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by Stuart Christopher Benedict Abercrombie

The amperometric response of electrodes generally cannot be predicted with-
out taking into account mass transport effects. These are described by partial
differential equations that often require numerical solution. In this thesis the
adaptive finite element method is examined as a means to this end.
Adaptive finite element, while long used in engineering fields, has not
so far been significant in electrochemical simulation. Most simulations have
been effected with finite difference or non-adaptive finite element, with a
priori mesh densities. Neither of these has the advantage of error control
that the algorithm presented here has, nor do they allow the same geometric
flexibility. An efficient, and in many ways novel, implementation of adaptive
finite element is described, which allows a user-defined error bound to be met
using an optimised machine-generated mesh. Rather than utilising generic
error measures, the mesh is optimised specifically for accuracy in the current
using a new error estimation strategy. This yields a widely applicable steady
state simulation program whose flexibility is demonstrated with a variety of

realistic problems.
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Chapter 1
Mass Transport Problems

The aim of this work is to model certain electrochemical systems. In the
quantitative interpretation of experimental results it is often found that,
having formulated the equations describing the problem, one is left with a
difficult mathematical challenge. We attempt here to solve some of these
problems.

Electrochemical experiments exist in both galvanostatic and potentio-
static forms, corresponding to controlled current and potential respectively.
The ambit of this work extends to the latter only, where typically the current
is measured, for instance to determine the concentration of an electroactive
species, or a reaction rate constant. In order to relate a measured current to
a chemical quantity, mass transport effects must often be modelled, and it is
on these that this thesis focuses. More particularly, we aim to model mass
transport to the microelectrodes now ubiquitous in electrochemistry.

The factors governing mass transport rates are the mass transport mode—
diffusion, convection or migration—and the electrode geometry—microdisc,
microband, etc. The effect of each mass transport regime is discussed in
§1.1.1; it governs the equation we formulate to model the movement of
species. The electrode geometry determines the boundary conditions we
impose on the aforesaid equation. A variety of electrode geometries are cov-

ered in this work, most with diffusive mass transport only, but convection is
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also considered.

A determinant of how we approach the mass transport problem is whether
or not experimental measurements (typically of the current) are time depen-
dent in the region of interest. If so, the concentration of reactant is generally
varying, and we must solve the transient problem. In reality, of course, all
systems are transient, but frequently to within experimental accuracy the
current is unchanging, and we assume this to be owing to a time indepen-
dent concentration field. This is termed a steady state problem. We deal
with only steady state problems in this thesis, which is an unfortunate limi-
tation, but an important simplification for our work. Extension to transients
is considered in the final chapter.

A final factor that cannot be ignored is the mechanism, which may involve
heterogeneous reactions (at the electrode) and homogeneous reactions (in so-
lution). These are intimately coupled to the mass transport, and bear on the
boundary conditions and governing equation respectively. The incorporation
of arbitrary mechanisms is a difficult problem when considering more com-
plex geometries, with simulations usually only addressing a few cases. We
consider only first order reactions, and a limited subset of these in practice,

but wider applicability is one of our aims.

1.1 The Problem

Consider the elementary single electron electrode reaction (Figure 1.1 on the

following page)

O+e 2R, (1.1)

where O and R are oxidised and reduced species respectively, and kyeq and
kox their reduction and oxidation rate constants. Regardless of the nature
of O and R, Fick’s first law (see [2] and § 1.1.1 on page 4) tells us that the

Faradaic current is directly related to the gradient of the concentrations of
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(0] R
mass mass
transport transport
reaction
- —>
O+e < R
electrode

Figure 1.1: Schematic of an electrode reaction.

O and R. For instance, the cathodic current, 7., is given in a one dimensional
system extending along the positive x axis from an electrode at z = 0 by

i = AFDg 22| | (1.2)
or

z=0
with A being the electrode area, F' Faraday’s constant, Do the diffusion
coefficient of species O, and cp its concentration. This statement is a rela-
tion between concentration gradients—and hence flux—and current; it says
nothing about reaction kinetics, which we consider later.

In order to predict the current, then, we must generally be able to cal-
culate g—fl at the electrode.! The obvious means of doing this is to find the
concentration as a function of position (termed the concentration field), and
differentiate it, which is what we in principle proceed to do. Since the con-
centration field depends on mass transport, and it is this aspect that concerns
us, the next step is to consider the types of mass transport and the equations

governing them.

In this work ;9% denotes differentiation with respect to the outward normal. Here it

is equal to —%.
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1.1.1 Modes of Mass Transport

There are three types of solution mass transport, any and all of which can
appear in electrochemical systems. They are diffusion, convection and mi-

gration, and are described below.

Diffusion

Diffusion is the most commonly important mode of mass transport. It is
always present, and its effect can only be neglected when that of convection
or migration is overwhelmingly stronger. It arises from the random thermal
motion of solvent molecules, as hypothesised in the 1905 analyses of Einstein
and Smoluchowski (see, for instance, [3]). But this assumption is not neces-
sary for its mathematical analysis, and was not made by Fick in 1855 when
constructing his famous laws [4].

Fick made the experimental observation, now termed Fick’s first law,

that
Ja=—-DVc; (1.3)

or, in its more familiar one dimensional form,

Ja = “D% : (1.4)
That is, the diffusive flux density vector, jq, is negatively proportional to the
concentration gradient, the constant of proportionality being the diffusion
coefficient? D. In other words, diffusion works to smooth out concentration
gradients by equalizing concentrations; it is an entropic, time-irreversible,
effect.

2In reality D is not always a constant, and can depend on the concentration of solute

species [5]; but in many cases this is not a significant factor, and henceforth we shall

assume that it is not. We also note later that D need not be a scalar.
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Convection

Convection is the net movement of solvent and solute molecules caused by
physically imparted momentum. It comes in two forms: natural and forced.
The aim is usually to eliminate the former, as it is extremely difficult to
predict, deriving from all manner of effects within the reaction solution—
gravity, density gradients, temperature gradients, etc.

Forced convection, conversely, is by definition induced by the cell design.
Sometimes the resulting convection is deliberately chaotic and unpredictable,
as with “turbulence promoters” in industrial cells, and in such cases would
almost certainly be analytically unquantifiable. In forced convection experi-
ments, however, the velocity field is designed to be predictable, and if it can
be found as a function of spatial position then it can be incorporated into
the mass transport equations.

Ignoring fairly small effects such as density gradients, etc. caused by re-
actant mass transport or reaction, the Navier-Stokes equations (see [6] and
the final chapter of this work) governing the velocity field v are independent
of the reactant mass transport equation(s), and can therefore be solved in-
dependently. In a tiny number of cases, notably that of the Poiseuille flow
(ibid.) in a channel flow cell, the velocity field may be determined exactly an-
alytically. In others, approximations are sometimes applicable, for instance
with the wall jet cell [7-11]. In all the following work we assume that v or
an approximation thereof is known, since solving the fluid dynamics prob-
lem is generally harder than the reactant mass transport one (some of the
difficulties are mentioned in the final chapter).

Under the assumption that we know v, its incorporation into the mass
transport equation is simple. The convective flux density, j, clearly depends
on the magnitude of the components of the velocity field and the concentra-

tion of the species with the aforesaid velocity. It is then

jc =CV (15)



CHAPTER 1. MASS TRANSPORT PROBLEMS 6

or, if only the z component of v is non-zero,
Je = CUg . (16)

While a relatively small change to the mass transport equation, the convec-
tive term makes both analytical and numerical solution considerably harder,
some of the reasons for which are discussed later. This is perhaps not en-
tirely surprising, as the character of convection is entirely different from that

of diffusion—for example, it is, unlike diffusion, time-reversible.

Migration

Migration is the effect of ions, as a result of their charge, moving under the
force from the electric field created by the potential difference between the
cell’s electrodes. It is commonly eliminated in experimental electrochemistry
by the addition of a relatively large quantity of supporting electrolyte, and
so will not be considered further. It could, however, become more important
in simulations as new experiments without supporting electrolyte are per-
formed. Apart from contributing a term to the mass transport equation, it
generally requires the solution to another coupled PDE governing the electric

field.

1.1.2 Electrode Geometries

The choice of electrode geometry is in part tied to the mass transport regime,
and is also related to whether or not the experiment is transient or steady
state. Since the early 1980s microelectrodes have become important to many
experiments [12]. These are generally held to be electrodes with a character-
istic dimension of less than 50um, allowing a number of advantages.

Firstly, of course, small electrodes can be used in situations where large
ones will not fit. But other advantages include high rates of mass transport

for studying fast mechanisms, and reduced capacitative charging and ohmic
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drop (ibid.). However, while alleviating experimental problems, microelec-
trodes generally increase theoretical ones. Macroelectrode edge effects can
often be ignored, allowing symmetric reduction to one dimension (see below),
but with microelectrodes edge effects are crucial to an accurate description
of mass transport, and more dimensions must usually be incorporated into
the mass transport equation. For example, diffusive transport to planar elec-
trodes and convective-diffusive transport to rotating disc electrodes are well
served with simple (semi-)analytical models, but even the simple case of the
steady state current to a recessed microdisc lacks such a thing over the range
of possible recess depths.

As a result of these considerations, the simulations in this thesis primarily
deal with microelectrodes. Two important cases of these are microbands
and microdiscs, and both will be studied in a number of guises. For these
purposes, either Cartesian or cylindrical coordinate systems will be adopted.
This is concealed in the Laplacian in the coordinate system-independent
formulation in §1.1.3, so we make the forms explicit here.

For the purposes of microband-type simulations, with translational sym-
metry in the z direction, we use the simplified Laplacian operator:

2 2
V? = 5%5 + 5%5 . (1.7)
In microdisc-type simulations, where the solution is taken as angularly inde-

pendent,

A 1_(9_( a(-)> 0?2 (18)

o Tror a2 o \or ) a2
The related grad and div operators, V and V-, also clearly vary.

Whatever the precise geometry, the conception of the problem is of solving
some transport equation within a domain ) whose shape is defined by the
extent of the solution in the cell. Since the scale of the problem we wish to
solve is typically much smaller than the overall extent of solution, it is usual to
approximate the simulation domain as infinite in one or more directions. This

generally helps in analytical solution efforts, as it increases the symmetry of
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the problem, but poses difficulties with most numerical techniques. Thus
often a finite domain is simulated, but one much smaller than the true one,
and this must be taken into account.

Mathematically we can write the steady state problem as finding ¢ such

that
Le=d, (1.9)

where £ is a differential operator, with appropriate boundary conditions for
¢ on the boundary of the domain, I'. Where multiple species are involved,
we may take ¢ to be a vector quantity. Before solving the problem, then, we

must determine the nature of £ and the boundary conditions.

1.1.3 The Reaction-Diffusion-Convection Equation

We now formulate the governing equation that we shall spend the rest of
this thesis trying to solve, in one form or another. There is a microscopic,
stochastic approach to the derivation, going straight from first principles
to the ultimate transport equation. But having given the constitutive laws
above, we can immediately use the principle of conservation of mass to estab-
lish the reaction-diffusion-convection equation without a microscopic model.
Many non-stochastic derivations of the diffusion equation look at in-
finitesimal blocks, and result in coordinate system-dependent formulae (e.g.
see [2]). We shall take a mathematically more general tack, and incorporate
convection and reaction as well, but fundamentally the idea is the same.
Firstly, we require Gauss’s Divergence Theorem [13], which is also used
several times later in this work. Essentially it states that, if a is a suitable

vector field over an arbitrary volume V with a surface S having an outward

/ﬁ~adS:/V-adV : (1.10)
s v

it relates surface integrals to volume integrals.

unit normal n, then



CHAPTER 1. MASS TRANSPORT PROBLEMS 9

The diffusive-convective flux is, from equations (1.3) and (1.5),
j=lJa+je=cv—-DVc. (1.11)
The flux into V through the surface § is then
/Sﬁ- (DVe —cv)dS (1.12)

(since i is the outward normal we change the sign), giving, with the Diver-

gence Theorem,

/ V- (DVc —cv)dV . (1.13)

The rate of change of material within V is, by definition,
d
— [ cdV = / gde (1.14)
dt /,, L Ot

(the interchange of limits is valid under reasonable assumptions).

Heterogeneous electrode reactions clearly by their nature occur at the
boundary of the domain within which mass transport is modelled, and thus
do not come into the governing equation. Commonly, though, homogeneous
reactions happen too, and manifest themselves as sources or sinks of the
species whose concentration we are modelling. We denote a general source
or sink of material by p = p(z,y,c) (its sign determines which—positivity
implies a source).

By conservation of mass, the molar rate of change of material within V
must equal the quantity entering through its surface (1.13), plus the amount

generated within V by sources,

/v pdV . (1.15)

Therefore
/?—C-dV:/V-(DVC—wCV)anL/pdV. (1.16)
v Ot v v

Collapsing the integrals into one, and distributing the scalar product,

L(%“v'(DVCHVC'V—p)dV:O. (1.17)
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Since the volume V is arbitrary, and has not been specified, (1.17) can
only be true if the integrand is zero (again under reasonable mathematical
assumptions). We thus arrive at the general reaction-diffusion-convection

equation—the basis for all the work presented in this thesis:

0

a—jr—“v-(DVc)—Vc'v—{»p. (1.18)
It is a second order partial differential equation (PDE), which will be linear
if p is (and if both D and v are independent of ¢, which we have already
assumed). Often D is taken to be independent of spatial position, in which

case we have a slightly more familiar form:

0

—C:DV2C—VC'V+p. (1.19)
at

(We shall make this assumption, although it makes no difference to the nu-

merical solution formulation.) In this work, as has already been stated, only

steady state problems are considered, which means solving
DV?c—Ve-v+p=0. (1.20)

A few things should be noted about (1.18) and its related forms. We have
assumed that D, the diffusion coeflicient, is a scalar. If diffusion were faster
in some directions than others—if it were anisotropic—then D would be a
tensor [14,15]. In fact this usually complicates the theory only slightly,® but
it can make simulation more difficult in practice. In this work we assume
isotropic diffusion.

Secondly, simply by reinterpreting ¢ as a vector of concentrations, we
have, mutatis mutandis, the reaction-diffusion-convection equation for a sys-
tem of interdependent species. It should be remembered here that the term
p can be complicated: it will usually be a function (commonly a polynomial)

of ¢, and could have other dependencies.

3If the tensor can be diagonalised, as is often possible, tensor analysis can be discarded
entirely, and the coeflicient viewed simply as having three different values for the three

spatial axes [16].
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There are a number of special cases of (1.19). It is important to identify
them, as certain commonly encountered forms and techniques for their so-
lution are well documented in the literature. Four important examples are

given below.

Diffusion Equation

Also known as Fick’s second law, the case where v.= 0, p = 0 is, in most

fields, called the diffusion equation:

— = DV?. 1.21
5 ¢ (1.21)

For non-convective systems where homogeneous reactions are absent or negli-
gible, (1.21) is an important model. It is, according to the classification used
for partial differential equations [13], a parabolic equation. This is important
for solving it numerically, as parabolic partial differential equations have
entirely different properties from the other common time-dependent type,
hyperbolic. The distinction becomes important when dealing with mixed
diffusion and convection problems.

Because it governs many other phenomena, most notably heat conduction
(for this reason it is also sometimes called the heat equation), (1.21) has been

studied extensively. It forms a model transient problem, and its consideration

is important for extension to transients, discussed in Chapter 6.

Laplace Equation

A further specialisation of (1.21) assumes that the concentration field is

unchanging—that the problem is steady state. Here g—% = 0, so
Vie=0. (1.22)

The Laplace Equation (1.22) is clearly only applicable where (1.21) is, but
with the additional constraint that the concentration, and consequently cur-
rent, be unchanging. This never truly happens, but depending on the exper-

iment, can be approached quickly if mass transport is fast.
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Unfortunately a complication arises when considering the relation with
experiment. Experiments usually achieve a steady state, but not always
a useful one purely described by diffusion: in practice, natural convection
imposes a steady state in most potential step experiments, typically after
about thirty seconds, limiting their maximum duration. If a purely diffusive
steady state is desired it must establish itself well before this time, and this
constrains the combination of mechanism and electrode geometry for which
steady state experiments are useful. With a simple £ mechanism microdiscs
achieve this but microbands do not, for instance. All of the cases simulated
in this work are known to exhibit true experimental steady states.

In common with the diffusion equation, Laplace’s equation describes a
variety of phenomena, obviously including steady state heat conduction, but
also electrostatics, for example. Consequently, many analytical and numer-
ical techniques have been applied to it. Lacking the time coordinate, it is
of a radically different type—elliptic this time. Despite its apparent simplic-
ity, and the wealth of literature on the subject, even this problem can be
challenging to solve, the major difficulty being the nature of the boundary
conditions imposed in electrochemical problems (see § 1.1.4 on the following
page and § 1.1.5 on page 18). Much of this thesis is devoted solely to this

problem.

Poisson Equation

A slight generalisation of the Laplace Equation entails a known solution-

independent source term f, which may be a function of position:
DVic=—f. (1.23)

The obvious interpretation is of a diffusant generated by a homogeneous
chemical reaction at a rate f—i.e. with p = f in equation (1.19). This
inhomogeneous form of the Laplace equation arises in modelling mechanisms

where species are coupled by homogeneous reactions and one concentration
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field can be determined independently of the others (for instance, with the

irreversible EC'E mechanism [2]), as well as with zero order reactions.

Modified Helmholtz Equation

A less commonly seen generalisation of (1.22) is the modified Helmholtz

equation [17]. It has the form
DV?c—ke=0, (1.24)

where k is a positive constant (if £ were negative, (1.24) would become the
plain Helmholtz equation, but this is not of interest to electrochemists.). It
can be used to model a first order £C' mechanism [2], where the homogeneous
rate constant is proportional to k. Beyond this, it serves as a building block
in the simulation of more complex mechanisms, and appears in some form
wherever there is a first order homogeneous reaction of a diffusing species.
For instance, with the irreversible FCFE mechanism the chemically reactive

species is governed by an equation of the form:

DV?c—ke=—f. (1.25)

1.1.4 Boundary Conditions

It is not difficult to find functions that satisfy PDEs like equations (1.21) or
(1.22) or (1.23) or (1.24); unlike ordinary differential equations (ODEs), the
general solutions contain arbitrary functions, not constants, so there exists a
multiplicity of candidates. The difficulty is in making such functions obey the
imposed boundary conditions, which can be very complex in dimensionalities
higher than one.

In electrochemistry, spatial boundary conditions at cell walls are defined
by the reaction, or lack of, at the cell boundary/solution interface. Where
the solution meets an active electrode, the reaction occurring there can be

expected to impose some condition on the concentration that results in a



CHAPTER 1. MASS TRANSPORT PROBLEMS 14

flux of material. Depending on the rate of reaction, its order, and the mech-
anism, different conditions need to be imposed. Conversely, at an insulating
wall-—the glass surrounding a microdisc, for example—no reaction will be
occurring, and we expect the flux to be zero. Any number of reaction condi-
tions could be imposed, but here, as in most work on the subject, we restrict
ourselves to linear boundary conditions. This limits what we do to first or-
der electrode processes, but these are by far the most common, and it avoids
some complexity. Finally, where the simulation domain tends towards the
bulk solution, conditions must be imposed there to reproduce this effect.

Linear boundary conditions are usually categorised mathematically into
three types: Dirichlet, Neumann, and Robin. However, unlike many phys-
ical problems governed by PDEs, electrochemical problems almost always
have mized boundary conditions—that is, different types of boundary con-
dition hold on different parts of the boundary.® Many of the problems of
electrochemical simulation stem from this fact.

For transient problems, which we do not simulate, one must also impose
initial conditions. These are usually of obvious form, (e.g. ¢|i—o = ¢*, where

¢* is the bulk concentration), but do not affect the steady state solution.

The General Boundary Condition

With one exception, all of the boundary conditions that we shall impose—
even the one on insulators—can be thought of as special or limiting cases of
the general current-potential characteristic [2]. Assuming in this section that

we are referring to concentrations at the boundary, it can be written as

i = nFAk" [coe_‘mf(E“Em) - cRe(l‘o‘)"f(E*EO/)} (1.26)

=nFAlksco — kicr] - (1.27)

4Some authors use “mixed boundary condition” to refer to a Robin condition, on the
grounds that it is a “mixture” of Dirichlet and Neumann conditions. The terminology

used here seems more modern, and less apt to confuse.
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The standard or intrinsic rate constant, k°, is a potential-independent con-
stant determined by the electrode system. The forward and backward rate
constants, ky and k,, do depend on the potential. The other symbols have
their usual meanings (1bid.).

By Fick’s first law, as exemplified in (1.2), the total current, 4, is related
to the concentration gradients of both species O and R. Thus we must, in
general, impose the conditions

8(:0

—Doa—n = kaO — k‘bCR (128)
and 5
c
DR-—a—ER— = ]{IfCO - kbCR (129)
at electrodes. We note that they satisfy the mass balance condition
dco dcg
—D,=Y = D, 1.30
O an R on s ( )

mandated by conservation of mass; the one implies the other in this sense.
These two conditions are essentially Robin conditions (although these are
usually presented mathematically in the context of a single field) because
they prescribe a linear combination of the concentration and its derivative.
In the full general case the reactant and product concentrations are clearly
inseparable—they must both be modelled and solved for—but often one can
be considered in isolation, simplifying matters, if certain approximations are
reasonable. It is also found that in the case of no reaction (at an insulator),
the conditions reduce to Neumann conditions; and conversely at electrodes
where there are very fast reactions Dirichlet conditions are imposed instead.

We now consider these important special cases.

Insulators and Neumann Boundaries

At the insulating surrounds of electrodes there is clearly no reaction and no

current. By definition, then, £ = 0, and we immediately see that

880 BCR
—_—D = ——=0. 1.31
on on 0 ( )
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These are examples of Neumann conditions, and specifically homogeneous
Neumann conditions, because the prescribed derivative is zero. We note that
the mass balance condition is inevitably satisfied by insulators with these
conditions: no material travels either way.

Non-zero prescribed derivatives would seem on the face of it to correspond
to a galvanostatic experiment, and as such would not be relevant to our work.
In a similar manner to the Poisson equation, however, they reappear when
modelling species that can be solved for sequentially. Consider the mass
balance relation of (1.30). If %c_;? for instance, is known (i.e. the co field has
been determined independently), then enforcement of mass balance reduces

to imposition of an inhomogeneous Neumann condition on cg.

Reversible Systems and Dirichlet Boundaries

In the first major special case at electrodes the intrinsic rate constant is
very high, implying equilibrium of surface concentrations, and the system is
termed reversible [2].
If we take (1.26), divide by nF Ak®, and let k° — oo, we lose the current—
and hence the concentration derivative—term, leaving
€0 _, en(B-8%) (1.32)
CR
The exponential term is constant as far as we are concerned. The crucial
point is that in this case we want to impose a ratio of concentrations: this is
a Dirichlet type boundary condition (although, again, in the mathematical
literature these are usually just values imposed on one field). It must be
remembered that, as well as enforcing (1.32), we must still satisfy the mass
balance condition of equation (1.30), which is not implied by the Dirichlet
condition.
An approximation common to many theoretical treatments, where the
concentration of reactant tends to zero, applies to the case where, on top of

reversibility, we have a negligible backward reaction because we have a high
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overpotential. This is a common simplification, attractive because it can
mean the product species can be neglected entirely. Here, of course, mass

balance is not a concern.

Totally Irreversible Systems and Robin Boundaries

In the second class of special case the kinetics in both directions are slow. If
only one of the reactions is significant, one of the terms in equation (1.26)
can be dropped. This is termed the totally irreversible case [2]. For instance,

we might have

1= nFAk:fco s (133)
meaning
_Do 20 _pre (1.34)
Oon IO '

This is still a Robin boundary condition, and is simple to enforce with finite
element.

In common with many practitioners, for the most part we will be assum-
ing one or the other of these special cases, not least because most of the

approximate solutions with which we typically compare results do likewise.

Bulk Boundaries

Bulk boundaries do not fit into the general scheme of (1.1.4). As has already
been said, most simulations must deal with the fact that the full expanse
of the solution in which the active species exist is far larger than the small
region around electrodes of interest. On the scale of the electrodes it has
been shown through many experimental validations that the solution may
therefore usually be approximated as infinite in extent.

While boundary and finite element can, in fact, deal with infinite domains,
it is more usual to see simulations conducted on large but finite spaces.
This is done principally for simplicity, and we follow this practice. The

question remains, then, of imposing boundary conditions for the bulk at a
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finite distance that will mimic the effect of those imposed infinitely far away.
This is not a well investigated or documented area.

It is clear that the concentration tends towards the bulk value as one
travels away from the electrode(s), but this would imply both the concen-
tration tending to a constant and its derivative tending to zero. Thus one
could arguably treat the bulk boundary either as an insulator (see above),
or impose a Dirichlet condition for the bulk value. It would appear that
the factor determining the best approximation is the effect on the quantity
of interest—usually the current. Where the bulk boundary forms a crucial
part of the system, for instance where it is the sole source of diffusant, then
a Dirichlet condition would seem inescapable. With a generator-collector
configuration, however, where other more important sources also exist, the
choice is less clear cut, and the difference in results can be significant [18].

For testing purposes it is sometimes useful to be able to rule out bulk
boundaries as a source of error, so with some simulations run for validation
purposes, where an analytical solution exists, the exact values can be imposed
on the bulk boundary. This is of course not a realistic practice, and a better
solution in finite element might be infinite elements [16]. These are not a
panacea, however, and are not widely documented. Some of their possibilities

and potential difficulties are discussed in the final chapter.

1.1.5 Boundary Singularities

As already suggested, the importance of modelling edge effects in microelec-
trode experiments gives rise to simulation domains with mixed boundaries.
Often, where an electrode is surrounded by insulating glass, and the electrode
reaction is diffusion controlled, a Dirichlet boundary abuts a homogeneous
Neumann boundary (see Figure 1.2). In the microdisc case illustrated we
can expect there to be a non-zero flux all along the surface of the microdisc;
indeed the analytical solution shows that it increases to infinity as the edge

is reached. Next to this, however, is the insulating surround at which by
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oc

Figure 1.2: The concentration field z derivative near the edge of a mi-
crodisc with a radius of unity. The electrode is a Dirichlet boundary
(¢ = 0), whereas the insulator is a Neumann boundary: g'f'; = —% =

The flux is discontinuous where they touch at z =0, r = 1.

definition there is no flux. Thus, while the concentration field may be con-
tinuous at the point where they join, its normal derivative cannot be. This
in turn means the concentration changes sharply, and can make its modelling
difficult. This is a central problem of numerical microelectrode simulation,

and is discussed below, when the solving methods are presented.

1.2 Analytical Solution Methods

The obvious place to start, as with most mathematical equations, is with
analytical solutions. If such a thing can be found then we have the ideal
case: a (presumably) quickly evaluable function then supplies the desired
numbers. Unfortunately they are rare, and are almost entirely absent in
domains with more than one spatial dimension. As stated earlier, this derives
from the complexity of imposing boundary conditions where they can follow

an arbitrarily complex line or surface in two or more dimensions. Important
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to almost any successful attempt is symmetry of one type or another.

The most obvious example of helpful symmetry is that of the translational
variety, allowing the approximation of certain spatial derivatives in the Carte-
sian diffusion equation as zero. For instance, where a large enough electrode
is employed, edge effects may be neglected, and if the surface normal points

in the z axis direction, the Cartesian diffusion equation

Oc ?c  Hc %
o= P (8372 Tor T 522) (1.35)
reduces to 5 52
¢ ¢
= =Das (1.36)

There exist a reasonable number of analytical solutions to the one dimen-
sional transient problem posed by (1.36). Since, by a substitution, problems
with spherical symmetry can be reduced to Cartesian one dimensional prob-
lems, these solutions also extend to hemispherical electrodes. However, less
spatially symmetric geometries, for instance SECM tips, do not have this
property, and solutions for even the simplest mechanisms do not exist. The
only notable case of a truly geometrically flexible method for two dimensional
problems is that of conformal mapping [19-21], which is only applicable to
the Cartesian Laplace equation. It has yielded, for instance, the solution to
the dual microband generator-collector problem [22], but three dimensions,
homogeneous terms and transients all defeat it.

The inlaid microdisc does posses enough symmetry to allow some exact
analytical solutions. In particular, the steady state F mechanism problem
is fairly easily solved if the right coordinate system is used, as shown in
Appendix A. The EC’ case, however, is rather harder [23,24], and the
resulting solutions are unwieldy. As far as is known, no exact solution has
been derived for the transient case, although approximations exist. Generally
speaking, these approaches fall down as soon as the geometry of the problem
changes, even slightly, as with a recessed microdisc.

Whatever can be achieved with a given problem, a difficulty of the analyt-

ical approach remains in that all calculations must be thrown away for a new
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problem; it can only ever be problem-specific. The length and specificity of
Appendix A perhaps make the most eloquent case against analytical solution
techniques for the problems under consideration: adaptation is difficult for
the FC" mechanism, and impossible for the recessed microdisc.

Relinquishing the hope of an exact formula for the desired answers, re-
searchers have also sought expressions that approximate in a useful way the
system under study. We adopt the description semi-analytical for these.
Semi-analytical methods approximate at a less fundamental level than the
numerical techniques discussed below, often using preexisting exact solutions
for related cases. Numerical methods tend to use non-problem specific ap-
proximations.

For instance, since an analytical solution to the recessed microdisc £
mechanism problem is unavailable, various approximations have been de-
rived. Bond et al. [25], for example, assumed a constant concentration at
the mouth of the recess, and derived a simple expression valid for relatively
deeply recessed microdiscs. This can be a fruitful pursuit, but the specificity
remains.

Since our aim is to solve general problems, and as a result of their limited
applicability, the only use we shall make of analytical or semi-analytical ex-
pressions is in verifying the validity of the more general numerical techniques

described next.

1.3 Numerical Solution Methods

Numerical techniques for solving the equations in which we are interested
are manifold. They all share the characteristic of approximating to reduce
the infinite dimensional problem posed by (1.22), say, to a finite dimensional
one. Thus the differential equation problem becomes an algebraic one, and
this is solved instead. The key, of course, is to ensure that the essential

nature of the former is reflected in the latter. There are many ways of



CHAPTER 1. MASS TRANSPORT PROBLEMS 22

attempting this, with varying degrees of efficacy and appropriateness, many
of which we shall ignore completely: spectral, finite analytic, wavelet, for
example. Most of these are simply not general enough for our problems. We
shall only address the few techniques that have reasonable currency in the
electrochemical world: finite difference, finite element, boundary element and
random walk (Monte Carlo).

In electrochemistry the one dimensional numerical simulation problem has
essentially already been solved, in that there exist packages that solve the
range of problems of interest [26]. This is because one spatial dimension is far
easier to deal with than two or three. Unfortunately this limits simulations
to only one microelectrode of interest, the hemisphere. In order to simulate
a variety of microelectrode geometries, a program capable of incorporating
at least two spatial dimensions is necessary, and it is the aim of this work to
develop such. Therefore a key requirement of the numerical method used is
geometric flexibility. A second requirement is the efficient modelling of the
boundary singularities mentioned above. The common simulation methods

must therefore be evaluated with these desiderata in mind.

1.3.1 Finite Difference

One of the oldest numerical techniques for PDE solution—certainly predat-
ing computers (see [27], translated in [28])——is finite difference (FD). Most
electrochemical simulations to date have used it, principally on account of
its simplicity, at least in its more rudimentary forms.

Finite difference relies on the Taylor series approximation of derivatives

in the defining equation. For instance,

2 2
clz £ Az) =c(z) + @Az + ¢ (Az)

1.37
oz or? 2 ( )

(assuming differentiability and convergence).
Using such expansions, all the derivatives in (1.36) or any other PDE

can be approximated. For example, using the first two terms of (1.37),
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one can produce the approximate equation, known as the forward difference

approximation,
dc oz + Az) — c(x)
— : 1.38
ox Az ' ( )
or the backward difference approximation
dc - c(z) — clz — Ax) (1.39)

Oz Az
Both become exact as Az — 0, so their average, the central difference ap-
proximation, must too:
dc _clz+ Az) —c(z — Az)
or 2Ax '

Of course, these expressions’ accuracy is contingent on Az being small enough

(1.40)

to render higher terms negligible. Assuming the solution is smooth enough,
higher order methods will be more accurate. The forward and backward
differences are first order, as they discard second order terms and above.
The central difference is second order, as it happens that the second order
terms cancel, and only terms of third order and above are neglected.

By writing another Taylor series for —gﬁ and repeating the process, a second
order central difference approximation of the right-hand side of (1.36) can

be derived:
Pc oz + Az) = 2¢(z) + c(z — Ax) (1.41)

oz? (Azx)?
This is used in many finite difference schemes, the main difference between

which is the approximation used for %.

In the ezplicit finite difference (EFD) scheme [29], the forward difference
expression is used for -g—g, to give
c(z,t + At) — ¢z, t) ~D c(z+ Az, t) — 2¢(z,t) + c(x — Az, t) (142)
At (Az)?

One overlays a grid on the domain, and uses this approximation at each grid

point. The “explicit” part of the name is explained when (discarding the

approximation sign) we rearrange in terms of ¢(z,t + At):

DAt
(Az)?

c(z,t+ At) = c(z,t) + [c(z+ Az, t) — 2¢(z, t) + c(x — Az, t)] . (1.43)
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Assuming ¢ is known at time ¢, it can be calculated for time ¢ + At. In other
words, the algebraic system associated with the approximation is diagonal
[30], and trivial to solve. This holds with higher dimensional analogues. Note
that, while the approximation of g% is second order, the approximation of
% is only accurate to first order in time.

It should be apparent that the type of analysis above can be extended
to any PDE, including, in principle, (1.19) in its full generality. In general
FD can incorporate any convective or homogeneous reaction terms, includ-
ing non-linear ones, so it is, prima facie, attractive for simulation programs
designed to handle arbitrary mechanisms.

While EFD is simple, and important for illustrative purposes, it is not
generally held to be a useful scheme, its widespread use in electrochemistry
notwithstanding. It can be shown [30] that the scheme is only stable (that

is, it only produces physically meaningful results) where

2DAL
aap <L (1.44)

and that even more stringent requirements exist for the two and three di-
mensional versions. For good spatial accuracy Az must be small, but this
limits the size of At. Soon enough, the scheme becomes uselessly slow with
even moderate problem requirements.

With steady state problems, stability is not an issue. And with transient
problems, the stability issues can be addressed by using backward or cen-
tral difference approximations in time.> The common feature here, however,
is that the resulting algebraic systems are no longer diagonal, and can re-
quire slower and more complicated solvers. In the special case of one spatial
dimension, the implicit and semi-implicit methods produce a tridiagonal ma-
trix [30], and can therefore be solved relatively easily. In higher dimensions,
both transient and steady state approaches produce less tractable band diag-

onal matrices. One way around this is with the alternating direction implicit

SThese are termed fully implicit and semi-implicit (or Crank-Nicolson) respectively.

The Crank-Nicolson scheme also carries the advantage that it is second order in time.
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(AD]) algorithm (ibid.).® This effectively breaks the process into two or more
one dimensional problems that are solved in turn. The central difficulty of

finite difference remains, however: that of boundaries.

RN

N

Figure 1.3: A two dimensional finite difference grid in a domain with a
complicated boundary. Specific Taylor series approximations are required
near the boundary for Neumann or Robin BCs, as well as higher order

Dirichlet boundary approximations.

Figure 1.3 illustrates the problem with imposing boundary conditions in
finite difference. To a first order approximation a Dirichlet condition can
be imposed at a grid point near to the boundary. Lower order boundary
conditions can pollute a higher order solution, however, and to be sure of
second order spatial accuracy second order boundary conditions are needed,
requiring separate Taylor series analyses. The case of Neumann or Robin
conditions is even worse: Taylor series are necessary for any approximation at

all. A boundary that irregularly intersects the grid therefore poses a difficult

6Qthers exist too: hopscotch, Du-Fort Frankel, fast implicit, strongly implicit, to name

some of them—see Britz [29].
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challenge. Should one wish to raise the order of the method everything
changes again.

For one dimensional problems (that is, one spatial dimension), where
only two boundary points can ever exist, finite difference is a reasonable
method, usually in its Crank-Nicolson form (although a popular commercial
package [26]) uses fully implicit FD). For higher dimensional problems with
very simple boundaries ADI could be appropriate, but is probably not worth
the effort, as the simulation program would be very specific to the system
for which it was designed. The essential difficulty is that the formulation is
dependent on geometry, and geometry can vary a great deal. For this reason,
despite its initial attractiveness, FD lacks the geometric flexibility to tackle
many problems in electrochemistry, and we consequently discard it. We do
not consider further, therefore, the vast body of literature on the subject,
comprehensively referenced in, for instance, [31].

One rider should be attached to the above conclusions. They hold for spa-
tial discretisation, but for transient simulations that use finite element for
spatial discretisation, finite differences are usually employed for time discreti-
sation. Some of the same schemes and stability concerns reappear there, but
even this type of temporal discretisation can be thought of in a finite element
framework, and doing so suggests some potentially superior alternatives [16].

Some of these issues are discussed in Chapter 6.

1.3.2 Finite Element

The finite element method (FEM) is a considerably more modern technique
than finite difference, and requires more mathematics to formulate. As a
consequence it has been much less used in electrochemistry, but it is gaining
popularity. It is possible to place FEM, FDM and BEM (described below)
in a single minimum weighted residual (MWR) framework, but in the case
of FDM this is rather contrived, in the sense that the weight “functions”

are not strictly functions at all. It is worth remembering, however, that in
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a sense finite difference is a special case of finite element, so we can never
expect finite difference to be superior, except in its simplicity.”

A full derivation of the finite element method will be given in Chapter
2; here it is enough to see the initial idea without its detailed consequences.

Consider the steady state equation for the field u:
V- (aVu)+qu=—f, (1.45)

where a, ¢ and f are known scalar functions of position defined over the
domain €2 with the boundary I', constrained by the Dirichlet boundary con-
ditions

v=a on [Ip (1.46)

and the Robin boundary conditions

Ou =au+pf on . (1.47)
on

If u satisfies (1.45) then it must also satisfy
/ w[V - (aVu) + qu+ f]dQ2 =0 (1.48)
Q

for any function w. (Here w is the weight function : the “W” of MWR.)
Assuming the Dirichlet and Robin conditions of equations (1.46) and (1.47)
are also imposed, this is an equivalent statement of the problem. So instead
of approximating the derivatives of (1.45) as in FD, one can approximate the
integral in (1.48).

Since numerical differentiation is known as a difficult and inaccurate pro-
cedure generally [30], and numerical integration is much easier (ibid.), one
might intuitively prefer this idea. But the real advantage is apparent in the
second big idea of FE: ) is broken (meshed) into simple shapes (e.g. trian-
gles), called elements, and the field in each approximated by a simple (e.g.

linear) function. Unlike FD, no mention is made of axes, and the spacing

It should also be born in mind that even with Galerkin weighting, certain uniform

finite element meshes yield the same matrix as simple finite difference discretisations [32].



CHAPTER 1. MASS TRANSPORT PROBLEMS 28

elements

Figure 1.4: A finite element mesh for an irregular two dimensional shape.
The elements are linear triangles, which means their nodes are at the cor-
ners of elements—higher order elements have additional nodes elsewhere.
A few example elements and nodes are labelled. Note that elements can

be placed arbitrarily in an unstructured manner.

of adjacent mesh points is not integral to the formulation, so any geometry
can in principle be imposed. In Figure 1.4 a possible mesh is shown for an
irregular shape difficult or impossible to treat with finite difference.

There are numerous formulations of finite element, principally differing
in the weight functions used. Unless otherwise noted, the most standard
version, the Galerkin formulation, will be used here. This has the special
advantage that with self-adjoint problems (see Appendix B on page 263),
the resulting matrix is symmetric, which happens to be advantageous. There
are also related, more theoretical, advantages.

The idea behind (1.48) is clearly not contingent on any particular form
for the PDE. It also happens that later in the formulation (see Chapter 2)

no other assumptions about the PDE are made. So, as would be expected
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elements
nodes

<l

Figure 1.5: A boundary element mesh for the same boundary as Fig-
ure 1.4 on the page before. The elements reside entirely on the boundary,
and are demarcated by perpendicular lines. For the simplest elements,
nodes are at the centres of elements. Again, a few example elements and

nodes are highlighted.

29
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from finite element being in a sense a generalised version of finite difference,
it can also in principle deal with entirely arbitrary manifestations of (1.19),
including convective, reaction and transient terms.® The practicalities of this
will be discussed later.

A primary advantage of FE is the flexibility of its mesh.® Firstly, this
means that non-axially aligned and even curved domains can be modelled
with relative ease without changing the simulation program. Secondly, the
density of mesh nodes can be easily increased near the boundary singularities
described in §1.1.5, allowing efficient handling of them. (Expanding grid
finite difference has long been used for this purpose, but refinement is usually
tied to an axial direction, making it inflexible and as a consequence possibly
inefficient.)

Among other advantages, finite element allows the possibility of estimat-
ing the error of the approximate answer—a crucial aspect that has so far
gone unmentioned in this work, but which will prove essential later. This
capability has seemingly not been developed for finite difference. Harriman
et al. show [33-38] that the error for currents calculated from finite element
simulations can be controlled by adaptively adjusting the mesh. This idea is
used extensively in Chapter 3. Finally, it is apparently easier to prove theo-
rems in relation to finite element than finite difference. A sense of this can be
found in [32], where the relatively stringent assumptions required for simple
proof of finite difference’s convergence are given. Very roughly, because finite
element deals with “weak” solutions (see 2.1.1 on page 45), with lower dif-
ferentiability requirements, it is more permissive than finite difference, with

its Taylor series basis.

8In fact, as noted in §1.3.1, transient terms are usually handled differently, with finite

differences, but they can be treated in the same way as spatial derivations.
9Here we use mesh to denote a generalised version of the regular grid used in FD, but

the distinction is blurred when expanding grid FD is compared with structured mesh FE.
Perhaps the true difference is that unstructured (see later) FE meshes, which have no

analogue in FD, are also used.
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The disadvantages of FEM lie in its complexity. The most difficult prac-
tical aspect of its implementation is indubitably mesh generation. Certainly,
if a good mesh is available, finite element will be an efficient method; but
generating such a thing, particularly in three dimensions, is not a trivial un-
dertaking. In the work discussed later the two dimensional meshing problem
is addressed with reasonable success, but the general problems of meshing
are not to be dismissed lightly. It should be remembered, though, that finite
difference offers no solution to this either: the issue of how to efficiently mesh
an arbitrary domain never arises because it is not possible.

It is fairly clear then, that, provided the slightly more abstract formu-
lation of FE is acceptable, there is no compelling reason to use FD: the
geometric flexibility and error estimation capabilities of finite element are
better-suited to handling outstanding electrochemical problems. The same

clear-cut dismissal cannot be made of the next alternative that we discuss.

1.3.3 Boundary Element

Boundary element uses the same idea as finite element: it solves the PDE
integrated over a weight function. But instead of carving up the domain into
pieces, and using a different weight function in each, it uses a specially chosen
global weight function to eliminate the domain integral in an expression
similar to (1.48). In fact, it eliminates the domain integral from the adjoint

expression.
There is no space to fully describe this, but an example gives the idea.

Assume we wish to solve the weighted Laplace problem:
/ wVudQ =0, (1.49)
Q

We can employ a trick, similar to one used later in the finite element formu-

lation, to rewrite the integral as

/ ViwudQ +B =0. (1.50)
Q
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where B denotes boundary terms (see (2.10) for the sort of expression).

If we wish to eliminate the domain integral in (1.50), one obvious approach
is to use a w that identically satisfies the governing equation. As has been
noted, functions that satisfty PDEs (but not their boundary conditions) are
not hard to find. In the two dimensional Cartesian form of our example we

need w to satisfy
_ Pw N Pw
9z Oy?

A host of possibilities suggest themselves, some more trivial (and useless)

V2w 0. (1.51)

than others:

w=0 (1.52)
w=z (1.53)
w=y (1.54)
w =z —y*, etc. (1.55)

A whole variety have been used with BEM—and indeed the best ones are a
matter of dispute—but whatever the choice the domain integral essentially
disappears, leaving solely boundary terms. This has profound implications
for the meshing—see Figure 1.5 on page 29 for a comparison with finite
element. In Figure 1.5 it can be seen that two dimensional problems require
only the discretisation of a line rather than a potentially irregularly shaped
area.

Although it is relatively unimportant for our discussion, it should be men-
tioned that most BE work in electrochemistry—and most BE work generally—
has been done with rather less arbitrary weight functions. Instead of weight
functions that satisfy the governing equation everywhere, fundamental solu-
tions (also called singular weight functions [16]) are used that obey it almost

everywhere. In our example,
Viw = 6(z — &)6(z — &) (1.56)

(0 here is the Dirac delta functional [13].) The reasons for the different
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approaches are not important here; instead we note the obvious advantages
and disadvantages over FEM.

The greatest advantage of BEM is that the disappearance of the domain
integral means that no domain meshing need be done: only the boundary
need be discretised, meaning the meshing challenge in three dimensions, par-
ticularly, becomes far easier due to a reduction in dimensionality by one.
Another is that high accuracy can often be achieved with few elements, and
the algorithm can be more efficient than finite element. This is not alto-
gether surprising, since some of the nature of the analytical solution has
been incorporated into the method.

The benefit of a reduced number of degrees of freedom is not as clear cut
as the size of the matrix suggests, however, as with BEM it is not sparse
or symmetric or positive definite, necessitating computationally expensive
general matrix solvers. If dense matrix LU factorisation is used to solve the
linear system arising from discretisation, as it usually is, the computational
effort scales with the cube of the number of elements (see Appendix C). This
imposes a practical limit on normal computers of a few thousand degrees of
freedom. Nor is there, to the author’s knowledge, any equivalent of multigrid,
which allows in finite difference and element, in some cases, solution in O(n)
(where n is the number of nodes) time. Finally, an important phenomenon
used in finite element error analysis, superconvergence, is also apparently
absent in boundary element.

Whatever the net advantages of BEM may be, they come at a price
in flexibility: the obvious disadvantage—mot shared by FEM-—is that the
weight function depends on the governing equation. If singular weight func-
tions are used, as they usually are in electrochemistry, then a fundamental
solution must be found whenever the formulation, and hence the mecha-
nism or transport regime, changes. This is a major limitation of the basic
boundary element method. Further difficulties become apparent even when a
fundamental solution is available, or non-singular weight functions are used.

The neat elimination of domain integrals in the derivation of the adjoint
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expression (1.50) commonly falls down when extra terms-—time derivatives,
convective terms, constant sources/sinks, etc.—appear. The BEM practi-
tioner must constantly walk a tight-rope to preserve its main advantage: the
lack of a domain integral.

In some cases, the problems are surmountable. If the convective veloc-
ity vector is constant, for instance, there does exist a usable fundamental
solution. But fundamentally, as it stands, the method is too inflexible to
be generally useful in electrochemistry. This is where the Dual Reciprocity
Method (DRM) and its variants come in.

Apparently the only hope for BEM as a generally useful electrochemical
technique lies in modifications like DRM. Essentially they separate out non-
Laplacian terms and approximate them, to allow solution of an equation of

the form (in two dimensions):
VQ’U,: f(u7$7y7t) > (]‘57)

where f is an arbitrary function, allowing time and spatial derivatives. So
convective, transient, and mechanistically more complicated problems can
be solved. Unfortunately DRM is under-researched, and some recent find-
ings in electrochemistry [18] suggest that its additional complications and
approximations destroy convergence in many important cases. While the
transient case has met with some success [39], convection appears difficult
to handle [18]. There always remains the difficulty of putting nodes in the
right place on the boundary; and similarly with the internal nodes that DRM
demands.

The last point illustrates a recurring problem with numerical methods.
In all techniques where a grid or mesh is used to discretise the domain,
the effect of the location of nodes on the accuracy of the result is known
to be pronounced. Near boundary singularities it is usually necessary to
have a high density of approximating nodes to capture the nature of the
rapidly varying concentration field. Much effort in finite difference and non-

adaptive finite element has been poured into finding functions to describe, a
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priori, the locations of nodes. Recent BEM work persists with this. Research
in electrochemistry and other areas has shown that FEM meshes can be
effectively tailored to the problem using error estimators that guide mesh
refinement. This is something so far largely undeveloped with BEM. For this

and the other reasons, we conclude that FEM remains the most attractive

option.

1.3.4 Random Walk

Unlike the numerical methods sketched above, random walk (RW) is not a
standard means of solving partial differential equations. Nonetheless, a sur-
prising amount of electrochemical literature exists on using RW to solve
diffusion problems. On the surface, it appears to offer an entirely non-
mathematical route to modelling numerical mass transport. Virtually none
of the papers on the subject refers to the diffusion equation, and they cer-
tainly do not use Taylor series, or weighted integral formulations. Instead,
random walk is justified solely with the familiar physical picture of diffusive
mass transport: random molecular motion. Purely from the perspective of
simplicity, then, one might wonder whether random walk offers something
that finite difference and finite element and boundary element do not.

It is not possible to give a standard mathematical formulation of the
random walk simulation technique, as various algorithms are used—at least
not without delving into stochastic differential equation theory [40]. Instead

we give below a brief sketch of the previous work in this area.

Previous Work

An early paper [41] describes the simple random walk algorithm used in most
subsequent papers. In a one dimensional problem the motion of a diffusing
molecule is described by random, equally probable steps to the left or right,
curtailed by reflecting or absorbing barriers corresponding intuitively to “zero

flux” or “zero concentration” boundary conditions respectively. The article
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considers simulation particles as direct representations of physical molecules,
which explains its mooting of a “more realistic picture” of reality, where parti-
cles’ step lengths are variable, being drawn from a Gaussian distribution—an
approach also adopted by a recent paper [42]. In all other electrochemical
papers mentioned, steps from a distribution with a fixed length are taken.

Much early electrochemical use of random walk simulations was in fractal
electrode investigations, a useful introduction to which is [43]. Witten and
Meakin [44] used a lattice-based random walk to study the Hausdorff dimen-
sionality of deposits in diffusion-limited aggregation. In one model, particles
diffused simultaneously; in the second particles diffused and deposited one
at a time. Both yielded qualitative data of an unknowable accuracy.

Nyikos and Pajkossy and co-workers published a number of papers [45—
48] with similar random walk simulations yielding semi-quantitative results
(arbitrary constants remained).

Voss and Tomkiewicz [49] describe a random walk model of diffusion-
limited aggregation with a “sticking coefficient” incorporating the effect of
potential. They demonstrate a qualitative relation between simulation and
experimental parameters. Their model was adopted by Fanelli et al. to study
growth of mono- and multi-layers [50], stripping voltammetry [51], and dif-
fusion to fractal electrodes, in all cases yielding qualitative insight.

Further fractal-related work has appeared from Trigueros et al. [52] as
well as Sapoval et al. [53,54].

All of these mainly fractal-devoted papers claim to give insight into the
relation between various parameters and the morphology of the resulting
deposit or shape of the current transient, but do not yield numerical pre-
dictions of experimental results. Partly, of course, this is because computers
were too slow to run full three dimensional simulations. Initially, nucleation
and growth were treated in the same way [55], but Nagy et al. [56,57], fol-
lowed by others [42, 58], applied random walk to nucleation and growth in
three dimensions, producing numerical answers limited only by model sim-

plifications and statistical variance.
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Difficulties with Random Walk

It is impossible to go into detail here about the various algorithms. A number
of simple points can be made, however.

Firstly, while claims are made in various papers that the random walk
method is “grid free”, it is usually not. Where particles move a fixed step
length in one of four or six directions (depending on dimensionality), they
are of course moving on an implicit grid, much the same as that used in finite
difference. In fact, by considering the difference equations governing move-
ment probabilities one can show that many simulations are in fact ezactly
equivalent, in the limit of an infinite number of particles, to the inefficient
and inflexible explicit finite difference scheme described above. This was ap-
parently not realised by the cited authors. (The relation is fairly easy to
prove from equations given by Cox and Miller [59].)

The difference, of course, is that there never is an infinite number of
particles, which raises the next point. The rate of convergence of all Monte
Carlo methods is O(1/+/N), where N is the number of samples (typically in
this case, the number of particles).’?. Since N is at best linearly proportional
to computational effort, this means that the accuracy scales very poorly
with simulation time. From the previous paragraph, however, a crucial point
should be made: the “accuracy” of which we speak is of the approximation
to the finite difference approximation of the true solution. At best, with
an infinitely fast computer, we would achieve an explicit finite difference
approximation of limited accuracy.

It should be clear, then, that grid-based random walk method is largely
useless, unless the accuracy of deterministic methods is simply unattainable
due to memory constraints (an unlikely scenario with an efficient mesh).
Monte Carlo methods as a whole, however, cannot be dismissed so eas-

ily. Numerous variants exist outside of electrochemistry, notably so-called

1"We do not have convergence in the usual sense, but a reasonable substitute definition

is the standard deviation of results. This decreases with v/ IV, by the definition of variance.
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floating random walk as described by Muller [60] and Haji-Sheikh and Spar-
row [61], and various other versions described by Sabelfeld [62]. It may be
that these could prove useful for some special cases, but they certainly bring
new problems lessening their attractiveness for many simulations. Perhaps
their ultimate purpose will be in simulations with random parameters (e.g.
with a randomly perturbed potential). It should also be added that, among
other techniques, “quasi-random” sequences have been used to increase the
convergence rate, but these bring their own theoretical difficulties (see, e.g.,
Ogawa and Lécot [63]).

For now, in the absence of any compelling demonstration of their useful-
ness, and without adequate documentation, random walk methods remain a

curiosity. The best option, then, remains finite element.

1.4 Dimensionless Quantities

To avoid numerical simulations being tied to one real-world situation, they
are usually conducted with dimensionless quantities: various real-world di-
mensional parameters can be separated out beforchand from the problem
statement, the simulation can be completed, and the dimensional quantities
re-incorporated to give results applicable to a range of experiments.

In the steady state simulations conducted hereafter, a dimensionless con-
centration, u, normalised with respect to the bulk concentration ¢*, or some

related quantity, will be used. For instance, an obvious choice is

w== (1.58)

e
Typically, then, the concentration in the domain under simulation will vary
from zero to unity. If, for example, material is consumed under pure diffusion
control at an electrode, u = 0 there, while far away, towards the bulk, v — 1.
Where more than one species is being modelled it may be preferable to use
some combined definition of concentrations. The details vary according to

the mechanism.
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Dimensionless spatial coordinates can also be of use, but the exact nor-
malisation will vary. It is often useful to define the spatial units in terms of
some characteristic length of the simulation domain, {. For a microdisc this
characteristic length is the radius of the microdisc; for a microband, the mi-
croband width. Using this idea one can define the dimensionless coordinates

for Cartesian domains:

x=2 y=1Y. (1.59)
l l
and for cylindrical domains:
R= % Z = 1; . (1.60)

Since there is little chance of confusion, lower case letters will signify di-
mensionless coordinates when used with dimensionless concentrations in the
following chapters.

The results of a microelectrode simulation thus conducted apply to all
sizes of microelectrode, provided any other features of the domain scale with
it (which is the case with an isolated electrode in an infinite domain). Where
other domain features also appear, such as with SECM simulations, we still
normalise with respect to the electrode size, but the relative dimensions of
other features limit the applicability of the results.

Finally, we also work in terms of a dimensionless current, normalised
with respect to a related analytical result. Here we take the example of
the microdisc. The analytical, steady state, n electron diffusion controlled

current to a microdisc of radius a is given by the familiar formula [12]
i =4nFDc'a . (1.61)

Using Fick’s first law!! we define the normalised simulation current for a

1 See equation 1.3 on page 4.
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microdisc-type simulation as

_ nFDc2r J—o %Jz:() rdr (1.62)

tnorm = AnF Dec*a
R=1
T ou
= — e RdR (1.63)
) /R:O 97|,

A comparable expression is used for microband simulations.

1.5 Summary

In §1.1.3 the problem that we set out to solve has been formulated. This boils
down, in our case, to solving (1.20), in some form or another, in a domain
reflecting the geometry of the cell in which we are interested.

It is well known that seeking analytical solutions to (1.19) is generally a
fruitless task, principally owing to the lack of symmetry of many important
domains. When turning to numerical solution methods, one finds that han-
dling the boundary singularities (§1.1.5) intrinsic to microelectrode geome-
tries is one of the major difficulties faced, whichever discretisation method is
used.

Examining in turn four of the most common simulation algorithms in
electrochemistry (finite difference in §1.3.1, finite element in §1.3.2, bound-
ary element in §1.3.3 and random walk in §1.3.4) it is possible to make some
clear decisions. Finite difference, despite its deep entrenchment, appears to
have been applied to most electrochemical problems within its range—while
suitable for one dimensional domains and other simple problems, it lacks the
geometric flexibility to tackle outstanding problems; even the simulation of
a tapered SECM [64] tip,'? for example, is practically beyond it. Conversely,
the basic form of boundary element, while exhibiting a level of geometric
flexibility greatest of all deterministic methods, cannot incorporate many
important governing equation terms; in their generality, convective and ho-

mogeneously reactive and transient problems defeat it. On the face of it,

12We do this with adaptive finite element in Chapter 5.
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dual reciprocity BEM solves these difficulties—and retains the geometric
flexibility—but the results of its application have not met expectations, and
with the current amount of research it is difficult to know if they will. To
this objection may be added two other criticisms: BEM, and DRM BEM
in particular, has had little work done on error adaptivity, as frequently
practised with FEM; and secondly the method in its entirety is very poorly
documented compared with FEM.

Finite element may be viewed as a middle way between finite difference
and boundary element. Outside of electrochemistry, it is probably docu-
mented as well as, if not better than, finite difference, and it shares FD’s
equation flexibility; but it also holds some of the promise for complete ge-
ometric flexibility that BEM clearly possesses (albeit with a more difficult
meshing challenge). It comes in innumerable versions, some of which we
might expect to be applicable to electrochemical problems. One of these, as
documented in the important work of Harriman et al. [33-38], is adaptive
finite element where, crucially, the current error can be controlled, rather
than some other arbitrary error measure. It is hard to see a better hope of
flexible deterministic electrochemical problem solver, and we pursue this goal
in Chapters 2 and 3.

The relation of random walk to other simulation methods is rather more
difficult to explain with reference to preexisting literature, whether or not in
electrochemistry. On the surface it offers promise of solving problems in a
different way, and of solving problems intractable with other methods. But
its inefficiency, and the paucity of documentation, make it difficult to recom-
mend at this stage. Certainly the method as used so far in electrochemistry is
difficult to justify. It may be that some other algorithm, perhaps a non-grid
based one, possibly using quasi-random sequences, may prove useful in the
future. Certainly if randomly perturbed systems become of interest, it will
be worth considering. For now, however, for the bulk of systems of practical
interest, finite element is clearly more attractive.

Finally, in §1.4 the advantageous changes wrought by use of dimensionless
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quantities are seen. Clearly there is no reason to perform simulations without

them, so we shall adopt them exclusively.
The next step, then, is to describe the adaptive finite element method in
detail. First, in Chapter 2, the basic finite element formulation is described,

followed by the specifics of a novel adaptive algorithm in Chapter 3.



Chapter 2
Finite Element Theory

Since the fundamental FE theory is more complicated than that of finite
difference, and because finite element is less common in electrochemistry,
a presentation of the basic formulation is given in this chapter. This also
allows the specifics of our implementation to be made clear. The variational
derivation [16,65] is not used as it is precludes convection, and requires use
of the calculus of variations;! instead the more general Galerkin weighting
approach is used. While this version of finite element for purely diffusive,
self-adjoint, problems appears in numerous basic texts (e.g. [65, 66]), the
discretisation applied to convective problems is less well documented.

The Galerkin theory is in principle applicable to almost all electrochem-
ical problems, steady state or transient, two or three dimensional, purely
diffusive or diffusive-convective, linear or non-linear. In practice, however,
certain cases may require special care or alterations. Specifically, where con-
vection dominates mass transport, stabilisation schemes are often used to
eliminate the unphysical oscillations that arise when the Galerkin scheme
is applied. An attempt is made to explain these in this chapter, although

the area is complicated. Essentially these amount to using modified weight

!Note that where a variational derivation exists, it gives the same result as Galerkin
minimum weighted residual (see later). Note also that, as exemplified in Chapter 3 and

elsewhere, the variational approach cannot be entirely ignored, if only as a theoretical tool.
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functions, so much of the theory remains the same, and the modifications
may be considered separately as an addition to the basic scheme.

Where the shape of elements and other specifics enter the theory, the
formulation is specialised to two dimensional steady state problems, which
of course limits its applicability. Nonetheless, it covers some important cases
that we wish to study in detail.

Substituting element-specific expressions into the general formulation pro-
duces an algebraic system that must be solved in order to recover the con-
centration field. If, as here, the problem is linear, this system is most con-
veniently written as a matrix equation. The efficient assembly of the matrix
requires some particular strategies, and some of the less obvious (or at least
less well documented) issues relating to this are raised. After assembly, the
linear system must be solved, taking into account the special matrix prop-
erties that allow efficient practical solvers. Since this is a standard problem,
only a brief sketch of the theory is given in Appendices C and D, but some

computational aspects are related at the end of this chapter.

2.1 The Galerkin FE Formulation

Some of what follows in this section is not specific to the Galerkin formu-
lation. Indeed much of it is generally applicable to any minimum weighted
residual method. This is useful, as it happens that other formulations can
be superior in certain situations. However, the Galerkin method is probably
the best for the case of self-adjoint problems, which for our purposes means
problems without a convective component to mass transport.

Leaving aside radical alterations of finite element such as the element free
methods surveyed in the book by Zienkiewicz and Taylor [16], finite element
methods always require a mesh of broadly the same nature—as exemplified
in Figure 1.4 on page 28. In § 3.1 on page 82 our approach to this mesh

generation question is presented in detail. Until then we assume we have a
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suitable mesh available.

2.1.1 The Weak Formulation

As a starting point we set out to find u ~ u, the approximate solution of the

partial differential equation
V-(aVu)—v-Vu+qu=f, (2.1)

where a, ¢ and f are known scalar functions of position defined over the
domain @ (which has the boundary I'), and v is a known vector field. In

3

addition, we impose the Dirichlet boundary conditions
u=a on [Ip, (2.2)
and the Robin boundary conditions

u _ au+ f on Ig. (2.3)
on

Although, as is shown in the previous chapter, the Dirichlet condition can
be thought of as a limiting case of the Robin condition, it is implemented
in an entirely different manner in finite element, so the two are separated.
Neumann conditions, on the other hand, are treated as particular cases of
Robin conditions with a = 0.

Equation(2.1) is a form of (1.20) specialised to first order homogeneous
reactions. For problems involving multiple species, several such equations
would need to be solved. It incorporates diffusion (in the Laplacian-type
term—a is essentially the diffusion coefficient, although this appears to be
given sometimes in differentiated form, outside the divergence operator), con-
vection of velocity v, a first order homogeneous reaction (in the gu term),
and a homogeneous reaction whose rate is independent of u (in the f term).
Thus it can model several mechanisms, including £ (¢ = f = 0), CE
(g =0,f >0), and EC' (¢ < 0,f = 0). Alone it represents the most
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general first order steady state system that can be modelled with a single
concentration field.
As mentioned in the previous chapter, if (2.1) is true, then it must also
be so that
/Qw[V (aVu) —v-Vu+qu— fld2 =0 (2.4)

for any weight function w. It is here that the term “minimum weighted
residual” is explained. If we substitute an approximate solution @ into the

version of the governing equation (2.1) rearranged to equate to zero,
V-(@aVu)—v-Vu+qu—f=0, (2.5)

we can expect that it will not be completely satisfied, giving a residual R:
V-(aVi)~v-Vu+qi—f=R. (2.6)

We cannot ensure that R is zero at the same time as satisfying the boundary
conditions, because that would require knowing the solution u, so instead we
attempt to minimise K by multiplying by a number of weight functions w,
and insisting that the results equal zero. This will become more apparent as
the derivation proceeds.

Multiplying through by the w factor, we can break the integral into several

pieces:
/ wV - (aVu)dQ — / wv - VudS) + / wqudS) = / wfd§d . (2.7)
Q Q Q Q

So far this is still a general weighted rewrite of (2.1). The first concession
to approximation made is in reducing the order of differentiation in the inte-
grand of the first of the integrals on the right-hand side. The result is termed
the weak form of the problem [17], since the differentiability requirements on
u are reduced. It is noted, however, that the weak form can produce more
physically realistic results (ibid.), and fundamentally there is no reason to

accord primacy to the PDE formulation.
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To achieve the reduction in the order of derivatives a generalisation of

the product rule is used:
wV - (aVu) =V - (waVu) — Vw - aVu . (2.8)

In combination with the divergence theorem, this yields a standard result
sometimes known as Green’s Theorem [16] or Green’s first formula [67].2

Applying (2.8) to (2.7), produces five integrals:

/V-(anu)dQ—/Vw-aVudQ—/wv'Vud9+ [wqudﬂz/wfd@
Q Q Q Ja Q

(2.9)
The problem is now in weak form.

There are at least three reasons for removing second order derivatives from
the formulation. The first is that doing so allows element shape functions (see
later) of lower order. Without this change the approximate solution @ would
have to be C*! continuous.® Rewriting in this way has the advantage that the
solution need only be C° continuous, removing the need for inter-element
derivative continuity. The second reason is that doing so in combination
with Galerkin weight functions introduces symmetry that manifests itself
advantageously in the system matrix. Thirdly, it allows Robin boundary
conditions to be built into the formulation. This is an important change in
view of the difficulties of doing the same with finite difference (see §1.3.1).

The next step is to convert the leftmost integral of (2.9)—an integral
over the domain—into a boundary integral. (This would have been combined
with the previous step had the pre-packaged Green’s Theorem been used.)
Recognising this as of the form of the left-hand side of divergence theorem

statement—see Equation 1.10 on page 8 —we can write

0
/wa—ﬁdF~/ Vw-aVudQ-/ wv-VudQ+/ wqudQ:/wfdQ. (2.10)
r On Q Q Q Q

ZSources appear to differ on terminology: alternative nomenclature includes Green’s

first identity; and Green’s Theorem is also used to denote another result.
3CT continuity means that all the function’s first order derivatives exist and are con-

tinuous. See, for instance, [13].
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(Remember here that the differentiation —(% is along the outward normal.)
This change elegantly incorporates the Robin boundary conditions. It

happens, as is seen later, that it is relatively easy to restrict #, the approxi-

mate solution, so that it satisfies (2.2). At this stage we solely seek to impose

(2.3), so we set w = 0 on I'p, whence the slightly modified form:

/ wa——dF /Vw aVud() — /wv - Vud(l + / wqudS) = / wfdS) .
Q Q Q

(2.11)

Since there is a Robin condition on 'y, g—s is known on that boundary,

and can be substituted from (2.3) to give a total of six integrals:

/ awaudF+/ awpfdl’
Tx g
—/Vw-a,VudQ—/zuv-VudQ+/wqudQ :/ wfdQ . (2.12)
o) Q Q Q

No real approximations have yet been made, as signalled by (2.12) re-
ferring to w rather than @; but a lower order of differentiability of u has
been conceded by adopting the weak formulation. The difference is subtle:
all “strong” solutions—solutions to the PDE form of the problem—are ad-
missible by the weak formulation; it is just that (2.12) allows other, weak,
solutions that do not formally satisfy (2.1). This distinction need not concern
us.

To proceed further we must adopt a particular type of weight function.
With the Galerkin formulation this weight function is intimately tied to the
shape function used for representing the solution, as described in the next

section.

2.1.2 Galerkin Weighting

We define the approximate solution to be

U = ZNJGJ 5 (213)
j=1
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with a; the (as yet undetermined) value of @ at node j, N; the shape function
associated with that node, and n being the number of nodes. If N is viewed as
a row vector of nodal shape functions, and a as a column vector of unknowns,

(2.13) may be written more compactly as
i=Na. (2.14)

In this we follow Zienkiewicz and Taylor [16].

Specific types of shape functions will be presented below. For the moment
we state that V; is only non-zero in the locality of node i, dropping away
to zero by the time any neighbouring nodes are reached. This is true of the
linear shape functions of the next section.

Substituting (2.14) into (2.12),

/ awaNadl' — / Vw - aVNadf) — / wv - VNadf(2 + / wgNad{) =
r Q Q Q

R /wadﬂ—/r awfdl . (2.15)

This restriction on @ confines the nature of the solution significantly—it has
moved from an infinite to a finite dimensional space.

In the Galerkin formulation one chooses to make u satisfy (2.15) with n
different weight functions W;, equalling each of the element shape functions
N;, except when the node 7 lies on I'p. On the Dirichlet boundary the value
of u is predetermined, so a degree of freedom is lost, and the weight function

at such nodes is set to zero (but see below). Thus
/ aN;aNadl’ — / VN; - aVNadf) — / N;v-VNa + / N;gNad) =
Tr Q Q Q
/ N, fdQ) — / aN;Bdl  (2.16)
Q T'r

defines n equations fori =1...n.

The integrands may be expanded in order to see the form of the integrals.
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For instance, the first integral of (2.16) is

/ alN;aNadl’ :/ aN;o (Z Nja/j) dr’ (2.17)
I'n I'r

j=1

= / aNia(Nlal + N2a2 S Nnan)dF (218)
T'r

:/ aNiaNlaldF—f—/ a,NiOzN2a2dF+...—|—/ aN;aNya,dl
T'r T

I'r

(2.19)

= / aN;aNydT + a, / aN;aNydl + . . +a, / aN;a N, dl'
I'r

Tr JTg

(2.20)

Owing to the locality of the shape functions, most of these integrals, and the
other ones deriving from (2.16), will be zero. Consider equation k of the set
1...n. The various integrands would entail multiplication of shape function
Ni, or a derivative thereof, by each of the other shape functions 1...n, or,
again, a derivative thereof. Only if both shape functions were non-zero over
the same domain would the result be non-zero. This is in turn defined by
the nodal connectivity in the mesh: if the nodes share an edge, their shape
functions will overlap, and the respective integral will be non-zero.

For instance, if node k& were connected to nodes r, s, ¢, then only the nodal
shape functions k, 7, s, would be non-zero in the same range as Ni, so the
integrals would disappear in all other cases. The four series of integrals of

the type shown in (2.17) therefore collapse to four terms each, giving, for the
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equation defined by the weight function Ny,
ak/ aaN,fdf‘—-ak/aHVNkHQdQ—ak/Nkv-VdeQ+ak/qN,fdQ+
Tr Q Q Q
aT/ aNkaNTdF—a,./aVNk-VNTdQ—aT/ NkV-VNrdﬂ+ar/quNrdQ+
T'r Q Q Q

as/ aNkaNde—aS/ aVNk-VNSdQ—aS/Nkv~VN3dQ+a5/quNsdQ—f»
T Q Q Q

[
at/ aNkaNtdF~a,t/ aVNk-VNtdQ-at/Nkv-VNtdQ+at/ NigNdQ) =
I'p Q Q Q
Q Tr

In spite of its length, the form of (2.21) is fairly simple. Since the only

unknowns are ag, a,, as, a, it is a linear relation between them. In general it
can be written as

n

D a ( / aVN; - VN;dQ + / Nyv - VN; — / aN;aN;dl' — / N,-qudQ>
Q Q Tr Q

=0

— [ anpar - [ Nipde (2.22)
JQ

JTR

(here we have multiplied through by —1 in order to make the diffusive term
positive). With n such equations, and n unknowns, there results an n dimen-
sional linear system. As (2.21) suggests, most of the coefficients of a; will be
7Z€ero.

One final point remains to be made regarding Dirichlet boundary con-
ditions. Their imposition is discussed below, but we have already said that
the weight function is set to zero at such nodes. Therefore (2.22) does not
apply, and instead there is a tautologous equation of the form 0 = 0 for each
case where node i lies on a Dirichlet boundary. The rest of the system of
equations, however, would still refer to the node’s value. This is of course
resolved by substituting the known nodal value from the boundary condi-
tion, as is detailed presently, but in the interim, during the construction of

the linear system, our program in fact ignores Dirichlet node weight function
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differences entirely. Thus, the notion of setting W; = 0 at Dirichlet nodes is
purely a formal one; in practice one need not be so fastidious.

One of the reasons for choosing the weight functions to be the same as
the shape functions might be apparent from (2.22)—the symmetry for self-
adjoint problems described below (note that the Dirichlet node zero weight
functions do not damage this symmetry). But there is another rationale
for the Galerkin weight function choice. If the problem is self-adjoint (see
Appendix B), then the @ so derived will be the closest to the true solution,
u, in a certain least-squares sense—the same result as would be derived from
the variational formulation [16].

The linear system defined by the equations (2.22) for ¢ = 1... N may be

written more compactly in matrix-vector notation as
Ka=F, (2.23)

where

CLMO{NJCZF—/NZQNJC{Q
Q

Kij = / CI,VNZ : VN]dQ + / NZ‘V . VNJdQ —/
Q Q r
(2.24)

R

and

F, = /P aN;Bdl — /Q N, fdQ . (2.25)

K is known as the “stiffness matrix” because of its origin in mechanical
applications; and F as the “force vector” for similar reasons.

Note the dependence of symmetry of K on convection: all terms in the
definition of Kj; are invariant under the interchange of 7 and j except that
involving v. Since symmetric matrices are generally easier to solve (see Ap-
pendices C and D), this is important. The high number of zero coefficients
is responsible for the sparsity of matrix K, which must be taken advantage
of in any efficient solver (see Appendix C). Finally, where the matrix is sym-
metric it is more easily solved if it is also positive definite. It can be shown,
for instance by considering the variational formulation [16,32], that for the

problems under study this does occur, which essentially means that where
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convection is absent a conjugate gradient solver may be used to solve the

linear system.

2.1.3 The Linear Triangular Element

Until now, the derivation has been independent of dimensionality, and the
order of the approximation (in the Taylor series sense) has not been made
explicit; the general ideas apply to all possibilities. We have seen that the
end result of the mathematics is an algebraic system Ka = F, and we have
the form of the integrals that define K;; and Fj. It now remains to determine
the integrands to construct the linear system. To allow this, the domain’s
dimensionality, an element family, and a particular element order must be
selected.

We wish to solve, at a minimum, two dimensional problems if we are
to tackle microelectrode systems. Since mesh construction (discussed in the
next chapter) is more difficult in three dimensions, we opt for two dimen-
sions here, and ultimately for the problems that we solve later on. Two
basic shapes of elements are normally used in two dimensions: triangles and
quadrilaterals, the latter sometimes in the specialised form of rectangles.
Since most two dimensional automatic mesh generation has been conducted
using triangles, we adopt them exclusively. In particular we shall use for the
purposes of explanation the linear variety, which is the simplest. With this
type of element the overall solution field, @, will be piecewise linear. Later,
we actually employ quadratic elements for most of our simulations.

If the shape functions are linear in z and y, within each element we have
ut = oy + oax + asy . (226)

This interpolation within an element may be viewed as a plane intersecting
the values of & at the triangle’s vertices—a;, a; and aj (the subscripts in
this section are local to the element). Figure 2.1 shows this idea—mnote that

the vertex subscripts are in clockwise order, in contrast to some texts. Since
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ﬁ(x,-,yj)=aj

u(x,y)=a;

u(x,y,)=a

Figure 2.1: A linear triangular element. The nodal values (a;, a; and

ay) are interpolated linearly.

the vertex field values are the quantities of interest, we must eliminate the

arbitrary o, constants. This problem boils down to a simple set of three

equations:
a; = a1 + 0; + a3y, (2.27)
a; = a1 + QaT; + a3yY; (228)
ax = o + QaTk + A3y - (2:29)

These can be solved to yield the formula

1
o= ﬁ[(n + 8;% + tiy)ai + (T’j + 83 + tjy)aj + (Tk + spx + tky)ak] (2.30)

where
T, = Z‘kyj = .’Ejyk (231)

ti= Tj; — Tk, (233)
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cyclic permutation in the order k, 7,4 providing the other coefficients, and A
being the area of the element.

If the shape functions within an element are written as

Ne = {Nz NJ Nk} (234)
then from (2.30),
7y + 8T+ Ly
N = —+-—+—=, . 2.35
N , etc (2.35)

Similarly writing the three vertex values of @ within the element as

a;
7
allows us to write (2.30) as
¢ = N¢af , (237)

in an element-specific imitation of (2.14).

Knowing the functional form of IN allows us to, at least in principle,
evaluate the integrals in (2.24) and (2.25). In the particular case where the
coefficients a, ¢, v and f are constant, exact formulae exist for the integrals,
but generally some numerical approximation to the integration must be made
(see below).

The length of equations (2.30) to (2.33) might give cause to wonder if
a more elegant procedure is available to deal with the relation of element
shape functions and their coefficients to real world coordinates. There is,
and it involves an element-specific coordinate system, called area or trian-
gular or barycentric coordinates. Since they can simplify and generalise the
approach above to higher order elements, and because exact element inte-
gration formulae are given in terms of them, we describe area coordinates

next.
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2.1.4 Area Coordinates

The aim is to find a coordinate system for use within triangular elements,
independent of where the element is lodged in Cartesian space. Since we are
dealing with triangles, it seems intuitively appealing to have three coordi-
nates, each associated with a different vertex. The difficulty with this idea is
simply that a triangle is two dimensional, so there can only be two linearly
independent coordinates for a point within it. This is solved by using three
coordinates, but making them linearly dependent, reducing the number of
degrees of freedom to two.

Consider the system

llil?l + lgﬂfg + 53273 =T, (238)
hyn + by +lsys =y, (2.39)
i+ 1l+13=1. (2.40)

From (2.40), it is clear that having chosen any two of /1, I3 and I3 one cannot
choose the third; there are only two degrees of freedom.

Solving for [; results in the familiar expressions

T+ $17 + hy
{ = ———"7 " 2.41
1 - (2.41)
To -+ S2& + t2y
lg = - =7 2.42
b (2.42)
T3 + 837 + L3y
lg = —— "7 2.43
3 ZA 3 ( )

where r;, etc. are defined as above. This similarity is not a coincidence:
in fact the linear triangular shape expressions are equal to the area coordi-
nates for their corresponding nodes. Something has been achieved, however,
since the coordinates (Iy, I, l3) can be used for formulating higher order (e.g.
quadratic or cubic) and curved elements. Further, we can use general theory
to transform from element coordinate space to Cartesian space, avoiding te-
dious element-specific algebra. Although we will not use this fact, everything

in this section generalises to three dimensions and tetrahedral elements.
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As we have already said, we shall use quadratic elements for the bulk of
our simulations, partly for reasons of greater accuracy, but also because of
error adaptivity considerations explained later in this chapter. While linear
elements almost always take the form described here, quadratic triangular
elements come in several forms. A fairly minor technical difference, between
hierarchical and non-hierarchical elements, is described by Zienkiewicz and
Taylor [16] (we use non-hierarchical elements, but see Chapter 6 for mention
of their possible advantages). More importantly, we use so-called subpara-
metric elements. The more common isoparametric variety uses quadratic
functions for the shape of the element, making it potentially curved. Since
curved elements were not felt to be warranted, their additional complications
were avoided by the use of simpler subparametric elements. By extension su-
perparametric elements also exist. The details can be found in a standard

reference (ibid.).

2.1.5 The Element Stiffness Matrix

Having talked in terms of nodal shape functions in (2.13) it might seem
natural to construct the linear system (2.23) node by node, filling in K sys-
tematically, a row/column at a time. If we attempted to generate the entries
for node 7, however, we would have to find all nodes connected to node i;
and similarly with each node we considered. Depending on the structure of
the mesh, and the mesh data structures, this could be very inefficient. Con-
sidering a diagram of the nodal shape function for linear triangular elements
(shown in Figure 2.2), its piecewise linear nature is apparent, and it is equally
reasonable to work on an element basis. This proves more eflicient.

The domain integrals in the definition of Kj;, whose integrands are non-
zero only over the neighbourhood of node 4, can be broken into m pieces,
where m is the number of elements sharing node i. Thus, if we iterated
over these m elements, adding the contribution from each to K (initially

zeroed), we would arrive at the same result. The Robin boundary integral
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Figure 2.2: A linear triangular element nodal shape function, with some
surrounding elements. Note that the shape function is only C° at element

edges: it is piecewise linear.

can be incorporated on an element-oriented basis too, since each segment of
it affects only one element (assuming Robin boundaries are external, which
they are in this work). A similar logic applies to the force vector F. It is
common to assemble the various integral contributions of an element into
a sub-matrix, termed the element stiffness matriz, denoted here by K¢ an
identical approach also brings us the element force vector, F¢.

With linear triangular elements there are three nodes per element, so
K¢ will be a 3 x 3 matrix, and F¢ will be a three dimensional vector. The
first domain integral in (2.24) is, if a is approximated as constant over the
element,? given by
ON; ON;  ON; ON;

ds) 2.44
g O O0r Oy Oy ’ )

I = / aVN; - VN;dQ ~ a

where Q¢ is the portion of the domain €2 coincident with the element e. The

4The implications of this approximation are discussed later in this section.
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derivatives are available from (2.35), and are seen to be constant, so

a(s;s; + t;t;) a(s;s; +tit;)
J, o~ 22707 v — Ty 2.45
' 1A? /edﬂ 1A (2.45)

The next domain integral in (2.24) can be simplified similarly:
Iy = / Niv - VN;d€) ~ v - VN; N;dS2 . (2.46)
e Qe
The integrand is not constant, but we can use a well-known formula [16, 32,

65,68] to evaluate it. It can be shown that

[ 181!
PP = — 2.47
Jae 20542 (a+5+’y+2)!2A (247)

where [, etc. are the area coordinates introduced above. As noted there, the

shape functions for the linear triangular element are equal to the correspond-

ing area coordinates. Therefore

9] t;
I ~ “_J;_zfy_i . (2.48)

The other domain integral in (2.24) is approximated as

Is= | NgNdQ~q [ N;N;dQ, (2.49)
Qe

Qe

and by the integration formula is

CARE
Iy~{ P 5 (2.50)
8= j.
The same approach gives the domain integral in (2.25):
A
Qe 3

Another formula exists for integrals in area coordinates along the edges

of triangles [65]:

g __ML 9 59
/elll2dr_(a+6+1)! ’ (2:52)
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where I'® is the edge over which the integral is taken, and L is its length.

The remaining integrals may therefore be approximated as

aal - .

o LFET,
aN;aN;dT' ~ ace [ N;N;dI' = (2.53)

Tk Tq sok =y,

and
/ aNBdl ~ af | Nar = L (2.54)
Fe F e 2
R R

(The integral domain I', denotes an edge of element e with a Robin boundary—
i.e. a subsection of I'g belonging to a particular element edge.)
Finally, with a sigh of relief, we write the explicit form of the equations

defining the elemental linear system elements (dropping the approximation

signs):
. a(SiSZZtitj) n vzs]';vytj . % . % i ?é) :
Ki; = B o (2.55)
i e i=7,
and
aBL  fA
Fé= "7 21— 2.56
P =g 3 (2.56)

Unfortunately, where the magnitude of the convective velocity field, v, is
large relative to the diffusion coefficient, a, a different weighting scheme can
sometimes be preferable, and these expressions change. This is discussed

below in §2.2.

Integral approximation

It is seen later, when convergence is discussed, that finite element with lin-
ear elements is second order. It can be shown [16] that, in order to retain
convergence, the same order of integration is needed for the element matrix
integrals. The approximations made above are of the right order for linear
elements. With quadratic elements more accurate integration is required,

and this is almost always done numerically, which is actually simpler. In
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finite element, Gaussian integration is generally used for this purpose,® and

is well documented (ibid.).

2.1.6 Axi-symmetric Problems

So far no special account has been taken of axi-symmetric problems. It is
common to see “axi-symmetric elements” treated separately from Cartesian
elements (e.g. [65,66]). New formulae for linear system components can then
be derived. But provided one is prepared to sacrifice the seemingly minimal
performance increase so gained, both Cartesian and cylindrical coordinate
systems (and indeed other ones) can be incorporated into one framework.
The Cartesian form of, for the sake of argument, Laplace’s equation is

?u  O%u

92 + a7 =0. (2.57)
The cylindrical coordinate form is, following 1.1.2 on page 6,
%-{% (fr%) + 2277; =0 (2.58)
8%" (7"2—3) + rg;g =0 (2.59)
5% (r%) + 5% (r%) =0. (2.60)

The only essential difference, then, is a weighting within the two deriva-
tives. But we have already provided for a weight function in the form of a in
(2.1). Unfortunately it involves a slight abuse of symbology, since the weight
we need for cylindrical systems is part of the Laplacian operator in (2.1), not
a; but if we redefine a, and work in Cartesian systems with a weighting of
z incorporated into a, we get the same result as with special axi-symmetric
elements.

Consequently, although we shall continue to visualise axi-symmetric prob-

lems with 7 and z axes, the actual solving process proceeds in, formally, a

5Other types of non-polynomial shape functions, for instance in “singularity elements”,

might require a different approach. We do not use these.
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Cartesian system:

J ou 0 ou
T ae?) + L (a2t = 61
oz (a"@@az) oy (”ay) 0, (2.61)

where a in (2.1) is now a'. Using this approach, special care is needed with
additional terms in the equation (¢ and f would be multiplied by r above).
Integrals also need to be adjusted (the practical outcome is illustrated in

Appendix E).

2.1.7 Dirichlet Boundary Conditions

The Robin boundary conditions in (2.3) have been incorporated as a funda-
mental part of the formulation; they contribute terms to the element stiffness
matrix and forcing vector. But the solution @ has yet to be constrained to
satisfy the Dirichlet conditions defined in (2.2). This can be done, once the
linear system has been assembled, by substituting for all a; where node j
is on I'p. The obvious next step would be to reduce the size of the linear
system by eliminating row and column j. This would carry the advantage of
marginally reducing the linear system solving time and storage requirements.
However, it happens that deleting matrix rows and columns is generally—
and specifically with the matrix storage format that we use (see § 2.3.4 on
page 78)—a slow operation. We therefore adopt a different strategy.

If a node j lies on a Dirichlet boundary, where we know u = «, we set
all entries in row j of K to zero, except for setting K;; = 1. We also set
the force vector entry F; = «. This takes care of row j, clearly enforcing
the condition a; = « there, leaving column j for consideration. It should be
clear that substituting a; = « would leave, on each row i # j intersecting
the column j, a of value aK;;. This, being a constant, needs to be shifted to
the right-hand side of the equation—to the force vector—leaving a zero entry
in the matrix. The value « is therefore substituted into the system, but the
degree of freedom is not explicitly eliminated; we are just guaranteed that

the solution of the linear system will give node j the correct value. There
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are important computational optimisations that need to be considered when
implementing this step, and they are addressed later in § 2.3.4 on page 78.
We exemplify the operation with a 4 node case, where node 3 is on a

Dirichlet boundary where u = 10; that is, az = 10:

K Ko Kiz Ky ai F
Ky Ki Koz Koy az Fy
K3 Kz Kiz Kag a3 N F3
Ky Kgp Ky Ky aq Fy
(2.62)
Ky Ky 0 Km\ a1\ /F1 — 10K3
Ky Ky 0 Ky Q2 | Fy — 10K
0 0 1 0 |]a] 10
Ky Kg 0 Ky aq Fy — 10K 43

When it comes to computer implementation, difficulties sometimes make

other options more attractive. These are also discussed in §2.3.4.

2.1.8 Summary

The progression from the PDE and boundary conditions to the final linear
system is summarised in Figure 2.3. If the variational approach had been
taken, the initial problem would not have been the PDE, but an energy
functional that we wished to minimise with respect to all the degrees of
freedom available. Doing so would have led directly to the weak formulation.
While shorter, the energy functional approach suffers from unfamiliarity and
only applying to a subset of problems susceptible to Galerkin treatment. In
any case, much of the detail remains the same.

The end product, of course, is a linear system. Numerous standard meth-
ods exist to solve such things, detailed in numerical texts [69-72]. A brief
sketch of the options is given in Appendix C. We choose, as many others

have done, to use the preconditioned conjugate gradient (PCG) method for
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|  PDE |
{

Weighted
residual
restatement

{

Weak weighted Flux (Robin)
form BCs

}

Unadjusted |4 | Element shape
linear system functions

{

Final linear |e=] Dirichlet BCs
system

Figure 2.3: The theoretical steps from PDE formulation to linear system

approximation.

self-adjoint problems. Where convection is present, no one solver is clearly
preferable, so a number were implemented, including biconjugate gradient
(BiCG), stabilised biconjugate gradient (BiCGStab) and generalised mini-
mum residual (GMRES), all of which are documented at length by Barrett
et al. [71] and Saad [72]. These all come under the heading of Krylov space
solvers.

From a mathematical point of view, conjugate gradient is complex, and
it is only possible to give a short outline of it in Appendix D. Fortunately,
computationally it is among the simplest solvers—simpler even than Gaus-
sian elimination—and the only worry is optimisation, which we cover later
in 2.3.2 on page 74. The other Krylov space solvers are even more complex,
and the reader is referred to the previously cited texts.

Preconditioning is a primary concern among many researchers in this
field, and we use a few simple preconditioners, but since our problems do
not, partly thanks to efficient adaptive meshing, have that many degrees of

freedom, advanced preconditioning techniques were not found to be neces-
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sary. More important from our point of view was the efficient error controlled

meshing described in the next chapter.

2.2 Petrov-Galerkin Stabilisation

While the Galerkin weighting described above is uncontroversial for purely
diffusive problems, this is unfortunately not true where convection is a strong
effect. This is not too surprising, as Galerkin weighting gives the “best” an-
swer for self-adjoint problems, in the sense that it is the closest in a certain
norm [16], but no such guarantees are available in the considerably more
difficult non-self-adjoint case. This has been researched a great deal, as the
scalar convection-diffusion equation is commonly used as a prototype for the
more complex Navier-Stokes equations arising in fluid mechanics [73]. Unfor-
tunately researchers appear to disagree on the best method of stabilisation,
or even if stabilisation techniques are desirable.

Essentially, as Zienkiewicz and Taylor show [74], the various stabilisation

methods boil down to using modified weight functions of the form
W;=N;+71v-VN;, (2.63)

where 7 is given in terms of another constant, «, that we shall term the

stabilisation parameter:
ah

T =—
2[v|
(see below for the definition of h, etc.). These modified weight functions

are applied to one or more of the terms in the PDE.® As the shape and

(2.64)

weight functions are no longer identical, this is generally termed a Petrov-
Galerkin weighting scheme. Since the matrix and vector coefficients K;; and
F; described above derive from linear operations on W;, the effect of this
alteration is the addition of various values to the Galerkin versions already

derived.

8Tor the reasons mentioned above, the case of nodes on Dirichlet boundaries is ignored.
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The aim of the modification is to correct a particular perceived deficiency
in Galerkin FEM where convection is the dominant type of mass transport.
The degree to which convection predominates is usually measured by the
Peclet parameter, which is essentially the ratio of the magnitude of the con-
vective velocity to the diffusion coefficient. Zienkiewicz and Taylor define the

element Peclet number as
_ vl

2a '

where v and a are the familiar coefficients from the PDE, and A is some

Pe (2.65)

measure of element size (there is no one definition in the literature; the

longest element side is used here, as it is easy to calculate).

2.2.1 The Problem

Zienkiewicz and Taylor [74] illustrate the difficulty that can arise when em-
ploying Galerkin weighting to solve diffusive-convective mass transport prob-
lems: with some meshes, most notably uniform ones, the approximation
becomes steadily worse as Pe increases; instead of a smooth curve passing
through the nodes, a wildly oscillating result can arise, bearing no relation
to reality (for instance, large negative concentrations can appear). Finite
element practitioners agree that this scenario must be avoided, but differ on
the means to effect this. Perhaps the most balanced overall view is given by
Donea and Huerta [75].

There is no doubt that uniformly spaced meshes are not adequate for use
in combination with Galerkin weighting for solving convection dominated
problems. Zienkiewicz and Taylor (ibid.) show this in detail in the one
dimensional case. Harriman et al. show the same uniform mesh phenomenon
in two dimensions, and on this basis advocate a Petrov-Galerkin stabilisation
scheme [37]. The difficulty is that these authors apparently take uniform
mesh results to mean that Galerkin weighting would be inadequate with error
controlled adaptive meshes. As they give no results to show this, they would

appear to be relying on some implied mathematical consensus to justify this
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stance. If Gresho and Sani [73,76] are to be believed, however, no such
consensus exists; instead they characterise the debate as “religious”.

In fact, Gresho and Sani suggest that one only requires the right mesh to
allow Galerkin finite element to operate accurately with strong convection.
They term this “Galerkin Finite Element Intelligently Applied” (GFEMIA).
For instance, they show that the catastrophic failure of high flow rate Galerkin
FEM with a uniform mesh can be rectified using a mesh with only one in-
ternal node, provided that node is placed correctly. Further, they suggest
that results obtained using the various stabilisation schemes advocated by
some are dubious, as they effectively entail solving a different, easier, prob-
lem, which may give physically plausible results, but which is nonetheless
not accurate. Thus things would not seem to be as clear-cut as Zienkiewicz
and Taylor (and Harriman et al.) suggest.

On top of this fundamental disagreement, there are a number of different
stabilisation approaches documented [74] (e.g. Streamline Upwind Petrov
Galerkin, Galerkin Least Squares, Finite Increment Calculus, balancing dif-
fusion). While similar, they can result in different values for 7 in (2.63),
and in some cases entail applying the weight functions to different terms in
the PDE. Zienkiewicz and Taylor advocate a particular functional form of
the stabilisation parameter (see below), on the grounds that it is optimal
for one dimensional problems, but this does not seem to be widely accepted.
Harriman et al., for instance, do not use it (in fact they give little detail on
the issue, with no clue as to where they switch from no stabilisation to full
stabilisation).

Faced with these differing approaches, it is clearly not possible to pre-
tend that any optimal strategy is used here. As has been noted, a particular
problem with the literature on the subject is that it pays little attention
to adaptive meshing. Thus, while it may be that GFEMIA is the best ap-
proach, it is not clear at all how an adaptive algorithm could be devised to
utilise it while conforming to the other constraints mentioned in the next

chapter. On the other hand, it might be that the well-documented Galerkin
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FEM problems with uniform meshes do not arise where adaptivity works to
refine coarse mesh areas afflicted with unphysical oscillations. Our approach
is therefore guided by the particular requirements of our problem set, and
essentially derives from empirical findings arising therefrom.

All this being said, on one particular subject Zienkiewicz and Taylor and
Gresho and Sani appear to agree: the use of “balancing diffusion”, where
modified weight functions are applied solely to the convective terms of the
equation, is discredited. This technique is the analogue of the “upwind dif-
ferencing” used in finite difference for the same reasons. Leonard [77], shows
that it yields the wrong results where source terms are present in the PDE,
as they might well be in electrochemical simulations (the title of this paper
gives a clue to the varying views of stabilisation schemes). As a conse-
quence, where stabilisation schemes are used in this work, they are applied
to all terms. However, the last point would appear to bear on the work of
Alden [31], who used upwind finite difference for some convective simulations

and yet obtained correct results, so there remains some uncertainty.

2.2.2 Ouwur Approach

Testing with various schemes revealed two essential aspects to the particular
problems solved with our adaptive methods. Both camps would appear, from
the very limited testing conducted, to have been correct to an extent, at least
in the context of the electrochemical problems considered in this work.

Firstly, it was found that with low to moderate flow rates adaptivity did
work to remove oscillations, without any stabilisation scheme. While the
initial crude mesh led to the predictable oscillatory effects, mesh refinement,
guided by a current error bound, led to reasonable-looking concentration
fields. Most importantly, the resulting currents were in accordance with
reality. Unfortunately it was not possible to test this over the full velocity
field range, for the reason given next.

Secondly, it was found that all Krylov space solvers tested rapidly be-
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came unstable or unfeasibly slow as the flow rate increased, typically above
a shear rate Peclet number (see § 4.6 on page 190) of around 2. Even us-
ing preconditioned GMRES, generally one of the most stable of the Krylov
space methods, with a very long recurrence [71,72] (typically 200 iterations
between restarts on a linear system with around 1000 unknowns) failed to
solve problems with higher flow rates. Unless a different solver (or possibly a
far better Krylov solver preconditioner) were used, Galerkin weighting would
not appear to be practical over the full range of flow rates. This conclusion
is of course in concordance with the orthodoxy espoused by Harriman et
al., but the reasoning is decidedly different. It is congruent, however, with
Alden’s findings [31] in relation to upwind differencing in finite difference and
its effect on matrix diagonal dominance.

Fortunately it was found that Streamline Upwind Petrov Galerkin weight-
ing dramatically alleviated the Krylov space solver problems, allowing simu-
lation over the full range of flow rates. Rather than the slower GMRES solver,
stabilised biconjugate gradient (BiCGStab), was found to be adequate; and
it solved systems rapidly. Crucially, not only were oscillations not present
in the concentration fields simulated, but the currents derived from the sta-
bilised scheme were found to tally with known analytical results. It is not
clear, therefore, from where Gresho and Sani’s antipathy toward stabilisation
schemes derives. Perhaps it is more a result of hostility to “balancing dif-
fusion” and “upwind differencing”, which demonstrably fail to yield correct
results in known cases.

Whatever the particular stances of finite element authors, the conclusion
would appear to be fairly clear. Since stabilised schemes do appear to yield
correct results, and because beyond moderate flow rates they are necessary
to allow our unsymmetric Krylov space solvers to function efficiently, they
are used in this work for simulations involving convection. In order to pro-
vide a consistent approach over the full range of flow rates, the “optimal”
stabilisation parameter expression given by Zienkiewicz and Taylor [74] was

used. This adjusts the degree of stabilisation from zero, where there is no
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convection, to full at fully convective transport, according to the expression

1
= coth Pe — — . 2.66
a = coth Pe — (2.66)

For the channel flow model problem this was found to give correct results, as
well as reasonably fast solutions, at all tested flow rates. That said, during an
extended discussion, Donea and Huerta [75] suggest that the formula should
be modified depending on element order and node type, so it may be that

improvements could be made.

2.2.3 Element Stiffness Matrix Calculations

For linear elements Petrov-Galerkin weight functions do not involve any par-
ticular difficulties. No change is made to the diffusive term, as there the
weight function is differentiated, reducing the new part to zero. With higher
order elements a problem arises, as the weight functions are not continu-
ous between elements. Since in the diffusive term they are differentiated,
this leads to integration of a singularity at element edges. From our global
weight function perspective, two basic approaches appear to exist to combat
this: either modified forms of (2.63) are used where the derivative is mul-
tiplied by some sort of “bubble” function that equals zero at the element
boundary [74], or some effort is made to incorporate the singular part of the
integral in a “distributional sense” [78].

Harriman et al. eschew both courses because they operate on an element-
by-element basis, saying that after breaking the domain integral into element-
sized pieces the offending derivative term “makes sense” [37]. The results
achieved thereby are encouraging, and so with admittedly little theoretical
justification we follow their approach. Ideally a more detailed analysis would

be conducted.
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2.3 Computational Aspects

The computational aspects of the implementation are quite different in their
emphases than the mathematical ones. For instance, where the linear sys-
tem assembly occupies pages of algebraic manipulation, once the formulae
for stiffness matrix and force vector elements are available, the process is
achieved in a few hundred lines of code. As might be expected, the mesh
generation and refinement of Chapter 3 required relatively involved program-
ming, but ultimately occupied approximately a thousand lines of code.

Instead, so far unmentioned areas took considerable implementation ef-
fort. Rather than a command line interface, taking as input a problem de-
scription, and outputting the numbers describing the solution, it was thought
preferable to have a graphical interface, with solving an interactive process,
and the resulting concentration field plotted instantaneously. Thus a graph-
ical user interface was constructed, with code drawing the mesh along with
the various solution and error fields. Ultimately it would be preferable to
have problems described by interactively drawing the domain boundary, but
currently the program still loads a text-based problem description. However,
the solution process is nonetheless faster for the user, and more convenient,
with less likelihood of catastrophic failure going undetected, since the result
is instantly plotted.

Another important aspect of the interface is less obvious, but has been
touched upon already in § 2.1.6 on page 61. The program solves a set of

equations of the type

Ju

0 ou 0 Ou ou
a(senge) + 2 (o y>5y') 0.2t S pu = T(a)
(2.67)

with an arbitrary (in principle) mixture of Robin and Dirichlet boundary

conditions. In each governing PDE, then, we have five arbitrary functions.”

T Actually, as might be discerned from Appendix E, the program can accept different

diffusion coeflicients in the z and y directions, but this capability is not used here.
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And it might also be desirable to prescribe functions of spatial coordinates
as boundary conditions, for instance, where an analytical concentration is
imposed for testing purposes. Typically simulation programs take as input
only numeric constants, because these are readily handled by computer lan-
guages’ in-built capabilities: they are a fundamental data type. But limiting
a, vy, Uy, etc. to constants curtails the program’s range of applicability. We
have already seen that axi-symmetric problems can be incorporated without
special elements simply by—assuming a constant diffusion coefficient for a
simple example—setting a(z,y) = x. Thus, allowing functions to be input,
and evaluating them as needed, significantly contributes to the generality and
versatility of the program, and reduces the code required for special cases.
The three primary challenges of the programming were essentially, ignor-
ing the bulky but relatively simple graphical interface code, meshing, efficient
sparse matrix solving, and parsing and evaluation of functions. The first of
these is not well documented, and deserves a relatively detailed explanation,
which is given in the next chapter. The second is a well researched problem;
once a sparse matrix format and an iterative algorithm have been selected
it is straightforward. We therefore describe only the matrix format and the
matrix-vector product routines. The last is a challenge met in every computer
language compiler, but is certainly not described in any finite element text.
Because it is not central to our purpose we discuss it only briefly, although
it took more programming than the meshing. Finally, the mesh and matrix
data structures used had certain consequences for efficient implementation,

of which we give an outline.

2.3.1 Programming Platform

Everything so far described was implemented in C++ [79]. The only viable
competitor in terms of speed and suitably for scientific computing would be
Fortran in one of its later incarnations, but there are a host of reasons to

prefer C++. Firstly, almost all APIs (application programming interfaces)
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are geared towards C [80] and C++ (C is almost exactly a subset of C++).
Since graphical displays and windowing interfaces depend on API availabil-
ity, this severely limits Fortran’s usability. Secondly, Fortran compilers are
expensive and relatively unavailable.

Finally, Fortran does not have the same linguistic functionality of C++.
It is wrong to characterise C++ as purely a mixture of structured C with
new object oriented functionality; it incorporates an important third pro-
gramming paradigm with its templates, a form of generic programming. Ob-
ject oriented programming has a number of advantages—data encapsulation,
inheritance, etc.—and it was used extensively, but generic programming also
had an important réle. Not only does generic programming allow, for in-
stance, automated code generation for both single and double precision ver-
sions of the same routines; it also makes possible the extensive C++ Standard
Library [81]—in particular the Standard Template Library—used throughout
our finite element implementation.

For these reasons, Fortran (even with its newly acquired object orienta-
tion) and the fashionable Java are generally less capable, in spite of poten-
tially allowing more elegant expression of simpler programs. (In fact Java
would have to be discarded on performance grounds in any case, on account
of issues with run-time compilation and “garbage collection”.) One qualifier
should be attached to the previous statement: Fortran 90 and later do have
in-built constructs for parallel programming, and might prove more conve-
nient for leveraging parallel systems. But no parallel systems were used for
the finite element program because it was fast enough on serial machines,
and if they were C++ could still use their facilities; it would just not be with
native language capabilities.

The particular programming environment chosen was Microsoft Visual
C++, principally because it best supports Windows programming; but it
also happened to be competitive performance-wise: in tests it consistently
produced faster code than a popular alternative, GCC. The two latest ver-

sions at the time of writing, 6 and 7, were both used, with little difference



CHAPTER 2. FINITE ELEMENT THEORY 74

between them for our purposes. The simulations were run on a variety of
standard Intel® 80x86-compatible processor platforms, primarily a mobile
Pentium I1I® running at 850MHz. Most of the adaptive finite element simu-
lations took a few seconds, so no outstanding processing speed was required.
The memory requirements were also modest, typically being around 5 Mb,
much of which was consumed by the graphical interface.

For double precision arithmetic, as was used throughout this work, the
Pentium III does not offer any vector processing capabilities. It is therefore
probable that the machine instructions generated by the compiler are not
easily improvable with hand-tweaking, given the complexities of Pentium III
instruction reordering, etc [82,83]. The possibilities of other platforms, and

of single precision, are discussed in Chapter 6.

2.3.2 Krylov Space Solvers

It is assumed in the analysis of Appendix D that the multiplication of a
vector by the system matrix is an O(n) operation, where n is the number
of nodes, and consequently the number of rows and columns in K. Further,
using a simple two dimensional array matrix format, one quickly discovers
that problems will not fit in memory if the number of nodes is more than
a few thousand, so it would be preferable for the memory footprint to scale
with n, not n?. These aims are only attainable if a sparse matrix format is
used that ignores zero entries.

Sparse matrix formats abound [69,72], but for unstructured sparsity pat-
terns there are only a few viable options. Because we are using iterative
solvers we do not need to randomly access matrix elements; we only need
to access them in rows at a time. This leads us, fairly inevitably, to the
compressed row storage (CRS) format (ibid.). Here for each row an array
of non-zero entries is stored, along with an array of their respective column
indices. We expect, given the limited connectivity between nodes, just a

handful of entries per row. Of course, where we deal with self-adjoint prob-
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lems the matrix is symmetric, so we only store the upper triangle, the lower
being implied. As a final space optimisation, because diagonal entries are
always non-zero, they are stored separately as an n dimensional vector. This
also marginally simplifies, and hence speeds up, the inner loop for matrix
multiplication and related operations.

The matrix-vector multiplication function is simple enough to give in Fig-
ure 2.4 on the next page. In fact, because we implement two basic precon-
ditioners, the various tricks used to speed them require a number of related
functions; but the essential simplicity remains. All the other computational
elements of the Krylov space solvers are operations with dense vectors, and

are hence straightforward in their implementation.

2.3.3 Function Parsing and Evaluation

The theory of mathematical function parsing and evaluation is a subset of the
theory of compiler writing. It is therefore covered in many books (e.g. [84]),
and no attempt is made here to explain it. We simply note the particularities
of our problem, and the techniques used to address them.

A simple lezical analyser (ibid.) was used to convert raw characters—
digits of numbers, addition signs, etc.—into tokens—numeric constants, arith-
metic operators, etc. The second phase, parsing, was more involved. Adopt-
ing the standard classification system of Chomsky [85, 86], mathematical
formulae conform to a simple Type 2 or context-free grammar,® and as such
can be parsed by standard techniques. However, normal mathematical no-
tation, also called infiz notation, is harder to parse, and slower to evaluate,
than postfiz notation. A particularly intuitive means of parsing expressions,
called recursive descent, is in fact not applicable, because some fundamen-
tal arithmetic operators are not left-associative, which it requires. Thus,

iterative loops were added, alongside the recursive parsing, to handle these.

8In this technical sense grammar means, roughly, the rules that govern valid construc-

tions from component symbols.
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void CSSymMat::MulVec(const CVec& vec, CVec& ans) const
{

ans.Zero();

vector<CMatRow>::const_iterator row = m_rows.begin();

for (int row_i = 0; row != m_rows.end(); ++row, ++row_i) {

// do diagonal

ans[row_i]l += m_diagl[row_i] * vec[row_il;

vector<CMatEntry>::const_iterator entry =
m_rows [row_i].ConstBegin() ;

for (; entry != m_rows[row_i].ConstEnd(); ++entry) {

int col_i = entry->m_n;

// do upper and lower triangles
ans[row_i] += entry->m_val * vecl[col_il;

ans[col_i] += entry->m_val * vec[row_i];

Figure 2.4: The C++ function for the symmetric CRS matrix-vector
multiplication function. Each row is dealt with both as a row and a
column on account of the symmetry. The results are accumulated in
the ans vector structure, addressed with array syntax. The diagonal is
handled separately. This code fragment exemplifies both object oriented

programming, and use of the STL, which subsists on generic programming.
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The end product of parsing was a postfix version of the expression, which
had the minor advantage of eliminating parentheses. Since stiffness matrix
assembly requires numerous function evaluations, one optimisation, termed
constant folding (ibid.) was implemented. This simply means that constant
expressions—e.g. m/2—are evaluated once during parsing, and stored as
constants to avoid processing overhead every time the expression containing
them is evaluated.

As well as the four elementary arithmetic operators and parentheses, pow-
ers, elementary functions (e.g. sin z), and some special functions (for example
Bessel functions) are usable in the input expressions. To allow more concise
and readable input files, expressions can also refer to one another.

The effect of all this was to allow arbitrary functions where some programs
only allow constants: the governing PDE, the boundary conditions, and even
the boundary vertex coordinates are all—where applicable—functions of spa-
tial coordinates and other user-definable expressions. But perhaps the great-
est advantage is that the error norm used to guide adaptive refinement in
Chapter 3 is a user-defined expression. Thus any applicable mechanism can
be solved with any suitable error criterion, all with the same program. This
seems to justify the work put into function parsing and evaluation; it exposes
the full generality of the error estimation code to the user.

The only concern might be performance, but here we are relatively safe.
Since the linear system solving scales worse than linearly with n, it will al-
ways eventually dominate O(n) steps like stiffness matrix assembly and error
estimation. The crossover point depends on the proportionality constants—
asymptotic performance is after all not the only measure of algorithmic
efficiency—but in practice it was found that for most real problems the
parsing code had a tolerably small impact on solving speed. Possible op-

timisations are discussed in Chapter 6.
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2.3.4 Linear System Assembly

It is straightforward to assemble the element stiffness matrix of § 2.1.5 on
page 57 using simple data structures. The same applies with Robin boundary
conditions. But it should be noted that the Dirichlet boundary procedure
described in §2.1.7 can be made significantly more efficient by using the full
information in the mesh data structures.

The CRS matrix format does not allow efficient random access to row ele-
ments, so picking out each matrix entry on column j would be inefficient (this
would need to be done for each node on the Dirichlet boundary). Further,
given the sparsity of K, it seems inefficient to seek to zero each element in an
entire row and column when most elements therein would be zero already.

The neighbour information stored in our more comprehensive mesh data
structures (documented in the next chapter) helps here. Using the edge pair
linking it is possible to quickly determine the nodes sharing edges with the
Dirichlet boundary node. Since these correspond to the only non-zero entries
on the relevant row and column (because elsewhere the two shape functions
have no overlap), only these need be zeroed. Instead of an O(n) operation per
Dirichlet node, then, a roughly constant time operation was possible instead.
This effectively eliminated Dirichlet boundary conditions from performance
considerations.

One other possibility for Dirichlet adjustment has already been men-
tioned: elimination of the degree of freedom. It is not easy to envisage an
efficient implementation of this with the CRS format. The offending row
could be eliminated easily enough; and so could the offending non-zero col-
umn elements, using the neighbourhood information mentioned above; but
row entries after column j would need to be re-numbered, giving again an
O(n) algorithm per Dirichlet node.

Another, inexact, method of incorporating Dirichlet conditions is given
by Zienkiewicz and Taylor [16]. Termed the “penalty method”, it retains the

degree of freedom, but avoids manipulating any row apart from j by using
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a large parameter v to give row j overriding precedence, meaning one of the
linear system’s equations becomes yu; = ya. Perhaps without the mesh data
available to us it is an attractive option, but we see no advantage over our

approach, with only potential additional inaccuracy arising.

2.4 Summary

In this chapter we have presented the fundamentals of the finite element
method, a viable scheme for solving a wide range of electrochemical mass
transport problems. We have, it is true, ignored transient and non-linear
problems, but no fundamental barriers are apparent in the way of their im-
plementation; in principle the method we have described is fully general.
Instead we choose to focus on solving, in a relatively complete way, first or-
der steady state problems. The rest we leave to the future, and the final
chapter.

In order to apply this discretisation scheme, a mesh is required, and if it
is to be efficient, one tailored to whichever electrochemical problem is under
study. In order to achieve this for the generality of problems, adaptive mesh
generation is required. This is described in the next chapter. Where the
current is of interest, it is only natural to use the error in this to guide

adaptivity, and so this too is covered next.



Chapter 3
Adaptive Finite Element

After examining the generic machinery for finite element solving per se, in
this chapter we present an adaptive mesh optimisation algorithm capable of
efficiently modelling the boundary singularities (see § 1.1.5 on page 18) in mi-
croelectrode geometries. Eschewing the a priori meshing approach of many
practitioners (e.g. [87]), we instead look to adaptive mesh control in gen-
eral [16], and error control of the current particularly—a notion introduced
to electrochemistry by Harriman et al. [33-38]. Harriman et al.’s results are
encouraging, and an important step forward for electrochemical simulation,
as they tie mesh adaptivity to the quantity of interest. But their formula-
tions were apparently problem-specific, and the meshing would appear to be
inflexible, so we modify and extend their work significantly.

The general idea of mesh refinement is to use a series of successively im-
proved meshes, each solved with the standard FE techniques of the previous
chapter, until an answer of the necessary accuracy is reached. The flow di-
agram for this approach is shown in Figure 3.1. In the adaptive case, only
specific areas of the mesh are refined in each step; elements contributing most
to the error are identified, and replaced with more elements, it is hoped more
accurately modelling the solution. This is important, as refining the entire
mesh is generally inefficient because it generates too many nodes.

Apart from structured meshing of regular regions, there has been little
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Figure 3.1: The algorithmic flow for finite element with successive re-
finement. Note that the error of the initial mesh is in principle irrelevant.
The entirety of the Galerkin formulation and the matrix solving comes

under the “solve mesh” step, which is by far the most involved.

use of automatic meshing within an electrochemical finite element context.
Consequently much of this chapter is novel. In deciding on a mesh refinement
algorithm, one is generally constrained (unless some non-standard finite el-
ement scheme is being employed) by the need for certain mesh attributes.
These are described here, before an algorithm is outlined which can generate
meshes in general two dimensional simply connected regions, and refine them
as needed.

After establishing a means of refining the finite element mesh to increase
accuracy, we turn our attention to measures of error, and present new theory,
simpler and more flexible than that used by Harriman et al. (ibid.), for the
accurate computation of currents (and in fact other quantities related to the

concentration field).
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3.1 Mesh Generation and Refinement

All the theory in §2.1 is applicable to any valid mesh, such as the one shown
in Figure 1.4 on page 28. The validity or otherwise of meshes is considered in
the next section. This bears on the question of how to first generate a mesh
(the first step in Figure 3.1), and then how to refine it in order to increase
accuracy—a question with more than one answer. We present our approach,
a form of Delaunay triangulation, in §3.1.2.

Unfortunately, unlike the basic FE formulation, automatic mesh genera-
tion is not covered well in standard texts, and is an active area of research.
Generally it is assumed that a mesh is available, possibly having been manu-
ally generated. It is difficult, therefore, to have a definitive view on the best
approach, if indeed there is one. We adopt what seems a logical strategy,
but it is certainly not the only one. Doubtless as automatic mesh generation
becomes de rigueur, as surely seems inevitable, the situation will improve.

The idea of mesh refinement is simple. As the element size tends towards
zero we might expect, as with decreasing finite difference grid spacing, to
achieve convergence to the exact solution. If we wish to simulate to a pre-
ordained accuracy then an obvious strategy is to subdivide a crude initial
mesh until the solution is accurate enough. This is called & mesh refinement.
The alternative—increasing the order of elements, which in turn means effec-
tively raising the order of the Taylor series approximation—is called p mesh
refinement.’ Theorems exist [16,32] that prove convergence, under certain
conditions, with both decreasing element size and increasing element order,
so one might reasonably wonder which is the superior approach.

Mathematically speaking, p refinement is the more attractive technique

1Yet another type of refinement, r refinement, exists. This moves node positions while
keeping the number of degrees of freedom the same. It is described by Zienkiewicz and
Taylor [16] as being “theoretically of interest” but having “little to recommend it”. This
is probably true as regards general engineering practice, as well as in the context of our

problems.
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because, under certain common assumptions,? with increasing degrees of free-
dom it can converge at an exponential rate. However, it has been pursued
less commonly than h refinement, principally because it is difficult to imple-
ment. It clearly requires a practically unlimited degree of element available
in the basic Galerkin (or whichever FE formulation) solver, which while per-
haps not as difficult as the derivation in §2.1.3 might suggest (there exists a
more systematic theory of elements) is nonetheless a challenge. Secondly, if
the refinement is adaptive, as it is here, where different domain areas are re-
fined more than others, elements of different orders (with different numbers of
nodes) would abut, raising further difficulties, not least in the data structures
used to store them. Some researchers have combined A and p refinement into
hp refinement, but again this has proved problematic to implement. Since the
majority of research exists on h refinement, and the programming challenges
are manifestly less daunting, we follow this trend, noting that more efficient
alternatives may well exist, some mention of which is made in Chapter 6.
There are two basic approaches within A mesh refinement: element sub-
division (also called mesh enrichment) and mesh regeneration. In both an
initially crude mesh is refined according to an error criterion until the desired
accuracy is reached. The difference is simply that in the former new nodes
are added to the existing mesh, and possibly old ones removed (“derefine-
ment”); whereas in the latter an entirely new mesh is generated at each step.
It is not obvious which is better. Derefinement can be difficult to implement,
but then it is not always necessary (indeed, we do not implement it). And
mesh regeneration, given a fresh start each iteration, might be expected to
produce closer to optimal meshes. On the other hand, generating a com-
pletely new mesh can be time consuming. Element subdivision seems more
intuitive, and is more commonly employed, and for these reasons we adopt
it, but doubtless mesh regeneration could prove an adequate, possibly better,

replacement.

ZSee ibid. Notably, we assume here that singularities are not present, which is not

usually true with our type of problems. We address this concern below.
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3.1.1 Meshing Aims

Convergence theorems supply information about how the mesh affects so-
lution accuracy. It can be shown [16], for instance, that in the absence of
singularities, the order of convergence of a concentration field approximated
by linear elements is O(h?), where h is a measure of element size, and we
assume all elements’ sizes tend towards zero uniformly (uniform refinement).
Another way of stating the order of convergence is O(n) ™!, since the number
of degrees of freedom (the number of nodes) n is approximately inversely
proportional to A% in two dimensions.

As noted in §1.1.5, nearly all of the problems under study possess bound-
ary singularities; and it happens [16] that the order of convergence for uniform
refinement can be, and usually is, much lower with such singularities. How-
ever, it can also be shown (ibid.) that with a type of adaptive refinement,
where, broadly speaking, elements near singularities are refined, the rate of
convergence above with increasing n can be recovered.

Note that in the following section we shall not discuss the quality of
the mesh wvis a vis its ability to model the phenomena we are simulating;
that belongs later, where error analysis is discussed. The point of adaptive
mesh refinement is to add elements where needed—and only where needed—
to capture important phenomena. This will be defined by the governing
equation and the boundary conditions. However, regardless of the particular

physical problem under study, there are criteria that all meshes must satisfy,

and we sketch them next.?

3This is not entirely accurate. For instance, long thin “sliver” elements are sometimes
encouraged in convective simulations. And “non-conforming” elements breaking continuity
requirements are also sometimes used. Nonetheless, what we say does apply to the great
majority of finite element simulation, and certainly to the electrochemical problems that

we study; such unorthodox approaches demand special justification.
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Valid meshes

There exists a basic condition for any mesh used, regardless of accuracy. It
is this: if an edge is shared by two elements, they must also share the nodes
at its ends. This proviso is not surprising when one considers the necessity
of inter-element continuity. If a node breaks an edge in one element, but not
the edge in the neighbouring one, then the edge field values can disagree,
and CY continuity is lost. See Figures 3.2 and 3.3 for an illustration of the
implications of this necessity. HEssentially, so-called hanging nodes are not
allowable. This has consequences for when we wish to refine the mesh by

splitting elements: if an edge is split, both elements sharing it must also be

split, not just one.

Mesh quality

The other important constraint one must keep in mind, particularly with
adaptive meshing, is that convergence only holds when the lengths of all the
edges of the elements being refined tend towards zero at approximately the
same rate. This statement can be made mathematically precise—see [32]. An
obvious implication is that the element subdivision procedure one must not
allow angles to tend towards zero while edge lengths remain finite. This sends
the element area to zero, but it destroys the convergence of the finite element
method. A simple means of subdividing elements that suggests itself in the
light of the complications of splitting edges mentioned above—adding nodes
at triangle centroids—is illustrated in Figure 3.4 on page 87, and clearly
breaks this criterion. Obviously this technique alone would not be a usable
means of refining the mesh, but adding nodes at elemental centroids and
then rearranging mesh edges to enforce the Delaunay constraint (see below)
is a usable strategy, and is the one employed in our adaptive finite element
simulations.

An important generalisation of the above rule (ibid.) is that “badly

shaped” elements give inaccurate results [88]. Elements with small angles
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Element A

Figure 3.2: Nodes not shared by elements on which they border, as
in here, are not allowed in meshes. The solution is simply to subdivide

element A, as shown in the figure below.

Figure 3.3: Having added an edge, the offending node of the previous

figure is now legal.
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Figure 3.4: A faulty element subdivision strategy. Even though the
element areas and some edge lengths tend towards zero, some edges remain

untouched. This destroys convergence.

give 1l conditioned (see [89,90], and Appendix D for the implications) sys-
tem matrices [91]. Large angles, on the other hand, can cause a large FE
discretisation error [92]. Thus it must be our aim, in constructing any mesh,
to ensure triangles are “nicely” shaped, with angles close to 7/3. As already
noted, we use Delaunay triangulations for this purpose, motivated by their

special properties.

3.1.2 Delaunay Triangulation

We take as our starting point for this section a closed two dimensional domain
boundary composed of straight line segments. No curved edges are allowed,
and no holes may be cut out of the region so described. In mathematical
terminology the domain must be simply connected [13], and described by a
polygon as defined by O’Rourke [93].

The absence of curved boundaries considerably simplifies automated mesh-

ing, and anyway two dimensional curved domains? can be reasonably approx-

“Note that we do not here mean cylindrically symmetric three dimensional domains
whose curved boundaries are eliminated on the symmetric reduction to two dimensions—
we perform simulations in many such domains in Chapters 4 and 5. Instead we mean, for
instance, that an SECM tip with curved tapering would not be exactly representable in

the input file.
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imated in most cases by subdivision into enough straight lines. Most simu-
lation domains will require no such geometric approximation in any case, as
in two dimensions they generally have straight edges.

The lack of provision for holes in the domain is a more serious restriction,
preventing some domains from being simulated, and with no accessible ap-
proximation. It would not, however, be impossible to incorporate at a later
time; there is no fundamental barrier to doing this.

For the bare minimum of meshing, for output we wish to produce a trian-
gulation [93], which will satisfy the node connectivity requirements of §3.1.1.
But mindful of the criteria for a good mesh we shall also insist that it be a sort
of Delaunay triangulation—the constrained Delaunay triangulation (CDT) in

fact—the construction of which boils down to two steps, in our case:

1. Constructing a valid initial triangulation;

2. Flipping edges to enforce the constrained Delaunay triangulation prop-

erty.

These steps are combined in algorithms that create the CDT immediately
from the input data, but our method carries the advantage that any subse-
quent triangulation not of the constrained Delaunay variety can, by repeating
step two, be converted to one that is. Since we plan to refine the initial mesh
this will prove to be useful.

We now describe the theory of the two steps in detail, leaving computer

implementation until later.

1. Initial triangulation

The precise definition of triangulation is given by O’Rourke [93]. We describe
it as the subdivision of the boundary polygon into non-overlapping triangles
by connecting its vertices with edges. The nature of the initial triangulation
is (at least in principle) not important, provided it is valid. Since with

most boundaries possessing more than three vertices there is more than one
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possible triangulation, this is helpful. If, before enforcing the CDT constraint,
we were desirous of “nicely shaped” elements, as talked of previously, then
we would have to pay attention to the angles of triangles produced. Since,
as we shall see, this is dealt with by turning it into the constrained Delaunay
triangulation, we can pick any algorithm from those available in O’Rourke
[93], or any other source.

Figure 3.5 shows two different triangulations of a simple shape. The
second one would tend to give less accurate results than the first owing to
the high aspect ratio of one of the triangles. However, enforcing the Delau-
nay property would flip the internal edges to produce “nicer” triangles—see
below.

It should be noted that neither the initial triangulation nor the CDT
creation can break the node connectivity requirements discussed above as no
nodes are introduced during the process, only edges; and in the case of initial
triangulation the preexisting nodes reside only on the boundary, where edges
will only belong to one triangle (element) anyway.

O’Rourke (ibid.) presents a variety of triangulation algorithms, ranging in
their speed from O(n*) to O(n), where n is the number of boundary vertices.
Since the boundaries of most problems that we tackle generally have of the
order of ten vertices (although approximated curved boundaries could have
many more), and the initial triangulation process is only performed once per
simulation, we have no particular worry about the order of the algorithm
used, providing it is reasonable. The O(n?) and O(n®) and O(n?) triangu-
lation algorithms are all relatively simple, whereas those of O(nlogn) and
better are difficult to virtually impossible to implement. Thus O’Rourke’s®
O(n?) “ear removal” algorithm (Algorithm 1.1 in O’Rourke [93]) was selected
as the best compromise.

The crux of the algorithm is the definition of vertices as being, or not

being, “ears”—that is, vertices whose immediate neighbours can be joined

50’Rourke quotes O(n?) triangulation algorithms as having been “implicit in proofs

since at least 1911”.
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Figure 3.5: Two possible triangulations of the simple shape described by
the bold lines—the thinner lines are edges added during the triangulation

process. Note that no nodes are added, only edges.

90
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Figure 3.6: The “ear removal” triangulation algorithm illustrated. The
unbroken line is the boundary of the region being triangulated. Five of
the six vertices are classified as “ears”, and the corresponding subdivisions

for their removal are shown in dashed lines.

by a line inside the polygon. Any such “ecar” can be chopped off, leaving a
smaller polygon to be triangulated and a triangle to be added to the stack of
triangles making up the triangulation. The concept is shown in Figure 3.6.

By careful maintenance of data structures classifying the status of ver-
tices as “ears” or not, this technique repeatedly applied leads to an O(n?)
algorithm. This is deemed more than adequate, as there will be later in the
process many more element nodes, and the CDT algorithm scales, in the
worst case, quadratically with the number of these.

The only complication with the algorithm adumbrated above is the data
structure used for the boundary, and for the resulting mesh—briefly, a circu-
larly linked list is used for the boundary; the mesh is more complicated, and

will receive more attention presently, in §3.1.5.



CHAPTER 3. ADAPTIVE FINITE ELEMENT 92

2. Enforcing the constrained Delaunay condition

The (unconstrained) Delaunay triangulation is a certain triangulation® that
has a number of useful properties. The particular property that we exploit is
given by Edelsbrunner [94]: over all potential triangulations, the Delaunay
triangulation maximises the smallest angle of all the triangles. This ensures
that, given a certain nodal placement, the elements arising from its trian-
gulation will keep to a minimum small angles; it maximises the minimum
angle. We also wish, for finite element, to minimise the maximum angle;
but large and small angles are often concomitants, so the two qualities are
closely related. The more classical-—and easily testable—property is that no
triangle circumcircle (the circle defined by a triangle’s vertices [93]) contains
a fourth vertex inside its boundary.

We do not use a “proper” Delaunay triangulation, but a constrained
one. This is because Delaunay triangulations operate on point lists, whereas
we have a boundary with preexisting edges; therefore we must ensure that,
whichever edges are added, the edges given as the domain boundary remain.
This constrains our ability to meet the Delaunay properties. For instance,
a user can supply a boundary polygon with an angle of #/100 and it can-
not be removed without mutilating the domain. Nor can the circumcircle
property above generally be ensured. However, Edelsbrunner [94] quotes the
Constrained MazMin Angle Lemma, which states that, among all the con-
strained triangulations, the CDT maximises the minimum angle; in this sense
it is optimal for a given boundary.

Since we are starting from a preexisting triangulation, and because we
wish to add subsequent vertices during mesh refinement, we use an incre-
mental algorithm for Delaunay triangulation. Other approaches exist, for

instance Fortune’s plane-sweep O(nlogn) algorithm [95] for Voronoi dia-

bIn fact, in the case where four vertices are cocircular, the Delaunay triangulation is
not unique, but for our purposes this does not matter, as any of the candidates would be

equally good.
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grams,’ but we use one of the initial O(n?) algorithms—due to Lawson [96]—
that relies on successive insertion of vertices. A later, more common, algo-
rithm from Bowyer and Watson [97,98], relying on the circumcircle property,
is said by Shewchuk [99] to exhibit problems with numerical imprecision:
the circumcircle test can, with unfortunate combinations of imprecise calcu-
lations, lead to inconsistency, and complete algorithmic failure. We conse-
quently avoid the Bowyer-Watson approach.

It should be noted that the performance of the CDT step of the meshing
procedure is considerably more important than that of initial triangulation
since it is applied repeatedly, and with many more nodes. However, although
with some configurations O(n?) performance is expected, typically the cost
is far lower with the meshes we use; this has also been reported with some ex-
planation by Shewchuk (ibid.). Intuitively it is relatively easy to understand,
as with the iterative steps of element subdivision and CD'T enforcement one
can expect the majority of the mesh to comply with the Delaunay property
before it is re-enforced, as the mesh complied before the new nodes were
added.

Lawson’s algorithm does not directly use the circumcircle property, but
another defining property instead: for a constrained Delaunay triangula-
tion, if d is a diagonal (i.e. an internal edge) of the triangulation, then the
quadrilateral associated therewith—the union of the two triangles sharing
d—cannot have internal angles split by d whose total is less than «. The
algorithm follows simply from this property: if such a diagonal breaks this
rule then it is flipped, curing that particular angle problem, but potentially
altering the status of neighbouring diagonals, and so on. The idea is shown
in Figure 3.7 on the following page. The number of flips with typical cases
is actually relatively low.

In Figure 3.5 on page 90 the algorithm is seen in context. The first tri-

angulation is in fact the CDT; the second is a poor (from a finite element

"Voronoi diagrams, also called Dirichlet tessallations, are the geometric “dual” of De-

launay triangulations, and contain the same information [93]
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Figure 3.7: The Delaunay quadrilateral angle property and Lawson’s
algorithm. The sum of the angles split by the dashed diagonal d is less
than 7 in the left-hand example. This can be rectified by flipping d, as
shown, to give d’. In the single quadrilateral example here the process is
complete, but were there neighbouring triangles these would need to be

checked too.

perspective) triangulation. By flipping edge AB to give edge C'D the situa-
tion is improved.

A very crude approach would check all internal edges for the requisite
property, and upon finding a violating case, flip the edge, before starting
again. (The search could not just continue because previously compliant
edges might have had their status changed by flipping the first edge.) This
would be extremely slow, however, and to ensure quadratic complexity a
slightly more sophisticated approach is necessary. In a similar vein to the
“ear removal” triangulation algorithm above, the status of edges is stored,
and the implications of edge flipping carefully considered to minimise dis-
ruption of surrounding edges. It can be proven that such an approach must
terminate (it might be feared that cyclic cases could arise, with repeated flip-

ping to and fro of edges; this cannot happen). When nodes are added during
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adaptive element subdivision, again the implications for surrounding edges

are considered, and the work required to restore the CDT is minimised.

3.1.3 Delaunay Mesh Refinement

With the ability to enforce the CDT constraint—and hence ensure good
quality elements within the constraints of the set of vertices—in place, the
adaptive meshing algorithm is almost complete. It simply remains to find
a strategy to add new nodes where needed. Assuming offending elements
can be identified, the question remains of how to subdivide them without
breaking the node connectivity requirement of § 3.1.1 on page 84.

Harriman et al. [33-38] used an initial structured mesh, apparently gen-
erated trivially over a rectangular or similarly simple region, followed by
a ‘red-green” refinement strategy due to Bank [100]. Unfortunately that
type of initial mesh generation restricts the problem domain to the realm of
the trivial; and the “red-green” Bank refinement scheme is computationally
inelegant, because it requires maintenance of two types of refinement, and
removal of temporary edges during each refinement cycle. Further, the ad-
vantage of the “red-green” procedure is that it guarantees to introduce no
angle smaller than half the smallest angle in the initial mesh, but the diffi-
culty is that it says nothing about generating that initial mesh, which must
of course have no small angles. For the geometric generality that we seek,
then, it is not a complete solution, and if the initial mesh generation and
refinement can be performed with the same basic tool (the CDT in our case)
then it is unnecessary.

As has been mentioned, the element subdivision problem was solved for
elements without external edges by adding a node at the centroid, splitting
the triangle into three, as shown in Figure 3.4 on page 87. Elements with
external edges are split on their longest external edge, yielding two new
elements. The alternative strategy at the boundary is clearly necessary as

otherwise external edges would never be split. Internal edges, while never
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being split, can be flipped, leading to the same effect.

Initially a considerably more complicated algorithm, due to Ruppert
[101], was implemented. This added new internal nodes (by this we mean
those not on external boundaries) at bad element circumcentres (the circum-
centre of a triangle is the centre of its circumcircle). Given the circumcircle
Delaunay property this must lead to the splitting of the bad element, and
usually others too. Some theory exists to justify this approach in terms of
the quality of the elements produced. Unfortunately, with circumcentres not
necessarily lying within their triangles it also requires cumbersome searching
for the element containing the new node.

Another apparent difficulty with Ruppert’s algorithm comes when a bad
element circumcentre lies outside the domain. Here theory is used to show
that such a point could only lie in the diametral circle of a boundary edge
(diametral circle meaning the circle whose diameter is inscribed by the edge).
Such a boundary edge would be termed encroached, and would be split by a
new node at its midpoint. The elegant theory breaks down, however, with
boundaries having only relatively small angles: there, cyclic encroachment
can occur, with a new midpoint encroaching another edge, that being split,
and so on. Not splitting at the midpoint, and using special formulae for the
split point can alleviate this, but the algorithm becomes more complex.

For some time Ruppert’s algorithm was used, and could be restored to
the program, but it was found to be relatively slow and complex to maintain,
and removed. On the other hand, the triangle quality of the current strategy
is by no means perfect, particularly if the initial triangulation has extremely
elongated elements. This typically happens when problems of infinite extent
are approximated by very large domains, or where the domain has a high as-
pect ratio. Essentially, while the Delaunay property guarantees good quality
triangles given the distribution of vertices, the location of vertices is still a
limiting factor, and is not optimal with the centroid subdivision approach.
While no simulation failed badly because of poor quality elements, in ret-

rospect the Ruppert algorithm seems preferable from a robustness point of
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view, and it might, in spite of its additional complications, yield better per-
formance by producing meshes with fewer nodes and system matrices with
lower condition numbers. Whichever element subdivision rules are used,

however, the constrained Delaunay flipping algorithm seems eflicient.

3.1.4 Other Approaches

Delaunay triangulation is one of the more recent techniques to be used for
automatic mesh generation. Earlier algorithms tended to revolve around the
advancing front method and quaditrees (in two dimensions—these become
octrees in three dimensions), advancing front being the older.

As has been stated, the attraction of Delaunay methods is the minimum
angle property. Advancing front and quadtree generators do not have this
easily explicable attraction. Advauncing front algorithms appear to have lit-
tle theoretical support, but have been used widely, with success. For solving
problems such as ours they rely on advancing from the boundary inwards,
producing triangles as they go. The difficulties occur when the fronts meet
in the middle. It is probably true to say that advancing front methods are
becoming obsolete as they cannot offer the theoretical guarantees of quadtree
and Delaunay approaches. They also do not translate well to three dimen-
sions.

Quadtree methods and their higher dimensional analogues create a hi-
erarchical partition of the domain. With a quadtree, an initial grid of four
squares is laid over the domain, and squares containing high geometrical
complexity are recursively subdivided until a certain threshold is reached.
By warping the squares so produced, the mesh can be made to fit the bound-
ary. Perhaps surprisingly, there have been proven theoretical guarantees
on the angles produced by such methods, for instance by Bern et al. [102].
However, as documented by Shewchuk [99], quadtree methods typically pro-
duce several times as many triangles as necessary. Given their preference for

axially-oriented edges this is understandable.






