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Abstract—The impact of Vehicle-to-Everything (V2X) com-
munications on platoon control performance is investigated.
Platoon control is essentially a sequential stochastic decision
problem (SSDP), which can be solved by Deep Reinforcement
Learning (DRL) to deal with both the control constraints and
uncertainty in the platoon leading vehicle’s behavior. In this
context, the value of V2X communications for DRL-based platoon
controllers is studied with an emphasis on the tradeoff between
the gain of including exogenous information in the system
state for reducing uncertainty and the performance erosion
due to the curse-of-dimensionality. Our objective is to find
the specific set of information that should be shared among
the vehicles for the construction of the most appropriate state
space. SSDP models are conceived for platoon control under
different information topologies (IFT) by taking into account ‘just
sufficient’ information. Furthermore, theorems are established
for comparing the performance of their optimal policies. In order
to determine whether a piece of information should or should
not be transmitted for improving the DRL-based control policy,
we quantify its value by deriving the conditional KL divergence
of the transition models. More meritorious information is given
higher priority in transmission, since including it in the state
space has a higher probability in offsetting the negative effect
of having higher state dimensions. Finally, simulation results are
provided to illustrate the theoretical analysis.

Index Terms—Platoon Control; V2X communications; Deep
Reinforcement Learning

I. INTRODUCTION

Autonomous vehicle platooning relies on a leading vehicle
followed by a group of autonomous vehicles. The objective of
platoon control is to determine the control input of the follow-
ing autonomous vehicles so that all the vehicles move at the
same speed while maintaining the desired distances between
each pair of preceding and following vehicles. Platooning
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constitutes an efficient technique of increasing road capacity,
reducing fuel consumption, as well as enhancing driving safety
and comfort [1].

Platoon control can be performed both with and with-
out information exchange between vehicles using Vehicle-to-
Everything (V2X) communications. Platoon control without
V2X is normally based on the adaptive cruise control (ACC)
functionality, where the velocity of a following vehicle is au-
tonomously adapted to keep a safe distance from its preceding
vehicle based on its sensory information mainly obtained from
radar. On the other hand, the more sophisticated cooperative
adaptive cruise control (CACC) functionality extends ACC
with V2X communication capabilities and it is capable of
improving the platoon control performance by reducing the
inter-vehicle distance of ACC [2].

A. DRL-based Platoon Control

Platoon controllers have been proposed based on classical
control theory, such as linear controller, H∞ controller, and
sliding mode controller (SMC) [1], [3]. On the other hand,
platoon control is essentially a sequential stochastic decision
problem (SSDP), where a sequence of decisions has to be
made over a certain time horizon for a dynamic system
whose state evolves in the face of uncertainty. The objective
is to optimize the cumulative performance over the time
horizon considered. The solution strategies to such a problem
have been studied in different communities under different
terminologies [4], such as stochastic optimal control/model
predictive control (MPC) [5] in the control community, dy-
namic programming (DP)/approximate dynamic programming
(ADP) [6] in the Markov Decision Process (MDP) community,
and reinforcement learning (RL)/deep reinforcement learning
(DRL) [7] in the machine learning community.

The SSDP models conceived for platoon control generally
have continuous state and action spaces. The optimal policies
of such SSDP models can only be derived under the Linear-
Quadratic-Guassian (LQG) formalism [5], which is not the
case for platoon control due to the uncertainty in the behavior
of the leading vehicle and the state/control constraints. There-
fore, techniques such as MPC and RL/DRL can be involved
for deriving sub-optimal but practical policies. Various MPC
strategies have been proposed in [8]–[11], but there is a paucity
of contributions relying on RL/DRL techniques [12]–[24].

To elaborate, the car-following control problem of support-
ing a single following vehicle has indeed been studied in a few
contributions. In [12], DRL is used in a CACC system to learn
high-level control policies on whether to brake, accelerate,
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or keep the current velocity. A learning proportional-integral
(PI) controller is designed in [13], where the parameters in
the PI module are adaptively tuned based on the vehicle’s
state according to the control policy of the actor-critic learning
module associated with kernel machines. However, a specific
limitation of [13] is that the candidate set of PI parameters
has to be pre-determined. In order to avoid this problem, the
parameterized batch actor-critic learning algorithm is proposed
in [14] to generate the exact throttle/brake control input instead
of the PI parameters. In [15], a deterministic RL method is
conceived, which aims for improving the policy evaluation in
the critic network and the exploration in the actor network. The
acceleration-related delay is taken into account in [16], where
a classical DRL algorithm - namely the Deep Deterministic
Policy Gradient (DDPG) technique of [25] - is applied for
an ACC system whose preceding vehicle is assumed to drive
at a constant speed. The proposed algorithm is used for
comparing the performance of DRL and MPC in [17]. In
[18], [19], the human driving data has been used to help
RL achieve improved performance. A velocity control scheme
based on DDPG is proposed in [18], where a reward function
is developed by referencing human driving data and combining
driving features related to safety, efficiency, and comfort.
In [19], a supervised RL-based framework is presented for the
CACC system, where the actor and critic networks are updated
under the guidance of the supervisor and the gain scheduler
to improve the success rate of the training process. To learn
a better control policy, the authors of [20], [21] model/predict
the leading vehicle’s behavior. A predictive controller based on
DDPG is presented in [20], which uses advance information
about future speed reference values and road grade changes.
A drift-mitigation oriented optimal control-based informed ap-
proximate Q-learning algorithm is developed for ACC systems
in [21], where a hybrid Markov process is used to model the
lead vehicle’s speed.

For platoon control supporting multiple following vehicles,
a CACC-based control algorithm using DDPG is proposed in
[22]. In order to improve the platoon control performance, a
hybrid strategy is advocated in [23] that selects the best actions
obtained from the DDPG controller and a linear controller. In
order to provide some safety guarantees to the control policy,
a DDPG-based technique is invoked in [24] for determining
the parameters of the optimal velocity model (OVM), which is
in turn used to determine the vehicle accelerations. In contrast
to most of the existing research relying on baseline DRL al-
gorithms [16]–[18], [20], [22], [24], the Finite-Horizon DDPG
(FH-DDPG) learning technique is adopted in this paper, which
was proposed in our previous work [26] and proved to improve
both the stability and the overall performance of the DDPG
algorithm in a finite-horizon setting. Note that although the
computational load of training a DRL agent is relatively high,
the computational complexity for a trained DRL agent to make
control decisions is very low during the deployment phase,
since only the forward propagation in deep neural networks
is involved. Moreover, the training of a DRL agent can be
continued during the deployment phase in the background
to keep improving control performance and adapt to new
environment.

B. Value of V2X Communications for Platoon Control

The beneficial impact of V2X communications on the
performance of classical platoon controllers has been studied
in [27]–[30]. These platoon controllers are popularly designed
by considering one of the following inter-vehicle spacing
policies: Constant Spacing Policy (CSP) and Constant Time-
headway Policy (CTHP) [1]. Explicitly, the desired distance
between two adjacent vehicles is a constant value in CSP,
while it is proportional to the vehicular speed in CTHP. As
for CSP, it was demonstrated in [27] that a linear platoon
controller purely relying on the information gleaned from the
preceding vehicles but excluding the leading vehicle fails to
guarantee string stability defined in [27]. This result is further
verified in [28]. For CTHP, the benefits of using Vehicle-to-
Vehicle (V2V) communications in terms of reducing the time
headway required is investigated in [29]. In V2X communica-
tions, different information topologies (IFT) may be assumed,
depending on the specific connectivity among the vehicles,
such as the predecessor following (PF) type, the predecessor-
leader following (PLF) type, and the bidirectional (BD) type
[1]. In [30], the influence of IFT on the internal stability
and scalability of homogeneous vehicular platoons relying on
linear feedback controllers was studied.

However, there is a paucity of literature on quantifying the
value of V2X communications for platoon controllers derived
from solving SSDPs. In SSDP, the system evolves from one
state to another as a result of decisions and exogenous infor-
mation. A central challenge in solving SSDP is how to deal
with one or more exogenous information processes, forcing us
to make decisions before all the information becomes known
[6]. The extra information obtained through V2X might lead
to the availability of sample realizations of the exogenous
information before an action is determined, turning exogenous
information into states in the SSDP models. This results in
more informed platoon control decisions.

However, exchanging large amount of V2X information
incurs heavy communication overhead in vehicular networks
[31], [32]. Moreover, a complex state space may lead to
another well-known challenge of dynamic programs, what is
popularly termed as the curse-of-dimensionality. Planning in
a reduced state space might in fact be more efficient than
in the full model [33]. DRL can be leveraged to alleviate
the curse-of-dimensionality problem through function approx-
imation by deep neural networks. However, the accuracy of
the approximated value/policy functions might be reduced
upon increasing the dimension of state space. To resolve
this dilemma, our research addresses the research problem:
what information should be transmitted between the vehicles
through V2X communications to construct a sufficient yet
compact state space for DRL-based platoon control?

To the best of our knowledge, this paper is the first to
analyze the value of V2X information for DRL-based platoon
controllers. We boldly contrast our work to the existing works
in Table I. The contributions of this paper are itemized next.
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TABLE I
SUMMARY OF LITERATURE SURVEY ON PLATOON CONTROL

[1], [3]
[8]–[11]

[13]–[15]
[19], [21]

[12], [20]
[16]–[18] [22]–[24] [27]–[30] Proposed

Classical platoon controller design X
RL-based platoon controller design X

DRL-based platoon controller design Single following vehicle X
Multiple following vehicles X

Value for V2X information Analysis Classical platoon controller X
DRL-based platoon controller X

C. Contributions

• A unified SSDP modeling framework: While the
RL/DRL theory is mostly developed based on the MDP
model, the platoon control problems are more widely
studied in the control community. In this paper, we define
a general SSDP model unifying the terminologies from
different communities, which may be conveniently used
to formulate DRL-based platoon control problems.

• Value of V2X information for Optimal Platoon Con-
trol: In order to address the question whether a piece
of V2X information can be beneficially leveraged to
improve the optimal policy of an SSDP problem, we for-
mulate an augmented-state based SSDP when potentially
useful V2X information becomes available, and provide
theorems on when the optimal policy of an augmented-
state problem could improve the original SSDP. With the
aid of the proposed theorems, we are able to identify what
V2X information and IFT are useful for improving the
optimal control performance.

• Value of V2X information for DRL-based Platoon
Control: Although the inclusion of V2X information in
the state space promises to improve the performance
of the optimal policy, larger state spaces might have a
negative effect on the DRL-based policy performance due
to its increased approximation errors in the value/policy
functions. Therefore, even though a piece of V2X infor-
mation has the potential to improve the optimal policy, it
should not be transmitted and included in the state if it
does not provide much meritorious information. In order
to determine whether a piece of V2X information could
help to improve the DRL-based policy, we quantify ”How
much better would we be able to predict the future state
if we included the V2X information in the augmented-
state?” Specifically, we calculate the conditional KL di-
vergence [33] of the probability distribution given by the
product of the transition models of the original state and
the V2X information, from the probability distribution
given by the transition model of the augmented state. We
then use it as a quantitative metric of characterizing the
value of V2X information for DRL-based platoon control.

The remainder of the paper is organized as follows. The
system model of platoon control is outlined in Section II.
In Section III, we provide the definitions of both SSDP and
augmented-state SSDP, and formulate general theorems for
characterizing the value of exogenous information for SSDPs.
Section IV uses the results of Section III to formulate the

SSDP models of platoon control problems both with and
without V2X communications. Then the performance of the
optimal control policies of different SSDPs is compared. In
Section V, the value of V2X information for DRL-based
platoon control policies is evaluated based on the conditional
KL divergence. Section VI reports on our simulations to
validate the theoretical results. Finally, our conclusions are
provided in Section VII.

II. SYSTEM MODEL FOR PLATOON CONTROL

A. Two-Vehicle Scenario

We first consider a simple vehicle-following control prob-
lem with only two vehicles, wherein the position, velocity
and acceleration of a following vehicle (follower) i at time
t are denoted by pi(t), vi(t), acci(t), respectively. Here pi(t)
represents the one-dimensional position of the center of the
front bumper of vehicle i.

The vehicle’s dynamic model is described by

ṗi(t) = vi(t), (1)

v̇i(t) = acci(t), (2)

˙acci(t) = − 1

τi
acci(t) +

1

τi
ui(t), (3)

where τi = τ is a time constant representing the driveline
dynamics and ui(t) is the vehicle’s control input at time
instant t. In order to ensure safety and comfort, the following
constraints are applied

accmin ≤ acci(t) ≤ accmax, (4)

umin ≤ ui(t) ≤ umax. (5)

Note that (1)-(5) also apply to the preceding vehicle (prede-
cessor) i− 1 upon replacing the subscript i by i− 1.

We denote the headway of vehicle i at time t, i.e., bumper-
to-bumper distance between i and its predecessor i − 1, by
di(t), which satisfies

di(t) = pi−1(t)− pi(t)− Li−1, (6)

where Li−1 is the the length of vehicle i− 1.
According to CTHP, vehicle i aims for maintaining a desired

headway of dr,i(t), given by

dr,i(t) = ri + hivi(t), (7)

where ri is a constant standstill distance for vehicle i and hi
is the desired time-gap of vehicle i.
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The control errors epi(t) and evi(t) are defined as

epi(t) = di(t)− dr,i(t), (8)

evi(t) = vi−1(t)− vi(t). (9)

Let xi(t) = [epi(t), evi(t), acci(t)]
T. The system dynamics

evolve in continuous time according to

ẋi(t) = Aixi(t) +Biui(t) + Ciacci−1(t), (10)

where

Ai =

0 1 −hi
0 0 −1
0 0 − 1

τi

 , Bi =

 0
0
1
τi

 , Ci =

0
1
0

 . (11)

B. Platoon Scenario
We extend the two-vehicle scenario to a platoon that is

composed of N > 2 vehicles, i.e., V = {0, 1, · · · , N − 1},
where each vehicle i ∈ V obeys the dynamic model and the
constraints given by (1)-(5). Note that for the leading vehicle
(leader) 0, ep0(t) = ev0(t) = 0, and we have

ẋ0(t) = A0x0(t) +B0u0(t), (12)

where

A0 =

0 0 0
0 0 0
0 0 − 1

τ0

 , B0 =

 0
0
1
τ0

 . (13)

For all the other vehicles i ∈ {1, 2, · · · , N − 1} in the
platoon, the system dynamics evolve according to (10) and
(11). Note that the results in this paper may be applied to both
homogeneous and heterogeneous platoons, where the vehicles
can have the same or different dynamics.

C. System Dynamics in Discrete Time
In order to determine the vehicle’s control action, an SSDP

can be formulated. The time horizon is discretized into time
intervals of length T seconds (s), and a time period [kT, (k+
1)T ) is referred to as a time step k, k = 0, 1, · · · ,K − 1,
where K is the total number of time steps. In the rest of the
paper, we will use xk := x(kT ) to represent any variable x at
time kT . At each time step k, the controller of vehicle i has to
determine the vehicle’s control action ui,k. In this paper, we
derive the system dynamics in discrete time based on forward
Euler discretization of the dynamic system.

D. System State Observation by the Controller
The controller of vehicle i has to determine ui,k, k =

0, 1, · · · ,K−1 based on the observation of the system state at
each time step. The velocity vi,k and acceleration acci,k can
be measured locally, while the control error epi,k and evi,k
can be quantified by a radar unit mounted at the front of the
vehicle. On the other hand, vehicle i can only determine the
driving status xj,k and vehicle control input uj,k of the other
vehicles j ∈ V\{i} through V2X communications.

In order to determine the optimal action ui,k, k =
0, 1, · · · ,K − 1, one salient question is, what information
should be shared by V2X communications among vehicles,
if any. We will answer this question by analyzing the value of
exogenous information in an SSDP, where the related theory
will be discussed in Section III.

III. VALUE OF EXOGENOUS INFORMATION IN
SEQUENTIAL STOCHASTIC DECISION PROBLEM

A. SSDP Formulation

Definition 1 (SSDP): Define an SSDP over a finite time
horizon k ∈ {0, 1, . . . ,K − 1} by {Sk, ak,Wk, f

S , fW , R},
where Sk ∈ S and ak ∈ A are the state and action in time
step k within state space S and action space A1, respectively;
Wk ∈ W is the exogenous information within its outcome
space W that arrives during time step k after decision ak
has been made; fS is the system’s state transition function
governing Sk+1 = fS(Sk, ak,Wk); fW is the transition
function of the exogenous information Wk governing Wk+1 =
fW ({Sk′}k+1

k′=0, {ak′}
k+1
k′=0, {Wk′}kk′=0, ξk), where ξk repre-

sents all the parameters that affect the value of Wk+1 apart
from the states and actions up to time step k+1, and exogenous
information up to time step k. Furthermore, R(Sk, ak,Wk) is
the reward function. A policy π = (µ0, . . . , µK−1) is a vector
of functions µk, where we have ak = µk(Sk) for each time
step k. Under a policy π, the expected total reward Jπ over
the finite time horizon can be expressed as

Jπ = max
π
{E[

K−1∑
k=0

R(Sk, µk(Sk),Wk)]}, (14)

The objective is to then find the optimal policy π∗ that
maximizes the expected total reward, i.e.,

π∗ = arg max
π

Jπ. (15)

Note that in an SSDP as defined above, the decision ak is
made in each time step k solely based on state Sk without
knowing the exogenous information Wk. On the other hand,
if the exogenous information Wk is available at the time
of making decisions for each time step, we can define an
augmented-state SSDP.

Definition 2 (Augmented-state SSDP): Assume that the
exogenous information Wk in the original SSDP given in
Definition 1 is available before decision ak is made. Then we
define an augmented-state SSDP by {S̃k, ak, W̃k, f

S̃ , fW̃ , R},
where the augmented state S̃k = (Sk,Wk) is obtained by
extending the state space of the original SSDP to include
the additional information Wk. The action ak and the reward
function R(Sk, ak,Wk) = R(S̃k, ak) are the same as those of
the original problem. The exogenous information is then given
by

W̃k = {{Sk′}k−1k′=0, {ak′}
k−1
k′=0, ak+1, {Wk′}k−1k′=0, ξk} (16)

and the system’s state transition function f S̃ becomes

S̃k+1 =

(
Sk+1

Wk+1

)
=

(
fS(Sk, ak,Wk)

fW ({Sk′}k+1
k′=0, {ak′}

k+1
k′=0, {Wk′}kk′=0, ξk)

)
= f S̃(S̃k, ak, W̃k). (17)

1In the control community, the state and action are normally denoted by x
and u (the latter is referred to as control) instead of s and a. We adopt the
current notation since it is more widely used in the RL/DRL community.
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Let us denote a policy as π̃ = (µ̃0, . . . , µ̃K−1), where ak =

µ̃k(S̃k) for each time step k. The transition function fW̃ of
exogenous information W̃k depends on fS , fW , µ̃k and on
the transition function for ξk.
Note that the exogenous information given in (16) is derived
from the third equality of (17) by comparing its L.H.S and
R.H.S expressions. It can be seen that W̃k = {Sk, ak,Wk} ∪
{{Sk′}k+1

k′=0, {ak′}
k+1
k′=0, {Wk′}kk′=0, ξk}\{S̃k, ak, Sk+1}. The

reason that Sk+1 should be excluded from the exogenous
information W̃k is due to the fact that given the augmented
state S̃k and action ak, Sk+1 can be determined by the
transition function fS .

Remark 1 (SSDP and MDP): In Definition 1, we defined the
SSDP, where the transition function of exogenous information
fW considers the most general case. If we restrict the exoge-
nous information transition function fW in Definition 1 to be
Wk+1 = fW (Sk+1, ak+1, ξk), where ξk is an independent
random variable with given distribution, the general SSDP
reduces to an MDP.

B. Analyzing the Value of Exogenous Information

1) Value for the Optimal Policy: Our objective is how to
find out whether π̃∗(S̃k) in Definition 2 will be improved over
π∗(Sk) in Definition 1 as a result of exploiting Wk before
decision making. In the following, we provide three theorems
that will be used in Section IV for analyzing the value of V2X
communications for the optimal platoon control policies.

Theorem 1: The optimal policy of the augmented-state
SSDP π̃∗(S̃k) is at least as good as that of the original
SSDP π∗(Sk) if the exogenous information obeys Wk+1 =
fW (Sk,Wk, ξk). Explicitly, Wk+1 depends on Sk or Wk or
both, but not on other parameters except for ξk, which is an
independent random variable.
The proof of Theorem 1 is given in Appendix A. Physically,
this suggests that the optimal policy could be improved,
when the availability of exogenous information turns a non-
Markovian SSDP into an MDP.

Theorem 2: The optimal policy of the augmented-state
SSDP π̃∗(S̃k) is at least as good as that of the original
SSDP π∗(Sk) if the exogenous information obeys Wk+1 =
fW (Sk+1, ξk). Explicitly, Wk+1 may depend on Sk+1, but not
on any other parameters except for ξk, which is an independent
random variable.
The proof of Theorem 2 is given in Appendix B. We proved
that the optimal policy may be improved by including the
exogenous information in the state space even when the
original SSDP is already an MDP.

Theorem 3: In Theorem 2, the optimal policy of the
augmented-state SSDP π̃∗(S̃k) has the same performance as
that of the original SSDP π∗(Sk) if the exogenous information
Wk meets both of the following two conditions: (1) Wk does
not affect the transition of state Sk; and (2) Wk does not affect
the reward function.
The proof of Theorem 3 is given in Appendix C. Theorem
3 defines the conditions when the optimal policy cannot be
improved by the availability of exogenous information.

2) Value for the DRL-based Policy: Theorem 1 and 2 above
provide the conditions when the availability of exogenous
information Wk can be leveraged for improving the optimal
policy of an SSDP. However, having a larger state space
may degrade the DRL-based policy’s performance due to its
reduced accuracy in the approximated value/policy functions.
Therefore, we will quantify the value of Wk and only include
Wk in the augmented-state S̃k when its value for improving the
optimal policy is high enough to offset the negative effect of
having a higher state dimension. In this way, we can construct
the most appropriately dimensioned state space to derive DRL-
based policies.

According to Theorem 3, the value of Wk is related to the
impact of Wk on the transition of state Sk and on the reward
function. In the following, we will focus on the impact of Wk

on state transitions and propose a method of quantifying ”How
much better would we be able to predict the state Sk+1 if we
included Wk in the augmented-state S̃k, versus we didn’t?”
The proposed method will be used in Section V for evaluating
the value of V2X information for DRL-based platoon control
policies.

Hence, we will first convert the transition functions for
the system state and exogenous information, i.e., fS , f S̃ ,
and fW , to the corresponding transition probabilities TS =
p{Sk+1|Sk, ak}, T S̃ = p{Sk+1,Wk+1|Sk, ak,Wk}, and
TW = p{Wk+1|Wk, Sk, ak}. Then, we will calculate the
conditional KL divergence of TS ⊗ TW from T S̃ as

DKL(T S̃ ||TS ⊗ TW ) =

∫
S̃k+1,S̃k,ak

p{S̃k+1, S̃k, ak}

log

(
p{S̃k+1|S̃k, ak}

p{Sk+1|Sk, ak}p{Wk+1|Sk, ak,Wk}

)
. (18)

Note that the KL divergence in (18) is a measure of the
information lost when TS⊗TW is used for approximating T S̃ .
The KL divergence is 0 if the transition of Sk is independent
of Wk. In this case, we know from Theorem 3 that the optimal
policies of the augmented-state SSDP and the original SSDP
are the same, and there is no need to include Wk in S̃k. On
the other hand, a higher KL divergence value indicates that the
transition of Sk depends on Wk to a larger extent, and thus the
availability of Wk is more important for accurately predicting
the future state Sk+1. In this case, including Wk in S̃k will
be more likely to improve the DRL-based policy performance.
Therefore, the KL divergence is a suitable quantitative measure
for the value of the exogenous information.

IV. VALUE OF V2X COMMUNICATIONS FOR OPTIMAL
PLATOON CONTROL POLICIES

A. SSDP for Two-Vehicle Scenario

In the following, we consider a two-vehicle scenario and
assume that u(i−1),k of the predecessor is a sequence of
independent random variables2. We will formulate three SS-
DPs for the vehicle-following problem depending on whether
V2X communications are available. Moreover, we will prove

2We consider that the probability density function (pdf) of u(i−1),k is
independent of the driving status and control input of vehicle i.
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that better policies can be derived, when more information is
available for the follower through V2X communications.

In the rest of the paper, we will denote a policy to Problem
m by πPm

i = (µPm
i,0 , . . . , µ

Pm
i,K−1). In Problem m, the objective

is to find the optimal policy that maximizes the expected total
reward, i.e., πPm∗

i = arg maxπPm
i
JπPm

i
, and the expected total

reward under the optimal policy is denoted by JPm∗
i . As the

action space and reward functions of all the SSDPs are the
same, we will only specify them in Problem 1.

1) No V2X Communications: Without V2X communica-
tions, acc(i−1),k and u(i−1),k cannot be transmitted from the
predecessor i − 1 and become available for the follower i to
determine a vehicle control action ui,k.

Problem 1 (P1): The vehicle-following control problem
operating without V2X communications can be formulated as
an SSDP {S(P1)

i,k , ai,k,W
(P1)
i,k , fS

(P1)
i , fW

(P1)
i , R} with

• state S(P1)
i,k = xi,k = [epi,k, evi,k, acci,k]T;

• action ai,k = ui,k;
• exogenous information W (P1)

i,k = acc(i−1),k;
• system state transition function fS

P1
i given by

S
(P1)
i,k+1 = fS

(P1)
i (S

(P1)
i,k , ai,k,W

(P1)
i,k ), (19)

which can be derived from (10) and (11) based on forward
Euler discretization;

• exogenous information transition function fW
(P1)
i given

by

W
(P1)
i,k+1 = (1− 1

τi
)W

(P1)
i,k +

1

τi
u(i−1),k, (20)

which can be derived from (3) based on forward Euler
discretization;

• and the reward function R(S
(P1)
i,k , ai,k) given by

R(S
(P1)
i,k , ai,k) = −{(epi,k)2 + α(evi,k)2 + β(ai,k)2},

(21)
where α and β are the weights that are positive and
can be adjusted to determine the relative importance
of minimizing the position error, velocity error and the
control input.

2) With V2X communications: With V2X communications,
acc(i−1),k and u(i−1),k can be transmitted. In the following,
we formulate two SSDPs depending on the transmitted infor-
mation.

Problem 2 (P2): The vehicle-following control problem re-
lying on V2X communications where acc(i−1),k is transmitted
from the preceding vehicle i−1 can be formulated as an SSDP
{S(P2)

i,k , ai,k,W
(P2)
i,k , fS

(P2)
i , fW

(P2)
i , R} with

• state S
(P2)
i,k = [epi,k, evi,k, acci,k, acc(i−1),k]T =

[(S
(P1)
i,k )T,W

(P1)
i,k ]T;

• exogenous information W
(P2)
i,k = u(i−1),k, which is an

independent random variable;
• system state transition function fS

(P2)
i given by

S
(P2)
i,k+1 =

(
S
(P1)
i,k+1

W
(P1)
i,k+1

)
=

(
fS

(P1)
i (S

(P1)
i,k , ai,k,W

(P1)
i,k )

fW
(P1)
i (W

(P1)
i,k ,W

(P2)
i,k ),

)
= fS

(P2)
i (S

(P2)
i,k , ai,k,W

(P2)
i,k ) (22)

where fS
(P1)
i is formulated in (19), and fW

(P1)
i is given

in (20).
• exogenous information transition function fW

(P2)
i given

by

W
(P2)
i,k+1 = fW

(P2)
i (ui−1,k+1) = ui−1,k+1. (23)

Problem 3 (P3): The vehicle-following control problem har-
nessing V2X communications where acc(i−1),k and u(i−1),k
are transmitted from the preceding vehicle i − 1 can be for-
mulated as an SSDP {S(P3)

i,k , ai,k,W
(P3)
i,k , fS

(P3)
i , fW

(P3)
i , R}

with
• state S(P3)

i,k = [epi,k, evi,k, acci,k, acc(i−1),k, u(i−1),k]T =

[(S
(P2)
i,k )T,W

(P2)
i,k ]T;

• exogenous information W
(P3)
i,k = u(i−1),(k+1), i.e., the

control input of the preceding vehicle i − 1 in the next
time step k+1, which is an independent random variable;

• system state transition function fS
(P3)
i given by

S
(P3)
i,k+1 =

(
S
(P2)
i,k+1

W
(P2)
i,k+1

)
=

(
fS

(P2)
i (S

(P2)
i,k , ai,k,W

(P2)
i,k )

fW
(P2)
i (W

(P3)
i,k ),

)
= fS

(P3)
i (S

(P3)
i,k , ai,k,W

(P3)
i,k ) (24)

where fS
(P2)
i is given in (22) and fW

(P2)
i is given in (23);

• exogenous information transition function fW
(P3)
i given

by

W
(P3)
i,k+1 = fW

(P3)
i (ui−1,k+2) = ui−1,k+2. (25)

Lemma 1:
a. The optimal policy πP2∗

i for SSDP P2 performs at least
as well as the optimal policy πP1∗

i for SSDP P1, i.e.,
JP2∗
i ≥ JP1∗

i .
b. The optimal policy πP3∗

i for SSDP P3 performs at least
as well as the optimal policy πP2∗

i for SSDP P2, i.e.,
JP3∗
i ≥ JP2∗

i .
The proof of Lemma 1 is given in Appendix D.
Remark 2 (Value of V2X information for the optimal vehicle-

following policies): Lemma 1a shows that transmission of the
acceleration acc(i−1),k from the predecessor may result in im-
proved optimal control performance of the follower i. Lemma
1b shows that the transmission of the control input u(i−1),k in
addition to the acceleration from the predecessor can further
improve the optimal control performance of follower i.

B. SSDP for Platoon Control

We now consider the platooning scenario of N > 2
vehicles and assume that u0,k of the leader 0 is a sequence
of independent random variables3. Consider that each vehicle
i > 0 determines its own control action ai,k in a decentralized
fashion based on the state information received from its on-
board sensors and V2X communications. Moreover, we focus
on the scenario when the decentralized controls of the vehicles
are coordinated, so that in each time step k, each vehicle

3We consider that the pdf of u0,k is independent of the driving status and
control input of the following vehicles i > 0.
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i makes control decisions only after all its predecessors4

0 ≤ j < i have made their control decisions uj,k. The
reason that we consider the above coordinated scenario is that
in Lemma 1b, we have proved that the transmission of the
control input u(i−1),k in addition to the acceleration from the
predecessor can improve the optimal control performance of
follower i. We consider the case when each vehicle i > 0 only
has to optimize its local reward R(S

(P1)
i,k , ai,k) defined in (21).

When no V2X communication is available, the decentral-
ized platoon control problem reduces to SSDP P1 for each
vehicle i > 0. In the following, we assume reliance on V2X
communications.

1) V2X from the Immediate Predecessor i− 1: When V2X
communication is available to transmit acci−1,k and ui−1,k
from each immediate predecessor i − 1 to its follower i, the
decentralized platoon control problem reduces to an SSDP
similar to P3 for each vehicle i > 0. However, an important
difference between the decentralized platoon control problem
and P3 is that in the former, ui−1,k is no longer a sequence
of independent random variables except for vehicle i = 1.

Problem 4 (P4): The decentralized platoon control problem
for vehicle i > 0 where acci−1,k and ui−1,k are transmitted
from its immediate predecessor i− 1 can be formulated as an
SSDP {S(P4)

i,k , ai,k,W
(P4)
i,k , fS

(P4)
i , fW

(P4)
i , R} with

• state S(P4)
i,k = [epi,k, evi,k, acci,k, acc(i−1),k, u(i−1),k]T =

S
(P3)
i,k = [(S

(P2)
i,k )T,W

(P2)
i,k ]T;

• exogenous information W
(P4)
i,k = {u0,k+1} ∪W (P4 1)

i,k ∪
W

(P4 2)
i,k , where W

(P4 1)
i,k = {ep(i−1),k, ev(i−1),k} and

W
(P4 2)
i,k = {S(P1)

j,k }
i−2
j=0 ∪ {uj,k}

i−2
j=0;

• system state transition function fS
(P4)
i given by

S
(P4)
i,k+1 =

(
S
(P2)
i,k+1

W
(P2)
i,k+1

)
=

(
fS

(P2)
i (S

(P2)
i,k , ai,k,W

(P2)
i,k )

gW
(P2)
i (S

(P4)
i,k ,W

(P4)
i,k )

)
= fS

(P4)
i (S

(P4)
i,k , ai,k,W

(P4)
i,k ), (26)

where fS
(P2)
i is given in (22), while gW

(P2)
i is given by

W
(P2)
i,k+1 =ui−1,k+1 = µ

(P4)
i−1 (S

(P4)
i−1,k+1)

=µ
(P4)
i−1 (S

(P2)
i−1,k+1,W

(P2)
i−1,k+1)

=µ
(P4)
i−1 (fS

(P2)
i−1 (S

(P2)
i−1,k, ui−1,k,W

(P2)
i−1,k),W

(P2)
i−1,k+1)

=gW
(P2)
i ({S(P2)

j,k , uj,k,W
(P2)
j,k }

i−1
j=1,W

(P2)
1,k+1)

=gW
(P2)
i ({S(P1)

j,k , uj,k}i−1j=0, u0,k+1)

=gW
(P2)
i ((acci−1,k, ui−1,k),W

(P4)
i,k )

=gW
(P2)
i (S

(P4)
i,k ,W

(P4)
i,k ) (27)

where the fourth equality is derived
upon iteratively replacing W

(P2)
j,k+1 by

µ
(P4)
j−1 (fS

(P2)
j−1 (S

(P2)
j−1,k, uj−1,k,W

(P2)
j−1,k),W

(P2)
j−1,k+1) for

j = {i− 1, · · · , 2}. Note that W (P2)
1,k+1 = u0,k+1.

4Note that a predecessor of vehicle i refers to any vehicle in front of i in
the platoon, including the leader 0.

• exogenous information transition function fW
(P4)
i is

given by

W
(P4)
i,k+1 =

 u0,k+2

W
(P4 1)
i,k+1

W
(P4 2)
i,k+1

 =

 u0,k+2

fW
(P4 1)
i (S

(P4)
i,k ,W

(P4 12)
i,k )

fW
(P4 2)
i (W

(P4 2)
i,k )


= fW

(P4)
i (W

(P4)
i,k , S

(P4)
i,k , u0,k+2), (28)

where W
(P4 12)
i,k = {W (P4 1)

i,k ,W
(P4 2)
i,k }.

fW
(P4 1)
i (ep(i−1),k, ev(i−1),k, acci−1,k, acci−2,k) can

be derived upon replacing i by i − 1 in fS
(P1)
i . Note

that acci−1,k ∈ S(P4)
i,k , {ep(i−1),k, ev(i−1),k} ⊂ W

(P4 1)
i,k ,

and acci−2,k ∈ W
(P4 2)
i,k . On the other

hand, fW
(P4 2)
i = {fS

(P1)
j , gW

(P2)
j+1 }i−2j=0, where

fS
(P1)
j (S

(P1)
j,k , uj,k,W

(P1)
j,k ) is given in (19), while

gW
(P2)
j+1 ({S(P1)

j′,k , uj′,k}
j
j′=0, u0,k+1) is given in (27).

Fig.1 shows the V2X information transmitted to vehicle
i in P4, while omitting those to other vehicles for a clear
illustration.

TPFP

TPLFP

i

P5

N-1

(P1) 1

, , 0
{ , }

i

j k j k j
S u

−

=

P6

0i-2i-1

(P1) 1

, , 0
{ , }

i

j k j k j
S u

−

=

1, 1,
,

i k i k
acc u

− −

1, 1, ( 1), ( 1),
, , ,

i k i k p i k v i k
acc eu e

− − − −

1, 1,
,

i k i k
acc u

− −

0, 0,
,

k k
acc u

(P1)

2, 2,
,

i k i k
S u

− −

1, 1,
,

i k i k
acc u

− −

( P1)

2, 2,
,

i k i k
S u

− −

0, 0,
,

k k
acc u

1, 1,
,

i k i k
acc u

− −

PLFP

PF2P

P4

(P1) 1

, 1{ }N

j k j iS −

= +

Fig. 1. V2X information transmitted to vehicle i in different SSDPs for a
Platooning Scenario.

2) V2X from all Predecessors {0, · · · , i − 1}: In SSDP
P4, since only acci−1,k and ui−1,k are transmitted to vehicle
i, the exogenous information W

(P4)
i,k is not available for

making control decisions. Note that although u0,k+1 cannot be
available at time step k, the rest of the information in W (P4)

i,k ,
i.e., W (P4 12)

i,k can be made available to vehicle i. Note that
in this case, the set of information {S(P1)

j,k , uj,k}i−1j=0 has to be
transmitted to vehicle i from all its predecessors 0, . . . , i− 1.

Problem 5 (P5): The decentralized platoon control
problem for vehicle i > 0 where the information
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{S(P1)
j,k }

i−1
j=0 ∪ {uj,k}

i−1
j=0 is transmitted from all its pre-

decessors 0, . . . , i − 1 can be formulated as an SSDP
{S(P5)

i,k , ai,k,W
(P5)
i,k , fS

(P5)
i , fW

(P5)
i , R} associated with

• state S
(P5)
i,k = [S

(P1)
0,k , · · · , S(P1)

i,k , u0,k, · · · , ui−1,k] =

[(S
(P4)
i,k )T, (W

(P4 12)
i,k )T]T,

• exogenous information W
(P5)
i,k = u0,k+1, which is a

random variable with given distribution,
• system state transition function fS

(P5)
i given by

S
(P5)
i,k+1 =

 S
(P4)
i,k+1

W
(P4 1)
i,k+1

W
(P4 2)
i,k+1

 =

f
S

(P4)
i (S

(P4)
i,k , ai,k,W

(P4)
i,k )

fW
(P4 1)
i (S

(P4)
i,k ,W

(P4 12)
i,k )

fW
(P4 2)
i (W

(P4 2)
i,k ),


= fS

(P5)
i (S

(P5)
i,k , ai,k,W

(P5)
i,k ), (29)

where fS
(P4)
i is given in (26) and fW

(P4 1)
i and fW

(P4 2)
i

are given in (28).

Fig.1 shows the V2X information transmitted to vehicle i in
P5 and omitted those to other vehicles for a clear illustration.

Lemma 2: The optimal policy πP5∗
i for SSDP P5 performs

at least as well as the optimal policy πP4∗
i for SSDP P4, i.e.,

we have JP5∗
i ≥ JP4∗

i .
The proof of Lemma 2 is given in Appendix E. In P5, note

that we assume that the control policies for all the predecessors
1, · · · , i− 1 are derived from P4. However, it can be proved
that when the control policies of all the predecessors 1, · · · , i−
1 are derived from P5, Lemma 2 is still valid. Due to space
limitation, we will omit the detailed proof in this paper.

3) V2X from all Other Vehicles {0, · · · , N − 1}\{i}:
Problem 6 (P6): The decentralized platoon control

problem for vehicle i > 0 where the information
{S(P1)

j,k }
i−1
j=0∪{uj,k}

i−1
j=0 is transmitted from all its predecessors

0, . . . , i − 1 and the information {S(P1)
j,k }

N−1
j=i+1 is transmitted

from all of its followers i + 1, . . . , N − 1 can be formulated
as an SSDP {S(P6)

i,k , ai,k,W
(P6)
i,k , fS

(P6)
i , fW

(P6)
i , R(P6)} with

state S
(P6)
i,k = [S

(P1)
0,k , · · · , S(P1)

N−1,k, u0,k, · · · , ui−1,k]T =

[(S
(P5)
i,k )T, (W̄

(P5)
i,k )T]T, where W̄

(P5)
i,k =

[S
(P1)
i+1,k, · · · , S

(P1)
N−1,k]T.

Fig.1 shows the V2X information transmitted to vehicle
i in P6, where we omit those to other vehicles for a clear
illustration.

Lemma 3: The optimal policy πP6∗
i for SSDP P6 has the

same performance as the optimal policy πP5∗
i for SSDP P5,

i.e., we have JP6∗
i = JP5∗

i .
The proof of Lemma 3 is given in Appendix F.

Remark 3 (Value of V2X information for the optimal platoon
control policies): Lemma 2 shows that the transmission of the
driving status S(P1)

j,k and control input uj,k from all the prede-
cessors 0 ≤ j < i instead of only the acceleration acc(i−1),k
and control input u(i−1),k of the immediate predecessor i− 1
to vehicle i may improve the optimal control performance.
Lemma 3 shows that the transmission of the driving status
S
(P1)
j,k from the followers i + 1 < j ≤ N − 1 of vehicle i

cannot help vehicle i improving the optimal control decisions.

V. VALUE OF V2X COMMUNICATIONS FOR DRL-BASED
PLATOON CONTROL POLICIES

A. Value of W (P4 12)
i,k

From Remark 3, we can see that the transmission of
information from all the predecessors of vehicle i > 0 in the
platoon instead of only its immediate predecessor may improve
its optimal control policy. In other words, with the transmis-
sion of additional information W (P4 12)

i,k , P5 can be formulated
with an optimal policy performing at least as well as P4.
However, P5 involves higher communication and computation
overheads than P4. As discussed in Section III.B-2), we should
only include substantial exogenous information for predicting
future states in the augmented-state to get improved DRL-
based control policy. Therefore, we will quantify the value of
W

(P4 12)
i,k according to the method proposed in Section III.B-

2).
Firstly, we convert the transition functions of P4 and P5 to

transition probabilities as below. Specifically, the system state
transition probability for P5 is

TS
(P5)
i = p{S(P5)

i,k+1|S
(P5)
i,k , ak}

=

i∏
j=0

1
S

(P1)
j,k+1=f

S
(P1)
j (S

(P1)
j,k ,uj,k,accj−1,k)

i−1∏
j=1

p{uj,k+1|{S(P1)
j′,k ,

uj′,k}jj′=0}p{u0,k+1}, (30)

where 1X is 1 when X is true and 0 otherwise.
The system’s state transition probability for P4 is

TS
(P4)
i = p{S(P4)

i,k+1|S
(P4)
i,k , ak}

=1
S

(P1)
i,k+1=f

S
(P1)
i (S

(P1)
i,k ,ui,k,acci−1,k)

p{ui−1,k+1|acci−1,k, ui−1,k}

1
acci−1,k+1=f

W
(P1)
i (acci−1,k,ui−1,k)

. (31)

The exogenous information (W (P4 12)
i,k ) transition probability

for P4 is

TW
(P4 12)
i = p{W (P4 12)

i,k+1 |S
(P4)
i,k , ak,W

(P4 12)
i,k }

=

i−2∏
j=0

1
S

(P1)
j,k+1=f

S
(P1)
j (S

(P1)
j,k ,uj,k,accj−1,k)

i−2∏
j=1

p{uj,k+1|{S(P1)
j′,k ,

uj′,k}jj′=0}p{u0,k+1}1
ep(i−1),k+1,ev(i−1),k+1=f

W
(P4 1)
i (ep(i−1),k,

ev(i−1),k,acci−1,k,acci−2,k)

.

(32)

Next, we derive the conditional KL divergence of TS
(P4)
i ⊗

TW
(P4 12)
i from TS

(P5)
i as

DKL(TS
(P5)
i ||TS

(P4)
i ⊗ TW

(P4 12)
i )

=

∫
S

(P5)
i,k+1,S

(P5)
i,k ,ak

p{S(P5)
i,k+1, S

(P5)
i,k , ak}

log

(
p{S(P5)

i,k+1|S
(P5)
i,k , ak}

p{S(P4)
i,k+1|S

(P4)
i,k , ak}p{W (P4 12)

i,k+1 |S
(P4)
i,k ,W

(P4 12)
i,k }

)

=

∫
ui−1,k+1,{S(P1)

j,k ,uj,k}i−1
j=0

p
{
ui−1,k+1, {S(P1)

j,k , uj,k}i−1j=0

}
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log

(
p
{
ui−1,k+1|{S(P1)

j,k , uj,k}i−1j=0

}
p{ui−1,k+1|acci−1,k, ui−1,k}

)
. (33)

From (33), we can see that the KL divergence depends
on the ratio between p{ui−1,k+1|{S(P1)

j,k , uj,k}i−1j=0} and
p{ui−1,k+1|acci−1,k, ui−1,k}, i.e., how much better we can
predict the control input ui−1,k+1 of the predecessor i− 1 in
the next time step, given the additional information W (P4 12)

i,k ?
Given the trained actor network for vehicle i−1, the empirical
value of this ratio can be obtained by Monte Carlo simulation.
For e episodes of experiences obtained through Monte Carlo
simulation, the computational complexity of calculating the
KL divergence using (33) in O(e2).

B. Value of Components in W (P4 12)
i,k

In the above analysis, we assumed that either all or none of
the information in W (P4 12)

i,k is transmitted to vehicle i. How-
ever, we could strike a better tradeoff between improving the
performance of the optimal policy and reducing the state space
dimension by including only the components in W (P4 12)

i,k that
have high value in helping to better predict the future state
S
(P4)
i,k+1. In this way, we hope to reduce the communication

overhead and improve the DRL-based policy.
Interestingly, the inclusion of different components in

W
(P4 12)
i,k can be aligned with the typical IFT for the pla-

toon [30]. As we only focus on the specific IFT in which
information was transmitted only from predecessors but not
followers as discussed in Remark 3, we examine the following
four typical IFTs listed below:
• PF topology: Problem 4 is actually based on PF, where

only the immediate predecessor i − 1 transmits in-
formation to vehicle i. In Problem 4, only acci−1,k
and ui−1,k are transmitted. In addition, W

(P4 1)
i,k =

{ep(i−1),k, ev(i−1),k} could also be transmitted.
• PLF topology: Not only the immediate predecessor i−

1, but also the leader 0 transmit information S(P1)
0,k (i.e.,

acc0,k) and u0,k to vehicle i.
• Two-predecessors following (TPF) topology: Not only

the immediate predecessor i − 1, but also the sec-
ond immediate predecessor i − 2 transmit information
S
(P1)
i−2,k, ui−2,k to vehicle i.

• Two-predecessor-leader following (TPLF) topology:
Not only the immediate predecessor i − 1, but also the
second immediate predecessor i − 2 and the leader 0
transmit information to vehicle i.

According to the different IFT and V2X information, we
can formulate a number of SSDPs as seen in Table II and
illustrated in Fig.1. Note again that Fig.1 only shows the V2X
information transmitted to vehicle i and omitted those to other
vehicles for avoiding obfuscation. The state S

(Pm)
i,k of any

SSDP Pm in Table II includes the driving status S(P1)
i,k of

vehicle i as well as the V2X information I(Pm)
i,k transmitted to

vehicle i, i.e., S(Pm)
i,k = {S(P1)

i,k , I
(Pm)
i,k }.

In Table II, if the state S(Pm)
i,k of an SSDP Pm is a subset

of the state S(Pn)
i,k of another SSDP Pn (e.g., the state of P4

TABLE II
IFT AND V2X INFORMATION FOR DIFFERENT SSDPS IN PLATOON

SCENARIO

SSDP IFT V2X information I(Pm)
i,k

P4 PF acci−1,k , ui−1,k

PPF2 PF acci−1,k , ui−1,k , ep(i−1),k , ev(i−1),k

PPLF PLF acci−1,k , ui−1,k , acc0,k , u0,k
PTPF TPF acci−1,k , ui−1,k , S(P1)

i−2,k , ui−2,k

PTPLF TPLF acci−1,k , ui−1,k , S(P1)
i−2,k , ui−2,k , acc0,k , u0,k

P5 - {S(P1)
j,k , uj,k}i−1

j=0

is a subset of all the other SSDPs in Table II), we can analyze
the value of additional information S(Pn)

i,k \S
(Pm)
i,k by deriving

the KL divergence for including the additional information as

DKL(TS
(Pn)
i,k ||TS

(Pm)
i,k ⊗ TS

(Pn)
i,k \S

(Pm)
i,k )

=

∫
ui−1,k+1

I
(Pn)
i,k

p{ui−1,k+1, I
(Pn)
i,k } log

(
p{ui−1,k+1|I(Pn)

i,k }

p{ui−1,k+1|I(Pm)
i,k }

)
.

(34)

Note that (33) can be considered as a special case of (34) when
Pm = P4 and Pn = P5. Similar to (33), the KL divergence in
(34) depends on how much better we can predict the control
input ui−1,k+1 of the predecessor i − 1 in the next time step
given the additional information S(Pn)

i,k \S
(Pm)
i,k ?

VI. EXPERIMENTAL RESULTS

In this section, we present our simulation results of the
DRL-based platoon control policies for different IFT and V2X
information. The platoon control environment and the DRL
algorithms are implemented in Tensorflow 1.14 using Python.

A. Experimental Setup

The technical constraints and operational parameters of the
platoon control environment are given in Table III [16]. The
interval for each time step is set to T = 0.1 s, and each
episode is comprised of 100 time steps with a duration of 10
s. The coefficients in the reward function of (21) are set to
α = β = 0.1.

The FH-DDPG algorithm [26] is adopted to solve the
platoon control problems, which adapts the DDPG algorithm
for improving the overall performance and convergence of
finite-horizion problems. Specifically, the DDPG algorithm is
embedded into a finite-horizon value iteration framework. A
pair of actor and critic networks are trained for each time step
by backward induction, i.e., the agent starts from training the
actor and critic networks of the last time step, and propagates
backward in time until the networks of the first time step are
trained. In training for each time step, the DDPG algorithm is
used to solve a one-period MDP where the target networks are
fixed to be the trained actor and critic networks of the next time
step. For the detailed pseudocode of FH-DDPG, please refer to
[26]. The hyper-parameters used for training are summarized
in Table IV, the values of which were selected by performing
a grid search as in [7]. The sizes of the neural networks in
the simulation are given in Table IV. There are three hidden
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layers in the actor and critic networks, where the number of
neurons in each layer is 400, 300, and 100, respectively. Note
that the size of the input layer for the actor is decided by the
state dimension of different SSDPs. For the critic network,
an additional 1-dimensional action input is fed to the second
hidden layer. The size of replay buffer and batch are set to
be 20, 000 and 128 in all the experiments, respectively. When
the replay buffer is full, the oldest sample will be discarded
before a new sample is stored into the buffer.

TABLE III
TECHNICAL CONSTRAINTS AND OPERATIONAL PARAMETERS OF THE

PLATOON CONTROL ENVIRONMENT

Parameter Value
Interval for each time step T 0.1 s
Total time steps in each episode K 100
Time constant for leader 0 τ0 0.45 s
Time gap hi 0.3 s
Max control input umax 2.6m/s2

Min control input umin −2.6m/s2
Reward coefficients α, β α = β = 0.1

TABLE IV
HYPERPARAMETERS OF THE FH-DDPG ALGORITHM

Parameter Value
Actor network size 400, 300, 100
Critic network size 400, 300, 100
Actor activation function relu, relu, relu, tanh
Critic activation function relu, relu, relu, linear
Actor learning rate 1e-5
Critic learning rate 1e-4
Replay buffer size 20000
Batch size 128
Reward scale 5e-3

Noise type Ornstein-Uhlenbeck Process with
θ = 0.15 and σ = 0.5

weights/
biases initialization

Random uniform distribution
[−3× 10−3, 3× 10−3] (final layer)

[− 1√
fan−in

, 1√
fan−in

] (other layers)

B. Training and testing results of two-vehicle scenario

We perform simulations for SSDPs P1, P2, and P3 under
the two-vehicle scenario. The time constant τi for the follower
is set to 0.5s. We set the initial state to S(P1)

i,1 = [2.5, 2.5, 0]T.
The control input ui−1 of the predecessor is set to a sequence
of independent random variables having Gaussian distribution.

1) Performance across 5 runs: The individual, average,
and best observed performance as well as the standard errors
across 5 runs are reported in Table V for P1, P2, and P3. For
each run, the individual performance is obtained by averaging
the returns (cumulative rewards per episode) over 200 test
episodes after training is completed. We can observe that for
each run, the individual performance of P2 is always higher
than that of P1, which is consistent with Lemma 1. Moreover,
P3 shows the best performance among the three SSDPs, which
agrees with Lemma 2. As shown in Table V, the standard error
of P3 is lower than those of P1 and P2, which indicates that
the performance of P3 is more stable than that of the other
two problems.

2) Convergence properties: The performance of control
policies is evaluated periodically during training by testing
them without exploration noise. Specifically, we run 10 test
episodes after every 100 training episodes, and calculate the
average cumulative rewards over the 10 test episodes as the
performance for the latest 100 training episode. The perfor-
mance as a function of the number of training episodes for
P1, P2 and P3 is given in Fig. 2, where the curves correspond
to the average performance across 5 runs and the shaded areas
indicate the standard errors. Fig. 2 shows that the convergence
rate of the three SSDPs is similar. Moreover, it can be observed
that the shaded areas of P3 is much smaller than those of P1
and P2, which indicates that P3 performs more stably across
different runs than the other two SSDPs.

0 10000 20000 30000 40000
Training episode

-2.3

-2.2

-2.1
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-1.9
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Fig. 2. Average performance across 5 runs for SSDPs P1, P2, and P3 with
FH-DDPG. The vertical axis corresponds to the average performance across
5 runs and the shaded areas indicate the standard errors of three SSDPs.

3) Accuracy of Q-value estimations: As learning accurate
Q-values is very important for the success of actor-critic
algorithms, we examined the Q-values estimated by the critic
after training by comparing them to the true returns seen on
the test episodes. Fig. 3 shows that compared to P2 and P3,
the estimated Q-values of P1 are more scattered and deviate
farther from the true returns, especially at the beginning of
an episode when the Q-values are more negative. Given the
better accuracy of the estimated Q-values, P2 and P3 are able
to learn better policies compared to P1, as shown in Table V.

Moreover, the inaccuracy in estimated Q-values also ex-
plains why the ranking of estimated Q-values for the three
problems in Fig. 2 is inconsistent with the performance
ranking in Table V.

4) Test results for one episode: Here we focus our attention
on a specific test episode having 100 time steps, and plot the
control input ui,k along with the driving status epi,k, evi,k,
and acci,k for all the time steps k ∈ {0, 1, · · · , 99}. Fig. 4
shows the results for P1, P2, and P3, where it can be observed
that the overall shapes of the curves for the three problems
look very similar. At the beginning of the episode, namely
for time steps k ≤ 20, the control input ui,k remains the
maximum value umax = 2.6m/s2 to increase the acceleration
acci,k as promptly as possible, so that the control errors epi,k
and evi,k can be promptly reduced. Since the initial velocity
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TABLE V
PERFORMANCE AFTER TRAINING ACROSS 5 DIFFERENT RUNS. EACH RUN HAS 100 TIME STEPS IN TOTAL. WE REPORT THE INDIVIDUAL, AVERAGE, BEST

OBSERVED PERFORMANCE AND STANDARD ERRORS (ACROSS 5 RUNS) FOR SSDPS P1, P2, AND P3 WITH FH-DDPG.

SSDPs Performance
Run 1 Run 2 Run 3 Run 4 Run 5 Max Average Std Error

P1 -1.9263 -1.9104 -1.9870 -1.9310 -1.8949 -1.8949 -1.9299 0.0349
P2 -1.9067 -1.8806 -1.9222 -1.8885 -1.9401 -1.8806 -1.9076 0.0243
P3 -1.8971 -1.8730 -1.8964 -1.8794 -1.8751 -1.8730 -1.8842 0.0105

(a) P1. (b) P2. (c) P3.

Fig. 3. Scatter plot showing estimated Q-values versus observed returns from test episodes on 5 runs. The vertical axis corresponds to the estimated Q-values
while the horizontal axis corresponds to the true Q-values.

error evi,1 = 2.5 is a positive value, epi,k increases first for
k < 10 and then decreases, when evi,k becomes negative. At
around k = 40, the control input ui,k and driving status epi,k,
evi,k, acci,k become approximately 0. Beyond that, the values
fluctuate around 0, with ui,k trying to track the random control
input ui−1,k of the predecessor.

A closer examination of Fig. 4 shows that the control error
epi,k and evi,k for P1 exhibits higher fluctuation than those
of P2 and P3. For example, epi,k decreases to about −1 m
at around k = 50. The curves of epi,k and evi,k for P2 and
P3 are relatively close. However, the control input ui,k of P3
has lower fluctuation than those of P2, which means that the
vehicle supported by P3 drives more smoothly. Note that epi,k,
evi,k, and ui,k affect the reward function as defined in (21), so
the results in Fig. 4 further validate the performance ranking
in Table V.

C. Training and testing results of platooning scenario

We perform simulations for the platooning scenario with
5 vehicles excluding the leader (i.e., vehicle 0). We consider
that the control polices of all the followers are trained under
SSDP P4, except for the second last but one vehicle (i.e.,
vehicle 4), which is trained under P4, P5, P6 as well as
the other SSDPs given in Table II. Moreover, we simulate
a heterogeneous platoon where the time constants τi are given
in Table VI for the vehicles i ∈ {1, 2, 3, 4, 5}. By comparing
the performance of vehicle 4 under different SSDPs, we can
gain useful insights into the impact of V2X information on
DRL-based platoon control.

We set the initial state for each of the 5 following vehicles
to be S(P1)

i,1 = [1.5,−1, 0]T, ∀i ∈ {1, 2, 3, 4, 5}. The control
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Fig. 4. Results for a specific 10s test episode under the two-vehicle scenario.
The driving status epi,k , evi,k , acci,k and control input ui,k of P1, P2, and
P3 are represented as different curves, respectively.

TABLE VI
TIME CONSTANTS OF VEHICLES IN THE PLATOON

Vehicle index i 1 2 3 4 5
Time constant τi 0.5 0.25 0.2 0.1 0.3

input u0 of the leader is set to a sequence of independent
random variables obeying the Gaussian distribution.
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Similar to the two-vehicle scenario, the individual, average,
and best observed performance as well as the standard errors
across 5 runs are reported in Table VII. For each run, the
individual performance is obtained by averaging the returns
(cumulative rewards per episode) over 200 test episodes after
training is completed.

We first compare the performance of P4, P5, and P6.
Observe from Table VII that P5 performs consistently better
than P4 in each individual run. Moreover, the standard error of
P5 is also lower than that of P4, showing that the performance
of P5 is more stable than P4. The observations agree with
Lemma 3, stating that the optimal policy of P5 is at least
as good as that of P4. Moreover, it can be deduced from the
results that the gain due to the availability of V2X information
from all the preceding vehicles (i.e., vehicle 1, 2, 3) offsets
the loss due to the function approximation error resulting from
having a higher state dimension.

Meanwhile, Table VII shows that P5 also performs consis-
tently better than P6 in terms of all the performance metrics.
According to Lemma 4, the optimal policies of P5 and P6
have the same performance. However, as P6 has larger state
space than P5, the DRL policy of P6 performs worse than
that of P5 due to the larger function approximation error in
actor and critic networks.

Although P5 performs better than P4, it requires that both
the driving status and control inputs be transmitted from all
the preceding vehicles, which involves high communication
overhead. Now we compare the performance of the other
SSDPs in Table II to see if we can reduce the communication
overhead while still achieving a relative good performance.
Observe from Table VII that the rankings in terms of the
individual performance vary slightly across different runs. The
ranking in terms of the average performance for the different
SSDPs is P5 > PTPF > PTPLF > PPLF > P4 > PPF2.
This ranking is consistent with the rankings in terms of the
maximum performance and standard error.

In order to gain further insights into the performance rank-
ing in Table VII, we evaluate the value of V2X information
for DRL-based platoon control by using (34) to derive the
conditional KL divergence of TS

(Pm)
i ⊗ TS

(Pn)
i,k \S

(Pm)
i,k from

TS
(Pn)
i . We fix Pn = P5 and let Pm be any other SSDP

in Table II. In other words, we evaluate ”How much better
would we be able to predict the future state if we included
the additional V2X information in P5 as compared to Pm,
versus we didn’t?”. Lower KL divergence indicates less value
for the additional information in P5, and higher chance that
Pm can achieve similar performance to P5, despite its lower
communication overhead.

In order to obtain both the joint and conditional probability
distributions on the R.H.S of (34), we perform Monte-Carlo
simulation for 200 test episodes with the trained actors of
vehicles 1, 2, and 3, and keep a record of all the states
and actions {S(P1)

j,k , uj,k}3j=0. Then for each time step k ∈
{1, · · · ,K − 1}, a quantization process is applied to the
continuous states and actions {S(P1)

j,k , uj,k}3j=0 as well as
u3,k+1 to derive the probability distributions in (34), which
are used for determining the KL divergence at that time step.

Figure 5 shows the KL divergence for each time step. It can
be seen that when Pm = P4, the KL divergences are relatively
high for every time step. Meanwhile for all the other SSDPs,
the KL divergences are relatively high for the first few time
steps, but decays for the rest of the time steps. This shows that
firstly, the value of the additional information in P5 on platoon
control as compared to the other SSDPs is high for the first few
time steps. Secondly, compared to P4, the other SSDPs have
lower KL divergence, and thus transmitting the corresponding
V2X information and including them in the state space can
help better predict the next state in P4.
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Fig. 5. The conditional KL divergence DKL(T
S
(Pn)
i ||TS

(Pm)
i ⊗

T
S
(Pn)
i,k
\S(Pm)

i,k ) for each time step when Pn = P5.

Now we examine the relationship between the KL diver-
gence of an SSDP in Figure 5 and its DRL-based control
performance in Table VII. Note that except for P4, PPF2 has
the highest KL divergence, as shown in Figure 5. Its peak KL
divergence is approximately the same as that of the PPLF,
with a value of 0.66 at time step 2, but its KL divergence
for later time steps is higher than those of PPLF and other
SSDPs (except for P4). As analyzed earlier, we can see from
Table VII that PPF2 performs the worst, even worse than P4
in terms of both its average performance and standard error,
although its maximum performance is better than that of P4.
This shows that the performance gain of including ep3,k and
ev3,k in the state variable cannot offset the loss due to the
increased state dimension on average.

Meanwhile, it can be observed from Figure 5 that the KL
divergence of PTPF is lower than that of PPLF. The former
has a peak value of 0.41 at time step 2, while the latter has
a peak value of 0.66. This shows that the V2X information
concerning the second immediate vehicle, i.e., S(P1)

2,k and u2,k,
has higher value than the V2X information on the leader, i.e.,
acc0,k and u0,k. Moreover, it can be seen from Figure 5 that
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TABLE VII
PERFORMANCE AFTER TRAINING ACROSS 5 DIFFERENT RUNS. EACH RUN HAS 100 TIME STEPS IN TOTAL. WE REPORT THE INDIVIDUAL, AVERAGE, BEST

OBSERVED PERFORMANCE AND STANDARD ERRORS (ACROSS 5 RUNS) FOR DIFFERENT SSDPS IN PLATOON SCENARIO WITH FH-DDPG.

Problem Performance
Run 1 Run 2 Run 3 Run 4 Run 5 Max Average Std Error

P4 -0.1177 -0.1115 -0.1111 -0.1231 -0.1262 -0.1111 -0.1179 0.0068
PPF2 -0.1135 -0.1159 -0.1192 -0.1307 -0.1129 -0.1129 -0.1184 0.0073
PPLF -0.1172 -0.1131 -0.1179 -0.1175 -0.1104 -0.1104 -0.1152 0.0033
PTPF -0.1071 -0.1080 -0.1116 -0.1102 -0.1068 -0.1068 -0.1087 0.0021
PTPLF -0.1110 -0.1101 -0.1123 -0.1172 -0.1090 -0.1090 -0.1119 0.0032

P5 -0.1060 -0.1024 -0.1032 -0.1064 -0.1022 -0.1022 -0.1040 0.0020
P6 -0.1086 -0.1048 -0.1065 -0.1106 -0.1104 -0.1048 -0.1082 0.0025

the KL divergences of PTPF and PTPLF are very similar, both
of which have a peak value of 0.42 at time step 2, with the
value of PTPLF slightly smaller than that of PTPF at later
time steps. This shows that if the V2X information on the
second immediate vehicle is available, further information on
the leader will have little value in helping to predict the future
states.

The above insights on the KL divergence agree with the
ranking of SSDPs seen in Table VII. Note that the performance
of PTPF is only slightly worse than that of P5, while better
than those of the other SSDPs both in terms of the average
and maximum performance. On the other hand, PTPF only
requires V2X information from the second immediate vehicle
instead of all the preceding vehicles as in P5. Therefore, if
the communication resources are limited, PTPF is a good
alternative for P5. Another interesting observation is that the
performance of PTPLF is worse than that of PTPF in terms
of both the average and maximum performance, although its
standard error is slightly lower than that of PTPF. This shows
that compared to PTPF, the modest performance gain due to
the availability of leader information cannot offset the loss due
to having a higher state dimension in PTPLF, although PTPLF

performs a little more stably than PTPF.

VII. CONCLUSION

In this paper, we have formalized the platoon control prob-
lems associated with different IFT and V2X information into
different SSDP models, and provided theorems and lemmas
for comparing the performance of their optimal policies. It
has been shown that when there is only a single following
vehicle, transmission of the acceleration and control input from
the preceding vehicle can help improve the optimal control
performance. When there are multiple following vehicles in a
platoon, and the objective of each vehicle is to optimize its own
performance, information transmission from all the preceding
vehicles instead of only the immediate preceding vehicle
could help improve the optimal policy, while information
transmission from the following vehicles does not help.

Moreover, we have used the conditional KL divergence
for quantifying the value of V2X information in DRL-based
control policies for the SSDPs. V2X information associated
with larger values can help to better improve the DRL-based
platoon control performance, and thus should be given higher

priority in transmission, especially when the communication
resources are limited.

We have performed simulations for verifying our analytical
results. For a platoon with 5 following vehicles, our simulation
results have shown that including V2X information from all
the preceding vehicles achieved the best DRL-based control
performance, while including V2X information from only the
immediate and second immediate preceding vehicles struck
a compelling trade-off between the control performance and
communication overhead.

In this paper, we have focused our attention on decentral-
ized platoon control, where each vehicle optimizes its own
performance. When the objective is to optimize the global
performance (i.e., sum of local performances), the SSDPs
become multi-agent problems and we will explore the value
of V2X information in this multi-agent setting in our future
work. Moreover, we will also consider the impact of the
actuator delay and communications delay on the value of V2X
information in the future.

APPENDIX

A. Proof of Theorem 1

Note that the original SSDP is not an MDP according to
Remark 1, as the exogenous information transition function
fW (Sk,Wk, ξk) depends on Sk or Wk or both. On the other
hand, for the augmented-state SSDP, the system state transition
function becomes

S̃k+1 =

(
Sk+1

Wk+1

)
=

(
fS(Sk, ak,Wk)
fW (Sk,Wk, ξk)

)
= f S̃(S̃k, ak, W̃k),

(35)

where the exogenous information W̃k = ξk is an indepen-
dent random variable with given distribution. Therefore, the
augmented-state SSDP becomes an MDP. It is straightforward
to see that the optimal policy for the augmented-state SSDP
π̃∗(S̃k) could improve over that of the original problem
π∗(Sk) as the former policy is based on an MDP while the
later is based on a non-Markovian SSDP. In other words,
the original SSDP only has partial observability while the
augmented-state SSDP has full observability.
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B. Proof of Theorem 2

Note that the original SSDP is an MDP, while the
augmented-state SSDP is also an MDP having a system state
transition function

S̃k+1 =

(
Sk+1

Wk+1

)
=

(
fS(Sk, ak,Wk)

fW (fS(Sk, ak,Wk), ξk)

)
= f S̃(S̃k, ak, W̃k), (36)

where the exogenous information W̃k = ξk is an independent
random variable with given distribution.

Let V ∗k (Sk) and Ṽ ∗k (S̃k) denote the value functions un-
der the optimal policies π∗ and π̃∗ for the original SSDP
and augmented-state SSDP, respectively. Define Ṽ ∗k (Sk) =
EWk

[Ṽ ∗k (S̃k)|Sk].
Note that J̃∗ = ES̃1

[Ṽ ∗1 (S̃1)] = ES1
[Ṽ ∗1 (S1)] and J∗ =

ES1 [V ∗1 (S1)]. Therefore, in order to prove that J̃∗ ≥ J∗i , it is
sufficient to prove

Ṽ ∗k (Sk) ≥ V ∗k (Sk),∀ Sk and k. (37)

We will show (37) by induction. For the last time step K,
we have

Ṽ ∗K(SK) = EWK

[
max
µ̃K(S̃K)

R
(
S̃K , µ̃K(S̃K)

)
|SK

]
,∀ SK ,

(38)
V ∗K(SK) = max

µK(SK)
EWK

[
R
(
S̃K , µK(SK)

)
|SK

]
,∀ SK .

(39)
According to (38) and (39), we have

Ṽ ∗K(SK) ≥ V ∗K(SK),∀ SK , (40)

(since we generally have E[max{·}] ≥ max{E[·]} according
to Jensen’s inequality). Therefore, the optimal action µ̃K(S̃K)
for the augmented-state SSDP problem is at least as good as
that for the original SSDP µK(SK) at time step K.

Assume that

Ṽ ∗k+1(Sk+1) ≥ V ∗k+1(Sk+1),∀ Sk+1. (41)

Consider the Bellman Equation for the original SSDP as

V ∗k (Sk) = max
µk(Sk)

{
EWk

[
R
(
Sk, µk(Sk),Wk

)
+ V ∗k+1

(
fS(Sk,

µk(Sk),Wk)
)∣∣∣Sk]}, (42)

and consider the Bellman Equation for the augmented-state
problem as

Ṽ ∗k (S̃k) = max
µ̃k(S̃k)

{
R
(
S̃k, µ̃k(S̃k)

)
+ ES̃k+1

[
Ṽ ∗k+1(Sk+1,

Wk+1)
∣∣∣S̃k]}. (43)

Taking the expectation over Wk conditioned on Sk at both
sides of (43), we have the following Bellman equation

Ṽ ∗k (Sk) = EWk

[
Ṽ ∗k (S̃k)|Sk

]

= EWk

[
max
µ̃k(S̃k)

{
R
(
S̃k, µ̃k(S̃k)

)
+ ES̃k+1

[
Ṽ ∗k+1

(
Sk+1,Wk+1

)
∣∣∣S̃k]∣∣∣∣Sk

}]
(a)

≥ max
µk(Sk)

{
EWk

[
R
(
S̃k, µk(Sk)

)
+ ES̃k+1

[
Ṽ ∗k+1(Sk+1,Wk+1)

|S̃k
]∣∣Sk]}

(b)
= max

µk(Sk)

{
EWk

[
R
(
S̃k, µk(Sk)

)
|Sk
]

+ ES̃k+1

[
Ṽ ∗k+1

(
Sk+1

,Wk+1

)
|Sk
]}

,

(c)
= max

µk(Sk)

{
EWk

[
R
(
S̃k, µk(Sk)

)∣∣∣Sk]+ ESk+1

[
EWk+1

[
Ṽ ∗k+1

(
Sk+1,Wk+1

)
|Sk+1

]∣∣∣Sk]},
(d)
= max

µk(Sk)

{
EWk

[
R
(
S̃k, µk(Sk)

)
+ Ṽ ∗k+1(Sk+1)|Sk

]}
(e)

≥ max
µk(Sk)

{
EWk

[
R
(
S̃k, µk(Sk)

)
+ V ∗k+1(Sk+1)|Sk

]}
(f)
= V ∗k (Sk), (44)

where (a) follows by interchanging the expectation and max-
imization (since we generally have E[max{·}] ≥ max{E[·]}
according to Jensen’s inequality); (b) is due to the properties
of conditional expectations; (c) is due to the transition function
Wk+1 = fW (Sk+1, ξk) in Definition 1, which states that
Wk+1 may be dependent on Sk+1, but independent of Sk; (d)
is due to the definition of Ṽ ∗k+1(Sk+1), and the state transition
function Sk+1 = fS(Sk, ak,Wk) in Definition 1; (e) follows
from (41); and (f) follows from the Bellman equation for the
original SSDP as given in (42). Thus (37) is proved for all k
and the desired results are shown.

C. Proof of Theorem 3

We will revisit the proof of Theorem 2 in Appendix B,
substituting in the two conditions seen in Theorem 3. If Wk

does not affect the reward function as in Condition (2) of
Theorem 3, we have R(Sk, ak,Wk) = R(Sk, ak), which
means that the expectation operator can be eliminated in (38)
and (39). Therefore, we have Ṽ ∗K(SK) = V ∗K(SK),∀ SK in
(40). Now, assume that Ṽ ∗k+1(Sk+1) = V ∗k+1(Sk+1),∀ Sk+1,
then (g) in (44) becomes an equality. Moreover, if Wk does
not affect both the state transition and reward function as
stated in Theorem 3, the expectation operator over Wk can
be eliminated at both sides of (c) in (44), and the inequality
in (c) becomes an equality. Therefore, we can prove that
Ṽ ∗k (Sk) = V ∗k (Sk),∀ k, Sk, and thus prove Theorem 3.

D. Proof of Lemma 1

Since S
(P2)
i,k = [(S

(P1)
i,k )T,W

(P1)
i,k ]T, we can consider P1

as the original SSDP given in Definition 1 and P2 as the
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augmented-state SSDP given in Definition 2. Moreover, the
transition function of exogenous information in P1 is given
in (20) as W (P1)

i,k+1 = fW
(P1)

(W
(P1)
i,k , ui−1,k), where ui−1,k

is an independent random variable with given distribution.
Therefore, Lemma 1a follows from Theorem 1.

Since S
(P3)
i,k = [(S

(P2)
i,k )T,W

(P2)
i,k ]T, we can consider P2

as the original SSDP and P3 as the augmented-state SSDP.
Moreover, the exogenous information in P2 W

(P2)
i,k = ui−1,k

is an independent random variable with given distribution.
Therefore, Lemma 1b follows from Theorem 2.

E. Proof of Lemma 2

Since S
(P5)
i,k = [(S

(P4)
i,k )T, (W

(P4 1)
i,k )T, (W

(P4 2)
i,k )T]T, we

can consider P4 as the original SSDP and P5 as the
augmented-state SSDP. Moreover, the transition function of
exogenous information in P4 is given in (26) as W (P4 12)

i,k+1 =

fW
(P4 12)

(W
(P4 12)
i,k , S

(P4)
i,k ). Therefore, Lemma 2 follows

from Theorem 1.

F. Proof of Lemma 3

Consider W̄ (P5)
i,k = [S

(P1)
i+1,k, · · · , S

(P1)
N−1,k]T as the exogenous

information in P5 in addition to u0,k+1. Therefore, as S(P6)
i,k =

[(S
(P5)
i,k )T, (W̄

(P5)
i,k )T]T, we can consider P5 as the original

SSDP and P6 as the augmented-state SSDP. It is plausible that
W̄

(P5)
i,k will affect neither the reward function nor the system

transition function in P5, and thus according to Theorem 3,
the augmented-state SSDP including W̄ (P5)

i,k as part of the state
will result in an optimal policy that has the same performance
as that in P5.
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