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ABSTRACT

It has long been recognised that the macroscopic mechanical behaviour of a granular

material depends on particle shape. However, a systematic investigation into particle

shape is lacking. There are three different aspect of shape each considering shape at a

different scale, typically these are called form, angularity and roughness.

The form of a particle can be quantified using the Longest (L), Intermediate (I) and

Shortest (S) dimension of an equivalent scalene ellipsoid; two independent parameters

of particle form are defined, termed platyness and elongation. The angularity of a

particle can be quantified by the volumetric deviation between the true particle shape

and the idealised equivalent scalene ellipsoid. This volume is then normalised against

the the original volume of the particle.

We used DEM simulations with the Potential Particle Method to investigate the effect of

particle shape on the friction angle of a granular material at critical state. By studying

particle form and angularity in isolation, it is found that deviation of particle form and

angularity (from that of a sphere) leads to higher angles of friction at critical state. It

is found that the higher critical state strength exhibited by non-spherical particles is

due to form suppressing particle rotation and leading to increased interparticle sliding,

a mechanism that in comparison requires more energy to be expended.

It is found that for particles combining non-spherical form and angularity that both

measures act cooperatively with regards to increasing the angle of friction at critical

state. It is also seen that these two effects are not independent of each other as the

effectiveness of particle angularity is dependant on the underlying form of the shape.

This is possibly due to particle angularity increasing the effectiveness of mechanisms

created due to different particle forms.
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φ Mobilised angle of friction angle

φcrit Mobilised angle of friction angle at critical state
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α Platyness
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Dr Relative dry density

r Radius of the maximum inscribed circle
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G Shear modulus
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σ Total stress

Cu or U Uniformity coefficient
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Vv Volume of voids

Vs Volume of solids

E Young’s modulus
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Introduction

Railways provide transport for both passengers and freight throughout the world. Many

countries are starting to ask more from their transport infrastructure. For the railway

this means an ever growing demand on the railway infrastructure to increase the amount

of weight it can carry and the speed at which it can carry it whilst being cheaper to

maintain. This, however is a problem due to ageing railway lines requiring constant

maintenance. To help keep up with these demands ever more inventive solutions are

needed to increase efficiencies and reduce the cost of infrastructure.

By far the most common type of railway track in the UK is the ballasted track. This

design uses a thick layer of railway ballast material upon which the sleepers and rail sit,

(Figure 1.1). Other types of railway track include slab track which replaces the ballast

with a concrete slab but this is more expensive and is not suited universally.

Figure 1.1: Railway track

Railway ballast is the largest part of the ballasted track system, both in maintenance

cost and by mass. Ballast is a granular material made up of crushed igneous rock,

generally granite in the UK, (Figure 1.2). It has remained relatively unchanged since

its introduction during the Victorian era. The purpose of ballast is to provide drainage,

strength and stiffness to the track system.

1
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Figure 1.2: Ballast particle

One problem faced by ballasted track is the continual monitoring and maintenance. This

is because tracks that are closed for maintenance have a serious impact on the passengers

and on freight companies by either reducing the speed or the number of trains. The

ideal would be a track that didn’t require maintenance however due to settlement of

the ballast track failures regularly occur, leading to issues such as hanging rails. The

reason for this settlement is because the repeated loading and unloading of the ballast

causes permanent deformation to take place and the ballast become denser. Sections

of track are not uniform in stiffness; this is because the ballast and the soil underneath

the track vary in strength this typically leads to differential settlement. This differential

settlement is a major maintenance issue for railway engineers, leading to the undulations

of the track and reducing both the life of the track and passenger comfort.

Current maintenance of the ballast consists of inserting tamping tines which apply vi-

brations and squeezing the ballast. This has the effect of loosening the compressed

ballast and raising the ballast back up to the rail. However, After a section of track has

been tamped the ballast structure becomes loose leading to a reduced stiffnesses. To

allow the ballast to resettle into a stiffer structure a intensity and speed of the loading is

decreased. This is done by reducing speed of track for a short while after maintenance

which leads to a reduced the effectiveness of the line.

An ideal track would have a uniform settlement with a uniform stiffness profile. Current

research into reducing this settlement after many load cycles of the ballasted track mainly

focus on adding extra material to the ballast. Another approach could be to engineer

ballast so that is can resist settlement and operate for longer period of time without

maintenance.

The current specification for ballast in the UK is taken from the British Standard for

ballast, BS EN (2013). This defines the range of particle size distribution and the

properties of the parent material. Current standard also limits the shapes of ballast

particles that can be used, categorising them based on their flakiness and elongation.

However, the reason for these limits are arbitrary and are based on empirical information.

In particular the standards states that:
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”Limits should be selected from the specified range until such a time as there

is more data available on railway ballast properties related to performance”

(BS EN, 2013)

The mechanical properties of a granular material such as ballast are known to be depend

on the shape of its particles. So in principle it should be possible to optimise the

ballast properties by using an appropriately shaped particle. However there is a lack of

understanding as to the effect particle shape has in relation to ballast performance.

To address this problem this study will analyse the impact different shaped particles

have on the properties of a granular material, such as its strength and stiffness. The

strength of the ballast is derived from the interactions between the particles. These

interactions are influenced by the particle shape, as well as the insitu conditions of the

material, such as the initial particle orientation, void ratio and fabric.

They can be investigated using numerical modelling which allows study of granular

materials under triaxial compression loading conditions with a fine control on particle

shape.

Under triaxial compression conditions, the stiffness is dependent on the initial conditions

within the granular soil, with denser soils having a stiffer response than looser soils.

However, once a granular soil has reach critical state the effects of the initial starting

conditions will have been removed thus the effect of particle shape will be more evident.

Therefore, this study focused on the effect of particle shape on critical state strength.

Critical state strength however is not directly related to ballast performance under

typical cyclic train loads. Simple models which predict the strength under cyclic loading

rely on the proportion of the strength mobilised during a cycle to decide whether failure

will take place and after how many cycles. It can be argued that higher critical state

strength is reasonably expected to lead to higher strength under cyclic loading.

The majority of numerical techniques that model granular materials treat them as a

continuum, a single solid mass. Whilst this is an efficient approach it ignores the effects

of individual particles and does not allow for particle interaction to be studied.

In this study a technique called the Distinct Element Method (DEM) is used, which

models individual grains and their interactions. Particle movement is modelled using

traditional Newtonian physics independently for each particle. Forces are transmitted

between interparticle contacts with other grains. DEM can model complex arrangements

of particles that form naturally and offers insights on the corresponding micromechanics.

Studying these micromechanical interactions will provide a better understanding of why

assemblies consisting of different particle shapes respond differently when subjected to

loading conditions.
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1.1 Aims and Objectives

The aim of this work is to investigate the relationship between particle shape and per-

formance of railway ballast. The long term goal is to contribute towards identifying

optimal ballast shapes that increase track design life.

The specific objectives of the project are to systematically:

• Review of how particle shape can be described and quantified

• Determine the effect that different aspects of a particle’s shape have on the critical

state strength of ballast

• Investigate the micromechanical origins of shape-related differences in critical state

strength
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Literature Review

The properties of a granular material as a whole are fundamentally controlled by the

interactions among its individual particles. An individual particle’s properties are con-

trolled by the material properties of the parent material and the shape of the particle.

Empirical evidence about how particle shape determines the mechanical properties of a

soil, so design is based on direct measurements of soil properties. Ideally soils would be

tested insitu to determine the mechanical properties however for some cases this is not

practical and in others impossible. Apart from insitu tests there are also lab tests of

carefully collected samples.

As is it not always possible to perform an insitu test, such as the cone penetration test,

an alternative is to simplify the problem and use numerical techniques to model soil

behaviour. Doing so allows for complex interactions to be simulated so that the results

can infer what would happen in the real world.

In this section there is a review of the literature including:

• an overview of granular materials and their characterisation

• a review of existing measures of characterizing the shape of granular materials

• the effect that different aspects of shape have upon the properties of granular

materials

• current research into specification of railway ballast and what makes a good ballast

• an introduction into DEM theory and application.

2.1 Granular Materials

Granular materials consist of distinct particles that are not bound together thus are free

to translate or rotate with respect to each other. Their void may contain a liquid, gas or

5
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both making them three phase materials. The ratio of these phases significantly affects

the behaviour of the soil.

There are measures that describe different soil properties such as how dense a soil is or

the relative distribution of sizes of particles, and on which the soil’s mechanical properties

also depend.

2.1.1 Void Ratio

An important factor in predicting how a soil will behave is how densely the soil is packed.

A measure used to describe this is the void ratio. A granular soils void ratio is defined

as equation (2.1). The void ratio relates the volume of the voids (air and water) to the

volume of solid material, showing the quantity of voids within the soil. The lower the

void ratio the denser the soil.

e =
Vv
Vs

(2.1)

Vv = Volume of voids

Vs = Volume of solids

Whilst the void ratio gives some indication of how a soil will behave when loaded it

is difficult to compare to between soils because the maximum and minimum attainable

void ratios are different for each soil.

For void ratios to be useful as a comparison between soils a relative measure of density

is needed, Equation (2.2).

Dr =
emax − e

emax − emin
× 100% (2.2)

emax is the maximum void ratio that can be achieved

emin is the minimum void ratio that can be achieved

The relative density quantifies how dense or loose a soil is, compared to its densest and

loosest states.

2.1.2 Particle Size Distribution

Soils consist of different geological materials, with particles having undergone different

types of weathering. As particles undergo weathering they become fractured which leads
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them to break/split taking on a different shape and size. Different materials will break

up at different rates leading to a mixture of different size particles.

Soils particles have a range of sizes, from fine (silt ≈ 10µm) to coarse (gravel ≈ 30mm),

ISO (2009). For each soil it is possible to plot the particle size distribution (PSD), which

is a graph that shows the range of particles sizes within a soil against the cumulative

amount of mass for each size. An example PSD plot is seen in Figure 2.1 showing the

range of size classification.

Figure 2.1: Graph showing change in PSD by weight and size classifications
example taken from Powrie (2004)

Whilst in theory the PSD plot is a continuous curve, is it impossible to measure this

directly and so numerical estimations must be made by passing the soils through a series

of progressively finer layered sieves and measuring the mass of soil caught in each layer

(BS EN, 2013).

To describe the uniformity of particle size there are two common measures, the unifor-

mity coefficient (U) (Equation (2.3)), sometimes referred to as Cu, and the coefficient of

curvature (Z)(Equation (2.4)), (Powrie, 2004). These measures give a representation of

how well graded the material is, with low values of U and Z meaning the soil is generally

consists of similar particle sizes.

U =
D60

D10
(2.3)
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Z =
D2

30

D60 ×D10
(2.4)

D60 is the particle size corresponding to 60% of the percentage passing

D30 is the particle size corresponding to 30% of the percentage passing

D10 is the particle size corresponding to 10% of the percentage passing

2.1.3 Soil Strength and Stiffness

Unlike solid materials which derive their strength from physical bonds and connections,

granular materials are unbound and so there are no physical bonds from which to derive

strength. Whilst individual particles have an inherent strength from being a solid mass,

granular soils obtain their strength and stiffness from how the particles interact.

Soils have different strengths depending on the type of loading that the soil will be sub-

jected to and the internal configuration of the particles. A soil’s strength is typically

determined through appropriate lab tests, a typical one is trixial compression. Triaxial

compression subjects the soil to a confining pressure in the three principal axes and a

vertical strain rate applied to the top of the sample which results in a vertical load. Fig-

ure 2.2 shows the triaxial loading conditions and figure 2.3 shows the idealised deformed

shape.

Figure 2.2: Triaxial Loading conditions

The strength mobilised by a soil specimen under triaxial compression conditions is given

by the ratio between the stress needed to confine the soil (minor principal stress) and

the stress being applied vertically to the soil (major principal stress). Using the Mohr’s

circle for the sample an angle can be defined by the tangent between the origin and the
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Original shape
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Figure 2.3: Deformed shape

circle, this tangent is referred to as the mobilised angle of friction and is calculated using

equation, 2.5.

φmob = arcsin

(
σ11 − σ33
σ11 + σ33

)
(2.5)

σ11 = major principal stress

σ33 = minor principal stress

The deviatoric stress will start to level out as the rate of dilatancy Equation (2.6)

reduces to zero. At this point the model reaches a critical/steady state where there is

constant deviatoric stress. One of the main characteristics of a densely packed material

is attainment of a peak stress; the magnitude of peak stress reduces as initial relative

density reduces. With a loose material compaction rather than dilation will take place,

with a reducing rate until critical state is reached.

Under triaxial compression conditions the initial response will change depending if the

soil is dense or loose.

tan(ψ) =
dε

dγ
(2.6)

γ = Shear strain

ε = Volumetric strain

When a soil with a high relative density is subjected to triaxial compression conditions

it will initially have a stiffer response than the same material at a lower relative den-

sity. The stiffer response of a denser material is because its particles are in a dense

configuration. When a dense material is loaded the configuration will initially compact,
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however the material cannot continue to compress for long and the particles are forced

to rearrange, leading to dilation. This continues to a point at which the deviatoric stress

starts to decrease; this is known as peak stress.

Figure 2.4.A shows how the mobilised angle of friction changes against the shear strain

of the soil, it can be seen for the dense sample there is a peak in strength and then a

reduction down to a steady state.

Figure 2.4: A. Figure showing mobilised angle of friction vs shear strain, B.
Figure showing volumetric strain vs shear strain

Figure 2.4.B shows the change in volumetric strain against shear strain. When a soil

with an initial low relative density (a loose soil) is subjected to triaxial compression

conditions, there is no peak mobilised angle of friction. It will however continue to

increase until the sample has reached a steady state of dilation after which the friction

angle plateaus to the critical state value for the material.

Whilst the critical state mobilised angle of friction between the dense and loose model

is the same, is not true for the volumetric strain. Where as the dense sample initially
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compacts and eventually loosens, the loose sample continues to compact until it reaches

a steady state. At the critical state the void ratio of the sample will be same regardless

if it started out as dense or loose. This is due to the void ratio at critical state being a

property of the soil and is dependant on the confining pressure.

2.1.3.1 Critical State Theory

Critical state is the point at which the rate of dilatancy remains zero and the effective and

shear stresses remain constant despite continuing increase in shear strain. Regardless of

the initial configuration of the particles the material will reach the same deviatoric stress

ratio for the same effective stress. This is related to the particle material and shape.

The strength of the material is dependent on the ratio of the deviatoric stress and the

confining pressure. Material failure takes place when the shear stress within the material

reaches the capacity of the material to carry that stress. Figure 2.5 shows the Mohr

circle for the material with the line signifying the maximum mobilised angle of friction

for the material. The maximum mobilised stress a material can effectively use is the

critical state strength.

Figure 2.5: Principal stress vs shear stress, Mohr’s circle

By rearranging Equation (2.5) the maximum shear stress within a material can be found.

τ = σ′ sin(φ) (2.7)

τ = shear stress

σ′ = Effective normal stress

2.1.4 Granular Fabric

Relative density is partly dependant on how the particles are arranged within a soil, i.e.

granular fabric.
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The effect of particle form on granular properties is mediated by the specific granular

texture/fabric induced by each particle, Azéma and Radjäı (2010). This is most evident

when fabric and texture contribute to the peak strength of the granular material, defining

how dense the soil packing is.

Granular fabric, sometimes referred to as texture, describes the relationship between

particles within the soil. Properties such as laminations and bedding planes are regu-

larly used in description of soils; these are regions where particles are orientated in a

regular pattern. These localized regions will cause differences in how the soil will initially

behave in terms of stiffness and strength until the structure has time to deform. Parti-

cle orientation influences how anisotropic the soil properties will be, Oda and Kazama

(1998); Ken-Ichi (1984); Rothenburg and Bathurst (1989); Iwashita and Oda (1999). If

there is a random orientation of particles there will be no preferential direction for the

particles to displace and any internal structures that form will be of a random nature.

A method for quantifying the orientation of the fabric is to use the Fabric Tensor,

(Oda, 1972), this describe the average orientation of a set of vectors within a given

control volume, Equation (2.8). Using Equation (2.8) allows a set of unit vectors to be

represented as a [3 X 3] tensor, (Li and Dafalias, 2012).

G =
1

N

N∑
k=1

nk ⊗ nk (2.8)

G is the fabric tensor

N is the number of particles in the model

n is an n-d dimensional vector which normally represents particle orientation and contact

forces

Figure 2.7,2.8, and 2.9 show 2D examples of fabric structures for ellipse particles and

their corresponding fabric tensor. The orientation of an ellipse is described using the

directions of the L and S vectors, Figure 2.6. However due to the symmetry of an ellipse

the fabric tensor can be simplified by only calculating the tensor for the L vectors and

the tensor describing the S vectors is the inverse.

S L

Figure 2.6: Examples of fabric orientation
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Figure 2.7 shows an arrangement of particles with the L radius horizontal. This arrange-

ment of particles corresponds to:

G =

 1 0

0 0



Figure 2.7: Examples of fabric orientation - Horizontal

Figure 2.8 shows an arrangement of particles with the L radius cross aligned. This

arrangement of particles corresponds to:

G =

 0.5 0

0 0.5


Figure 2.9 shows an arrangement of particles with the L radius aligned to the same

diagonal. This arrangement of particles corresponds to:

G =

 0.5 0.5

0.5 0.5



2.1.5 Summary

This section discussed some properties of granular materials and how they relate to

their macroscopic behaviours. It also discussed the triaxial stress conditions and how

soil strength is measured and described as well as the key assumptions related to the
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Figure 2.8: Examples of fabric orientation - Cross aligned

Figure 2.9: Examples of fabric orientation - Diagonal

test. Granular fabric is used to describe how particles are arranged within a soil; it can

indicate if particles are aligned, have a cross pattern or a random ordering.

2.2 Characterisation of Particle Shape

Soils are generally described at a macroscopic level using the measures presented in the

previous section. But as granular soils consist of individual particles each particle has a

shape which can be used to fundamentally describe the particle. This section presents

a discussion of previous literature on how particle shape is quantified.

One of the most common ways to describe the shape of a particle is to define it in terms

of sphericity and roundness, Figure 2.10. Whilst these two words sounds similar they
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represent different aspects of shape in this case; sphercity describes how spherical the

overall shape is, where as roundness, more accurately called angularity, describes the

relative sharpness of the corners. For example a star would be highly spherical however

it would also be highly angular. However the use of this chart, in figure 2.10, is reliant on

the engineer performing the description visually so results may not be consistent. Even

though the chart is visual representation of Wadell’s sphericity and roundness, (Wadell,

1932), a consistent measure is needed to measure dimensions on the particle so that

the shape of the particle can be described; this idea was first conceived by Wentworth

(1922).

Figure 2.10: Sphericity and roundness chart defined in Krumbein (1941)

The description of shape is a well-developed field of research with multiple approaches

having been made to characterize different shapes, (Blott and Pye, 2008). There is,

however, a lack of consensus among researchers as to which method to use. It is generally

agreed that particle shape has three independent aspects (Barret, 1980):

• Form / Sphericity: The form of a particle describes the general overall shape of

the particle at a macroscopic level

• Angularity / Roundness: This describes the degree of sharpness of its corners and

angles

• Roughness / Surface Texture: This describes the microscopic variations of a par-

ticle’s surface and can be considered to control the interparticle angle of friction
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Figure 2.11: Different description of shape from Barret (1980) redrawn in Le
Pen (2008)

2.2.1 Form

The first requirement of quantifying form is to define the dimensions used to describe

the particle; this is the basis on which form is measured. One approach is to use the

Length, Breadth and Depth dimensions, referred to as longest (L), intermediate (I) and

shortest (S), (Blott and Pye, 2008). Whilst using L, I and S allows for more complicated

forms to be represented, it is only used for describing coarse particles sizes. This is

because measuring L, I and S is easily done by hand for coarse particles with the process

becoming ever more time consuming the smaller the particle. For finer particles like

clays this method becomes unusable as the individual particles are too small to see at

individually so a different approach is required, (Clayton et al., 2009).

Despite the widespread use of L, I and S, these terms have never been strictly defined.

It is generally agreed that these three distances must be measured orthogonally to each

other but their point of intersection may vary. Krumbein (1941) and Blott and Pye

(2008) made the case that it is important to have a consistent definition of L, I and S. It

can be seen that the way the dimensions L, I and S are measured can vary the resulting

form (Figure 2.12).

One of the earliest attempts to quantify form was introduced by Wentworth (1922)

where the author introduced a term called flatness ratio (Equation (2.9)). The author’s

measurement is a significant improvement on the qualitative verbal description of shape

previously used. Being only a single measure it has the limitation of being able to

describe the flatness ignoring the difference of L and I. For example a particle with

L = 0.5, I = 0.5 is represented by the same value as a particle L = 0.9, I = 0.1.

Wentworth F latness =
L+ I

2S
(2.9)
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Figure 2.12: L, I and S measurements of a cube Blott and Pye (2008)

One of the most commonly used tools for measuring and verbally describing form is

shown in Figure 2.13 (Zingg, 1935). Where measurement of form takes the simple

ratios of the dimensions defining two measures, one for elongation and one for flatness

(Equations (2.10) and (2.11)). The author differentiates forms into Spherical, Bladed,

Elongated and Platy. These groups allow for a verbal description of a particle’s form.

Elongation Ratio =
I

L
(2.10)

Flatness Ratio =
S

I
(2.11)

Figure 2.13: Plot showing range of forms available using the measurements in
Zingg (1935) redrawn from Le Pen et al. (2013)
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In Wadell (1932), the author introduces the idea of describing form in terms of its

deviation from a reference particle which in this case was a sphere. The measure of

form is termed sphericity and is defined as the deviation of surface area of the real

particle compared to the surface area of a sphere with the same volume. This idea is

then improved upon in a later publication, (Wadell, 1933), which compares the volume

of the particle to the volume of the minimum circumscribed sphere (Equation (2.12)).

This improvement was made due to the difficulties in measuring the area of the irregular

surfaces of particles. Nevertheless Barret (1980) shows that the rounding of the edges

of a cube changed the measured value of Wadell sphericity, demonstrating that this was

not a measure of form but of angularity as well.

Wadell sphericity = 3

√
V oloriginal

V olmincircumsphere
(2.12)

Krumbein (1941) follows on from the ideas introduced by Wadell (1932) and Zingg (1935)

to create a measure of form using L, I and S also called sphericty. However the major

difference in assumptions compared to Wadell sphericity is that it uses an ellipsoid as

the reference particle. The measure introduced is called intercept sphericity. This was

argued to be conceptually purer measure than Wadell’s sphericity as it is a measure of

form alone, (Barret, 1980)

Intercept Sphericity =
3

√
I × S
L2

(2.13)

The use of a single measure of form can not fully describe the general shape of a particle.

Using a single measure will always lead to particles with different forms categorised by

the same value, (Sneed and Folk, 1958). Also as a result of having three lengths, any

normalisation needs two parameters to preserve all the information. Methods that use

two or more distinct measures of form allow for more detailed description of form, such

as in Zingg (1935).

To help distinguish the case of different forms having the same sphericity Aschenbrenner

(1956) introduced a second complementary measure called Shape Factor. This ranged

from 0 to ∞ and was later modified by Williams (1965) to have a range of −1 to 1.

Aschenbrenner (1956) also introduced a different measure of sphericity based upon a

different reference particle shape. The author wanted a plane-sided figure form, finally

using a tetrakaidecahedron allowing for a better approximation of real particles (Fig-

ure 2.14). The measure uses the ratio of the surface area of the particle to the surface

area of the reference particle. Whilst this may have a form closer to real particles, it

does not allow a sphere to have a sphericity of 1.
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Figure 2.14: Tetrakaidecahedron

Most of these measures are unintuitive and further authors have provided verbal de-

scriptions of particles so that they can be quickly identified and classified in the field.

With many different measures of form being presented it could be inappropriate to choose

one measure over the other. Some measures may only be appropriate for different types

of particles such as fine and coarse particles Blott and Pye (2008). Table 2.1 shows a

variety of different measures of particle form.

2.2.2 Angularity

Whilst form describes the general macroscopic shape of the particle; angularity is gen-

erally used to describe the relative sharpness of the corners and edges, however there

is no general consensus over that. Some authors treat roundness as the inverse of an-

gularity however this is not universally agreed upon either, e.g. Blott and Pye (2008).

Figure 2.15 shows some different measures of angularity.

Wentworth (1919), introduced the first method for characterising particle roundness

based upon measuring the minimum radius of curvature for a particles sharpest corner.

The measure was normalised against the longest dimension (L) of the projected outline

so that the measure is scale invariant, Equation (2.14). However this measure alone does

not fully describe the roundness of the whole particle.

Wentworth roundness =
Dk

Lw
(2.14)

This was later revised in Wentworth (1922) where the measure is normalised against the

mean particle diameter, Equation (2.15). This had the benefit over the original measure
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Figure 2.15: Example of common measures of angularity and roundness taken
from Blott and Pye (2008). (A) Roundness (Wadell, 1932),(B) Angularity (Lees,
1964), (C) Circularity (Riley, 1941) and (D) Irregularity (Blott and Pye, 2008)

of reducing the effect that elongated forms have on the measure. The advantage that

this measure has is it’s simplicity and ease to calculate. A disadvantage is that, as the

sharpest corner is used, this may not be representative of the whole particle, e.g. the

case of slightly fractured particles would not be represented well, (Blott and Pye, 2008).

Wentworth roundness =
Dk

L+ I

2

(2.15)

In Wentworth (1919) the author focused on the sharpest corner. To improve on this idea

further Wadell (1933) used the average roundness of all the corners. This introduces

another problem , that of the definition of a corner which is:

”Every such part of the outline of an area which has a radius of curvature

equal to or less than the radius of curvature of the maximum inscribed circle

of the same area” Wadell (1932)

This allowed for the case of two particles having the same value of roundness despite

having different forms, e.g. a sphere and a cylinder topped by two half spheres would

have a roundness of zero (Blott and Pye, 2008), Figure 2.16.
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Figure 2.16: Wadell corner definition

There has been some debate about whether angularity is the inverse of roundness, how-

ever some authors have argued that they should be considered as independent measures.

Lees (1964) proposed a measure called ”Degree of Angularity” which sums the angle be-

tween bounding planes on a corner. This is normalised by a factor of how far away

the corner is as well as the radius of the maximum inscribed sphere (Equation (2.16)).

Figure 2.17 shows the values for calculating the angularity of a corner. This uses a 2D

image requiring identification of corners so that the bounding planes can be extrapolated,

which is time consuming and difficult.

a/2

r

x

Figure 2.17: Definition of the angularity of a corner from Lees (1964)

Ai = (180◦ − α)
x

r
,Aparticle =

n∑
i=1

Ai (2.16)

Sukumaran and Ashmawy (2001) took this idea further by proposing two parameters, a

shape and angularity factor. This is done by taking the outline of particles and fitting an

approximate form to the outline by drawing 40 successive chords around the perimeter

spaced at even angles radiating from the centroid, Figure 2.18.

The shape factor compares the difference in angles between the chords connecting points

on the circumference and the chords of inscribed polygon, defining the α angle, Fig-

ure 2.19. The Angularity factor is measured as the angle between two chords compared

to the internal angle of the inscribed polygon.

A different measure has been proposed called sphericity, which is not to be confused with

the measure of form of the same name (for example intercept sphericity). The measure
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Figure 2.18: Chords around a particle. Taken from Sukumaran and Ashmawy
(2001)

Figure 2.19: Measurements of the internal angles around between chords. Taken
from Sukumaran and Ashmawy (2001)

normally compares the surface area or volume of the particle to that of a sphere with

the same volume in 3D and perimeter or area of a circle in 2D, Barret (1980); Blott and

Pye (2008).

Sphericity has the advantage, compared to other measures of roundness, that a high order

polyhedron that has all faces meeting at edges would have a Wentworth Roundness of

zero but a high sphericity value. It could also be argued that a sphere has an infinite

amount of infinitesimally small faces and thus has no roundness.

Cox (1927) compares the the ratio of the area of the particle to the area of a circle with

of the same perimeter length. However the perimeter length is difficult to measure for an

irregular particle. Tickell and Hiatt (1938) take a 2D outline of a particle and compare
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the ratio of the area of the particle to the area of a circle with the diameter being equal

to the smallest circumscribing circle’s. Wadell (1933) first method is the square root of

the method suggested in Cox (1927).

Other measures of angularity use different variations of the previous measures by using

ratios of different particle properties such as area and perimeter:

• Pentland (1927) takes a 2D outline of a particle and compares the ratio of the area

of the particle to the area of a circle with diameter equal to the longest dimension

of the particle

• Riley (1941) uses the square root of the ratio between the largest and the smallest

inscribed circle.

• Janoo (1998) uses the perimeter and the area of the particle.

In Blott and Pye (2008) the authors introduced irregularity as a measure of angularity.

For any 2D particle image a convex outline is used around the image as well as finding

the inscribed sphere. By taking progressive points around the circle a measurement is

made between the centre of the circle and the convex hull; this is summed over the

number of points.

All these measures of angularity are calculated using a 2D particle, one way to turn

these measures into a 3-dimensional measure is by averaging the angularity on planes

following the particles principal axes, (Mollanouri Shamsi and Mirghasemi, 2012). To

normalise the results the angularity measured from each projection is weighted by the

respective surface area, equation (2.17)

AngParticle =
Angfront ×Areafront +Angtop ×Areatop +Angside ×Areaside

Areafront +Areatop +Areaside
(2.17)

2.2.3 Summary

The measures presented in this section provide a framework for describing particle shape.

This is done by considering three independent aspects of shape; Form, Angularity and

Roughness. This is useful for simplifying the problem of describing complex particle

shapes and allows for grouping of similar shapes.

There is a lack of a unified descriptor of particle shape that doesn’t lead to a significant

loss in detail. With particle form there is a general consensus on the concept of L, I

and S but not on how the form is measured nor the measures to quantify it. Angularity

proves a harder measure to quantify: there is not as much consensus as to what the

measure describes and it also uses a 2D projection of the particle, which can lead to a

loss of information. It is clear a holistic approach is needed.
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Reference Formula

Wentworth (1919) Dk
Lw

Wentworth (1922) Dk
(L+I)/2

Wadell (1932)

∑ Dr
Di
n

Kuenen (1956) Dk
I

Wentworth (1919) Dk
Di

Lees (1964) Ai = (180◦ − a)xr , Aparticle =
∑n

i=1Ai

Cox (1927) 4πA
P 2

Pentland (1927) 4A
πL2

Tickell and Hiatt (1938) 4A
πD2

c

Wadell (1933)
√

4πA
P 2

Wadell (1935)
√

4A
πD2

c

Riley (1941)
√

Di
Dc

Janoo (1998) P 2

A

Blott and Pye (2008) I2D =
∑ y−x

y

Table 2.2: Table of different values of particle angularity and roundness

2.3 Effect of Particle Shape

It is generally accepted that soils that consist of different particle shapes will behave

differently. For example some particles shapes may be able to form a denser packing or

allow for particle interlocking with concavities which is the common explanation as to

why angular particles lead to a higher critical state strength. In the previous section

the different ways to measure particle shape were discussed, however these measures of

shape may not relate to any change in macroscopic granular properties. There have been

a mixture of empirical and numerical tests to investigate the effect that particle shape

has, however the full extent of the effect of shape has upon granular material properties

is unknown. In this section there will be a review of current and past literature on the

effect shape has on:

• Void ratio

• Shear Strength

• Particle Size Distribution of a soil



26 Chapter 2 Literature Review

2.3.1 Effect of Shape on Void Ratio

As void ratio describes the relationship between the volume of solids and the volume of

voids within a soil, it is no surprise that this is also a function of particle shape. Whilst

the theoretical emin and emax of a sample would depend solely on particle shape it may

not be possible to reach that for every given soil. Because of this soil, properties such

as void ratio in itself is not only effected by particle shape but also by the soil history

and fabric.

Particle shape does effect the maximum and minimum void ratio, as stated in an earlier

section, and the particles relative density changes the initial behaviour of the soil. The

maximum void ratio is a function of both particle shape as well as the particle size

distribution, Santamarina and Cho (2004). Some research exists into estimating particle

shape effect on packing however this mainly is limited to single and two sized particles,

Heitkam et al. (2012); Donev et al. (2004).

2.3.1.1 Particle Form

There does not exist much research of particles form’s effect on void ratio but an em-

pirical study from (Cho et al., 2006) which looked at how emin and emax changed with

sphericity for a range of sand particles (Equation 2.19 and 2.20). Figure 2.20 shows that

spheres are able to have the densest packing but as sphericity increases so does emin and

emax. The range of possible void ratios also increases.

Sp =
Rmax inscribed

Rmin encribed
(2.18)

emax = 1.0− 0.51Sp (2.19)

emin = 1.6− 0.86Sp (2.20)

The packing for spherical particles has been studied extensively in the literature as it is

something that effects many different fields. The densest packing of mono-sized spheres

is a void ratio of 0.35 but this requires a specific arrangement of particles, known as

face-centred cubic structure, and is not a realistic estimate of the densest compaction.

But as a true dense packing requires an regular ordering of particles a densest random

packing can be defined, void ratio of 0.577 (Abbireddy and Clayton, 2010).

Delaney et al. (2011) used elongated ellipsoidal particles to simulate random packing.

The random packing was achieved by placing particles in free space and allowing the
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Figure 2.20: Particle sphericity vs empirical void ratio, Cho et al. (2006)

particle to settle, by treating void space as a viscous fluid. The results showed that

2D that spheres have the higher void ratio, initially as a particle becomes elongated

the densest void ratio will start to drop. However after a certain point the increased

elongation causes the minimum void ratio to rise, this is due to the random orientations

of the particles causing large voids to appear.

2.3.1.2 Particle Angularity

Whilst theoretical estimates of emin and emax do exist empirical studies have also shown

relationships between roundness and void ratio, Table 2.3.

Sp =

∑
ri/N

Rmin encribed
(2.21)

Reference emin emax

Youd (1973) 0.359 + 0.082R−1 0.554 + 0.154R−1

Rousé et al. (2008) 0.433 + 0.051R−1 0.615 + 0.107R−1

Cho et al. (2006) 0.8− 0.34R 1.3− 0.62R

Table 2.3: Table of empirical estimates of emin and emax changes with roundness
R and Sphericity Sp

Figure 2.21 shows how emin and emax change with roundness. As roundness decreases

from 1, emin increases slightly however a greater change is seen in emax. This means

as particles become more angular there is a greater range of potential void ratios. All

measures consider a uniform particle size distribution with coefficient of uniformity Cu
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= 1. As Cu changes the emin will decrease as smaller particles can fill the void spaces

between the particles.

Figure 2.21: Particle roundness vs empirical void ratio, Youd (1973); Rousé
et al. (2008); Cho et al. (2006)

Delaney and Cleary (2010) show the effect of different superellipsoidal particles and their

random packing. It is found that as the particles become increasingly blockier their void

ratio decreases.

2.3.1.3 Particle Roughness

Whilst changing the particle roughness does not significantly impact the theoretical

packing of particles, it does practically change that situation. Decreasing the inter-

particle friction allows a loose but stable assembly of particles to become unstable and

compact. This fact has been used in numerical modelling as a way of allowing the

particles to form a denser packing (Abbireddy and Clayton, 2010).

2.3.2 Effect of Shape on Strength

Spherical particles are generally used to model soil particles with DEM. In Radjäı et al.

(1999); Radjäı and Azéma (2009); Estrada et al. (2009, 2011); Cambou et al. (2008);

Azéma et al. (2013, 2012); Azéma and Radjäı (2010); Nguyen et al. (2015) the authors

showed that any deviation in particle form from a sphere leads to an increase in the

strength of the granular material. Preliminary results presented in Potticary et al.

(2014) showed a similar trend.
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Particle Form

To model the effect of form alone, a smooth particle with a constant angularity is needed.

A previous 2D study, Azéma and Radjäı (2010), looked at the effect that elongation has

on the critical state strength. The authors used rounded cap rectangles (RCR) shaped

particles which join two half spheres on to a rectangular segment (Figure 2.22).

Figure 2.22: Rounded Cap Rectangle from Azéma and Radjäı (2010)

The form of a RCR is defined as the ratio between the radius of the half sphere, ∆R ,

and the distance from the centroid to the tip, R, Equation (2.22).

η =
∆R

R
(2.22)

η ranges of values between 1 and 0 and the implications for particle form.

The main conclusions form this paper are that; as particle elongation (η) increases

there is a linear increase in critical state strength, with particles tending to orientate

themselves perpendicular to the major principal stress direction. Contacts can be split

into three different categories cap-cap, cap-side and side-side. Cap-side seems to guide

the force through the model as elongation increases, cap-side contacts increase as a

proportion of contact types.

In Boton et al. (2013) the authors sought to study the effect of platy particles and

their change in strength. This was an extension of the work done in Azéma and Radjäı

(2010) which used RCR formed particles; in extending this work to 3D the authors used

a spheroplate (Figure 2.24). The authors define a term η which describes the flatness of

the particle (Equation (2.23)).

η ranges of values between 1 and 0 and the implications for particle form.

η = 0, sphere
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Figure 2.23: Mobilised Angle of Friction against Elongation (η) for RCR, Azéma
and Radjäı (2010)

Figure 2.24: Spheroplate from Boton et al. (2013)

η = 1, line

η =
R− r
R

(2.23)

In this paper mono-sized particles were used in a DEM model with isotropic stress

conditions similar to triaxial stresses, and the model was subjected to straining. At

critical state the strength of the model was calculated and this was then compared across

different models with different forms (Figure 2.25). This shows that as the particles

become flatter there is a linear increase in the soil’s strength at critical state.
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Figure 2.25: Ratio of deviatior stress over average stress for different forms of
spheroplates (Boton et al., 2013)

Particle Angularity

In Radjäı et al. (2013), the authors measured the effect of angularity on the critical

state strength. The particles were created by randomly adding flats to a spherical

particle. Figure 2.26 shows a typical particle. The particle’s form was controlled by not

allowing the eccentricities to grow in any particular dimension, ensuring that L, I and

S remained relatively equal. Whilst the effect of form was not completely removed, it

was controlled to the extent so that it’s influence should be negligible compared to the

different angularities.

Figure 2.26: Angular particle from Radjäı et al. (2013)



32 Chapter 2 Literature Review

The particle’s angularity was measured by using the mean angle between the planes. As

the number of planes that represented a particle increase the measured angularity of a

particle decreased.

Figure 2.27 shows the critical state stress ratio against different angularity. They showed

that by increasing the angularity of the particles there was an increase in the critical

state strength.

Figure 2.27: Figure showing the change in angularity < α > against critical
state strength, Radjäı et al. (2013)

Particle Roughness

Particle roughness can be described as the microscopic variations on the particle’s sur-

face. It is related to the interparticle friction angle of the material (Jensen and Bosscher,

1999). This friction angle controls the dry friction of the material. Many authors in the

past have studied the effect that varying interparticle friction angle has on the critical

state angle of friction (Figure 2.28). It has been found that higher the interparticle

friction angles, have a reduced effect on increasing the critical state angle of friction for

2D simulations. At higher interparticle friction angles there is a diminishing increase

and past 30◦−40◦ the impact of changing the friction angle is negligible (Cambou et al.,

2008; O’Sullivan et al., 2002). An explanation for this is that the friction angle only

controls the limit of sliding. As the interparticle friction angle increases the limit of

which a contact can slide also increases however there is a maximum amount of shear

force that can be generated at a contact.
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Figure 2.28: Friction angle against critical state angle of friction from Cambou
et al. (2008)

2.3.3 Summary

Particle’s shape has shown to have a significant effect on the granular properties of a

material. It has shown that spherical particles have the lowest strength out different

angularity and forms. However for spherical particles the coefficient of friction of the

material has a reduced effect the higher the friction. Increasing the coefficient of friction

past 30 degrees does not increase the mobilised angular of friction of the soil.

With particle form any deviation from the form of a sphere lead to an increase in

strength and with the elongated particles in 2D and 3D tended to orientate themselves

perpendicular to the loading.

2.4 Railway Ballast

Whilst most granular soils are created through geological processes, railway ballast is

engineered through mechanical processes for a single purpose. As such there are limits

placed upon what can be used as ballast. These limits are imposed through the British

Standard for Railway ballast however despite being an engineered material there is a

lack of understanding as to the micromechanics of ballast and how they relate to it

mechanical properties. This sections presents:

• Ballast properties such as PSD, parent material and ballast shape

• Literature related to ballast performance
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2.4.1 Ballast properties

Ballast is not a single material but there is a specification for the properties the material

has to contain. For example the particle size distribution / Strength of the particles /

the limits of proportion of flakiness and platyness of the aggregate.

Surface roughness is fully dependant on the type of material such as the particle shape

and if the surface is polished and this will depend on the way the material was prepared.

Whilst the shapes of individual ballast particles are not controlled, there is a limit placed

on the amount of different shaped particles, This is controlled by using the flakiness and

shape index of a set of ballast particles. The current specification for British standards

creates different grades of ballast depending on the flakiness and shape index. Highest

specified ballast is one that has a spherical form and is highly angular however no

specification on a value / measure of angularity is given.

Ballast Particle Shape

From the specification, there are limits placed on the proportion of flaky and elongated

particles that a given amount of ballast can contain, with a preference for particles with

a spherical form and high angularity. The shape of ballast is measured using a shape

and flakiness index (Equation (2.24) and (2.25)).

Flakiness =
Weightofpassingflakyparticles

remainingweight
× 100% (2.24)

Shape index =
1.274 × L2

L
(2.25)

Once the shapes have been measured the ballast is then placed into categories (Fig-

ure 2.29 and 2.30).

A previous study looked at a sample of railway ballast, measuring the particle shape

(Le Pen, 2008). Figure 2.31 shows the distribution of the shapes based upon the Zingg

measurement of shape. There is a general spread of shapes but it is generally clustered

around the spherical forms.

Particle Size Distribution

The particle size distribution for fresh railway ballast specified to be with a range of

values given in ISO (2009). Figure 2.32 shows the upper and lower banding for railway

ballast in the UK as well as the mean particle size.
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Figure 2.29: Range of different flakiness values for Network Rail ballast (BS
EN, 2013)

Figure 2.30: Range of different shape index values for Network Rail ballast (BS
EN, 2013)

In Le Pen et al. (2013), the author looked at the range of shapes of railway ballast and

showed a relationship between the size of the catching sieve and the Intermediate axis

of the particles (Table 2.4).

Sieve size (mm) 9.5 11.2 13.2 16 22.4 31.5 40 50

Average S (mm) 7.8 9.2 9.5 12.5 19.9 25.9 27.9 30.7

Average I (mm) 11.4 13.1 13.1 18.4 29.4 39.5 47.5 55.3

Average L (mm) 18.9 20.0 19.6 27.5 50.5 71.0 74.9 81.7

Table 2.4: Relationship between passing sieve and the average L, I and S di-
mensions of the particles
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Figure 2.31: Range of particle forms for different ballast sizes

Figure 2.32: The valid range of PSD for railway ballast in the UK

Parent Material

Typically in the UK ballast is made from crushed granite. Table 2.5 shows the range of

values of different mechanical properties of granite.

Property Value

Density ρ 2650− 2750Kg/m3

Elastic Modulus 70 GPa

Poisson’s Ratio 0.25

Shear Modulus 7 GPa

Table 2.5: Range of properties of granite
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2.4.2 Ballast performance

The main purpose of ballast within a track system is to act as a stiff element and to

distribute the load down to the subgrade (typically a soft soil in the UK). This reduces

the overall settlement of the track by spreading out the load from the highly stiff steel

track to the soft subgrade, so as not to overload a single element leading to a catastrophic

failure.

The type of loading that the track system is regularly subjected to is that of high

frequency cyclic loading. The exact loading is a function of the number of axles present

on the train, the speed the train is going and the distributed weight of the train amongst

the axles.

These load cycles cause the ballast to compact and cause settlement; this in itself does

not cause ballast to fail instead causes differential settlement (The track settling a dif-

ferent rates along it’s length). This causes a change in track geometry and increased

vertical movement for the train. At a small scale this can be unpleasant for the passen-

gers but at a larger scale this can be dangerous and cause derailments with potentially

lethal consequences.

To reduce the risk of this routine maintenance is carried out on the network. This is

governed by sending recording instruments along the track, be that on a specialised train

or other means.

2.5 Discrete Element Method

In this section a overview of the Distinct element method (DEM) reviewing the differ-

ences in contact models and some of the assumptions associated with them. DEM is a

modelling technique that models each particle individually. By doing so, organic contact

structures develop naturally based upon physical properties of the particles (Cambou

et al., 2008). As each particle has to be resolved individually, it can be computationally

intensive to solve large problems due to the number of particles involved. As computa-

tional speed has increased over the years so have the complexity of the systems tackled.

The following chapter discuss:

• How particles are represented and created

• Contact models

• Boundary Conditions

• Model creation
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2.5.1 Particle Representation

The assumptions of how a particle is described within the model sets the limits of what

can be modelled;

• A 2D or 3D model of a particle my be used

• Using simple shapes, such as a sphere, ellipsoid or polygons

• Limiting to convex shapes

• Using smooth mathematical functions to describe particle shape

In this study an in house code is used, Harkness (2009), which uses the concept of

describing particles using smooth functions (”Potential particles”).

2.5.2 Contact Models

Particle motion can be described through Newtonian physics, which does not describe

how particles interact. To describe how particles interact a contact model is used (Cam-

bou et al., 2008). A contact model is a set of assumptions and rules that quantify the

forces at particle contacts. For modelling coarse particles the contacts are modelled

as mechanical ones however to model fine particle such as clay, the electrostatic forces

may also be considered (Cambou et al., 2008). For coarse particles, DEM approaches

can mainly be split into two types: those considering soft body interactions and those

considering hard body interactions (also known as non-smooth dynamics) (Radjäı and

Richefeu, 2009).

Soft body interactions allows for some inter-particle penetration (Figure 2.33) and the

contact forces arise from a set of spring and dash-pots. The spring dash-pot system

consists of two systems, one system to describe the normal force and the other to describe

the shear force. With the magnitude of the forces being dependant on the amount of

penetration and the spring stiffness. The spring stiffness’s can be described by either

linear or non-linear equations. The linear spring is the simplest method as it contains a

constant spring stiffness. However, this may not describe the type of contact adequately.

Non-linear springs derive their spring stiffness for each contact individually. One method

of doing this is assuming a Hertzian contact, which depends on the relative curvatures

of the particles at the contact, Harkness (2009).

The dash-pot within the model acts to reduce rapid compression of the contact spring

and to damp the response (Ahmed et al., 2015). There are two methods for modelling a

dash-pot one being viscous damping which is proportional to the velocity of the particles



Chapter 2 Literature Review 39

Figure 2.33: Particle overlap Harkness (2009)

and the other being a linear damping which provide a opposite force to the normal spring

(Ahmed et al., 2015).

When dry surfaces are in contact there is a limit on the amount of shear force that the

contact can develop based on the signorini-coulomb condition (Cambou et al., 2008).

This states that the maximum shear force that can be developed is equal to the normal

force times by the coefficient of friction (µ) at the contact, Equation (2.26). Once this

condition has been met the contact is described as sliding, as the shear force cannot

resist the motion of the particle.

Fs ≤ µFn (2.26)

Due to particles being treated as rigid bodies interacting through forces at individual

contact points, stress can not be directly measured (Cambou et al., 2008). What can be

measured is the average stress tensor (σij) corresponding to the contact forces within a

reference volume V (Equation 2.27).

σij =
1

V

k∑
i=1

Fi × Lj (2.27)

F is the total force at the contact, L the branch vector between the centroids of two

particles in contact and k the number of unique contacts with the volume.

Once the overlap is found a contact model is used to calculate the inter-particle force,

based on a Hertzian contact model described in Harkness (2009). The force normal to
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the contact plane is calculated directly as a function of the overlap. The tangential force

(shear force) is calculated based off the previous timestep and relative movement and

rotation.

The normal force is expressed as Equation (2.29)

Rc =
√
RaRb (2.28)

Fn = Knδ (2.29)

Kn =
4

3
E

(
Rcδ

F 3
2

) 1
2

(2.30)

F2
∼= 1−

[(
Ra
Rb

)0.0684

− 1

]1.531
(2.31)

The shear spring is expressed as Equation (2.32)

Ks = 8GF1

(
3RcRaFn

4ERb

) 1
3 1

Φ
(2.32)

F1
∼= 1−

[(
Ra
Rb

)0.0602

− 1

]1.456
(2.33)

Φ =


1 + (1.4− 0.8ν) log

[
Ra
Rb

2
3

]
Ra < Rb

1 Ra = Rb

1 + (1.4 + 0.8ν) log

[
Ra
Rb

2
3

]
Ra > Rb

(2.34)

For each particle the resulting forces and moments are summed which give rise to par-

ticle accelerations. The accelerations are then integrated using an explicit integration

scheme to determine the updated particle positions and velocities at the next time step.

Figure 2.34 shows the full algorithm for each time step.

2.5.3 Boundary Conditions

Due to the computational costs involved in modelling large numbers of particles there

are limits as to the size of simulations that can be run. There have been many different
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Figure 2.34: DEM simulation cycle Harkness (2009)

attempts to reduce the number of particles involved within the simulation whilst keeping

computational cost low. One method is to couple both DEM and FEA models together

with DEM controlling local interactions and finite element analysis controlling the far

field interactions and boundary conditions. DEM is suited to smaller scale geotechnical

simulations where the complexity of the system is relatively low such as triaxial cells or

using a representative volume element (RVE). A RVE is used to reduce the size of the

model by assuming the volume is larger enough for any microscopic variations within

the model to be present within the element so that it is representative of the whole soil.

The types of boundary conditions applied to the model will also affect how the model

will behave. A periodic boundary is a technique to increase the number of particles

within the model without increasing the size of the model. This is done by mirroring

the interactions and contacts of one boundary with the corresponding boundary on the

model.
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Figure 2.35: Periodic Boundary Condition Cambou et al. (2008)

2.5.4 Model Set Up

Models have been previously set up in different ways. These have different implications

on how dense the model will initially be, and different types of model (Periodic cell /

simulated membrane) will need different methods.

One method is to allow the objects to fall naturally under gravity and to form a com-

pacted model. This can allow a model to fill a more realistic configuration with a stable

structure.

Another method is to distribute the particles randomly and compress them to a desired

state. This can allow the structure to reach a relatively dense state however there is

not a great deal of control over the final density. If this is done without gravity on

there is also a risk of smaller particles being left floating within the void spaces and not

contributing towards the skeleton.
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2.6 Conclusion

In this chapter has considered relevant literature related to granular materials, the mea-

sures and effects of particle form as well as overview of railway ballast and using the

discrete element method.

The strength of granular materials is not an easy measure to quantify, as it doesn’t follow

a consistent measure as the same soil can have different stiffnesses and peak strength

depending on how dense the soils was or how the particles are arranged and orientated.

A lot of measures around granular materials are based off the macroscopic properties of

the soil with little consideration as to what is happening as a particle scale.

Because of this general macroscopic view little is known about the source of granular soils

strengths and the physical mechanisms that control it. Spherical soils appear to have

the lowest strength and increasing the angularity of a granular assembly also increase

the strength.





Chapter 3

Particle Shape

In the previous chapter many different measures of shape were presented and discussed

however there was no single method that considers the shape of a 3D particle with

many authors choosing to consider form and angularity separate. In this chapter, a

new method for characterising and measuring particles form will be presented. The

new measure is based on the concept that form can be represented by an equivilient

scalene ellipsoid, first discussed in Clayton et al. (2009). This study uses the traditional

three aspects of form, angularity and roughness. Form is measured using the radius of

the equivalent scalene ellipsoid and is split into two independent measures, platyness

and elongation. Angularity is quantified by the difference between the particle and

it’s equivalent scalene ellipsoid. Particle roughness is defined based of the interparticle

coefficient of friction for the material at the contact.

3.1 Definition of Particle Shape

3.1.1 Form

Over the years many different ways to describe particle form have been presented, with

many authors contributing to the debate Aschenbrenner (1956); Folk (1955); Barret

(1980); Zingg (1935); Williams (1965); Wentworth (1922); Wadell (1932); Sneed and

Folk (1958); Krumbein (1941); Dobkins and Folk (1970). One of the most common

methods is to use a simple solid to represent the particle, and assume that the form

of the particle can be determined with reference to the geometry of that solid. The

simplest such solid that can be defined in 3D is a sphere.

The definition of form that we use in this study is detailed in Potticary et al. (2014).

A scalene ellipsoid is used as reference solid; such an ellipsoid is the simplest smooth

shape that allows three independent radii, corresponding to a particle’s longest (L),

intermediate (I) and shortest (S) dimensions, Equation (3.1).

45
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Figure 3.1: Scanned ballast particle

Figure 3.2: Fitted form of ballast particle

(
x

Rx

)2

+

(
y

Ry

)2

+

(
z

Rz

)2

= 1 (3.1)

Rx =
L

2
Ry =

I

2
Rz =

S

2

By considering S , I and L to be coordinates in a three dimensional space, any particle

can be represented by a vector f linking the origin of the axes to point (S, I, L). It can be

reasoned that collinear vectors represent particles with the same form but different sizes.

Clearly the shape (form) of the particle is represented by the direction of f , whereas the

length of f merely quantifies the size of the particle.

To quantify form, the intersection F of f with the S + I +L− 1 = 0 “deviatoric” plane,

which is normal to the spherical axis S = I = L along which all spherical particles

plot. The “deviatoric” plane is then limited for the case of a scalene ellipsoid where

L ≥ I ≥ S. The form of each particle is then uniquely defined by the two in-plane
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Figure 3.3: LIS space

coordinates of F in a frame of reference centred at the intersection P of the spherical

axis. In this way particle form is essentially quantified as the deviation of a particle’s

shape from that of a sphere. These two independent parameters of form, normalised

in the [0, 1] interval for ease of use, are given by Equations 3.2 and are referred to as

platyness (α) and elongation (ζ) respectively.

α =
2(I − S)

L+ I + S
ζ =

L− I
L+ I + S

(3.2)

Ellipsoids that share the same values for both α and ζ are geometrically similar, i.e.

they differ only in size but not shape. All possible scalene ellipsoids plot, on the α-ζ

plane, within the triangle shown in Figure 3.4. The edges and corners of the triangle

correspond to degenerate cases where some of the dimensions are equal and/or zero:

• Sphere α = ζ = 0

• Prolate ellipsoid α = 0, ζ > 0

• Oblate ellipsoid α > 0, ζ = 0

• Flat circular disk α = 1, ζ = 0

• Elliptical disk α+ ζ = 1

• Needle α = 0, ζ = 1
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Figure 3.4: Elongation and Platyness space with description of forms

3.1.2 Angularity

In the previous chapter the majority of the measures of angularity required a 2D pro-

jection of a particle. This is problematic as it involved a choice of which one to use, this

is normally found by allowing the particle to rest on its most stable face. This has some

issues in that the angularity can change depending on which projection is used.

For this study a new measure of angularity is used. Angularity is defined here as the

similarity between particle shape and particle form (equivalent scalene ellipsoid). A

lower value of angularity means that a particle’s shape is closer to its form. For example

a sphere or an ellipsoid would have zero angularity as the form of the particle exactly fits

its shape. As the shape deviates further from its underlying form angularity increases.

Angularity is measured as the volumetric difference between the shape and the form

normalised against the particles volume (Equation (3.3)). The limits of this equation

are between [0, 1].

Angularity =
|
∑
V olumetricdiff |
V olparticle

(3.3)

Angularity = 0,
∑
V olumetricdiff = 0 (The form of the particle exactly matches that

of is shape)

Angualrity = 1,
∑
V olumetricdiff = V olparticle (This is an impossible case as the

volumetric distance will always be less than the volume of the original particle)

Figure 3.5 shows a 2D analogy for angularity. Both the equilateral triangle and the

pentagon have the form of a circle. The outer (blue) area represents the difference in

volume between the particle shape and its form. The pentagon has a closer fit to its

form, compared to the triangle, therefore it has a lower measure of angularity.
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Figure 3.5: Differences in angularity with different perspectives

3.2 Measuring Particle Shape

As it is tedious to measure a particle’s shape by hand, it is advantageous to develop

an algorithm to automate this. A point cloud was used to describe the particle to the

computer. A point cloud is a series of points on the surface or inside the particle given

by a series of (x, y, z) coordinates each representing a voxel (3D equivalent of a pixel)

or a cube. The number of points representing a shape can vary with a higher resolution

the smaller the voxel. Figures 3.6 and 3.7 shows different voxel size and how it relates

to the resolution of the particle.

Figure 3.6: Different resolutions of voxels. 8 x 8

There are two types of points clouds that can be used, one consists of points on a regular

grid representing voxels of the same, and can be used to describe the whole volume of

the particle. This regular grid is normally found from CT-scan data built up using a

series of layers. The other consists of individual points, and can be used to describe the

surface of a particle. An irregular grid comes from a 3D scanners but this is limited to

just the surface data.
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Figure 3.7: Different resolutions of voxels 32 x 32

3.2.1 Form

With particle form being measured using the equivalent scalene ellipsoid which is found

by calculating the best fit ellipsoid. To fit an ellipsoid to a set of points there are

two main approaches least squares fitting and the geometric fit. The first of the two

methods minimises the least squares distance between a point and the surface of the

ellipsoid whereas the second minimises the euclidean distance. The first approach is

considerably simpler to calculate compared the geometric distance as it is a non trivial

problem to find the minimum distance between a point and a surface.

To fit an ellipsoid to a particle, the particle is first turned into a point cloud. The

surface of the point cloud is triangulated using Delaunay Triangulation. This produces

a set of triangles representing the surface of the point cloud. For each of these triangles,

the centroid and surface area is calculated. Using these surface points an initial least

squares fit is found with the centre of the ellipsoid fixed at the centroid for the particle.

The least squares fit ellipsoid as a starting point the fitted ellipsoid is further refined

by minimising the geometric metric distances between the points on the surface of the

particle and the surface of the ellipsoid. To avoid the problem of surface points clustering

together and pulling the fitted ellipsoid each geometric distance was normalised against

the proportion of surface area associated with that point compared to the point cloud

as a whole. This allowed for a single point which represent a large surface area to have

equal significance as many points densely packed and representing a smaller area.

3.2.2 Angularity

The angularity measure used in this study requires the difference in volumes between the

shape and the form. This volume is practically impossible to calculate exactly for a real

particle, however it is possible to approximate using a point cloud representation of the
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particle (similar to the trapezoidal rule for calculating the area underneath a curve). This

is done by assuming that the difference in volume can be discretised into smaller volumes.

To calculate the discrete volume a surface area and the distance between the point and

the ellipsoid is needed. The surface area is discretised by using Voronoi tessellation

allowing for each point on the point cloud to represent a relative surface area. The

distance is then found by calculating the minimum geometric distance between the point

and the ellipsoid. The volume is measured by extruding the associated area along the

distance between the point and the ellipsoid. By summing all of these discrete volumes

an estimate of the difference in volumes is calculated This transforms equation (3.3) to

(3.4).

Angularity =

∑n
i=1 di ×Ai
V olparticle

(3.4)

di = geometric distance between the point i on the surface of the particle and the form.

Ai = the surface area assciated with the point i.

n = number of points on the surface of the point cloud.

Figure 3.8 shows an example of the distance between a point cloud (a square) and its

corresponding form (a circle). The blue lines connecting the surface of the square and the

circle represent the geometric distances between the point cloud and the corresponding

form. Figure 3.9 shows a 2D example of the estimated volumetric distances between the

shape and the form.

Figure 3.8: 2D example of a point cloud for a square and the best fit ellipse

3.3 Comparison of shape

This section compares the measures of shape presented in this chapter and the measures

presented in the previous chapter. Table 3.1 shows the values of different measures of
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Figure 3.9: 2D example of the area (Volumetric in 3D) difference between a
point cloud and the best fit form

particle form for a range L, I and S values. To uniquely describe a particle’s form there

needs to be a minimum of two independent values. The two most popular measures

of particle form are the; ”elongation” and ”flatness” presented in Zingg (1935), and

the ”flatness” and ”flatness to the longest axis” measures presented in Sneed and Folk

(1958). The first measure, commonly referred to as a ”Zingg plot” uses simple ratios to

describe particle form, Equation (3.5) and (3.6). The particle’s form is then classified

using a square plot however it is argued that this distorts the distribution of particle

form, Benn and Ballantyne (1993).

I

L
(3.5)

S

I
(3.6)

The second measure uses a slightly more complicated formula to describe a particles

form, Equations (3.7) and (3.8). This measure was developed specifically to use a ternary

instead of a square plot, to distribute particle forms better. However, these measures

suffer from the problem of not being valid for all particle shapes with a particle’s flatness

becoming undefined when L and S are equal.

S

L
(3.7)

L− I
L− S

(3.8)

The method of classifying particle form presented in this chapter is designed to use

a ternary plot thus allowing for a greater distribution of particle forms. Unlike the
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measure presented in Sneed and Folk (1958), it is valid for all particle forms because of

the equations for platyness and elongation being derived mathematically.

Whilst there is consensus amongst authors on the concept of particle form there is no

such agreement with regards to particle angularity. Angularity is typically described

using either the sharpness of corners or the relative roundness when compared to that

of a circle. However, both of these approaches only apply for 2D particles and thus

information is lost when trying to apply these measures to 3D particles. The reason for

this is because it is trivial to define and measure corners for a 2D particle. There have

been attempts to extend these angularity measures into 3D by considering 2D projects

of a particle but this solution does not consider the whole shape of the particle. The

measure presented here address these issues by considering the whole particle instead of

using 2D projections and does not attempt to measure the curvature.

3.4 Real Ballast Particles

Figure 2.31 shows the measured forms of different ballast particles plotted on a Zingg

plot. Using the L, I and S data from this plot the forms of the ballast particles can be

recalculated using the method of form proposed in this chapter. Figure 3.10 shows the

distribution of forms for Network Rail ballast particles. The forms of ballast particles

fit within the area of 0 ≤ α ≤ 0.5 and 0 ≤ ζ ≤ 0.4.

Figure 3.10: Distribution of ballast forms taken from L, I and S data in Le Pen
(2008)
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3.5 Conclusions

In this chapter a new method of quantifying particle form and angularity was proposed,

using a point cloud representation of a particle (taken from either surface scans or CT-

scans).

The new measure of form uses the concept that a particle can be represented by an

equivalent scalene ellipsoid. This ellipsoid is then further distilled by using the three

radii (L, I and S) to describe the form in terms of particle elongation and platyness.

The new measure for angularity is defined as the similarity between a particle’s shape

and its form. Angularity is found by measuring the volumetric difference between the

shape and form.

These new measures of form and angularity will provide a comprehensive view of shape,

any particle represented by a point cloud can be categorised. Applying these measures

to different sets of particles allows for the effect of each aspect of shape to be studied,

separately and combined.





Chapter 4

Methods and Materials

In the previous chapters a new method for characterising particle shape was presented

which uses a 3D scan of a particle to quantify its shape. The shape of the particle

has an impact on the granular property of the soil. To measure this impact a range of

different shaped particles were systematically chosen and tested, with any differences in

mechanical properties being attributed to the change in shape.

Because of the difficulty of finely controlling the shape of physical particles DEM was

used. Using the concept of potential particles allows for exact control of the shape being

modelled. However, it is limited to convex particles that can be represented by a series

of smooth functions.

The individual aspects of particle shape (form, angularity, and roughness) can be sepa-

rated and modelled numerically.

• Form, using ellipsoids

• Angularity, using superellipsoids and platonic solids

• Combined form and angularity, using scanned ballast particles

To create the particle samples a single shape is selected and fitted to a particle size

distribution of network rail ballast. Once the sample is created they are subjected to

triaxial compression stress conditions.

4.1 Shapes Tested

To study the effect of shape the different aspects (form and angularity) were initially

considered separately. For example when form was studied only shapes with zero angu-

larity were used (ellipsoids). For angularity only shapes with zero form were used (form

57
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of a sphere). After considering form and angularity separately, the combined effect was

then investigated.

Each model consisted of a single shape, thus any changes in the over mechanical prop-

erties could be attributed to that shape alone.

4.1.1 Form

The measure of form, discussed in the previous chapter, is represented by an equivalent

scalene ellipsoid. Using ellipsoidal particles ensures angularity is kept at zero whilst

being able to vary the form. The form of a particle is varied by changing the ratio of its

three independent radii the L, I and S of the particle.

Equations (3.2) transform the particle’s L, I and S into two variables, elongation and

platyness. These variables map to points on the form diagram (Figure 4.1).

Figure 4.1: Form Diagram

To limit the amount of forms tested, a range was set for elongation and platyness based

on the measurements of ballast particles (Figure 3.10).

From the area of real ballast particles a range of forms was selected as shown in figure 4.2.

The corresponding ratio of L, I and S for each form modelled is shown in table 4.1.

4.1.2 Angularity

To study the effect of angularity any residual effects from particle form should be re-

moved. This was done by keeping the form at zero (i.e. elongation and platyness are

equal to zero or the form of a sphere). The sets of shapes that meet this requirement

were superellipsoids and platonic solids.
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Figure 4.2: Graph showing the distribution of forms tested

L I S Platyness (α) Elongation (ζ)

1 1 1 0 0

1 1 0.8 0.143 0

1 1 0.73 0.2 0

1 1 0.5 0.4 0

1 1 0.4 0.5 0

1.26 1 0.45 0.4 0.1

1.35 1 1 0 0.1

1.35 1 0.7 0.2 0.1

1.6 1 0.39 0.4 0.2

1.7 1 0.66 0.2 0.2

1.75 1 1 0 0.2

2 1 0.33 0.4 0.3

2.15 1 0.62 0.2 0.3

2.3 1 1 0 0.3

2.55 1 0.25 0.4 0.4

2.7 1 0.56 0.2 0.4

3 1 1 0 0.4

Table 4.1: Table displaying the form of the various ellipsoids being modelled
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Superellipsoids are defined by the equation (4.1) with the nande parameter controlling

the curvature. A range of superellipsoids are shown in figure 4.3. Due to limitations

of the potential particles method only convex shapes can be represented, thus limiting

nande to be less than 1. By varying the nande parameter different curvatures can be

created along two axes. To limit the effect of different curvatures altering the form a

constant curvature was used, n = e (Equation 4.2).

Figure 4.3: Different superellipsoids
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rz
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2

n = 1 (4.2)

Form was controlled by keeping the independent radii L, I and S equal. By varying

the values of n between the range of 1 (sphere) and 0 (cube), shapes with an increasing

angularity were modelled. Points were chosen within this range and table 4.2 shows the

exponent value and the corresponding angularity measure.

The platonic solids are tetrahedron, cube, octahedron, icosahedron, and dodecahedron.

These shapes have sharp edges between their faces which cannot be represented using

the potential particles method. Therefore faces and edges are represented with a slight

curvature. Figures 4.4, 4.5, 4.6, 4.7, and 4.8 show the respective platonic shapes as

modelled with potential particles. Table 4.3 shows the platonic solids and their measured

angularity.
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Exponent (n) Angularity

1 0

0.9 0.0325

0.7 0.1019

0.5 0.1799

Table 4.2: Table showing the different superellipsoid exponent and the corre-
sponding measure of angularity

Figure 4.4: Tetrahedron

Figure 4.5: Cube
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Figure 4.6: Octahedron

Figure 4.7: Icosahedron

Figure 4.8: Dodecahedron



Chapter 4 Methods and Materials 63

Shape Angularity

Tetrahedron 0.4808

Cube 0.2087

Octahedron 0.1844

dodecahedron 0.0496

icosahedron 0.0429

Table 4.3: Table containing the exponents for different platonic solids and their
measured angularity

4.1.3 Shape

To study the combined effect of angularity and form a particle must contain both. As in

the previous section this is done using superellipsoids, however in this section the form

is not kept at a constant and with angularity being varied.

The forms of the models consisted of a platy form, an angular form and a scalene form.

With the form kept at a constant the exponent is varied between 1 (Ellipsoid) and 0

(Rectangle).

To extend the range of angularity measured a modelled ballast particle from a previous

study was used (Ahmed et al., 2015) (Figure 4.9). This introduces flat faces to model

angularity as was previously done for the platonic solids.

Figure 4.9: Modelled ballast particle

The form of this ballast particle was measured using the method presented in the pre-

vious chapter and an equivalent scalene ellipsoid created. The range of shapes tested is

shown in table 4.4.
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Name Platyness (α) Elongation (ζ) Angularity

Modelled ballast 0.12889 0.2476 0.3854

0.12889 0.2476 0

0.12889 0.2476 0.0322

0.12889 0.2476 0.0992

Platy Particle 0.4 0 0

0.4 0 0.0323

0.4 0 0.099

Elongated Particle 0 0.2 0

0 0.2 0.0323

0 0.2 0.099

Table 4.4: Table containing the form and angularity for shapes containing both
angularity and form

4.2 Particle Size Distribution

To help constrain the models and ensure compatibility of results, the total volume of

solids (vs) contained within each model is kept as close to 0.2m3 as possible This is

consistent with the approach used in physical tests. By keeping vs at a constant for a

range of different shapes, all with different volumes, the number of particles within a

model has to vary.

To avoid issues with mono-disperse models, such as locking, a particle size distribution

(PSD) was used.

The PSD for each model is determined by the British standards, which specifies a band

for an acceptable ballast particle. Figure 4.10 shows the PSD for ballast. Using these

bands a mean sieve size was calculated which the models conform to.

The PSD from the British standards provides a continuous range of acceptable ballast

sizes. To simplify the models, a discrete PSD was used, consisting of five equal sized

bins spaced at 10, 30, 50, 70, and 90% of passed mass. The corresponding sieve size is

then measured using figure 4.10. Table 4.5 shows the sieve size and the proportion of

the mass for that bin.

Passing by Mass (%) 10 30 50 70 90

Sieve Size (mm) 28.5 36.5 40.5 46 52

Table 4.5: Bins and their equivalent mass



Chapter 4 Methods and Materials 65

Figure 4.10: The Particle Size distributions from BS EN (2013)

Once the total amount of volume for each bin is known, the number of particles needed

is given by Equation (4.3).

Number Particles =
V olBin

V olParticle
(4.3)

For the mathematically described shapes such as the ellipsoids, platonic solids, and

superellipsoids the volume is straightforward to calculate. However, for unique ballast

shapes the volume is harder to measure. Using a point cloud representation of a particle,

the volume is estimated by summing all the individual voxel’s volumes. As this is an

estimation the total volume will depend on the of the size of the voxels, with the results

converging with smaller and smaller voxels.

4.3 DEM Model

4.3.1 Potential Particles

This study uses potential particles to model different shaped particles. For simple shapes,

such as spheres and ellipsoids, the representation of the particles surface can be defined

precisely as a single continuous function. The smooth continuous function that describes

a particles shape is called a ”potential function” with the surface being defined when

this function is equal to zero. Whilst simple shapes have a single function defining it’s

surface more complicated shapes can be described by multiple functions, for example

intersecting planes (Figure 4.11). However using these planes to describe a particle

directly would cause there to be a discontinuity between the surfaces so a small radius



66 Chapter 4 Methods and Materials

of curvature is added (Figure 4.12). This ensures that the particle is modelled by a

continuous function without a break from a corner or edge (Figure 4.13).

Figure 4.11: An equilateral triangle constructed using planes, (Harkness, 2009)

Figure 4.12: An equilateral triangle with discontinuitys, (Harkness, 2009)

Contacts between two particles are defined when the two different potential particles are

equal for a given contact point X, Figure 4.14. When two particles are overlapping the

contact can not be described by a single contact point instead the contact is described

based upon the maximum overlap distance between the two particles, Equation (4.4).

f1(x) = f2(X − δnx) (4.4)

x the contact point for particle 1

δ is the overlap between the particles
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Figure 4.13: An equilateral triangle with a radius of curvature, (Harkness, 2009)

n is the unit vector normal to f1

Equation (4.4) is solved using a NewtonRaphson method to find the point of contact

(X) and the overlap distance (Delta).

Figure 4.14: Overlap between two potential particles, (Harkness, 2009)

To calculate the reaction forces between these particles using a spring dashpot model

the overlap distance is needed as well as a contact stiffness. The contact stiffness is

calculated using a Hertzian contact model with the spring stiffness being derived from

the relative curvature of the surface at the point of contact.



68 Chapter 4 Methods and Materials

Properties Value

Density ρ 2700Kg/m3

Surface Friction Angle 30◦

Bulk Modulus (K) 50GPa

Poisons Ratio ν 0.3

Table 4.6: Model parameters

4.3.2 Particle Parameters

Ballast particles are typically composed of crushed granite. To ensure the particles

are comparable to a physical model, the particle’s mechanical properties are equal to

granite. Table 4.6 shows the mechanical properties used in the simulations. The value for

roughness for granite is highly dependant on the surfaces it is in contact with and whether

or not there is any liquid at the contact. Previous studies have shown that increasing

an interparticle friction angle past 30◦ has insignificant change in the mobilised angle of

friction at critical state. Therefore interparticle friction of 30◦ is used.

4.3.3 Model Creation

The DEM models use a rectangular cell rather than a cylindrical boundary used in

physical triaxial tests. The boundary condition applied to the cell are periodic, allowing

for the models to deform whilst keeping a rectangular cell. Using this type of boundary

condition removes boundary effects as the simulation is effectively infinite in all direc-

tions. This however has the disadvantage of not allowing gravity within the model as any

acceleration due to gravity would grow exponentially as the particles entered a freefall.

The initial size of the cell was 4m high, 2m wide and deep; this was to ensure there

is enough free space for the particles are able to be distributed randomly within the

space without coming into contact with each other. Whilst the particles are spatially

distributed randomly they were also given a random orientation. This random position

and orientation is there to reduce any initial bias from the model’s set-up. Any artefacts

of structure created at this stage could persist through out the whole model run. A

scenario where all the particles are aligned would not be representative of a granular

material.

Once the particles have been distributed within the cell, the cell is then compressed

down to a target void ratio of 2.0, Figure 4.15 shows a spherical model at a void ratio

of 2.0.

The cell was then further compressed down to a void ratio of 0.65 using constant velocity

applied to all boundaries inwards (Figure 4.16).
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Figure 4.15: Model creation at a void ratio of 2

Figure 4.16: Model creation at a void ratio of 0.65

Once the void ratio has been achieved, the boundaries were set to be stress controlled

with a target confining pressure of 100kPa. 100kPa was used as an arbitrary value

however this has no effect on the mobilised angle of friction at critical state. Figure 4.17

shows a model once it has reached equilibrium and is in an isotropic state of 100kPa.

After the model has reached an isotropic state, triaxial compression stress conditions

were applied. The lateral boundary stress was kept at 100kPa whilst a vertical velocity

downwards was applied to the top boundary. The models are strained until a vertical

strain of 60% is reached. Figure 4.18 shows a model at 60% strain.

4.4 Model Sensitivity

To test the sensitivity of the models to their initial configurations, identical spherical

models are used with the only difference being their initial starting configuration of

particle and void ratio.
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Figure 4.17: Model creation at under isotropic stress conditions

Figure 4.18: Model whilst being strained

Figure 4.19 shows the mobilised angle of friction against the vertical strain. All these

models initially have different responses to the loading with the densest model having

the stiffest response and the loosest having a less stiff. However they all exhibit the

characteristics of a dense soil by initially reaching a peak strength and reducing. Despite

their initial configurations all models eventually reach a steady state with their mobilised

angle of friction levelling out and remaining relatively constant.

4.5 Model Performance

The model’s simulation time is dependant on two main factors, how complicated the

potential particle is and the number of particles. The main computational cost is related

to the contact detection algorithm which first has to determine if two particles are in

contact. Once a contact has been detected a further algorithm is applied to calculate

the overlap between the particles. Due to the serial nature of the contact detection

algorithm every particle has to be checked against the surrounding particles to check if
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Figure 4.19: Mobilised angle of friction against vertical strain - Spherical models

they are in contact. Therefore increasing the number of particles in the simulation leads

to a significant increase in simulation time. For every contact that has been detected a

numerical solver is applied to calculate the overlap and contact point which increases in

cost as the particle’s shape becomes increasingly complex.

Table 4.7 shows the different simulation times for a range of different models. The

spherical model had the least amount of simulation time, this was due to it’s simple

shape. The increased simulation time between the platy and spherical models is mainly

due to the significantly increased number of particles within the platy model. Comparing

models with roughly equal number of particles such as the platy and tetrahedron model,

and the super sphere and ballast particle models, it can be seen that as the particle

shape increases in complexity the simulation time also increases.

4.6 Validation

The potential particles method has been used in a previous study, Harkness et al. (2016),

in which the author studied the effect of different cell pressures on simulated triaxial

tests. These simulated tests were then compared against representative scaled ballast

laboratory triaxial tests, comparing their mobilised angle of friction and volumetric

strain. The model used a membrane as the boundary conditions and a Hertzian contact

model. The shapes of the simulated ballast particles where approximated using real

ballast particles as a reference. Two different cell pressures were modelled, the first

using 15kPa and the second using 200kPa.
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Figure 4.20 shows the mobilised angle of friction and volumetric strain against vertical

strain for the simulated and physical model with a cell pressure of 15kPa. The results

show a good correlation between both the mobilised angle of friction and the volumetric

strain.

Figure 4.20: Mobilised angle of friction and volumetric strain for a physical and
simulated triaxial test at 15kPa (Harkness et al., 2016)

Figure 4.20 shows the mobilised angle of friction and volumetric strain against vertical

strain for the simulated and physical model with a cell pressure of 200kPa. The results

show less alignment between the physical and the simulated tests. The differences be-

tween the mobilised angle of friction show that the modelled ballast has a stiffer initial

response when compared to the lab sample as well as having a higher peak angle of fric-

tion. At critical state the differences appear to be less pronounced, eventually reaching

a similar critical state mobilised angle of friction.

Figure 4.22 shows the results from a further model in which the author modified the

inter-particle friction angle so that the simulated tests showed comparable results. In

this test the inter-particle friction angle for the 15kPa model was set to 30 degrees and

for the 200kPa model it was set to 40 degrees. This shows an improved correlation

between the laboratory and simulated test for both sets of cell pressures.
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Figure 4.21: Mobilised angle of friction and volumetric strain for a physical and
simulated triaxial test at 200kPa (Harkness et al., 2016)

This study shows that at lower cell pressure, the results from both the simulated and

laboratory triaxial tests are comparable. However, at the higher cell pressure whilst

keeping the material parameters identical, the results show less comparability. Due

to limitations with the Hertzian contact model, in order to achieve comparable results

throughout the whole test, the material parameters need to be calibrated against a phys-

ical test. Notwithstanding this, the models still showed reasonable agreement at critical

state between the physical and simulated tests with both models having comparable

critical state mobilised angle of frictions.

4.7 Summary

In this chapter, a method was presented to investigate the effect of particle shape on

the critical state strength of ballast particles.

To study the effect of particle shape in a systematic way, a wide range of different shapes

were used. These shapes were initially subdivided into distinct groups so that different

effects of form and angularity could be better explored in isolation and combined.
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Figure 4.22: Mobilised angle of friction and volumetric strain for a physical and
simulated triaxial test at 15kPa and 200kPa with different inter-particle friction
(Harkness et al., 2016)

To simulate the effects of different particle shapes the potential particle methods were

used, in which particles are represented by smooth continuous functions. The potential

particles were then distributed within a periodic cell, compressed to form a cohesive

sample, and placed under triaxial compression conditions. The models tried to stay as

close to real lab conditions with the PSD of Network Rail ballast as well as consistent

model set-up, it was impossible to fully replicate owing to the nature of the numerical

simulations.

The sensitivity of the initial starting conditions was also tested using three identical

spherical models with random starting position. The result from the triaxial stress

conditions showed that the differences in initial void ratio lead to differences in initial

stiffness which is consistent with the literature and that after the peak had been passed

all models reached an equivalent steady state.

The potential particles method has been used in a previous study, Harkness et al. (2016),

in which the author studied the effect of different cell pressures on simulated triaxial

tests. These simulated tests were then compared against representative laboratory tests.
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The shapes of the simulated ballast particles where approximated using real ballast

particles as a reference.

The study shows that at lower cell pressures, the results from both the simulated and

laboratory triaxial tests are comparable. However, at higher cell pressures the results

indicate less comparability with the simulated model initially acting stiffer than the

physical test. As the model approached critical state, the physical and simulated tests

converged with both models having comparable critical state mobilised angle of fric-

tions. In order to achieve comparable results throughout the whole test, the material

parameters need to be calibrated against a physical test.



Chapter 5

Particle Form

This chapter studies the results from the particles with just form, i.e. the ellipsoidal

particles. The results are split into three different categories, they are the Platy (Oblate),

Elongated (Prolate) and Mixed particles (Scalene).

5.1 Effect of Platyness (Oblate Ellipsoid)

In this section only the results of the platy particles, forms with no elongation (beginning

with a sphere and becoming more oblate) shall be presented and discussed. The results

being looked at are:

• Mobilised Angle of Friction

• Critical State Strength

• Particle Orientation

• Particle Rate of Rotation

• Contact Analysis

The range of platyness tested ranges from 0 (Figure 5.1) to 0.6 (Figure 5.2).

5.1.1 Shear Strength

Mobilisation of shear strength of a granular material can be described by the mobilised

angle of friction φmob, given by Equation (2.5).

Figure 5.3 plots the mobilised angle of friction against vertical strain for each model.

Whilst peak friction angles differ widely, these are not directly comparable because they

77
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Figure 5.1: Form - Sphere

Figure 5.2: Form - Platy particle

may correspond to different initial relative densities of the granular materials modelled.

Due to the presumed difference in relative density among models, some reach a very

dense packing that results to an almost immediate mobilisation of a very high angle of

friction. Other models exhibit a delayed mobilisation of a rather lower peak.

On the other hand, the friction angle at critical state φ′crit is independent of the initial

void ratio, allowing valid comparisons. Figure 5.4 shows that as the shape of the particles

becomes more platy, critical state strength approximately increases linearly.

5.1.2 Particle Orientation Fabric

At the start of the test, particles have a random orientation. However, as shearing

takes place, particles will generally reorient themselves and may do so along a preferred
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Figure 5.3: Mobilised angle of Friction against Vertical strain - Platy particle

Figure 5.4: Friction angle at critical state against Platyness - Platy particle

direction. The orientation of each (ellipsoidal) particle can be described by a local

system of orthogonal vectors in the directions of its three radii (L, I and S.) The

average particle orientation with respect to the global model axes can be quantified by

a fabric tensor such as that given by Equation (5.1) (Oda, 1972).

Gij =
1

n

n∑
k=1

V k
i V

k
j (5.1)

As there is no single vector that describes the orientation of an ellipsoid, this fabric

tensor can be calculated for the direction of each one of the three radii. Figure 5.5

shows how the G33 component of the fabric tensor corresponding to the S-direction

of each particle varies with vertical strain. G33 essentially quantifies the prevalence of
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Figure 5.5: Vertical fabric orientation for the particle’s S radius against Vertical
Strain - Platy particle

particles choosing to reorient their S-axis parallel to the global z-axis, i.e. with their

flatter face normal to the maximum principal stress.

All tests started off with random particle orientation, shown by a value of G33 ≈ 0.33

in Figure 5.5. As shear strains increased, however, so did G33, showing that on average

particles re-oriented their flatter face normal to the maximum principal stress in the

course of shearing. Also, the rate of reorientation progressively decreases as the model

approaches critical state, presumably because a configuration that can accommodate

further shearing is reached. This general behaviour is observed even for relatively small

values of platyness. In contrast, spherical particles do not show any tendency to re-orient

and G33 ≈ const. throughout.

5.1.3 Particle Rotation and Sliding

As a specimen is strained, the particles will displace and rotate to accommodate this

by rearranging the structure of the granular skeleton. It is expected that, during this

process, particles of different forms will need to translate and rotate in different ways

or proportions. Previous numerical studies of 2D assemblies have shown a link between

particle rotations and sliding contacts; inhibiting rotation led to larger amounts of sliding

and a higher mobilised angle of friction by increasing the amount of energy necessary to

distort the skeleton (Bardet, 1994).

Quantifying rotations and rotation increments in 3D in a meaningful way is more chal-

lenging, but can be simplified using the algebra of quaternions. Rotation can be con-

sidered a quaternion whose real part quantifies the amount of rotation and its three

imaginary parts the direction of the axis about which that rotation takes place. The
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differences of the real part between relatively closely spaced time-steps, so that the axis

of rotation can be considered unchanged. The magnitude of the real component is nor-

malised by the corresponding true vertical strain increment to produce a rate of rotation

with strain given by Equation (5.2).

θ =
dθquat
dεz

(5.2)

Figure 5.6 shows the change in rate of rotation against vertical strain. As straining takes

place all models see an intimidate increase in the rate of rotation, the “acceleration” is

greatest in the spherical particles with a decreasing initial “acceleration” as the particles

become platyier.

These results follow conventional wisdom that spherical particles are the easiest form to

rotate and as platyness increases so does rotational resistance.

Figure 5.6: Mean rate of rotation against vertical strain - Platy particle

Figure 5.7 shows the distribution of rate of rotation within the model at the initial time

step. The yellow patches indicate areas of high rotation and the purple areas of low

rotation. This is because of single particles rotating a larger amount. This figure shows

that there is no uniformity with the amount of rotation which might indicate a shear

band forming within the model.

Figure 5.8 shows the same model with spheres at a later time point near the end of

shearing. The model is significantly deformed compared to the initial configuration and

there are still patches of high rotation showing that only small number of particles are

rotating a large amount.

Figure 5.9 shows the rate of rotation within a model for a platy particle. Compared to

the model for spheres there is a greater amount of rotation within the model however this
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Figure 5.7: A heat map showing the distribution of rotation within a model at
the start of straining - Spherical particle

Figure 5.8: A heat map showing the distribution of rotation within a model at
40% strain- Spherical particle

is because of the smaller sized particles meaning that the individual effects of rotation

would be smaller and so more particles rotate.

Figure 5.10 shows the platy particles in a strained configuration with no real consistent

distribution of rotation seen. Once again indicating that there is no shear band formed.

One property of a shear band is that once it has formed it is persistent. Indicating an

area of increased movement and rotation.

A particle’s contact is considered sliding under Morh’s Collumb dry friction when the

shear force at the contact reaches a limit, described by Equation (5.3). At this point

the contact has developed its maximum shear resistance and the contact slips.
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Figure 5.9: A heat map showing the distribution of rotation within a model at
the start of straining - Platy particle

Figure 5.10: A heat map showing the distribution of rotation within a model at
42% strain - Platy particle

Fshear = Fnorm × µ (5.3)

Figure 5.11 shows the change in proportion of contacts that are sliding against vertical

strain. At the start of straining there are no contacts that are sliding as the model is

stable under isotropic stress conditions. As soon as straining commences the contacts

are no longer in equilibrium and greater shear forces are developed and reach a peak.

At the peak, the least amount of sliding takes place in the spherical model (25% of the

contacts sliding) and an increasing amount of sliding is seen in platyier particles with

the platyiest model having a peak (57% of contacts sliding). The ordering of the forms

remains thought straining.
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Figure 5.11: Proportion of contacts that are sliding against vertical strain

Figure 5.12: Mean proportion of sliding contacts against mean rate of rotation

Spherical particles rotate much more compared to platy particles; the rate of rotation

decreases with increased platyness. As platyness increases there is a increase in the

proportion of sliding contacts at critical state (Figure 5.12). An inverse relationship is

seen between rate of rotation and the proportion of sliding contacts at critical state.

Therefore to some extent the higher critical state strength exhibited by platy particles

is due to platyness suppressing particle rotation and leading to increased interparticle

sliding, a mechanism that in comparison requires more energy to be expended.

5.1.4 Contact Distribution

Contact between two ellipsoids can be any one of six types, depending on which side

of one ellipsoid comes into contact with which side of the other. Figure 5.13 shows the
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different types of contact. The type of any given contact in a DEM simulation can be

determined using the geometry of the contacting particles, the location of the contact

point on their surfaces and geometrical arguments. For degenerate cases of ellipsoids,

where some of the radii are equal, the independent contact types are fewer: for example

only one type of contact is possible between two spheres, where L = I = S.

L ‐ LS ‐ S
I ‐ S

I ‐ IL ‐ S
L ‐ I

Figure 5.13: Different contact types for ellipsoidal particles

Figure 5.14: Distribution of contact type S-S against Vertical Strain

Figure 5.14 shows how the number of S-S (“flat-to-flat”) as a percentage of the total

number of contacts develops over time for each model. For spherical particles the dif-

ference between L, I and S is simply operational and the data merely confirm that all

“types” of contacts occur with the same probability as expected. As the particle shape

becomes platyier the proportion of S-S type contacts increases, to some extent reflecting

the increasing area of “flat” particle surfaces available for contact. The proportion of S-

S contacts in near-spherical particles remains relatively constant (i.e. oscillating around
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Figure 5.15: Distribution of contact type L-S against Vertical Strain

Figure 5.16: Distribution of contact type L-L against Vertical Strain

the same value between 10% and 50% strain). The platyier shapes contacts however

become even more prevalent as the specimen is strained. This continuing formation of

such contacts coincides with a pronounced reorientation of particle flats normal to the

maximum principal stress (Figure 5.5).

Figure 5.15 shows the proportion of L-S (“side-to-flat”) contacts over time for all models.

Similarly to S-S, it remains relatively constant for near-spherical particles. In contrast

to S-S, however, the proportion of L-S contacts for the platyier particles reduces with

straining. The proportion of L-L (“side-to-side”) type contacts, on the other hand,

remains relatively constant throughout for all models (Figure 5.16).

The data suggest that, as the model is strained, platyier particles promote a conversion of

less stable L-S to inherently more robust S-S contacts that are less likely to subsequently
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break. There appears to be a threshold value 0.2 ≤ αcr ≤ 0.3 of platyness, where

a transition takes place to this type of “platy” behaviour for α ≥ αcr, from “near-

spherical” behaviour for α ≤ αcr.

5.1.5 Conclusions

In this section, the results from forms that only contain platyness where presented and

discussed. It was seen that spherical particles have the lowest strength with critical state

angle of friction increasing linearly with platyness. This increase in strength is a result

of a change in deformation mechanism between a rolling regime.

As particles increase platyness, there is an increase in the critical state strength of the

granular material. This increase in strength from changing platyness acts complimentary

to the increase in strength that comes with increasing particle elongation. The origin of

this increase in strength comes from the deformation mechanisms and the efficiency of the

dissipation of energy within the system. This indicates that there are two complimentary

mechanisms taking place.

The first of these mechanism is particle rotation, which at critical state was to decrease as

particle platyness increases. With this decrease in rotation the model still has to deform

this means another mechanism must be taking over the deformation of the material. The

other mechanism is particle translation, i.e. particles translating relative to each other.

This can be described by the proportion of the contacts that are sliding. Whilst the

proportion of contacts sliding will contain an amount of particles that are rotationally

frustrated (i.e. are rotating at differential rates). However it is assumed that the majority

of the sliding is caused by differential translation and not rotation.

As the models become deformed there is also an increase in proportion of S-S contacts

(Flat to Flat). The initial proportion of these contacts could be described by the in-

creased surface area associated with the flat face of play particle. As the modelled is

strained this proportion of contacts increases indicating that S-S contacts are stabler

than any other type of contact.

It is thought that these mechanisms are due to the preferred deformed state. As a

model is strained, the particles tend to lay with their shorted axis mostly vertical with

this effect become more pronounced as the particle shape becomes increasingly platy.

As majority of the particles adopted this orientation allowing for a stacking effect of

the particle structure similar to how other flat circular objects stack such as coins.

This stacking structure would result in a reduced rotation as individual particles would

become ”pinned” by the surrounding particles forcing the deformation to occur as sliding

instead. It is unknown how the model would react if the particles where placed in this

deformed state initially however it is possible that this would lead for a model to reach

a critical state faster.
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5.2 Effect of Elongation (Prolate Ellipsoid)

In this section only the results of the elongated particles, forms with zero platyness

starting from a sphere and becoming more prolate (Figure 5.17), shall be presented and

discussed. The results being looked at are:

• Mobilised Angle of Friction

• Critical State Strength

• Particle Orientation

• Particle Rate of Rotation

• Contact Analysis

Figure 5.17: Form - Elongated particle

5.2.1 Shear Strength

Shear strength of a granular material can be described by the mobilised angle of friction

φmob, given by Equation (2.5).

Figure 5.18 plots the mobilised angle of friction against vertical strain for each model.

As with platy forms peak friction angles differ widely, these are not directly comparable

because they may correspond to different initial relative densities. Due to the presumed

difference in relative density among models, some reach a very dense packing, that

results to an almost immediate mobilisation of a very high angle of friction. Other

models exhibit a delayed mobilisation of a rather lower peak.

Figure 5.19 shows that as the shape of the particles becomes more elongated, critical

state strength increases roughly linearly with elongation.
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Figure 5.18: Mobilised angle of Friction against Vertical strain

Figure 5.19: Friction angle at critical state against Platyness

5.2.2 Particle Orientation Fabric

At the start of the test, particles have a random orientation. However, as shearing

takes place, particles will generally reorient themselves and may do so along a preferred

direction. The orientation of a scalene (ellipsoidal) particle can be described by a local

system of orthogonal vectors in the directions of its three radii (L, I and S).

For elongated forms (prolate ellipsoids) only the L axis is needed to describe the orien-

tation of the particle due to the symmetry around the L axis. Figure 5.20 shows how

the G33 component of the fabric tensor corresponding to the L-direction of each particle

varies with vertical strain. G33 essentially quantifies the prevalence of particles choosing

to reorient their L-axis parallel to the global z-axis
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Figure 5.20: Vertical fabric orientation for the particle’s L radius against Ver-
tical Strain

All tests started with random particle orientation, shown by a value of G33 ≈ 0.33

in Figure 5.20. As vertical strains increased G33 decreased, showing that on average

particles re-oriented their longest axis to lay flat, orthogonal to the maximum principal

stress in the course of shearing. Also, the rate of reorientation progressively decreases

as the model approaches critical state, presumably because a configuration that can

accommodate further shearing is reached. This general behaviour is observed even for

relatively small values of elongation. In contrast, spherical particles do not show any

tendency to re-orient and G33 ≈ const. throughout.

5.2.3 Particle Rotation and Sliding

As a specimen is strained, the particles will displace and rotate to accommodate this

by rearranging the structure of the granular skeleton. Rotations quantified by Equa-

tion (5.2).

Figure 5.21 shows the change in rate of rotation against vertical strain. As straining takes

place all models see an intimidate increase in the rate of rotation, the “acceleration” is

greatest in the form S1 (spherical particles) with a decreasing initial “acceleration” as

the particles become elongated. These results follow convential wisdom that spherical

particles are the easiest form to rotate and as elongation increases so does rotational

resistance. However this gives no indication as to which axis the particles prefer to rotate

about.

Figure 5.22 shows the distribution of rotation within the elongated model at the initial

time step. There are patches of high rotation within the model which correspond to

single particles with high rotation. These areas of rotation are also surrounded with
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Figure 5.21: Mean rate of rotation against vertical strain

areas of higher rotation, indicating that the rotation is being distributed to the rest of

the particles. As with the platy particles there is no evidence of a shear band at a later

time point (Figure 5.23).

Figure 5.22: A heat map showing the distribution of rotation within a model at
the start of straining - Elongated particle

Figure 5.25 shows the change in proportion of contacts that are sliding against vertical

strain. At the start of straining there are no contacts that are sliding as the model is

stable under isotropic stress conditions. As soon as straining commences the contacts

are no longer in equilibrium and greater shear forces are developed and reach a peak.

At the peak, the least amount of sliding takes place in spherical model at 25% of the

contacts sliding and an increasing amount of sliding is seen in elongated particles with

the elongated model having a peak of 60% of contacts sliding. The ordering of the forms

remains through out straining.
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Figure 5.23: A heat map showing the distribution of rotation within a model at
42% strain - Elongated particle

Figure 5.24: Mean rate of rotation at critical state against particle elongation

Spherical particles rotate much more compared to elongated particles; the rate of rota-

tion decreases with increased elongation (Figure 5.24). As elongation increases there is

a reduction in the proportion of sliding contacts at critical state (Figure 5.26). An in-

verse relationship is seen between rate of rotation and the proportion of sliding contacts

at critical state. Therefore to some extent the higher critical state strength exhibited

by elongated particles is due to elongation suppressing particle rotation and leading to

increased interparticle sliding, a mechanism that in comparison requires more energy to

be expended.
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Figure 5.25: Proportion of contacts that are sliding against vertical strain

Figure 5.26: Proportion of contacts that are sliding against particle elongation

5.2.4 Contact Distribution

As with platy particles the types of contacts are sorted based upon the location of the

contact point. Figure 5.27 shows how the number of S-S (“flat-to-flat”) as a percentage

of the total number of contacts develops over time for each model. (For spherical particles

the difference between L, I and S is simply operational and the data merely confirm

that all “types” of contacts occur with the same probability as expected.) As particle

form becomes more elongated there is an increase in the proportion of S-S type contacts.

As particles become increasingly elongated the relative proportion of the contact area

for the s axis will increase. Unlike platy particles there is no significant change in the

proportion of contact types over time.
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Figure 5.27: Distribution of contact type I-I against Vertical Strain - Elongation

Figures 5.28 and 5.29 show the distribution of L-S (“side-to-flat”) and L-L (“side-to-

side”) type contacts over vertical strain. Similarly to S-S type contacts these both see a

reduction in the proportion of contacts in line with the change in proportion of surface

area.

Figure 5.28: Distribution of contact type L-I against Vertical Strain - Elonga-
tion

5.2.5 Conclusions

In this section, the results of forms that only contain elongation where presented and

discussed. It was seen that spherical particles have the lowest strength with critical

state angle of friction increasing with elongation. As with particle platyness the different

deformation mechanisms of particle rotation and particle sliding where considered.
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Figure 5.29: Distribution of contact type L-L against Vertical Strain - Elonga-
tion

As the particles become increasingly elongated the average amount of rotation within the

system decreased. Similarly the proportion of sliding contacts increased, this indicates

that as the particles became elongated the primary deformation mechanic changed from

being purely rotation to being a combination of rotation and sliding. This change in

deformation regime also lead to an increased critical state strength with in the model.

This change in mechanism can be related to the deformed state of the models as critical

state, with the elongated particles tending to having the longest axis horizontal. For

an individual elongated particle on a flat surface, this orientation is stable compared to

a similar particle orientated vertically when subjected to a vertical compressing force.

However with a purely elongated particle this increased stability does not stop any rolling

in the equal axis as it still has a cross section of a sphere in the I-S plane.

The majority of the types of contacts consisted how I-I (side to side). As the models

increased in elongated the initial proportion of side to side type contacts increases in

proportion to the relative surface area associated with a side. It is argued that the I-I

contact provides a stabilising force to a particle due to the support provided from having

multiple contacts spread along it’s base.

Whilst a single elongated particle may not be the most stable of particles due to the

ability to roll in a single direction this can be compensated with a collection of par-

ticles. Due to the random orientation of the initial system of particles there was no

preferred direction on the global X-Y plane orthogonal to the compressing force. As the

model becomes strained there is no evidence of a preferred orientation appearing this

shows that the particles maintain their scattered structure. This scattered structure is

essential to the models strength as there is a potential for the system to align in the

horizontal plane. If the particles aligned in this direction the system would no longer be
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considered elongated particles as if a 2d section was cut through the sample it would ap-

pear as circles. Which has been shown in the literature to be significantly weaker. This

highlights that whilst particle elongation is an important factor in the development of

microstructures within a granular material, it is still dependant on the initial conditions

to allow for these microstructures to form.

The strength of a collection of elongated particles relies on a random orientation or

particles in the horizontal plane. This random orientation helps provide each particle

with increased stability due to multiple particles supporting their bases, reducing the

amount of rotation in the horizontal direction. This reduced rotation means forces

the particles to slide and translate to accommodate the strain, leading to an increase

strength within the model. This forms a lattice type structure similar to a bird’s nest

made out of sticks.

5.3 Effect of Particle Form (Scalene Ellipsoid)

In this section the results for all scalene ellipsoids will be presented, including the results

from the previous sections (Prolate and Oblate ellipsoids). The particles cover a range

of different forms over distributed over the form diagram, figure 4.2. Using the results

and conclusions from the sections on platy and elongated ellipsoids the individual failure

mechanisms will be explored on how they interact.

5.3.1 Critical State Strength

Figure 5.30 shows a heat map of the critical state values taken from the ellipsoidal mod-

els, including the results from platy and elongated particles. This shows that spherical

particles have the lowest strength, as seen before but also that the effect elongation has

is more significant than the effect of platyness. The highest strength is seen in particles

that have both elongation and platyness.

5.3.2 Particle Rotation and Sliding

The effect of platyness and elongation can be thought of as separate mechanisms with

their effects being cumulative. Varying particle elongation appears to have a greater

impact on causing contacts to slide (Figure 5.31) whereas platyness causes the particles

to rotate less (Figure 5.32). Elongation has a significant impact on strength it could be

argued that an increased sliding could lead to an increase in strength.
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Figure 5.30: Friction angle at critical state against particle form

Figure 5.31: Mean rate of rotation at critical state against particle form

5.3.3 Micromechanics

Figure 5.33 compares the orientation of the longest axis of a scalene ellipsoid with equal

elongation and platyness against the same results for a sphere. This shows that the same

effect as seen with elongation of the particle orientating its longest axis perpendicular

to the principal stress is occurring.

Similarly figure 5.34 compares the shortest axis fabric tensor against the vertical com-

ponent of a sphere and as with platy particles the S axis is orientating itself to be in

line with the principal stress. This shows that both effects from particle platyness and

particle elongation are present and are complementary to each other.
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Figure 5.32: Proportion of contacts sliding at critical state against particle form

Figure 5.33: Vertical fabric component for the L radius against vertical strain -
Scalene Particle

5.3.4 Conclusions

In this section the results from models containing pure form (ellipsoidal particles) where

discussed. A systematic approach was used to understand the complete effects of particle

form with a range of ellipsoids with no form (spheres), platy particles (disks), elongated

particles (needles), and a mixture of forms in-between.

As a particle deviates from a sphere there was a resulting increase in critical state

strength. The effect of particle elongation is seen to be more critical factor in increasing

particle strength compared to platyness alone however the highest strength is measured

in particles with both platyness and elongation.
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Figure 5.34: Vertical fabric component for the S radius against vertical strain -
Scalene Particle

For each model two main deformation mechanisms where considered; rotational and

sliding. Typically as a model became stronger there was a higher proportion of sliding

contacts and a decreased amount of rotation within the sample compared to a spherical

particle models.

These two different microstructures complemented each other with particles that had

a mixture of platyness an elongation showing the characteristics of these microstruc-

tures. For a particle that had a mixture of form there is an increase in proportion of

flat-flat type contacts as well as a preference to orientating the flatter face normal to

the major principal stress which is evidence of the similar stacking structure seen in

purely platy particles. The particle’s longest axis was also orientated orthogonal to the

principle stress, in the plane orthogonal plane there is still a random orientation with

no preferential direction indicating that a similar nest like structure has formed. As a

particle’s form increased in both platyness and elongation these microstructures became

increasingly pronounced.

5.4 Conclusions

In this chapter DEM was used to investigate the effect of particle form on critical state

strength. This was done by subjecting a sample to triaxial compression conditions with

a periodic boundary. The results of particle form where initially split into elongation

and platyness so that their effects may be studied separately. After this the full results

from particle form this included particles with both elongation and platyness.

The results from the platy particles showed spherical particles had the lowest critical

state strength and that increasing particle platyness lead to an increase in strength.
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This increase in strength was accompanied by a transition from a rolling deformation

mechanic to a sliding mechanic. This change in mechanism was caused by microstruc-

tures forming with in the model. As a platy model is strained, the particles tend to lay

with their shorted axis mostly vertical. Accompanying this change in particle orienta-

tion there is was an increase in the proportion of flat-flat contacts, flat-flat contacts are

considered stronger than other type of contacts. This leads to a stacking effect of the

particle structure similar to how other flat circular objects stack such as coins.

The results of the elongated particles, it was seen that spherical particles have the lowest

strength with critical state angle of friction increasing with elongation. As the parti-

cles became increasingly elongated the average amount of rotation within the system

decreased, as well as this there was an increase in proportion of sliding contacts. This

change in mechanism indicates that as the particles became elongated the primary defor-

mation mechanic changed from being purely rotation to being a combination of rotation

and sliding. This change in deformation regime also lead to an increased critical state

strength with in the model.

This change in mechanism can be related to the deformed state of the models as critical

state, with the elongated particles tending to having the longest axis horizontal. The

majority of the types of contacts consisted how I-I (side to side). It is argued that the

I-I contact provides a stabilising force to a particle due to the support provided from

having multiple contacts spread along it’s base.

The strength of a collection of elongated particles relies on a random orientation or

particles in the horizontal plane. This random orientation helps provide each particle

with increased stability due to multiple particles supporting their bases, reducing the

amount of rotation in the horizontal direction. This reduced rotation means forces

the particles to slide and translate to accommodate the strain, leading to an increase

strength within the model. This is might form a lattice type structure similar to a bird’s

nest made out of sticks.

The results from the complete range of different shaped ellipsoids particles it was found

that as a particle deviates from a sphere there was a resulting increase in critical state

strength. This result is consistent with the literature where by in 2D simulations study-

ing the effects of particle form circular particles had a lower critical state strength than

other forms. The measure of particle elongation is seen to be more critical factor in

increasing particle strength compared to platyness alone however the highest strength

is measured in particles with both platyness and elongation.

As with the previous results, as a model became stronger there was a higher proportion

of sliding contacts and a decreased amount of rotation within the sample compared to

a spherical particle models.
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These two different microstructures seen in platy and elongated models complemented

each other with particles that had a mixture of platyness an elongation showing the char-

acteristics of both microstructures. As a particle’s form increased in both platyness and

elongation the characteristic of these microstructures became increasingly pronounced.

These results show that particle form helps for these microstructures to develop within

the model. These microstructures help reduce the overall amount of rotation with in a

model and thus force granular particles to displace by sliding over each other increasing

the critical state strength. Whilst these results show that these microstructures develop

whilst the model is strained it is unknown what the impact of a designed initial fabric

might be.





Chapter 6

Particle Angularity

In this chapter the results for angular particles, particles with no form, will be discussed.

The results will be split into two main parts; the superellipsoids and the platonic solids.

Both sets of shapes are considered to have zero form due to the best geometrically

fitting ellipsoid being that of a sphere. The key difference between these two sets of

shapes is how their angularity is displayed; superellipsoids have a smooth continuous

function describing the surface, whereas the platonic solids are defined by multiple planes

describing the faces. This distinction in angularity is key as other measures of angularity

(or roundness) within the literature make the distinction between a sharp edge or corner

and a curve over a surface. The results being looked at are:

• Mobilised Angle of Friction

• Critical State Strength

• Particle Rate of Rotation

To constrain a superellipsoid to the form of a sphere the radius is kept at a constant, this

simplifies the equation for a superellipsoid to (6.1). By varying the values of n between

1 (sphere: Figure 6.1) and 0.3 (blocky sphere: Figure 6.2) a range of different angular

shapes are created. In this chapter the values of n for the shapes tested are given in

Table 6.1.

|x|
2

n + |y|
2

n + |z|
2

n = 1 (6.1)
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Figure 6.1: superellipsoid - n = 1 sphere

Figure 6.2: superellipsoid - n = 0.5 ”blocky” sphere

Type Measure Angularity

Superellipsoid 1 0

0.7 0.0325

0.5 0.1019

0.3 0.1799

Platonic solid Tetrahedron 0.4808

Cube 0.2087

Octahedron 0.1844

Dodecahedron 0.0496

Icosahedron 0.0429

Table 6.1: Shapes tested and angularity
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6.1 Shear Strength

Figure 6.3 shows the mobilised angle of friction against the vertical strain for the su-

perellipsoids. All the models here follow the shape of a densely packed model, with an

initial peak eventually reaching a critical state.

Figure 6.3: Mobilised angle of Friction against Vertical strain - Superspheres

At the critical state there is only a small difference between the strength of near spherical

superellipsoids. The angularity of 0.0325 and the angularity of 0 are almost identical

in value. The biggest difference is seen at the higher angularity but even this effect is

relatively minor.

Figure 6.4 shows the mobilised angle of friction against the vertical strain for the platonic

solids. All the models here follow the shape of a densely packed model, with an initial

peak eventually reaching a critical state.

Looking at the critical state values of the platonic solids a similar trend is seen. The near

zero angularity models have a relatively similar strength but as the angularity increase so

does the strength. The highest strength is seen in the tetrahedron shaped particles, with

an angularity of 0.4808 and a critical state of 26.6, compared to the lowest dodecahedron

with a critical state of 19 degrees.

Figure 6.5 compares these critical state values against the particles angularity for both

the superellipsoids and the platonic solids

There is a general linear relationship between the measured angularity of a particle and

the mobilised angle of friction at critical state. However, each individual model is open

to variation. This matches to similar findings found in the literature where angular

particles where generated with flat planes defining their faces and sharp edges. In this

study the author compared the effect of angularity on the stress ratio at critical state



106 Chapter 6 Particle Angularity

Figure 6.4: Mobilised angle of Friction against Vertical strain - Platonic Solids

Figure 6.5: Friction angle at critical state against angularity

and found that as the measured angularity increased so did the critical state strength,

(Radjäı et al., 2013).

Despite both the platonic solids and the superellipsoid’s having no direct connection

between their shapes, they both appear to follow the same linear relationship. This is

significant as it indicates that the particle’s strength at critical state here is independent

of how the angularity is created.

6.2 Particle Rotation

As in the previous chapter, the average rate of rotation is calculated using equation (5.2).
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Figure 6.6 shows the average rate of rotation for the model against the vertical strain

for the superellipsoid particles. The spherical model has the highest amount of rotation

and the lowest amount of rotation is in the model with the highest angularity. As the

particles become increasingly angular there is a reduction in the overall rate of rotation

within the models.

Figure 6.6: Average rate of particle rotation against vertical strain - Super-
spheres

Figure 6.7 shows the average rate of rotation for the model against the vertical strain

for the platonic solids. The true sphere has the highest amount of rotation and the

lowest amount of rotation for the tetrahedron shaped particle. As the particles become

increasingly angular there is a reduction in the overall rate of rotation within the models.

Figure 6.7: Average rate of particle rotation against vertical strain - Platonic
Solids
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Figure 6.8 shows the average rate of rotation for the model at critical state against the

particle angularity. There is a linear relationship between the amount of rotation at

critical state and the particle’s measured angularity. This follows the same trend as

with the critical state angle of friction.

Figure 6.8: Average rate of particle rotation at critical state against angularity

6.3 Particle Sliding

Figure 6.9 shows the proportion of contacts that are sliding against vertical strain for

superellipsoid particles. The spherical model has the lowest amount of sliding and as

the angularity increases so does the amount of sliding.

Figure 6.9: Proportion of sliding contacts against vertical strain - Superspheres
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Figure 6.10 shows the proportion of contacts that are sliding against vertical strain for

plantonic solids. The icosahedron model, having the greatest amount of faces and lowest

angularity, has the least amount of sliding. The tetrahedron model has the greatest.

Figure 6.10: Proportion of sliding contacts against vertical strain - Platonic
Solids

Figure 6.11 shows the proportion of contacts sliding for the model at critical state against

the particle angularity. There is a linear relationship between the proportion of contacts

sliding at critical state and the particle’s measured angularity.

Figure 6.11: Proportion of sliding contacts at critical state against angularity

6.4 Micromechanics

As with particle form, this increased strength is accompanied by a decreased amount

of rotation and an increase amount of proportion of contacts sliding. This lead to an
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increases in the amount of energy loss within a system and leading to a stable structure.

However unlike particle form, it is impossible to distinguish between the different types

of contacts as these particles are symmetrical and all faces as considered equal.

A previous study modelling platonic solids showed that as a particle becomes increas-

ingly angular stacking microstructures formed, for example cubes tended to align with

their faces touching, which caused an interlocking behaviour reducing the amount of

rotation, (Höhner et al., 2014). It is thought that similar microstructures are developing

within the model as it is strained and the particles rotate and translate. For cubes this

may resemble blocks stack upon each other helping to transfer the compressive load

through the flat faces. Whereas tetrahedrons could form a crystalline structure by the

particles surrounding a single particle being offset by 60 degrees. Figure 6.12 shows

a 2D example with equilateral triangles. Due to their regular nature it is possible to

construct a structure with all the angular particles by connecting the flat faces. These

microstructures would provide an interlocking behaviour causing the transition from the

rotating to sliding mechanism.

Figure 6.12: Example crystalline structure for equilateral triangles

6.5 Conclusions

In this chapter, the results are considered from models containing only angular particles

with zero form. This was done by subjecting a sample to triaxial compression conditions

with a periodic boundary. These shapes consisted of two distinct sets, superellipsoids

(with equal axis) and platonic solids. Both sets of shapes are considered to have zero form

due to the best geometrically fitting ellipsoid being that of a sphere. The key difference

between these two sets of shapes is how their angularity is displayed; superellipsoids

have a smooth continuous function describing the surface, whereas the platonic solids

are defined by multiple planes describing the faces. This distinction in angularity is key
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as other measures of angularity (or roundness) within the literature make the distinction

between a sharp edge or corner and a curve over a surface.

The results from both sets of particles follow a linear relationship between the critical

state angle of friction and the measured angularity, suggesting that there is not a differ-

ence between either sets of particles. This follows similar results to a previous study in

which angular particles where constructed and modelled using flat planes showing that

as particles became increasingly angular the critical state strength also increased.

At critical state the average amount of rotation within a model decreases linearly as the

angularity increases. The proportion of sliding contacts shows the inverse relationship

with the amount of sliding increasing linearly with particle angularity. There is also no

visible difference between the platonic solids or superellipsoids with both following the

same relationships.

As with particle form, this increased strength is accompanied by a decreased amount

of rotation and an increase amount of proportion of contacts sliding. This lead to an

increases in the amount of energy loss within a system and leading to a stable structure.

However unlike particle form, it is impossible to distinguish between the different types

of contacts as these particles are symmetrical and all faces as considered equal.

A previous study modelling platonic solids showed that as a particle becomes increasingly

angular stacking microstructures formed, for example cubes tended to align with their

faces touching, which caused an interlocking behaviour reducing the amount of rotation,

(Höhner et al., 2014). It is thought that similar stacking microstructures are forming in

this model with the interlocking behaviour causing the transition from the rotating to

sliding mechanism.





Chapter 7

Particle Shape

In this chapter the results of particles that contain both angularity and form will be

analysed. Using different base forms for the superellipsoids, a range of different forms

and angularities are explored.

Three base forms are used; a platy form (platyness = 0.4 and elongation = 0), a elongated

form (platyness = 0 and elongation = 0.2), and the equivalent scalene ellipsoid of a

modelled ballast particle (platyness = 0.12889 and elongation = 0.2476).

The platy and elongated forms are, as in the previous chapter, with these forms acting

as a base and the angularity is achieved by using high order superellipsoids, Figure 7.2

and 7.3. For the modelled ballast the equivalent scalene ellipsoid will be the case for

zero angularity with the modelled ballast (Figure 7.1) having the highest angularity.

Figure 7.1: Ballast particle
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Figure 7.2: Elongated Superellipsoid

Figure 7.3: Platy Superellipsoid

7.1 Shear Strength

Figure 7.4 shows the mobilised angle of friction for the superellipsoids with a form of

platyness = 0.4 and elongation = 0 with increasing angularity. All the models act as a

dense soil with an initial stiff response and a sharp initial peak slowly reducing down to

a critical state value. The model with the highest value of angularity has the highest

critical state angle of friction. The other two models having a lower angularity also

having the a lower value of critical state angle of friction, it is harder to distinguish

between the two models due to the fluctuations. This is not unexpected as both models

are similar in shape. The model with zero angularity has the lowest critical state angle

of friction.



Chapter 7 Particle Shape 115

Figure 7.4: Mobilised angle of friction against vertical strain - Platy form

Figure 7.5 shows the mobilised angle of friction for the base form of platyness = 0 and

elongation = 0.2. All models act as a dense soil with an initial stiff response and a sharp

peak value of mobilised angle of friction to eventually reduce down to a critical state.

As the particles become increasingly angular the critical state angle of friction increases

as well.

Figure 7.5: Mobilised angle of friction against vertical strain - Elongated form

Figure 7.6 shows the mobilised angle of friction for a modelled ballast particle as well as

superellipsoids of the same form with lower angularity. The superellipsoid models act

similar to previous models, with a stiff response and a sharp peak to a slowly reduce to

a critical state. The modelled ballast particle, with the highest angularity, has an initial

stiff response but instead of reaching a sharp peak it slowly reaches a peak value and

reduces down to a critical state.
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Figure 7.6: Mobilised angle of friction against vertical strain - Modelled ballast
form

Figure 7.7 shows the critical state angle of friction against the model’s measured angu-

larity. These are grouped by their base form. There appears to be a linear relationship,

as the angularity of the model increases so does the measured angle of friction. The

gradient of the line varies depending on particle form. Angularity has a greater effect

on spherical and platy particles than the elongated particles. The effect of shape on

particle strength is a combination of its form and angularity. These are dependant upon

each other, as shown here by the gradient variations.

Figure 7.7: Critical state angle of friction against particle angularity for different
forms
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7.2 Particle Rotation

Figure 7.8 shows the average rate of rotation for the models of platy form. As the

particles become increasingly angular the amount of rotation also increases. This is

contrary to what has been shown in previous chapters whereby increasing the particle

angularity increased the matrix strength but decreased the amount of rotation.

Figure 7.8: Average rate of particle rotation against vertical strain - Platy form

Figure 7.9 shows the average rate of rotation for the models of the elongated form. All

the models rotate roughly the same amount regardless of how angular each shape is, this

indicates that the increase in strength is not coming from the reduction in the amount

of rotation.

Figure 7.9: Average rate of particle rotation against vertical strain - Elongated
form
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Figure 7.10 shows the average rate of rotation for the models for the ballast particles

and superellipsoids of equivalent form. Here both the superellipsoid with zero angularity

(normal ellipsoid) and the modelled ballast particle behave similar to other models in

the previous chapter. Whereby the increased angularity leads to a decreased amount

of rotation within the model. However the two superellipsoids both have an increased

amount of rotation similar to the figures 7.8 and 7.9. This could indicate that the

superellipsoids are not consistent with previous results or that the simulation has a

limitation with modelling superellipsoids.

Figure 7.10: Average rate of particle rotation against vertical strain - Modelled
ballast form

7.3 Particle Sliding

Figure 7.11 shows the proportion of contacts sliding for the models for platy form. The

models start with an initially high amount of sliding and slowly reduces until the a steady

state value is reached. This steady state value is very similar for all the models, with

the most angular model having a slightly lower amount of sliding taking place compared

to the other two models. This is also inconsistent with the previous chapter whereby

models with increased angularity experienced a higher amount of sliding as well as a

higher critical state angle of friction.

Figure 7.12 shows the proportion of contacts sliding for the model for the elongated

form. The models start with an initially high amount of sliding and slowly reduces until

the a steady state value is reached. As with particle rotation, figure 7.9, all models act

very similarly with very little difference between them at different angularity.

Figure 7.13 shows the proportion of contacts sliding for the models for the modelled

ballast particles and superellipsoids of equivalent form. The models start with an initially
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Figure 7.11: Proportion of sliding contacts against vertical strain - Platy form

Figure 7.12: Proportion of sliding contacts against vertical strain - Elongated
form

high amount of sliding and slowly reduces until the a steady state value is reached. Both

the model with zero angularity (ellipsoid) and the highest angularity (modelled ballast)

behave consistently with previous models The higher strength being associated with a

increase in the proportion of contacts sliding at critical state.

7.4 Micromechanics

In this section different microstructures are explored by studying the different contact

types and particle fabric for the superellipsoidal particles.
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Figure 7.13: Proportion of sliding contacts against vertical strain - Modelled
ballast form

Figure 7.14 shows the proportion of S-S type contacts against vertical strain for the platy

superellipsoid with an angularity of 0.0992. As the modelled is strained the proportion

of contacts with flat-flat contacts increases, indicating that these are stronger contacts.

Figure 7.14: The proportion of S-S type contacts against vertical strain for a
platy superellipsoid

Figure 7.15 shows the Z component of the fabric tensor for the L, I and S of the particles.

As the model is strained the S axis (the flatter face) changes from an initial random

orientation to a vertical orientation. The Z component for the L and I axis initially

starts off with a random orientation and slowly inverse to the S axis, meaning that the

L and I axis are increasingly orientated horizontally.

This shows that the angular platy particles tend to orientate flat face vertically, as

well as having a preference for flat to flat type contacts. These results show the same



Chapter 7 Particle Shape 121

Figure 7.15: The Z component of the fabric tensor for a platy superellipsoid

characteristics as the microstructure seen in the purely platy particles.

Figure 7.16 shows the Z component of the fabric tensor for the L, I and S for the

elongated superellipsoid with an angularity of 0.099. As the model is strained the Z

component of the L axis decreases from an initial random orientation to preferring to

orientate horizontally. The Z component for the I and S axis initial starts off with a

random orientation and slowly increase inversely to the S axis, meaning that the I and

S axis are increasingly orientated vertically. Due to the symmetry of the I and S axis

there is no preference between their orientations. These results are similar to the nest

like microstructure formed in the purely elongated particles.

Figure 7.16: The Z component of the fabric tensor for an elongated superellip-
soid

These results show that particles with both angularity and form show the characteristics

of the underlying form’s microstructure. And as a particle becomes increasingly angular
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there is an increase in particle strength however this relationship between angularity

and change in strength is not uniform for different forms. This suggests that both the

effect particle angularity is dependent on the particle’s form. Angularity amplifying the

effect of particle form by strengthening the underlying microstructure with interlocking.

7.5 Conclusions

In this chapter DEM was used to investigate the effect of particle shape on critical state

strength. This was done by subjecting a sample to triaxial compression conditions with

a periodic boundary. To study the combined effect of form and angularity the particles

were subdivided into three groups based upon the particles measured form. This was

done so that the effect of platyness, elongation, and form with a mixture of elongation

and platyness could be analysis independently. Each group of particles had the same

measured form whilst varying measured angularity.

The results from critical state strength shows that as particles become increasingly

angular there is a subsequent increase in critical state strength. The spherically formed

particles had the lowest critical state strength whereas the mixed formed particles had

the highest critical state strength. This result is consistent with the results from the

previous chapter whereby zero angularity spheres had the lowest strength and mixed

particles had the highest. However, unlike the previous chapter, the results from the

different sets did not follow the same relationship with each set increasing at different

rates. This suggests that the effect of particle angularity is not independent of the

particle form as was originally thought.

The angular platy model had a higher proportion of flat-flat contacts which increased

as the model was strained. They particles had a preference to orientate with the flatter

face vertically. The same microstructure as the purely platy particles whereby platy

particles showed a stacking effect.

The angular elongated model had a preference to orientate with the longest axis hori-

zontal. The intermediate and shortest axis, being equivalent due to symmetry, tended

to orientate vertically. These are the same characteristics as the microstructure seen

previously in the purely elongated particles, whereby the elongated particles formed a

nest-like structure

Investigating the combination of particle form and angularity together, it was found

that both measures act cooperatively in regards to increasing the angle of friction at

critical state. It is also seen that these two effects are not independent of each other,

as the effectiveness of particle angularity is dependent on the underlying form of the

shape. Particles with both angularity and form show the characteristics of the underlying

microstructure. The effect of angularity is to amplify the effect of particle form allowing
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for the microstructure that develops to be strengthened by the interlocking effect of

particle angularity and thus increasing the critical state strength.





Chapter 8

Conclusions

This thesis investigated the effect of particle shape on the critical state strength of

granular materials, specifically railway ballast.

The particles were modelled using DEM and set up in a periodic cell under triaxial stress

conditions (stress controlled lateral boundaries and a constant velocity applied to the

top boundary).

Each model consisted of a single shape, with a PSD equivalent to network rail ballast,

thus any changes to the granular properties could be attributed solely to the shape of

the particle. By investigating what happens when a model reaches the critical state

allows for a comparison between different particle shapes.

A review of the different measures and definitions of particle shape showed that shape

can be split into the categories: form, angularity and surface roughness.

The general shape of a particle’s form is normally measured in the following using

the longest (L), intermediate (I) and shortest (S) dimensions. Particle angularity de-

scribes the general curvature of a particle surface, whilst surface roughness describes

the microscopic undulation on a particle surface and is usually defined based upon the

inter-particle angle of friction.

As discussed in Chapter 3, the previous measures of particle form were found to be

lacking. Therefore, this study proposed a new method to define a particle’s form being

an equivalent scalene ellipsoid. To define the form of the equivalent scalene ellipsoid, the

particle’s L, I and S was considered and two terms were defined, platyness (describing

the flatness of the particle), and elongation (describing the particle length). Using a

combination of these two terms, every scalene ellipsoid can be defined.
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To study the effect of form, particles were used that had form but no angularity i.e.

ellipsoidal particles. These ellipsoidal particles were further subdivided into three cat-

egories: platy particles, elongated particles, and particles that contain both elongation

and platyness.

To study the effect of particle platyness, which ranges from a sphere to a 2D disk, a

selection of particles were chosen and modelled. It was found that as the platyness of

the models increased there was a linear increase in the critical state strength. Strength

is controlled by the micro-mechanics within the model, causing microstructures to form.

The increased critical state strength was linked to a decrease in the average rate of

rotation within the model and an increase in the proportion of sliding contacts; this led

to additional energy being expended. This was due to the platyier particles preferring

to align their flatter faces normal to the major principal stress. These particles also

preferred to form ”flat-to-flat” contacts, thus causing the particles to stack and form a

strong microstructure.

By looking at the effect of particle elongation, which ranges from a sphere to a 1D

line, a selection of particles were chosen and modelled. As with particle platyness, by

increasing particle elongation, starting from that of a sphere, there is a linear increase

in critical state strength. The models showed that elongated particles have a preference

to orientate so that their longest axis is orthogonal to the principle stress. This led

to a nest-like structure forming, helping to support and distribute the load efficiently.

Therefore, each particle was supported by multiple contacts allowing the load to be

distributed and increasing the strength of the model.

To understand the combined effect of elongation and platyness a distribution of scalene

ellipsoids was tested. The models showed that spheres had the lowest critical state

strength and any increase in elongation or platyness led to an increase in strength. The

measure of elongation had a greater effect on increasing the strength when compared

to that of platyness. The highest critical state strength was shown in particles that

had both elongation and platyness. This increase in strength was also accompanied

by a decrease in the average rate of rotation within the model and an increase in the

proportion of sliding contacts. The particles with both elongation and platyness showed

a combination of the elongated and platy microstructures. The model showed that the

longest axis preferred to orientate itself horizontally and its shortest axis vertically, as

well as having an increased proportion of S-S type contacts.

As discussed in Chapter 3, the existing measures of particle angularity are limited to

only using 2D projections of a particle’s outline. Thus all previous measures of particle

angularity do not take into account the full shape of the particle, leading to a loss

of information. This study introduces a new measure of particle angularity using the

complete particle shape. This new measure for angularity is defined as the difference
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between a particle’s shape and its form. Angularity is categorised by measuring the

volumetric difference between the shape and the form.

To understand the effect of angularity, particles with zero form and a range of measured

angularities were studied, these consisted of two sets of particles: the platonic solids and

superellipsoids with equal radii. Within the model the platonic solids were described by

a series of planes intersecting a sphere and the superellipsoids by a smooth continuous

function. Regardless of the methods used to describe angularity both sets of particles

followed the same linear trends. The models showed that shapes with zero angularity

had the lowest critical state strength; as angularity increased so did the critical state

strength. The increased critical state strength was also accompanied by a decrease in

the average rate of rotation and an increase in the proportion of sliding contacts, which

led to more energy being expended. This was due to particle angularity causing an

interlocking effect between the particles improving the stability of the contacts.

To look at the effects of angularity and form together, the full effect of shape, a selection

of base forms was used. For the base forms different angularities were achieved by using

superellipsoids and a modelled ballast particle. The modelled showed that both measures

of angularity and form interacted cooperatively to increase critical state strength, with

the lowest strength being that of a sphere (no form or angularity). All the angular

superellipsoids showed the same microstructures as the platy and elongated particles.

It was shown that the effectiveness of angularity is dependent on the particle’s form,

whereby angularity increased the effectiveness of the microstructures. This means that

the measures of angularity and form presented here are not independent measures as

was previously thought.

To extend these investigations further a greater number of different shapes would be

required. These shapes could consist of randomly created particles with similar forms

but different angularities. This would allow for a greater understand of the effect form

and angularity have on each other. Another approach would be to calibrate the existing

models by using physical tests, such as using manufactured particles of certain shapes,

for example ellipsoids or platonic solids. These physical tests could then be used to

calibrate the DEM method so that the models better reflect the initial response under

loading allowing for an investigation into stiffness.
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Boton, M., Azéma, É., Estrada, N., Radjäı, F., and Lizcano, A. (2013). Quasistatic

rheology and microstructural description of sheared granular materials composed of

platy particles. Physical Review E, 87(3):032206.

BS EN (2013). BSI Standards Publication Aggregates for railway ballast BS EN

13450:2013 BSI. BSI Standards Limited 2013.

129



130 REFERENCES
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Corey, A. (1949). Influence of shape on the fall velocity of sand grains. PhD thesis.

Cox, E. (1927). A method of assigning numerical and percentage values to the degree

of roundness of sand grains. Journal of Paleontology, 1(3):179–183.

Delaney, G. W. and Cleary, P. W. (2010). The packing properties of superellipsoids.

EPL (Europhysics Letters), 89(3):34002.

Delaney, G. W., Hilton, J. E., and Cleary, P. W. (2011). Defining random loose packing

for nonspherical grains. Physical Review E, 83(051305).

Dobkins, J. F. and Folk, R. L. (1970). Shape development on Tahiti-Nui. Journal of

Sedimentary Petrology, 40(4):1167–1203.

Donev, A., Stillinger, F. H., Chaikin, P. M., and Torquato, S. (2004). Unusually Dense

Crystal Packings of Ellipsoids. Physical Review Letters, 92(25):255506.
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Radjäı, F. and Richefeu, V. (2009). Contact dynamics as a nonsmooth discrete element

method. Mechanics of Materials, 41:715–728.
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