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On Classification of Acceleration and its Components in Computer Vision for Heel Strike

Detection

Yan Sun

In some forms of gait analysis, it is important to be able to localise the heel within the frame in
which the strike occurs. According to the motion characteristics of heel strikes, radial acceleration
is ideal for estimating the spatio-temporal position of heel strikes in standard image sequences.
Previous research of motion analysis has generally not yet considered the basic nature of higher
orders of motion such as acceleration. Hence, in this thesis, acceleration first is computed in a
principled manner by extending Horn and Schunck’s algorithm for global optical flow estimation.
We then demonstrate an approximation of the acceleration field using an alternative established
optical flow technique, since most motion in real world violate the global smoothness assumption.

Further, we decompose acceleration into radial and tangential based on geometry.

Compared with previous heel strike detection techniques, acceleration not only improves the
precision significantly but also enables detection in real-time. Our new method also shows a good
robustness in performance analysis with respect to noised image and occlusion. Acceleration is
propagated as a general motion descriptor, it shows the capability for differentiating different types

of motion both on synthesised data and real image sequences.

Beyond acceleration, the higher-orders of motion flow and their continuant parts are preliminarily
investigated for further revealing the chaotic motion fields. Naturally it is possible to extend this
notion further: to detect higher orders of image motion. In this respect we show how jerk and snap

can be obtained from image sequences. The derived results on test images and heel strike detection



illustrate the ability of higher-order motion, which provide the basis for the following research and

applications in the future.
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Chapter 1 Introduction

Chapter1 Introduction

1.1 Motivation

Gait, the manner in which a persons’ body moves when walking, is periodic. Most analysis methods
rely on accurate gait phase detection, for example heel strike, foot stance and swing [1], [2]. It can
be important to be able to capture when heel strikes occur in gait analysis; this is especially true in
model-based recognition and forensic identification [3]. In addition, in terms of the video analysis
of gait, localising where the heel strikes on the floor is essential since the stride and step length can
be derived from the position of the heel [4]. A heel strike refers to the moment that the heel first
strikes on the floor during walking. When the heel approaches the strike, the foot has significant
radial acceleration which is centred at the heel. According to this inherent motion feature, radial
acceleration is perfect for detecting the spatio-temporal positions of the heel strikes. There have
been a number of physics-based gait analysis approaches using accelerometers and gyroscopes to

detect the acceleration and angular velocity, to determine walking phases [1], [3].

Previous image-based heel strike detection methods usually accumulate the gait sequences and
find the points where have the most desired features since the striking foot is stationary for almost
half a period during one gait cycle [4], [5]. In addition, these techniques require the whole image
sequence to determine the time and location, leaving detection in real-time an open problem. To
extend heel strike detection to standard image sequences and enable near real-time analysis, a new
generic motion descriptor based on optical-flow based estimation of acceleration fields,

acceleration flow, is introduced in this thesis.

For heel strike detection, we propose an algorithm to classify motion within image sequences and
subsequently decompose it into radial and tangential components. The key frame of heel strike can
be determined by the quantity of acceleration flow within the Region of Interest (ROI), and the
position of a heel strike can be found from the accumulated rotation centres caused by radial
acceleration. Our approach has been tested on a number of datasets which were recorded indoors
and outdoors with multiple views and walking directions for evaluating the detection rate under

various environments.

The results of heel strike detection system suggest that acceleration is a distinctive motion feature
and worthy of further investigation as a baseline approach. Nowadays, computer vision approaches

can differentiate objects in motion from those which are static, but little more [6], [7]. An image is
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a snapshot in which all motions are frozen in time. This implies that video involves many motions
which coalesce to form the image sequence. In reality, there are many different types of motion: in
the simplest sense, there are objects that move with constant velocity and some that move with

acceleration; however, in reality, many objects have more complicated motions. This thesis is the

first systematic research aimed to disambiguate different levels of motion.

e g

(a) A walking man (b) A dasher

Figure 1.1 Different types of motion®.

Figure 1.1 illustrates the diversity of motion, the man in the left image is walking with constant
velocity in general and the athlete on the right is speeding up, or, accelerating. Moreover, each part
of both subjects is experiencing different types of motion, especially the legs. When a person is
walking the body moves at approximately a constant velocity, and one of the legs is stationary to
support the body while the other one is swinging forward like a pendulum, as shown in Figure 1.2.
These motions can be identified by acceleration as once the status of an object has changed, there
must be acceleration. Therefore, we hypothesise that we can find the legs of a person’s body and

discriminate the supporting leg and the swinging one by extracting their acceleration features.

LA AR

Figure 1.2 A walking cycle [8].

Subsequently, we explore the higher orders of motion and their constituent parts in the flow fields.
The experimental results of a synthetic and real-world test images provide different characters

among acceleration, jerk and snap. Then jerk and snap are applied in heel strikes detection again,

1 Images are taken from: http://news.stanford.edu/2014/04/24/walking-vs-sitting-042414/ and http://www.wisegeek.com/what-are-
the-different-types-of-track-spikes.htm#fman-running-on-stret
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the experimental results demonstrate the algorithm is ready for developing new applications in

computer vision.

1.2

Contributions

Within this thesis, we have made the following contributions:

1.3

We extend the original Horn-Schunck optical flow technique to focus on acceleration. Our
new analysis retains the elegance of Horn and Schunck’s formulation with an approach that
isolates only acceleration.

Our analysis shows the constraints within the algorithm to be too stringent for application
in real-world video footage, so we explore the use of the other state of art optical flow
algorithms as a basis for approximating acceleration with wider applicability in general
video.

Acceleration is decomposed into its constituent parts: radial and tangential acceleration.
We use radial acceleration to localize the frame and position of heel strikes for gait analysis.
This new method only needs three frames to determine the event compared with previous
techniques which need the whole sequence.

The experimental results show that our method can increase the precision of heel strike
location significantly, especially when combined with simple classification methods like
mean shift.

The sensitivity of our approach to different imaging conditions is evaluated via a wide range
of datasets, as well as different types of distortion: visual angle, lighting condition, Gaussian
noise, occlusion and low resolution.

Compared with other heel strike detection techniques, radial acceleration is less sensitive
to Gaussian noise noticeably among the three types of noise, which would probably appear
in real CCTV footages, whereas more sensitive to the occlusion in the detection region.
The change of acceleration, jerk and snap flow, and their constituent parts are preliminary
investigated on both synthetic and real images, the results show the potential for further

application and study.

Publications

The following publications have resulted from the research presented in this thesis:

Y. Sun, J. S. Hare and M. S. Nixon, ‘Detecting Heel Strikes for Gait Analysis through

Acceleration Analysis’, IET Computer Vision. vol. 12, no. 5, pp. 686 — 692, 2018.
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e Y. Sun, J. S. Hare and M. S. Nixon, ‘Analysing Acceleration for Motion Analysis’, in
International Conference on Signal Image Technology & Internet Based Systems, Jaipur,

India, 2017, pp. 289 — 295.
e Y.Sun,J.S.Hareand M. S. Nixon, ‘Detecting Acceleration for Gait and Crimes Scene Analysis’,

in International Conference on Imaging for Crime Detection and Prevention, Madrid, Spain,
2016, pp. 1-6.
e Y. Sun, J. S. Hare and M. S. Nixon, On Parameterizing Higher-order motion for behaviour

recognition. (To be submitted)

1.4 Thesis Outline

This thesis is arranged as follows: Chapter 2 gives a brief introduction of gait analysis and optical
flow, four benchmark algorithms are compared to demonstrate the advantages and weakness of
optical flow algorithms. Our acceleration algorithms and the experimental results on both synthetic
and real-world images are presented in Chapter 3. Chapter 4 describes and evaluates the
methodology of detecting heel strike via radial acceleration. In Chapter 5, optical flow is
decomposed into higher orders and their constituent parts, the analysis and results are ripe for

further investigation. Chapter 6 concludes our work and explores potential future directions.
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Chapter 2 A Review of the State of the Art

2.1 Introduction

The heart of this thesis is centred around the idea of using acceleration as a feature for detecting
heel strikes. In this thesis the acceleration algorithm is built based on optical flow. This chapter first
introduces gait, and we stress the importance of heel strike in the analysis also briefly review the
state of the art techniques. The second part reviews optical flow algorithms, then introduces the
principles of some representative optical flow algorithms and compares their performances on

synthetic and real images.

This chapter is arranged as follows: Section 2.2 introduces gait analysis and previous heel strike
detection algorithms. Section 2.3 gives a general review of optical flow. Section 2.4 describes the
most classical techniques. Section 2.5 introduces the synthetic images for illustrating the simple
flow fields, as well as the general visualization methods and error measurements of flow. The
optical flow techniques are evaluated and discussed in Section 2.6. In the end, Section 2.7 concludes

this chapter.

2.2 Gait Analysis and Heel Strike Detection

2.2.1 Gait Analysis

Gait analysis is the systematic study of human walking. It has been mainly applied in two fields:
medical consultation for conditions which affect walking [9] and human identification [10]. Clinical
gait analysis usually uses physical data to analyse the walking pattern of patients for diagnosis and
treatment. The data is collected by wearable or non-wearable sensors, like accelerometer and

treadmill.

In human identification, as a behavioural biometric which obtained at a distance from the camera
gait is hard to hide or disguise. It is the most reliable biometric in the criminal investigation since it
is less sensitive to the low quality of images compared with other biometrics. It has been
demonstrated that gait can be used in criminal investigations either as the body [11] or the gait

measurements [12]. Figure 2.1 shows a CCTV footage of an Australian jewellery shop murder: the
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target covered his face during the crime, however he was recognised by his gait after it was found

that he had come to the jewellery shop earlier that day.

Figure 2.1 Murder who was recognised by his gait.

The approaches to analysing gait can be classified as three types based on the sensor modalities
that are used to make measurements: physical-sensor based, depth image based and standard
image based. Physical-sensor based techniques measure the physical data extracted from gait,

mostly kinetic parameters and underfoot force/pressures [25],[26].

The physical-sensors are classifiable as wearable and non-wearable. The most popular wearable
sensors are accelerometers and gyroscopes [1], [13]. Milica et al. [14] use accelerometer to
measure the angle of leg segments and ankle. In Rueterbories et al.’s work [15] they use gyroscopes
to capture the angular displacement, or Coriolis force since it is the response to a rotating particle,
to discriminate gait events. In the modalities of underfoot force/pressure sensors, researchers use
the features of Ground Reaction Forces (GRFs) for analysing gait and it is commonly considered as
the golden standard for gait phase partitioning [3]. In the recent research into GRF, Derlatka use
Dynamic Time Warping (DTW) to measure the stride difference and then use k-Nearest Neighbour
(k-NN) to classify people [16]. Later Derlatka and Bogdan partitioned the GRF stance into five sub

phases to achieve a higher classification rate [17].

Depth, or RGBD image, based gait analysis techniques have expanded since the introduction and
wide availability of PrimeSense and Kinect sensors. These measurements use the distance between
the body parts and the sensor in depth images to analyse gait [18], [19]. Lu and et al. [20] have built
a gait database named ADSC-AWD based on Kinect data. O’Connor measure the acceleration of the

body using Kinect.

Standard image-based gait recognition has been extensively studied. Most approaches are targeted
at recognition of individual humans, using gait as the biometric signature. The general framework
usually consists of background subtraction, feature extraction and classification [21]. The

approaches can be classified into two catalogues: model-based and model-free. Model-based

6
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approaches have an intimate relationship with the human body and its motion. Switoriski extracted
the velocities and accelerations across the path of skeleton root element, feet, hands and head as
the gait feature [22]. Yam et al. presented an analytical gait model which extract the angle of thigh
and lower leg rotation without parameter selection [23]. Model-free approaches concentrate on
the body shape or the motion of the entire gait process and thus could be used for the analysis of
other moving shapes or mammals. Bobick and Davis [24] employ the motion-energy image and
motion-history images of silhouette, Han and Bhanu [25] use the gait-energy image for recognition.
Model-based methods are view-invariant and scale-invariant but the computation cost is relatively
high and the approaches can be very sensitive to image quality. Model-free approaches are less
sensitive to the image quality with lower computation cost though they are not intrinsically robust

to variation in viewpoint and scale [21].

2.2.2 Heel Strikes Detection for Gait Analysis

Gait is periodic and most analysis methods relies on accurate gait periods detection. The
components of one gait cycle are shown in Figure 2.2: a gait cycle is defined as the interval between
two consecutive heel strikes of the same foot. A heel strike refers to the moment the heel first
strikes the floor. Suppose one gait cycle starts from the heel strike of right foot, the right foot
rotates on the heel to touch the floor (‘stance phase’) to support the body while the left foot is
swinging forward (‘swing phase’) until the left heel strikes the floor. Then the roles of the two feet
switch, the left foot remains flat on the floor whilst the right foot is swinging forward. When the

right heel strikes the floor again, then a gait cycle is complete.

22 AP

0% 50% 100%
Rt Heel Strike Lt Heel Strike Rt Hcell Strike
Rt Stance Rt Swing
Lt Swing Lt Stance
— Duration of Total Rt Walking Cycle —

E Single-Limb Support
= Double-Limb Support

Rt Stride Length
Rt-Lt Step Length Lt-Rt Step Length

Figure 2.2 The temporal components contained in a gait cycle and step and stride length during the

cycle [8].
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Hence the accurate and efficient detection of heel strike is essential because it partitions walking
sequences into cycles composed of stance and swing phases [26]. In addition, the stride and step
length can be derived from the stationary position of the heel at the moment of strike. Heel strikes

also show outstanding ability to disambiguate walking people from other moving objects.

Figure 2.3 Foot model of walking [27].

The striking foot is stationary for almost half period during one gait cycle as shown in Figure 2.3.
Therefore, previous standard image-based heel strike detection methods usually accumulate the
gait sequences based on empirical analysis and find the areas where has the most desired features.
Bouchrika and Nixon [28] extract low-level features, corners, to estimate the strike positions. They
use the Harris corner detector to detect all the corners of each frame and obtain the corner
proximity image by accumulate proximity algorithm. The positions of heel strike on the ground

locate around the densest areas of accumulated corners.

—+— head

Y position

0 20 40 60 80 100 120 140
# of frame

(a) The vertical positions of the (b) When the heel strikes (c) When the feet are crossing

head, left leg and right leg [4]

Figure 2.4 The relationship between the trajectories of head with gait events.

Jung and Nixon use the movement of the head to detect the key frame (the frame in which the heel

strike takes place) [4]. When a person is walking, the vertical positions of the head in the sequence
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is similar to a sinusoid, shown in Figure 2.4 (a). When the heel strikes, the stride length is maximal,
and so the head is at the lowest point; when the feet are crossing, the head is at the highest point.
Similar to Bouchrika’s method, Jung and Nixon accumulate the silhouettes of the whole sequence

to find the positions where they remain the longest, as shown in Figure 2.5.

200 300 400 500 600 700

0 100

Figure 2.5 Silhouette accumulation map for a gait sequence [4].

2.3 A Review of Optical Flow algorithms

The concept of optical flow was first described by James J. Gibson in 1950. Optical flow denotes the
apparent motion between the observer and the observed object caused by relative motion [6]. It
has been widely used in many fields of image processing such as motion estimation and video
compression. For an image, optical flow is the change of brightness patterns. Figure 2.6 (a) and (b)
are two successive frames and (c) is the optical flow between them. Thus, many aspects of scene
motion can be determined from optical flow: the people and the train are highlighted by optical

flow whereas the static objects (e.g. the trees) are not.

(a) Framen (b) Framen + 1
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(c) Optical flow field

Figure 2.6 The optical flow between two consecutive frames?.

Optical flow estimation is one of the earliest and still active research topics in Computer Vision.
Many methodological concepts have been introduced and the performances have been improved
gradually since Horn and Schunck proposed the first variational optical flow estimation algorithm
however, the basic assumption of optical flow did not change too much [6]. Most state-of-art
approaches estimating optical flow by optimizing the weighted sum of two terms: a data term and

a prior term [7]. Mathematically:

I =1laata + alprior (2.1)

23.1 Data Term
23.1.1 Brightness Constancy

The fundamental assumption in optical flow is Brightness Constancy [29], assuming that the
intensity at position (x,y) in frame tis I(x, y, t), the constraint is that the intensity of this point is

constant between successive moment:

I(x,y,t) = I(x + Ax,y + Ay, t + At) (2.2)

the change of the intensity can be expanded by Taylor series approximation:

ol ol ol (2.3)
I(x + Ax,y + Ay, t + At) = 1(x, y,t) + — Ax + — Ay + — At + 0(Ai?
(x +Ax,y + Ay, ) =1(x,y,t) 32 0% 3y y 6tAt 0(Ai%)

If At - 0,

2 Video is taken from: http://www.vision.ee.ethz.ch/datasets extra

10
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) | ) | ) | (2.4)
—dx+—dy+—dt=0
x5 T
After dividing by dt:
dldx dldy oI 0 (2.5)

oxdt Toyde "ot

. d d . . . .
If using u and v to denote d—f and d—jt} separately, gives the Optical Flow Constraint equation:

(L, L) (w,v) = -1, (2.6)

There are two unknowns, u and v, with only one constraint. Therefore, in order to solve the
problem, the prior term need to be introduced to the model (will be introduced in 2.3.2). The
alternatives of data term are the correlation between frames and colour space. Sun [30] use fast
cross-correlation to compute dense flow and Zimmer and et al. incorporate HSV in their data term

[31].

2.3.1.2 Penalty Function

For estimating the flow, one key step is the penalty function to the violations. The most common

choice is L2 norm [29], which simplifies the computation:

e = ﬂ- (Ixu +Lv+ It)zdxdy (2.7)

Equation (2.7) corresponds to Gaussian assumption therefore it is not robust on the boundaries if
there is occlusion. Black and Anandan [32] propose a framework based on robust estimation which

is adapted to some later work [33], [34]; another popular penalty function is L1 norm [33], [35].

2.3.1.3 Other Features

Apart from the intensity of the frames, robust pairwise features also can be used for constructing
the motion fields. Brox and et al. combine gradient constancy with brightness [35]; DeepFlow [36]
and SIFT flow [37] both use Scale-Invariant Feature Transform (SIFT) for matching which performs

the best among the illumination invariant features.

11
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2.3.2 Prior term

To make the problem well-posed, an additional constraint needs to be introduced to the algorithm.
The most widely used prior term is smoothness, which assumes that the neighbouring pixels (which
belong to the same object) have a similar motion [29], [38]. If using L2 norm, the penalty function

o= J1(G) +G) G + G Yoo

Besides first order, Trobin and et al. use second-order prior to achieve high-accuracy optical flow

[39], Wedel and et al. adapt rigid motion as their prior [33].

233 Learning Methods

It is hard to ignore learning algorithms in the upcoming optical flow approaches. Sun and et al. [40]
learn a statistical model of both the error of brightness and smoothness constrains. FlowNet [41]
uses convolutional neural networks (CNNs) to predict optical flow from a large quantity of training

data.

Apart from the above review, numbers of optimization improve the performance of optical flow
algorithms, however this is beyond the scope of this thesis. In the next section, we will give details

and compare the performance of four benchmark algorithms among different types.

2.4 Selected Optical Flow Algorithms

2.4.1 Differential Method

Horn and Schunck developed the first differential approach to computing optical flow in 1981. It
represented the beginning of variational techniques in Computer Vision [42]. Nowadays most
upcoming algorithms still build their algorithms based on Horn-Schunck’s theory. They estimated
optical flow from the spatial-temporal derivatives of image intensity based on brightness constancy
and motion smoothness, which have been introduced in 2.3. Combing Equation (2.7) and (2.8), the
problem becomes one of minimizing the change of the optical flow along both the horizontal and

vertical directions:

12
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e=aeste.= ff (a(Vzu +V20) + (Lu+ Ly + It)z) dxdy (2.9)
where «a is the factor of motion smoothness. The solution, the velocities (u, v), is obtained by

minimizing the total error [29].

2.4.2 Region Based Method

Block Matching is one of the most fundamental methods in region based matching techniques. The
algorithm assumes that the intensity of every single pixel remains constant between the successive
frames if the motion is continuous (there is no occlusion) [6]. Optical flow can be easily computed

by determining which block best matches the current block in a selected neighbourhood.

The implementation of a region based matching technique can be achieved by minimizing the sum-

of-squared difference (SSD) between blocks in the image [43]:

SSD = Z (I(x + Ax,y + Ay, t + At) — 1(x,y, t))2
s (2.10)

where I(x, y, t) is the pixel intensity of position (x, y) at frame t. The matching block is that where
the error is minimum within the search area, and the optical flow is therefore the change in position

between the current block and the matched block [44].

243 Dense Optical Flow

Farneback developed the most popular dense optical flow algorithm based on polynomial
expansion [45]. In the algorithm, the neighbour of each pixel can be approximated by polynomial

expansion:

f&)~xTAx+bTx + ¢ (2.11)

wherex = (* ¥)T, Ais a 2x2 matrix and b is a 2x1 vector. Optical flow assumes that the image
intensity is constant. Therefore, if the displacement between f; (x) and f, (x) is d:
LX) =fix—d)=x—-d)TA,x—-d)+bI(x—d) +¢; =xTA,x+bix+c, (2.12)
A2 = A1

b, =b, — 2A;d (2.13)
C2 = dTAld - b’{d + C1

13
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Thus if A;is non-singular, the displacement d is:

1
d=—ZA7'(b; — by) (2:14)

244 DeepFlow

DeepFlow has emerging as a popular optical flow technique in recent years due to its excellent
performance on large displacement estimation and non-rigid matching and was developed by
Weinazepfel and et al. in 2013. DeepFlow made a step towards bridging the gap between descriptor
matching algorithms with large displacement optical flow techniques [36]. An outline of DeepFlow
is shown in Figure 2.7. It will be introduced it in two parts: the deep matching algorithm and the

energy minimization framework.

14
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Figure 2.7 The outline of DeepFlow [36].
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24.4.1 DeepMatching

The deep matching algorithm first splits the Scale-Invariant Feature Transform (SIFT) [46] descriptor
from a 128-dimensional real vector into four quadrants: the gradient orientations of the interest
point are changed from H € R*?8 into H = [H*H?H3H*] where H® € R32. In order to maximize
the similarity between the reference and target descriptor, DeepFlow optimizes the positions of H*
on target descriptor by assuming that each of the quadrants can moving independently with some

extent rather than keep them fixed:
. 4 r (2.15)
sim(H,Q(p)) = Z 1maxpsHs Q(ps)
S=

where Q(p) € R3? is one quadrant of the reference descriptor. By assuming the quadrants are

moving independently, a coarse-to-fine non-rigid matching can be obtained efficiently.

L-1 L-1
If {Pl- } . and {P-’ } . denotes the reference and target descriptor respectively, the optimal
JJij=0 L1Jij=0

warping w”* is the one of that maximizes the similarity between the pixels:

§(w?) = max S(w) = rar)%Z sim (P(i, 7, P'(w(, j))) (2.16)
L

where w (i) returns the position of pixel i in P'. If define recursively then we can obtain the optimal

warpings that are largely robust to deformation [36].

24.4.2 Energy Minimization Framework

DeepFlow is an energy minimization function which is similar to Horn-Schunck. It is based on the
same two assumptions: intensity constancy and smooth motion. In addition, an extra term deep

matching, is blended into the framework:

E(w) =fED+aES+ﬁEde (2.17)

where Ep, is the weighted data sum, Es is the smoothness term and a matching term E};. A robust

penalizer is applied to each term:
Y(s) = [62 4 ¢2 (2.18)

with € = 0.001 which was determined empirically [47]. The data term consists of two penalizers of

brightness:

16



Chapter 2 A Review of the State of the Art

Ep = 6% (Z @’ w) tyi (Z 0" Ty w) (2.19)
i=1 =1 .

where the first term is the penalizer over image channels, the second one is the penalization for
the x and y axes. w is the flow we seek to estimate: (u, v)7, c is the number of the image channels.

Jo is a tensor which is normalized by spatial derivatives:

Jo = 60(VsI')(V3IY) (2.20)

V5 is the spatial-temporal gradient (dx, dy, 0z). 6, is the spatial normalization factor <||V21i ||2 +

-1
Ez) to reduce the impact of small gradient locations and ¢ = 0.1 to prevent the factor to be zero.
The gradient constancy penaliser is normalized along the x and y axes respectively:

. . . 12 -1 ; ; 112 -1 2.21
Ty = () (V51) (V11 +62)  + (V1) (955) (V=B + 62) (2:21)
where I, and I, are the gradient derivatives with respect to the horizontal and vertical axis. The

smoothness term in DeepFlow is a penalization for gradient flow:

Es = w(lIVull® + IVvl?) (2.22)

The purpose of the matching term is to find the most similar flow to the known vector w’as

previously introduced in Section 2.4.4.1. The difference is estimated by:

Ey = b¢p¥llw — ']l (2.23)

Due to the matching being semi-dense, a binary term b(x) is added into the matching term. b(x)
equals 1 if and only if there is a match at position x. ¢p(x) is a weight that is low in the flat area. The

optical flow we seek to estimate w: (u, v)T can be obtained by minimising the energy function [36].

In this section, we introduced the principles of the classical optical flow algorithms from different
categories as well as the state of art. Before the evaluation, it is worth describing the performance
guantification. The performance of EpicFlow and FlowNet will not be included in the evaluation as
these are not yet standard approaches nor do they perform better than DeepFlow in the public

optical flow algorithm evaluation?®.

3 http://vision.middlebury.edu/flow/eval/results/results-e1.php
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2.5 Preparation for Performance Quantify of Optical Flow Algorithms

2.5.1 Synthetic Images with Explicit Motion

The advantage of synthetic images is that they lack specularity, or other types of noise. Also, the
motion field and the scene properties can be manipulated as required. For evaluating whether the
algorithms of acceleration and its components (will be introduced in Chapter 3) can estimate the
desired flow, some test images with only simple motion (like linear shift or rotation) are necessary.
Two sets of synthetic image sequences were constructed and help us to identify where the flow
approaches fail in the first place. The artificial image sequences involve linear translation and
rotation are synthesized by using images from the Middlebury database [7]. A subpart of a frame
from Mequon (the block of two faces in the middle of synthetic images shown in Figure 2.8) in
Middlebury is embedded in a frame from the Wooden images. The sub-Mequon shifts along a linear
trajectory to the lower right corner at speed 1 and 3 pixels/frame, both on horizontal and vertical
axes. The rotation sequence is obtained by rotating the middle square around its centre to form
circular motion. Figure 2.8 gives the examples of linear shifting when the displacement is 32 pixels

from the start position and rotation images when the rotation degrees are 10° and 30°.

(c) Aa = 10° (d) Aa = 30°

Figure 2.8 Examples of synthetic test images.

18



Chapter 2 A Review of the State of the Art

2.5.2 Flow Visualization

In the early optical flow papers, the flow field is visualized by an arrow which starts from the initial
position points to the moving direction, the length of the arrow indicates the magnitude of the

displacement. Figure 2.9 gives an example of using arrow to present the motion field.
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(a)Aframe of Yosemite sequence (b) Motion field visualized by arrow

Figure 2.9 Presenting flow using arrow [45].

With the development of optical flow, the new approaches can handle more complicated and
anisotropic situations, so using arrows might cause confusion in the analysis of a complex motion
field. Baker and et al. [7] created a colour coding scheme for visualizing such complex motion when
they established their optical flow dataset. The colour scheme is shown in Figure 2.10: the hue

indicates the direction and the saturation represents the intensity of the flow.

Figure 2.10 Flow field colour coding.
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2.5.3 Flow Error Measurements

In general, there are two commonly used measurements in optical flow: Angular Error (AE) and
End-Point Error (EPE) [1], [12]. If the ground-truth vector and estimated vector are (ugr, vgr)',
(u, v)T, AE measures the angle between the ground-truth flow and predicted flow vector in a 3D

space (pixel, pixel, frame):

AE _1< 1.0+ u X ugr + v X vgr > (2.24)
= cos

V14 uZ + 021 + ugr? + vgr?

where (ugr, ver, DT, (u,v,1)T are the extended 3D vectors. The second measurement, EPE, is the

Euclidean distance between the two vectors on a 2D image plane:

EPE = \/(u_uGT)z + (U_UGT)Z (225)

Both of the measurements have their own advantages and bias: AE is more sensitive to the error of
small motion whereas it undervalues the errors with large motion. EPE strongly penalizes the large
motion errors but is insensitive to errors with small motion [9]. Now we have given a general sense
of how the flow can be presented and evaluated, the next section is going to test the methods

introduced in Section 2.4 and illustrate the results in the most appropriate way.

2.6 Experimental Results of Existing Algorithms on Synthetic Images

The optical flow methods are first tested on the synthetic linear translation sequence, the results
produced from simple motion can highlight the drawbacks of techniques. The collection of flow
fields is shown in Figure 2.11. Although the flow fields are self-evident, some discussion is still

required.

Beginning with small motion it can be observed that all the techniques produce reasonably accurate
flow fields. When the displacement increases to 3 pixels, Horn-Schunck and Block Matching have
poor estimations since they are global algorithms without multi-layer refinement. Block Matching
has more error on the smooth area since local method will be ill-posed in homogeneous region [48].
The accuracy largely relies on an adequate block size according to the motion and texture in the
image. Farneback gives some directional error along the block edge. As the most advanced

approach, DeepFlow performs the best on both scenarios, including the discontinuous area.
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Large rigid motion (3 pixels)
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Figure 2.11 Estimated flow fields on small and large rigid motion.

In addition to the synthetic images, the optical flow methods are also evaluated on the famous test
image sequence, Yosemite, shown in Figure 2.12. It is a conventional challenge for most optical flow
algorithms due to the divergent displacement on different areas and the edges between the
mountains are occluded as the scene moves. The non-uniform motion is caused by the
asymmetrical projection of 3D motion in real-world onto the 2D image surface: the upper right
corner translates to the right with a speed of 2 pixels/frame and the speed in the lower left area is
about 4 to 5 pixels/frame [43]. Although the scene is complex, the motion field is simple. The
camera is moving straight forward smoothly without any rotation or distortion. The GT is extracted

from [49] since it is not publicly available to prevent overfitting by new optical flow algorithms.
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Figure 2.12 The GT of Yosemite and the estimated flow fields.
The results are identical within synthetic sequences, the estimation result by DeepFlow is linear and
evenly distributed along the moving direction of the camera as expected; Farneback is noisy at the

edge of the image whereas the results of Horn-Schunck and Block Matching are poor in this test

image.
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For a more objective evaluation, we applied these algorithms on seven image sequences (GT is
available) from Middlebury [7] to give a statistical measurements. Table 2.1 summaries the Average
End-Point Error (AEPE), which is the sum of the distance between estimated flow and GT averaged
over all the points with distance exceeds the threshold. Table 2.2 reports the Standard Deviations

(SD) of the values shown in Table 2.1.

Method Dimetrodon Hydrangea RubberWhale Urban2 Urban3 Grove2 Grove3 Avg.
Horn-Schunck 1.66 3.35 0.61 8.06 7.18 3.16 3.89 3.99
Block Matching 1.78 2.79 0.82 8.09 7.05 1.37 2.98 3.55
Farneback 0.26 0.65 0.21 7.53 6.75 0.47 2.37 2.61
DeepFlow 0.11 0.17 0.13 0.29 0.44 0.18 0.66 0.28

Table 2.1 AEPE on Middlebury datasets.

Method Dimetrodon Hydrangea RubberWhale Urban2 Urban3 Grove2 Grove3 Avg.
Horn-Schunck 0.94 1.6 0.65 8.17 4.83 1.32 2.96 2.92
Block Matching 1.24 2.13 0.88 8.23 4.85 1.57 2.93 3.12
Farneback 0.41 1.48 0.48 8.85 5.53 0.96 3.12 2.98
DeepFlow 0.1 0.36 0.26 0.95 1.44 0.43 1.45 0.71

Table 2.2 The SD of AEPE.

Furthermore, Figure 2.13 and Figure 2.14 exhibit the distribution of the measurements of
RubberWhale and Dimetrodon and support Table 2.1 and Table 2.2. Different from the manipulated
image sequences, the motion fields in Middlebury are more complex than the synthetic sequence,

we opt to use colour coding to illustrate the flow field.
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Figure 2.13 The input frames of RubberWhale, GT and the estimated flow fields.
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Figure 2.14 The input frames of Dimetrodon, GT and the estimated flow fields.
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The measurements on Middlebury give consistent results with synthetic images: DeepFlow
outperforms the other methods. The accuracy is largely benefited by using the robust SIFT
descriptors in feature matching and structuring the response pyramids using multiple sizes whereas
the remaining approaches are global algorithms which lack propagation of flow estimation across
different scales. The main drawback of DeepFlow is detecting the motion of small objects, as can
be observed in Figure 2.14 (h), the shape of the dinosaur’s head is very blurred. However, the
remainder of the result by DeepFlow is remarkably consistent with the GT, and it is much more

evident than for the other (standard) approaches.

2.7 Conclusions

This chapter gives a review of gait analysis and optical flow and evaluates the performance of the
benchmark optical flow techniques on both synthetic and real image sequences. The results show
that Horn-Schunck cannot handle the large motion. The block size is critical for the performance of
Block Matching: if the block size is too small it might not able to integrate all the area, large it will
lead the window include the motion belong to other group [48]. The Farneback method is not good
at preserving the motion boundaries. DeepFlow appears to outperform the other techniques in
most scenarios. The next chapter will introduce how we disambiguate acceleration from optical

flow.
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Chapter 3  Analysing Acceleration in Computer Images

Stream

3.1 Introduction

In most previous research on motion analyses in Computer Vision, only relative movement between
consecutive frames has been considered, they did not consider the higher orders of motion.
Acceleration is a more distinct feature than displacement, or velocity. Analysing motion in terms of
acceleration can provide better understanding of the scene. This chapter introduces our
acceleration algorithm and generalize it to real-world motion. In addition the acceleration field is
decomposed into constituent parts to allow greater depth of the understanding of the motion and
the algorithms have been tested on a variety of image sequences. The experimental results
illustrate the ability of acceleration on discriminating different motion whereas velocity did not

show any obvious difference.

This chapter is arranged as follows: Section 3.2 introduces and analyses the previous research of
acceleration estimation from optical flow. Our new algorithm is introduced in Section 3.3, including
the experiments on synthetic and real image sequences. The results show that the new constrains
are too strong for real-world motion hence we provide a practical approach in Section 3.4. It
outperforms both the previous acceleration algorithms and the new analytic solution. Section 3.5
describes how the resultant acceleration can be decomposed into radial and tangential
components, the experimental results demonstrate the ability of acceleration and its constituent

parts to disambiguate different types of motion. Finally, the chapter is summarized in Section 3.6.

3.2 Previous Acceleration Algorithms

Acceleration is a vector describing the magnitude and direction of the change of velocity. Average
acceleration is the average rate of change of velocity with respect to a time interval. As with velocity,
when the time period approaches zero, it is termed instantaneous acceleration:

AP _db (3.1)
a= a0 ar T dt
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There was little work analysing acceleration before the work determining gait events through
acceleration flow [50]. Since then, there has been contemporaneous research on acceleration
which has, as will be shown, significant scope for improvement. Chen and et al. [51] establish an
algorithm based on the combination of classic Horn-Schunck [29] and Lucas-Kanade [38] optical
flow algorithms. They assume that the image brightness is constant during a short period.

Letting I(x, y, t) denote the image intensity of point (x, y) at time t, then:

It — At)x—Axl,y—Ay1 = I(t)x,y =1I(t+ At)x+sz,y+Ayz (3.2)

Expanding the left side of Equation (3.2) by Taylor series gives us:
I(t - At)x—Axl,y—Ayl

1 1
= I(t)x,y - IxAxl - IyAyl - ItAt + E (Ixx(Axl)z) + E (Iyy(Ayl)z)
1 (3.3)
+ > (Iee (AD)?) + Ly Axy Ayy + L Axi At + L Ay At + €

where Ax; and Ay, are the horizontal and vertical displacement between the first frame and
second frame; I, = 01/0x, 1, = 01/0y, and I, = 01/0t are the first-order spatial and temporal
partial differentials of the image intensity; Ly, Iyy, Iy, Ly, I,; and I;; are the second-order partial

differentials (I, = 8%1/0x?, etc.), and & contains the higher order terms.
The right side of Equation (3.2) is expanded into a similar format as Equation (3.3), after some
rearrangement gives:

I (A)? + 1, (Ax; + Axy)At + L, (Ay; + Ay,)At + Ly, (Ax; Ay + Ax,Ay;)

1
+ % (Ixx((AX1)2 + (sz)Z)) + 3 (Iyy((Ay1)2 + (A}/z)z)) (3.4)

+ IX(AXZ - Axl) + Iy(Ayz - A}’1) + E = O

Equation (3.4) is then divided by (At)?, meanwhile the higher order term £ is ignored, resulting in:

Ax, Axy Ay,
he b (G + ) + e (57

O G ) = (R S

1 (sz Axl) 1 (Ayz Ayl) _0

*At\Aac At/ YAt\At At

AT A
At At YNAt At At At

+1

Axqy Ax, A A . . iy .
If 6t - 0, A—tl, A—:, % and %, are the horizontal and vertical velocities, which are denoted as ul,

. . 1 [Ax Ax 1 (A A .
u2, v1 and v2. In their formulation, the terms — (—2 — —1) and — (ﬂ — ﬂ) are considered as
at\ At At at\ At At

the acceleration along x and y axes separately, denoted a,, and a,:

30



Chapter 3 Analysing Acceleration in Computer Images Stream

1
Lo + L (ul + u2) + 1, (w1 + v2) + I, (ulvl + u2v2) + > (L (u1? + u2?))

1 (3.6)
+5(Ly @12 +v29) + Lay + La, = 0
They assume the velocity is constant, namely ul = u2, vl = v2:
Iee + 2Leu + 21,00 + 2L uv + Ly u? + 1,,v% + 1La, +1ya, = 0 (3.7)
Eventually, their constraint equation is:
Leay +1ya,+1,=0 (3.8)
L, = Ly + 2Lu + 210 + 2L uv + L u? + 1, v?

By following Lucas-Kanande [38], they made an assumption that acceleration is constant over a
small patch on the flow field to turn the constraint equations into an over-determined problem.

The solution is determined by the least square algorithm.

i Lﬂﬁ_ﬂ) l(%_%)- : .
However, it seems that AX<M " and 2\ 3, — ) In Equation (3.5) probably indicate the

derivatives of acceleration: Jerk. If our analysis is true, their algorithm derives jerk fields rather than

acceleration fields. We were unfortunately unable to verify this with the author.

Later, Dong and et al. [52] aimed to feed acceleration into deep networks as a motion descriptor
for detecting violence in videos. In their work, acceleration was estimated by expanding the

horizontal velocity field U and vertical velocity V at t + At by a Taylor series:

Ut + 60 saxy+ay = U xy + UpAx + UyAy + U At (3.9)
V(t + 6t)xraxy+ay = V() xy + VeAx + V, Ay + VAL

the higher order terms are ignored. The change of velocity over time is:

du dx dy

a - U tUy
dV_de+V dy (3.10)
dt ~ *dt  Ydt

dx d .
The approach appeared to assume that (d—fd—jt}) corresponds to (u, v), therefore, they obtain the
acceleration as:

a = (wAu, wAv) (3.11)

They obtain the acceleration flow by a second-order differential of neighbouring frames, which is
computing flow on optical flow. However, the main drawback of this idea probably is it is difficult

to compute the spatial partial derivatives due to the smoothness of the optical flow field (the
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neighbour pixels tend to have similar velocities), this is also the reason why we abandon this

method at the beginning of our research.

There appear to be errors in Chen’s solution [51] and perhaps the main weakness of their algorithm
is that the constraints are too strong. In Dong’s algorithm [52], it is hard to compute the optical flow
on optical flow due to the smoothness of flow field. Furthermore, there is no quantitative
experimental analysis of the algorithms in their papers. Therefore, they remain an unsolved
problem and it worthy of further investigation since acceleration can be used to disambiguate

motion. In the next section, we will describe our solution to this problem.

3.3 Estimation of Acceleration Flow

3.3.1 Recovering Acceleration from Optical Flow

The accuracy of optical flow algorithms has improved steadily over the past few years, the basic
formulation, changed little after the pioneering work of Horn and Schunck [47]. We build our
variational acceleration algorithm based on their work since almost all the state of the art

algorithms are still using their theory [48].

They assumed that the intensity of a point does not change between two consecutive frames. Now
we extend this principle to three frames for estimating acceleration fields. If I(x, y, t) denotes the

image intensity on (x, y) at time t, the image intensity is constant at frame t — 8¢, t, t + t:
{I(t - At)x—Axl,y—Ay1 = I(t)x,y ( 3.12 )
I(t)x,y =1I(t + At)x+Ax2,y+Ay2
Expanding Equation (3.12) by a Taylor expansion:
I(t)x,y - IxAxl - IyAyl - ItAt + f = I(t)x,y ( 3.13 )
1)y = 1(t)xy + LAxy, + 1,Ay, + LAt + &
and ignoring the higher order terms, we have:
=1 Ax; — I, Ay, — LAt = 1,Ax, + 1, Ay, + 1At (3.14)
Dividing Equation (3.14) by At,
Axy Ay, Ax; Ay, (3.15)

S e P N ) M
xar v ar T hgth gt

then the gradient constraint is yielded:
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VI (Veope) = Ip = VI (Vegae) + 1 (3.16)
a 0 . . . T
where V= <£’@)' and v consists of horizontal and vertical components (u, v)".

If the acceleration changes dynamically from frame to frame, then there is little chance of
recovering the acceleration. More commonly, motion is smooth which means acceleration is
constant during a small period. Therefore, we assume that the acceleration does not change during

three consecutive frames. According to Newton’s laws:

V; = Vv + aAt (3.17)

Vi_ar and V¢4 ¢ in Equation (3.16) can be substituted by:
{Vt—At = vy —alt (3.18)
vt+At == Vt + aAt

where v; represents the velocity vector at time t and the acceleration vector a is composed of

horizontal and vertical components (a,, a,)”, we have:

Vi-aAt+1,=0 (3.20)

Dividing Equation (3.20) by At:

I
VI-a+-L=0 (3.21)
AL

If At — 0, our optical flow constraint equation of acceleration is:

where I;; is the second order of image intensity with respect to time. Now we have two unknowns
a(ay, a,)" in Equation (3.22) but with only one equation, there are infinite solutions. Hence, we

need seek another equation to avoid this ill-posed problem.

Acceleration also has similar smoothness characteristics to velocity in that neighbouring pixels tend
to have similar acceleration. This shows a natural linkage between velocity and acceleration analysis
in image sequences. The smoothness means that the neighbouring pixels tend to have similar
acceleration. The way to estimate the smoothness constrain is by minimizing the error of the
squares of the Laplacians of the horizontal and vertical flow:

d%a, 0%a, 0%a, O0%a (3.23)
2 2 2 dxdv = ff u u v v dxd
% ﬂ(v a, + V*a,) dxdy 5z T 372 to 3y xdy
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Combing the error needing to be minimized into brightness constrain gives:

&2 =f (e2 + 22€2) dxdy (324)

where 1 is dependent on the noise in the pixel intensity, the error of data term ¢ is:

&g = f (VI-a+1;)dxdy (3.25)

Now we have the problems well-posed, we will describe the implementation of our algorithm in

the next section.

3.3.2 Approximating the Derivatives

For estimating acceleration in image sequences, the derivatives are approximated between three
consecutive frames. It isimportant that the derivatives are consistent so we refer to the same point
in the image at same time in the implementation. There are many ways of estimating differentiation,
we use the same spatial kernels with Horn-Schunck [29]. The spatial-temporal relationship is

illustrated in Figure 3.1.

xy+1 [x+1,y+1

X,y x+1,y

Figure 3.1 Estimating the partial derivatives for point (x, y, t).

For estimating the first order horizontal and vertical derivatives, we use the following kernel [29]:

Figure 3.2 Spatial derivatives kernels.
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Since we need to consider three frames in computing acceleration the spatial derivatives are:

1
I, ~ gz Z(lx+1,y,t ~Leye)
y t
1
I, = gz Z(lx,y+1,t - lx,y,t)
x t

The data constrain (Equation ( 3.22 )) contains the second-order time derivative, we choose

(3.26)

Laplacian operator to compute the second order of time derivative in the implementation, the

template is:

1 -2 1

Figure 3.3 The temporal temple for second order time derivative.

1 3.27
Iy = 52 Z(lx,y,tﬂ — 2y + Ly io1) ( )
y

X
wherex e {mm+1},ye{n,n+ 1}, t €{k — 1,k k + 1}.

By following a similar solution to Horn-Schunck to express the smoothness constraint, eventually
we can determine the acceleration flow in image by:

(12 +13)(ay — @) = ~L[La + L@, + 1]
(2 +12)(a, — @) = —L[La, + L,a, + L] (3.28)

We now have the basis for detecting acceleration, we shall now move to evaluating this algorithm

to determine whether we can indeed detect acceleration from image intensity.

3.33 Analysing Acceleration Algorithm on Image Sequences

We evaluate Variational-Acceleration first on synthetic images to assess performance before
analysis on real images to assess its capabilities. Figure 3.4 shows the acceleration detection results
of synthetic image sequences with rigid motion. The algorithms are tested on the sequences
without acceleration, with small acceleration and large acceleration respectively. The results
detected by our Variational-Acceleration algorithm are compared with Dong’s algorithm (denote
by Dong) [52]. Dong detects acceleration flow by computing the optical flow on optical flow, but

they did not specify which method they used in their paper. To make it fair, we use Horn-Schunck
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in the implementation of their method since our acceleration algorithm is based on Horn-Schunck

as well.

Dong [52] Variational-Acceleration

|

i
|
=

Non-acceleration

Small acceleration (1 pixels/t?)

BTEAS AR Y

Large acceleration (3 pixels/t?)

Figure 3.4 The acceleration fields detected by various methods of synthetic images.

In the first row, Dong detects evenly distributed acceleration field on the moving block however

the motion field does not contain any acceleration. The acceleration field become denser when the
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sub-Mequon is accelerating with small value in the second row and it did not change much when

the acceleration become large.

In the performance of Variational-Acceleration, the result is acceptable when the sub-Mequon
moves constantly. There is little acceleration flow detected, this is consistent with the expected
motion, only some random noise. Variational-Acceleration detects more flow with the increasing
of acceleration but the results tending to be noisier at the same time. The results of both methods
are not satisfactory, we seek another method to obtain the optimized results of acceleration field

in the next section.

34 Estimating Acceleration Flow via Other Flow Estimation Methods

3.4.1 A More Practical Approach

Since the motion in real images is often large and non-rigid, we want to seek more feasible form
for recovering acceleration from image sequences. Optical flow is still an active area in computer
vision, and new algorithms are constantly emerging and the performance has significantly improved
since the first variational algorithm Horn-Schunck. Therefore, instead of aiming to improve the basic
theory, we think it was better to use a state of art algorithm to approximate the acceleration flow.
According to Equation ( 3.1 ), the acceleration field can be approximated by the differential of

neighbour velocity fields:

A =V(t~t+AD) — V((t — At)~t) (3.29)

where V(t~(t + At)) is the velocity field referred frame t to (t + At) and V((t — At)~t) is the
velocity field referred frame t — At to t. In implementation, the resultant optical flow field can be

considered as the velocity field due to the fix frame rate, the unit is pixel/frame.

To avoiding the error caused by inconsistent reference along the time axis, we proposed a new way
that refers to the middle frame as the start frame in the temporal template as explained in Figure
3.5, we term this approach Differential-Acceleration algorithm. The acceleration field

approximation by Differential-Acceleration can be expressed as:

AW =V(t~(t +A0) — {-V(t~(t — AD))} (3.30)
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V(t~t + At)
[V
T
F(t — At) F(t) F(t + At)
\\ :\\ t
)
V(t~t — At)

Figure 3.5 Computing acceleration field referred the middle frame as the start.

Now we are going to deploy this more practical algorithm on images to see whether this approach
can achieve better results than Variational-Acceleration. In this thesis, DeepFlow [36], which is a
popular new technique with excellent performance for large displacement estimation and non-rigid

matching, is used as our fundamental technique for Differential-Acceleration.

3.4.2 Evaluating Acceleration Algorithms on Synthetic Images

The performances of Dong [52], Variational-Acceleration and Differential-Acceleration are
evaluated on the famous test sequence Yosemite. There is little acceleration in the original image
sequence, so we induce artificial acceleration in this image sequence by skipping one frame to see
whether the algorithms are robust enough to estimate acceleration fields under this sequence. The

detection results are illustrated in Figure 3.6.

Since currently most optical flow databases [7], [53] are targeted at measuring velocity flow, either
the test image sequences only have two frames or the GT is only one single velocity field. Obtaining
an accurate GT of these benchmark optical flow databases became an obstacle during this research
on acceleration. For evaluating the acceleration algorithms, pseudo acceleration GT is computed by
MDP-Flow2 [34], it is a highly-ranked method on the optical flow algorithms evaluation® and the
code is publicly available. We use MDP-Flow2 to estimate the pseudo GT of velocity flow first, the

pseudo acceleration flow is computed by Equation ( 3.30).

4 http://vision.middlebury.edu/flow/eval/
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(c) Variational-Acceleration. (d) Differential-Acceleration

Figure 3.6 Comparing detection results on Yosemite.

The acceleration in pseudo GT mostly focusses on the lower part of the manipulated Yosemite
sequence shown in Figure 3.6 (a). The detection results of Dong in (b) show the flow is on the whole
mountain area. This is because the principle of their method computes the optical flow of the
optical flow. However, once the flow is detected from the image sequence, the field varies in a
smooth manner, that means the neighbour pixels tend to have similar velocities, the moving objects

lose texture which is important for the majority of optical flow algorithms.

In (c) the results estimated by Variational-Acceleration show an improvement over Dong, with the
acceleration mostly focussed on the lower left corner in the image which shows consistency with
the pseudo GT. However, the result is still very noisy because the motion violates both the data and
smoothness constrains (occlusion and large motion). Variational-Acceleration restricts to the linear
domain of the image derivatives, which means the displacement has to be very small and the

motion must be smooth.
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Encouragingly, Differential-Acceleration detected evenly distributed acceleration flow in the lower
right corner. The result shows a considerable improvement compared with the results of Dong and
Variational-Acceleration. The acceleration field in (d) shows less noise and it is more the consistent

with the pseudo GT.

3.4.3 Comparison between Differential and Variational-Acceleration

Apart from Yosemite, Table 3.1 and Table 3.2 reports the statistics of performance of Dong,
Variational-Acceleration and Differential-Acceleration in estimating acceleration on a number of
sequences of the Middlebury [7] for a more objective evaluation. The statistical results are
compared with the pseudo GT. The pseudo GT is estimated by MDP-Flow2 [34] since only one
ground truth optical flow field between consecutive frames is available on the evaluation website
for preventing upcoming new algorithms to over fit the test images. AEPE is chosen here for
presenting the error since the motion in Middlebury image sequences are relatively large in the
pseudo GT. The average ranks, reported AEPE and SD of MDP-Flow2, DeepFlow and Horn-Schunck

on the Middlebury evaluation website are shown in Table 3.3 and Table 3.4 for reference.

Method Backyard  Dumptruck Mequon Schefflera Walking Yosemite Avg.
Dong [52] 3.21 2.58 3.54 3.35 3.13 3.39 3.2
Variational-
Acceleration 2.48 1 3.38 2.89 1.87 2.1 2.29
Differential-
Acceleration 0.35 0.3 0.29 0.37 0.51 0.25 0.35

Table 3.1 AEPE of estimation algorithms on Middlebury datasets.

Method Backyard  Dumptruck Mequon Schefflera Walking Yosemite Avg.
Dong [52] 2.94 2.43 3.01 2.67 2.45 3.26 2.79
Variational-
Acceleration 3.74 2.79 4.18 3.49 2.52 2.62 3.22
Differential-
Acceleration 0.94 1.29 0.78 0.98 0.99 0.32 0.88

Table 3.2 SD of EPE between acceleration algorithms.
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Method AEPE Average Rank Mequon Schefflera Yosemite
MDP-Flow2 [34] 11.8 0.15 0.20 0.11
DeepFlow [36] 69.9 0.28 0.44 0.11
Horn-Schunck [29] 1133 0.61 1.01 0.16

Table 3.3 The reported AEPE ranks on Middlebury evaluation website®.

Method Mequon Schefflera Yosemite
MDP-Flow2 [34] 0.40 0.55 0.12
DeepFlow [36] 0.78 1.23 0.12
Horn-Schunck [29] 0.98 1.88 0.16

Table 3.4 The reported SD on Middlebury evaluation website®.

We follow the convention of optical flow evaluation which uses average absolute endpoint error

and the standard deviation to present the results. It is difficult to include the uncertainty although

it will give more information of the results since the error of each part could be very different (e.g.

some algorithms are good on the discontinuous area and some are good on the textured area). The

benchmark evaluation dataset Middlebury gives the separate results of "all", "discontinuous" and

"textured". However, it is difficult for us (and other researchers) to separate the results because

the labels for the edges and textured area are not available.

(a) Backyard (b) Pseudo GT

5 http://vision.middlebury.edu/flow/eval/results/results-al.php
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i

(k) Variational-Acceleration (1) Differential-Acceleration

Figure 3.7 More examples of detecting acceleration on real images [7].

Examples of results from Middlebury dataset are illustrated in Figure 3.7. The motion of illustrated
results are relatively dense so visualizing motion field with arrows could cause confusion, we opt to
use flow field colour coding create by [7] to present the fields. The experimental results show that
both the assumptions of constant intensity and smooth motion in Variational-Acceleration are too
strong for real motion (most are complex) so we will use Differential-Acceleration to detect

acceleration flow in the rest of the thesis.

We now have the basis for detecting acceleration: a Variational Approach, Variational-Acceleration,
and its extension to a more generalized Differential Approach form, Differential-Acceleration that
is shown to be able to detect acceleration in complex scenes. In the next section, the acceleration
is going to be decomposed into radial and tangential components to aid further understanding of

complex motion.

3.5 Tangential and Radial Acceleration

3.5.1 Decomposing the Resultant Acceleration

Acceleration of curved motion is composed of two components: tangential and radial acceleration.
The tangential component changes the magnitude of the velocity and the direction is located in the
tangent line of the trajectory (increasing or decreasing the speed). The radial component (also
called centripetal acceleration in circular motion) changes the direction of the velocity and it points
to the centre of the curved path (normal to the tangent line of the trajectory), as shown in as shown

in Figure 3.8.
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Path of
- - Particle

Figure 3.8 The relationship between resultant acceleration, tangential acceleration and radial

acceleration®.

There is linear or circular motion, therefore, the motion incorporated in images is either linear or
circular if the time interval is sufficiently small. We assume that the moving points which follow the
curved trajectories rotate along the same arcin any three consecutive frames since three nonlinear
points can determine one and only one circle. The rotation centre can be calculated by the positions
of the pixel in the consecutive frames. Connecting these three points with straight lines and
applying perpendicular bisectors to them, the centre of the circle is then located at the intersection

of the two perpendicular bisectors, as shown in Figure 3.9.

Figure 3.9 Location of radial acceleration centre.

Suppose the coordinates of a point in three consecutive frames are: P;(x;,y;) i € (1,2,3),
MO, NO are the perpendicular bisectors of P, P, and P,P5, and O(x,, y,) denotes the center of the

circular motion, hence:

M_O)'P1P2=N_O)'P2P3 (331)

Then the coordinate of O can be obtained by:

0T =05 -d71@ (3.32)

where,

6 Image is taken from: http://physics.tutorvista.com/motion/tangential-acceleration.html
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<l>=[3Cz—x1 }’2_}’1] ‘p:[xzz—x12+y22—y12 (3.33)

x3_x2 }’3_}’2 X32_XZ2+y32_y22

We use a = (x, + a,, ¥y, + a,) to present the coordinates of acceleration vector in image plane.
The positions of tangential acceleration tang(u,v) and radial acceleration rad(u,v) can be
estimated by:

tang” = [f(—0) g(-0)]"[p,-f(6) a-g(®)]" (3.34)
rad” = [f(-6) g(-6)]"[a-f(6) p,-g(®)]"

where 0 is the angle between OP, and the horizontal axis f(6) = (cos6,sinf) , g(6) =
(—sind, cosh).

We now have the basis for detecting acceleration and an extension to a more generalized
decomposed form. In the next section, we evaluate these approaches to determine whether we

can indeed detect acceleration from image sequences.

3.5.2 Deploying New Algorithms on Image Sequences

We evaluate the decomposed approach first on synthetic images to assess performance before
analysis on real images to show its capability in real applications. The experiments are classified
into 4 groups: linear shift with constant velocity, linear shift with acceleration, rotation in constant
angular velocity and rotation with angular acceleration. We detected velocity, resultant
acceleration, radial and tangential fields for each group separately and the results are illustrated in

Figure 3.10.
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Linear motion without Linear motion with Circular motion without Circular motion with angular
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Tangential Acceleration

Figure 3.10 The experimental results of synthetic images.

In the results of linear shift, there is little radial acceleration because the direction of trajectory
does not change, and the tangential component only appears when the object is accelerating. The
resultant acceleration field shows similar features with tangential acceleration since it only contains

the tangential component in linear displacement. Velocity appears in both situations however.

In the rotation examples, radial acceleration both appears under rotation with constant angular
velocity and angular acceleration, due to the direction of motion changing all the time. The
magnitude of radial acceleration is increasing with the angle of the object rotated. All the radial
acceleration flow points to the sub-Mequon centre since it rotates about the centre. The directions

of tangential components are along the tangent of rotating trajectory showing a result consistent
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with expectations. Simultaneously, the velocity field does not show any obvious distinction. There
appears to be some noise around the edge of the moving object; this is mainly caused by
discontinuous motion in that area. Our estimated detection of acceleration shows expected results
on artificial scenes, they illustrate detection of features consistent with acceleration features, which

velocity analysis lacks.

In real image sequences, acceleration flow can help distinguish objects undergoing different
motions. Figure 3.11 and Figure 3.12 gives different flow fields of two images sequences [7] which
are natural motion in real world by high speed camera. In the first row, the velocity fields contain
any types of motion so they look chaos, as contrast the motion in radial and tangential acceleration

fields are more comprehensible.

In first sequence “Basketball”, the left man is passing the ball to another person. At the beginning
of the throw, the ball has acceleration and it hasn’t started spinning so the acceleration is mainly
tangential in frame 9, the left man’s hands shows little tangential acceleration flow since he has not
raised his hand to take the pass. In frame 11, the radial acceleration reveals that the basketball is
spinning during the travel, as well as the shadow on the wall. The tangential acceleration shown on
the hand of the right man indicates that he raises his hands and ready to take the pass. The
acceleration fields distinguish the motion field features as known. In the second sequence
“Backyard” the little girls are jumping up. The acceleration flow shows they have the most

tangential acceleration at the start of the jump and little in the end.
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Basketball frame 9 Basketball frame 11

Figure 3.11 Different flow fields from Middlebury dataset Basketball.
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Backyard frame 8 Backyard frame 12

Radial acceleration Velocity

Tangential acceleration

Figure 3.12 Different flow fields from Middlebury dataset Backyard.

In Figure 3.11 a significant amount of radial acceleration appears on the spinning basketball and its
shadow on the wall. The accumulated rotation centre in Figure 3.13 (the blue cross on the right-
hand man) is consistent with the direction of radial acceleration on the shadow since it has much
larger flow filed than the basketball itself. The centres are accumulated by the proximity algorithm
[28] and the radius is 10 pixels. The result demonstrates the power of our acceleration
decomposition algorithm and the information can benefits the prediction of the trajectory the

moving objects.
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Figure 3.13 Accumulated radial acceleration rotation centre in test sequence "Basketball".

We also provide a new example of our approach detecting acceleration on gait in a Chroma key
laboratory [54], shown in Figure 3.14. Acceleration is detected mainly only around the limbs of the
walking subject and is maximum around the swinging forward leg while the other legis in the stance
phase, since the limbs appear to have pendulum-like motion when people are walking [8]. Beyond
that Figure 3.15 shows the zoom-in radial acceleration on the subject’s thorax, the direction of
radial acceleration reveals that the upper body actually moves like a pendulum to a small extent
during walking, which is consistent with the argument in [8]. In contrast, the velocity flow is
distributed all over the body without notable difference, so the detected acceleration is consistent

with the above analysis.
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Figure 3.14 The acceleration fields of half walking cycle.
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Figure 3.15 The zoom-in radial flow on the walking subject.

The image sequence Dumptruck gives another encouraging example in Figure 3.16. The silver car
in the front and the red dump truck in the back are approximately moving in constant velocity for
waiting the traffic light. In contrast, the detection result shows the other two cars have passed the
intersection and both are accelerating. This example demonstrates that our algorithm can

differentiate the accelerating objects from those which are simply moving.

(a) Optical flow (b) Acceleration

Figure 3.16 The flow fields of Dumptruck.
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3.6 Conclusions

Previous research in motion analysis has mostly focused on the displacement between frames,
without considering the diversity of motion. There has been two previous study attempted to reveal
the acceleration from optical flow however the principle in Dong’s algorithm [52] produces isotropic
results since the flow fields are too smooth for detecting flow on them. Chen [51] actually measure

the jerk field in their work.

First acceleration is derived from the basis of Horn-Schunck, however most real motion violates the
basic global smoothness assumptions made in the original formulation. We show another way to
approximate acceleration fields which are more accurate and able to handle most situations and
appear improved over the Horn-Schunck technique on the standard Yosemite test sequence. The
ability of the new algorithms is also demonstrated by its capability to achieve radial and tangential
acceleration analysis, providing a completely new way to understand and disambiguate motions in
image sequences. Clearly, acceleration is likely to be more sensitive to noise though the
experiments show that this is not a severe limitation and in fact radial acceleration error estimates
are encouragingly low. In the next chapter, we will demonstrate the application of radial

acceleration on gait sequences in order to detect heel strikes.
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Chapter 4  Detecting Heel Strikes for Gait Analysis

through Acceleration Flow

4.1 Introduction

In gait analysis, heel strikes are an important and preliminary cue for gait analysis because gait
period, step and stride length can be derived accurately by the moment and position of heel strikes.
It refers to the heel first contacts the ground during the stance phase of the walking cycle [8]. In
this chapter, we introduce a new method of using acceleration to detect when and where a heel
strikes on the floor. When the foot is approaching to strike, its motion status changes from moving
forward to making circular motion centred at the heel. The amount of acceleration on the leading
foot will dramatically increase when the heel hits the floor. According to this clue, the key frames
can be determined by the quantity of acceleration flow within a Region of Interest (ROI), and
positions can be found from the centres of rotation caused by radial acceleration. Compared with
previous heel strike detection methods, the temporal template of this new method only requires
three consecutive frames for processing so it also allows near real-time detection with only a single

frame of delay which able to lead further applications.

Our approach is tested on a number of databases which were recorded indoors and outdoors with
multiple views and walking directions for evaluating the detection rate under various environments.
Experiments show the ability of our approach for both temporal detection and spatial positioning.
The immunity of this new approach to three anticipated types of noises in real CCTV footage is also
evaluated in our experiments. The acceleration flow detector is less sensitive to Gaussian white
noise, whilst being effective with images of low-resolution and with incomplete body information

when compared with other techniques.

This chapter is organised as follows: Section 4.2 describes how we detect heel strike by acceleration
and the intuition behind this idea. Section 4.3 introduces the benchmark gait databases used in the
experiments. The experiments and analysis of the robustness of our method are presented in
Section 4.4. Section 4.5 discusses the current heel strike detection techniques and the advantages

and limitation of our algorithm, followed by the summaries in Section 4.6.
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4.2 Detecting Heel Strike through Radial Acceleration

4.2.1 The Acceleration Pattern on Gait

Torsos move like connected pendula during walking and researchers have successfully simulated
pathological gait by using a liner inverted pendulum model [55], [56]. Pendula have a regular
acceleration pattern, which implies that we can describe gait by the acceleration pattern of the
image-based data. Figure 4.1 shows the acceleration fields of the body during toe off (a), heel strike
(b) and heel rise (c). They reveal that the legs and feet appear to have more acceleration or
deceleration than the other parts of the body during different gait phases. Likewise, the forearms
have acceleration since they are similar to swinging pendula. Therefore, the acceleration pattern
of a walking body could be used to indicate the gait phases. In this work, we detect the heel strike

by analysing the radial acceleration of the leading foot [57], [58].

(a) Toe off (b) Heel strike (c) Heel rise

Figure 4.1 The radial acceleration flow on a walking person.

At the instant of a heel strike, the foot hits the ground which forces its velocity to cease in a short
time. Therefore, the acceleration of the front foot increases dramatically, due to the disappearance
of velocity (rapid deceleration). Also, the striking foot sole’s motion is approximately circular during
the period between the heels striking on the ground to fully touching the ground, centred at the
heel. Hence, most acceleration caused by heel strikes is radial in nature. The video frames where
the heel strikes then can be located by the quantity of radial acceleration. When people are walking,
the motion of the body is similar to several joined pendula [8]. Therefore, the radial acceleration

caused by a heel strike might be confused with that caused by other limbs since the motion of a
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pendulum incorporates radial acceleration. To reduce interference, we extract the Region of
Interest (ROI) which is located on the leading foot according to a walking body model. The size of

the ROl is 0.133H X 0.177H where H represents the height, shown in Figure 4.2.

0.13
0.052

0.188|H
0.288

0I153|H |H

053

0.285|H
/ [ 0.133H
053 H

Figure 4.2 Gait Proportions [59].

4.2.2 Strike Position Estimation and Verification

After obtaining the acceleration field A(t), we can use the algorithm F which decomposes
resultant acceleration into radial and tangential acceleration to compute the tangential
acceleration field T(t), radial acceleration fields R(t) and the radial acceleration rotation centres
map C(t):

T(t)

F(A(t)) = {R(®) (4.1)
Cc(®)

where A(t) is the acceleration field at time ¢

If all the detected radial accelerations in the ROl are caused by the circular motion of the foot, then
the rotation centres of these radial accelerations should all locate at the heel. Consequently, the
densest point of the rotation centres map indicates the strike position. There are numerous
algorithms to determine the densest point and we selected three methods to experiment in this

thesis: weighted sum, accumulation proximity [5] and mean shift [60].
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A weighted sum is a straightforward method to estimate where the rotation centres accumulate.

The strike position is determined by:

P wy X (4 ))

h(t) = Z;’r;n Wi (4.2)

where the weight factor is determined by the density of point (i, j) in centres map C(t):

Wi,j = C(t)i’j (43 )

Bouchrika and Nixon [5] accumulated all the corners in the gait sequences into one image. A dense
area is the strike location since the striking foot is stabilized for half a gait cycle. For estimating the
dense area, they estimated a measure for density of proximity. The value of proximity at point
(i,j) is determined by the number of corners within the surrounding region. By using the same
method, the density of proximity for rotation centres map C(t) is estimated for evaluation in this

thesis. If R; j is a sub-region in the ROI with centre (i, j), the proximity value d; ; is computed by:

C

T
dr. =T
L] r

C (4.4)
n-1 _ gn -n

dij - =d;; + -

where 7 is the radius of sub-region R; ; which is around 20 pixels, d}fj is the proximity value for

rings which are of n pixels away from the centre (i, j), c, is the sum of rotation centres in the

centre density map C(t) for rings which are of n pixels away from the current processing centre

(i,J)- Equation (4.4) is repeated for each point in the ROI to obtain the rotation centres density of

proximity. The densest point in the density of proximity is where the heel strikes the ground.

Mean shift [60] is a recursive algorithm that allows nonparametric mode-based clustering. It
assigns the data points to the cluster iteratively by shifting points towards the highest density of
data points. The algorithm of iteratively finding the highest density in mean shift is used for
positioning the densest point in the rotation centre map. Since we only need one mode in the ROI,
the bandwidth needs to be wide. For the experiments in this thesis a value of 20 pixels is used. The
comparison experiments will be illustrated in Section 4.4. Before analysing the experiments, we

are going to introduce the databases in the next section.

4.3 Gait Databases

In the above sections, we propose a new technique to detection heel strike for gait analysis. We

evaluate our method on three gait benchmark databases: the Large Gait Database (SOTON) [54],
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the CASIA Gait Database (CASIA) [61]-[63] and the OU-ISIR Gait Database (OU-ISIR) [64], [65]. The

covariates and number of subjects of each database are illustrated in Table 4.1. Here we introduce

them.
Database # of subjects Data covariates
SOTON 115 2 views, 3 scenarios (indoor/outdoor track, treadmill)
CASIA-A 20 3 views
CASIA-B 124 11 views, clothing, baggage
OU-ISIR 10,307 14 views
Table 4.1 The summary of gait data used in the experiments.
43.1 The Large Gait Database

The Large Gait Database (SOTON) [54] was built in 2002 by the University of Southampton. Shutler
et al. collected walking sequences from over 100 subjects, including indoor (controlled lighting)
and outdoor (uncontrolled lighting). Each target has 8 sequences of approximately 1.5 gait periods.
This database focuses on colour and lighting quality, they used two different types of cameras and
captured 3 scenarios each from 2 different views. The video frame rate is 25fps. Since the database
focussed on the key factors that affect gait recognition other than background segmentation,
Chroma-keying was used in indoor data recording. Chroma-keying is segmenting a relatively
narrow range of colour, green was used because it is further away from skin tone and is less likely
to be a component of clothing. This technique helps to remove the background from the subject

in the images. Figure 4.3 shows some examples from the SOTON database and silhouettes.
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(a) Inside data (walking to the left) (b) Silhouette of (a)

(c) Inside data (walking to the right) (d) Outdoor data

Figure 4.3 Examples of data in SOTON Large Database, it contains indoor and outdoor data with

two walking directions, and their processed silhouettes.

4.3.2 CASIA Gait Database

The CASIA Gait Database Dataset A (CASIA-A) [61] and Dataset B (CASIA-B) [62], [63] were built by
Institute of Automation, Chinese Academy of Sciences in 2003 and 2006 separately. Before CASIA,
there were only a few databases designed for gait recognition and most of them only contain a
small number of subjects and walking environments which limited the progress of the field. The
emergence of this database revealed the key factors of gait recognition and offered a baseline for

new algorithms.

CASIA-A contains 20 subjects walking in three directions (0°, 45°, 90°) with respect to the camera
in an outdoor environment. Four sequences were filmed for each view per subject. These image
sequences are in 24-bit with resolution 351 x 240 at frame rate 25 fps. Each sequence contains 90

frames on average.

60



Chapter 4 Analysing Acceleration in Computer Images Stream

The videos in CASIA-B were all recorded in an indoor environment. This dataset contains 124
subjects, 93 males and 31 females, in three different categories of data: normal walk, wearing
coats and carrying bags. The subjects were walking along a specified trajectory enclosed with 11
cameras at different angles. Figure 4.8 illustrates some sample frames and processed silhouettes

in CAISA-A and CASIA-B with multiple walking directions.

| TSI SuPN

(a) CASIA-A (0°) (b) CASIA-A (45°) (c) CASIA-A (90°)

(d) Silhouette of (a) (e) Silhouette of (b) (f) Silhouette of (c)

(g) CASIA-B (18°) (h) CASIA-B (144°) (i) CASIA-B (162°)

(j) Silhouette of (g) (k) Silhouette of (h) () Silhouette of (i)

Figure 4.4 Data of different views and processed silhouettes from CASIA-A and CAISA-B.

Figure 4.4 shows some examples from CASIA-A and CASIA-B. The images in the first row are gait
sequences from CASIA-A at angle 0°, 45° and 90° and second row are their extracted silhouettes.
The third row are data from CASIA-B at angle 18°, 144° and 162° respectively and the fourth row

are their silhouettes.
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433 The OU-ISIR Gait Database

The OU-ISIR Gait Database (OU-ISIR) [64], [65] upgraded the scale of subjects in a gait database
significantly. Currently it is the largest gait database in the world: it contains 10,307 subjects (5,114
males and 5,193 females) in total. Their ages range from 4 to 89 years [65], which is two times
larger than their earlier version in 2012 [64]. The huge amount of data significantly benefits the
applications of machine learning algorithm gait recognition that emerged in recent years.
Moreover, the diversity of the subjects’ age and gender leads to statistically reliable performance

evaluation of gait algorithms.

Younger ) £/ cler

Figure 4.5 Examples of subjects in OU-ISIR, the gender and age are widely distributed [64].

4.4 Experimental Results

We evaluate our heel strike detection method on three benchmark databases: CASIA [66], [67],
SOTON [54] and OU-ISIR [64]. The data used in this thesis is collected with various controlled
environments. We test around 100 heel strikes in each scenario and the test data incorporates
multiple viewing angles and walking directions with gait sequences recorded indoors and outdoors,
as described in Table 4.2. The acceleration decomposition algorithm is based on a subject moving
perpendicular to the background so it is theoretically most effective in a direction perpendicular
to the camera. Therefore, gait data imaged at multiple views has been used to evaluate the

robustness of our approaches to other view angles.
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Databases CASIA-A (45°)  CASIA-A (90°)  CASIA-B SOTON OU-ISIR
Lighting Control NO NO Yes Yes Yes
Camera Visual Angle (°) 45 90 54 90 ~75
Number of subjects 13 25 15 21 15
Number of strikes 96 98 126 114 120
Frame size 240x352 240x352 240x320 576x720  480x640

Table 4.2 Database information.

The GT of key frames and heel strike positions were manually labelled multiple times by three
different people. Figure 4.6 shows the variance of manually labelled GT between different
databases for key frames and strike positions. The variance in the key frame labelling is generally
low and within one frame. Figure 4.6 (b) shows greater variance on the SOTON dataset as it has
the largest the ROl compared with other databases. For further research and evaluation, the

implementation code and heel strikes’ GT are publicly available’.
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(a) Key frame

7 https://github.com/YanSunSoton/HeelStrikeAcc.
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10

Variance (pixel)

100 casiaa CASIA-B SOTON OU-ISIR

(b) Heel strike position

Figure 4.6 GT labelling variance on different databases.

44.1 Key Frame Detection

The key frame (or moment) of a heel strike is detected according to the quantity of radial
acceleration in the ROl as described in Section 4.2.1. The histogram of radial acceleration within a

walking sequence shows distinct suggestions for key frames, it appears regularly and noticeably,

showing the periodicity of gait.
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(a) The gait sequences.
(b) Extracted silhouettes and derived the ROI.
(c) Detected radial acceleration in the ROI.

Figure 4.7 An overview of key frame detection.

The framework of our new heel strike detection system is illustrated in Figure 4.7: (a) illustrates an
example of heel strike key frame and (b) is the area that we compute dense radial acceleration
flow, (c) shows the histograms of radial acceleration within the ROI during a gait video. Noise has
been effectively reduced by applying an empirical threshold. In (c), the heel strikes occur at frame
13, 27, 41 obviously. There is much acceleration flow in frames 54 and 55 since the heel strike took
place between them. This suggests that a higher frame rate could improve accuracy of detection.

Figure 4.8 gives the pseudo code of the system.
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for frame in video:
vel_field_l = DeepFlow (frame 2, frame 1)
vel field 2

DeepFlow (frame 2, frame 3)

acc_field = vel field 1 + vel field 2
rad field, centre map = decomp components(acc_field)

ROI = extract region(silhouette 2)
rotation center = desity accumulation (centre map[ROI])

for each pixel in ROI:
if rad field[each pixel] > magnitude thres:
rad amount += 1
else:
pass
end for

while rad amount is peak:
"KEY FRAME!"
strike position = rotation center
end while
end for

return key frames num, strike positions

Figure 4.8 Heel Strike Detection System.

4.4.2 Heel Strike Position Verification

The ROI is extracted according to gait proportions is not always perfectly located on the leading
foot in the sequence because the shape of the human body changes during a gait cycle. In addition,
there is radial acceleration on the other body parts, for example the calf, since the limbs’ motion
is that of several joined pendulums [8]. The rotation centres of these erroneous radial
accelerations also form invalid strike position candidates. To reduce the effect of this error, the
detected key frames are used to filter the heel strike position candidates. When the heel strikes
between two frames, the acceleration quantities are used as a weighting factor for deriving the
positions. Figure 4.9 (a) shows detected candidates of heel strike positions in each frame and (b)
is the result after being filtered by key frames. The (expected) periodicity of gait is evident in the

result.

66



Chapter 4 Analysing Acceleration in Computer Images Stream

* .
450 :
Vot

400 ve

350
R o
2 300 Y
2
8 250 - ~
>

200

150 - 110

100

. # of frame
x (pxiels) 700 40

(a) Candidates for heel strikes.

110

# of frame
x (pxiels) 700 40

(b) Detected heel strikes (after filtering).

Figure 4.9 Heel strike verification process.

4.4.3 Detection Performance

Bouchrika and Nixon proposed a method that accumulated corners within a gait cycle by the Harris
corner detector to determine the positions of heel strikes. Theoretically, there should be dense

corners accumulated at the positions of heel since the heels stay at the strike positions for almost
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half gait cycle [5]. We compare our detection results against the corner detection method since
there are few heel strike detection methods based on standard image sequences with

implementation available. The performance is evaluated by F-score:

_prr (4.5)

FB=(1+,82)T+ﬁ2p

p stands for precision and r for recall. F score prefers precision if § is set to be small and recall if
B is large [68]. Let TP represent the number of true positives, TN the true negatives, FP is false

positives and FN is false negatives, p and r can be computed by:

TP TP (4.6)

P=Tp+FP "~ TP+FN

Figure 4.10 and Figure 4.11 illustrate the comparative F1 score of acceleration and corner detector.
Since F-score favours precision if 8 is small and recall if § is large, [ is set as 1 here to evenly
balance the result. The results differ from the earlier results [50] because the background has been
included to give a more realistic implementation scenario. The detection of the heel strike
moments (the key frames) and positions are evaluated separately since they are determined

individually, and they describe different events in gait analysis.

Since the corner detection does not return the key frames, an additional condition is applied which
is that for a key frame to be successfully detected, a corner position within +30 pixels from the GT
is considered as a true positive. This condition is actually quite generous and leads to an optimistic
estimate of the frame for corner detection. For the radial acceleration detector, the criterion for a
true positive in Figure 4.10 is if the detected frames are within £2 frames from the GT. For heel
positioning in of both methods, a distance within £10 pixels (along both axes) from the GT is

considered as a true positive in Figure 4.11.
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(a) Radial acceleration (b) Harris corner detector [5]

Figure 4.10 F1 score of key frame detection.
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Figure 4.11 F1 score of heel positioning.

Figure 4.10 illustrates that radial acceleration is able to detect key frames accurately when the
camera is nearly perpendicular to the walking direction, the detection rate decreases with the
increase of the angle between the camera and the walking subjects. Acceleration is more sensitive
to the view angle since the scale of acceleration changes through the image sequence if the walking
trajectory is not perpendicular to the camera. When the angle is large, the magnitude of
acceleration is extremely small if it is far from the camera, which will cause the failures. Figure 4.13

shows that the lost most occur when subject is far from the camera.

In Figure 4.11 the radial acceleration detector provides more precise positioning results than Harris
corner detector for all the camera views, especially on SOTON. The main reason is that the image
size of SOTON is large, which causes the excessive accumulation area for Harris corner detector,

thus the precision decreases correspondingly.

The Precision-Recall curves respect to the magnitude of acceleration (varies from 0 to 4) and the
density of corners (varies from 500 to 1600) are reported in Figure 4.12. Since the strike positions
are filtered by the key frames they did not show significant sensitivity to the change of threshold,

hence only the algorithm of key frames detection is evaluated.
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Figure 4.12 The key frame detection Precision-Recall curves of radial acceleration and Harris corner

detector.

Radial acceleration hits a much higher recall rate therefore it has a larger area under the curve
than corner detector. The precision of radial acceleration is steady, it keeps around 86% with the

change of recall while the PR curve shows that the corner detector is more sensitive to the density.

Figure 4.13 shows samples of the detection results for different databases. Our algorithm can
locate a precise location and frame of the heel strike since the angle between camera and walking
subject is small. In CASIA-A-45 (the last row) the acceleration detector failed to detect several
strikes when the subjects walk away from the camera and the accuracy of localization also

decreases.
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Figure 4.13 Examples of detection results with various databases.

Positioning is critical for the heel strike detection in gait analysis. In the above experiments, the
weighted sum is used to estimate the strike positions. For improving the performance, a measure
for density of proximity by Bouchrika [28], and, mean shift are also tested. The algorithm and
parameters have been explained in Section 4.2.2: we use weighted sum, density of proximity and
Mean shift to determine the strike position. There is only one strike position in the ROl so one
mode only needs to be determined, the bandwidth is set as 20 pixels in the experiment. Around
100 randomly selected strike frames from SOTON database are tested. The new condition of a
correct prediction in Table 4.3 is the estimated position is within +3 pixels from the GT. Mean shift

has improved the precision of positioning significantly considering the condition of initial results in
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Figure 4.11 (a) was within £10 pixels. The great improvement of determining the strike position by
density of proximity [28] via acceleration also proves that the radial acceleration is a much better

feature for detecting heel strike than corners.

Method F1-score
Density of proximity [5] 0.72
Mean shift 0.95

Table 4.3 The results of strike position detection by advanced algorithms.

44.4 Robustness of Heel Strike Detection Approaches

Since the performance of a system under adverse imaging conditions is an important issue, we
evaluate the robustness of our heel strike detection technique. Three different factors affecting
image quality, that might reduce the detection rates, are applied to the original sequences:
Gaussian zero-mean white noise, occlusion in the detection area, and reduced resolution. These
factors reflect some of the difficulties anticipated when detecting heel strikes in real surveillance

videos. Figure 4.14 illustrates the examples of different types of noise at different levels.

(a) Gaussian white noise (=1.5%) (b) Occlusion in the ROI (40%)

Figure 4.14 Example of added noise and occlusion.
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Figure 4.15 Performance analysis of heel strike detection.
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Figure 4.15 gives the results of testing the acceleration detector’s immunity to these factors.
Corner detection is also evaluated for comparison. The performance of the acceleration detector
reduces slowly and smoothly with increased Gaussian noise variance. Corner detection is much

more sensitive to increases in variance of the Gaussian noise, as shown in (a).

The evaluation of immunity to occlusion investigates whether the gait information in real
surveillance can be totally seen, or not. Occlusion was achieved by covering the ROl from the toe
to the heel increasingly with a random texture. The performance under occlusion decreases
steadily, and our approach failed when the ROl is covered more than 30% of the whole area. This
is because most high-magnitude acceleration is located around the toe (the toe travels the greatest
distance during heel strikes) but the toe is almost completely occluded when the occlusion in the
ROl is over 30%. The detection by corners does not decrease significantly since the area that most
corners are concentrated on the heel which has not been totally occluded yet. Acceleration does
outperform the Corner method when occlusion is slight. If the occlusion were to start from heel to

toe, our method could achieve much better immunity than the corner detector.

Resolution reduction investigates whether resolution of the subject is sufficient in surveillance
footage. The original images are down-sampled and the detection rate of both approaches
decreases to a low level when the new pixels are equivalent to 5x5 patches in the original image
(in which the height of the subject is now around 70 pixels whereas it was 350 pixels originally).

Acceleration and corner detectors show similar immunity characteristics under this situation.

4.5 Discussion

In dynamics, a change of force causes acceleration, and acceleration changes motion. Consequently,
acceleration is a distinctive cue to the change of motion. Some previous physics-based gait analysis
approaches used accelerometers and gyroscopes to detect the acceleration and angular velocity of the
body parts in order to determine stance, swing and strike [1], [3]. We have applied this principle to
standard image sequences to detect heel strikes. When the heel approaches the strike, the foot has
significant radial acceleration which is centred at the heel. Only the acceleration flow in the region
around the leading foot is considered in our approach to reduce the effects of noise. Our experimental
results show that acceleration is a more powerful way of estimating the positions of the strike than
previous standard image-based techniques. Also, our method overcomes the problem of detection in
real-time as only three frames are needed for estimating acceleration flow. The evaluation of immunity
to different types of noise suggests that acceleration is more robust to Gaussian noise than the previous

approach.
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On the other hand, the main limitation of acceleration is its sensitivity to the visual angle between the
camera and the subject. When the camera is orthogonal to the subject, acceleration performs best since
the measurements and decomposition algorithms utilise a 2-D plane. The most realistic way of solving
this problem is by applying the algorithm using a 3-D volume, for example using Kinect depth images, to
replace the standard image sequence. However, the complexity of computation will be much higher than

the existing technique.

Another weakness of this approach is that it can only be applied in data with a static background and
the subjects in the images do not overlap. This is a similar limitation to most existing techniques however.
Currently background subtraction and silhouette extraction are essential pre-processing progresses for
most standard image-based approaches. The results will be severely affected if the scene is too complex,
for example the overlap of subjects in a crowded scene. Hence there is still refinement necessary to be
able to apply these techniques in poor quality images, such as surveillance footage of the underground,

or to videos recorded with adverse illumination.

4.6 Conclusions

This chapter demonstrates that acceleration flow can be used for detecting heel strikes. Cunado
and et al. [8] proposes that the limbs appear to have pendulum-like motion in their gait model and
acceleration has been widely used in gait analyse techniques based on physics data as the motion
of a pendulum can be easily discriminated by radial and tangential acceleration. The ability of the
new heel strike detection technique has been compared with one of the few existing techniques.
The results show that this new technique not only improves the precision significantly but also
enables real-time detection. By using mean shift to localize the strike positions base on the rotation
centres map, the precision reaches 95%. The experiments also investigate how camera viewpoint
can affect the performance, as radial and tangential components are derived based on a plane
perpendicular to the subjects. After using radial acceleration to detect heel strike, we are going to

explore the higher order of motion in the next chapter.
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Chapter 5 Jerk and Higher Order Motion in Computer

Image Streams

5.1 Introduction

After successfully separating acceleration from complex motion and applying it into heel strike
detection, we now investigate the higher orders of motion. Experimental results on synthetic
images show that higher order flow gives a different perspective from acceleration, and they allow
more possibilities for analysing complex motion fields in computer vision. Following the detection

system in the last chapter, jerk and snap are also applied for detecting heel strikes.

This chapter is arranged as follows: Section 5.2 introduces the physical definitions of jerk and snap
separately, including their applications in industry. The algorithms are presented in section 5.3.
Section 5.4 illustrates various motion fields both on the synthetic and real-world image sequences;
in addition the higher orders of motion flow are applied in the heel strike detection system.

Discussions and conclusions can be found in Section 5.5.

5.2 Jerk, Snap and Higher Order Motion in Kinematics

It is well known that velocity measures the change in position over time, and acceleration is the
change of velocity, the term of measuring the change of acceleration is Jerk [69], [70]. It is usually
used for analysing chaotic dynamical systems [71]. Acceleration links a force acting on a mass from

Newton’s Second Law:

(5.1)

T
Il
3
Qu

Hence, assuming constant mass, jerk describes the change of force; and Snap describe the change
of jerk in kinematic. In calculus snap is the derivative of acceleration with respect to time, the fourth
derivative to position [70]. Equation (5.2) describes the time evolution of position 7:

_dj@®) d?a(t) 3 d3v(t) 3 d*7(t) (5.2)
T odt - dtz T dtd3 T dtt

s(t)
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where S represents snap, J denotes jerk, and d, v, 7, t are acceleration, velocity, position and time
respectively. The change of nth-order flow under limited snap is shown in Figure 5.1 which gives a

sense of the relationship between them.
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Figure 5.1 The relationship between motion profiles in a straight linear motion [72].

The conventional engineering application of jerk and snap in industry is in motion control since
humans have limited tolerance to the change of force. Motion limitation is therefore necessary to

avoid users losing control during transportation, 2.0 m/s™3

in a straight-line transportation is
acceptable for most people. The most common examples are in lift and vehicle design. Now
acceleration and jerk have been widely used to analyse the driving behaviours in intelligent driving
evaluation: predicting potential risks and guarantee the passages’ comfort in autonomous driving
system [5], [6]. Bagdadi and Varhelyi found that the breaking jerk of vehicles measured by
accelerometer is highly related to accidents, their evaluation system based on jerk is 1.6 times

better than the longitudinal acceleration methods [76].

In road and track design, unbounded radial jerk needs to be avoided on curved parts: the theoretical
optimum strategy is linearly increasing the radial acceleration. Another application using
acceleration and jerk is the operation path evaluation of numerical control machines [77]. The
square of the magnitude of jerk integrated over time termed the “Jerk cost”, was measured for

guantitatively analysing different movements in human arms [78]. In 2006, Caligiuri and et al. used
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jerk to monitor how the drug-induced side effect affect patients’ handwriting [79]. More recently,

a detection algorithm for manoeuvring targets using radar has considered analysing jerk [80], [81].

5.3 Jerk and Snap Fields Estimation

Previous research which has considered jerk mostly derives jerk from the trajectories of moving
objects by tracking. Datta and et al. [82] computed acceleration and jerk vectors from the objects’
head, which was tracked by the colour sum of squared differences, for person-on-person violence
detection. Zaki and et al. [83] get the vehicles’ jerk from the trajectory extracted by Kanade-Lucas-
Tomasi Feature Tracker algorithm [84]. To the best of our knowledge, we are not aware of any
previous computer vision research that has considered analysis of the general acceleration field in

images beyond its basic form.

Following our algorithm of Differential-Acceleration, jerk is computed by differencing the neighbour

acceleration fields:

j(it) = A(t~(t + At)) — A((t — AD)~t) (5.3)

where t~(t + At) represent the flow field from frame t to (t + At). The jerk field is resolved into
tangential and radial components as well, they are computed in the same manner with Equation
(5.3). The definitions of the tangential and radial components of jerk in this thesis indicate that they

measure the linear changes of tangential and radial components of acceleration.

In Differential-Acceleration, we are able to refer the displacement to the middle frame to avoid the
inconsistent start positions since it requires three points to compute acceleration. Estimating snap
involves an odd number of positions (five), which makes referring the middle point as the start
possible. Therefore, snap fields are computed in a similar manner to Differential-Acceleration in

Section 3.4:

S@®) =j(t~(t +aD) — {-j(t~(t — AD))} (5.4)

Now we have the algorithms to provide the change of acceleration and jerk, in the next section they
are going to be applied on synthetic and real images to see whether they can reveal different

motion features.
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5.4 Appling Multi-orders Flow Fields on Synthetic and Real Images

54.1 Experiments

The advantages of synthetic images have been mentioned in Section 3.4.2. We manipulate a set of
images to simulate the motion of Newton’s cradle named “synthetic cradle”. It is a device consisting
of a set of swinging spheres, which was originally used for demonstrating conservation of
momentum and energy. Newton’s cradle is a good example for demonstrating the difference
between various flow fields due to the different order components change from time to time

whereas the entire motion is rather simple.

In the image sequence, the highest point is considered as the stationary point, which is t = 0.
Swinging to the lowest point is the positive direction and to the stationary position is negative. The

change in inclination of the line suspending the swinging ball is computed by:

A =2+t (5.5)

where t € {—5,—4,...,4,5}, A9 is the degree increased between each frame. Figure 5.2 gives the

examples of t = —5,0, 2.

(@)t = =5 (b)t=0 (c)t=2

Figure 5.2 Examples of “synthetic cradle”.

The results of nth order motion flow whent = —1,0, 1 are presented in Figure 5.3. Whent = —1,
the sphere is swinging to the highest position and remains there for one frame (t = 0), then it
swings back at t = 1. The acceleration shows similar motion fields in all three frames where the
sphere is accelerating to the lower right with a similar magnitude. On the other hand, jerk and snap
flow give different perspectives. Whent = —1 jerk and snap flow have the same direction with
acceleration and the magnitude of snap is larger, which means that the acceleration is increasing
with the same direction. In the second-row jerk and snap flow have notable reduction compare
with in frame —1. When t = 1, the directions of jerk and snap are opposite which proved that the

acceleration is actually decreasing.
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Acceleration Flow Jerk Flow Snap Flow

Figure 5.3 Flow fields of synthetic cradle sequence.
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In addition to synthetic images, we can disambiguate jerk and snap from real motion fields as well.
A few image sequences filmed by high speed camera from Middlebury are selected as the test data
for reducing the error caused by low frame rate. We illustrate two sequences in the text, more

results can be found in Appendix A and Appendix B.

In Figure 5.4 and Figure 5.5, the results show that the motion fields indeed change with the
increasing of order. The constituent parts of snap are too noisy due to the strong constrain (moving

along the same arc for five frames), we only illustrate the resultant snap here.

Beanbags frame 9 Beanbags frame 11

Optical Flow

Tangential Acceleration

Radial Acceleration
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Tangential Jerk

Radial Jerk

Snap

Figure 5.4 The motion fields of Beanbags.

In Beanbags, tangential jerk has larger magnitude than tangential acceleration on the left arm in
frame 9 whereas there is barely radial jerk, which means the main change of acceleration is
magnitude rather than direction. The right hand shows a similar change. In frame 11, the motion is
mostly focused on the right hand and the balls in the air: the large radial jerk flow denotes the

acceleration direction of right hand is changing.
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DogDance frame 9 DogDance frame 11
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Radial Jerk

Snap

Figure 5.5 The motion fields of DogDance.

In the results of DogDance, the flow fields between different orders are roughly identical, except
the dog’s leg in radial jerk and radial acceleration. Again, there is a lot of flow although sometimes

they are hard to interpret due to the complexity of real motion.

In kinetics, obtaining acceleration needs three points on the path, four to get jerk and five for snap.
With the increasing of motion order, the computation involves more frames since image is a
discrete signal. If the difference between frames is finite and relatively large, potentially adding
noise to the results. Therefore, in our thesis, the accuracy of motion fields is largely a function of
the frame rate and motion intensity. If the frame interval = 0, we will have the most accurate
motion fields. Although the frame rate is currently not high enough for analysing jerk and snap, this
preliminary research of disambiguating the motion fields to different components still leans in a

step in explaining complex motion in computer vision.
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5.4.2 Detecting Heel Strikes via Snap and Jerk

Figure 5.6 shows the normalized radial jerk and snap of a walking cycle sampled every 7 frames.
There is considerable amount of flow on the leading foot periodically when the heel strikes on the
floor although snap is relatively noisy. Since jerk and snap are higher orders of motion, the flow
fields suggest comparatively intense motion. Logically, we wonder whether jerk and snap are able

to detect and localize the heel strikes or improve the performance than acceleration.

(a) Jerk patterns

%

(b) Snap patterns

Figure 5.6 There is noticeable amount patterns on a gait cycle.

Figure 5.7 reports the F1 score of detecting heel strike through jerk and snap. The criteria are same

with acceleration. As the resolution of all the CASIA data are insufficient and the detection results
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are very sensitive to the magnitude of motion flow, the flows are only evaluated on SOTON and

OU-ISIR.

Jerk shows competitive ability to acceleration on key frame detection and slightly lower on
positioning. This is a sign of that jerk can be adapted in gait analysis or other applications on real
images. On the other hand, as the highest order of motion snap underperforms acceleration and

jerk, furthermore the relatively small ROl in OU-ISIR increases the difficulty.

1.0 T T T T 1.0

—_ —_ i +

09} ¥ ,
-

EE} . i 08} é%a Eéﬂ

o
@

il

-
0.6 - ‘
. ] + E
l
-

0.2} EE;}

F1 score
o
o
F1 score

o
5

; ]
! 04f

=] o
w N

o
N

+

0.0

I
—

SOTON(Jerk) OU-ISIh(Jerk) SOTONI(Snap) OU-ISIR(Snap) SOTON(Jerk) OU-ISIR(Jerk) SOTON(Snap) OU-ISIR(Snap)

(a) Key frame detection (b) Heel positioning

Figure 5.7 F1 score of heel strike detection via jerk and snap.
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Figure 5.8 Key frame detection PR curves of Jerk and Snap.

The PR curves suggest that jerk has a high area under the curve, which represents it hits both a
high recall and a high precision. It performs considerably better than snap on the balance between

precision and recall rate.
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5.5 Conclusions

In this chapter, motion field is decomposed into its constituent parts. In particular, the notion of
acceleration has been extended into detection of jerk and snap (and in their vector format). Analysis
of test image sequences and heel strike detection show that the extensions have the power to
further discriminate higher orders of acceleration successfully. Clearly the new approaches are ripe
for further evaluation and application, perhaps in gait and violence, or in more general image

sequence analysis.

The nature of higher order motion detection suggests that the techniques might be more susce-
ptible to noise, as this can be exacerbated when detecting higher order motion. This could
especially be the case when analysing surveillance video, which is often a target of motion-based
analysis. In that data there are often problems with low temporal, spatial and brightness resolution,
and these can limit the results of a motion-based detection technique. Any development should
likely include consideration of the smoothing that is necessary to mitigate limitations inherent in

the original data.
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Chapter 6 Conclusions and Future Work

6.1 Conclusions

An image sequence compounds many different orders of motion. Previous motion analysis research
in computer vision [6], [7] has mostly focused on the displacement between frames, without
considering the diversity of motion types. As a more distinct feature than velocity, acceleration
clarify certain motions: heel strikes incorporate radial acceleration of the foot whilst walking.
Experiments on multiple databases with various conditions show that our method improved
reliability on locating of each heel strike within the frame in which it occurs. The immunity of this
new approach to the anticipated noise in real CCTV footage is evaluated, radial acceleration is
shown to be less sensitive to Gaussian white noise, whilst being effective to changes in viewing

angle when compared with the only other known vision-based technique.

This thesis is the first systematic study of classifying motion into different levels in computer vision.
There have been a few studies estimating acceleration from optical flow [51], [52]. However there
appear to be some limitations in their algorithms and their approaches were not evaluated on
benchmark optical flow datasets [7], [85]. First acceleration is derived from the basis of Horn-
Schunck but most real motion violates the basic global smoothness assumptions made in the
formulation. We sought another way to approximate acceleration fields which is more accurate and
able to handle most situations and appears on improvement over Horn and Schunck’s technique
on the standard test sequences. Acceleration is decomposed into radial and tangential components,
providing a completely new way to understand and disambiguate motions in image sequences. The
ability of the new technique is demonstrated by the experiments on a variety of image sequences

whereas velocity did not show any obvious difference.

Furthermore, we have explored the higher order motion components: jerk, snap and their
constituent parts. Following the idea of acceleration, preliminary results are given to illustrate their
different features to motion. Clearly the higher orders of flow are likely to be more sensitive to

noise, our research starts a new field for further evaluation and application.
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6.2 Future Work

There has been much non-image based research on analysing acceleration and jerk by physical
sensors [1], [13], [86], like accelerometer or gyroscopes. The work presented in this thesis makes
adapting those researches from physical data to computer images possible. In the future, the

following work can be developed towards the following aspects.

6.2.1 Scenes Segmentation

Previous acceleration studies focus on abnormal behaviour detection. Chen and et al. [51] apply
acceleration flow to detect abnormal behaviours. Dong and et al. [52] feed optical flow and
acceleration flow into a network, both in combination and individually, to detect the violence in
scenes. The evaluation illustrates that the most reliable feature is individual acceleration flow.
When people fight, their bodies tend to have large acceleration (in many places and with large
magnitudes) on their bodies because their arms swing and their feet are kicking. As such,
acceleration appears more suited to the detection of rapid changes, consistent with scenes of

violence.

We show the acceleration fields with the optical flow on some raw videos from YouTube and
Hockey Fight Dataset [87]. In Figure 6.1 there is no fighting and the scenes are mundane; images in
Figure 6.2 incorporate various violence scenes. Optical flow fields are illustrated for contrast. In the
violence episodes there is considerable detected acceleration and much less focus on irrelevant

subjects.

In the tranquil scenes: those scenes which do not contain episodes of violence. We only present
single images here, though these are derived from image sequences. In the prison surveillance
video (the first row), there is little acceleration detected revealing only the swinging arm of a
uniformed guard in the mundane episode. In comparison there is more optical flow, consistent with
more leisurely movement as prisoners receive their visitors from the left. This is motion consistent
with a tranquil scene; velocity is much smoother than acceleration of which there is none. In the
ice hockey data, optical flow shows on the background rather than the skating athlete since the
camera is tracking him and the acceleration field is clear. The third row shows the early stage of an
assault before violence, the fourth row is a subway scene before an assault and the last row
concerns a robbery. In all these examples velocity exceeds the acceleration and in most cases the

acceleration is little.
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Velocity fields Acceleration fields
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Figure 6.1 The difference between velocity and acceleration within calm scenes.

Figure 6.2 shows the analysis of scenes which contain episodes of violence or criminal behaviours,
which are the other parts of the image sequences shown in Figure 6.1. The first row shows an
assault in a prison scene and there is considerably more acceleration than velocity and the
acceleration appear to be consistent with kicking and punching. The assault in the third row (which
is a continuation of Figure 6.1) shows the velocity and the acceleration appear to be of similar
magnitude, but the acceleration is concentrated around the limbs. In the last episode the criminal
flees after the crime, their body also tends to make more acceleration. Thus, by detecting
acceleration we might be able to determine an approach suited to the detection of violent crime in

the future.
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Velocity fields Acceleration fields
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Figure 6.2 The difference between velocity and acceleration within scenes of violence.

6.2.2 Gait Analysis

Accelerometer and gyroscope have been widely used for gait analysis [1], [13] since the movement
caused by different gait events is unique. We have proved that radial acceleration and jerk appears
periodically on the leading foot at the moment of heel strike in Chapter 4 and Section 5.4.2. Figure
6.3 exhibits the normalized acceleration and jerk magnitude of a whole walking cycle sampled every
5 frames. Acceleration and jerk on each part of the subject are different during different temporal

components of the walking cycle.

(a) Acceleration patterns
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(b) Jerk patterns
Figure 6.3 The acceleration and jerk patterns on one gait cycle.

This work bridges the gap between analysing gait through motion data from physical sensors to
computer images. Previous research of gait analysis has considered velocity and acceleration based
on physical data [3], hence we suggest a hypothesis that the multi-orders of flow on each part of
the body extracted from computer images can discriminate different phases of walking. Moreover,
acceleration can also be used for segmentation. For example, thereis rarely substantial acceleration
on the upper body, thus presumably the legs and the body can be easily extracted from this

observation.
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Appendix B The Motion Fields of “Basketball”

Appendix B The Motion Fields of Basketball
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