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Abstract: The field of human population mapping is constantly evolving, leveraging the increasing
availability of high-resolution satellite imagery and the advancements in the field of machine learning.
In recent years, the emergence of global built-area datasets that accurately describe the extent, location,
and characteristics of human settlements has facilitated the production of new population grids, with
improved quality, accuracy, and spatial resolution. In this research, we explore the capabilities of
the novel World Settlement Footprint 2019 Imperviousness layer (WSF2019-Imp), as a single proxy
in the production of a new high-resolution population distribution dataset for all of Africa—the
WSF2019-Population dataset (WSF2019-Pop). Results of a comprehensive qualitative and quantitative
assessment indicate that the WSF2019-Imp layer has the potential to overcome the complexities and
limitations of top-down binary and multi-layer approaches of large-scale population mapping, by
delivering a weighting framework which is spatially consistent and free of applicability restrictions.
The increased thematic detail and spatial resolution (~10 m at the Equator) of the WSF2019-Imp
layer improve the spatial distribution of populations at local scales, where fully built-up settlement
pixels are clearly differentiated from settlement pixels that share a proportion of their area with green
spaces, such as parks or gardens. Overall, eighty percent of the African countries reported estimation
accuracies with percentage mean absolute errors between ~15% and ~32%, and 50% of the validation
units in more than half of the countries reported relative errors below 20%. Here, the remaining
lack of information on the vertical dimension and the functional characterisation of the built-up
environment are still remaining limitations affecting the quality and accuracy of the final population
datasets.

Keywords: gridded population distribution mapping; large-scale population distribution mod-
elling; World Settlement Footprint; percent of impervious surface; accuracy assessment; dasymetric
modelling; sustainable development

1. Introduction

In the context of global sustainable development, the adoption of the United Nations
(UN) Sustainable Development Goals (SDGs) and post-2015 international development
agreements ignited a much-needed data revolution, in which countries and institutions all
around the world started recognising the fundamental role of geospatial data for policy
making [1,2]. Increasingly, high-quality geospatial datasets, in particular those derived
from Earth Observation (EO) technologies, are becoming an essential source of information,
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needed for guiding social, economic and environmental policies at global, regional, national
and subnational scales [3,4].

The advantages of employing EO technologies and geospatial datasets to track and
monitor sustainable development measures can be summarized as follows. First, compared
to ground-based methods, the use of EO technologies, and in particular the use of satellites,
allows the production of cost-effective data with a higher frequency over longer periods of
time and over larger spatial extents [5,6]. Second, EO technologies enable the collection
of near real-time, objective, and independent data for remote and marginalized areas that
have previously been ignored [7,8]. Third, when combined with traditional data (e.g.,
field surveys, census data, demographic and socio-economic statistics), EO data (satellite
imagery) supplement and/or enhance the quality of the information by improving its
spatial resolution and interpretation capabilities (including better visualization) [3].

In this framework, from a large variety of geospatial datasets that are needed to
establish informed sustainable development measures (e.g., data on land-use, land-cover,
hazard zones, and climate indicators), some of the most needed spatially explicit datasets
are those describing the spatial distribution of the human population [4]. The main
reason for this is that accurate knowledge on where and in what density humans live is
essential for understanding almost any other type of phenomena, be it social, economic or
environmental [9]. This was highlighted in the reviews presented by Kavvada et al. [4],
Kuffer et al. [7], and Qui et al. [10], where the authors argue that geospatial data related to
human population distributions could potentially be used to directly or indirectly support,
implement and monitor more than half of the SDGs (~11 out of 17 SDGs) and a large
proportion of their related indicators (~98 of the 231 Indicators). Research in the fields of
public security [11], health policy [12–14], network and transportation [15], vulnerability
and risk assessment [16–18], urban growth [19] and mitigation [20] among others, are
examples of the many areas where these datasets are needed as inputs to produce reliable
information.

Specifically, there are six openly available, large-scale (continental and global) spa-
tially explicit population distribution datasets that are considered “leading datasets for
research and decision-making” [21] and which have been produced “to support policies
and international agreements in global forums” [22]. These datasets include the High
Resolution Settlement layer (HRSL) [23], the WorldPop datasets [24], the Gridded Pop-
ulation of the World (GPWv04) [25], the Global Human Settlement Population datasets
(GHS-POP) [26], the Global Rural-Urban Mapping Project (GRUMP) [27] and the Land-
Scan Population datasets (openly available to the educational community) [28,29]. These
datasets are available at spatial resolutions of 1, 3 and 30 arcsec (~30 m, ~100 m and ~1 km
at the Equator, respectively). Each one of these datasets has been produced using a different
“top-down” dasymetric modelling approach [30], consisting in disaggregating adminis-
trative unit-based official population counts into grid cells of fixed spatial resolution (e.g.,
pixels). Disaggregation is normally done through different techniques and using a variety
of ancillary geospatial datasets to model, and in some cases restrict, the distribution of
population across space. Depending on the selected technique, population datasets can
be “lightly modelled” (e.g., areal-weighting, binary- or single-layer-weighted dasymetric
redistribution) or “highly modelled” (e.g., multi-layer/intelligent-weighted dasymetric
redistribution) (see [31] for more details).

While these products represent the most widely employed top-down large-scale grid-
ded population distribution datasets used today, the field of human population mapping
is constantly evolving, leveraging the increasing availability of high-resolution satellite
imagery and advancements in the field of machine learning (ML). For the most part, the
recent emergence of global (or near-global) built-area datasets that accurately describe the
extent, location, and characteristics of human settlements has been exploited in the produc-
tion of new population grids, resulting in improved quality, accuracy and spatial resolution.
Representative examples include recent population distribution datasets that have been
produced on the basis of the World Settlement Footprint 2015 products (WSF2015 and
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WSF2015-Density) [32]; the new WorldPop Sub-Saharan gridded building datasets [33–35];
or through the joint analysis of high-resolution binary built-area products [36,37], such as
the Global Urban Footprint [38,39], the High Resolution Settlement Layer [23,40] and the
Global Human Settlement Layer [41,42], respectively. Here, the particular focus placed
on built-area datasets for population modelling arises from the fact that different research
has demonstrated that when built-area datasets are used to restrict the distribution of
the population, the final products deliver better qualitative and quantitative results in
comparison to those models where the datasets are not included [37,43]. In fact, other
research has shown that when a given built-area dataset is accurate and coherent enough
with population densities, it has the potential to be used as a single proxy for population
modelling [43].

In this context, the German Aerospace Center (DLR) is currently working on the
development and validation of a new set of global built-area datasets called the WSF2019
and the WSF2019-Impervioussnes (WSF2019-Imp) layers. The first layer is a binary mask
outlining the presence of human settlements globally at ~10 m spatial resolution, and the
latter is the beta version of a thematic layer estimating the percent impervious surface
(PIS) of the pixels marked as settlements in the binary layer. As such, these two datasets
represent follow-on products to the WSF2015 and the WSF2015-Density datasets [44,45]
however, as different input data were used to produce the WSF2019 datasets, improvements
over the 2015 versions can be expected in two main aspects. On the one hand, unlike the
WSF2015 layer, which was derived through the joint analysis of Sentinel 1 (S1) radar and
Landsat-8 optical imagery (available at ~10 and ~30 m spatial resolution, respectively), the
WSF2019 layer is produced by combining S1 data with ~10 m-spatial resolution Sentinel
2 (S2) optical imagery. While still undergoing comprehensive quantitative validation,
preliminary results indicate that the increased spatial resolution of the S2 data has allowed
for a better identification of building structures compared to the WSF2015 layer, improving
the built-up coverage, especially in suburban and rural settings. On the other hand, the
calculation of the PIS value, which was previously derived through a multi-temporal
analysis of the maximum Normalised Difference Vegetation Index (maxNDVI) extracted
from the TimeScan dataset [46], is now derived from the multi-temporal analysis of S2 data.
Here, just as before, the employment of higher resolution optical imagery has resulted
in remarkable improvements to the thematic accuracy of the layer, delivering a more
consistent product compared to the WSF2015-Density layer.

In view of the improvements made over the WSF2015 products, the development
of the novel WSF2019 datasets represents a window of opportunity for the production
of potentially improved population distribution datasets. Here, the use of the WSF2019-
Imp layer for population modelling is of particular interest, as from the many climate-,
environmental and geographical factors that correlate with population distributions (e.g.,
land-cover, topography, distance to waterbodies, distance to roads, access to services,
and access to transportation networks), impervious surfaces and built-area datasets have
proven to be the strongest predictors of population inhabitation [32,37,47,48]. This means
that due to its enhanced thematic characterisation, the WSF2019-Imp layer could potentially
be used as single proxy for population modelling, overcoming some of the limitations and
complexities of binary and multi-layer approaches [32]. Furthermore, due to its improved
spatial resolution (~10 m at the Equator), the final population datasets will likely be more
easily integrated with other high-resolution geospatial layers, making them more useful
and effective for a broader range of applications compared to existing population grids.
Here, previous research has shown that due to their coarse spatial resolution, existing
population grids, such as WorldPop and GHS-Pop (~100m and ~1km), perform poorly,
especially in application studies carried out at local scales [16].

In this framework, the aim of our research is to explore the capabilities of the novel
WSF2019-Imp layer in the production of a new high-resolution large-scale gridded popula-
tion distribution dataset—the WSF2019-Population (WSF2019-Pop). Using a simple and
semi-automatic weighted-dasymetric modelling approach, we incorporate the impervious-
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ness layer with an open archive of subnational census/estimate-based estimates to produce
high-resolution population distribution datasets for the African continent. Employing a
well-established validation method [31] and leveraging the variably in quality and spatial
granularity of the input population data, the main focus of our research is to systemati-
cally investigate how accurate and stable the WSF2019-Imp layer is as a single proxy for
population modelling. Here, we specifically explore if the WSF2019-Imp layer delivers
consistent patterns of accuracy/uncertainty within and among countries, and address the
main advantages and limitations of the WSF2019-Imp layer and WSF2019-Pop datasets in
support of large-scale population modelling and future research applications, respectively.

2. Materials and Methods

Figure 1 outlines the general process used for the modelling and validation of the
WSF2019-Pop dataset for Africa.

Remote Sens. 2021, 12, x FOR PEER REVIEW 4 of 26 

 

duce high-resolution population distribution datasets for the African continent. Employ-

ing a well-established validation method [31] and leveraging the variably in quality and 

spatial granularity of the input population data, the main focus of our research is to sys-

tematically investigate how accurate and stable the WSF2019-Imp layer is as a single proxy 

for population modelling. Here, we specifically explore if the WSF2019-Imp layer delivers 

consistent patterns of accuracy/uncertainty within and among countries, and address the 

main advantages and limitations of the WSF2019-Imp layer and WSF2019-Pop datasets in 

support of large-scale population modelling and future research applications, respec-

tively.  

2. Materials and Methods 

Figure 1 outlines the general process used for the modelling and validation of the 

WSF2019-Pop dataset for Africa.  

 

Figure 1. General workflow for the modelling and validation of the WSF2019-Pop dataset for Africa. 

Steps concerning this research include the production of the end-user WSF2019-Pop 

dataset (Step 1) and the accuracy assessment of the population datasets of each country 

(Step 2). Input data, namely, the WSF2019-Imp layer for Africa and the 2019 subnational 

population data, were either made available or downloaded ready-to-use. A detailed de-

scription of the main elements (grey labels) of each step are described in more detail in 

the following sections. 

Figure 1. General workflow for the modelling and validation of the WSF2019-Pop dataset for Africa.

Steps concerning this research include the production of the end-user WSF2019-Pop
dataset (Step 1) and the accuracy assessment of the population datasets of each country
(Step 2). Input data, namely, the WSF2019-Imp layer for Africa and the 2019 subnational
population data, were either made available or downloaded ready-to-use. A detailed
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description of the main elements (grey labels) of each step are described in more detail in
the following sections.

2.1. WSF2019-Imperviousness Layer

Impervious areas are characterised by artificial sealed surfaces that replace natural
land-cover or water surfaces. They are normally associated with building structures, streets
or sidewalks made out of concrete or stone materials [46]. The WSF2019-Imp layer is part
of a series of developments belonging to the WSF portfolio. It was created with the aim of
enhancing the semantic and thematic characterization of the WSF2019 settlement layer by
describing the PIS within the pixels identified as built-up in the binary layer.

The current processing is based on the same assumption that was used to produce
the WSF2015-Density layer [45]. The methodology relies on the fact that a strong inverse
relationship exists between impervious surfaces and vegetation, where the higher the
vegetation index, the lower the percent of impervious surface within a given built-up
pixel. To create the layer, the first step is to compute the maximum temporal NDVI
(maxNDVI) from all S2 scenes acquired in 2019, considering only Level 2A bottom of the
atmosphere reflectance imagery available globally from December 2017. The maxNDVI
is an effective proxy of the presence of vegetation on the ground, where other temporal
statistics, such as the mean or median, would not be as effective, since they would be
affected—for instance—by the absence of leaves in the cold season. From there, for each of
the Köppen–Geiger climate zones, areas associated with impervious surfaces are extracted
from OpenStreetMap where these are available, and then rasterized and aggregated at S2
~10 m spatial resolution. An ensemble of support vector regression (SVR) modules is then
employed for properly correlating the resulting training information with the maxNDVI to
finally derive the PIS of the pixel marked as settlements in the WSF2019 layer.

Figure 2 provides five different examples of the WSF2019-Imp layer. The first three
images (top–bottom) refer to the city of Niamey (Niger), characterized by a hot semi-arid
climate; Cairo (Egypt), characterized by a hot desert climate; and the city of Antananarivo
(Madagascar), characterized by a subtropical highland climate according to the Köppen
Climate classification system, respectively. The last two examples show suburban areas
and rural areas in South Africa and Nigeria, and are used to exemplify the local spatial
details of the layers in different vegetation cover and urbanised settings. For each of these
test sites, additional subsets are compared against Very High Resolution (VHR) satellite
imagery.

In this research, the countries of Seychelles and Cape Verde were not included, as
consistent S2 data for the selected period were not available when the employed version of
the WSF2019-Imp layer was produced.
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Figure 2. WSF2019-Imperviouness. Top to bottom: areas of Niamey (Niger), Cairo (Egypt), Antana-
narivo (Madagascar), and suburban(left) and rural (right) areas in South Africa and Nigeria. Percent
impervious surface (PIS) legend from >0% to 100% with country-specific minimum and maximum
values. Additional subsets (white boxes) compared against Very High Resolution (VHR) imagery.
Black areas: pixels outside the WSF2019 settlement mask.

2.2. Subnational 2019 Population Data

The population estimates for the year 2019 and corresponding subnational administra-
tive unit boundaries (vector data) for all African countries employed in this research were
prepared by the Center for International Earth Science Information Network (CIESIN),
which, in the context of a cross-organizational collaboration with WorldPop produced
population, accounts for the period 2000 to 2020 [49]. For most countries (except Kenya
and Malawi), the data were directly downloaded from the open archive of the WorldPop
Global Project available at https://doi.org/10.5258/SOTON/WP00650 (accessed on 15
December 2020). The population data for Kenya and Malawi were provided by CIESIN.

All of the population datasets employed here were standardised by CIESIN based
upon the methodology described in [50]. The subnational administrative unit boundaries
and population counts follow the cartography and official estimates collected in the 2010
round of Population and Housing Censuses, which occurred between 2005 and 2014 (and
data from the 2020 round for Kenya and Malawi). From these data, annual exponential
growth rates were calculated using two census dates (between circa 2000 and 2010 for
most countries) to interpolate and forecast population counts for each subnational ad-
ministrative unit for the period 2000 to 2020 [49]. The exception is for Kenya, where the
cartography [51] and official estimates are from the 2019 census [52], and for Malawi, where
the cartography [53] and official estimates are from the 2018 census [54], both of which
are part of the 2020 round of Population and Housing Census. This was necessary due
to restrictive licenses and significant administrative realignments between the 2010 and
2020 rounds in those countries. For each subnational administrative unit, two types of
population estimates are available—census/estimate-based and United Nations-adjusted
(UN-adjusted)—with the latter employed for this research following the criterion of existing
population datasets, which use UN-adjusted counts as a method of harmonisation [22]. The
subnational administrative unit boundaries, referred hereinafter as “L1-units”—according
to their original description [49]—represent the highest available administrative unit level
specific to each country, and are not comparable within and among countries, in terms of
size and administrative level.

https://doi.org/10.5258/SOTON/WP00650
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Table 1 shows a summary of the input population data. These include the three letter
International Organisation for Standardization (ISO) identification code, total population
for 2019 adjusted to the UN estimates, the base year of either the census or derived esti-
mation, the number of subnational administrative units and the average spatial resolution
(ASR) of the administrative units for each country. The data are presented divided in the
five subregions according to the UN geoscheme for Africa [55].

Table 1. Summary of 2019 UN-adjusted subnational population census/estimate-based data (2019-UNPop) for each African
country: 3 letter ISO code, census or estimation year, number of L1-units (L1-U), and the average spatial resolution (ASR).
ASR represents the effective resolution of the L1-units in km, calculated as the square root of each country’s total area
divided by the number of units.

Eastern Africa

ISO Year 2019-UNPop L1-U ASR ISO Year 2019-UNPop L1-U ASR

BDI 2008 11,530,577 66 13 MWI 2019 18,628,749 73 14
COM 2013 850,891 93 21 RWA 2012 12,626,938 67 7
DJI 2009 973,557 77 52 SOM 2005 15,442,906 68 78
ERI 2012 3,497,117 82 127 SSD 2008 11,062,114 69 83
ETH 2007 112,078,727 67 35 TZA 2012 58,005,461 67 14
KEN 2019 52,573,967 68 36 UGA 2014 44,269,587 70 11
MDG 2010 26,969,306 69 19 ZMB 2010 17,861,034 69 67
MOZ 2007 30,366,043 65 40 ZWE 2012 14,645,473 80 63
MUS 2011 1,269,670 55 3

Central Africa

ISO Year 2019-UNPop L1-U ASR ISO Year 2019-UNPop L1-U ASR

AGO 2014 31,825,299 161 87 GAB 2003 2,172,578 48 73
CAF 2012 4,745,179 174 58 GNQ 2014 1,920,917 39 29
CMR 2005 25,876,387 58 89 STP 2012 215,048 7 12
COD 2008 86,790,568 188 106 TCD 2009 15,946,882 62 142
COG 2007 5,380,504 12 166

Northern Africa Southern Africa

ISO Year 2019-UNPop L1-U ASR ISO Year 2019-UNPop L1-U ASR

DZA 2008 43,053,054 1540 41 BWA 2011 2,303,703 29 141
EGY 2006 100,388,076 385 49 LSO 2006 2,125,267 80 20
ESH 2014 582,455 27 103 NAM 2011 2,494,524 5473 12
LBY 2006 6,777,453 22 280 SWZ 2007 1,148,133 55 17

MAR 2014 36,471,766 1657 17 ZAF 2011 58,558,267 4
SDN 2008 42,813,237 130 114
TUN 2014 11,694,721 270 26

Western Africa

ISO Year 2019-UNPop L1-U ASR ISO Year 2019-UNPop L1-U ASR

BEN 2013 11,801,151 77 39 MLI 2009 19,658,023 765 38
BFA 2006 20,321,383 351 28 MRT 2013 4,525,698 218 71
CIV 2014 25,716,554 519 25 NER 2012 23,310,719 66 127

GHA 2010 30,417,858 170 37 NGA 2006 200,963,603 774 34
GIN 2014 12,771,246 340 27 SEN 2013 16,296,362 45 66
GMB 2010 2,347,696 40 16 SLE 2004 7,813,207 160 21
GNB 2009 1,920,917 39 29 TGO 2010 8,082,359 40 38
LBR 2008 4,937,374 136 27

2.3. Dasymetric Modelling Approach

Gridded population distribution maps for each African country were modelled using
a weighted dasymetric mapping approach, where the 2019 UN-adjusted population counts
from the input L1-units were redistributed into pixels classified as settlements in the
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WSF2019-Imlayer (Figure 1, Step 1). For each pixel within an L1-unit, the estimated
population count is defined as follows:

Pop(p∈IU) = PopIU
PISp

∑(p∈IU)

(
PISp

) (1)

According to Equation (1), each pixel within a given input unit Pop(p∈IU) is given a
proportion of the input unit’s total population PopIU , relative to their percent of impervious
value PISp. This means, for example, that within a single input unit, the population count
of a pixel with a 50% PIS value is twice as high as in a pixel with a 25% PIS value. This
modelling technique preserves population input totals, where the sum of population counts
of all pixels within an input unit matches the input unit’s original total population.

2.4. Quantitative Accuracy Assessment

In the field of top-down gridded population distribution mapping, and in particular,
the area of continental- and global-scale population distribution modelling, validation
tasks remain very challenging. In theory, similar to the accuracy assessment of any other
RS thematic map, a comprehensive quantitative evaluation of population distribution grids
should be based on independent and high-resolution ground-truth data, such as population
numbers at the pixel level. However, due to the fact that these types of reference data hardly
exist at large scales (e.g., they are only available for some countries) [21,56,57], or when
they do exist are difficult to acquire due to privacy protection policies, a “true-validation”
of continental and global gridded population distribution datasets is still not possible to
implement.

Notwithstanding these limitations, there is, however, an alternative validation method
that tests the internal accuracy of large-scale gridded population distribution datasets.
In this empirical method, the accuracy of population distribution maps is quantified by
computing the differences between the population counts extracted from maps modelled
using a coarser (aggregated) level of administrative units (input units) and the actual
population counts of the finest administrative units (validation units). The calculated
differences at the validation unit level can then be used to derive a variety of statistical error
metrics that reflect the relative accuracy, effectiveness, stability and modelling capabilities
of the employed disaggregation methods and/or ancillary covariates. Technically speaking,
this validation method assumes that the input population data are accurate, and as such, it
reports on the quality of the final population grids in terms of “how well and plausibly
populations were distributed” [31]. Overall, it is a well-established and accepted validation
method, which has been widely employed to investigate the relative accuracies of other
large-scale gridded population datasets [15,24,32,37].

Following this premise, in this research, we applied the same validation method to
systematically investigate the relative accuracy and mapping capabilities of the WSF2019-
Imp layer. The quantitative accuracy assessment presented here comprised two main steps,
described as follows.

2.4.1. Random Sampling

To produce the population distribution maps needed for validation, we first generated
the aggregated version of the L1-units, following a sampling and merging methodology
similar to that employed by Stevens et al. [43]. For each country, we started by randomly
selecting one third of the L1-units. For each L1-unit in the sample we then selected
a spatial neighbour unit that (1) was not already in the random sample, and (2) had
the closest value in population density (Figure 1, Step2-B). This process was performed
iteratively until approximately two thirds of the original L1-units were selected. From
here, the one third random sample units and the one third selected spatial neighbour
units were merged, and their population counts summed to produce coarser units for
population modelling (Figure 1, Step 2-C). These coarser units were then used as input
units to produce population distribution maps (Equation (1)) (Figure 1, Step 2-D), while
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the two thirds of sampled L1-units were used for validation (Figure 1, Step2-E). All the
remaining unsampled/unmerged L1-units were excluded from the analyses, as their
reported differences would have been zero.

The implementation of this aggregation method was deemed necessary, because in
each country, the original L1-units represent a mixture of administrative levels, where
no attribute is available to identify their administrative levels. Hence, aggregating the
L1-units into a common official level, comparable across all countries, was not possible
to implement. Consequently, due to the fact that some countries have very large L1-units
(Table 1), we selected a merging criterion based on the similarity of population densities, in
order to reduce the effect that the size of the input units used for modelling have on the
estimation error. Here, research has shown that larger input units tend to present larger
estimation errors simply due to their size [32,58]. Finally, we also excluded all the L1-units
that reported zero population counts from the sampling process. These units would have
generated errors of overestimation of 100%, derived solely from the quality of the input
population data, and unrelated to the capabilities of the modelling framework.

The aforementioned sampling method was applied to all African countries, except
Comoros. Comoros’ input population data consisted of only three geographically separated
polygons representing each of the islands: Grande Comore (Ngazidja), Mohéli (Mwali), and
Anjouan (Ndzuani). For the validation of Comoros, the two randomly selected L1-units
were merged into a “multi-part” polygon, and their populations were summed. The two
L1-units were further used for validation.

2.4.2. Statistical Analyses

From the gridded population distribution maps produced using the coarser input
units, population density estimates were extracted for all the sampled L1-units (also re-
ferred to as validation units from here on) using the Zonal Statistic tool of ArcGIS (Figure 1,
Step 2-E). For each country, the reported differences between the actual population den-
sities and the estimated population densities of the sampled L1-units were then used to
derive aggregated error metrics, such as the mean absolute error (MAE) (Equation (3)),
the normalised MAE (nMAE or %MAE) (Equation (4)) and the Root Mean Square Error
(RMSE) (Equation (5)), and individual error metrics, such as the Relative Estimation Error
(REE) (Equation (6)) and the Settlement Size Complexity Index (SSC-Index) (Equation (7))
(Figure 1, Step2-F).

For this research, total population densities were used instead of total population
counts to more easily perform comparisons within and among countries with varying
population sizes, and with varying numbers and ASR of the sampled L1-units. Statistical
analyses were carried out in two ways. First, to perform direct comparisons among
countries, the aggregated error metrics were calculated taking into consideration the
size/area (km2) of all sampled L1-units that make up each country. This weighting factor
removes the bias caused by the differences in size and number of the sampled L1-units
among countries, allowing the evaluation of the relative accuracy and modelling stability
of the WSF2019-Imp layer at a continental scale. Here, the average population density of
each country Di is then calculated as the conventional population density as follows [59]
(Equation (2)):

Di =
Pi
Ai

=
∑j∈i pj

∑j∈i, aj
=

1
Ai

∑
j∈i

ajdj (2)

where pj, aj and dj represent the population, area and density of each individual sampled
L1-unit within a country j, respectively. Consequently, the MAE is the average of the sum of
absolute differences between the estimated d̂j and actual dj weighted population densities
divided by the total area, and the %MAE is the MAE divided by the total population density.
Dividing the MAE by the average population density of each country Di additionally
removes the bias caused by the differences in population sizes [60]. The %MAE was chosen
over the %RMSE metric, due to the fact that the RMSE is likely to report higher values
influenced solely by a larger sample size [61]. Both error metrics measure the average
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of the absolute errors in the sampled L1-units; however, while MAE weights each error
equally, the RMSE gives more weight to larger differences, skewing the errors towards the
odd outliers [61]. This quality is useful to check, for example, whether the MAE reported
for each country originates from extreme errors or not.

MAEi =
1
Ai

∑
j∈i

(∣∣∣d̂j − di

∣∣∣ ∗ ai

)
(3)

%MAEi =
MAEi

Di
(4)

RMSEi =

√√√√∑i∈i((d̂j − dj)
2 ∗ aj)

∑j∈i aj
(5)

In a broad sense, the area-weighted aggregated metrics assume a proportional distri-
bution of error within each country, allowing us to derive meaningful comparisons among
countries. However, as the population density of the individual sampled L1-units varies
from unit to unit, so do errors, which are unevenly distributed across space. Therefore,
to properly investigate the error distribution within each country, for the second part of
the statistical analyses, we calculated the percent REE and the Settlement Size Complexity
Index for each sample L1-unit as follows:

REEj =

∣∣∣d̂j − dj

∣∣∣
dj

∗ 100% (6)

SSC− Indexj =

(
#settlement pixes

# settl.objects
∗ ∑ area settl. objects

Total area o f j
∗ RSdD settl.objects

Av. area sett. objects

)
(7)

The REE is derived by calculating the absolute error between the actual and estimated
population density, divided by the actual population density of each unit. Using this
metric, each validation was categorised into REE ranges of 20%, following the thresholding
criterion employed by [62]. The Settlement Size Complexity Index (SSC-Index) is a metric
that was first introduced by Palacios-Lopez et al. [32] to categorise the built-up environment
within any given area (polygon boundary) in terms of the size, number, distribution
(compacted/spread) and coverage of built-up objects derived from the WSF2015 layer. On
the one hand, high SSC-Index values indicate dense built-up environments, where the
total area derived from the settlement pixels is almost proportional to the total area of
the sample L1-units. Low SSC-Index values, on the other hand, indicate the presence of
small and sparse built-up environments, where the coverage of the built-up settlement is
proportionally low compared to the total area of the input units. For this research, built-up
objects are constructed from the WSF2019-Imp layer, where every object is composed of an
8-neighbourhood connected settlement pixel.

Using a 2D density analysis, we integrated the REE, the population density and the
SSC-Index value of each unit to investigate if the REE of a given range was found in
validation units with similar characteristics. The 2D density analysis uses contour plots
that replace the scatter plot distribution, allowing for better visualisations of clustered data.
Contour lines connect the points (validation units) that have the same response value (REE)
with regard to two predictors (population density and SSC-Index values) [63].

3. Results
3.1. Africa —WSF2019-Pop Dataset

The end-user WSF2019-Pop dataset for the African continent depicts the residential
population for the year 2019 adjusted to the UN national total estimates. The final dataset
has a spatial resolution of 0.3 arc-sec (~10 m at the Equator), a WGS84 Geographic Coor-
dinate System projection, and represents the number of people per pixel. Figure 3 shows
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the WSF2019-Pop dataset that Africa produced on basis of the L1-units of each country. It
depicts the areas within the five regions of the continent, using the country boundaries
for better visualization. As illustrated, the use of the WSF2019-Imp layer as proxy for
population modelling delivers a heterogenous distribution of population guided by the
underlying percent of impervious surface value (PIS). The colour scales are country specific.
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3.2. Quantitative Accuracy Assessment
3.2.1. Random Sampling—Validation Unit Description

For each country, the results of the sampling process described in Section 2.4.1 are
presented in Table 2. From an inspection across all African countries, it is possible to
observe that the final sample size (n) varies greatly among countries, with values ranging
between two sampled L1-units for Comoros (COM), and up to 56,478 sampled L1-units for
South Africa (ZAF). Independently of the sample size, results show that for most countries,
more that 50% of the total population was covered by the sample, with the exceptions
of Congo (COG, 25.62 %), Sao Tome and Prince (STP,48.08 %) and Liberia (LBR, 46.35%).
Similarly, for most countries, more than 50% of the total area was covered by the sampled
L1-units, with the exceptions of Djibouti (DJI, 20.14%) and Egypt (EGY, 14.12%). Overall,
~70% of Africa’s total population and total area was covered by the random sample.
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Table 2. Summary of the sampled L1-units for each country grouped by region.

Eastern Africa

ISO n %Pop %Area ISO n %Pop %Area
BDI 86 67.43 64.84 MWI 283 67.46 67.66

COM 2 92.51 74.32 RWA 277 66.39 61.97
DJI 3 70.30 20.14 SOM 50 57.57 72.94
ERI 4 82.12 81.48 SSD 51 66.51 71.01
ETH 490 68.42 76.15 TZA 2428 64.29 70.85
KEN 229 63.50 71.34 UGA 918 68.88 74.57
MDG 828 68.70 67.05 ZMB 99 62.65 66.01
MOZ 275 62.54 71.95 ZWE 59 72.38 82.04
MUS 105 68.07 64.78

Central Africa

ISO n %Pop %Area ISO n %Pop %Area
AGO 108 55.79 72.15 GAB 31 76.64 72.99
CAF 115 71.90 72.34 GNQ 3 57.15 79.77
CMR 37 56.16 71.30 STP 4 48.01 60.36
COD 120 60.24 67.35 TCD 41 64.89 69.39
COG 7 25.62 66.64

Northern Africa Southern Africa

ISO n %Pop %Area ISO n %Pop %Area
DZA 1026 60.40 81.71 BWA 17 77.81 61.66
EGY 225 70.70 13.14 LSO 53 65.61 76.83
ESH 16 73.94 62.85 NAM 3645 67.27 72.71
LBY 13 65.01 58.99 SWZ 35 63.95 67.39

MAR 1072 64.82 74.57 ZAF 68.16 76.45
SDN 85 68.41 62.40
TUN 176 67.13 76.69

Western Africa

ISO n %Pop %Area ISO n %Pop %Area
BEN 51 70.29 86.78 MLI 507 60.98 77.50
BFA 233 55.40 68.76 MRT 143 62.12 86.23
CIV 344 65.74 70.21 NER 44 70.28 55.12

GHA 113 60.45 75.22 NGA 515 65.33 68.31
GIN 226 67.46 68.79 SEN 29 58.33 78.74
GMB 25 80.82 70.63 SLE 106 66.34 72.30
GNB 26 75.88 76.50 TGO 25 70.76 76.84
LBR 89 46.35 74.22

For a better visual comparison of each country’s random sample, the distribution of
the population density (ppl/km2) and the size (km2) of the sampled L1-units are displayed
in the form of violin plots in Figure 4a,b. The shape of the violin plots describes the
probability density or frequency of the sampled L1-units within each value range, and
the black dots represent the mean value of each metric. From these plots, it is possible to
observe, on the one hand, that a large proportion of the sampled L1-units in countries such
as Burundi (BDI), Mauritius (MUS), Rwanda (RWA), Uganda (UGA), Egypt (EGY) and
South Africa (ZAF) report population densities higher than 100 ppl/km2. A total of 16
countries reported sampled L1-units with population densities higher than 10,000 ppl/km2,
with Egypt (EGY) and South Africa (ZAF) among the most representative. On the other
hand, some of the lowest population densities are reported in countries such as Algeria
(DZA), Western Sahara (ESH), Botswana (BWA), Namibia (NAM), and South Africa (ZAF);
here, sampled L1-units show values below 1 ppl/km2.
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In terms of the size of the sampled L1-units, for most countries, units have variable
sizes ranging between 1 km2 and 1000 km2. Countries such as Eritrea (ERI), Somalia
(SOM), South Sudan (SSD), Western Sahara (ESH), Libya (LBY), Congo (COG), Gabon
(GAB), Equatorial Guinea (GNQ), Chad (TCD), and Botswana (BWA) report units with
sizes larger than 10,000 km2, and countries such as Tanzania (TZA), Namibia (NAM), South
Africa (ZAF), and Malawi (MLI) report some of the smallest sampled L1-units with areas
below 1 km2.

3.2.2. Statistical Analyses

Table 3 summarises the results of the first part of the statistical analyses display-
ing the average population density (Equation (2)), the MAE (Equation (3)), the %MAE
(Equation (4)) and the RMSE (Equation (5)) for each country. A look at the results in terms
of the %MAE indicates that the performance of the WSF2019-Imp layer has some minor
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variabilities across countries. For 80% of the countries located in the upper 10% and lower
90% percentiles (41 countries), the %MAE values ranged from 13.95% to 32.10% with a
standard deviation of ±5.32%. Twenty-one of the 41 countries reported %MAE values
below or equal to ~20%, ten between ~20% and ~25%, and the last ten between ~25% and
~32%. The lower 10% of the countries reported %MAE values between 6.64% and 12.16%,
and the upper 10% reported %MAE values between 35.13% and 72.22%. Within each main
region, the lowest and highest %MAE values were reported for Mauritius (MUS,15.51%)
and Comoros (COM, 72.22%) in Eastern Africa, Sao Tome and Prince (STP, 12.17%) and
Gabon (GAB, 46.57%) in Central Africa, Western Saharan (ESH, 6.64%) and Morocco (MAR,
31.07%) in Northern Africa, South Africa (ZAF,16.72%) and Botswana (BWA, 38.24%) in
Southern Africa, and Senegal (SEN, 7.82%) and Mauritania (MRT, 31.66%) in Western
Africa, respectively. In terms of the MAE and the RMSE metrics, for all countries, the MAE
remained below the average population density value. This behaviour was not the same
for the RMSE metric, where for 24 countries, this value exceeded the average population
density. According to the distribution of these metrics shown in Figure 5, the difference
or ratio between the two metrics is relatively large for countries such as Algeria (DZA),
Mauritania (MRT), Mali (MLI), Namibia (NAM), and Angola (AGO). These differences
indicate that a large variability exists between the errors of the sampled L1-units within
each country.
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Table 3. Statistical metrics for population density.

Eastern Africa

ISO n Pop.D %MAE MAE RMSE ISO n Pop.D %MAE MAE RMSE
BDI 86 549.84 24.95 137.18 480.58 MWI 283 230.43 15.86 36.54 358.53

COM 2 837.55 72.23 604.96 788.36 RWA 277 672.72 18.47 124.23 237.25
DJI 3 208.99 17.36 36.28 77.82 SOM 50 27.31 35.14 9.60 27.68
ERI 4 36.18 25.50 9.23 10.26 SSD 51 19.05 62.82 11.97 24.79
ETH 490 114.34 26.12 29.87 155.43 TZA 2428 71.92 20.55 14.78 95.83
KEN 229 101.59 20.98 21.32 153.76 UGA 918 234.38 17.07 40.01 120.36
MDG 828 64.28 43.49 27.96 226.80 ZMB 99 25.13 17.98 4.52 28.23
MOZ 275 39.80 32.10 12.78 80.92 ZWE 59 36.30 18.88 6.85 33.05
MUS 105 1236.81 15.51 191.79 450.61

Central Africa

ISO n Pop.D %MAE MAE RMSE ISO n Pop.D %MAE MAE RMSE
AGO 108 20.12 16.28 3.28 32.75 GAB 31 8.85 46.57 4.12 24.57
CAF 115 8.03 21.76 1.75 16.42 GNQ 3 36.39 22.97 8.36 8.96
CMR 37 44.54 31.03 13.82 154.31 STP 4 167.94 12.17 20.43 30.39
COD 120 36.72 24.14 8.86 68.36 TCD 41 11.89 26.19 3.11 6.96
COG 7 6.29 30.34 1.91 2.49

Northern Africa Southern Africa

ISO n Pop.D %MAE MAE RMSE ISO n Pop.D %MAE MAE RMSE
DZA 1026 12.13 15.75 1.91 24.44 BWA 17 5.07 38.24 1.94 16.25
EGY 225 593.57 13.96 82.86 602.45 LSO 53 58.78 21.21 12.47 25.41
ESH 16 2.38 6.64 0.16 0.49 NAM 3645 2.72 22.49 0.61 22.51
LBY 13 2.00 16.49 0.33 1.35 SWZ 35 66.11 18.89 12.49 18.45

MAR 1072 65.41 31.07 20.32 166.31 ZAF 41.41 16.72 6.92 119.90
SDN 85 27.96 27.40 7.66 19.13
TUN 176 55.43 16.00 8.87 63.06

Western Africa

ISO n Pop.D %MAE MAE RMSE ISO n Pop.D %MAE MAE RMSE
BEN 51 81.40 14.74 12.00 73.62 MLI 507 13.95 18.45 2.57 59.47
BFA 233 58.05 19.19 11.14 17.85 MRT 143 2.97 31.66 0.94 26.61
CIV 344 74.58 11.67 8.70 72.79 NER 44 27.93 24.08 6.73 16.25

GHA 113 103.44 21.61 22.36 103.16 NGA 515 210.99 26.74 56.42 182.42
GIN 226 51.09 28.53 14.57 150.39 SEN 29 61.85 7.82 4.84 26.93
GMB 25 255.63 8.16 20.86 66.46 SLE 106 99.47 15.23 15.15 40.94
GNB 26 57.22 15.37 8.80 33.80 TGO 25 128.71 13.88 17.86 117.41
LBR 89 32.24 24.90 8.03 14.05

For the second part of the analyses, we first compared the actual and estimated
population density of the validation units of each county. Figure 6 shows these distributions
as scatterplots and marginal histograms, depicting the concentration of underestimated
(grey) and overestimated (red) validation units. Each plot aggregates the information of
all countries within one main African region, so that countries with a small number of
units can also be represented. As observed in the tails of the histograms and the scatter of
the validation units, there is a tendency of overestimating values below 10 ppl/km2 and
underestimating values > ppl/km2. Within the ranges where a larger number of validation
units are concentrated, there seems to be a larger tendency towards underestimations;
however, the distribution between underestimations and overestimations is somehow
proportional across the different population density ranges.
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To investigate the general patterns of error distribution within the validation units of
each country, Figure 7 shows the percentage of validation units that fall within REE ranges
of 20%. From here, it is possible to observe that all countries have at least 20% of their
validation units within the >0–20% REE range. For 32 of the 53 countries, this proportion
increases to at least 50%, and up to 60% for 16 countries. Sao Tome and Principe (STP), Côte
d’Ivoire (CIV), Senegal (SEN), and Togo (TGO) all have at least 75% of the validation within
this range, followed by Gambia (GMB) with 100%. For most countries, the second largest
proportion of validation units fall within the >20–40% REE range, where at least ~10% but
not more than ~30% of the validation units fall within this range. Some exceptions are
Zimbabwe (ZWE), Libya (LBY), and Eritrea (ERI), where ~40%, ~50% and ~75% of the
validation units fall in this range, respectively. Similarly, the proportion of validation units
within the >40–60% range is of at least ~1% for all countries, but no more than ~16%. Here,
only Gabon (GAB), Eritrea (ERI), Congo (COG), Djibouti (DJI), and Equatorial Guinea
(GNQ) report that ~20% up to ~30% of the validation units fall within this range. From
here, 42 of the 53 countries report validation units within REE >60–80%, with 29 of them
reporting a proportion of less than 10% of the validation units, from 10% to 20% for 11
countries and 50% for Comoros (COM). Similarly, 35 of the 53 countries report validation
units within REE >80–100%, with 30 of them reporting a proportion of less than 10% of the
validation units, from 10% to 20% for four countries, and 50% for Comoros (COM). Finally,
38 of the 53 countries report validation units with REE >100%, where 30 of them report a
proportion of less than 5%; six from 5% to 7%; and ~10% to ~18% for Botswana (BWA) and
Western Sahara (ESH), respectively.
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To explore whether general trends of error distribution are delivered by the WSF2019-
Imp layer, for the last part of the statistical analyses, we investigated the relationships
among the REE, the population density and the SSC-Index of the validation units. Figure 8
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shows the 2D-density plots for the validation units grouped according the different REE
ranges. Here, we only present the results for a set of countries where validation units fell
within each error range, and where the amount of validation units within each range was
enough to produce the contour lines. For comparison purposes, the population density
and the SSC-Index values were log-transformed.
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From these plots, it is possible to observe that the distribution of the different ranges
of REE can be found in the validation units with similar degrees of population density and
SSC-Index. There are, however, some general tendencies that can be seen within each error
range across most countries, which potentially explain the transitions from one REE range
to another. These trends are summarised as follows:

1. For all countries, the majority of the validation units with REE between >0% and 40%
are located in units with moderately high population densities and moderately high
SSC-Index values (top-right quadrant);

2. Errors tend to increase as the population density increases and the SSC-Index de-
creases (shift towards the bottom-right quadrant);

3. Large errors (>100%) tend to be located in validation units with extremely high
population density and extremely high SSC-Index values;

4. Most of the validation units with low population densities and low SSC-Index gener-
ally fall within error ranges of REE > 60%.
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4. Discussion
4.1. WSF2019-Pop Dataset: Qualitative Assessment

In this research, we presented the production of a new large-scale high-resolution grid-
ded population distribution dataset for the African continent produced on the basis of the
WSF2019-Imp layer and openly available subnational census/estimate-based population
data. From Figure 1, it is possible to observe that the WSF2019-Imp layer depicts a high
likelihood between the estimated PIS values and the underlying built-up environment.
High, medium, and low PIS values are proportionally assigned to every 10 × 10 m pixel
depending on the density of built-up and green spaces (e.g., parks and gardens) found
within them. Here, the specific climate zone of the given region of interest does not seem to
generate significant discrepancies in the final calculation of the PIS values, which indicates
that the layer is potentially robust, consistent, and comparable across space.

From a practical point of view, the WSF2019-Imp layer provides a weighting frame-
work that is calculated independently of other geospatial layers. This independence
provides the final WSF2019-Pop dataset with several advantages over existing binary- and
multi-layer products in the following ways. First, as seen from Figure 3, when employed
as proxy in a dasymetric modelling approach, the WSF2019-Imp layer produces a heteroge-
nous allocation of population counts that adheres to the variations of PIS values within
the L1-units. From a strictly qualitative point of view, this asymmetric distribution of
population has shown improvement over the homogenous/uniform distribution delivered
by the traditional binary dasymetric approach, revealing more detailed spatial distribu-
tion patterns. Previous comparisons presented in Stevens et al. [43], Reed et al. [37], and
Palacios-Lopez et al. [32] demonstrated, for example, that binary dasymetric modelling
techniques tend to produce visible abrupt changes between census administrative units,
whereas weighted approaches (including multi-layer and intelligent dasymetric) smooth
these transitions. Second, compared to multi-layer products, another main advantage
of the WSF2019-Imp layer is that it allows for the final WSF2019-Pop dataset to be more
easily updated and replicated in other areas, without the extensive work that is needed
for acquiring multiple geospatial layers of equal quality, extent, spatial resolution, and
spatio-temporal coverage [49]. Modelled with a single layer, the final population datasets
are potentially more consistent across space in comparison to multi-layer products, in
which the quality varies from location to location depending on the number and quality
of geospatial datasets available for a given area [29]. In addition to this, as there are no
other geospatial datasets involved in the production of the final WSF2019-Pop dataset,
the dataset does not suffer from applicability restrictions derived from endogeneity is-
sues [31]. For example, when land-cover data are used to model population datasets, these
consequently should not be used for applications focused on understanding correlations
between population and land-cover changes.

Notwithstanding these qualitative and practical advantages, as with any other global
and regional population distribution dataset, the quality of the final WSF2019-Pop dataset
is unavoidably affected by errors and anomalies derived from (1) the completeness and
lack of functional characterization of the WSF2019-Imp layer, and (2) the quality of the
input population data. Errors derived from the WSF2019-Imp layer include, first of all, a
mismatch in the total population counts resulting from the absence of settlements pixels in
some populated units. This type of error was identified in three countries: Mauritius (MUS),
Morocco (MAR), and South Africa (ZAF). Within each country 8, 49, and 57 populated
L1-units reported zero settlement pixels, with a total population sum of 43,931 (3.4%),
337,647 (0.9%), and 230,829 (0.03%), respectively. Through a visual assessment of these
countries, we were able to confirm the presence of built-up structures within the reported
L1-units. For the most part, the structures were very small and sparse, and were located in
environments such as deserted areas or deep valleys. While this underestimation of built-
up settlements was also reported for the population distribution datasets produced using
the previous WSF2015-Density layer, the amount of validation units with no settlement
pixels reported here is considerably less in comparison to the results presented in Palacios-



Remote Sens. 2021, 13, 1142 19 of 26

Lopez et al. [32]. For example, in the previous work of Palacios-Lopez et al. [32], where
the African countries of Malawi and Côte d’ Ivoire were also analysed, it was found that
~500 units were missing building structures. With the current WSF2019-Imp layer, these
two countries reported full coverage, which indicates that the identification of settlement
pixels has improved considerably as a result of the integration of S1 and S2 data into the
underlying classification framework of the WSF2019 layer.

In the same context, an additional type of error derived from the WSF2019-Imp layer
is the allocation of population counts to settlement pixels which are of non-residential use,
such as industries, ports, and stadiums. The lack of functional characterization of existing
built-up structures is still a persistent limitation that also affects other large-scale gridded
population distribution products, such as the HRSL and the GHS-POP datasets. This
qualitative limitation has additional quantitative implications, as non-residential, highly
impervious surfaces will capture large proportions of the population counts, leading to
underestimation in the surrounding settlement pixels. To solve this issue, machine learning
methodologies, which are able to classify the residential status of urban buildings from
LiDAR data at local scales [64,65], are now applied to large territorial extents using satellite
images [66,67]. For example, in the recent work presented by Lloyd et al. [67], the authors
combine satellite image-derived building footprint and OSM-label data to classify buildings
as residential and non-residential in Democratic Republic of Congo and Nigeria. Their
results show that the method classifies buildings with accuracies from 85% to 93% across
both countries. Overall, the potential for the large-extent applicability and transferability
of this new method will more likely influence the field of large-scale population modelling
in the near future.

From the qualitative errors derived from the input population data, the first kind of
error is related to the presence of unpopulated units within the population data, where
a considerable number of settlement pixels were detected, and where actual populated
areas exist. Freire et al. [22] recently addressed this issue, explaining that while the CIESIN
census database is the most detailed, complete and coherent database available at global
scales, it still presents some anomalies which are derived from the source population
statistics (e.g., National Statistic Offices). In this research, ~2099 L1-units were reported as
unpopulated, and while some of these units are actually non-enumerated units, some of
them still cover large built-up areas according to Freire et al. [22]. In terms of the mapping
outcomes, for these L1-units, “NoData” values were assigned to the final settlement pixels
resulting in visual inconsistencies in the final population distribution maps. While de-
facto no quantitative errors exist in the final population maps in relation to the total input
population, the missing counts of these areas can have relevant impacts on further analyses,
highlighting the importance of full disclosure on the uncertainties present in the final
datasets. To the best of our knowledge, other top-down large-scale gridded population
datasets that are based on the CIESIN data currently present the same anomalies.

Finally, the currency and spatial detail of the input population data are other factors
that without a doubt affect the quality of the final population distribution maps. As
seen from Table 1, for many African countries, the last official population data are from
more than 10 years ago, resulting in potentially inaccurate estimates, a low number of
administrative units, and outdated administrative boundaries. To be sure, significant
improvements have been made in the frequency of population data collection in Africa.
Countries such as Burkina Faso, Kenya, Madagascar and Malawi, for example, carried out
their last population census between 2018 and 2019, while approximately 80% of the African
countries conducted their last census between 2005 and 2015. However, limited financing
and poor budgeting strategies for data collection are concurrent issues in many African
countries, which result in incomplete or outdated demographic statistics [19]. Under any
context, from policy making to scientific research, acquiring up-to-date population data at
the highest available resolution should remain the main priority [27].
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4.2. WSF2019-Pop Dataset: Quantitative Assessment

To evaluate the relative accuracy, effectiveness, and stability of the WSF2019-Imp
layer, for each country, statistical analyses were carried out in two ways: (1) at the country
level, where aggregated metrics were computed to allow for cross-country comparisons;
(2) at the validation unit level, where individual metrics were computed to establish
correlations between the error distribution and the built-up environment. Together, the
results presented in Table 3, Figures 7 and 8 show that WSF2019-Imp produces a systematic
distribution of error, where estimation accuracies remain relatively consistent among and
within countries. At the country level, the population distribution maps of 80% of the
countries reported %MAE values between ~15% and ~32%, with a standard deviation
of ±~5%. At the validation unit level, for 32 out of 53 countries, at least half of the
validation units reported REE values between 0% and 20%, followed by errors of >20–40%
and >40–60%. In terms of the error distribution, REE values between >0% and 40% were
concentrated in validation units with medium ranges of population density and medium
ranges of SSC-Index values, with errors increasing as the SSC-Index decreased and the
population density increased. Large estimation errors (>100%) were found in validation
units with extremely high population densities and extremely high SSC-Index values.

On that note, whether the presented accuracies can be considered low or high is still a
debatable topic [57]. Only a few studies have classified the accuracy results into levels or
degrees, but a single threshold of reliability has not yet been established. For example, in the
uncertainty quantification of the GRUMP dataset for Poland, Da Costa et al. [62] established
that units deviating <20% from the actual population can be considered as “reliable data”
and >20% considered as having “medium reliability”. In the accuracy assessment of the
GRUMP, GPW, and WorldPop datasets for China presented by Bai el al. [68], the authors
established that REE errors <±25% can be considered as “accurately estimated”, between
±25% and ±50% as “under or overestimated”, and from ±50% to >±100% as “greatly
under- or overestimated”. Following these criteria, in this research, 25 to 36 countries would
be considered as “reliable” or “accurately estimated”, 15 would have “medium reliability”,
and two would be found to be poorly reliable. Consequently, within each country and for
most countries, the largest proportion of validation units would be “reliable” or “accurately
estimated”, while the second largest would have “medium reliability”.

In general, the analyses presented showed that the accuracy of the WSF2019-Imp
layer follows the premise established by Stevens et al. [43], who stated that high accuracies
in population modelling can be expected when built-up area datasets are proportionally
coherent with the population density. The lowest estimation errors in all countries were,
for the most part, located in those validation units where the SSC-Index showed a linear
correlation with the population density. Notably, as soon as these two factors started to
decorrelate, the REE (mainly errors of overestimation) started to increase. Exceptions to this
rule applied only to extremely populated units with extremely dense built-up environments,
where the largest REE > 100% (mainly errors of underestimation) corresponded to units
delineating small cities within the countries.

Overall, the general trends found here are derived from limitations that are consistent
across all existing top-down large-scale gridded population datasets. The distribution of
error can be explained by four main factors summarised as follows: (1) errors of omission
in the identification of built-up settlements in rural settings, which causes the allocation of
large population counts into only a few settlement pixels; (2) the potential overestimation
of population totals in units with a low number of settlement pixels derived directly from
the outdated input population data [23]; (3) the lack of characterisation of the built-up
environment (residential/non-residential), which causes the underestimation of population
counts in surrounding settlement pixels; and (4) the lack of height and volume (3D)
information on the building structures, which causes underestimations, especially in areas
with a mix of low- and high-rise buildings.

Nevertheless, there are, however, additional factors that affect the estimation accura-
cies which are unrelated to the WSF2019-Imp layer. These uncertainties are mainly derived



Remote Sens. 2021, 13, 1142 21 of 26

from (a) the nature of the input population data and (b) the sampling process. First, for
the majority of countries, there were not enough L1-units to produce significant sample
sizes (Table 2). To be able to meet the requirements of a random sampling process that,
in parallel, was capable of selecting 2/3 spatially united L1-units as validation units, it
was necessary (and unavoidable) to produce sample sizes below 100 units for almost half
the countries. Therefore, countries with an already low number of large sampled L1-units,
such as Western Sahara (ESH), Senegal (SEN), Gambia (GMB), and Sao Tome and Principe
(STP), reported some of the lowest %MAE values, simply due to the small differences in
the sizes between the coarser input units used for modelling and the fine units used for
validation. This is known as the modifiable areal unit problem (MAUP) [69], which in
the context of this research was difficult to avoid without compromising the random sam-
pling process. Second, it goes without saying that different samples for each country will
produce different results. This particular limitation was pointed out by Stevens et al. [43]
and Sihna et al. [58], who demonstrated that the RMSE and MAE metrics are sensitive to
the generated sample in terms of their size and the spatial autocorrelation of the sampled
units. Moreover, additional research has also shown that when the sample sizes are very
small (4–10 samples), aggregated metrics, such as the RMSE and the MAE, cannot produce
robust results [61], highlighting the importance of using individual metrics, such as the
REE employed here.

In this context, it is important to understand that the accuracies reported here are
constrained to the employed validation method. The final usability and effectiveness of
the WSF2019-Pop dataset will also be determined by the accuracy of population estimates
extracted in the context of different application scopes. As an example, Figure 9 shows the
differences that could be obtained from extracting population counts at very local scales
from the WSF2019-Pop dataset and mock-datasets produced using the WSF2019-binary
layer. Coastal areas in Morocco and Tanzania illustrate the final population distribution
maps produced by each WSF2019 product in medium-to-high urbanised environments.
The yellow polygons represent arbitrary areas where population counts were extracted.
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As seen from Figure 9, extracted population estimates can vary greatly from one
dataset to the other. Low impervious areas, such as Zone A and Zone C, allocate less
population counts in the WSF2019-Imp layer in comparison to the binary approach. The
opposite applies for highly impervious areas, such as Zone B and Zone D, where the
binary approach allocates less people per pixel in comparison to the WSF2019-Imp layer.
Differences between population datasets range from ~150 to ~1500 people. Depending on
the application field where the datasets are employed, the magnitude of these differences
can have significant implications, especially in studies where accurate population counts
are necessary, such as emergency response or risk assessments.

However, the results presented here are simply used to provide complementary
qualitative and quantitative insights into the capabilities of the WSF2019-Imp layer. A
complete validation of the results would require real application cases and the availability of
reference data. Nonetheless, considering the very local nature of many socio-environmental
phenomena [16], it could be expected for the WSF2019-Pop dataset to potentially produce
more accurate population estimates compared to currently available binary products (e.g.,
HRLS and GHS-Pop datasets) and coarse spatial resolution products (e.g., WorldPop and
LandScan datasets).

On that note, in this research, we did not include quantitative accuracy comparisons
against other available large-scale population grids, as many of the current products do
not have datasets representing the year 2019. The closest datasets from the GPWv4, HRSL,
and GHS-Pop products, for example, represent population distributions for the years
2015 or 2020. Under these conditions, the temporal disagreement among the different
datasets would have introduced a certain level of uncertainty too complex to account
for, especially when independent validation data do not exist to verify the results. Here,
the lack of validation data is also the reason restricting comparisons with other 2019
population grids, namely, the 2019-WorlPop and 2019-LandScan datasets. Accordingly,
comparisons to other built-area datasets (e.g., the 2019-WorldPop building-patterns [34],
the 2015-HRSL settlement mask [23], or the 2020 GHSL layer [41]) and modelling methods
(e.g., areal-weighting, binary dasymetric, or multi-layer dasymetric) were not included for
two main reasons. For the first case, with the validation of the WSF2019-Imp layer in terms
of settlement identification still pending, the differences in population estimations between
built-area datasets derived from the omission or commission of settlement pixels would
not have been possible to address. This means that to properly interpret the differences
between the outputs of each built-area dataset, first, we need to know which dataset is
more accurate and complete in its own framework. For the second case, comparisons to
methods such as areal-weighting and binary-dasymetric were not included, as previous
research has already shown that weighted dasymetric mapping is by far more accurate
than these two methods [24,32,70]. For the case of multi-layer approaches, comparisons
were not included, as the overall objective focuses on exploring the particular advantages
or limitations of employing the layer on its own.

5. Conclusions

The present study focused on systematically evaluating how accurate and effective
the novel WSF2019-Imperviousness (WSF2019-Imp) layer is in the production of a new
large-scale gridded population dataset—the WSF2019-Population dataset (WSF2019-Pop).
Employed as a single proxy in a dasymetric mapping approach, the WSF2019-Imp layer
was used in combination with an open archive of census/estimate-based population data
to construct population datasets for each African country.

Results of our qualitative and quantitative assessment indicate that the main advan-
tages of the WSF2019-Imp layer as a proxy for large-scale population modelling, are derived
from its robustness, spatial consistency, independent weighting framework, and improved
spatial resolution. These characteristics allow the layer to produce spatially detailed popu-
lation datasets that could potentially be more accurate than binary-derived products, on the
one hand, and that could potentially overcome the local qualitative variations, applicability



Remote Sens. 2021, 13, 1142 23 of 26

restrictions, and production complexities of multi-layer-derived products, on the other.
The results of our statistical analyses additionally confirm that the WSF2019-Imp layer is
capable of producing a systematic distribution of error that remains stable independently of
the quality and spatial granularity of the input population data. Overall, the WSF2019-Imp
layer reported %MAE values between ~15% and ~32% for close to 80% and REE below 20%
for up to 50% of the validation units of most countries. Following the pre-established classi-
fication criterion, these error ranges indicate that the WSF2019-Imp layer produces, for the
most part, “accurately estimated” population datasets. Notwithstanding these promising
results, there are, however, some limitations that still need to be addressed, as high errors
of underestimation and overestimation are still present in the final WSF2019-Pop dataset.
In particular, the omission of settlement pixels in rural settings and the lack of information
on the use and height of the building structures are factors that currently affect the quality
and accuracy of the final population datasets. In this context, it is expected that with
the upcoming validation of the WSF2019 products, these remaining uncertainties can be
assessed, allowing a focus on further technical improvements to the WSF2019-Pop dataset.
Considering this, future research will also include quantitative comparisons with other
built-area datasets and population grids, and the integration of other geospatial layers
into the modelling framework, such as the newly developed Global Urban Footprint 3D
dataset [71]. Furthermore, as the semi-automatic methods presented here are completely
transferable, future research will also focus on expanding the accuracy assessment of the
WSF2019-Pop dataset to other countries. Within this outlook, the WSF2019-Pop dataset
will also be evaluated in the framework of different application fields, especially those
related to risk assessment and emergency response. Here, additional comparisons with
other population grids will be performed to assess their accuracy, usability, and limitations.

To conclude, the WSF2019-Population dataset developed in this research represents
an important contribution to the field of large-scale gridded population mapping, helping
to improve and enhance the spatial granularity and local detail of census population
data needed for a wide range of research and governmental applications. In the context
of risk assessment, the WSF2019-Pop dataset is currently used by the World Bank to
identify all localities on the African continent with an estimated population of >10,000
inhabitants. Additionally, the population at risk with respect to urban hazard zones, such
as seismic, landslides, flooding, and storm surge, is determined based on a combination
of the WSF2019-Pop layer and risk data, such as those provided by the Think Hazard!
datasets [72]. Open and free provision of the WSF2019-Pop dataset is foreseen through the
Urban Thematic Exploitation Platform (https://urban-tep.eu (accessed on 15 December
2020)) and the Earth Observation Center Geoservice (https://geoservice.dlr.de (accessed
on 15 December 2020)).
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