (see 

Appendix B), then the so derived will be the closest to the true solution, 

It, in a certain least-squares sense—the same result as would be derived from 

the variational formulation [16]. 

The linear system deGned by the equations (2.22) for % = 1 . . . N may be 

written more compactly in matrix-vector notation as 

Ka = F , (2.23) 

where 

(2.24) 

and 

= / oAr^/3(fr - / . (2.25) 

K is known as the "stiffness matrix" because of its origin in mechanical 

applications; and F as the "force vector" for similar reasons. 

Note the dependence of symmetry of K on convection: all terms in the 

dehnition of are invariant under the interchange of % and j except that 

involving v. Since symmetric matrices are generally easier to solve (see Ap-

pendices C and D), this is important. The high number of zero coe&cients 

is responsible for the of matrix K, which must be taken advantage 

of in any e@cient solver (see Appendix C). Finally, where the matrix is sym-

metric it is more easily solved if it is also positive dehnite. It can be shown, 

for instance by considering the variational formulation [16,32], that for the 

problems under study this does occur, which essentially means that where 
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convection is absent a conjugate gradient solver may be used to solve the 

linear system. 

2.1.3 The Linear Triangular Element 

Until now, the derivation has been independent of dimensionality, and the 

order of the approximation (in the Taylor series sense) has not been made 

explicit; the general ideas apply to all possibilities. We have seen that the 

end result of the mathematics is an algebraic system Ka = F, and we have 

the form of the integrals that deEne Tir,-; and f}. It now remains to determine 

the integrands to construct the linear system. To allow this, the domain's 

dimensionality, an element family, and a particular element order must be 

selected. 

We wish to solve, at a minimum, two dimensional problems if we are 

to tackle microelectrode systems. Since mesh construction (discussed in the 

next chapter) is more dilBcult in three dimensions, we opt for two dimen-

sions here, and ultimately for the problems that we solve later on. Two 

basic shapes of elements are normally used in two dimensions: triangles and 

quadrilaterals, the latter sometimes in the specialised form of rectangles. 

Since most two dimensional automatic mesh generation has been conducted 

using triangles, we adopt them exclusively. In particular we shall use for the 

purposes of explanation the linear variety, which is the simplest. With this 

type of element the overall solution 6eld, will be piecewise linear. Later, 

we actually employ quadratic elements for most of our simulations. 

If the shape functions are linear in z and i/, within each element we have 

û ' = (Xi + (y.2X + O-zy • (2.26) 

This interpolation within an element may be viewed as a plane intersecting 

the values of iZ at the triangle's v e r t i c e s — a n d (the subscripts in 

this section are local to the element). Figure 2.1 shows this idea—note that 

the vertex subscripts are in clockwise order, in contrast to some texts. Since 
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F i g u r e 2.1: A linear t r iangular element. T h e nodal values (cj, a j and 

ak) are interpolated linearly. 

the vertex field values are the quantities of interest, we must eliminate the 

arbitrary constants. This problem boils down to a simple set of three 

equations: 

cii = ai + 0:2X1 + (XzUi 

aj = CKi + a2Xj + o^zUj 

+ Oi^Hk • 

(2.27) 

(2.28) 

(2.29) 

These can be solved to yield the formula 

1 
u — + SiX + tiy)ai + {vj + SjX + t jy)aj + (r* + SkX + tky)aj~] (2.30) 

where 

fi — Xjy^ 

5̂  = % - % 

— Xj X)- , 

(2.31) 

(2.32) 

(2.33) 
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cyclic permutation in the order A;,,;,% providing the other coefBcients, and A 

being the area of the element. 

If the shape functions within an element are written as 

N ' = {#,. (2.34) 

then from (2.30), 

n + etc. (2.35) 

Similarly writing the three vertex values of it within the element as 

[ a. 1 
a ' = < a, L (2.36) 

allows us to write (2.30) as 

, (2.37) 

in Ein element-speciEc imitation of (2.14). 

Knowing the functional form of N allows us to, a t least in principle, 

evEiluate the integrals in (2.24) and (2.25). In the particular case where the 

coefficients o, g, v and / are constant, exact formulae exist for the integrals, 

but generally some numerical approximation to the integration must be made 

(see below). 

The length of equations (2.30) to (2.33) might give cause to wonder if 

a more elegant procedure is available to deal with the relation of element 

shape functions and their coelEcients to real world coordinates. There is, 

and it involves an element-specihc coordinate system, called onm or (noM-

puZor or Since they can simpli^ and generalise the 

approach above to higher order elements, and because exact element inte-

gration formulae are given in terms of them, we describe area coordinates 

next. 
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2.1.4 Area Coordinates 

The aim is to 6nd a coordinate system for use within triangular elements, 

independent of where the element is lodged in Cartesian space. Since we are 

dealing with triangles, it seems intuitively appealing to have three coordi-

nates, each associated with a different vertex. The diSSculty with this idea is 

simply that a triangle is two dimensional, so there can only be two linearly 

independent coordinates for a point within it. This is solved by using three 

coordinates, but making them linearly dependent, reducing the number of 

degrees of freedom to two. 

Consider the system 

+ (23:2 + (33̂ 3 = 3; , (2.38) 

+ 2̂̂ /2 + 3̂2/3 = 2/, (2.39) 

+ 2̂ + 3̂ = 1 • (2.40) 

From (2.40), it is clear that having chosen any two of Zi, Z2 and Z3 one cannot 

choose the third; there are only two degrees of freedom. 

Solving for results in the familiar expressions 

k = ! l ± ^ £ ± i l » (2.41) 

k = ' ' ' ^ (2,42) 

h = , (2.43) 

where n , etc. are defined as above. This similarity is not a coincidence: 

in fact the linear triangular shape expressions are equal to the area coordi-

nates for their corresponding nodes. Something has been achieved, however, 

since the coordinates (Zi, /g, Z3) can be used for formulating higher order (e.g. 

quadratic or cubic) and curved elements. Further, we can use general theory 

to transform from element coordinate space to Cartesian space, avoiding te-

dious element-specihc algebra. Although we will not use this fact, everything 

in this section generalises to three dimensions and tetrahedral elements. 
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As we have already said, we shall use quadratic elements for the bulk of 

our simulations, partly for reasons of greater accuracy, but also because of 

error adaptivity considerations explained later in this chapter. While linear 

elements almost always take the form described here, quadratic triangular 

elements come in several forms. A fairly minor technical diEerence, between 

hierarchical and non-hierarchical elements, is described by Zienkiewicz and 

Taylor [16] (we use non-hierarchical elements, but see Chapter 6 for mention 

of their possible advantages). More importantly, we use so-called 

me^nc elements. The more common variety uses quadratic 

functions for the a/zope of the element, making it potentially curved. Since 

curved elements were not felt to be warranted, their additioneil complications 

were avoided by the use of simpler subparametric elements. By extension su-

perparametric elements also exist. The details can be found in a standard 

reference 

2.1.5 The Element Stiffness Matrix 

Having talked in terms of nodal shape functions in (2.13) it might seem 

natural to construct the linear system (2.23) node by node, Ailing in K sys-

tematically, a row/column at a time. If we attempted to generate the entries 

for node %, however, we would have to End all nodes connected to node 

and similarly with each node we considered. Depending on the structure of 

the mesh, and the mesh data structures, this could be very inefhcient. Con-

sidering a diagram of the nodal shape function for linear triangular elements 

(shown in Figure 2.2), its piecewise linear nature is apparent, and it is equally 

reasonable to work on an element basis. This proves more elBcient. 

The domain integrals in the dehnition of whose integrands are non-

zero only over the neighbourhood of node %, can be broken into m pieces, 

where m is the number of elements sharing node L Thns, if we iterated 

over these m elements, adding the contribution from each to K (initially 

zeroed), we would arrive at the same result. The Robin boundary integral 
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F i g u r e 2 . 2 : A linear t r iangular element nodal shape func t ion , wi th some 

sur rounding elements. Note t h a t t h e shape func t ion is only C ° at element 

edges: it is piecewise linear. 

can be incorporated on an element-oriented basis too, since each segment of 

it affects only one element (assuming Robin boundaries are external, which 

they are in this work). A similar logic applies to the force vector F. It is 

common to assemble the various integral contributions of an element into 

a sub-matrix, termed the element stiffness matrix^ denoted here by K®; an 

identical approach also brings us the element force vector, F®. 

With linear triangular elements there are three nodes per element, so 

K® will be a 3 X 3 matrix, and F^ will be a three dimensional vector. The 

first domain integral in (2.24) is, if a is approximated as constant over the 

element,^ given by 

h = I aVNi • VNjdQ, ^ a 
UX OX I 

Jq" 

+ dfl (2.44) 
for "a Lu; ay 

where is the portion of the domain Q, coincident with the element e. The 

^The implications of this approximation are discussed later in this section. 
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derivatives are available from (2.35), and are seen to be constant, so 

- 4A^ A , - 4A ' 

The next domain integral in (2.24) can be simpliSed similarly: 

72= / N^v ViVjcZ^l-v ViVj / (2.46) 

The integrand is not constant, but we can use a well-known formula [16,32, 

65,68] to evaluate it. It can be shown that 

I + 2 ) , ' ^ ' 

where Zi, etc. are the area coordinates introduced above. As noted there, the 

shape functions for the linear triangular element are equal to the correspond-

ing area coordinates. Therefore 

72 - + . (2.48) 

The other domain integral in (2.24) is approximated as 

7 3 = / - g / , (2.49) 

and by the integration formula is 

(2.60) 
I ̂  % = J-

The same approach gives the domain integral in (2.25): 

A = / . (2.51) 

Another formula exists for integrals in area coordinates along the edges 

of triangles [65]: 

J ' " ' ' = 
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where is the edge over which the integral is taken, and is its length. 

The remaining integrals may therefore be approximated as 

- a a / ^ (2.53) 

3 2 = J 

and 

a]V^/3(fr - 0/3 / ^ . (2.54) 

(The integral domain denotes an edge of element e with a Robin boundary— 

i.e. a snbsection of Tj; belonging to a particular element edge.) 

Finally, with a sigh of relief, we write the explicit form of the equations 

defining the elemental linear system elements (dropping the approximation 

signs): 
a{sisj-'rtitj) I VxSj~\-Vytj aaL gA • / • 

K", = { / t ' = (2.55) 

4A 3 3 6 ' , 

and 

p , ^ ^ ^ (2.56) 
2 3 

Unfortunately, where the magnitude of the convective velocity Seld, v, is 

large relative to the diEusion coe@cient, o, a different weighting scheme can 

sometimes be preferable, and these expressions change. This is discussed 

below in §2.2. 

In tegra l app rox ima t ion 

It is seen later, when convergence is discussed, that hnite element with lin-

ear elements is second order. It can be shown [16] that , in order to retain 

convergence, the same order of integration is needed for the element matrix 

integrals. The approximations made above are of the right order for linear 

elements. With quadratic elements more accurate integration is required, 

and this is almost always done numerically, which is actually simpler. In 
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Enite element, Gaussian integration is generally used for this purpose,^ and 

is well documented 

2.1.6 Axi-symmetric Problems 

So far no special account has been taken of axi-symmetric problems. It is 

common to see "axi-symmetric elements" treated separately from Cartesian 

elements (e.g. [65,66]). New formulae for linear system components CEin then 

be derived. But provided one is prepared to sacrifice the seemingly minimal 

performance increase so gained, both Cartesian and cylindrical coordinate 

systems (and indeed other ones) can be incorporated into one framework. 

The Cartesian form of, for the sake of argument, Laplace's equation is 

The cylindrical coordinate form is, following 1.1.2 on page 6, 

t ('•̂ ) + j; (''B) =" • 
The only essential diSerence, then, is a weighting within the two deriva-

tives. But we have already provided for a weight function in the form of o in 

(2.1). Unfortunately it involves a slight abuse of symbology, since the weight 

we need for cylindrical systems is part of the Laplacian operator in (2.1), not 

a; but if we redeEne a, and work in Cartesian systems with a weighting of 

r incorporated into a, we get the same result as with special axi-symmetric 

elements. 

Consequently, although we shall continue to visualise axi-symmetric prob-

lems with r and z axes, the actual solving process proceeds in, formally, a 

^ Other types of non-polynomial shape functions, for instance in "singularity elements" 

might require a diSerent approEich. We do not use these. 
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Cartesian system: 

s ^ {"'%) =" • 

where o in (2.1) is now a'. Using this approach, special care is needed with 

additional terms in the equation (g and / would be multiplied by r above). 

Integrals also need to be adjusted (the practical outcome is illustrated in 

Appendix E). 

2.1.7 Dirichlet Boundary Conditions 

The Robin boundary conditions in (2.3) have been incorporated as a funda-

mental part of the formulation; they contribute terms to the element stiEness 

matrix and forcing vector. But the solution has yet to be constrained to 

sat is^ the Dirichlet conditions dehned in (2.2). This can be done, once the 

linear system has been assembled, by substituting for all where node j 

is on Ff,. The obvious next step would be to reduce the size of the linear 

system by eliminating row and column j . This would carry the advantage of 

marginally reducing the linear system solving time and storage requirements. 

However, it happens that deleting matrix rows and columns is generally— 

and speciBcally with the matrix storage format that we use (see § 2.3.4 on 

page 78)—a slow operation. We therefore adopt a different strategy. 

If a node j lies on a Dirichlet boundary, where we know = a, we set 

all entries in row j of K to zero, except for setting jiLjj = 1. We also set 

the force vector entry = a . This takes care of row clearly enforcing 

the condition Oj = a there, leaving column j for consideration. It should be 

clear that substituting a j = a would leave, on each row t 9̂  j intersecting 

the column j , a of value . This, being a constant, needs to be shifted to 

the right-hand side of the equation—to the force vector—leaving a zero entry 

in the matrix. The value a is therefore substituted into the system, but the 

degree of freedom is not explicitly eliminated; we are jus t guaranteed that 

the solution of the linear system will give node j the correct value. There 
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are important computational optimisations that need to be considered when 

implementing this step, and they are addressed later in § 2.3.4 on page 78. 

We exempli^ the operation with a 4 node case, where node 3 is on a 

Dirichlet boundary where = 10; that is, 03 = 10: 

^13 ^Ei^ 

^21 K22 ^23 ^2 Eg 

^31 ;^32 ^33 1̂ 34 As Eg 

7̂ 42 Ar43 1̂ 44 y 

ATii A:i2 0 

;^2i 0 ^^24 

0 0 1 0 

^41 ;^42 0 

02 
(̂ 3 

y w 

/ 
El -

Eg - 101^23 

10 

43 y 

(2.62) 

When it comes to computer implementation, diSculties sometimes make 

other options more attractive. These are Eilso discussed in §2.3.4. 

2.1.8 Summary 

The progression from the PDE and boundary conditions to the hnal linear 

system is summarised in Figure 2.3. If the variational approach had been 

taken, the initial problem would not have been the PDE, but an enefy?/ 

that we wished to minimise with respect to all the degrees of 

freedom available. Doing so would have led directly to the weak formulation. 

While shorter, the energy functional approach suEers from unfamiliarity and 

only applying to a subset of problems susceptible to Galerkin treatment. In 

any case, much of the detail remains the same. 

The end product, of course, is a linear system. Numerous standard meth-

ods exist to solve such things, detailed in numerical texts [69-72]. A brief 

sketch of the options is given in Appendix C. We choose, as many others 

have done, to use the (PCG) method for 
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PDE 

Weighted 
residual 

restatement 

Weak weighted 
fomi * " 

Flux (Robin) 
BCs 

4 
Unadjusted 

linear system 
Element shape 

functions 

Final linear Dirichlet BCs 
system 

F i g u r e 2.3: T h e theoretical steps f rom P D E formulation t o linear system 

approximation. 

self-adjoint problems. Where convection is present, no one solver is clearly 

preferable, so a number were implemented, including biconjugate gradient 

(BiCG), stabilised biconjugate gradient (BiCGStab) and generalised mini-

mum residual (GMRES), all of which are documented at length by Barrett 

oZ. [71] and Saad [72]. These all come under the heading of Krylov space 

solvers. 

Prom a mathematical point of view, conjugate gradient is complex, and 

it is only possible to give a short outline of it in Appendix D. Fortunately, 

computationally it is among the simplest solvers—simpler even than Gaus-

sian elimination—and the only worry is optimisation, which we cover later 

in 2.3.2 on page 74. The other Krylov space solvers are even more complex, 

and the reader is referred to the previously cited texts. 

Preconditioning is a primary concern among many researchers in this 

held, and we use a few simple preconditioners, but since our problems do 

not, partly thanks to eSBcient adaptive meshing, have that many degrees of 

freedom, advanced preconditioning techniques were not found to be neces-
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sary. More important from our point of view waa the eScient error controlled 

meshing described in the next chapter. 

2.2 Petrov-Galerkin Stabilisation 

While the Galerkin weighting described above is nncontroversial for purely 

diffusive problems, this is unfortunately not true where convection is a strong 

eEect. This is not too surprising, as Galerkin weighting gives the "best" an-

swer for self-adjoint problems, in the sense that it is the closest in a certain 

norm [16], but no such guarantees are available in the considerably more 

diScult non-self-adjoint caae. This has been researched a great deal, as the 

scalar convection-diffnsion equation is commonly used as a prototype for the 

more complex Navier-Stokes equations arising in Suid mechanics [73]. Unfor-

tunately researchers appear to disagree on the best method of stabilisation, 

or even if stabilisation techniques are desirable. 

Essentially, as Zienkiewicz and Taylor show [74], the various stabilisation 

methods boil down to using modihed weight functions of the form 

= AT, + TV . , (2.63) 

where T is given in terms of another constant, a , that we shall term the 

parameter: 

T = (2.64) 
2 |v | 

(see below for the deSnition of A, etc.). These modiGed weight functions 

are applied to one or more of the terms in the PDE.^ As the shape and 

weight functions are no longer identical, this is generally termed a Petrov-

Galerkin weighting scheme. Since the matrix and vector coeScients and 

-Pj described above derive from linear operations on Wt, the effect of this 

alteration is the addition of various values to the Galerkin versions already 

derived. 

^For the reaaona mentioned above, the case of nodes on Dirichlet boundaries is ignored. 
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The aim of the modiEcation is to correct a particular perceived deBciency 

in Galerkin FEM where convection is the dominant type of mass transport. 

The degree to which convection predominates is usually measured by the 

Peclet parameter, which is essentially the ratio of the magnitude of the con-

vective velocity to the diSusion coeScient. Zienkiewicz and Taylor define the 

nwmber as 

P e = ~ , (2.65) 

where v and a are the familiar coeSicients from the PDE, and is some 

measure of element size (there is no one dehnition in the literature; the 

longest element side is used here, as it is easy to calculate). 

2.2.1 The Problem 

Zienkiewicz and Taylor [74] illustrate the diSculty that can arise when em-

ploying Galerkin weighting to solve diffusive-convective maas transport prob-

lems: with some meshes, most notably uniform ones, the approximation 

becomes steadily worse as f e increases; instead of a smooth curve passing 

through the nodes, a wildly oscillating result can arise, bearing no relation 

to reality (for instance, large negative concentrations can appear). Finite 

element practitioners agree that this scenario must be avoided, but differ on 

the means to effect this. Perhaps the most balanced overall view is given by 

Donea and Huerta [75]. 

There is no doubt that uniformly spaced meshes are not adequate for use 

in combination with Galerkin weighting for solving convection dominated 

problems. Zienkiewicz and Taylor (*6W.) show this in detail in the one 

dimensional case. Harriman a J. show the same uniform mesh phenomenon 

in two dimensions, and on this baais advocate a Petrov-Galerkin stabilisation 

scheme [37]. The diSculty is that these authors apparently take uniform 

mesh results to mean that Galerkin weighting would be inadequate with error 

controlled adaptive meshes. As they give no results to show this, they would 

appear to be relying on some implied mathematical consensus to j u s t i ^ this 
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stance. If Gresho and Sani [73, 76] are to be believed, however, no such 

consensus exists; instead they characterise the debate as "religious". 

In fact, Gresho and Sani suggest that one only requires the right mesh to 

allow Galerkin Gnite element to operate accurately with strong convection. 

They term this "Galerkin Finite Element Intelligently Applied" (GFEMIA). 

For instance, they show that the catastrophic failure of high Bow rate Galerkin 

PEM with a uniform mesh can be rectified using a mesh with only one in-

ternal node, provided that node is placed correctly. Further, they suggest 

that results obtained using the various stabilisation schemes advocated by 

some are dubious, as they eEectively entail solving a different, easier, prob-

lem, which may give physically plausible results, but which is nonetheless 

not accurate. Thus things would not seem to be as clear-cut as Zienkiewicz 

and Taylor (and Harriman of.) suggest. 

On top of this fundamental disagreement, there are a number of different 

stabilisation approaches documented [74] (e.g. Streamline Upwind Petrov 

Galerkin, Galerkin Least Squares, Finite Increment Calculus, balancing dif-

fusion). While similar, they can result in different values for r in (2.63), 

and in some cases entail applying the weight functions to different terms in 

the PDB. Zienkiewicz and Taylor advocate a peirticular functional form of 

the stabilisation parameter (see below), on the grounds that it is optimal 

for one dimensional problems, but this does not seem to be widely accepted. 

Harrimaa a/., for instance, do not use it (in fact they give little detail on 

the issue, with no clue as to where they switch from no stabilisation to full 

stabilisation). 

Faced with these differing approaches, it is clearly not possible to pre-

tend that any optimal strategy is used here. As has been noted, a particular 

problem with the literature on the subject is that it pays little attention 

to adaptive meshing. Thus, while it may be that GPEMIA is the best ap-

proach, it is not clear at all how an adaptive algorithm could be devised to 

utilise it while conforming to the other constraints mentioned in the next 

chapter. On the other hand, it might be that the well-documented Galerkin 
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FEM problems with uniform meshes do not arise where adaptivity works to 

refine coarse mesh areas afBicted with unphysical oscillations. Our approach 

is therefore guided by the particuleir requirements of our problem set, and 

essentially derives from empirical hndings arising therefrom. 

All this being said, on one particular subject Zienkiewicz and Taylor and 

Gresho and Sani appear to agree: the use of "balancing diffusion", where 

modihed weight functions are applied solely to the convective terms of the 

equation, is discredited. This technique is the analogue of the "upwind dif-

ferencing" used in dnite di&rence for the same reasons. Leonard [77], shows 

that it yields the wrong results where source terms are present in the PDE, 

as they might well be in electrochemical simulations (the title of this paper 

gives a clue to the varying views of stabilisation schemes). As a conse-

quence, where stabilisation schemes are used in this work, they are applied 

to all terms. However, the last point would appear to bear on the work of 

Alden [31], who used upwind hnite diBFerence for some convective simulations 

and yet obtained correct results, so there remains some uncertainty. 

2.2.2 Our Approach 

Testing with various schemes revealed two essential aspects to the particular 

problems solved with our adaptive methods. Both camps would appear, from 

the very limited testing conducted, to have been correct to an extent, at least 

in the context of the electrochemical problems considered in this work. 

Firstly, it was found that with low to moderate 8ow rates adaptivity dW 

work to remove oscillations, without any stabilisation scheme. While the 

initial crude mesh led to the predictable oscillatory effects, mesh rehnement, 

guided by a current error bound, led to reasonable-looking concentration 

Eelds. Most importantly, the resulting currents were in accordance with 

reality. Unfortunately it was not possible to test this over the full velocity 

held range, for the reason given next. 

Secondly, it was found that all Krylov space solvers tested rapidly be-
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came unstable or unkasibly slow as the How rate increased, typically above 

a shear rate Peclet number (see § 4.6 on page 190) of around 2. Even us-

ing preconditioned GMRES, generally one of the most stable of the Krylov 

space methods, with a very long recurrence [71,72] (typically 200 iterations 

between restarts on a linear system with around 1000 unknowns) failed to 

solve problems with higher Sow rates. Unless a different solver (or possibly a 

far better Krylov solver preconditioner) were used, Galerkin weighting would 

not appear to be practical over the full range of Bow rates. This conclusion 

is of course in concordance with the orthodoxy espoused by Harriman 

oZ., but the reasoning is decidedly diEerent. It is congruent, however, with 

Alden's Endings [31] in relation to upwind diEerencing in Enite difference and 

its e@ect on matrix diagonal dominance. 

Fortunately it was found that Streamline Upwind Petrov Galerkin weight-

ing dramatically alleviated the Krylov space solver problems, allowing simu-

lation over the full range of Sow rates. Flather than the slower GMRES solver, 

stabilised biconjugate gradient (BiCGStab), was found to be adequate; and 

it solved systems rapidly. Crucially, not only were oscillations not present 

in the concentration Selds simulated, but the currents derived from the sta-

bilised scheme were found to tally with known analytical results. It is not 

clear, therefore, from where Gresho and Sani's antipathy toward stabilisation 

schemes derives. Perhaps it is more a result of hostility to "balancing dif-

fusion" and "upwind differencing", which demonstrably fail to yield correct 

results in known cases. 

Whatever the particular stances of Gnite element authors, the conclusion 

would appear to be fairly clear. Since stabilised schemes do appear to yield 

correct results, and because beyond moderate Sow rates they are necessary 

to allow our unsymmetric Krylov space solvers to function efBciently, they 

are used in this work for simulations involving convection. In order to pro-

vide a consistent approach over the full range of Bow rates, the "optimal" 

stabilisation parameter expression given by Zienkiewicz and Taylor [74] was 

used. This adjusts the degree of stabilisation from zero, where there is no 
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convection, to full at fully convective transport, according to the expression 

a = coth f e — . (2.66) 
Fe 

For the channel Sow model problem this was found to give correct results, as 

well as reasonably fast solutions, at all tested Row rates. That said, during an 

extended discussion, Donea and Huerta [75] suggest that the formula should 

be modi6ed depending on element order and node type, so it may be that 

improvements could be made. 

2.2.3 Element Stiffness Matrix Calculations 

For linear elements Petrov-Galerkin weight functions do not involve any par-

ticular dilBculties. No change is made to the diEusive term, as there the 

weight function is differentiated, reducing the new part to zero. With higher 

order elements a problem arises, as the weight functions Eire not continu-

ous between elements. Since in the diEusive term they are differentiated, 

this leads to integration of a singularity at element edges. From our global 

weight function perspective, two basic approaches appear to exist to combat 

this: either modihed forms of (2.63) are used where the derivative is mul-

tiplied by some sort of "bubble" function that equals zero at the element 

boundary [74], or some effort is made to incorporate the singular part of the 

integral in a "distributional sense" [78]. 

Harriman oZ. eschew both courses because they operate on an element-

by-element basis, saying that after breaking the domain integral into element-

sized pieces the offending derivative term "makes sense" [37]. The results 

achieved thereby are encouraging, and so with admittedly little theoretical 

justiScation we follow their approach. Ideally a more detailed analysis would 

be conducted. 
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2.3 Computational Aspects 

The computational aspects of the implementation are quite diSerent in their 

emphases than the mathematical ones. For instance, where the linear sys-

tem assembly occupies pages of algebraic manipulation, once the formulae 

for stiGhess matrix and force vector elements are available, the process is 

achieved in a few hundred lines of code. As might be expected, the mesh 

generation and reBnement of Chapter 3 required relatively involved program-

ming, but ultimately occupied approximately a thousand lines of code. 

Instead, so far unmentioned areas took considerable implementation ef-

fort. Rather than a command line interface, taking as input a problem de-

scription, and outputting the numbers describing the solution, it was thought 

preferable to have a graphical interface, with solving an intereictive process, 

and the resulting concentration Seld plotted instantaneously. Thus a graph-

ical user interface was constructed, with code drawing the mesh along with 

the various solution and error Eelds. Ultimately it would be preferable to 

have problems described by interactively drawing the domain boundary, but 

currently the program still loads a text-based problem description. However, 

the solution process is nonetheless faster for the user, and more convenient, 

with less likelihood of catastrophic failure going undetected, since the result 

is instantly plotted. 

Another important aspect of the interface is less obvious, but has been 

touched upon Eilready in § 2.1.6 on page 61. The program solves a set of 

equations of the type 

ei a ; j + ^ " ' 

(2.67) 

with an arbitrary (in principle) mixture of Robin and Dirichlet boundary 

conditions. In each governing PDE, then, we have Eve arbitrary functions.^ 

^Actually, as might be discerned from Appendix E, the program can accept diSerent 

diSusion coe@cients in the z and ^ directions, but this capability is not used here. 
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And it might also be desirable to prescribe functions of spatial coordinates 

as boundary conditions, for instance, where an analytical concentration is 

imposed for testing purposes. Typically simulation programs take as input 

only numeric constants, because these are readily handled by computer lan-

guages' in-built capabilities: they are a fundamental data type. But limiting 

a, 11̂ , etc. to constants curteiils the program's range of applicability. We 

have already seen that axi-symmetric problems can be incorporated without 

special elements simply by—assuming a constant diSusion coeScient for a 

simple example—setting ?/) = a;. Thus, allowing functions to be input, 

and evaluating them aa needed, signihcantly contributes to the generality and 

versatility of the program, and reduces the code required for special cases. 

The three primary challenges of the programming were essentially, ignor-

ing the bulky but relatively simple graphical interface code, meshing, efBcient 

sparse matrix solving, and parsing and evaluation of functions. The Srst of 

these is not well documented, and deserves a relatively detailed explanation, 

which is given in the next chapter. The second is a well researched problem; 

once a sparse matrix format and an iterative algorithm have been selected 

it is straightforward. We therefore describe only the matrix format and the 

matrix-vector product routines. The lagt is a challenge met in every computer 

language compiler, but is certainly not described in any finite element text. 

Because it is not central to our purpose we discuss it only briefly, although 

it took more programming than the meshing. Finally, the mesh and matrix 

data structures used had certain consequences for elEcient implementation, 

of which we give an outline. 

2.3.1 Programming Platform 

Everything so far described was implemented in C-t-4- [79]. The only viable 

competitor in terms of speed and suitably for scientiSc computing would be 

Fortran in one of its later incarnations, but there are a host of reeisons to 

prefer C-I-+. Firstly, almost all APIs (application programming interfaces) 
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are geared towards C [80] and C + + (C is almost exactly a subset of C++) . 

Since graphical displays and windowing interfaces depend on API availabil-

ity, this severely limits Fortran's usability. Secondly, Fortran compilers are 

expensive and relatively unavailable. 

Finally, Fortran does not have the same linguistic functionality of C + + . 

It is wrong to characterise C-t—t- aa purely a mixture of C with 

new functionality; it incorporates an important third pro-

gramming paradigm with its a form of Ob-

ject oriented programming has a number of advantages—data encapsulation, 

inheritance, etc.—and it waa used extensively, but generic programming also 

had an important role. Not only does generic programming allow, for in-

stance, automated code generation for both single and double precision ver-

sions of the same routines; it also makes possible the extensive C-|—t- Standard 

Library [81]—in particular the Standard Template Library—used throughout 

our hnite element implementation. 

For these reasons, Fortran (even with its newly acquired object orienta-

tion) and the fashionable Java are generally less capable, in spite of poten-

tially allowing more elegant expression of simpler programs. (In fact Java 

would have to be discarded on performEince grounds in any case, on account 

of issues with run-time compilation and "garbage collection".) One qualiher 

should be attached to the previous statement: Fortran 90 and later do have 

in-built constructs for parallel programming, and might prove more conve-

nient for leveraging parallel systems. But no parallel systems were used for 

the Snite element program because it was fast enough on serial machines, 

and if they were C-t—I- could still use their facilities; it would just not be with 

native language capabilities. 

The particular programming environment chosen was Microsoft Visual 

C-t—1-, principally because it best supports Windows programming; but it 

also happened to be competitive performance-wise: in tests it consistently 

produced faster code than a popular alternative, GCC. The two latest ver-

sions at the time of writing, 6 and 7, were both used, with little difference 
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between them for our purposes. The simulations were run on a variety of 

standard Intel® 80x86-compatible processor platforms, primarily a mobile 

Pentium III® running at 850MHz. Most of the adaptive Snite element simu-

lations took a few seconds, so no outstanding processing speed was required. 

The memory requirements were also modest, typically being around 5 Mb, 

much of which was consumed by the graphical interface. 

For double precision arithmetic, as was used throughout this work, the 

Pentium III does not offer any vector processing capabilities. It is therefore 

probable that the machine instructions generated by the compiler are not 

easily improvable with hand-tweaking, given the complexities of Pentium III 

instruction reordering, etc [82,83]. The possibihties of other platforms, and 

of single precision, are discussed in Chapter 6. 

2.3.2 Krylov Space Solvers 

It is assumed in the analysis of Appendix D that the multiplication of a 

vector by the system matrix is an operation, where M is the number 

of nodes, and consequently the number of rows and columns in K. Further, 

using a simple two dimensional array matrix format, one quickly discovers 

that problems will not ht in memory if the number of nodes is more than 

a few thousand, so it would be preferable for the memory footprint to scale 

with m, not These aims are only attainable if a sparse matrix format is 

used that ignores zero entries. 

Sparse matrix formats abound [69,72], but for unstructured sparsity pat-

terns there are only a few viable options. Because we are using iterative 

solvers we do not need to randomly access matrix elements; we only need 

to access them in rows at a time. This leads us, fairly inevitably, to the 

compreaaeff row (CRS) format (%6W.). Here for each row an array 

of non-zero entries is stored, along with an array of their respective column 

indices. We expect, given the limited connectivity between nodes, just a 

handful of entries per row. Of course, where we deal with self-adjoint prob-
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lems the matrix is symmetric, so we only store the upper triangle, the lower 

being implied. As a Snal space optimisation, because diagonal entries are 

always non-zero, they are stored separately as an M dimensional vector. This 

also marginally simplihes, and hence speeds up, the inner loop for matrix 

multiplication and related operations. 

The matrix-vector multiphcation function is simple enough to give in Fig-

ure 2.4 on the next page. In fact, because we implement two basic precon-

ditioners, the various tricks used to speed them require a number of related 

functions; but the essential simplicity remains. All the other computational 

elements of the Krylov space solvers are operations with dense vectors, and 

are hence straightforward in their implementation. 

2.3.3 Function Parsing and Evaluation 

The theory of mathematical function parsing and evaluation is a subset of the 

theory of compiler writing. It is therefore covered in many books (e.g. [84]), 

and no attempt is made here to explain it. We simply note the particularities 

of our problem, and the techniques used to address them. 

A simple was used to convert raw characters— 

digits of numbers, addition signs, etc.—into —numeric constants, arith-

metic operators, etc. The second phase, parsing, was more involved. Adopt-

ing the standard classiScation system of Chomsky [85, 86], mathematical 

formulae conform to a simple 21/pe ^ or and as such 

can be parsed by standard techniques. However, normal mathematical no-

tation, also called notation, is harder to parse, and slower to evaluate, 

than notation. A particularly intuitive means of parsing expressions, 

called is in fact not applicable, because some fundamen-

tal arithmetic operators are not left-aasociative, which it requires. Thus, 

iterative loops were added, alongside the recursive parsing, to handle these. 

În this technical sense grammar means, roughly, the rules that govern valid construc-

tions from component symbols. 
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void CSSymMat::MulVec(const CVecfe vec, CVecfe ans) const 
{ 

ans.Zero(); 

vector<CMatRow>::const_iterator row = m_rows.begin(); 

for (int row_i = 0; row != m_rows.end(); ++row, ++row_i) { 

// do diagonal 

ans[row_i] += m_diagCrow_i] * vec[row_i]; 

vector<CMatEntry>::const_iterator entry = 

m_rows [row_i] .ConstBeginO ; 

for (; entry != m_rows[row_i] .ConstEndO ; ++entry) { 

int col_i = entry->m_n; 

// do upper and lower triangles 

ans[row_i] += entry->m_val * vec[col_i]; 

ans[col_i] += entry->m_val * v e c [ r o w _ i ] ; 

} 

} 

} 

Figure 2.4: The C + + function for the symmetric CRS matrix-vector 

multiplication function. Each row is dealt with both as a row and a 

column on account of the symmetry. The results are accumulated in 

the ans vector structure, addressed with array syntax. The diagonal is 

handled separately. This code fragment exempUBes both object oriented 

programming, and use of the STL, which subsists on generic programming. 
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The end product of parsing waa a postGx version of the expression, which 

had the minor advantage of eliminating parentheses. Since stiffness matrix 

assembly requires numerous function evaluations, one optimisation, termed 

was implemented. This simply means that constant 

expressions—e.g. 7r/2—are evaluated once during parsing, and stored as 

constants to avoid processing overhead every time the expression containing 

them is evaluated. 

As well as the four elementary arithmetic operators and parentheses, pow-

ers, elementEiry functions (e.g. sin z), and some special functions (for example 

Bessel functions) are usable in the input expressions. To allow more concise 

and readable input Eles, expressions can also refer to one another. 

The effect of all this was to allow arbitrary functions where some programs 

only allow constants: the governing PDE, the boundary conditions, and even 

the boundary vertex coordinates are all—where applicable—functions of spa-

tial coordinates and other user-dehnable expressions. But perhaps the great-

est advantage is that the error norm used to guide adaptive rehnement in 

Chapter 3 is a user-defined expression. Thus any applicable mechanism can 

be solved with any suitable error criterion, all with the same program. This 

seems to justify the work put into function parsing and evaluation; it exposes 

the full generality of the error estimation code to the user. 

The only concern might be performance, but here we are relatively safe. 

Since the linear system solving scales worse than linearly with M, it will al-

ways eventually dominate 0(7%) steps like stiffness matrix assembly and error 

estimation. The crossover point depends on the proportionality constants— 

asymptotic performance is after all not the only measure of algorithmic 

eSciency—but in practice it was found that for most real problems the 

parsing code had a tolerably small impact on solving speed. Possible op-

timisations are discussed in Chapter 6. 
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2.3.4 Linear System Assembly 

It is straightforward to assemble the element stiSness matrix of § 2.1.5 on 

page 57 using simple data structures. The same applies with Robin boundary 

conditions. But it should be noted that the Dirichlet boundary procedure 

described in §2.1.7 can be made signihcantly more efBcient by using the full 

information in the mesh data structures. 

The CRS matrix format does not allow efhcient random access to row ele-

ments, so picking out each matrix entry on column j would be inefEcient (this 

would need to be done for each node on the Dirichlet boundary). Further, 

given the sparsity of K, it seems inefBcient to seek to zero each element in an 

entire row and column when most elements therein would be zero already. 

The neighbour information stored in our more comprehensive mesh data 

structures (documented in the next chapter) helps here. Using the edge peiir 

linking it is possible to quickly determine the nodes sharing edges with the 

Dirichlet boundary node. Since these correspond to the only non-zero entries 

on the relevant row and column (because elsewhere the two shape functions 

have no overlap), only these need be zeroed. Instead of an 0 ( n ) operation per 

Dirichlet node, then, a roughly constant time operation was possible instead. 

This eEectively eliminated Dirichlet boundary conditions from performance 

considerations. 

One other possibility for Dirichlet adjustment has already been men-

tioned: elimination of the degree of freedom. It is not easy to envisage an 

efhcient implementation of this with the CRS format. The oEending row 

could be eliminated easily enough; and so could the oSending non-zero col-

umn elements, using the neighbourhood information mentioned above; but 

row entries after column j would need to be re-numbered, giving again an 

0(7%) algorithm per Dirichlet node. 

Another, inexact, method of incorporating Dirichlet conditions is given 

by Zienkiewicz and Taylor [16]. Termed the "penalty method", it retains the 

degree of freedom, but avoids manipulating any row apart from j by using 
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a large parameter "y to give row j overriding precedence, meaning one of the 

linear system's equations becomes Perhaps without the mesh data 

available to us it is an attractive option, but we see no advantage over our 

approach, with only potential additional inaccuracy arising. 

2.4 Summary 

In this chapter we have presented the fundamentals of the hnite element 

method, a viable scheme for solving a wide range of electrochemical mass 

transport problems. We have, it is true, ignored transient and non-linear 

problems, but no fundamental barriers are apparent in the way of their im-

plementation; in principle the method we have described is fully general. 

Instead we choose to focus on solving, in a relatively complete way, first or-

der steady state problems. The rest we leave to the future, and the Anal 

chapter. 

In order to apply this discretisation scheme, a mesh is required, and if it 

is to be eScient, one tailored to whichever electrochemical problem is under 

study. In order to achieve this for the generality of problems, adaptive mesh 

generation is required. This is described in the next chapter. Where the 

current is of interest, it is only natural to use the error in this to guide 

adaptivity, and so this too is covered next. 



Chapter 3 

Adaptive Finite Element 

After examining the generic machinery for hnite element solving per ae, in 

this chapter we present an adaptive mesh optimisation algorithm capable of 

efhciently modelling the boundary singularities (see § 1.1.5 on page 18) in mi-

croelectrode geometries. Eschewing the a prion meshing approach of many 

practitioners (e.g. [87]), we instead look to adaptive mesh control in gen-

eral [16], and error control of the current particularly—a notion introduced 

to electrochemistry by Harriman [33-38]. Harriman oZ.'s results are 

encouraging, and an important step forward for electrochemical simulation, 

as they tie mesh adaptivity to the quantity of interest. But their formula-

tions were apparently problem-specific, and the meshing would appear to be 

inflexible, so we modi^ and extend their work signihcantly. 

The general idea of mesh reEnement is to use a series of successively im-

proved meshes, each solved with the standard FE techniques of the previous 

chapter, until an answer of the necessary accuracy is reached. The Eow di-

agram for this approach is shown in Figure 3.1. In the case, only 

specihc areas of the mesh are rehned in each step; elements contributing most 

to the error are identi6ed, and replaced with more elements, it is hoped more 

accurately modelling the solution. This is important, as reEning the entire 

mesh is generally ine@cient because it generates too many nodes. 

Apart from structured meshing of regular regions, there has been little 

80 
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Too 
high Low 

enough 

Refine mesh 

Solve mesh 

Estimate error 

Finish 

Generate initial 
mesh 

F i g u r e 3.1: The algorithmic Sow for Enite element with successive re-

finement. Note t h a t the error of the initial mesh is in principle irrelevant. 

The entirety of the Galerkin formulat ion and the ma t r i x solving comes 

under the "solve mesh" step, which is by far the most involved. 

use of automatic meshing within an electrochemical hnite element context. 

Consequently much of this chapter is novel. In deciding on a mesh rehnement 

algorithm, one is generally constrained (unless some non-standard hnite el-

ement scheme is being employed) by the need for certain mesh attributes. 

These are described here, before an algorithm is outlined which can generate 

meshes in general two dimensional simply connected regions, and rehne them 

as needed. 

After establishing a means of refining the finite element mesh to increase 

accuracy, we turn our attention to measures of error, and present new theory, 

simpler and more flexible than that used by Harriman o/. (z6W.), for the 

accurate computation of currents (and in fact other quantities related to the 

concentration held). 
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3.1 Mesh Generation and Refinement 

All the theory in §2.1 is applicable to any valid mesh, such as the one shown 

in Figure 1.4 on page 28. The validity or otherwise of meshes is considered in 

the next section. This bears on the question of how to Erst generate a mesh 

(the hrst step in Figure 3.1), and then how to rehne it in order to increase 

accuracy—a question with more than one answer. We present our approach, 

a form of Delaunay triangulation, in §3.1.2. 

Unfortunately, unlike the basic FE formulation, automatic mesh genera-

tion is not covered well in standard texts, and is an active area of research. 

Generally it is assumed that a mesh is available, possibly having been manu-

ally generated. It is difhcult, therefore, to have a dehnitive view on the best 

approach, if indeed there is one. We adopt what seems a logical strategy, 

but it is certainly not the only one. Doubtless as automatic mesh generation 

becomes (fe as surely seems inevitable, the situation will improve. 

The idea of mesh reSnement is simple. As the element size tends towards 

zero we might expect, as with decreasing hnite difference grid spacing, to 

achieve convergence to the exact solution. If we wish to simulate to a pre-

ordained accuracy then an obvious strategy is to subdivide a crude initial 

mesh until the solution is accurate enough. This is called A mesh rehnement. 

The alternative—increasing the order of elements, which in turn means effec-

tively raising the order of the Taylor series approximation—is called p mesh 

refinement.^ Theorems exist [16,32] that prove convergence, under certain 

conditions, with both decreasing element size and increasing element order, 

so one might reasonably wonder which is the superior approach. 

Mathematically speaking, p rehnement is the more attractive technique 

^Yet another type of reGnement, r re&nement, exists. This moves node positions while 

keeping the number of degrees of freedom the same. It is described by Zienkiewicz and 

Taylor [16] as being "theoretically of interest" but having "little to recommend it". This 

is probably true as regards general engineering practice, as weU as in the context of our 

problems. 
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because, under certain common assumptions,^ with increasing degrees of free-

dom it can converge at an exponential rate. However, it has been pursued 

less commonly than reEnement, principally because it is difhcult to imple-

ment. It clearly requires a practically unlimited degree of element available 

in the basic Galerkin (or whichever FE formulation) solver, which while per-

haps not as diScult as the derivation in §2.1.3 might suggest (there exists a 

more systematic theory of elements) is nonetheless a challenge. Secondly, if 

the rehnement is adaptive, as it is here, where different domain Eireas are re-

hned more than others, elements of different orders (with different numbers of 

nodes) would abut, raising further difBculties, not least in the data structures 

used to store them. Some researchers have combined A and p rehnement into 

rehnement, but again this has proved problematic to implement. Since the 

majority of research exists on rehnement, and the programming challenges 

are manifestly less daunting, we follow this trend, noting that more efhcient 

alternatives may well exist, some mention of which is made in Chapter 6. 

There are two basic approaches within A mesh rehnement: 

diwawM (also called mesA eyincAmen^) and meaA In both an 

initicdly crude mesh is rehned according to an error criterion until the desired 

accuracy is reached. The difference is simply that in the former new nodes 

are added to the existing mesh, and possibly old ones removed ("derefine-

ment"); whereas in the latter an entirely new mesh is generated at each step. 

It is not obvious which is better. Derefinement can be diSicult to implement, 

but then it is not always necessary (indeed, we do not implement it). And 

mesh regeneration, given a fresh start each iteration, might be expected to 

produce closer to optimal meshes. On the other hand, generating a com-

pletely new mesh can be time consuming. Element subdivision seems more 

intuitive, and is more commonly employed, and for these reasons we adopt 

it, but doubtless mesh regeneration could prove an adequate, possibly better, 

replacement. 

^See Notably, we assume here that singularities are not present, which is not 

usually true with our type of problems. We address this concern below. 
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3.1.1 Meshing Aims 

Convergence theorems supply information about how the mesh aEects so-

lution accuracy. It can be shown [16], for instance, that in the absence of 

singularities, the order of convergence of a concentration held approximated 

by linear elements is where A is a measure of element size, and we 

assume aU elements' sizes tend towards zero uniformly 

Another way of stating the order of convergence is since the number 

of degrees of freedom (the number of nodes) M is approximately inversely 

proportional to in two dimensions. 

As noted in §1.1.5, nearly all of the problems under study possess bound-

ary singularities; and it happens [16] that the order of convergence for uniform 

rehnement can be, and usually is, much lower with such singularities. How-

ever, it can also be shown (zbW.) that with a type of re^nemen^, 

where, broadly speaking, elements near singularities are rehned, the rate of 

convergence above with increeising M can be recovered. 

Note that in the following section we shall not discuss the quality of 

the mesh a wg its ability to model the phenomena we are simulating; 

that belongs later, where error analysis is discussed. The point of adaptive 

mesh rehnement is to add elements where needed—and only where needed— 

to capture important phenomena. This will be dehned by the governing 

equation and the boundary conditions. However, regardless of the particular 

physical problem under study, there are criteria that all meshes must satisfy, 

Emd we sketch them next.^ 

^This is not entirely accurate. For instance, long thin "sliver" elements are sometimes 

encouraged in convective simulations. And "non-conforming" elements breaking continuity 

requirements are also sometimes used. Nonetheless, what we say (foes apply to the great 

majority of Gnite element simulation, and certainly to the electrochemical problems that 

we study; such unorthodox approaches demand special justiGcation. 
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Valid meshes 

There exists a basic condition for any mesh used, regardless of accuracy. It 

is this: if an edge is shared by two elements, they must also share the nodes 

at its ends. This proviso is not surprising when one considers the necessity 

of inter-element continuity. E a node breaks an edge in one element, but not 

the edge in the neighbouring one, then the edge held values can disagree, 

and continuity is lost. See Figures 3.2 and 3.3 for an illustration of the 

imphcations of this necessity. Essentially, so-called AaMpmp are not 

allowable. This has consequences for when we wish to rehne the mesh by 

splitting elements: if an edge is split, both elements sharing it must also be 

split, not just one. 

Mesh qual i ty 

The other important constraint one must keep in mind, particularly with 

adaptive meshing, is that convergence only holds when the lengths of all the 

edges of the elements being rehned tend towards zero at approximately the 

same rate. This statement can be made mathematically precise—see [32]. An 

obvious implication is that the element subdivision procedure one must not 

allow angles to tend towards zero while edge lengths remain hnite. This sends 

the element area to zero, but it destroys the convergence of the hnite element 

method. A simple means of subdividing elements that suggests itself in the 

light of the complications of splitting edges mentioned above—adding nodes 

at triangle centroids—is illustrated in Figure 3.4 on page 87, and clearly 

breaks this criterion. Obviously this technique alone would not be a usable 

means of rehning the mesh, but adding nodes at elemental centroids and 

then rearranging mesh edges to enforce the Delaunay constraint (see below) 

25 a usable strategy, and is the one employed in our adaptive hnite element 

simulations. 

An important generalisation of the above rule is that "badly 

shaped" elements give inaccurate results [88]. Elements with small angles 
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Element A 

F i g u r e 3.2: Nodes not shared by elements on which they border, as 

in here, are not allowed in meshes. The solution is simply to subdivide 

element A, as shown in the Egure below. 

F i g u r e 3.3; Having added an edge, the offending n o d e of the previous 

Sgure is now legal. 
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F i g u r e 3 .4 : A faulty element subdivision strategy. Even though the 

element areas and some edge lengths tend towards zero, some edges remain 

untouched. This destroys convergence. 

give (see [89,90], and Appendix D for the implications) sys-

tem matrices [91]. Large angles, on the other hand, can cause a large FB 

discretisation error [92]. Thus it must be our aim, in constructing any mesh, 

to ensure triangles are "nicely" shaped, with angles close to 7r/3. As already 

noted, we use for this purpose, motivated by their 

special properties. 

3.1.2 Delaunay Triangulation 

We take as our starting point for this section a closed two dimensional domain 

boundary composed of strmght line segments. No curved edges are allowed, 

and no holes may be cut out of the region so described. In mathematical 

terminology the domain must be connecW [13], and described by a 

pofT/poM as dehned by O'Rourke [93]. 

The absence of curved boundaries considerably simplifies automated mesh-

ing, and anyway two dimensional curved domains^ can be reasonably approx-

^Note that we do not here mean cylindrically symmetric three dimensional domains 

whose curved boundaries are eliminated on the symmetric reduction to two dimensions— 

we perform simulations in many such domains in Chapters 4 and 5. Instead we mean, for 

instance, that an SECM tip with curved tapering would not be exactly representable in 

t he i n p u t f i le . 
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imated in most cases by subdivision into enough straight hnes. Most simu-

lation domains will require no such geometric approximation in any case, as 

in two dimensions they generally have straight edges. 

The lack of provision for holes in the domain is a more serious restriction, 

preventing some domains from being simulated, and with no accessible ap-

proximation. It would not, however, be impossible to incorporate at a later 

time; there is no fundamental barrier to doing this. 

For the bare minimum of meshing, for output we wish to produce a Mon-

[93], which will satisfy the node connectivity requirements of §3.1.1. 

But mindful of the criteria for a good mesh we shall also insist that it be a sort 

of Delaunay triangulation—the (CDT) in 

fact—the construction of which boils down to two steps, in our case: 

1. Constructing a valid initial triangulation; 

2. Flipping edges to enforce the constrained Delaunay triangulation prop-

erty. 

These steps are combined in algorithms that create the CDT immediately 

from the input data, but our method carries the advantage that any subse-

quent triangulation not of the constrained Delaunay variety can, by repeating 

step two, be converted to one that is. Since we plan to reAne the initial mesh 

this will prove to be useful. 

We now describe the theory of the two steps in detail, leaving computer 

implementation until later. 

1. Ini t ia l t r i angu la t ion 

The precise definition of triangulation is given by O'Rourke [93]. We describe 

it as the subdivision of the boundary polygon into non-overlapping triangles 

by connecting its vertices with edges. The nature of the initial triangulation 

is (at least in principle) not important, provided it is valid. Since with 

most boundaries possessing more than three vertices there is more than one 
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possible triangulation, this is helpful. E, before enforcing the CDT constraint, 

we were desirous of "nicely shaped" elements, as talked of previously, then 

we would have to pay attention to the angles of triangles produced. Since, 

as we shall see, this is dealt with by turning it into the constrained Delaunay 

triangulation, we can pick any algorithm from those available in O'Rourke 

[93], or any other source. 

Figure 3.5 shows two diSerent triangulations of a simple shape. The 

second one would tend to give less accurate results than the hrst owing to 

the high aspect ratio of one of the triangles. However, enforcing the Delau-

nay property would Bip the internal edges to produce "nicer" triangles—see 

below. 

It should be noted that neither the initial triangulation nor the CDT 

creation can break the node connectivity requirements discussed above as no 

nodes are introduced during the process, only edges; and in the case of initial 

triangulation the preexisting nodes reside only on the boundary, where edges 

will only belong to one triangle (element) anyway. 

O'Rourke (z^zd.) presents a variety of triangulation algorithms, ranging in 

their speed from 0(n,^) to 0()3), where is the number of boundary vertices. 

Since the boundaries of most problems that we tackle generally have of the 

order of ten vertices (although approximated curved boundaries could have 

many more), and the initial triangulation process is only performed once per 

simulation, we have no particular worry about the order of the algorithm 

used, providing it is reasonable. The 0(M'^) and O(n^) and O(M^) triangu-

lation algorithms are all relatively simple, whereas those of O(MlogM) and 

better are difhcult to virtually impossible to implement. Thus O'Rourke's^ 

O(n^) "ear removal" algorithm (Algorithm 1.1 in O'Rourke [93]) was selected 

as the best compromise. 

The crux of the algorithm is the dehnition of vertices aa being, or not 

being, "ears"—that is, vertices whose immediate neighbours can be joined 

^O'Rourke quotes triangulation algorithms as having been "implicit in proofs 

since at least 1911". 
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Figure 3.5: Two possible triangulations of the simple shape described by 

the bold lines—the thinner hnes are edges added during the triangulation 

process. Note that no nodes are added, only edges. 
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F i g u r e 3.6: T h e "ear removal" t r iangulat ion a lgor i thm il lustrated. T h e 

unbroken line is the boundary of the region being triangulated. Five of 

the six vertices are classiEed as "ears", and the corresponding subdivisions 

for their removal are shown in dashed hnes. 

by a line inside the polygon. Any such "ear" can be chopped oSF, leaving a 

smEiller polygon to be triangulated and a triangle to be added to the stack of 

triangles making up the triangulation. The concept is shown in Figure 3.6. 

By careful maintenance of data structures classifying the status of ver-

tices as "ears" or not, this technique repeatedly applied leads to an 

algorithm. This is deemed more than adequate, as there will be later in the 

process many more element nodes, emd the CDT algorithm scales, in the 

worst case, quadratically with the number of these. 

The only complication with the algorithm adumbrated above is the data 

structure used for the boundary, and for the resulting mesh—brieHy, a circu-

larly linked list is used for the boundary; the mesh is more comphcated, and 

will receive more attention presently, in §3.1.5. 
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2. E n f o r c i n g t h e c o n s t r a i n e d D e l a u n a y c o n d i t i o n 

The (unconstrained) Delaunay triangulation is a certain triangulation^ that 

has a number of useful properties. The particular property that we exploit is 

given by Edelsbrunner [94]: over all potential triangulations, the Delaunay 

triangulation niEixiniises the smallest angle of all the triangles. This ensures 

that, given a certain nodal placement, the elements arising from its trian-

gulation will keep to a minimum small angles; it maximises the minimum 

angle. We also wish, for 6nite element, to minimise the maximum angle; 

but large and small angles are often concomitants, so the two qualities Eire 

closely related. The more classical—and easily testable—property is that no 

triangle circumcircle (the circle denned by a triangle's vertices [93]) contains 

a fourth vertex inside its boundary. 

We do not use a "proper" Delaunay triangulation, but a constrained 

one. This is because Delaunay triangulations operate on point lists, whereas 

we have a boundary with preexisting edges; therefore we must ensure that, 

whichever edges are added, the edges given Eis the domain boundary remain. 

This constrains our ability to meet the Delaunay properties. For instance, 

a user can supply a boundary polygon with an angle of 7r/100 and it can-

not be removed without mutilating the domain. Nor can the circumcircle 

property above generally be ensured. However, Edelsbrunner [94] quotes the 

Anĝ Ze which states that, among all the con-

strained triangulations, the CDT maximises the minimum angle; in this sense 

it is optimal for a given boundary. 

Since we are starting from a preexisting triangulation, and because we 

wish to add subsequent vertices during mesh reAnement, we use an mcre-

algorithm for Delaunay triangulation. Other approaches exist, for 

instance Fortune's plane-sweep O(MlogM) algorithm [95] for Voronoi dia-

În fact, in the case where four vertices are cocircular, the Delaunay triangulation is 

not unique, but for our purposes this does not matter, as any of the candidates would be 

equally good. 
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grams/ but we use one of the initial algorithms—due to Lawson [96]— 

that relies on successive insertion of vertices. A later, more common, algo-

rithm from Bowyer and Watson [97,98], relying on the circumcircle property, 

is said by Shewchuk [99] to exhibit problems with numerical imprecision: 

the circumcircle test can, with unfortunate combinations of imprecise calcu-

lations, lead to inconsistency, and complete algorithmic failure. We conse-

quently avoid the Bowyer-Watson approach. 

It should be noted that the performance of the CDT step of the meshing 

procedure is considerably more important than that of initial triangulation 

since it is applied repeatedly, and with many more nodes. However, although 

with some conhgurations performance is expected, typically the cost 

is far lower with the meshes we use; this has also been reported with some ex-

planation by Shewchuk Intuitively it is relatively easy to understand, 

as with the iterative steps of element subdivision eind CDT enforcement one 

can expect the majority of the mesh to comply with the Delaunay property 

before it is re-enforced, as the mesh complied before the new nodes were 

added. 

Lawson's algorithm does not directly use the circumcircle property, but 

another defining property instead: for a constrained Delaunay triangula-

tion, if d is a diagonal (i.e. an internal edge) of the triangulation, then the 

quadrilateral associated therewith—the union of the two triangles sharing 

d—cannot have internal angles split by d whose total is less than 7r. The 

algorithm follows simply from this property: if such a diagonal breaks this 

rule then it is Hipped, curing that particular angle problem, but potentially 

altering the status of neighbouring diagonals, and so on. The idea is shown 

in Figure 3.7 on the following page. The number of Aips with typical cases 

is actually relatively low. 

In Figure 3.5 on page 90 the algorithm is seen in context. The 6rst tri-

angulation is in fact the CDT; the second is a poor (from a hnite element 

^Voronoi diagrams, also called Dirichlet tessallations, are the geometric "dual" of De-

launay triangulations, and contain the same information [93] 
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F i g u r e 3.7: T h e Delaunay quadri lateral angle p rope r ty and Lawson's 

algorithm. The sum of the angles spht by the dashed diagonal is less 

than TT in the left-hand example. This can be rectihed by Sipping d, as 

shown, to give (f'. In the single quadrilateral example here the process is 

complete, but were there neighbouring triangles these would need to be 

checked too. 

perspective) triangulation. By flipping edge to give edge C D the situa-

tion is improved. 

A very crude approach would check all internal edges for the requisite 

property, and upon Ending a violating case, Sip the edge, before starting 

again. (The search could not just continue because previously compliant 

edges might have had their status changed by Sipping the Srst edge.) This 

would be extremely slow, however, and to ensure quadratic complexity a 

slightly more sophisticated approach is necessary. In a similar vein to the 

"ear removal" triangulation algorithm above, the status of edges is stored, 

and the implications of edge Sipping carefully considered to minimise dis-

ruption of surrounding edges. It can be proven that such an approach must 

terminate (it might be feared that cyclic cases could arise, with repeated Sip-

ping to and fro of edges; this cannot happen). When nodes are added during 
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adaptive element subdivision, again the implications for surrounding edges 

are considered, and the work required to restore the CDT is minimised. 

3.1.3 Delaunay Mesh Refinement 

With the ability to enforce the CDT constraint—and hence ensure good 

quality elements within the constraints of the set of vertices—in place, the 

adaptive meshing algorithm is almost complete. It simply remains to Gnd 

a strategy to add new nodes where needed. Assuming offending elements 

can be identiBed, the question remains of how to subdivide them without 

breaking the node connectivity requirement of § 3.1.1 on page 84. 

Harriman o/. [33-38] used an initial structured mesh, apparently gen-

erated trivially over a rectangular or similarly simple region, followed by 

a "red-green" refinement strategy due to Bank [100]. Unfortunately that 

type of initial mesh generation restricts the problem domain to the realm of 

the trivial; and the "red-green" Bank rehnement scheme is computationally 

inelegant, because it requires maintenance of two types of rehnement, and 

removal of temporary edges during each refinement cycle. Further, the ad-

vantage of the "red-green" procedure is that it guarantees to introduce no 

angle smaller than half the smallest angle in the initial mesh, but the diS-

culty is that it says nothing about generating that initial mesh, which must 

of course have no small angles. For the geometric generality that we seek, 

then, it is not a complete solution, and if the initial mesh generation and 

reEnement can be performed with the same basic tool (the CDT in our case) 

then it is unnecessary. 

As has been mentioned, the element subdivision problem was solved for 

elements without external edges by adding a node at the centroid, splitting 

the triangle into three, as shown in Figure 3.4 on page 87. Elements with 

external edges are split on their longest external edge, yielding two new 

elements. The alternative strategy at the boundary is clearly necessary as 

otherwise external edges would never be split. Internal edges, while never 
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being split, can be Sipped, leading to the same effect. 

Initially a considerably more complicated algorithm, due to Ruppert 

[101], was implemented. This added new internal nodes (by this we mean 

those not on external boundaries) at bad element circumcentres (the circum-

centre of a triangle is the centre of its circumcircle). Given the circumcircle 

Delaunay property this must lead to the splitting of the bad element, and 

usually others too. Some theory exists to justify this approach in terms of 

the quality of the elements produced. Unfortunately, with circumcentres not 

necessarily lying within their triangles it also requires cumbersome searching 

for the element containing the new node. 

Another apparent difBculty with Ruppert's algorithm comes when a bad 

element circumcentre lies outside the domain. Here theory is used to show 

that such a point could only lie in the czrcZe of a boundary edge 

(diametral circle meaning the circle whose diameter is inscribed by the edge). 

Such a boundary edge would be termed encroocAecf, and would be split by a 

new node at its midpoint. The elegant theory breaks down, however, with 

boundaries having only relatively small angles: there, cyclic encroachment 

can occur, with a new midpoint encroaching another edge, that being split, 

and so on. Not splitting at the midpoint, and using special formulae for the 

split point can alleviate this, but the algorithm becomes more complex. 

For some time Ruppert's algorithm waa used, ajid could be restored to 

the program, but it was found to be relatively slow and complex to maintain, 

and removed. On the other hand, the triangle quality of the current strategy 

is by no means perfect, particularly if the initial triangulation has extremely 

elongated elements. This typically happens when problems of inhnite extent 

are approximated by very large domains, or where the domain haa a high as-

pect ratio. Essentially, while the Delaunay property guarantees good quality 

triangles given the distribution of vertices, the location of vertices is stiU a 

limiting factor, and is not optimal with the centroid subdivision approach. 

While no simulation failed badly because of poor quality elements, in ret-

rospect the Ruppert algorithm seems preferable from a robustness point of 
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view, and it might, in spite of its additional complications, yield better per-

formance by producing meshes with fewer nodes and system matrices with 

lower condition numbers. Whichever element subdivision rules are used, 

however, the constrained Delaunay Hipping algorithm seems elBcient. 

3.1.4 Other Approaches 

Delaunay triangulation is one of the more recent techniques to be used for 

automatic mesh generation. Earlier algorithms tended to revolve around the 

method and (in two dimensions—these become 

octrees in three dimensions), advancing front being the older. 

As has been stated, the attraction of Delaunay methods is the minimum 

angle property. Advancing front and quadtree generators do not have this 

eELsily explicable attraction. Advancing front algorithms appear to have lit-

tle theoretical support, but have been used widely, with success. For solving 

problems such aa ours they rely on advancing from the boundary inwards, 

producing triangles as they go. The dilBculties occur when the fronts meet 

in the middle. It is probably true to say that advancing front methods are 

becoming obsolete as they cannot offer the theoretical guarantees of quadtree 

and Delaunay approaches. They also do not translate well to three dimen-

sions. 

Quadtree methods and their higher dimensional analogues create a hi-

erarchical partition of the domain. With a quadtree, an initial grid of four 

squares is laid over the domain, and squares containing high geometrical 

complexity are recursively subdivided until a certain threshold is reached. 

By warping the squares so produced, the mesh can be made to ht the bound-

ary. Perhaps surprisingly, there have been proven theoretical guarantees 

on the angles produced by such methods, for instance by Bern [102]. 

However, as documented by Shewchuk [99], quadtree methods typically pro-

duce several times as many triangles as necessary. Given their preference for 

axially-oriented edges this is understandable. 
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In sum, it is probably fair to say that in two dimensions, Delannay trian-

gulation is the most elegant and elBcient, at least given our current require-

ments. As will be discussed more fully in Chapter 6, the minimum angle 

property does generalise to three dimensions, so the central beneht of 

Delaunay triangulation disappears there. Attempts have been made to work 

around this, but it might be that octree methods, which seem to retain more 

of the characteristics of their two dimensional versions, work better in three 

dimensions. The problem of three dimensional meshing is a very active area 

of research, and there is no universally satisfactory solution. It is primarily 

for this reason that we stay in two dimensions, where meshing is closer to 

being a solved problem. 

A second factor in mesh generation arrives with transient simulations. If 

the mesh is rehned for each time step, the problem of locating new nodes 

within the old mesh (in order to evaluate Eeld values) becomes crucial to 

the overall efficiency. Here the hierarchical methods mentioned above have 

pnmo /ocze advantages. We return to this in Chapter 6. 

3.1.5 Mesh Data Structures 

Mesh enrichment requires more complex data structures than those for sim-

ple, static mesh hnite element solving. This complexity manifests itself in 

additioncil information that must be stored with elements, and in the way 

elements and edges are stored; but there are commonalities, for instance in 

the way node coordinates are used. 

Since in an unstructured mesh nodes are shared by arbitrarily many el-

ements, it is logical to store them only once to eliminate redundancy. Thus 

they might be stored in an array, with each element having three indices or 

pointers referencing nodes therein. This is not simply a question of space 

efhciency: the alternative approach of storing duplicate nodal coordinates 

allows greater potential for inconsistent data structures, and hence program 

bugs. An obvious data structure, then, for a triangular element, usable in 


