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ARTICLE INFO ABSTRACT

Keywords: Top-down population modelling has gained applied prominence in public health, planning, and sustainability

Urban applications at the global scale. These top-down population modelling methods often rely on remote-sensing (RS)

Population derived representation of the built-environment and settlements as key predictive covariates. While these RS-
Growth model . . . . . .

Built derived data, which are global in extent, have become more advanced and more available, gaps in spatial and
Settlement temporal coverage remain. These gaps have prompted the interpolation of the built-environment and settlements,

but the utility of such interpolated data in further population modelling applications has garnered little research.
Thus, our objective was to determine the utility of modelled built-settlement extents in a top-down population
modelling application. Here we take modelled global built-settlement extents between 2000 and 2012, created
using a spatio-temporal disaggregation of observed settlement growth. We then demonstrate the applied utility of
such annually modelled settlement data within the application of annually modelling population, using random
forest informed dasymetric disaggregations, across 172 countries and a 13-year period. We demonstrate that the
modelled built-settlement data are consistently the 2nd most important covariate in predicting population den-
sity, behind annual lights at night, across the globe and across the study period. Further, we demonstrate that this
modelled built-settlement data often provides more information than current annually available RS-derived data
and last observed built-settlement extents.

Machine learning
Meta-analysis

1. Introduction

Human settlement and population dynamics are more important than
ever to understand (Ehrlich, Balk, & Sliuzas, 2020; Zhu et al., 2019) as an
additional 13 percent of the world’s population will live in urbanized
areas by 2050, with most of this growth occurring in low-to mid-
dle-income countries (Angel, Parent, Civco, Blei, & Potere, 2011; United
Nations, 2018). Most of this projected growth will not occur in the largest
cities, but rather it will occur in small to medium sized settlements
(Cohen, 2004), which are typically underrepresented in various mea-
sures and counts including censuses (Leyk et al., 2019; Tatem, Noor, von
Hagen, Di Gregorio, & Hay, 2007) and remote-sensing (RS)-derived
representations of settlements (Kuffer, Barros, & Sliuzas, 2014; Kuffer,
Pfeffer, & Sliuzas, 2016; Nieves et al., 2020; Pesaresi et al., 2013; Weber
et al., 2018). This projected growth has implications for sustainable

development (Ehrlich et al., 2020), which has been noted in the 2030
Sustainable Development Goals (SDGs) (United Nations, 2016).

The rapid rate of growth and magnitude of the urbanization of pop-
ulations, and land cover transitions from more natural to more built,
requires greater data and information about urban areas and human
settlement, including higher frequency of urban areas observations
(Hoalst-Pullen & Patterson, 2011a; Zhu et al., 2019). These data demands
are, in part, driven by broader motivations similar to the SDG aim of
making sure “no one is left behind” (United Nations - Economic, 2016),
with a specific goal to expand the availability and accessibility of base
data to help facilitate the planning, implementation, and assessment of
programs and applications to achieve the 2030 SDGs (Scott & Rajabifard,
2017; United Nations, 2016). These applications reliant upon
built-environment and settlement data, equally require time-specific
population maps between decadal censuses (Balk et al., 2006a;
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Bhaduri, Bright, & Coleman, 2007; Leyk et al., 2019; Tatem, 2014; Tatem
et al., 2007), for planning purposes and to monitor progress of in-
terventions or policy effects (Bharti, Djibo, Tatem, Grenfell, & Ferrari,
2016; Juran et al.,, 2018; Linard et al., 2017; McGranahan, Balk, &
Anderson, 2007; Patel et al., 2015; Tatem, 2018). To meet the demand
for time-specific population maps, top-down population models are often
utilized and are frequently dependent upon data on or relating to human
settlement to inform their disaggregation of populations across space
(Freire, MacManus, Pesaresi, Doxsey-Whitfield, & Mills, 2016; Leyk
et al., 2019; Nieves et al., 2017a). As such, the demand for time-specific
and consistently defined built-environment data is doubly so (Ehrlich
et al., 2020; Gaughan et al., 2016; Henderson, Yeh, Gong, Elvidge, &
Baugh, 2003; Zhu et al., 2019).

Remote Sensing (RS) would naturally be an answer to such data
needs. However, most change detection algorithms and urban related
studies have disproportionately focused on larger cities, particularly
those within the US, Europe, and China raising questions of representa-
tiveness (Acuto, Parnell, & Seto, 2018; Seto, Fragkias, Guneralp, & Reilly,
2011; Zhu et al., 2019). However, since 2010, a new class of globally
available and consistent RS-derived representations of built-settlement,
have become available at single and multiple time points (Corbane
etal.,, 2017a; Esch et al., 2013; Esch et al., 2018a; Facebook Connectivity
Lab, 2016; Microsoft.BuildingFoot, 2018; Pesaresi et al., 2013; Pesaresi
et al., 2016). Built-settlement (BS) is defined as above ground structures
that can support human habitation and related economic phenomena
(Florczyk et al., 2019; Nieves et al., 2020; Pesaresi et al., 2013). The
concept of BS addresses the “distribution of buildings by which people
attach themselves to the land” (Ehrlich et al., 2020; Stone, 1965) and
these data are better able to differentiate between buildings and other
aspects of the built environment, such as road ways or parking lots. This
new class of data is also better able to capture small settlements due to
having higher spatial resolutions, typically ranging from the represen-
tation of individual buildings to 50m (Esch et al., 2013; Pesaresi et al.,
2013; Pesaresi et al., 2016; Zhu et al., 2019), and have been found to be
highly important in top-down population modelling applications (Leyk
et al., 2019; Nieves et al., 2017a; Patel et al., 2015; Reed et al., 2018;
Stevens et al., 2020). These characteristics, capturing even small settle-
ments and having a definition more closely tied to populations, make this
class of data particularly well suited for top-down disaggregation models
of population.

These new data would seem to address the call for urban data, as Zhu
et al. (Zhu et al., 2019) summarize, “be consistent and harmonized for
boundaries, comparable across cities and over time”, particularly as
applied to where humans may locate for either habitation or economic
activities. However, rapidly changing landscapes, particularly within and
around urban areas, requires a higher frequency of coverage as well as
longer temporal record (Hoalst-Pullen and Patterson, 2011b; Zhu et al.,
2019), which these data, such as the Global Human Settlement Layer
(Corbane et al., 2017b; Pesaresi et al., 2013), the Global Urban Footprint
(Esch et al., 2013), and the World Settlement Footprint (Marconcini
et al., 2020), currently lack. Additionally, Like most RS-derived products,
they are limited by the quality and availability of imagery, training and
validation data, atmospheric conditions, and sensor/platform errors
(Corbane et al., 2017a; Esch et al., 2013; Esch et al., 2018a; Pesaresi et al.,
2013; Pesaresi et al., 2016). There is also a substantial lag between the
collection of imagery and the production of these datasets (Zhu et al.,
2019). While these new datasets have leveraged advances in imagery
availability, computational resources, and statistical methods, the pro-
cesses to produce these finished BS datasets are still computationally
expensive (Cheriyadat, Bright, Potere, & Bhaduri, 2007; Esch et al.,
2018a; Esch et al., 2018b).

The aforementioned settlement and population modelling needs,
combined with the current temporal limits of BS datasets, have prompted
some to interpolate BS extents in a globally consistent manner (Nieves
et al., 2020). These efforts produce annually estimated BS extents while
expanding the temporal frequency and coverage of these BS datasets
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while maintaining its dataset specific definition of BS (Nieves et al.,
2020). A larger question, accompanying any further application of
modelled data, is how these interpolated settlement extents contribute to
subsequent modelling applications when lacking comparison to a ground
truth. To the best of our knowledge, no large-scale assessment of the
potential contributions of urban/settlement/built-environment growth
model outputs to subsequent models has been undertaken. This is
particularly so for assessing the potential impact of utilizing modelled BS
extents in time-specific modelling population distributions. Lacking time
specific BS extent data, top-down, i.e. disaggregative, population
modelling applications typically utilize the last observed RS-derived
built-environment extents (Balk, Pozzi, Yetman, Deichmann, & Nelson,
2004; Balk et al., 2006b).

Here, we examine the utility of interpolated BS extent data within a
top-down population modelling context. This examination takes the form
of a meta-analysis of covariate importances extracted from the popula-
tion models with a specific focus on how the modelled BS extents were or
were not important in the population modelling process. Specifically,
within this work, we seek to address whether modelled BS extents were
more informative than the last observed BS extents, when both are pro-
vided as covariates to the population model. Additionally, we investi-
gated if time-specific modelled BS extents are important to population
models of this type and if this importance varied across region and time.
Lastly, we explored the relative contribution of time-specific modelled BS
extents to time-specific RS-derived BS extents and see if their importance
in population modelling varied by region and across time.

2. Materials and methods

To begin to examine how modelled BS could contribute meaningfully
to population modelling applications, we examined 4662 annual
country-specific disaggregative population model objects of the World-
Pop “Global Project” (WorldPop - School of Geog, 2018) from 2000
through 2020. These model objects were constructed from subnational
census-based population counts and estimates from 2000-2020 (Dox-
sey-Whitfield et al., 2015) and were specific to each country and year.
Specifically, we looked at a subset of these model object (n = 2236)
where BS extents were annually interpolated (Nieves et al., 2020) glob-
ally between 2000-2012 and subsequently used as a covariate within a
random forest-informed population disaggregation model (Stevens,
Gaughan, Linard, & Tatem, 2015). The built-settlement modelling
framework, which we present an overview of here, has been previously
described in the literature (Nieves et al., 2020). These BS covariates,
within the population models, included an annually modelled BS extents
covariate, an annually available RS-derived BS extents covariate, and a
single-year “historical” BS extents covariate corresponding to the year
2000. We performed a meta-analysis (Nieves et al., 2017a) of the co-
variate importance of the annually modelled BS extents covariate, rela-
tive to all other covariates, in modelling population density through a
top-down disaggregative framework.

2.1. Study area

Here, we examined population models from 222 countries across the
years 2000-2020. We then subset these models and countries to only
include the interpolative years of 2000-2012. Countries were excluded
from analysis because they either did not have the BSGM model run (due
to resource limitations) or they were modelled using a regional model
parameterization, similar to Gaughan et al. (Gaughan, Stevens, Linard,
Patel, & Tatem, 2014), resulting in 172 countries for analysis across 13
years resulting in a sample of 2236 country specific model objects for
analyses. Regional parametrization precludes any analysis of the country
specific importance of any covariates due to the merging of random forest
model objects (Table 1) (Nieves et al., 2017b). Of specific note was the
exclusion of the USA. We excluded it from this analysis because the BS
model was not run on its 10 million plus subnational units and large
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Table 1

Table of geospatial covariates used in the modelling of annual BS using the interpolative Built-Settlement Growth Model (BSGMi) per Nieves et al. (Nieves et al., 2020).
Here, representation of BS here is a combination of ESA, GHSL, and GUF as described in Lloyd et al. (Lloyd et al., 2019).

Covariate Description Use %, ¢ Time Point(s) Original Spatial Data Source(s)
Resolution(s) at Equator
(approx.)
DTE Protected Areas Distance To the nearest Edge Spatial Allocation® 2012 Vector Enviroment Programme (2015)
Category 1 (DTE) of level 1 protected area
Subnational Annual population by sub- Demand Quantification 2000-2020, Vector Doxsey-Whitfield et al. (2015)
Population national units annually
Built-settlement” Binary BS extents Demand Quantification 2000 30m, 60m, & 300m (Esch et al., 2013; European Space
and Spatial Allocation 2012 A, 2017; Pesaresi et al., 2013)
DTE Built-settlement Distance to the nearest BS edge Spatial Allocation® 2000 30m, 60m, & 300m (Esch et al., 2013; European Space
A, 2017; Pesaresi et al., 2013)
Proportion Built- Proportion of pixels that are BS Spatial Allocation® 2000 30m, 60m, & 300m (Esch et al., 2013; European Space
settlement within 1,5,10, or 15 pixel radius A, 2017; Pesaresi et al., 2013)
1,5,10,15
Elevation Elevation of terrain Spatial Allocation® 2000 — Time 90m Lehner, Verdin, and Jarvis (2008)
Invariant
Slope Slope of terrain Spatial Allocation® 2000 - Time 90m Lehner et al. (2008)
Invariant
Water Areas of water to restrict areas Restrictive Mask 150m Lamarche et al. (2017)
of model prediction
Weighted Lights-at- Annual lagged and sub-national ~ Spatial Allocation 2000-2011, 926m DMSP (Lloyd et al., 2019; Zhang,
Night (LAN)? unit-normalised LAN annually Pandey, & Seto, 2016)

@ Covariates involved in Demand Quantification were used to determine the demand for non-BS to BS transitions at the subnational unit level for every given year.
Covariates involved in Spatial Allocation were either used as predictive covariates in the random forest calculated probabilities of transition (see c) or as a post-random
forest year specific weight on those probabilities and the spatial allocation of transitions within each given unit area. Covariates used as restrictive masks prevented
transitions from being allocated to these areas.

b The binary BS data utilized 2000 and 2012 as observed points in the dasymetric modelling process, but only derived covariates for 2000 were utilized in the random
forest as predictive covariates.

¢ Used as predictive covariates in the random forest calculated probabilities of transition.

d Readers are referred to Nieves et al. [5] for details on the lagging, normalizing and weighting procedure.

spatial extent due to project resource limitations. For analyses we
adopted a regional grouping of countries initially based upon The World
Bank’s regional groupings (The World, 2020), but modified in some areas
based upon economic, historical, developmental, and urbanization
context similarity/dissimilarity (Fig. 1). Because the “North American”
region only included two modelled countries (Canada and Greenland),
we excluded it from further analyses. A full list of countries that were
modelled and their region grouping is in Appendix A, Table 1 and a list of
countries excluded from our analysis, and the corresponding reason, are

in Appendix A, Table 2.

2.2. Population data

Annual estimates of subnational population across the globe were
provided by the Center for International Earth Science Information
Network (CIESIN) and are based upon the work of Gridded Population of
the World, version 4 (GPW, v4). Population counts are based upon cen-
suses and/or official estimates which were interpolated to estimate

:
Sudmu]

[|]]] Latin America & the Carib - : - ; - West Asia & North Africa
Southern Asia
HF Sub-Saharan Africa

[ ] Excluded

7/, EastAsia & Pacific
NN Europe

Fig. 1. Map of countries included in the meta-analysis and the regional groups used in analyses. See Appendix A, Table 2 for a list of countries excluded from analyses
and corresponding exclusion criteria.
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annual counts, following Doxsey-Whitfield et al. (Doxsey-Whitfield et al.,
2015). The subnational unit areas (hereafter simply “unit”) were spatially
harmonized and assigned a unique identifier corresponding to a globally
consistent grid of harmonized coastlines and international borders, as
described in Lloyd et al. (Lloyd et al., 2019).

2.3. Built-settlement (BS) data

Built-settlement (BS) (Nieves et al., 2020) is based upon the definition
put forth by Pesaresi et al. (Pesaresi et al., 2013), “... enclosed con-
structions above ground which are intended for the shelter of humans,
animals, things or for the production of economic goods and that refer to
any structure constructed or erected on its site.” This was further
generalized by Nieves et al. (Nieves et al., 2020) to include any datasets
attempting to better capture buildings and structures within the above
definition while attempting to exclude general impervious surface land
cover which lacks a vertical dimension (e.g. roads, runways, parking
lots), whether this is achieved through a feature extraction process or
from post-processing.

Here the input BS data is a combination of the Global Human Set-
tlement Layer (GHSL) 38m settlement extents for the year 2000 (Corbane
et al., 2017a; Pesaresi et al., 2013), the “Urban areas” thematic class,
class 190, from the ESA CCI land cover 300m global time series for the
year 2000 (hereafter ESA) (European Space A, 2017), and the Global
Urban Footprint (GUF) 72m settlement extents representing circa 2012
(Esch et al., 2013). These data were resampled to 100m and spatially
harmonized as detailed in Lloyd et al. (Lloyd et al., 2019), with the ESA
data used, in conjunction with the information supplied by the GUF 2012
information, to systematically back-fill missing portions within large
settled areas due to imagery availability and atmospheric conditions.

Table 2
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Further, to represent the 2012 time point and facilitate agreement, the
backfilled GHSL-ESA 2000 layer was mosaiced, i.e. union, with the GUF
2012. The resulting BS extents, for 2000 and 2012, were used as is to
derive covariates for use in predicting the annually interpolated BS ex-
tents, 2001 through 2011, and for predicting gridded population sur-
faces, for their corresponding year of representation.

2.4. Geospatial covariates

A suite of geospatial covariates is used in interpolating the annual BS
extents as well as disaggregating the annual unit-area population counts
into annual gridded population surfaces. All covariates were produced as
described in Lloyd et al. (Lloyd et al., 2019), with categorical covariates
converted to a continuous covariate, by calculating the
Distance-To-nearest-Edge (DTE), for areal type covariates and
distance-to-nearest feature calculated for linear and point type covariates.
A list of covariates, their original resolution, their source, and a description
of them are given in Tables 1 and 2.

2.5. Methods

2.5.1. Built-settlement growth model interpolation (BSGMi)

The Built-Settlement Growth Model interpolation (BSGMi) is a top-
down modelling framework that disaggregates observed numbers of
non-BS-to-BS land cover transitions from coarser spatial and temporal
resolutions to finer spatio-temporal resolutions using ancillary data
(Nieves et al., 2020). This paper does not examine the built-settlement
modelling framework in detail; see Nieves et al. (Nieves et al., 2020)
for such details. However, we provide a description of the BSGM models
to serve as background information. The intent is for readers to

Table of geospatial covariates used in the disaggregative modelling of gridded population surfaces.

Covariate Variable Name(s) in

Random Forest

Description

Time Point(s) Original Spatial
Resolution(s) at the

Equator (approx.)

Data Source(s)

DTE Protected Areas
Category 1
Subnational Population -

wdpa_catl_dst
level 1 protected area
Annual population by sub-national

units
Distance to OpenStreet osmriv_dst Distance to nearest OSM river feature
Map (OSM) Rivers
Distance to OpenStreet osmint_dst Distance to nearest OSM road
Map (OSM) Road intersection feature
Intersections
Distance to OpenStreet osmroa_dst Distance to nearest OSM road feature

Map (OSM) Roads
DTE Built-settlement °, > ghsl_esa_dst;
bsgm_wpgp_dst BS
ghsl_guf dst;
ghsl_esa_dst_2000

Distance To the nearest Edge (DTE) of

Distance To the nearest Edge (DTE) of

Elevation Topo Elevation of terrain
Slope Slope Slope of terrain
Water cciwat_dst Areas of water to mask areas of model

ESA CCI Land Cover

ccilc_dst<class

prediction and, for inland bodies of
water, as a DTE covariate
Distance To nearest Edge (DTE) of

(LC) Class® number>_<year> individual land cover classes

Lights At Night (LAN) dmsp; Annual average of LAN atmospheric
viirs radiance

Average Precipitation welin_prec Mean Precipitation

Average Temperature welim_temp Mean temperature

2000-2012 Vector (Enviroment Programme, 2015;
Lloyd et al., 2019)

2000-2020, Vector Doxsey-Whitfield et al. (2015)

annually

2017 Vector (Lloyd et al., 2019; OpenStreetMap
Contributer, 2017)

2017 Vector (Lloyd et al., 2019; OpenStreetMap
Contributer, 2017)

2017 Vector (Lloyd et al., 2019; OpenStreetMap
Contributer, 2017)

2000; 30m, 60m, & 300m (Esch et al., 2013; European Space

2001-2011; A, 2017; Lloyd et al., 2019; Pesaresi

2012; et al., 2013)

2001-2012

2000 - Time 90m (Lehner et al., 2008; Lloyd et al.,

Invariant 2019)

2000 — Time 90m (Lehner et al., 2008; Lloyd et al.,

Invariant 2019)

150m (Lamarche et al., 2017; Lloyd et al.,

2019)

2000 300m (European Space A, 2017; Lloyd
et al., 2019)

2000-2011; 900m (Earth Observation Group N, 2013;

2012 Lloyd et al., 2019)

1950-2000 900m (Hijmans, Cameron, Parra, Jones, &
Jarvis, 2005; Lloyd et al., 2019)

1950-2000 900m (Hijmans et al., 2005; Pezzulo et al.,

2017)

@ ghsl esa_dst was only used in the year 2000 population model; bsgm_wpgp_dst was derived from the BSGM predicted extents and used for years 2001-2011;

ghsl_guf_dst was used for the year 2012.

b ghsl_esa_dst_2000 is identical to ghsl_esa_dst, but was included as a covariate in all models from 2001 onward to avoid unrealistic population distributions as seen in

multitemporal modelling within Gaughan et al. (Gaughan et al., 2016).

¢ Some classes were collapsed: 10-30 — 11; 40-120 — 40; 150-153 — 150; 160-180 — 160 (Sorichetta et al., 2015).
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understand how these modelled BS extents, that are provided to the
country-specific population models serving as the unit of analysis in this
study, are constructed and influence end results.

The BSGMi framework consists of two primary components: a De-
mand Quantification component and a Spatial Allocation component
(Fig. 2) (Nieves et al., 2020).

Assume we are given a time period with at least two observations of
BS extents, typically derived from remote sensing imagery, and corre-
sponding estimated time- and unit-specific population found spatially
coincident with the BS extents (Nieves et al., 2020). At regularly spaced
intervals between the two or more observations, the BSGMi framework
interpolates the BS population using unit-specific logistic growth curves
to estimate unit-level BS population (Fig. 2) (Nieves et al., 2020). Simi-
larly, the BSGMi uses natural cubic splines to interpolate unit-level
changes in BS population density (Fig. 2) (Nieves et al., 2020). The
BSGMi uses relative unit-level changes in interpolated BS population and
BS population density to derive time- and unit-specific weights (repre-
senting unit-level non-BS-to-BS transition demand) (Nieves et al., 2020).
These weights are utilized to temporally disaggregate the observed
non-BS-to-BS transitions from the larger time period to the finer regularly
spaced intervals, in this case years, between two or more observations
(Fig. 2) (Nieves et al., 2020). This has the benefit of preserving agreement
with the observed points (Mennis, 2003; Mennis & Hultgren, 2006;
Nieves et al., 2020).

Once the number of transitions at the desired temporal level have
been estimated, we move to the Spatial Allocation component of the
BSGMi framework (Fig. 2) (Nieves et al., 2020). Here a Random Forest
(RF) model (Breiman, 2001a; Liaw & Wiener, 2002), using predictive
covariates listed in Table 1, predicted the pixel level probability of a
non-BS-to-BS transition occurring between any two observed extent
points (Nieves et al., 2020). This represents the period-level probability
of transitioning and is further modified by using annual differences in
lights-at-night (LAN) radiance values that are rescaled based upon the
value distributions within their respective subnational units (Nieves
et al., 2020). The values are rescaled, to values between 0 and 1, in such a

Social Sciences & Humanities Open 3 (2021) 100102

way that pixels with greater unit-relative increases in LAN brightness are
assumed to indicate a higher probability of transitioning and vice versa
(Nieves et al., 2020). The RF pixel probabilities are multiplied by the
corresponding LAN weights to produce year-specific probability surfaces
that are then used, on a unit by unit basis, to iteratively disaggregate the
year-specific predicted transitions, from the Demand Quantification
component, across space (Fig. 2) (Nieves et al., 2020). However, given
that the BSGM is interpolative, transitions can only be allocated to pixels
known to have transitioned in the period of interest (Nieves et al., 2020).
Thus, the BSGMi produces a gridded time-series of BS spatial extents
between every input, observed BS extents given (Fig. 2).

Previous validation of the BSGMi framework at 100m pixel resolu-
tion, given 4 observed years and predicting for twelve years, showed
consistent performance across a variety of environments and contexts
with the majority of interpolated years having a pixel level accuracy of
greater than 80 percent (range 57-99 percent) (Nieves et al., 2020).
However, the BSGMi framework utilized by the Global Project was an
early version and differed from the version validated by Nieves et al.
(Nieves et al., 2020) in two systemic ways: both the BS population and BS
population densities were interpolated using unit-specific exponential
growth/decay curves and the model was fit using only information from
two time points at a time. This would likely result in an increased like-
lihood of overfitting for the BS population density across time, i.e.
interpolated using information from two points rather than more than
two, and a shifting of transitions to later in the time period due to the
exponential curve shape. Nieves et al. (Nieves et al., 2020) found the
model tended to predict transitions late so the latter, speculated, effect of
having exponential assumption may mitigate this, but the magnitude and
effect are unclear without further work. Further details of the potential
implications of the early exponentially-based framework are given in a
whitepaper produced by the WorldPop Group (Nieves, 2020).

Given that the BSGMi framework is top-down in nature, it is highly
sensitive to the selected representation of BS selected as input (Nieves
et al., 2020). Nieves et al. (Nieves et al., 2020) utilized the 300m ESA CCI
“urban” land cover dataset, resampled to 100m, given its annual

g Subnational Units A 1/10 5/10 2/10 2/10
'43 BS Pop |BS Dens Q I 1 1 1 5 -
= 1000 | 20 @ 2000 2005
i 1600 16 For each period, normalize predicted
% 3200 12.8 amounts by period sum to get
] 4000 10 - temporal demand weights
o z
© %
g High . a ? 2|5 1|o 1|o .
g I B Built-Setflement 55555005 2010 2015 oo Yoo

Low 2000 2005 2010 2015 Interpolate BS population < :

& BS population density: Multiply weights by observed
Extract eistimafded BS population (fBS ng) & lénit avg. e period transitions to get
BS population density (BS Dens) for observed years ; O final annual demand
pop y ( ) y BS Pop / BS Density %
& v
c Nontransition Pixels g
o e .
= Transition Pixels, from 2000 to 2015 Iteratively transition the year- and
8 unit-specific predicted demand in
ke) Train descendin? order of probability
P Random to fulfill predicted demand
- Forest
T x 500
. Environmental
© covariate cee
t% rasters W
at 2000 '00-'05 '05-'10 '10-'15

Probability of

transition surface ¢ 2

2001 2002 2014
[l BSGM Transition Prediction

Known period
transition locations

Fig. 2. Generalized BSGMi process diagram from Nieves et al. (Nieves et al., 2020).
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coverage allowed for holdout samples for validation. The population
models from the Global Project utilized the BSGMi using a combination
of GHSL and GUF data products, resampled to 100m, that were backfilled
by the ESA CCI land cover data per Lloyd et al. (Lloyd et al., 2019).
Despite these differences, the binary representation of the annual BS
extents produced using the BSGMi were converted into a continuous
representation of the Distance-To-nearest-Edge (DTE) of BS. This con-
version to continuous distances and the fact the population models
examined in this study are at the subnational unit-level, thus requiring us
to take the unit-average DTE of BS, does effectively smooth any of the
more frequent and smaller differences that would likely result, at various
scales, due to the aforementioned differences between the validated

Subnational level
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BSGMi framework (Nieves et al, 2020) and the early,
exponentially-based BSGMi framework (Nieves, 2020) BS extent pre-
dictions used in the production of the population models under analysis
here.

2.5.2. Top-down RF population disaggregation

The Global Project utilized a top-down RF informed dasymetric
population disaggregation to distribute unit-level census-based popula-
tion counts to pixel level (100m) population count estimates (Gaughan
et al., 2016; Stevens et al., 2015; Gaughan et al., 2014; Sorichetta et al.,
2015). RFs were chosen due to their automatability, scalability, ability to
capture complex interactions and non-linear phenomena, and robustness
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Fig. 3. Generalized diagram of the RF-informed dasymetric disaggregation of population counts from subnational units to a given pixel level. Adapted from Nieves

et al. (Nieves et al., 2017a).
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to small samples and noise (Breiman, 2001a; Farror & Glauber, 1967;
Rodriguez-Galiano, Ghimire, Rogan, Chica-Olmo, & Rigol-Sanchez,
2012). This modelling approach was applied on a country-by-country
basis using a suite of globally harmonized and time-specific, or
assumed temporally invariant, geospatial covariates which were aggre-
gated by calculating the average of values within each subnational unit
prior to being input to the RF (Fig. 3) (Gaughan et al., 2014; Gaughan
et al., 2016; Sorichetta et al., 2015; Stevens et al., 2015).

While trained at the unit-level, using 500 trees, the RF is then used to
predict population density at the pixel level (100m); we use these pre-
dictions as unit-relative weights to disaggregate the corresponding unit
population count to pixel-level population counts while ensuring that the
sum of pixel-level values sums up to the original unit-level count (Fig. 3)
(Gaughan et al., 2014; Gaughan et al., 2016; Sorichetta et al., 2015;
Stevens et al., 2015). Each year’s population disaggregation was done
independently of the others.

RF models are a class of ensemble model where many “weak” clas-
sification and regression trees are combined through voting or averaging
to produce more robust predictions (Breiman, 2001a). In this study, we
utilize the tunerf function (Liaw & Wiener, 2002) to determine the
optimal number of covariates to examine at each iterative split and carry
out an iterative covariate selection process, per Stevens et al. (Stevens
et al., 2015), to remove any covariates with an average Percent Increase
in the Mean Squared Error (Per.Inc.MSE) less than or equal to zero
(Stevens et al., 2015). The Per.Inc.MSE is an internal cross validation
metric of covariate importance that is calculated by permutating the
covariate information, preserving all other covariate information, and
averaging the percent increase in the mean squared error across all trees
in the RF when withheld “Out of Bag” (OOB) (Breiman, 1996; Breiman,
2001a) data is compared to the RF predictions. For further details on
constructing RF models, bagging, and covariate selection and splitting in
a random forest we refer readers to (Breiman, 1996; Breiman, 2001a;
Liaw & Wiener, 2002; Strobl et al., 2007a; Strobl, Boulesteix, Kneib,
Augustin, & Zeileis, 2008).

In general, the relative rankings of covariate importances within a RF
are stable as long as several hundred trees have been grown (Breiman,
2001a; Dietterich, 2000; Strobl et al., 2008). However, Per.Inc.MSE is a
relative, model specific, measure of importance that is highly conditional
upon the other present covariates (Breiman, 2001a), presenting a chal-
lenge for using this metric when attempting to compare, even with a
static set of covariates, the covariate importances across models (Nieves
et al., 2017b). Additionally, while it is generally understood that the
predictions of RFs are resilient to being provided correlated covariates
(Breiman, 2001a), it does not preclude this correlation from affecting the
relative covariate importances and covariate selection for splitting within
a given model (Strobl et al., 2007a; Strobl et al., 2008). For instance, as is
the case with the models examined here, if you have multiple represen-
tations of BS covariates in the model, with each covariate having partially
overlapping fields of capture in the information space (i.e. they are
correlated), and all are retained in the model, then the portions of the
magnitude of the Per.Inc.MSE of will be “stolen” from the most important
covariate (Breiman, 2001a). However, the relative ranking of the
correlated covariates will be proportional to their frequency of utilization
as splitting criteria across all trees, i.e. the most important covariate of
the correlated covariates will still have the highest Per.Inc.MSE, it will
just be of a smaller magnitude than without the inclusion of the corre-
lated covariates in the RF.

2.6. Analyses

Our goal here was to capture the broad patterns of the relative rank of
covariate’s importance across the globe based upon information con-
tained within country-specific RF models used in disaggregating popu-
lation. Given the potential difficulties of comparing covariate importance
across independent RF models, we adopt the Weighted Importance Rank
(WIR) from Nieves et al. (Nieves et al., 2017b) to facilitate our

Social Sciences & Humanities Open 3 (2021) 100102

comparison of covariate importance across country- and time-specific RF
population models. The WIR accounts for the potentially different
number of covariates in each model, resulting from the covariate selec-
tion, by taking the ranking covariates within a given model by
descending importance and dividing this rank by the total number of
covariates in the model (Equation (1)) (Nieves et al., 2017b).

within — model ranked importance

" total number of covariates in model (1

This results in a value between 0 and 1, with the most important
covariate having a value of 0 and the least important having a value of 1
(Nieves et al., 2017b). Hereafter, when referring to covariate importance,
we are referring to the WIR as opposed to Per.Inc.MSE.

We collected all the RF model objects (n = 2236) produced in the
modelling of population for the years 2000-2012, extracted the covariate
importances (Per.Inc.MSE) into a data table, transformed the impor-
tances to WIR values, and assigned each country a label corresponding to
their region (Fig. 1). Similar to Nieves et al. (Nieves et al., 2017b), we
discovered the non-normal distributions of covariate importance data
and, accordingly, adopted non-parametric statistical methods in
conjunction with visual analyses. Using Kruskall-Wallis tests (Kruskal &
Wallis, 1952; Rosner and Taylor, 2011), we tested for significant differ-
ences in the variable importance distributions of the BSGMi derived co-
variate: (i) between years 2001-2011 across all countries and, (ii),
between countries grouped by regions (Fig. 1), across all years
2001-2011. Additionally, to determine if the annually modelled
BSGMi-derived covariate was adding additional information to the
models for years 2001-2011, we calculated the differences in WIR dis-
tributions: (i) between the annually modelled BSGMi-derived covariate
and the historical BS extents at the year 2000 (GHSL-ESA 2000), (ii)
between the annually modelled BSGMi-derived covariate and the annu-
ally available RS-derived “urban areas” extents (ESA Annual), and, (iii)
between the historical BS extents (GHSL-ESA 2000) covariate and the
annually available RS-derived (ESA Annual) covariate. Hereafter, we
refer to the annually modelled BSGMi covariate, the historical BS extents
covariate, and the annually available RS-derived covariates as the
BSGMi, the GHSL-ESA 2000, and the ESA Annual extents. We then car-
ried out one-sample Wilcoxon rank sum tests (Wilcoxon, 1945) to
determine if there was a significant difference in the distributions of the
WIR difference and a zero-median difference.

All Kruskall-Wallis and Wilcoxon rank sum tests were carried out with
a = 0.05 and, if significant results were found for the Kruskall-Wallis
tests, these were followed up with post hoc Dunn tests with Holm
correction for multiple outcomes (Dunn, 1964; Holm, 1979). Wilcoxon
rank sum tests were adjusted for multiple outcomes as well using Holm’s
correction. All models were carried out using the R statistical environ-
ment 3.4.2 (ore Team. R:anguag, 2017) and analyses were produced
using the R statistical environment 3.6.0 (ore Team. R:anguag, 2019). All
code, tabular data, and full test results are included in the supplementary
materials.

3. Results

Globally, across all years in the study period, we can see very
consistent patterns of covariate importance. For clarity, we focus on five
years (2000, 2003, 2006, 2009, 2012) and the four most important
covariates (Lights-At-Night covariates, the BSGMi-derived covariate, the
ESA Annual covariate, and the GHSL ESA 2000 covariate), hereafter.
Based on the median WIR value, the lights-at-night (LAN) covariate is the
most important covariate across all years (Fig. 4). For 2001 through
2011, the second, third, and fourth most important covariates are,
respectively, the BSGMi-derived covariate (BSGMi), the ESA Annual co-
variate, and the GHSL-ESA 2000 covariate (Fig. 4). For the BSGMi co-
variate, we show that the variance decreases, and the median importance
increases (smaller WIR value) with time, converging towards the 2012
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GHSL GUF covariate’s distribution, which is what we would expect if the
BSGMi model is interpolating accurately. Further, the distribution of the
WIRs of the BSGMi-derived extents covariate appear to show consistency
from one year to the next with an overall trend of decreasing WIR vari-
ance as the year becomes closer to 2012. At the global level, between
years, there is no significant difference in the WIR distributions of the
BSGM derived covariate (X? = 15.1, df = 10, p = 0.13; full results in
supplementary materials).

Looking only at the distributions of the BS-related covariates, we
plotted the WIR boxplots by year and region in Fig. 5. Within a given
region, it would appear there is generally consistent performance of the
BSGMi-derived covariate with some regions exhibiting a slight temporal
trend between 2000 and 2012, showing the large differences in GHSL
dominated information (2000) and GUF dominated (2012) information
provided to the RF (Fig. 5). A commonality, within most regions, would
appear to be that the highest variance in WIR is seen near the midpoint of
the interpolation period (2006) where we would expect performance of
the BSGMi to be the worst or most variable (Fig. 5).

We plotted the WIR difference between all pairwise combinations of
the three covariates of interest and tested their distributions, across all
years for each region, to determine if they were significantly different
from a distribution with a median WIR difference of 0, i.e. the covariates
contribute the same amount of importance (Fig. 6, Table 3). When testing
for significance, data were aggregated across years 2001-2011 and
grouped by region. We show that across all regions the annual BSGMi
covariate was contributing significantly more importance (p < 0.00 for
all regions) to the RF model than the “historical” GHSL-ESA 2000 co-
variate. The largest difference for this is seen in the “South Asia” and
“East Asia & the Pacific” regions. When compared to the ESA Annual
covariate, the BSGMi covariate is contributing significantly more
importance to the RF model in all regions (p < 0.00) except “Europe” (p

= 0.99). Examining the differences between the GHSL-ESA 2000 and the
ESA Annual WIR values, we see that the ESA Annual data is contributing
significantly more importance in all regions (p < 0.00) except the “East
Asia & the Pacific” (p = 0.14) and the “West Asia & North Africa” regions
(p =0.77).

4. Discussion

We have shown that interpolated year-specific BS-extent data, using
the BSGMi framework, is a consistently important predictor of popula-
tion density globally and across time. Specifically, the BSGMi-derived
covariate was consistently second most important, behind year-specific
lights at night data. Even though both the lights at night data and the
BSGMi data are given to the model as continuous covariates. Essentially,
the BS-derived covariates only indicate presence and absence of BS while
lights at night can capture presence, absence, and intensity of BS pres-
ence (Small, Elvidge, Balk, & Montgomery, 2011). This is not to say that
LAN are inherently superior to BS datasets as LAN can capture lights that
have little to do with the definition of BS or indicating where people
reside (e.g. parking lots, green houses, lit highways). The annually
available RS-based BS representation (ESA Annual) and the “historical”
single year RS-based BS covariate (GHSL-ESA 2000) are still highly
important within the models (Figs. 4 and 5) even with the presence of the
LAN data and it is important to remember that the covariate importances
are conditional upon the given set of covariates (Breiman, 2001a).
Additionally, the ESA Annual and GHSL-ESA 2000 covariates can give
relative indications of how the chosen BS representation and the BSGMi
perform within regions. However, for any given region, these differences
in importance were stable across time (Fig. 6). Overall, BSGMi interpo-
lated extents increase the information in these population models and,
combined with the other RS-derived covariates, likely better capture the
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BS-information space as related to population density than any one co-
variate does alone.

Regardless of the magnitude of the importance or relative impor-
tance, a key point is that the BSGMi-derived covariate was always
retained in models that it was introduced to and consistently contributed
significantly more importance to the models than the other BS repre-
sentations, across most regions. The fact that all of the representations of
BS were consistently the 2nd through 4th most important covariates
across all years supports previous importance findings (Nieves et al.,
2017b) and reemphasizes that utilizing multiple representations of BS
results in more accurate disaggregative population modelling (Reed
et al., 2018).

We would expect a year-specific BS covariate to contribute signifi-
cantly more information than a “historical” BS covariate, which was
largely supported by the findings in Fig. 6 and Table 3tbl3. However,
historical extents can be critical when modelling populations across time
(Gaughan et al., 2016). The exceptions of year-specific BS dominance in
“East Asia & the Pacific” and “West Asia & North Africa” could be
explained by several factors: (i) large and or few subnational units, (ii)
lack of suitable, e.g. cloud free imagery for these optically based datasets,
and/or, (iii) greater difficulty in urban feature extraction within arid
regions (i.e. similar radiometric signature between buildings and bare
soil) contributing to greater noise in the population density-BS

relationship fit by the RF. This could potentially explain the relatively
poorer importance contribution of the BSGMi covariate in the “East Asia
and the Pacific” and the “South Asia” regions (Fig. 5). Additionally, it is
important to note that this study uses the original GHSL as a part of its
input BS representation and, therefore, it is currently unclear if the newer
versions (Corbane et al., 2017a), which leverage the increased resolution
and different radiometric capture of the Sentinel platforms, would
change these findings (Fig. 6 and Table 3). The other notable result of
Fig. 6 and Table 3 is the lack of significant difference between the ESA
Annual covariate and the BSGMi covariate. This could be potentially
explained by: (i) the ESA data does rather well within Europe’s dense and
well-defined BS extents, and, (ii) those BS extents do not change as much
as other regions, i.e. the non-BS to-BS transition prevalence is low so the
BSGMi model does relatively worse than in a high transition area (Nieves
et al., 2020). Regardless, it is important to note that the results of Fig. 6
and Table 3 are relative and that all the covariate representations of BS
were found to be important to the RF model of population density.
From previous work (Nieves et al., 2020), there is little doubt that the
BSGMi is picking up true BS extents that, in turn, drive this increased
importance. However, the regional differences can more generally be
attributed to the chosen RS-derived BS extents input into the BSGMi
framework, the quality of the input population data, and the size and
configuration of the subnational units used in both the BSGMi and the
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Table 3

Adjusted p-values of Wilcoxon one sample test with Holm correction for examining significant differences in covariate importance as measured by the Weighted
Importance Rank (WIR). Data was aggregated across years 2001-2011 and grouped by region. Null hypothesis being that the median WIR difference of a given
comparison was equal to zero. Significant differences are shaded for emphasis. Full results are provided in the supplementary materials.

WIR Differences East Asia & the Pacific Europe Latin America & the Caribbean Southern Asia Sub-Saharan Africa ~ West Asia & North Africa
GHSL ESA 2000 minus BSGMi <0.00 <0.00 <0.00 <0.00 <0.00 <0.00

ESA Annual minus BSGMi <0.00 0.99 <0.00 <0.00 <0.00 <0.00

GHSL ESA 2000 minus ESA Annual ~ 0.14 <0.00 <0.00 <0.00 <0.00 0.77

population modelling method used here (Nieves et al., 2017b; Nieves
et al., 2020; Openshaw, 1984; Stevens et al., 2015). To investigate if
different underlying structures of causal relationships between popula-
tion and BS exist, and to then quantify them, a different research
framework and modelling approach, i.e. an explanatory modelling
framework as opposed to a predictive one (Breiman, 2001b; Shmueli,
2010), would be necessary.

Nieves et al. (Nieves et al., 2020) suggested that end users of the
BSGMi modelling framework check the model outputs for end use suit-
ability and accuracy. The regional differences in the WIR of the
BSGMi-derived covariates (Fig. 5) reinforce that it is important that users
of any modelled BS extents examine them for their use-specific and study
area-specific suitability as no model framework is likely to excel in all
scenarios. These observed WIR differences can be due to pre-existing
differences in the suitability of the input BS representation or due to

10

model-induced uncertainty and error, but in an applied context, the
origin is of secondary importance to knowing of its existence.

These findings are for these specific representations of BS and the
importances are contingent upon the set of covariates provided (Breiman,
2001a). We would hypothesize that if we were to include the
BSGMi-derived covariate as the only representation of BS in the RF
models, acknowledging that within a RF correlated variables “take”
importance away from each other, there is a possibility that it could
surpass the LAN covariate for most important, but this awaits further
study. Further, while here we explored the importance of the
BSGMi-derived and other BS-based covariates at the subnational unit
level, how this subnational importance translates into the accuracy of the
disaggregated, i.e. pixel level, population maps produced using weights
derived from the RF that contains the modelled BS-extents is something
that is still an open question. This is because as pixel level (~100m)
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population data is often not available for validation purposes (Sinha
et al., 2019). We would like to think that having more important cova-
riates at the subnational level would result in more accurate pixel-level
disaggregations, but the issues of scale and other inputs into the model
make any speculation tenuous, at best.

As previously noted, while RF predictions are resilient to correlated
variables that does not imply that RFs are impervious to issues of
correlated variables or spatial autocorrelation in the data. One investi-
gation on RF-informed population disaggregations found that spatial
autocorrelation of the residuals at the subnational unit scale, i.e. the
spatial scale of RF training, is more so an effect of the ensemble nature of
the RF, which cannot predict outside the observed range of the response
variable (Sinha et al., 2019). This, on average, causes urbanized areas to
be underpredicted and rural areas to be overpredicted (Sinha et al., 2019;
Stevens et al., 2015). This showed that when autocorrelation was rela-
tively low, the out-of-bag error of RFs was similar to that calculated using
a holdout sample and, when autocorrelation was relatively high, the
holdout samples showed lower error than the out-of-bag estimates (Sinha
et al., 2019). This does have potential implications for the covariate
importances, e.g. covariates importances estimated via bagging could be
overestimated, however a separate research question and framework
would be needed to interrogate this. There is also evidence that, within a
RF, correlated variables are more likely to be selected as important,
which has led to the creation of different RF versions that attempt to
account for this (Strobl et al., 2007a; Strobl et al., 2007b; Strobl et al.,
2008). However, no direct comparison of the outcomes of, say, a RF
constructed using conditional variable importance against the standard
RF implementation used here. These are all worth future exploration as
they could give indication into potential subnational biases or variation
in the redistributions of population counts.

While suited for the objectives here, the WIR is a rather limited metric
in that it only captures the coarse patterns of variable importance at the
level of representation in the model, i.e. national level. This obfuscates
any potential subnational variation in covariate importance and or
contribution to predicted populations. Alternative metrics such as
Accumulated Local Effect plots (Apley & Zhu, 1612), Shapley values
(Cohen, Ruppin, & Dror, 2005; Shapley, 1957), and others can provide
more insight into the contribution of different covariates and individual
observations into the model’s predictions. However, these metrics can be
expensive to compute, require special consideration when applied to
correlated data, and require access to all of the model’s training data.
Regardless, metrics such as these should be considered and calculated at
the time of model training in order to facilitate better understanding of
model and data behavior, as well as with the foresight of better facili-
tating secondary analyses.

The Nieves et al. (Nieves et al., 2020) validation of the BSGMi
framework was with an originally coarser representation of BS (300m
ESA CCI landcover) and the authors queried whether the assumed re-
lationships of the framework would hold with originally finer scale input
BS extents given their findings and previous findings under a different
framework (Tayyebi et al., 2013). While this study does not perform a
pixel-based validation of the BSGMi, here we have shown that using
originally finer scale input BS extents can produce derived data products
that were found to be informative for applications, causing us to specu-
late that the framework assumptions do hold. However, whether that
indicates the pixel-level BSGMi outputs can be utilized without aggre-
gation, as we have done here for our end use, remains unclear.

Within the population models analyzed here, the single year BS ex-
tents representing historical BS extents was limited to the year 2000.
Therefore, our findings related to importance as compared to the his-
torical extents would likely change, at a minimum, in magnitude were
the historical extents year to be different, dynamic, or to include multiple
historic BS extents. While Gaughan et al. (Gaughan et al., 2016) found
that including previous BS extents were important in creating temporally
comparable population surfaces when performing top-down modelling,
there is no current information regarding at what temporal lag the
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information contributed is maximized and how many previous repre-
sentations should be included.

5. Conclusions

Here we tested the utility of the modelled BS extents in a population-
modelling scenario across 172 countries and 13 years. Globally, we found
that modelled BS extents are consistently the second most important
predictor of population density, even when the previous RS-derived BS
extents and time-specific BS-extents were included in the model. How-
ever, regional variation exists in the importance of the modelled BS ex-
tents, but its cause is multifactorial and still unclear. Additionally, there
were many cases where the time-specific RS-derived covariate, originally
having a coarser spatial resolution, was more important than the high-
resolution modelled BS extents and/or the high-resolution previously
observed RS-derived extents. Combined with the fact that all covariates
were retained in the final models, this would suggest that while modelled
BS extents are informative, they are best used in conjunction with other
representations of BS when modelling population.

These findings are specific to the spatial scale and zonal configuration
of the subnational units used. Future work examining the impact of the
scale of the subnational units on both the BS modelling and RF-informed
dasymetric modelling should be conducted, although some previous
work would indicate that smaller units leads to more accurate models
(Gaughan et al., 2014). While this study has shown that the BS modelled
extents are important at the subnational unit level, future work should
examine how the BS modelled extents affect the pixel level predictions
and smaller area population predictions in this top-down modelling
framework. Additionally, research into the number of previous extents to
include in the population modelling as well as the effect of its temporal
lag on population predictions should be investigated.
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Table 1
List of countries modelled. Countries are given by their ISO standard 3-letter
code.

Region Countries (ISO 3 Code)

East Asia & the Pacific ~ ASM AUS BRN CHN FJI FSM GUM HKG IDN JPN KHM KIR
KOR LAO MMR MNG MNP MYS NCL NZL PHL PNG PRK
PYF SGP SLB THA TLS TUV TWN VNM VUT WSM

ALB ARM AUT AZE BEL BGR BIH BLR CHE CYP CZE DEU
DNK ESP EST FIN FRA FRO GBR GEO GRC HRV HUN IRL
ISL ITA KOS LTU LUX LVA MDA MKD MLT NLD NOR POL
PRT ROU RUS SRB SVK SVN SWE TUR UKR

ABW ARG BOL BRA CHL COL CRI CUB CUW DOM ECU

Europe

Latin America & the

Caribbean GTM GUY HND HTI MEX MTQ NIC PAN PER PRI PRY SLV
SUR URY VEN
South Asia AFG BGD BTN IND LKA MDV NPL PAK

Sub-Saharan Africa AGO BDI BEN BFA CAF CIV CMR COD ETH GAB GHA GIN
GMB GNB KEN LBR LSO MDG MLI MOZ MRT MUS MWI
NAM NER NGA RWA SEN SLE SOM SWZ SYC TCD TGO
TZA UGA ZAF ZMB ZWE

DZA EGY IRN IRQ ISR JOR KAZ KGZ LBN MAR OMN QAT

SAU SDN SSD SYR TJK TUN YEM

West Asia & Northern
Africa

Table 2
List of countries excluded from analysis and corresponding reason for
exclusion

Countries Excluded Reason for Exclusion

Not modelled at all

Resource limits

Regional parameterization of
BSGM and or population model

Antarctica

United States of America

Anguilla; Aland Islands; Andorra; United Arab
Emirates;

Antigua and Barbuda; Bonaire, Sint Eustatius,
and Saba; Bahrain; Bahamas; Saint
Barthelemy; Belize; Bermuda; Barbados;
Botswana; Republic of Congo; Cook Islands;
Comoros; Cape Verde; Cayman Islands;
Djibouti; Dominica; Eritrea;

Western Sahara; Falkland Islands; Guernsey;
Gibraltar; Guadeloupe; Equatorial Guinea;
Grenada; French Guiana;

Isle of Man; Jamaica; Saint Kitts and Nevis;
Kuwait; Libya;

Saint Lucia; Lichtenstein; Macao; Saint Martin
(French portion); Monaco; Marshall Islands;
Montenegro; Montserrat; Mayotte; New
Caledonia; Norfolk Island; Niue; Nauru;
Pitcairn Islands; Palau; Palestine; Reunion;
Saint Helena;

Svalbard and Jan Mayen Islands; San Marino;

Saint Pierre and Miquelon; Sao Tome and
Principe;

Sint Maarten (Dutch portion); Seychelles;

Turks and Caicos Islands; Tokelau;
Turkmenistan; Tonga; Trinidad and Tobago;
Vatican City;

Saint Vincent and the Grenadines; British
Virgin Islands;Virgin Islands (U.S.); Wallis
and Futuna
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