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Abstract

Standard solution methods for linear rational expectations models assume a time-

invariant structure. Recent work has gone beyond this by formulating solution methods

for linear rational expectations models subject to structural changes, such as parameter

shifts and policy reforms, that are announced in advance. This paper contributes to this

literature by presenting solutions for some cases – imperfectly credible policy reforms;

delayed announcement to some fraction of agents; and indeterminacy of the terminal

solution (multiple equilibria) – that received little attention so far. These solutions are

illustrated using several applications, including a New Keynesian model in which the

Taylor principle is not satisfied by the terminal structure.

1 Introduction

Standard methods for solving linear rational expectations models, such as Blanchard and

Kahn (1980), Anderson and Moore (1985), Binder and Pesaran (1997), King and Watson

(1998), Uhlig (1999), Klein (2000) and Sims (2002), assume a time-invariant structure – that

is, the parameters of the system are taken to be constant. As a result, such methods cannot

be used to study occasional changes in structure, such as parameter shifts or policy reforms,

which may be partially or fully anticipated.1

There are many reasons the structure of economic models might shift. A short list would

include implementation of new policies like forward guidance or quantitative easing; reforms

to current policies, such as inflation targets, pensions or taxes, which may be phased in grad-

ually; and shifts in technology, competitiveness of product markets, or the reaction functions

of policymakers. For example, Clarida et al. (2000) and Lubik and Schorfheide (2004) find

*Department of Economics, University of Southampton, SO17 1BJ, m.c.hatcher@soton.ac.uk. I
am grateful to Alessandro Mennuni, Serhiy Stepanchuk and two referees for very useful comments.

1By contrast, Markov-switching linear rational expectations models (see Davig and Leeper (2007) or
Farmer et al. (2009)) are used to study unanticipated recurrent events with a known probability distribution.
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evidence of structural change in the Federal Reserve’s interest rate rule, in the form of a more

aggressive response to inflation in the post-Volcker period. From a policymaker perspective,

the consequences of policy reforms may differ substantially depending on whether the reform

in question is announced or unanticipated (see Mertens and Ravn (2012)). Hence, accurate

policy evaluation requires solution methods that can deal with structural changes.

Recent work has moved in this direction by formulating solution methods for linear ratio-

nal expectations models subject to structural change. This paper contributes to the literature

by extending the solution of Kulish and Pagan (2017) to allow for some cases – imperfectly

credible reforms; delayed announcement to some fraction of agents; indeterminacy of the

terminal solution (i.e. multiple equilibria) – that received little attention so far. Thus, the

paper is essentially a methodological contribution to the structural change literature.

The recent literature on structural change began with Cagliarini and Kulish (2013).

Building on the time-invariant solution of Sims (2002), they set out a general method for

solving linear rational expectations models subject to anticipated structural changes and

establish conditions on existence and uniqueness of solutions. Kulish and Pagan (2017)

present an alternative recursive solution based on the method of undetermined coeffficients.

They show that since the model solution is given by a time-varying VAR, a likelihood function

can be constructed to allow estimation of parameters and the dates of structural breaks.

Applications of these methods include Jones and Kulish (2013), who study the impact of

unconventional monetary policies that involve announcements about the future path of short-

term and long-term interest rates (forward guidance); Kulish et al. (2017), who estimate

expected durations at the zero lower bound using U.S. data; and Gibbs and Kulish (2017),

who study the output costs of disinflations using a model of ‘unanchored’ expectations due to

adaptive learning by some agents. These works suggest that credible pre-announced policy

changes may significantly improve economic outcomes relative to standard policies.

The present paper contributes to this literature by extending the recursive solution

method in Kulish and Pagan (2017) to some additional cases that received little attention

thus far: delayed announcement to a fraction of agents; imperfectly credible policy reforms;

and structural changes involving indeterminacy (i.e. multiple equilibria) at the final stage.

Our delayed announcement approach allows some fraction of agents to be uninformed, for

some time, about a future structural change, such as a policy reform. This can be motivated

by situations such as pre-planned policies, which are known to agents in policy circles (private

information) before they are made known (announced) to the general public. In particular,

our approach has the informed fraction of agents forming model-consistent expectations,

which take into account the ignorance of the uninformed agents. By contrast, previous

work has considered uninformed agents in isolation (see Kulish and Pagan (2017)). Our

framework also nests the special case where announcement dates (for the entire population)

are controlled by a single parameter, namely, the number of periods in advance that the

structural change is announced. We illustrate the latter using a pension reform example.
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Our second extension relates to imperfect credibility, whereby some fraction of agents

do not believe fully in the announced structure. A standard approach in the literature has

been to model the expectations of disbelieving agents using simple rules of thumb such as

previous policy targets or realized values of a subset of variables (see Goodfriend and King

(2005), Nicolae and Nolan (2006), Ascari and Ropele (2013)). By comparison, we allow

disbelieving agents form expectations that reflect their doubts about the announced future

structure. In particular, following announced changes in policy regimes, such as the shift

to a new policy or a lower inflation target, agents make forecasts based on an alternative

sequence of structures for which policies may be expected to end prematurely, last longer

than announced, or be permanently reversed in the future. To illustrate the distinction, we

show that the standard approach is nested by our framework when some fraction of agents

have expectations given by a VAR in which the matrices are specified by the researcher.

Finally, we show how the solution method of Kulish and Pagan (2017) can be extended

to models with an indeterminate terminal solution. To do so, we use the approach in

Farmer et al. (2015) which re-casts an indeterminate model, in which the solutions depend

on sunspots, as one with fundamental shocks that can be solved using standard methods.

Our extension using this method allows the terminal regime to have a particular sunspot

solution and for agents to anticipate this in advance and coordinate their expectations on the

sunspot, such that the transitional dynamics can be simulated using the method of Kulish

and Pagan (2017).2 As an application, we study a New Keynesian model in which agents

anticipate that the Taylor principle is violated by the terminal structure.

We provide several other applications which illustrate our extensions by comparing with

existing approaches or the benchmark of all agents with rational expectations. Since the

extensions we consider are policy-relevant and have already been studied in fixed-structure

models, they should be of interest to a wide audience, such as researchers at policy institu-

tions who would like to take methods ‘off the shelf’ and use them in a variety of applications,

including medium or large-scale DSGE models.

The paper proceeds as follows. Section 2 outlines rational expectations solutions in the

absence of structural change. Section 3 sets out a benchmark model with structural change

and derives a baseline result that we draw on in Section 4, where we present our extensions.

Section 5 presents several numerical applications. Finally, Section 6 concludes.

2In independent work, Gibbs and McClung (2020) also present a method for solving models with indeter-
minate terminal solutions, but using the results in Bianchi and Nicolò (2021). Both their approach and ours
are useful for solving models with anticipated structural change and an indeterminate terminal solution.

3



2 Solutions in the absence of structural change

Following Binder and Pesaran (1997), a linear rational expectations model of n equations

and time-invariant structure may be written in the form:

B1xt = B2Etxt+1 +B3xt−1 +B4et +B5, ∀t ≥ 0 (1)

where xt is an n × 1 vector of endogenous state and jump variables, Et is the conditional

expectations operator, and et is an m× 1 vector of white noise shocks with Et[et+1] = 0m×1.

Without loss of generality, the covariance matrix of et is set equal to the identity matrix Im.

Note that serially correlated exogenous processes can be included in xt.

Matrices Bi, i ∈ [5], contain the model parameters. The Bi, i ∈ {1, 2, 3}, are n × n

matrices, B4 is an n×m matrix, and B5 is an n×1 vector of intercepts. Time is discrete and

starts at t = 0; hence t ∈ N. As shown in Binder and Pesaran (1997), the formulation (1) is

quite general as it can accommodate multiple leads and lags of the endogenous variables.

If a fundamental solution to system (1) exists, it will be a VAR of the form:

xt = Ωxt−1 + Γet + Ψ (2)

where Ω, Γ, Ψ are n× n, n×m and n× 1 matrices, respectively.

Given (2) and Et[et+1] = 0m×1, we have Etxt+1 = Ωxt + Ψ. Substituting this expression

into (1) determines the solution matrices in (2) as

Ω = (B1 −B2Ω)−1B3, Γ = (B1 −B2Ω)−1B4, Ψ = (B1 −B2Ω)−1(B2Ψ +B5) (3)

provided det[B1 −B2Ω] 6= 0.3

Note that (3) implies B2Ω
2 − B1Ω + B3 = 0n×n and so determines Ω. Once Ω is found,

Γ and Ψ can be determined, providing a solution to the model.4 It is now standard to

solve the model using the methods in Blanchard and Kahn (1980), King and Watson (1998),

Uhlig (1999), Klein (2000) and Sims (2002). There are also recursive methods that solve for

the matrices Ω,Γ,Ψ, such as Binder and Pesaran (1997) and Cho and Moreno (2011). We

assume readers have access to these standard solution methods.

3If det[B1 − B2Ω] 6= 0 and B1 non-singular then (B1 − B2Ω)−1 = (In − B−11 B2Ω)−1B−11 . The solution
matrices in (3) may then be written Ω = (In − AΩ)−1B, Γ = (In − AΩ)−1C, Ψ = (In − AΩ)−1(AΨ +D),
where A = B−11 B2, B = B−11 B3, C = B−11 B4, and D = B−11 B5 (see e.g. Kulish and Pagan (2017)).

4Note that Ψ is determined by Eq. (3) as Ψ = (In−F )−1(B1−B2Ω)−1B5, where F = (B1−B2Ω)−1B2.
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3 Solutions in the presence of structural change

3.1 Model

We now consider a multivariate rational expectations model as above, except that the struc-

tural matrices of parameters may change over time. To incorporate structural change, we

assume two possible regimes, which we dub the “reference regime” and “alternative regime”.

The reference reference is decribed by Eq. (4):

B1xt = B2Etxt+1 +B3xt−1 +B4et +B5 (4)

The alternative regime is described by Eq. (5):

B̃1xt = B̃2Etxt+1 + B̃3xt−1 + B̃4et + B̃5 (5)

The matrices Bi, B̃i, i ∈ [5], have the same dimensions as in (1). For existence of a solution

under structural change, we will require existence of a fixed-structure terminal solution that

corresponds to the final structure. We assume, without loss of generality, that the final

structure is the alternative regime, (5).5

In typical applications, one of the intercept matrices may be zero, as DSGE models

are typically log-linearized around a non-stochastic steady state (see Uhlig (1999)).6 At

any given date t, either the reference regime applies or the alternative regime does. Given

mutually exclusive regimes, we introduce an indicator variable 1t equal to 1 if the reference

regime applies in period t and 0 if the alternative regime is in place. Our model is then:

B1,txt = B2,tEtxt+1 +B3,txt−1 +B4,tet +B5,t, ∀t ≥ 0 (6)

where Bi,t := 1tBi + (1− 1t)B̃i ∀i ∈ [5] and x−1 ∈ Rn is given.

The information set at time t includes all current and future values of the indicator

variable and all current and past values of the endogenous and exogenous variables. The

indicator variable is an exogenous predetermined sequence {1t}∞t=0; note that a change in its

value indicates that a structural change takes place.

3.2 Solving the model

Definition 1 A solution to the rational expectations model with structural change (6) is a

function f : xt−1 × et → xt such that the system in (6) holds for all t, given the current

evaluation of the indicator variable 1t and its known future values 1t+1,1t+2, ....

5There is no loss of generality since either structure may be labelled as the alternative regime.
6If one of the regimes has a different steady state, intercepts will be present when the log-linearized model

is written in terms of deviations xt from a common steady state. See, e.g., Guerrieri and Iacoviello (2015).
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An alternative way of characterizing a solution is in terms of a set of matrices {Ωt,Γt,Ψt}∞t=0

that generalize the constant-coefficient decision rules of a linear rational expectations model:

xt = Ωtxt−1 + Γtet + Ψt (7)

where Ωt is an n × n matrix, Γt is an n × m matrix and Ψt is an n × 1 vector, and the

t subscript indicates that the matrices are in general time-varying. Following Kulish and

Pagan (2017), the matrices Ωt,Γt,Ψt are determined recursively by simple formulas which

are well-defined provided that a series of regularity conditions are met.

There are two key requirements for existence of a solution:

(i) Existence of a rational expectations solution must hold at the terminal structure. The

corresponding solution matrices Ω̃, Γ̃, Ψ̃ (say) are used as inputs in the computation of

the solution during the transition.

(ii) A series of regularity conditions det[B1,t − B2,tΩt+1] 6= 0 must be met for t = 0, ..., T̃ ,

where T̃ + 1 is the date at which the terminal structure is reached. If the regularity

conditions are not met, then a solution will not exist even if requirement (i) is satisfied.

Requirement (i) is needed because the solution relies on ‘backward induction’ from a

terminal solution. A terminal solution can be found using standard methods, such as Binder

and Pesaran (1997), Sims (2002) or Dynare (Adjemian et al. (2011)). Conveniently, Jones

(2016) shows that Dynare can be used to numerically log-linearize a nonlinear calibrated

model and ‘build’ the corresponding structural matrices Bi, B̃i, i ∈ [5]. Existence of a termi-

nal solution is necessary but not sufficient for existence of a solution because the regularity

conditions in (ii) are needed to ensure that a solution exists during the transition.

Uniqueness is discussed further once the benchmark solution is presented. For the mo-

ment we note that Cagliarini and Kulish (2013) show that existence and uniqueness of a

terminal solution are necessary conditions for the existence and uniqueness of the sequences

{Ωt,Γt,Ψt}∞t=0 in (7), and they provide rank conditions that can be used to check for ex-

istence and uniqueness of the transition path {xt}∞t=0 under an arbitrary finite sequence of

structural changes. Note that existence and uniqueness of a terminal solution can also be

checked using standard methods such as Blanchard and Kahn (1980) and Sims (2002).

For convenience, we assume there is a unique stable terminal solution (Assumption 1).

We maintain this assumption throughout the analysis unless otherwise specified.7

Assumption 1 There exists a unique stable terminal solution xt = Ω̃xt−1 + Γ̃et + Ψ̃, t > T̃ .

We assume, without loss of generality, that the terminal structure is the alternative regime,

and hence Ω̃ = (B̃1 − B̃2Ω̃)−1B̃3, Γ̃ = (B̃1 − B̃2Ω̃)−1B̃4, Ψ̃ = (B̃1 − B̃2Ω̃)−1(B̃2Ψ̃ + B̃5).

7In particular, we relax this assumption when we consider indeterminate terminal solutions (Section 4.3).
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3.3 Benchmark solution

We first study the benchmark solution in Kulish and Pagan (2017). Hence, at all dates t ≥ 0

the future structure is known to agents.8 We formalize this assumption in Definition 2.

Definition 2 Structural change is said to be anticipated if all future values of the indicator

variable, {1t+j}∞j=1, are part of agents’ information set for all t ≥ 0. In this case, agents

have full information about future structural changes and are said to be informed.

By Definition 2, expectations under anticipated structural change satisfy

Et [xt+j] = E [xt+j|It ∪ {1t+1,1t+2, ...}] , ∀j > 0 (8)

where It = {xt, xt−1, ..., et, et−1, ...,1t} is the information set excluding the future structure.

Suppose that in periods t ∈ [0, T̃ ] there is an arbitrary sequence of structures involving

the reference and alternative regime.9 The terminal structure is the alternative regime and

is reached at t = T̃ + 1 (see Assumption 1). The sequence of structures is reflected in the

known path of the indicator variable, {1t}T̃t=0 and 1t = 0, ∀t > T̃ (see Definition 2).

In the form of (6), the system to be solved is:{
B1,txt = B2,tEtxt+1 +B3,txt−1 +B4,tet +B5,t, 0 ≤ t ≤ T̃

B̃1xt = B̃2Etxt+1 + B̃3xt−1 + B̃4et + B̃5, ∀t > T̃ .
(9)

For all t > T̃ , the alternative regime is in place. By Assumption 1, the unique terminal

solution is xt = Ω̃xt−1 + Γ̃et + Ψ̃, ∀t > T̃ . Thus, the remaining system to be solved is:

B1,0x0 = B2,0E0x1 +B3,0x−1 +B4,0e0 +B5,0

...

B1,T̃xT̃ = B2,T̃ET̃xT̃+1 +B3,T̃xT̃−1 +B4,T̃ eT̃ +B5,T̃

(10)

where ET̃xT̃+1 = Ω̃xT̃ + Ψ̃. We can thus state the following result, which we draw on later.

Proposition 1 Consider the model (9)–(10). The solution is given by

xt =

{
Ωtxt−1 + Γtet + Ψt for 0 ≤ t ≤ T̃

Ω̃xt−1 + Γ̃et + Ψ̃ for t > T̃
(11)

8Note there is no loss of generality since if information about the future structure arrives at some arbitrary
date t̃ > 0 we may simply relabel the date 0 solution and apply the solution formulas from date t̃ onwards.

9To be both succinct and clear, we write t ∈ [0, T̃ ] (with the understanding that t is discrete) rather than
the more formal t ∈ [[0, T̃ ]] or the longhand t ∈ {0, ..., T̃}.
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where for t = 0, ..., T̃ ,

Ωt = (B1,t −B2,tΩt+1)
−1B3,t, Γt = (B1,t −B2,tΩt+1)

−1B4,t, (12)

Ψt = (B1,t −B2,tΩt+1)
−1(B2,tΨt+1 +B5,t), (13)

provided the following regularity condition holds: det[B1,t − B2,tΩt+1] 6= 0 ∀t ∈ [0, T̃ ],

and the terminal matrices ΩT̃+1 = Ω̃, ΓT̃+1 = Γ̃, ΨT̃+1 = Ψ̃ satisfy Assumption 1.

Proof. See the Appendix.

Proposition 1 describes the benchmark solution (if it exists). The recursive solution

matrices Ωt,Ψt,Γt are equivalent to those given in Kulish and Pagan (2017); to see this,

note that if B1,t is invertible then Ωt = (In − AtΩt+1)
−1Bt, Γt = (In − AtΩt+1)

−1Ct and

Ψt = (In−AtΩt+1)
−1(AtΨt+1 +Dt), where At := B−11,tB2,t, Bt := B−11,tB3,t, Ct := B−11,tB4,t and

Dt := B−11,tB5,t. Note that if the structure were fixed at Bi,t = B̃i for all i ∈ [5], t ∈ [0, T̃ ]

then the solution in Proposition 1 collapses to the fixed structure solution in (2)–(3).

Given our assumption of a unique terminal solution (Ω̃, Γ̃, Ψ̃), Proposition 1 shows that a

unique solution {xt}∞t=0 exists provided the regularity (invertibility) conditions are satisfied;

see Kulish and Pagan (2017) and Jones (2017). Note this result does not depend on the

specifics of the regimes. For example, even if the structure for t ∈ [0, T̃ ] implies indeterminacy

in a fixed structure setting, the transition path is unique regardless of how large T̃ is.

A number of cases of interest are nested by Proposition 1. These include permanent

anticipated structural change, such as entry into a monetary union (Bi,t = Bi, ∀t ∈ [0, T̃ ]);

temporary anticipated structural change implemented at some date T +1 and later reversed,

such as forward guidance (Bi,t = B̃i ∀t ∈ [0, T ], Bi,t = Bi ∀t ∈ [T + 1, T̃ ]); and the case

of anticipated (‘news’) shocks.10 The same formulas also apply for more than two regimes,

for example, policy reforms phased in gradually in several steps.11 In the next section we

extend the benchmark model while preserving the recursive solution in Proposition 1.

Example 1 A Cagan model with a permanent anticipated monetary expansion:

pt =
1

1 + η
mt +

η

1 + η
Etpt+1, mt =

{
m 0 ≤ t ≤ T̃

m′ ∀t > T̃

where η > 0 and pt, mt are the (log) price level and money supply.

10To see this, suppose that ∀t ∈ [0, T̃ ] the shock vector is given by et = eut +eat , where eut is the unpredictable
component of shocks (Et[e

u
t+1] = 0m×1) and eat is the anticipated (‘news’) component (Et[e

a
t+1] = eat+1). Then

the model ∀t ∈ [0, T̃ ] is B1,txt = B2,tEtxt+1 +B3,txt−1 +B4,te
u
t + B̂5,t, where B̂5,t := B4,te

a
t +B5,t.

11Suppose there are S different regimes. Then each regime s ∈ [S] has its own indicator 1st and structure Bsi
(i ∈ [5]). The model for t ∈ [0, T̃ ] is B1,txt = B2,tEtxt+1 +B3,txt−1 +B4,tet+B5,t where Bi,t =

∑S
s=1 1

s
tB

s
i .
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Letting xt = [pt], B1,txt = B2,tEtxt+1 +B3,txt−1 +B4,tet +B5,t, with et = [0], B1,t = [1],

B2,t = [ η
1+η

], Bi,t = [0] for i = 3, 4 and B5,t = [ m
1+η

] for t ∈ [0, T̃ ], B5,t = [ m
′

1+η
] ∀t > T̃ .

Proposition 1 gives the same solution as in Rogoff and Obstfeld (1996) (Ch. 8):

pt =

Ψt = m+
(

η
1+η

)T̃+1−t
(m′ −m) 0 ≤ t ≤ T̃

Ψ̃ = m′ ∀t > T̃

where ΨT̃ = η
1+η

Ψ̃ + m
1+η

and Ψt = η
1+η

Ψt+1 + m
1+η

, ∀t < T̃ . The price level responds at

t = 0 and accelerates toward its new value m′ as implementation date T̃+1 approaches.

4 Extensions

We now consider three extensions of the baseline model: coexistence of informed and unin-

formed agents; imperfect credibility about announced changes in structure; and structural

changes for which the terminal regime has multiple solutions that depend on sunspots.

4.1 Coexistence of informed and uninformed agents

As a first extension, we let some fraction of uninformed agents face an announcement lag.

This is intended to capture the situation that some agents, such as those working in policy

circles or government departments, may have advance information about future structural

changes, such as policy reforms, not yet released to the general public. The present section

thus builds on previous work that studied rational expectations and ‘wrong beliefs’ separately

(Kulish and Pagan (2017): Sec. 3.2). As a special case, this approach also provides a formal

framework for studying different announcement dates to the entire population.

Definition 3 Consider a structural change that starts in period T ∈ (0, T̃ ] and is complete

by period T̃ + 1. Agents are said to be uninformed if the structural changes in periods T to

T̃ + 1 are revealed to them in period T − K, where K ∈ [0, T ), and their expectations in

periods 0 ≤ t < T −K assume the current (original) structure will remain in place forever.

By Definition 3, the expectations of uninformed agents satisfy

Êt [xt+1] =

{
E [xt+1|It] for 0 ≤ t < T −K
Etxt+1 for t ≥ T −K

(14)

where It = {xt, xt−1, ..., et, et−1, ...,1t} as in (8).12

12Our choice of notation here reflects the fact that the uninformed initially have no information about
future structural changes so that ∀t < T −K, Êt [xt+1] = E [xt+1|It ∪ ∅] = E [xt+1|It].
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Note that uninformed agents have no knowledge of future structural changes in the first

T − K periods, but have full information from date T − K onwards. In what follows, we

denote the fraction of informed (i.e. rational) agents by λ ∈ (0, 1] (given and user-specified).

Without loss of generality, the initial structure in periods t ∈ [0, T ) is assumed to be the

reference regime and, as in Proposition 1, the terminal structure for t > T̃ is the alternative

regime. During the periods t ∈ [T, T̃ ], any sequence of regimes is permitted, and thus

generality of structural changes is preserved.13 The informed agents (‘insiders’) are aware of

all changes in structure from period t = 0, whereas the uniformed agents (‘outsiders’) find

out only in period t = T −K and so receive the information with a T −K period lag.

Our model for all t ≥ 0 is

B1,txt = B2,tẼtxt+1 +B3,txt−1 +B4,tet +B5,t (15)

Ẽtxt+1 = λEtxt+1 + (1− λ)Êtxt+1 (16)

where Bi,t = Bi for t ∈ [0, T ) and Bi,t = B̃i for all t > T̃ , i ∈ [5].

The fraction λ of informed agents form their expectations with full knowledge of the future

structure (see Def. 2) and take into account the expectations of the uninformed agents; hence

their expectations are model-consistent in all periods, unlike those of the uninformed agents

(cf. Def. 3). The specification in (15)–(16) nests the cases of all informed agents when

λ = 1 (see Proposition 1) and all uninformed agents when λ = 0. In the special case K = 0,

the structural reform is entirely unannounced to the uninformed agents; if K = T − 1 the

uninformed get the announcement with a one period lag relative to the ‘insiders’.

In periods 0 ≤ t < T−K, the uninformed agents think the current (reference) regime will

prevail in all future periods. Hence, their expectations are Êtxt+1 = Ωxt+Ψ, ∀t ∈ [0, T−K).

Thus, by (15)–(16), and analogous to (9), our model is given by
B̂1xt = B̂2Etxt+1 +B3xt−1 +B4et + B̂5, t ∈ [0, T −K)

B1,txt = B2,tEtxt+1 +B3,txt−1 +B4,tet +B5,t, t ∈ [T −K, T̃ ]

B̃1xt = B̃2Etxt+1 + B̃3xt−1 + B̃4et + B̃5, ∀t > T̃

(17)

where B̂1 := B1 −B2(1− λ)Ω, B̂2 := B2λ and B̂5 := B2(1− λ)Ψ +B5.

Corollary 1 Consider the model in (17). The solution follows Proposition 1, except

that ∀t ∈ [0, T − K) the recursive formulas for Ωt,Γt,Ψt have B3,t = B3, B4,t = B4,

and the matrices B1,t, B2,t, B5,t must be replaced with the matrices B̂1, B̂2, B̂5.

Proof. It follows from Proposition 1 with an appropriate relabelling of matrices.

13Note that since period T is the first period of structural change, the structure in this period should be
the alternative regime or else, by definition, the structural change would not have started in period T .
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Now consider the special case λ = 0, nested by the above. This corresponds to all agents

having delayed information about a future structural change. To make this concrete, suppose

the government plans a structural reform starting at t = T and has the option to make this

information public (at some date T −K) or to keep it private until date T . If K = 0, the

reform is unannounced, whereas if K ∈ (0, T−1] agents find out about the reform in advance,

but with a delay of T −K periods. Note that K = T corresponds to full information as in

Proposition 1 (i.e. immediate disclosure).

One potential application of the above framework is timing of announcements. Since dif-

ferent announcement dates will generally imply different paths for the endogenous variables,

policymakers face the question: what is the optimal reform announcement date? We provide

an application of optimal announcement dates (pension reform) in Section 5.2.

Henceforth, rather than presenting several further corollaries, we just describe how the

solutions presented relate to Proposition 1.

4.2 Imperfect credibility

A reform is said to be imperfectly credible if some agents think structural changes will not be

implemented as announced. Imperfect credibility concerns were an important consideration

in the Bank of Canada’s decision to renew its inflation target in 2011, rather than switch

to a price-level target (see Ambler (2014)). We first show that past approaches to imperfect

credibility are nested by the structural change solution before considering two new cases.

4.2.1 Past approaches to imperfect credibility

One strand of literature considers settings where the structure is implemented as announced,

but imperfect credibility arises because some fraction of agents doubt whether the actual

structure will match the announced one. Intuitively, this approach isolates the specific

impact of policymakers not being believed. We focus here on this approach to imperfect

credibility; hence our analysis does not relate to some alternative approaches.14

We assume any changes in the structure Bi,t (i ∈ [5]) are complete by date T+1, but that

imperfect credibility may persist beyond this to some date T̃ ≥ T . A fraction λ of agents form

rational expectations, while the fraction 1−λ who doubt the announced structure base their

expectations on previous targets or realized outcomes. For example, Goodfriend and King

(2005) and Ascari and Ropele (2013) model disinflations using some inflation expectations

of the form Ẽtπt+1 = λEtπt+1 + (1 − λ)πH , where πH is the old inflation target, whereas

14One alternative strand of literature considers agents who solve optimal filtering problems to disentangle
temporary and permanent (unanticipated) policy shifts (see Erceg and Levin (2003)). Following Ball (1995), a
seperate literature allows policy promises to be reneged on with some exogenous probability (see Schaumburg
and Tambalotti (2007)) or endogenously in response to welfare considerations (Haberis et al. (2019)). Here,
by contrast, we rule out reneging on policy promises – i.e. structures are implemented as announced.
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Nicolae and Nolan (2006) assume that money supply expectations depend partly on realized

money supply. In the above papers, λ is exogenous and, in some cases, time varying.

These expectations specifications can easily be nested using our method. Suppose a

fraction of agents λt ∈ (0, 1] (given) have rational expectations and the remaining fraction,

1 − λt, have expectations EIC
t xt+1 that may depend on realized values of the endogenous

and exogenous variables or on target values (i.e. intercepts). Our model for all t ≥ 0 is:

B1,txt = B2,tẼtxt+1 +B3,txt−1 +B4,tet +B5,t (18)

Ẽtxt+1 = λtEtxt+1 + (1− λt)EIC
t xt+1 (19)

where EIC
t xt+1 = F0xt + F1xt−1 + F2et + F3 (for user-specified matrices F0, F1, F2, F3).

Note that the above specification allows expectations to depend on the current shocks et.

This is useful because some authors (e.g. Yetman (2005)) allow expectations to differ from

announced target values by random errors, in which case the vector et can be enlarged.

We assume λt = 1 for all t ≥ T̃ + 1. This implies, as standard in the literature, that

imperfect credibility eventually ‘dies out’ (e.g. Nicolae and Nolan (2006)). For t ∈ [0, T̃ ],

credibility is imperfect and determined by the known sequence {λt}T̃t=0; for example, if we al-

low credibility to improve over time (as is common in the literature) then λt will be increasing

in each period up to date T̃ .

Using Eq. (19) in (18) we have:

B̂1,txt = B̂2,tEtxt+1 + B̂3,txt−1 + B̂4,tet + B̂5,t, ∀t ≥ 0 (20)

where B̂1,t := B1,t−B2,t(1−λt)F0, B̂2,t := B2,tλt, B̂j,t := Bj,t+B2,t(1−λt)Fj−2, j ∈ {3, 4, 5}.
Note that ∀t ≥ T̃ + 1, we have λt = 1 and B̂i,t = B̃i, i ∈ [5]. Hence, analogous to (9):{

B̂1,txt = B̂2,tEtxt+1 + B̂3,txt−1 + B̂4,tet + B̂5,t, 0 ≤ t ≤ T̃

B̃1xt = B̃2Etxt+1 + B̃3xt−1 + B̃4et + B̃5, ∀t > T̃ .
(21)

It follows that the solution is given by Proposition 1, except that ∀t ∈ [0, T̃ ] the matrices Bi,t,

i ∈ [5], must be replaced with the matrices B̂i,t defined in (20). Note that the above approach

generalizes easily to cases where imperfect credibility is specific to particular variables, since

the scalars λt and 1− λt may be replaced with a diagonal matrix Λt and In − Λt.
15

The above approach to imperfect credibility is intuitive and easy to implement, but the

expectations EIC
t xt+1 are clearly ad hoc. The imperfect credibility solutions we set out below

are instead based on an alternative sequence of structures while retaining the assumption

that some fraction of agents form rational (i.e. model-consistent) expectations in all periods.

15In particular, Λt is an n × n diagonal matrix with λ1,t, λ2,t, ..., λn,t on the main diagonal. To model
imperfect credibility for the first variable (say inflation) we can let λ1,t ∈ (0, 1] and set λ2,t, ..., λn,t = 1, ∀t.
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4.2.2 Imperfect credibility: alternative solutions

We now present two alternative solutions. The key distinction is that instead of using

user-specified ‘rules of thumb’ such as past targets or realized values of variables (as in the

previous section), agents who doubt the announced structure form expectations based on

the alternative sequence of structures that they expect to materalize.

There are some papers in the literature in which agents take expectations based on

alternative structures. Kryvtsov et al. (2008) consider imperfect credibility following a per-

manent (unanticipated) switch from inflation to price-level targeting, whereas Gibbs and

Kulish (2017) study disinflations when some fraction of agents are adaptive learners.16 The

solutions presented below differ from these approaches because some fraction of agents have

model-consistent expectations in all periods. As a result, we stay in the framework of ratio-

nal expectations, and the expectations of the rational agents take into account the presence

of the doubting agents who disbelieve the announced structure.

Type 1 Credibility

We first consider the simple case where the doubting agents do not believe at all in the

announced sequence of structures. We refer to this as Type 1 credibility. As above, we let

λt ∈ (0, 1] (given and user-specified) denote the fraction of agents with rational expectations;

the fraction of sceptical agents is therefore 1− λt. Our model for all t ≥ 0 is:

B1,txt = B2,tẼtxt+1 +B3,txt−1 +B4,tet +B5,t (22)

Ẽtxt+1 = λtEtxt+1 + (1− λt)EIC
t xt+1 (23)

where EIC
t xt+1 is the conditional expectation of the sceptical agents.

We assume sceptical agents know the properties of et, the current structure, and observe

xt. They forecast using the correct functional form (that includes xt); however, they do not

know the future structure and think it will differ from the announced one in one or more

periods. As in the last section, we assume λt = 1 for all t ≥ T̃ + 1 (imperfect credibility ‘dies

out’); in the earlier periods t ∈ [0, T̃ ] the λt may be time-varying or (as a special case) be

fixed at some value between 0 and 1. Any other structural change (captured by Bi,t, i ∈ [5])

is complete by date T + 1, where T ≤ T̃ .

The expectations of the sceptical agents are based on a different sequence of structures

{B̂1,s, B̂2,s, B̂3,s, B̂4,s, B̂5,s}∞s=t+1 that they expect to materialize.17 We assume the matrices

B̂i,t are fixed for all t ≥ T̃ + 1; note this allows the possibility that sceptical agents expect

16In Gibbs and Kulish (2017), non-learners form conditional expectations but do not take into account
the presence of the learners – i.e. their expectations are rational only if learners are absent (see p. 161).

17Analogous to (6), we may think of {B̂1,s, B̂2,s, B̂3,s, B̂4,s, B̂5,s}∞s=t+1 as given by B̂i,s = 1
IC
s Bi + (1 −

1
IC
s )B̃i, i ∈ [5], where {1ICs }∞s=t+1 is a given (user-specified) indicator variable describing beliefs.
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a structural change (say forward guidance) to last longer than announced or to end prema-

turely.18 The terminal B̂i,t matrices may potentially differ from the actual terminal structure

{B̃1, B̃2, B̃3, B̃4, B̃5} – i.e. it could be {B1, B2, B3, B4, B5} instead.

Analogous to Proposition 1, the matrix recursions under the ‘hat’ structure are

ΩIC
t = (B̂1,t − B̂2,tΩ

IC
t+1)

−1B̂3,t, ΓICt = (B̂1,t − B̂2,tΩ
IC
t+1)

−1B̂4,t, (24)

ΨIC
t = (B̂1,t − B̂2,tΩ

IC
t+1)

−1(B̂2,tΨ
IC
t+1 + B̂5,t) (25)

provided det[B̂1,t − B̂2,tΩ
IC
t+1] 6= 0 for all t ∈ [0, T̃ ], where

ΩIC
T̃+1

= Ω := (B1 −B2Ω)−1B3, ΓIC
T̃+1

= Γ := (B1 −B2Ω)−1B4,

ΨIC
T̃+1

= Ψ := (B1 −B2Ω)−1(B2Ψ +B5)

and we assume, for concreteness, that the (perceived) terminal structure of the sceptical

agents is {B1, B2, B3, B4, B5} and Ω,Γ,Ψ are unique and well-defined.19

Our sceptical agents know the correct functional form of the solution xt, but not the

correct solution matrices. Similar to the structural forecasters in Gibbs and Kulish (2017),

they make forecasts by using the (would-be) solution matrices under the structure they

anticipate (see (24)–(25)) in conjunction with the observed data:

EIC
t xt+1 = ΩIC

t+1xt + ΨIC
t+1 (26)

where we use the zero-mean property of et+1. Note that the expectation in (26) would be

rational if the matrices ΩIC
t+1,Ψ

IC
t+1 coincided with the model-consistent ones Ωt+1,Ψt+1.

Using (26) in (22)–(23), our model is:

BIC
1,t xt = BIC

2,tEtxt+1 +B3,txt−1 +B4,tet +BIC
5,t , ∀t ≥ 0 (27)

where BIC
1,t := B1,t −B2,t(1− λt)ΩIC

t+1, B
IC
2,t := B2,tλt and BIC

5,t := B2,t(1− λt)ΨIC
t+1 +B5,t.

Note that for all t ≥ T̃ + 1, λt = 1 and BIC
i,t = Bi,t = B̃i, i ∈ [5]. Hence, we have:{

BIC
1,t xt = BIC

2,tEtxt+1 +B3,txt−1 +B4,tet +BIC
5,t , 0 ≤ t ≤ T̃

B̃1xt = B̃2Etxt+1 + B̃3xt−1 + B̃4et + B̃5, ∀t > T̃ .
(28)

Since this is in the same form as (9), the solution to (28) follows Proposition 1, except that

∀t ∈ [0, T̃ ] the matrices Bi,t, i ∈ {1, 2, 5}, in the recursions for Ωt,Γt,Ψt must be replaced

18In the former case, we must set T̃ > T . In the opposite case where the structural change is expected to
end sooner than announced, the matrices B̂1,t, B̂2,t, B̂3,t, B̂4,t, B̂5,t will be fixed from some date t′ < T . The
recursions (24)–(25) (see below) will then give fixed matrices ΩIC ,ΓIC ,ΨIC for all t ≥ t′.

19Note that either the reference regime or the alternative regime may be used in the final step.
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by the matrices BIC
i,t in (27) (where ΩIC

t ,ΓICt ,ΨIC
t are given by (24)–(25) and we assume the

invertibility condition is met). To make this concrete, two applications are described below.

� Permanent structural change. Consider a permanent one-off change in structure (such

as in Example 1). Suppose the change in structure occurs at date T = 8 and that

some fixed fraction α ∈ (0, 1) of agents are sceptical about the announced change in

structure, believing fully in the original structure (the reference regime). They are

sceptical in periods t ∈ [0, T̃ ], where T̃ = 12, but believe fully in the announced

structure thereafter. This is a special case of the above where λt = 1−α for t ∈ [0, 12],

λt = 1 for all t > 12 and B̂i,t = Bi for all t ≥ 1. Accordingly, the expectations

EIC
t xt+1 = Ωxt + Ψ enter the solution in periods t ∈ [0, 12] but not thereafter.

� Temporary structural change. Consider a temporary change in structure that starts in

period 1 and is reversed after period T = 8. A fixed fraction α ∈ (0, 1) of agents are

sceptical about the announced change in structure in periods 0 to 8 (so T̃ = T = 8

in this example). In particular, they think the reform will be abandoned sooner than

announced, say in period 6 (the policy could be, e.g., forward guidance). We thus have

λt = 1− α for t ∈ [0, 8] and λt = 1 for all t ≥ 9, along with B̂i,t = Bi for t ∈ [1, 6] and

B̂i,t = B̃i for all t ≥ 7. The sceptics’ expectations are thus EIC
t xt+1 = Ω̃xt + Ψ̃ for all

t ≥ 7 and are given by the recursions (24)–(25) for t ∈ [0, 6].

Type 2 Credibility

We now present a simple generalization of the previous solution in which ‘sceptics’ weight

both the announced structure and a different structure. We refer to this as Type 2 credibility

because the agents are more sophisticated in their thinking: they doubt the announced (i.e.

actual) structure rather than rejecting it completely. Our model for all t ≥ 0 is

B1,txt = B2,tẼtxt+1 +B3,txt−1 +B4,tet +B5,t (29)

Ẽtxt+1 = λtEtxt+1 + (1− λt)EIC
t xt+1 (30)

where, as before, λt ∈ (0, 1] for t ∈ [0, T̃ ] and λt = 1 for all t ≥ T̃ + 1.

The expectation EIC
t xt+1 of the sceptical agents is given by

EIC
t xt+1 = ptE

∗
t xt+1 + (1− pt)Êtxt+1 (31)

where pt ∈ (0, 1] (given) denotes the weight on the announced structure and 1 − pt is the

weight on the alternative structure. Type 1 credibility is the special case pt = 0. Note that

because λt = 1 for all t ≥ T̃ + 1, the value of pt is irrelevant after period T̃ . Therefore, for

concreteness, we assume pt = pT̃ for all t ≥ T̃ + 1. In the earlier periods t ∈ [0, T̃ ], pt follows

a known sequence specified by the researcher in which pt may be time-varying or constant.
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The expectation E∗t xt+1 is based on the announced structure, whereas Êtxt+1 is based

on the alternative structure. We have Êtxt+1 = ΩIC
t+1xt + ΨIC

t+1 as in (24)–(26) and E∗t xt+1 =

Ω∗t+1xt+Ψ∗t+1, where Ω∗t+1,Ψ
∗
t+1 come from Proposition 1 (with matrices B1,t, ..., B5,t).

20 The

E∗t xt+1 is like the structural forecast in Gibbs and Kulish (2017): it would be a rational

expectation if non-rational agents were absent (i.e. if λt = 1 for all t).

Equation (31) has the intuitive intepretation that, in a given period t ∈ [0, T̃ ], doubting

agents attach a subjective probability pt to the announced structure and a probability 1−pt
to implementation of the different structure {B̂1,s, B̂2,s, B̂3,s, B̂4,s, B̂5,s}∞s=t+1.

Using the above expressions in (30), the economy-wide expectation is given by

Ẽtxt+1 = λtEtxt+1 + (1− λt)[Ω̃IC
t+1xt + Ψ̃IC

t+1] (32)

where Ω̃IC
t+1 := ptΩ

∗
t+1 + (1− pt)ΩIC

t+1 and Ψ̃IC
t+1 := ptΨ

∗
t+1 + (1− pt)ΨIC

t+1.

Using (32) in (29)–(30), we have ∀t ≥ 0, BIC
1,t xt = BIC

2,tEtxt+1 + B3,txt−1 + B4,tet + BIC
5,t ,

where BIC
1,t := B1,t − B2,t(1 − λt)Ω̃

IC
t+1, B

IC
2,t := B2,tλt and BIC

5,t := B2,t(1 − λt)Ψ̃
IC
t+1 + B5,t.

Note that ∀t ≥ T̃ + 1, we have λt = 1 and BIC
i,t = Bi,t = B̃i, i ∈ [5]. Hence, our system is:{

BIC
1,t xt = BIC

2,tEtxt+1 +B3,txt−1 +B4,tet +BIC
5,t , 0 ≤ t ≤ T̃

B̃1xt = B̃2Etxt+1 + B̃3xt−1 + B̃4et + B̃5, ∀t > T̃ .
(33)

The solution again follows Proposition 1, except that for t ∈ [0, T̃ ], the matrices B1,t, B2,t, B5,t

must be replaced by the matrices BIC
1,t , B

IC
2,t , B

IC
5,t , which depend on the sequences {λt, pt}T̃t=0

and the recursions {Ω∗t+1,Ψ
∗
t+1}T̃t=0 (see (12)–(13)) and {ΩIC

t+1,Ψ
IC
t+1}T̃t=0 (see (24)–(26)).

4.3 Indeterminacy

In this section we show how to deal with non-fundamental (sunspot) solutions. For concrete-

ness we assume the terminal structure implies indeterminacy, such that there are multiple

stable terminal solutions that depends on sunspots (see Assumption 2).

Assumption 2 The terminal structure {B̃1, B̃2, B̃3, B̃4, B̃5} is indeterminate, i.e. there are

many stable terminal solutions.

Several methods have been put forward in the literature for solving indeterminate models,

including Lubik and Schorfheide (2003), Farmer et al. (2015) and Bianchi and Nicolò (2021).

All three approaches are equivalent in terms of finding equilibria, but the simplest method

is that of Farmer et al. (2015); the analysis that follows thus utilizes their method.

The method of Farmer et al. (2015) involves moving non-fundamental expectational errors

to the vector of fundamental shocks. Since this reclassification resolves the indeterminacy

20Again, we use the zero-mean property of et+1. In general, neither E∗t xt+1 or Êtxt+1 are rational.
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problem, the resulting model can be solved using standard methods. In this way, the Farmer

et al. (2015) approach allows us to solve for a specific sunspot solution while sticking in the

same framework used thus far. Our starting model is:

B1,txt = B2,tEtxt+1 +B3,txt−1 +B4,tet +B5,t, ∀t ≥ 0 (34)

where Bi,t = 1tBi + (1− 1t)B̃i (1t = 0, ∀t > T̃ ) and Assumption 2 holds.

Suppose there is indeterminacy of degree k ∈ [n]. The degree of indeterminacy can be de-

termined using standard methods, like Sims (2002).21 If there are more than k expectational

variables, the user must choose k of them to be hit by sunspots (Farmer et al. (2015)).

Consider first the terminal periods, t > T̃ . Following the approach in Farmer et al.

(2015), we define an augmented terminal structure based on (34) and k new equations:{
B̃1xt = B̃2Etxt+1 + B̃3xt−1 + B̃4et + B̃5

xkt = st−1 + vt
, ∀t > T̃ (35)

where st := Etx
k
t+1 and xkt is a vector of the k forward-looking endogenous variables whose

expectations are hit by zero-mean (sunspot) shocks vi,t, i = 1, .., k, drawn from some assumed

distribution and potentially correlated with the fundamental shocks et.
22

The intuition for the augmented system, (35), is quite simple. Degree k indeterminacy re-

quires adding k extra equations in which the expectations Et−1x
k
t (= st−1) are state variables

and each of these variables xki,t, i ∈ [k], is subject to self-fulfilling expectations shocks vi,t
drawn from some assumed distribution. For convenience, we assume these ‘sunspot variables’

are ordered first in xt.

Partitioning the top line of (35) into sunspot and non-sunspot variables leads to

[
B̃11 B̃12

] [ xkt
xn−kt

]
=
[
B̃21 B̃22

] [Etxkt+1

Etx
n−k
t+1

]
+
[
B̃31 B̃32

] [xkt−1
xn−kt−1

]
+ B̃4et + B̃5 (36)

where B̃i1, B̃i2, i ∈ {1, 2, 3}, are n× k and n× (n− k) matrices, respectively.

Following Farmer et al. (2015), st := Etx
k
t+1 is used to substitute st for Etx

k
t+1 in (36).23

21Formally, if there are n1 unstable generalized eigenvalues and p non-fundamental errors then (under
some regularity assumptions) there are k = p− n1 degrees of indeterminacy.

22On the covariance matrix of the shocks, see Eq. (21) in Farmer et al. (2015) and the related discussion.
23Note that substituting st in place of Etx

k
t+1 is not strictly necessary (see Gibbs and McClung (2020))

but reduces the dimension of the vector x̃t and hence also dimensionality of the matrices B̃i; see (37).
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The terminal system in (35) can then be written in the form:

B̃1

 xkt
xn−kt

st

 = B̃2

Etxkt+1

Etx
n−k
t+1

Etst+1

+ B̃3

xkt−1xn−kt−1
st−1

+ B̃4

[
vt
et

]
+ B̃5

i.e.

B̃1x̃t = B̃2Etx̃t+1 + B̃3x̃t−1 + B̃4ẽt + B̃5, ∀t > T̃ , (37)

where

B̃1 =

[
Ik 0k×n−k 0k×k
B̃11 B̃12 −B̃21

]
, B̃2 =

[
0k×k 0k×n−k 0k×k
0n×k B̃22 0n×k

]
,

B̃3 =

[
0k×k 0k×n−k Ik
B̃31 B̃32 0n×k

]
, B̃4 =

[
Ik 0k×m

0n×k B̃4

]
, B̃5 =

[
0k×1
B̃5

]
.

Equation (37) defines the model in the terminal periods, t > T̃ . Note that since the realized

sunspot shocks are included in the vector of fundamental shocks, the system in (37) can be

solved using standard methods. Thus, analogous to Proposition 1, there is now a unique

terminal solution of the form x̃t = Ω̃x̃t−1 + Γ̃ẽt + Ψ̃, ∀t > T̃ , where Ω̃ = (B̃1 − B̃2Ω̃)−1B̃3,
Γ̃ = (B̃1 − B̃2Ω̃)−1B̃4, Ψ̃ = (B̃1 − B̃2Ω̃)−1(B̃2Ψ̃ + B̃5).

We assume that agents’ expectations coordinate on the sunspot solution in the terminal

regime, as in Gibbs and McClung (2020). With this assumption, a solution can be recov-

ered using the same method as in the determinate case (see below). Specifically, given a

particular terminal sunspot solution x̃t = Ω̃x̃t−1 + Γ̃ẽt + Ψ̃, ∀t > T̃ , a solution for t ∈ [0, T̃ ]

can be determined using the recursive formulas in Proposition 1 (provided the invertibility

conditions are satisfied). Note that (if it exists) the solution {x̃t}∞t=0 will be unique given our

assumption of coordination on a particular sunspot process vt.

By (34) and our coordination assumption, the system during the transition is{
B1,txt = B2,tEtxt+1 +B3,txt−1 +B4,tet +B5,t

xkt = st−1
, ∀t ∈ [0, T̃ ]. (38)

Note that this system ∀t ∈ [0, T̃ ] is analogous to (35), except that the time-indexed structural

matrices Bi,t appear and the sunspot process vt does not enter, as multiple equilibria are

absent in the transition periods when agents use backward induction from the terminal

solution. Note that this result arises because the (future) sunspots are mean-zero and hence

do not influence agents’ expectations during the transition periods t ∈ [0, T̃ ].24

Since (38) is analogous to (35), an appropriate partition of the Bi,t matrices (as in (36))

24See also the worked example in the Appendix of Gibbs and McClung (2020).
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and the substitution of st for Etx
k
t+1 (as in (37)) gives us the following system:

B1,tx̃t = B2,tEtx̃t+1 + B3,tx̃t−1 + B4,tẽt + B5,t, ∀t ∈ [0, T̃ ], (39)

where x̃t, ẽt are defined in (37) and

B1,t =

[
Ik 0k×n−k 0k×k
B11,t B12,t −B21,t

]
, B2,t =

[
0k×k 0k×n−k 0k×k
0n×k B22,t 0n×k

]
,

B3,t =

[
0k×k 0k×n−k Ik
B31,t B32,t 0n×k

]
, B4,t =

[
0k×k 0k×m
0n×k B4,t

]
, B5.t =

[
0k×1
B5,t

]
.

In summary, our augmented model is

B1,tx̃t = B2,tEtx̃t+1 + B3,tx̃t−1 + B4,tẽt + B5,t, ∀t ≥ 0 (40)

where Bi,t = B̃i, ∀t > T̃ (see (37)) and ẽt zero mean with covariance matrix Σ =

[
Σv Σve

Σve Im

]
.

Since the augmented model (40) is in the usual form, the solution (if it exists) will be

given by Proposition 1, except that matrices Bi,t, B̃i are replaced by Bi,t, B̃i, ∀i ∈ [5].

Example 2 Consider the following New Keynesian model:

πt = βEtπt+1 + κyt + eπ,t, yt = Etyt+1 − σ(Rt − Etπt+1) + ey,t (41)

where β ∈ (0, 1), κ > 0; eπ,t, ey,t are exogenous, zero-mean IID disturbances and

Rt = θπ,tπt, θπ,t =

{
θπ = 0 for t ∈ [0, 4]

θ̃π ∈ (0, 1) for t ≥ 5.
(42)

For convenience, we substitute the Taylor rule (42) into the IS curve in (41) to get:

πt = βEtπt+1 + κyt + eπ,t, yt = Etyt+1 − σ(θπ,tπt − Etπt+1) + ey,t. (43)

For θπ,t = θπ ∀t, the determinacy properties are well known (Bullard and Mitra (2002)):

if θπ > 1, Taylor principle holds and there is a unique stable equilibrium, whereas if

θπ ∈ (0, 1) there is one degree of indeterminacy (k = 1) and thus many stable solutions.

By (42), θπ,t = θ̃π ∈ (0, 1) for ∀t ≥ 5. Hence, the terminal structure does not satisfy

the Taylor principle and there is indeterminacy of degree k = 1. As there is one degree

of indeterminacy and two forward-looking variables, we may pick either to be hit by

sunspots. Here we pick inflation and hence xkt = [πt] and xn−kt = [yt].
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To write the terminal structure as in (37), we must introduce a ‘sunspot equation’ (see

(35)) for inflation:

πt = st−1 + vπ,t, ∀t ≥ 5, (44)

where st := Etπt+1 and vπ,t is an exogenous sunspot shock with Et−1vπ,t = 0. Using

the substitution Etπt+1 = st in (43) and adding (44) to the system, we have ∀t ≥ 5:

B̃1x̃t = B̃2Etx̃t+1 + B̃3x̃t−1 + B̃4ẽt, which is a special case of (37): 1 0 0

0 −κ −β
σθ̃π 1 −σ


πtyt
st

+

0 0 0

0 0 0

0 1 0


Etπt+1

Etyt+1

Etst+1

+

0 0 1

0 0 0

0 0 0


πt−1yt−1
st−1

+

vπ,teπ,t
ey,t

 (45)

For t ∈ [0, 4], the structure is given by (43), with θπ,t = θπ = 0, along with πt = st−1.

As in (39), we may write the system as B1x̃t = B2Etx̃t+1 + B3x̃t−1 + B4ẽt, ∀t ∈ [0, 4]:1 0 0

0 −κ −β
0 1 −σ


πtyt
st

+

0 0 0

0 0 0

0 1 0


Etπt+1

Etyt+1

Etst+1

+

0 0 1

0 0 0

0 0 0


πt−1yt−1
st−1

+

0 0 0

0 1 0

0 0 1


vπ,teπ,t
ey,t


(46)

By Proposition 1, the solution is given by

x̃t =

{
Ωtx̃t−1 + Γtẽt for 0 ≤ t ≤ 4

Ω̃x̃t−1 + Γ̃ẽt for t ≥ 5
(47)

where Ω̃ = (B̃1 − B̃2Ω̃)−1B̃3, Γ̃ = (B̃1 − B̃2Ω̃)−1B̃4 and, for t ∈ [0, 4],

Ωt = (B1 − B2Ωt+1)
−1B3, Γt = (B1 − B2Ωt+1)

−1B4, with Ω5 = Ω̃.

Eq. (47) determines x̃t given draws vπ,t, eπ,t, ey,t from assumed distributions. Note that

the sunspots vπ,t enter the solution in the terminal periods t ≥ 5 (see (45)), but not in

the earlier periods t ∈ [0, 4] (cf. (46)).

5 Applications

We now consider some numerical applications. The first application uses a New Keynesian

model to study several monetary policy announcements, including an example where agents

anticipate that the terminal structure does not satisfy the Taylor principle. The second

application is a pension reform in the Diamond (1965) model that is used to study the

optimal announcement date. Further details of the applications and the codes are given in

the Supplementary Appendix.
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5.1 A New Keynesian model

Following Cagliarini and Kulish (2013), we consider a simplified version of the New Keynesian

model in Ireland (2007) in which the inflation target π∗ is non-stochastic; the deviation of

technology from its steady state, at, is stationary; and there are no habits in consumption.

Under these assumptions, the model is given by the following set of log-linear equations:

πt =
1

(1 + βα)
(βEtπt+1 + (1 + βα− α− β)π∗ + απt−1 + ψσyt − ψat − µt) (48)

yt = Etyt+1 − σ−1(Rt − Etπt+1) +
(1− ρg)

σ
gt − σ−1ln(β) (49)

Rt = (1− ρR)R + ρRRt−1 + θπ(πt − π∗) + θyyt + θdy(yt − yt−1) (50)

where the shocks to technology, demand and the mark-up follow AR(1) processes:

ut = ρuut−1 + σuεu,t, u ∈ {a, g, µ}, εu,t ∼ N(0, 1).

Eqs. (48)–(50) are the Phillips curve, the IS curve and the interest rate rule. In these

equations, πt is the log inflation rate; yt is output expressed in log deviations from steady

state; and Rt is the log nominal interest rate. The steady-state nominal interest rate is

R = π∗ − ln(β). We use the same parameter values as in Cagliarini and Kulish (2013):

π∗ = 0.0125 (quarterly), β = 0.9925, σ = 1, α = 0.25, ψ = 0.1, ρR = 0.65, θπ = 0.5, θy = 0.1,

θdy = 0.2; ρg, ρa, ρµ = 0.9, σg = 0.02, σa = 0.007 and σµ = 0.001. The above model can easily

be cast in matrix form by letting xt =
[
πt yt Rt at gt µt

]′
and et =

[
εa,t εg,t εµ,t

]′
.

5.1.1 A change in the inflation target

As a first exercise, suppose the central bank announces a lower inflation target as in Cagliarini

and Kulish (2013). The announcement refers to the future value of π∗, which is to be reduced

permanently from 5% to 2.5% per annum. To motivate a disinflation policy, the economy

starts at steady state but is hit in period 1 with an unanticipated demand shock, εg,1 = 0.02.

The announcement of a lower inflation target is made in period 4 and is implemented in

period 8 (see Figure 1). This is an application of the benchmark solution in Proposition

1, where the two regimes differ only in the intercept matrices B5 (initial structure) and B̃5

(terminal structure) due to the shift in the inflation target (see (4)–(6)).

The impulse responses in Figure 1 replicate those in Cagliarini and Kulish (2013). In-

flation and output increase in response to the demand shock and remain elevated up to

period 3; however, both inflation and output fall sharply when the lower inflation target

is announced in period 4. Because the monetary policy rule responds to the deviation of

inflation from the current target rather than the announced target, a substantial negative
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Figure 1: IRFs with anticipated reduction in π∗: announced t = 4, implemented
t = 8. The figure shows impulse responses to a one standard deviation demand shock
εg,0 = 0.02 followed by an announcement (in period 4) that the inflation target will be
permanently reduced from 5% p.a. to 2.5% p.a. in period 8.

inflation gap opens up in period 4 and the nominal interest rate is cut sharply. However, as

expected inflation also falls sharply, the real interest rate does not change much, and hence

output falls below steady state despite the cut in nominal interest rates. By the time the

inflation target is actually reduced in period 8, output is above its steady state value and

most of the disinflation has already happened via expectations.

Now suppose the above policy is imperfectly credible, as in Section 4.2. In particular,

suppose the reduction in the inflation target is imperfectly credible in the announcement

period (t = 4, ..., 7) and that these doubts persist for some time after implementation in

period t = 8, namely, until period T̃ = 10. The ‘sceptics’ thus continue to doubt the

policy for three quarters once it has been implemented. The fraction of rational agents, who

believe the announced policy, is fixed at λt = λ for t ∈ [4, 10]; our assumption that imperfect

credibility ends in period 10 means λt = 1 for t ≥ 11. In what follows, we set λ = 0.85

or λ = 0.70; these values imply, respectively, that 15% or 30% of agents are ‘doubters’ in

periods 4 to 10. Note that λt = 1, ∀t, corresponds to perfect credibility as in Figure 1.

We consider two different imperfect credibility specifications. The first specification (or

‘standard approach’, Section 4.2.1) has the doubting agents using rule-of-thumb inflation

expectations EIC
t πt+1 = π∗orig, as in Goodfriend and King (2005) and Ascari and Ropele

(2013). The economy-wide inflation expectation is thus Ẽtπt+1 = λEtπt+1 + (1− λ)π∗orig for

t ∈ [4, 10] and Ẽtπt+1 = Etπt+1 for all t ≥ 11. The only difference to model (48)–(50) is that

the expectation Etπt+1 is replaced by Ẽtπt+1 in periods 4 to 10. The second specification is

Type 1 credibility (Section 4.2.2). We assume that in periods t ∈ [4, 10] the doubting agents

expect the original structure to be in place in all future periods, i.e. they have expectations
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EIC
t xt+1 = Ωxt + Ψ, where xt is the vector of endogenous variables (defined above) and Ω,Ψ

are the fixed solution matrices under the original structure. Hence, they think a permanent

reversion to the original structure (with the 5% inflation target) will occur next period.

Figure 2: IRFs with anticipated reduction in π∗: impact of imperfect credibility.
The figure shows impulse responses to a one standard deviation demand shock εg,0 = 0.02
followed by an announcement (in period 4) that the inflation target will be permanently
reduced from 5% p.a. to 2.5% p.a. in period 8. The announcement is imperfectly credible
to a fraction 1− λ of agents in periods t = 4, ..., 10.

Figure 2 reports impulse responses. The solid line shows the case of full credibility as

in Figure 1. There is a marked difference in the imperfect credibility cases (dashed lines).

For both types of imperfect credibility, inflation is higher during the announcement period,

and this continues until imperfect credibility ‘dies out’ in period 11. Intuitively, inflation

increases because the rational fraction of agents is ‘diluted’ and replaced by agents with

‘sticky’ expectations either due to a rule of thumb (top panel) or reliance on the past structure

(lower panel); hence the population as a whole is less responsive to the announcement that

the inflation target will be reduced and expectations remain high for some periods.

Notably, there are substantive differences in the impulse responses for the two types of

imperfect credibility. Under the standard approach (top panel), inflation expectations are
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sharply elevated relative to full credibility and inflation remains stubbornly high despite the

announcement. As a result, the real interest rate is lowered relative to full credibility, such

that output initially increases (top panel, middle). Only once inflation expectations and

nominal interest rates fall substantially do we see output fall well below its steady state

value. By comparison, inflation is less elevated under Type 1 credibility (lower panel, left)

because agents use realized current values xt as a basis for their expectations and hence there

is feedback from the expectations of the rational agents, which lower actual inflation, to less

stubborn expectations of the doubting agents.25 As a result, the reponse of the real interest

rate is smaller and output is much closer to its simulated path under full credibility.

These results are interesting because several papers have studied the real effects of dis-

inflations under imperfect credibility, typically finding non-trivial output and welfare im-

plications when some fraction of agents are rational as here (Goodfriend and King (2005),

Nicolae and Nolan (2006), Ascari and Ropele (2013)). By comparison, the results for Type

1 credibility suggest that these ‘rule of thumb’ approaches might overstate the impact of

imperfect credibility; it would be interesting to investigate this further in future research.

5.1.2 Forward guidance

We now consider forward guidance in the above model. In particular, we compare ‘plain

vanilla’ forward guidance to versions of forward guidance with imperfect credibility and

delayed announcement for some fraction of the population. We assume that the period of

low interest rates is announced in period 0 and implemented in periods 2 to 5. Given the

presence of forward guidance, the interest rate rule (50) must be amended to

Rt =

{
R := 0 for t ∈ [2, 5]

(1− ρR)R + ρRRt−1 + θπ(πt − π∗) + θyyt + θdy(yt − yt−1) otherwise.
(51)

To motivate the use of forward guidance, we hit the economy with a large negative demand

shock in period 0 (εg,0 = −0.08). The model parameters are unchanged and we use the

smaller inflation target of 2.5% p.a. from the previous section (π∗ = 0.00625, quarterly).

The three cases of forward guidance we consider are: a ‘plain vanilla’ baseline case that is

fully anticipated; forward guidance that remains unannounced to a fraction 1− λ of agents

(K = 0, Section 4.1); and Type 2 credibility when a fraction 1− λ expect forward guidance

to end 2 periods ‘early’ and permanently revert to the Taylor-type rule. In the latter cases,

the fraction of agents with rational expectations is set at λ = 0.7 and for Type 2 credibility

we give doubting agents a subjective probability p = 0.5 that places equal weight on the

announced structure and that under early reversion.26 The results are reported in Figure 3.

25Since the rational fraction of agents form expectations that take into account the beliefs of the ‘doubters’,
their inflation expectations do not fall as much as under full credibility, though there is still a big impact.

26It is assumed that imperfect credibility dies out when the forward guidance periods ends.
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Figure 3: IRFs to large negative demand shock + forward guidance (various
cases). The figure shows impulse responses to a four-s.d. demand shock εg,0 = −0.08
followed by forward guidance (FG) that is announced in period 0 and implemented from
periods 2 to 5. FG + Type 2 IC refers to guidance that is imperfectly credible (p = 0.5) to
30% of agents, whereas FG + Delay has 30% of agents not receiving the announcement.

Compared to the Taylor-type rule (Fig. 3, circles), forward guidance is less aggressive

in cutting interest rates on impact following the negative demand shock (right panel). The

reason is that in all three forward guidance cases, the expansionary future monetary policy

is fully anticipated by some agents and thus, in the absence of ‘tight’ monetary policy today,

inflation and output would be somewhat above their target values. The highly expansionary

impact of forward guidance through the expectations channel is known in the literature as the

‘forward guidance puzzle’ (Del Negro et al. (2012)). We see this most clearly in the baseline

case, where interest rates initially increase relative to their steady state and inflation and

output remain close to their target values; i.e. monetary policy restrains the initial stimulus.

The expansionary impact of forward guidance is attenuated somewhat when some agents

do not receive advance information about the policy (delayed announcement, black dash) or

doubt the announcement by placing some probability on the event that forward guidance ends

2 periods prematurely (Type 2 credibility, grey dash). The impact of imperfect credibility

is quite strong, with the initial interest rate response and the responses of inflation and

output being quite close to those under the Taylor-type rule (see left and middle panel);

hence, imperfect credibility may help explain why, in practice, inflation and output do not

respond as strongly to forward guidance as standard models predict (see also Haberis et al.

(2019)). After the announcement period is over and interest rates are reduced to zero, both

inflation and output have ‘hump-shaped’ dynamics, with the main difference relative to the

Taylor-type rule being that output is above steady state most of the time (middle panel).
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5.1.3 Forward guidance + indeterminacy

We now consider a case where the terminal solution is indeterminate because the Taylor

principle is violated. Consider a simple forward guidance policy that is announced and

implemented in period 0. The policy holds nominal interest rates at a lower bound R until

period 7. From period 8 onwards, interest rates are determined by a Taylor-type rule. For

ease of interpretation, we write the monetary policy rule with re-scaled coefficients as

Rt =

{
R := 0 t ∈ [0, 7]

ρRRt−1 + (1− ρR)
[
R + δπ(πt − π∗) + δyyt + δdy(yt − yt−1)

]
otherwise

(52)

where δz = θz
1−ρR

for z ∈ {π, y, dy}.
We consider two different values for the parameter δπ. We set the first at the baseline

value used above (i.e. δπ = 0.5/0.35 ≈ 1.429); we think of this as a benchmark case where

there is a determinate (i.e unique) terminal solution. Our second choice is δπ = 0.9, which is

weaker than the more than one-for-one response suggested by the Taylor principle. In this

case there is degree 1 indeterminacy – i.e. there are multiple stable terminal solutions.27

Accordingly, we use the approach in Section 4.3 that redefines sunspots as fundamental

shocks so that determinacy is restored and we can proceed using standard methods.

To motivate forward guidance, the economy is hit in period 0 with the same negative

demand shock εg,0 = −0.08 as in our previous exercise. Since there is degree 1 indeterminacy

when δπ = 0.9 and two forward-looking variables (πt and yt), we must decide which one is

hit with sunspot fluctuations. Here we take inflation and hence πt = st−1 + vπ,t, where vπ,t is

a zero-mean sunspot and st (= Etπt+1) is a new state variable. The augmented vectors are

thus x̃t =
[
πt yt Rt at gt µt st

]′
and ẽt =

[
vπ,t εa,t εg,t εµ,t

]′
(see (36)–(37)).

As in Gibbs and McClung (2020), we assume that the policy announcement coordinates

agents’ expectations on the sunspot. We assume, for simplicity, that the sunspots vπ,t are

uncorrelated with the structural shocks and have an N(0, 0.00052) distribution; the latter

makes multiple solution paths clearly visible in simulations.28

Figure 4 plots the deterministic solutions (i.e. impulse responses) following the negative

demand shock in period 0. In the determinate case, we see the standard result that forward

guidance has very strong effects on inflation and output, with both substantially above steady

state despite the deflationary shock (solid line, left and middle). We also see ‘hump-shaped’

dynamics in inflation and output as in our earlier forward guidance exercise (Fig. 3), with

27In the model presented here (with predetermined endogenous variables) there is no analytically tractable
determinacy condition in terms of δπ, δy, δdy; hence we check for determinacy numerically.

28We check the Blanchard and Kahn (1980) determinacy condition in the original model, given a particular
calibration, and then write system in terms of the vectors x̃t and ẽt, with the structural matrices Bi,t adjusted
according to whether there is a sunspot solution or a unique terminal solution.
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Figure 4: Deterministic simulation: determinate vs sunspot solution. The figure
shows impulse responses to a four-s.d. demand shock εg,0 = −0.08 followed by forward
guidance that is announced in period 0 and implemented in periods 0 to 7.

both variables reaching a peak in period 1. Thereafter, inflation, output and interest rates

move smoothly – and fairly rapidly – toward the steady state, with a small ‘bump’ in period

8 when policy switches back to the Taylor-type rule.

In the indeterminate case, the impulse responses of inflation and output are tame by

comparison, and both variables have a slight U-shape response (dashed line, left and mid-

dle panels). The possibility that sunspot solutions might not display the usual forward

guidance puzzle is highlighted by Gibbs and McClung (2020), who argue that iterative ex-

pectational stability determines whether a particular model has bounded impulse responses

as the forward guidance horizon is increased. For the sunspot solution here, the responses of

endogenous variables are bounded as the horizon is increased and hence the puzzle is absent;

the same result is found by Gibbs and McClung (2020) (Fig. 3) in numerical analysis of the

Smets-Wouters model.29 Finally, note that the impulse responses of the sunspot solution are

more persistent, which is intuitive since inflation expectations are a state variable.

Figure 5 plots stochastic simulation paths following the same initial demand shock as in

Figure 4; note that in this case the subsequent structural shocks to technology, mark-ups

and demand are drawn from normal distributions with the standard deviations in Section

5.1. In the determinate case (solid line), the solution follows a typical ‘jagged’ pattern with

mild persistence, and, given the draws of shocks, the initial boom in inflation and output

is followed immediately by deflation and a large drop in output. In the indeterminate case,

there are multiple terminal solutions for t > 7 that depend on the sunspots vπ,t; two such

solutions are plotted in Figure 5 (dashed lines).30 These simulation paths are based on the

29Our code allows the forward guidance horizon to be arbitrarily long, and hence it is simple to check this.
30In the deterministic simulation, we set the sunspots equal to zero. Note that in both the deterministic

and stochastic cases the simulation paths coincide for t ≤ 6 (see (39)).
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same sequences of structural shocks εa,t, εg,t, εµ,t but with two different sequences of sunspot

shocks vπ,t drawn from the N(0, 0.00052) distribution.

Non-trivial differences in the simulation paths for inflation and nominal interest rates

emerge under the two sunspot solutions. By comparison to the determinate solution, the

simulation paths for inflation and the nominal interest rate display long-lived cycles, in-

dicating strong persistence. It is well-known that these differences between sunspot and

determinate solutions may arise (e.g. Benhabib and Farmer (1999)).

Figure 5: Stochastic simulation: determinate vs sunspot solutions. The figure shows
stochastic simulation paths after a four-s.d. demand shock εg,0 = −0.08 followed by forward
guidance that is announced in period 0 and implemented in periods 0 to 7.

5.2 Pension reform in the Diamond model

As a second application, we consider a social security reform. In particular, we consider

a pension reform that reduces the pension benefit (and contribution) rate in the Diamond

(1965) model. This example is useful because it illustrates the study of optimal announce-

ment dates (see Section 4.1), as well as providing a case where the solution method is

applied to an underlying non-linear model that is log-linearized whilst taking into account

the change in steady state triggered by the reform.31 Since such pension reforms have been

studied previously, we also keep contact with known results in the literature.

Pension reform in the log-utility case is studied by Fedotenkov (2016). We use the same

perfect foresight model, except for the addition of CES utility Ut with elasticity σ−1. There

are two generations alive at any given date t, the young (y) and the old (o). Households have

two-period lives and care only about consumption; hence Ut =
c1−σt,y

1−σ + β
c1−σt+1,o

1−σ , where β > 0.

The pension contribution rate is τ and the pension system is balanced budget. Population

31We proceed by first expressing all variables in log deviations from steady state and then re-writing both
regimes in terms of a common steady-state deviation xt (see Fn. 6, Fn. 33 and Supplementary Appendix).
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Nt grows at rate n and individual labour supply is 1. Output is produced by a representative

firm with a Cobb-Douglas production function, Yt = Kα
t N

1−α
t . The factor prices of labour

and capital are wt and Rt, respectively. Capital depreciates fully in a generation.

The central equation of the model is the capital accumulation equation:

kt+1 =
β

1
σR

1
σ
t+1

(1 + (1−α)τ
α

)Rt+1 + β
1
σR

1
σ
t+1

(
(1− τ)(1− α)

1 + n

)
kαt

where kt+1 := Kt+1/Nt+1 and Rt = αkα−1t .

The above equation makes clear that capital accumulation depends on the pension con-

tribution rate, τ . Except for the case of log utility (σ = 1), there is no analytical solution.

Accordingly, we log-linearize the non-linear model to get the following system:

ĉt,y = − 1

σ
R̂t+1 + ĉt+1,o, R̂t = (α− 1)k̂t, ŵt = αk̂t

ĉt,y =
(1− τ)(1− α)kα

cy
ŵt −

(1 + n)k

cy
k̂t+1, ĉt,o = αk̂t

where cy = (1− τ)(1−α)kα− (1 +n)k, k is steady state capital and ‘hats’ are log deviations

from steady state.32 These equations are, respectively, the Euler equation, the equilibrium

factor prices, and the budget identities of young and old after market clearing is imposed.

Figure 6: Impact of a pension reform at date 1. Announced vs unannounced (log utility).

As in Fedotenkov (2016), we consider a pension reform at date t = 1 that may be

announced (in period 0) or unannounced. The pension contribution rate is reduced from

τ = 0.20 to τ ′ = 0.15. The other parameters are α = 0.4, β = 1
(1+0.01)35

= 0.760, n = 0, and

we initially set σ = 1 (log utility) to keep contact with known results. The transition paths

32The steady state cannot be found analytically if σ 6= 1, so we rely on numerical methods.
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in Figure 6 are consistent with the results in Fedotenkov (2016) and the reply by Hatcher

(2019). Note that whereas these authors solved the fully non-linear model under log utility,

the results here are based on the linearized system above while allowing for the change in

the contribution rate and the new steady state to which the model converges.33

The announced reform initially lowers consumption by the young, as they respond to

the future reduction in pension benefits by saving more, so that capital accumulation rises

(left and right panels). Consumption of the old falls when the reform is implemented at

t = 1, but the drop in consumption is lower if the reform is announced, as pensioners can

consume out of their extra savings when young. Since both consumption of the young and

expected old-age consumption fall on announcement in period t = 0, lifetime utility goes

down (Fedotenkov (2016)) – and so may social welfare. Hatcher (2019) studies social welfare

for a range of social discount factors γ ∈ (0, 1), again working with log utility. We now

reconsider the impact on social welfare for the case of CES utility.34

Figure 7: Is it optimal to announce pension reform? Welfare gain (loss) of announced reform.

The results in Figure 7 show that as the elasticity of substitution is reduced (increasing

σ), an announced reform is more likely to raise social welfare. This result is quite intuitive:

if households are not as willing to substitute current for future consumption then the drop

in young-age consumption on announcement is attenuated relative to Figure 6, and hence

the smaller utility losses of the young at t = 0 may be more than offset by the (discounted)

33The system is log-linearized around the original steady state for t = 0 and around the new steady state
thereafter. The model is then written in terms of log deviations from the original steady state, with any
constants collected in the matrix B̃5. Further details are provided in the Supplementary Appendix.

34Social welfare is W0 =
∑∞
t=−1 γ

tÛt, where Ût is a second-order approximation of lifetime utility around

steady state. Following Walsh (2017), Ût = USS + c1−σy [ĉt,y − (σ−1)
2 ĉ2t,y] + βc1−σo [ĉt+1,o − (σ−1)

2 ĉ2t+1,o].
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utility gains of future generations. The above result clearly speaks to the issue of optimal

announcement dates, i.e. the question of when to announce a future reform in order to

maximize social welfare. We leave further study as a topic for future research.

6 Conclusion

This paper builds on the recursive method in Kulish and Pagan (2017) for solving linear

rational models subject to anticipated structural changes. We presented three extensions

to the benchmark solution that allow for a fraction of uninformed agents; imperfect credi-

bility of structural changes due to some fraction of agents basing their expectations on an

alternative sequence of structures; and structural changes that involve indeterminacy of the

terminal solution (i.e. multiple equilibria). These extensions should interest a wide audi-

ence, especially those who want to take methods ‘off the shelf’ and use them in a variety of

applications, including solving medium and large-scale DSGE models.

We illustrated our extensions using several numerical applications. For example, we saw

that indeterminacy of the terminal solution can be dealt with using standard solution meth-

ods and may have important implications for the impact of policy announcements. We also

saw that our extension with uninformed agents may be used to study announced versus

unannounced reforms and optimal announcement dates, whereas our imperfect credibility

approach can have quite different implications to conventional approaches that warrant fur-

ther investigation.

There are several promising avenues for future research. First, it would be of interest

to estimate models incorporating the extensions presented in this paper, thus building on

works by Kulish and Pagan (2017) and Kulish et al. (2017). Second, further research on

optimal announcement dates would be of interest given the widespread use of policies like

forward guidance that rely on announcement or signalling effects due to the release of new

information. Finally, since a linearized model may not provide a good approximation to

an underlying nonlinear model, extending solutions to non-linear models would be of value.

One method that could improve accuracy is the dynamic perturbation approach of Mennuni

and Stepanchuk (2018), which approximates a model at many points along the transition

path. We leave a formal investigation of these issues for future research.
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Appendix

Proof of Proposition 1

The model is given by{
B1,txt = B2,tEtxt+1 +B3,txt−1 +B4,tet +B5,t, 0 ≤ t ≤ T̃

B̃1xt = B̃2Etxt+1 + B̃3xt−1 + B̃4et + B̃5, t > T̃
(A1)

where Et[et+1] = 0m×1.

Consider first the periods 0 ≤ t ≤ T̃ . Suppose there exist a set of well-defined matrices

{Ωt,Γt,Ψt} (with non-stochastic entries) such that for all t ∈ {0, ..., T̃},

xt = Ωtxt−1 + Γtet + Ψt. (A2)

Shifting (A2) forward one period and taking conditional expectations yields:

Etxt+1 = Ωt+1xt + Ψt+1, 0 ≤ t ≤ T̃ − 1. (A3)

Substituting (A3) into the first line of (A1) and rearranging gives

(B1,t −B2,tΩt+1)xt = B3,txt−1 +B4,tet +B2,tΨt+1 +B5,t, 0 ≤ t ≤ T̃ − 1. (A4)

Provided ΩT̃ ,ΓT̃ ,ΨT̃ well-defined and det[B1,t − B2,tΩt+1] 6= 0, the set {Ωt,Γt,Ψt} is well

defined for t where these matrices are given by Proposition 1. Therefore, if ΩT̃ ,ΓT̃ ,ΨT̃ well-

defined and det[B1,t − B2,tΩt+1] 6= 0 for t = 0, ..., T̃ − 1, the sequences of {Ωt,Γt,Ψt} are

well-defined for t = 0, ..., T̃ − 1.

For t > T̃ , we have by Assumption 1, xt = Ω̃xt−1 + Γ̃et + Ψ̃ where Ω̃ = (B̃1 − B̃2Ω̃)−1B̃3,

Γ̃ = (B̃1 − B̃2Ω̃)−1B̃4, Ψ̃ = (B̃1 − B̃2Ω̃)−1(B̃2Ψ̃ + B̃5) are unique and well-defined. Hence,

Etxt+1 = Ω̃xt + Ψ̃, ∀t ≥ T̃ . (A5)

The matrices ΩT̃ ,ΓT̃ ,ΨT̃ are determined by the first line of (A1) and (A5) at t = T̃ :

B1,T̃xT̃ = B2,T̃ET̃xT̃+1 +B3,T̃xT̃−1 +B4,T̃ eT̃ +B5,T̃ , ET̃xT̃+1 = Ω̃xT̃ + Ψ̃

or (B1,T̃ −B2,T̃ Ω̃)xT̃ = B3,T̃xT̃−1 +B4,T̃ eT̃ +B2,T̃ Ψ̃ +B5,T̃ . Provided det[B1,T̃ −B2,T̃ Ω̃] 6= 0,

the matrices ΩT̃ ,ΓT̃ ,ΨT̃ are given by the expressions in Proposition 1. �
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