
 

1 
 

The interrelationship between the carbon market and the green bonds 

market: Evidence from wavelet quantile-on-quantile method 

Xiaohang Rena, Yiying Lia,  Cheng Yanb,*, Fenghua Wena,* , Zudi Luc 

a School of Business, Central South University, Changsha 410083, China 

b Essex Business School, University of Essex, Colchester CO4 3SQ, UK  

c Southampton Statistical Sciences Research Institute, University of Southampton, Southampton, SO17 

1BJ, UK 

E-mail addresses: domrxh@outlook.com (X.H. Ren), Yying.li@outlook.com (Y.Y. Li), 

cheng.yan@essex.ac.uk (C. Yan),  wfh@amss.ac.cn (F.H. Wen), Z.Lu@soton.ac.uk (Z.D. Lu) 

Highlights 
 

 Relationship between ECX EUA carbon futures prices and the S&P green bonds index. 

 Use the MODWT method to form short-, medium-, and long-term perspectives. 

 Carbon price Granger causes green bonds revealed from the quantile Granger test. 

 The asymmetric influence of the carbon price revealed by the QQ regression. 

 The carbon price mostly positively affects green bonds. 

 The effects are more pronounced when both markets are in similar extreme conditions.

                                                             
* Corresponding author: cheng.yan@essex.ac.uk 

* Corresponding author: wfh@amss.ac.cn 

 

mailto:domrxh@outlook.com
mailto:Yying.li@outlook.com
mailto:Yying.li@outlook.com
mailto:wfh@amss.ac.cn


 

2 
 

Abstract 1 

The 26th edition of the United Nations climate change conference (COP26) underlines 2 

the importance of financial products and markets related to “carbon” (e.g., carbon and 3 

green bond markets). We, to our knowledge, are the first to construct a framework based 4 

on multiple time scales and market conditions to quantify the interrelationship between 5 

the carbon futures and green bond markets. Specifically, we estimate it from short-, 6 

medium-, and long-term perspectives and different market conditions by combining the 7 

maximum overlap discrete wavelet transform (MODWT) and two quantile methods to 8 

decompose the sequences into various frequencies and quantiles. We find that the 9 

carbon futures price unilaterally Granger causes the green bond index and empirically 10 

analyzes the asymmetric impact of the carbon futures with a two-dimensional quantile 11 

model constructed by the quantile-on-quantile (QQ) regression approach. We find 12 

positive effects of the carbon futures in the medium to long term and erratic 13 

performance in the short term. The effects are more pronounced when both markets are 14 

in an extreme state. Our findings enrich the research related to eco-economy and carbon 15 

finance, providing a more comprehensive and detailed research framework and helping 16 

others optimize investment portfolios and policy arrangements. 17 

Keywords: Carbon futures; Green bond; Wavelet analysis; Quantile Granger 18 

causality test; Quantile-on-quantile regression 19 
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1. Introduction 21 

The United Nations Climate Change Conference hosted in Glasgow, from 31 22 

October to 12 November 2021, marks the 26th former conference of the United Nations 23 

(UN) Framework on Climate Change (COP26). One crucial implication of COP26 is to 24 

deepen the understanding of climate-related risks, products and markets for both 25 

policymakers and academics. The gradual increase in climate-related risks has impelled 26 

countries and regions to set up numerous carbon-related trading platforms or markets 27 

to balance economic development and carbon emissions (Zhou and Li, 2019; Crecente 28 

et al., 2021). Financial products and markets related to “carbon” (e.g., carbon and green 29 

bond markets) have had the most apparent and far-reaching effects (Dong et al., 2020; 30 

Ren et al., 2021; Arif et al., 2021). The establishment of the carbon futures market is 31 

mainly to hedge the risks brought by carbon trading, while the green bond market is a 32 

market to provide transitional funds to promote carbon emission reduction (Lucia et al., 33 

2015; Banga, 2019; Rubtsov et al., 2021).  34 

According to the purpose and content of the transactions in the two markets, they 35 

share the same intention of reducing greenhouse gas emissions (e.g., carbon dioxide) 36 

and realizing environmentally friendly economic development (Tolliver et al., 2020; 37 

Flammer, 2021). In some countries and regions, such as Europe and China, various 38 

carbon trading and green bond markets have started to develop rapidly at similar times. 39 

In the relevant policy arrangements for low-carbon development, these two markets are 40 

also frequently concerned together. Green financing represented by green bonds can 41 

also provide financial support for various carbon trading markets in many cases. A 42 

comprehensive grasp of their features is of great significance to the correlative 43 

arrangement for economic activities and low-carbon transformation. Therefore, do 44 

these two markets do have some connections? Or is there a coordinated comovement 45 

as they develop? Unfortunately, information on these issues still needs to be further 46 

explored, motivating us to analyze their relationship in depth.  47 

Against the background of global low-carbon development and economic 48 

integration, many unique characteristics of these two markets have been extensively 49 
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reported, but inadequate attention has been paid to the interrelationship between them 50 

(Rannou, 2019; Banga, 2019). The carbon market is susceptible to external economic 51 

factors (Zhang and Wei, 2010; Ren et al., 2022a) and can effectively reduce the cost of 52 

carbon emission reduction and standardize relevant mechanisms (Cui et al., 2014; Zhu 53 

et al., 2020). It becomes a mature and vital financial market with continuous 54 

development and improvements (Wen et al., 2020b). There are some deficiencies and 55 

potential risks associated with the green bond market compared with the carbon market. 56 

For example, a lack of uniform standards, long project acceptance, and “greenwashing” 57 

behaviors (Karpf and Mandel, 2018; Flammer, 2021), making its links with other 58 

markets relatively less prominent. Nevertheless, the green bond market has also 59 

developed rapidly due to its advantages of low-cost issuance, improvement of 60 

environmental performance, flexible project scheduling, avoidance of supervision over 61 

financial institutions, and so on (Wood and Grace, 2011; Tolliver et al., 2020; Cao et al., 62 

2021). Although both markets have been among the fastest-growing players in the yield 63 

of carbon finance in recent years, few studies have investigated the interrelationship 64 

between them. 65 

We fill this research gap by studying the interrelationship between the carbon and 66 

green bond markets and incorporating more realistic factors into our research 67 

framework (i.e. time scales and market conditions). We choose the ECX EUA 68 

(European Climate Exchange EU allowances) carbon futures and the S&P (Standard & 69 

Poor’s) green bond index as the basic sequences since they are typical and widely used 70 

indicators of the carbon and green bond markets (Dhamija et al., 2018). We control the 71 

economic policy uncertainty (EPU) to avoid some interference factors caused by 72 

economic fluctuations, which could significantly affect both markets (Zhang and Yan, 73 

2020; Adams et al., 2020; Pham and Nguyen, 2021; Ye., 2022). We use the maximum 74 

overlap discrete wavelet transform (MODWT) method to divide the sequences into 75 

several frequencies corresponding to different time scales. The wavelet decomposition 76 

method has more flexibility than the traditional time series analysis method, since the 77 

time scales can be adjusted according to the content of the analysis (Kumah and Mensah, 78 

2020). We apply the quantile Granger test and quantile-on-quantile (QQ) regression to 79 
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further reflect on these two markets’ interrelationships and investigate the potential 80 

causal relationship and asymmetric effects on these two-dimensional levels for different 81 

time scales. These two quantile-based approaches can reflect marginal effects from 82 

multiple market conditions, making the empirical process more comprehensive (Lin 83 

and Su, 2020; Ren et al., 2022c). We find that the green bond market is influenced 84 

unilaterally by the carbon futures market, and the role of carbon futures varies in 85 

different situations.  86 

We contribute to the existing literature in at least two aspects. Firstly, this study 87 

is the first to focus on the specific interrelation between the European carbon futures 88 

market and the global green bond market from a time and frequency view through the 89 

MODWT wavelet decomposition. Closely related studies include Rannou et al. (2020) 90 

and Jin et al. (2020), which provide somewhat mixed evidence on the specific 91 

connection between carbon and green bond markets. Rannou et al. (2020) find a two-92 

way transmission effect between the European carbon market and the green bond 93 

market, but there is no significant two-way spillover effect. Meanwhile, Jin et al. (2020) 94 

find that the correlation between the carbon futures and the green bond index is the 95 

highest among four major market indices (market volatility, commodity, energy, and 96 

green bonds), and the green bond index is the best hedging instrument for carbon futures. 97 

Unlike their research, this paper tries to concretize the relationship between these two 98 

carbon-related financial markets. Different from the literature (e.g., Jin et al., 2020; 99 

Rannou et al., 2020; Fang et al., 2020; Gozgor et al., 2019), this paper provides a new 100 

perspective on the relationship between carbon and green bond markets for scholars 101 

and investors to refer to. 102 

Secondly, we conduct a detailed analysis from short-term, medium-term, and 103 

long-term perspectives by decomposing the data into sequences of multiple frequencies, 104 

thereby simultaneously reducing the impact of special shocks, such as the COVID-19 105 

pandemic. The causality direction and marginal effects between these two markets are 106 

tested by combining the MODWT approach with the quantile Granger and QQ 107 

regression methods. This combination constructs short-, medium- and long-term 108 

scenarios with various quantiles that reflect their market conditions. We obtain the 109 
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unilateral Granger causality of the carbon futures market on the green bond market 110 

across different quantiles and time scales, providing new evidence for the hedging 111 

function of green bonds. Apart from this, we quantify the overall positive role of the 112 

carbon futures market in the medium to long term and the negative impact on the green 113 

bond market with a bear market condition in the short term, which could reveal 114 

strategies for investment optimization and policymaking.  115 

The remainder of this paper is as follows: Section 2 reviews the relevant literature. 116 

Section 3 introduces our methods and data. Section 4 presents the results of the 117 

empirical analyses and robustness tests. Finally, Section 5 concludes. 118 

2. Literature review 119 

The “carbon market”, which refers to the “carbon trading market” in most cases, 120 

has unique advantages. The carbon trading market is subject to carbon dioxide 121 

emissions or emission rights, and the carbon futures market is one of the core markets 122 

of carbon trading, which is to settle or deliver these subject matters in the future. 123 

Investors can invest or speculate in carbon futures. A large amount of market supply 124 

and demand information about carbon is concentrated in the carbon market, and it plays 125 

an increasingly important role. On the one hand, the formation of the carbon market has 126 

reduced carbon emissions and has become an essential boost to the development of the 127 

environmental economy (Fan et al., 2017; Wen et al., 2020a). On the other hand, the 128 

carbon market has become an important market for global investment, risk aversion, 129 

and financial planning (Zhang and Huang, 2015; Ren et al., 2022b). 130 

The fossil energy markets are most closely connected with the carbon market, 131 

and the relationship between them is also one of the most well-studied areas of research. 132 

Energy consumption is the primary source of carbon emissions (Zhang and Sun, 2016; 133 

Semeyutin et al., 2021). Moreover, changes in the energy market brought about by 134 

economic development will also promote the development of carbon trading and the 135 

carbon market (Nazifi and Milunovich, 2010; Cheng et al., 2021). Based on these 136 

findings, it is not uncommon to link the carbon market with the energy market. For 137 
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instance, Mansanet-Bataller and Soriano (2012) find a two-way wave transmission 138 

between the oil and carbon trading market, while Reboredo (2014) finds no spillover 139 

effect between them by proposing a multivariate conditional autoregressive range 140 

model to capture the interrelationship between the oil market and the carbon trading 141 

market. Recently, Wang and Guo (2018) use the spillover index and find an asymmetric 142 

volatility spillover effect between the EUA carbon market and the WTI oil, Brent oil, 143 

and EU natural gas prices. Ji et al. (2018) consider the interrelationship between 144 

electricity price and the carbon market and believe that the electricity price is the central 145 

receiver of information transmission. Chen et al. (2019) consider oil, natural gas, and 146 

coal in their research and verify the volatility spillover effect and the dynamic 147 

interrelationship between carbon emission quota and energy prices using an asymmetric 148 

model. The comparison shows a relatively stable positive interrelationship between the 149 

carbon emission quota and crude oil and natural gas prices. However, the 150 

interrelationship between the carbon emission quota price and coal is weaker and less 151 

stable.  152 

As many studies have shown a significant correlation with energy markets, the 153 

interrelationship between carbon and other financial markets is becoming more 154 

powerful. Interestingly, energy markets were more likely to drive changes in the carbon 155 

market than financial assets before the financial turmoil caused by the subprime crisis 156 

in 2008. After the economic crisis, the carbon market became more sensitive to financial 157 

factors, such as stock prices. The carbon market is affected by financial factors and the 158 

economic environment. For example, financial development will inevitably bring about 159 

a substantial increase in carbon emissions, especially in emerging financial markets and 160 

developing countries (Mol, 2012). Furthermore, economic factors could lead to the 161 

emergence and expansion of the carbon market. The development of financial services 162 

can improve the structure of the carbon market and enhance the liquidity of carbon-163 

related transactions. The activity of financial institutions and investors has also 164 

provided an indispensable impetus to the prosperity of the carbon market (Bosetti et al., 165 

2011; Hintermann, 2017).  166 

Using the Copula model, Yuan and Yang (2020) find that the uncertainties in the 167 
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financial market and the crude oil market both have significant asymmetric risk 168 

spillovers in the carbon market. However, when a systemic risk occurs, the uncertainty 169 

in the stock market will transfer this risk to the carbon market more effectively than in 170 

the crude oil market. Tan et al. (2020) quantitatively analyze the interrelationship 171 

between the European carbon market and information from other markets. They find 172 

that the carbon market is closely related to the stock and non-energy commodity 173 

markets, in which financial risk-based macroeconomic factors also have a huge impact. 174 

Still, the correlation with the bond market is insufficient. 175 

Like the carbon market, the green bond market was also set up to mitigate 176 

climate change. These two markets were set up with similar intentions to a certain 177 

degree and are the backbone of emerging markets that cannot be ignored in recent years. 178 

Research on green bonds has mainly focused on their relationship with other markets 179 

and policy factors (both macro and micro), while research focusing on its 180 

interrelationship with carbon markets is scarce. In most situations, the green bond 181 

market is generally considered a recipient of information or shocks due to the market’s 182 

late start and insufficient maturity. Reboredo (2018) studies the interrelationship 183 

between green bonds and the stock, energy, and bond markets and finds that their 184 

correlation is weak. Therefore, green bonds can be considered a diversification tool for 185 

investment. At the same time, other papers confirm that green bonds have a stronger 186 

relationship with the traditional bond market and other fixed-income markets (such as 187 

the US treasury bond market) when compared with the clean energy market and other 188 

green financial derivatives markets (Baruník and Křehlík, 2018; Broadstock and Cheng, 189 

2019). Recently, Pham (2021) uses a quantile approach similar to that used in this paper 190 

to construct a research model of the relationship between the green bond market and 191 

the green stock market. The results show that the dependence between green bonds and 192 

green stocks is relatively small under normal market conditions. In extreme market 193 

movements, green bonds and green stocks are more closely linked. However, all the 194 

spillover effects between green bonds and green equity are in the short term and 195 

dissipate within the medium- and long-term investment scope. 196 

Research on the specific relationship between these two markets is also 197 
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emerging. Rannou et al. (2020) point out that Europe is the first region to establish a 198 

carbon trading market and a green bond market. The price trajectories of these two 199 

markets in the six years from 2014 to 2019 suggest that they have similarities and some 200 

complementarities. Rannou et al. (2020) find out a two-way transmission effect 201 

between the European carbon market and the green bond market, but there is no 202 

significant two-way spillover effect between them. Therefore, the European green bond 203 

market can hedge the risk of the carbon market. Meanwhile, Jin et al. (2020) examine 204 

the relationship between carbon futures returns and the four major market indices 205 

(indexes of the market volatility, commodity, energy, and green bonds) based on the 206 

dynamic hedging ratios and the OLS (ordinary least square) method. The correlation 207 

between the carbon futures and the green bond index is the highest, and the green bond 208 

index is the best hedging instrument for carbon futures, even during crises. 209 

In summary, the carbon market and the green bond market share the same goals 210 

of environmental protection, growth speed, and bright prospects. The carbon market 211 

has gradually become a crucial part of the global economic system. At the same time, 212 

there is no doubt about the trend of green bonds toward prosperity under the macro 213 

background of low-carbon development. The literature on these two markets and other 214 

markets is growing, forming a relatively comprehensive view of the global market 215 

network structure. However, the evidence on the causal relationship between them is 216 

inadequate, motivating us to explore the relationship between these two markets 217 

comprehensively. 218 

3. Methodology and data 219 

We study the interrelationship between the ECX EUA carbon futures price and the 220 

S&P green bond index using multiple time scales and quantiles based on a framework 221 

constructed by the wavelet quantile-on-quantile regression methods. We test the 222 

quantile causal relationship between the carbon futures price and the green bond index 223 

based on the MODWT method to decompose the carbon futures price and green bond 224 

index into several frequencies. Then, starting with the quantile causality results, we 225 
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investigate specific effects using a quantile-on-quantile test and further analyze the 226 

interrelationship between these two series under different market conditions.  227 

3.1 Maximum overlap discrete wavelet transform 228 

Following Percival and Walden (2000) and Das and Kannadhasan (2018), we 229 

chose the wavelet decomposition method to process the sample data, generating the 230 

foundational sequences of research. The basis of wavelet analysis is to construct a pair 231 

of special functions. The father wavelet mainly captures the low frequency and 232 

stationary part of the sequence, and the mother wavelet mainly captures the high 233 

frequency and particular part of the sequence. The integrals of both over the entire time 234 

range are 1 and 0, respectively. The specific expressions are as follows: 235 

𝜑𝑗𝑘 = −2−
𝑗
2𝜑 (

𝑡 − 2𝑗𝑘

2𝑗
) , ∫ 𝜑(𝑡)𝑑𝑡 = 1 , 237 

(1) 236 

𝜓𝑗𝑘 = −2−
𝑗
2𝜓 (

𝑡 − 2𝑗𝑘

2𝑗
) , ∫ 𝜓(𝑡)𝑑𝑡 = 0 , 239 

                                (2) 238 

where j = 1, ..., J indexes the scale, and k = 1, ..., K indexes the translation.  240 

The father wavelet smooth coefficients and mother wavelet detail coefficients 241 

are set as follows: 242 

𝑆𝐽,𝐾 = ∫ 𝑓(𝑡)𝜑𝑗,𝑘,   244 

                                                 (3) 243 

𝑑𝐽,𝐾 = ∫ 𝑓(𝑡)𝜓𝑗,𝑘. 246 

                                                  (4) 245 

The mathematical form and simplified form of f (.) above are: 247 

𝑓(𝑡) = ∑ 𝑆𝐽,𝑘

𝑘

 𝜑𝐽,𝑘(𝑡) + ∑ 𝑑𝐽,𝑘

𝑘

 𝜓𝐽,𝑘(𝑡) … + ∑  𝑑𝑗,𝑘

𝑘

𝜓𝑗,𝑘(𝑡) … + ∑ 𝑑1,𝑘

𝑘

 𝜓1,𝑘(𝑡), 249 

(5) 248 
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𝑓(𝑡) = 𝑆𝐽 + 𝐷𝐽 + 𝐷𝐽−1 + ⋯ + 𝐷𝑗 + ⋯ + 𝐷1, 251 

                            (6) 250 

with orthogonal components defined as follows: 252 

𝑆𝑗 = ∑ 𝑆𝑗,𝑘

𝑘

 𝜑𝑗,𝑘(𝑡), 254 

                                                (7) 253 

𝐷𝑗 = ∑ 𝑑𝑗,𝑘

𝑘

 𝜓𝑗,𝑘(𝑡).   𝑗 = 1,2, … , 𝐽. 256 

                                     (8) 255 

We rely on the maximum overlap discrete wavelet transform (MODWT) due to its 257 

superior flexibility to other wavelet forms (Percival and Walden, 2000). Less stringent 258 

sample size requirements and more flexible conversions make MODWT more 259 

amenable to economic data analysis. The first step of MODWT is to set the filter. For 260 

sequences 𝑋 = {𝑋𝑡; 𝑡 = 0, … , 𝑁 − 1} with N observations, we define the wavelet filter 261 

𝑊̃𝑙 = 𝑊1/√2  and the scale filter 𝐺̃𝑙 =
𝐺1

√2
= (−1)𝑙+1𝐺̃𝐿−1−𝑡 , which have properties as 262 

follows: 263 

∑  

𝐿−1

𝑙=0

 𝑊𝑙
˜ = 0, ∑  

𝐿−1

𝑙=0

  𝑊̃𝑙
2 =

1

2
, ∑  

𝐿−1

𝑙=0

  𝑊̃𝑙𝑊̃𝑙+2𝑛 = 0, 265 

                     (9) 264 

∑  

𝐿−1

𝑙=0

  𝐺̃𝑙 = 1, ∑  

𝐿−1

𝑙=0

  𝐺̃𝑙
2 =

1

2
, ∑  

∞

𝑙=−∞

  𝐺̃𝑙𝐺̃𝑙+2𝑛 = 0,    267 

                    (10) 266 

∑  

∞

𝑙=−∞

  𝐺̃𝑙𝑊̃𝑙+2𝑛 = 0. 268 

(11) 269 

Secondly, we clear the wavelet coefficients and scale coefficients as follows: 270 
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𝐻̃1,𝑡 = ∑  

𝐿−1

𝑙=0

  𝑊̃𝑙𝑋𝑡−𝑙𝑚𝑜𝑑𝑁, 271 

(12) 272 

                                                                                    

𝑉̃1,𝑡 = ∑  

𝐿−1

𝑙=0

  𝐺̃𝑙𝑋𝑡−𝑙𝑚𝑜𝑑𝑁, 𝑡 = 0,1, ⋯ , 𝑁 − 1,  273 

(13) 274 

where 𝐻̃1,𝑡  and 𝑉̃1,𝑡  are the wavelet and scale coefficients of the first layer. 𝑚𝑜𝑑 275 

represents the process of “congruence modulo”1. The coefficients of the jth layer are 276 

𝐻̃𝑗,𝑡  and 𝑉̃𝑗,𝑡, respectively, and the respective equations are: 277 

𝐻̃𝑗,𝑡 = ∑  

𝐿−1

𝑙=0

 𝑊̃𝑗,𝑙𝑋𝑡−𝑙𝑚𝑜𝑑𝑁, 279 

                                            (14) 278 

𝑉̃𝑗,𝑡 = ∑  

𝐿−1

𝑙=0

  𝐹̃𝑗,𝑙𝑋𝑡− 𝑙𝑚𝑜𝑑𝑁 , 𝑡 = 0,1, ⋯ , 𝑁 − 1, 281 

                          (15) 280 

𝑊̃𝑗,𝑙 =
𝑊𝑗,𝑙

2
𝑗
2

, 𝐹̃𝑗,𝑙 =
𝐹𝑗.𝑙

2
𝑗
2

, 283 

                                    (16) 282 

where 𝑊̃𝑗,𝑙 and  𝐺̃𝑗,𝑙 are the wavelet filter and scale filter in layer j, and the width is 𝐿𝑗 =284 

(2𝑗 − 1)(𝐿 − 1) + 1. Following Kumah and Mensah (2020), the periods of 2-–4, 4–8, 285 

8–16, 16–32, 32–64, and 64–128 days are represented by wavelet scales 𝐷1, 𝐷2, 𝐷3, 𝐷4, 286 

𝐷5 , and 𝐷6 , respectively. Furthermore, 𝐷1 , 𝐷4 , and 𝐷6   correspond to short-term, 287 

medium-term, and long-term time scales, respectively. Using the wavelet 288 

decomposition method, we can extract the “stable trend” under different frequencies 289 

                                                             
1 When two integers are divided by the same positive integer, if the remainder is the same, the two integers are 

congruent. 
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and reduce the interference of “noise”, such as some special events. What’s more, it 290 

enables researchers to customize the research frequency according to different research 291 

purposes.  292 

3.2 Quantile Granger causality test 293 

This subsection presents the quantile method used to test the causality between the 294 

carbon futures market and the green bond market. In short, Granger causality dictates 295 

that 𝑋𝑇 does not Granger-cause 𝑌𝑇 if it can not predict 𝑌𝑇. The time T can be adjusted 296 

according to the research objectives. We introduce the method in this section by taking 297 

𝑋𝑡, 𝑌𝑡(at the same period t) as an example. Mathematically, an explanatory vector 𝐼𝑡 ≝298 

(𝐼𝑡
𝑌, 𝐼𝑡

𝑋)′ ∈ 𝑅𝑑, 𝑑 = 𝑠 + 𝑞 . 𝐼𝑡
𝑋  is the past information set of 𝑋𝑡, 𝐼𝑡

𝑋 ≔299 

(𝑋𝑡−1, … . , 𝑋𝑡−𝑞)′ ∈ 𝑅𝑞 . The null hypothesis of Granger non-causality is defined as 300 

below:  301 

𝐻0: 𝐹𝑌(𝑦|𝐼𝑡
𝑌, 𝐼𝑡

𝑋) = 𝐹𝑌(𝑦|𝐼𝑡
𝑌).   ∀ 𝑦 ∈ 𝑅. 303 

                               (17) 302 

Here, 𝐹𝑌(𝑦|. )  represents the conditional distribution of given (𝐼𝑡
𝑌, 𝐼𝑡

𝑋) . 𝑋𝑡  does not 304 

Granger-cause 𝑌𝑡 in mean if:  305 

𝐸(𝑌𝑡|𝐼𝑡
𝑌, 𝐼𝑡

𝑋) = 𝐸(𝑌|𝐼𝑡
𝑌), 𝑎. 𝑠. 307 

                                     (18) 306 

where 𝐸(𝑌𝑡|𝐼𝑡
𝑌, 𝐼𝑡

𝑋)  and 𝐸(𝑌|𝐼𝑡
𝑌)  are the mean values of (𝐼𝑡

𝑌, 𝐼𝑡
𝑋)  and (𝑌|𝐼𝑡

𝑌) , 308 

respectively. However, the Granger test results for the means do not reflect the effects 309 

on different quantiles and may be affected by various factors. Therefore, Jeong et al. 310 

(2012) proposed Granger causality in quantiles. If we define 𝑄𝑇
𝑌,𝑋(. |𝐼𝑡

𝑌, 𝐼𝑡
𝑋) as the 𝜏-311 

quantile of 𝐹𝑌(. |𝐼𝑡
𝑌, 𝐼𝑡

𝑋), we obtain the value of 𝑄𝑇
𝑌(. |𝐼𝑡

𝑌).   312 

We rewrite the null hypothesis as the following (where T refers to the compact set 313 

and 𝑇 ∈ [0,1]):  314 

𝐻𝑂: 𝑄𝜏
𝑌,𝑋(𝑌𝑡|𝐼𝑡

𝑌, 𝐼𝑡
𝑋) = 𝑄𝜏

𝑌(𝑌𝑡|𝐼𝑡
𝑌), 𝑎. 𝑠. ∀ 𝜏 ∈ 𝛵 . 316 

                       (19) 315 

The conditional 𝜏-quantile of 𝑌𝑡 satisfies the following restrictions:  317 
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𝑃𝑟{𝑌𝑡 ≤ 𝑄𝑇
𝑌(𝑌𝑡|𝐼𝑡

𝑌)|𝐼𝑡
𝑌} ≔ 𝜏, 𝑎. 𝑠. ∀ 𝜏 ∈ 𝛵, 319 

                       (20) 318 

𝑃𝑟{𝑌𝑡 ≤ 𝑄𝑇
𝑌,𝑋(𝑌𝑡|𝐼𝑡

𝑌, 𝐼𝑡
𝑋)|𝐼𝑡

𝑌, 𝐼𝑡
𝑋} ≔ 𝜏, 𝑎. 𝑠. ∀ 𝜏 ∈ 𝛵, 321 

                   (21) 320 

Given the independent variable 𝐼𝑡, the probability 𝑃𝑟{𝑌𝑡 ≤ 𝑄𝑇(𝑌𝑡|𝐼𝑡)|𝐼𝑡} = 𝐸{1[𝑌𝑡 ≤322 

𝑄𝑇(𝑌𝑡|𝐼𝑡)]|𝐼𝑡}. Here an event is denoted by an indicator function 1[𝑌𝑡 ≤ 𝑌]. Hence, the 323 

Granger non-causality null hypothesis can be rewritten as follows:  324 

𝐸{1[𝑌𝑡 ≤ 𝑄𝑇
𝑌,𝑋(𝑌𝑡|𝐼𝑡

𝑌, 𝐼𝑡
𝑋)]|𝐼𝑡

𝑌, 𝐼𝑡
𝑋} = 𝐸{1[𝑌𝑡 ≤ 𝑄𝑇

𝑌(𝑌𝑡|𝐼𝑡
𝑌)]|𝐼𝑡

𝑌}, 𝑎. 𝑠. ∀ 𝜏 𝜖 𝛵. 326 

  (22) 325 

Assuming that 𝑄𝑇(. |𝐼𝑡) is appropriately specified through a parametric model that 327 

refers to a family of functions defined by 𝑀 = {𝑚(. |𝜃(𝜏))|𝜃(. ): 𝜏 → 𝜃(𝜏) ∈ Θ ⊂ 𝑅𝑝, 328 

then the Granger non-causality relationship is such that: 329 

𝐻𝑂: 𝐸{1[𝑌𝑡 ≤ 𝑚(𝐼𝑡
𝑌, 𝜃0(𝜏))]|𝐼𝑡

𝑌, 𝐼𝑡
𝑋} = 𝜏, 𝑎. 𝑠. ∀ 𝜏 ∈ 𝛵. 331 

                  (23) 330 

where 𝑚(𝐼𝑡
𝑌, 𝜃0(𝜏)) is the actual conditional quantile for 𝑄𝑇

𝑌(. |𝐼𝑡
𝑌). We now rewrite the 332 

null hypothesis based on the sequence of moment restrictions that are unconditional as 333 

given below:  334 

𝐸{1[𝑌𝑡 − 𝑚(𝐼𝑡
𝑌, 𝜃0(𝜏)) ≤ 0] − 𝜏}𝑒𝑥𝑝 (𝑖𝜔′𝐼𝑡)} = 0. 336 

                (24) 335 

Applying the test statistic as proposed by Troster (2018), we get:  337 

𝑃𝑇 ≔ ∫ ∫|𝑣𝑇(𝜔, 𝜏)|2𝑑𝐹𝜔(𝜔)𝑑𝐹𝜏(𝜏)

𝑍𝜏

, 339 

               (25) 338 

𝑣𝑇(𝜔, 𝜏) ≔
1

√𝑇 
∑{1[𝑌𝑡 − 𝑚(𝐼𝑡

𝑌, 𝜃0(𝜏)) ≤ 0] − 𝜏}exp (𝑖𝜔′𝐼𝑡)}

𝑇

𝑡=1

. 341 

    (26)     340 
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Let 𝜑𝜏𝑗
(. ) be the function such that 𝜑𝜏𝑗

(𝜀) ≔ 1(𝜀 ≤ 0) − 𝜏𝑗, and applying the 342 

test statistic, we obtain the estimation of test statistics: 343 

𝑃𝑇 =
1

𝑇𝑛
∑|𝜗𝑗

′𝑍𝜗𝑗|

𝑛

𝑗=1

, 345 

                        (27) 344 

where Z is defined as the TxT matrix and 𝜗𝑗  is the jth column of 𝜑 . Troster (2018) 346 

showed the subsampling procedure to estimate the critical values of 𝑃𝑇 . Although 347 

Granger causality test does not indicate that there is a strong causal relationship, we 348 

first conduct the Granger causality test to verify whether there is a certain correlation 349 

between the two and whether the relationship is unidirectional or bidirectional. The 350 

quantile Granger causality test we used showed more predictive power on joint 351 

distribution, and the test results also provided a more scientific basis for our subsequent 352 

quantile-on-quantile regression. 353 

3.3 Quantile-on-quantile regression  approach 354 

We further rely on the derivative method of quantile regression, the quantile-on-355 

quantile regression method proposed by Sim and Zhou (2015). This method is robust 356 

to outliers and non-normality in actual data, and as a nonparametric local linear 357 

regression method, it can reflect the conditional distribution and reveal potential 358 

structural mutations. The QQ regression method can comprehensively test the specific 359 

marginal influence between variables under each quantile, in contrast with the OLS 360 

method and the quantile regression method (Ren et al., 2019; Duan et al., 2021). We 361 

take the impact of the carbon futures market on the green bond market as an example 362 

to explain the process of the QQ regression method more intuitively. Our operation 363 

steps are as follows: 364 

Firstly, we define the nonparametric quantile regression equation for the green 365 

bond index return ( 𝐺𝑡 ) as a function of carbon futures return shocks (𝐶𝑡−1)  and 366 

EPU (𝐸𝑡) 367 
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𝐺𝑡 = 𝛽𝜃(𝐶𝑡−1) + 𝛼𝜃𝐸𝑡 + 𝜀𝑡
𝜃, 369 

                                     (28) 368 

where 𝐶𝑡−1 represents carbon futures price return at the time t-1, 𝜃 stands for the 𝜃-370 

quantile of green bond index return (𝐺𝑡), and 𝛼𝜃is the effect of the 𝜃-quantile of 𝐸𝑡 at 371 

the time t.  𝛽𝜃(∙) represents the impact of 𝐶𝑡−1 on 𝐺𝑡, which is the function we want to 372 

test. 373 

To examine the impact (represented by 𝐶𝜏 ) of the 𝜏-quantile of 𝐶𝑡−1 shocks on the 374 

𝜃-quantile of 𝐺𝑡, we expand 𝛽𝜃(∙)  by making a first-order Taylor expansion around 𝐶𝜏: 375 

𝛽𝜃(𝐶𝑡−1) ≈ 𝛽𝜃(𝐶𝜏) + 𝛽̇𝜃(𝐶𝜏)(𝐺𝑡−1 − 𝐶𝜏) ≡ 𝑏0(𝜃, 𝜏) + 𝑏1
′ (𝜃, 𝜏)(𝐶𝑡−1 − 𝐶𝜏), 377 

(29) 376 

Combining Eq. (28) and Eq. (29), we obtain: 378 

𝐺𝑡 = 𝛽𝜃(𝐶𝜏) + 𝛽̇𝜃(𝐶𝜏)(𝐶𝑡−1 − 𝐶𝜏) + 𝛼𝜃𝐸𝑡 + 𝜀𝑡
𝜃,  380 

                     (30) 379 

Then, we solve Eq. (30) by considering 381 

(

𝑏̂0(𝜃, 𝜏)

𝑏1̂(𝜃, 𝜏)

𝛼𝜃̂(𝜏)

) = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑏0,𝑏1,𝛼𝜃

 ∑  𝑇
𝑡=1  𝜌𝜃[𝐺𝑡 − 𝑏0 − 𝑏1(𝐶𝑡−1 − 𝐶𝜏) − 𝛼𝜃𝐸𝑡]𝐾 (

𝐹(𝐶𝑡−1)−𝜏

ℎ
). 382 

(31) 383 

where 𝜌𝜃(𝑦) = 𝑦(𝜃 − 𝐼{𝑦<0}) and 𝐼𝐴  is the function of the set A, K is a Gaussian kernel 384 

function on R, and ℎ > 0  is the bandwidth. The empirical distribution function is 385 

𝐹(𝐶𝑡−1) =
1

𝑇
∑ 𝐼(𝑂𝑘

𝑇
𝑘=1 < 𝑂𝑇−1). We use the following to obtain the optimal αθ  ̂: 386 

𝛼̃𝜃 =
1

𝑛
∑𝑖=1

𝑛  𝛼̂𝜃(𝜏𝑖). 388 

                                             (32) 387 

Lastly, we use the cross-validation (CV) method to set the optimal h, following 389 

Duan et al. (2021), and strengthen the robustness of the estimates of the QQ regression 390 
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method. 391 

3.4 Data  392 

We collect the daily closing prices of the S&P green bond index and the ECX EUA 393 

carbon futures for the data analysis in this paper. The original ECX EUA carbon futures 394 

price data is from the Intercontinental Exchange, while the daily price of the S&P green 395 

bond index is from Bloomberg2. Our sample period is from January 08, 2013, to March 396 

10, 2021. In addition, all sequences in our study are processed into the return series. 397 

This processing can enhance the stability of the data and reduce errors in the research 398 

process. 399 

The time series plots of these three variables above are shown in Fig.1. We cannot 400 

observe apparent consistency in the changing trend of these three sequences over our 401 

sample period, and need more detailed empirical analyses to investigate the 402 

interrelationships among them. Table 1 and Fig. 2. show the descriptive statistics and 403 

the density plots of our data, respectively. The standard deviation of the S&P green 404 

bond index is the smallest (0.0014), and that of the carbon futures is slightly greater 405 

(0.0330). This may be due to the fact that the green bond market belongs to the fixed 406 

income securities markets, while the transactions of the carbon futures occur more 407 

frequently. Meanwhile, the fluctuation of economic policy uncertainty is the largest 408 

among these three (the standard deviation is 0.2196), which is in line with the fact that 409 

economic policies could change rapidly.  410 

From the time series plots and the decomposed signal diagrams, we can see that 411 

there is no obvious synergistic effect among the three variables. Notably, in the first 412 

half of 2020, the three sequences all showed large fluctuations, most likely due to the 413 

sudden outbreak of COVID-19 (Elsayed et al., 2022). This phenomenon indicates that 414 

our decomposition results can be consistent with the actual situation, which proves the 415 

accuracy of our method. However, the shock of COVID-19 is not an individual case for 416 

                                                             
2 The daily data of the EPU of  US are obtained from http://www.policyuncertainty.com/index.html. The uncertainty 

of global economic policy is monthly. In order to maintain the consistency of data, we choose the uncertainty of 

American economic policy with available daily data. The EPU of U.S. can be used as a representative indicator of 

global economic policy fluctuations in many cases. 

http://www.policyuncertainty.com/index.html
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each of the series throughout the sample period and may not even cause the most violent 417 

fluctuations. For example, in 2013, carbon futures prices and EPU both experienced 418 

periods of severe turbulence. Despite various ups and downs, with the increase of time 419 

scale, the sequence changes become gentler after wavelet decomposition, indicating 420 

that extreme data and noise are greatly reduced after MODWT processing. 421 

The positive kurtosis values show the fat tail distribution for all sequences. Both 422 

the Jarque-Bera (JB) test and the Augmented Dickey-Fuller (ADF) test reject the null 423 

hypothesis significantly, which indicates that our data are non-normally distributed and 424 

stable. These two characteristics illustrate the necessity and correctness of the quantile 425 

method because the traditional approach cannot capture the asymmetry of the sequences 426 

in this paper.  427 

[Insert Figs. 1 and 2 about here] 428 

[Insert Table 1 about here] 429 

4. Empirical results and robustness 430 

4.1 Maximum overlap discrete wavelet transform analysis 431 

We use the MODWT to decompose the daily price returns of the ECX EUA carbon 432 

futures price, the S&P green bond index, and the EPU data into six frequencies to better 433 

understand the interrelationship between the European carbon futures market and the 434 

global green bond market at different time scales. The six wavelet signals (i.e., d1, d2, 435 

d3, d4, d5, and d6) represent 2–4, 4–8, 8–16, 16–32, 32–64, and 64–128 days, 436 

respectively, and d1 represents the short term, which is 2–4 days. Meanwhile, d4 437 

represents the medium term, which is 16–32 trading days with a corresponding period 438 

of approximately 3–6 weeks, and d6 represents the long term, corresponding to 64–128 439 

trading days with a period of approximately 3–6 months (Das and Kannadhasan, 2018; 440 

Kumah and Mensah, 2020).  441 
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The signals after the decomposition of these three sequences (i.e., the S&P green 442 

bond index return, the ECX EUA carbon futures price return, and the US EPU) are 443 

shown in Figs. 3, 4, and 5, respectively. According to these three figures, the synergy 444 

and regularity of their shifts cannot be extracted directly. However, these pictures 445 

display an overview of the performance of the series: the noise in the signal lessens, 446 

while their signal curves are smoother from short-term to long-term. The decomposition 447 

better captures data characteristics in different periods and reduces the error caused by 448 

some abnormal conditions, making the uncovering of the relationship between the 449 

carbon futures and the green bond flexible.  450 

[Insert Figs. 3–5 about here] 451 

4.2 Quantile Granger causality analysis 452 

In this subsection, we rely on quantile Granger causality tests on the decomposed 453 

sequences to further clarify the Granger causal relationship between the ECX EUA 454 

carbon futures price and the S&P green bond index. Fig. 6 and Fig. 7 present these 455 

results, respectively. These two charts show the nonparametric mean Granger causality 456 

under every quantile (from q = 0.05 to q = 0.95) over each time scale (the curve above 457 

the red line represents the Granger causality at the 5% significance level). The position 458 

of the quantile of the return series reflects the performance of the market conditions and 459 

is roughly divided into the bear market (q = 0.05 to 0.45), the normal market (0.5 460 

positions), and the bull market (q = 0.55 to 0.95), as suggested by Mensi et al. (2016), 461 

Selmi et al. (2018), and Kumah and Mensah (2020). In addition, we define extreme 462 

market conditions (where q is less than 0.05 or greater than 0.95). 463 

First, we focus on the Granger causal test of the carbon futures market on the green 464 

bond market (Fig. 6). It can be directly summarized that the resulting curves of the 465 

Granger causality test all have an unsmooth inverted U shape, which indicates that the 466 

Granger causality between the carbon futures market and the green bond market is most 467 

apparent in the quantile of the middle segment (near q = 0.5). Changes in the carbon 468 
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futures market will have the most substantial influence on green bonds when they are 469 

in non-extreme market conditions. 470 

Comparing these three results in Fig. 6, we find that the quantiles where the carbon 471 

futures market plays a role in green bonds are also increasingly prominent with the 472 

expansion of the time scale. In the short term, the quantiles of significant effect range 473 

from above 0.25 to below 0.75. In contrast, in the long term, they expand from 474 

approximately 0.15 to 0.85. This can also be seen from the gradual expansion of the 475 

area enclosed by the resulting curve of the Granger causality test and the horizontal red 476 

line. This shows that the carbon futures price will exert less influence on the green bond 477 

index in the short term, especially under the unusual market conditions of green bonds. 478 

However, as time goes on, the influence of the carbon futures market on the green bond 479 

market gradually becomes apparent; even if the green bond is in a“bull market” or480 

“bear market” conditions near the extreme will be affected. 481 

According to Fig. 7, statistically, green bonds do not Granger-cause the carbon 482 

futures market (the outcome curve did not exceed the horizontal red line in all 483 

scenarios). In other words, green bonds do not predict the development of the carbon 484 

futures market, regardless of time scale. Therefore, consistent with the existing 485 

conclusions about the green bond market, the green bond market is more of a net price-486 

spillover recipient than an exporter (Reboredo and Ugolini, 2020). Our results are 487 

slightly different from the results of a study by Rannou et al. (2020). They find that the 488 

European carbon market weakly correlates with the European green bonds market but 489 

has little correlation with the global green bonds market. In this paper, we focus on the 490 

relationship between the largest carbon futures market (the European market) and the 491 

global green bond market (the S&P green bond index is designed to measure the 492 

performance of green bonds globally). According to these results, the ECX EUA carbon 493 

futures price has a significant effect on the S&P green bond index. Our findings offer 494 

new evidence of market correlation in previous studies and demonstrate the prevalence 495 

of linkages between individual markets in the global economic system, even if it is only 496 

a one-way influence. 497 

Our subsequent empirical analysis will focus on the effect of the carbon futures 498 
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market on the green bond market with a more detailed and concrete deal, since the 499 

influence of S&P green bonds on ECX EUA carbon futures is statistically insignificant. 500 

[Insert Figs. 6 and 7 about here] 501 

4.3 Quantile-on-quantile regression estimates 502 

Applying the QQ regression method, we obtain the empirical results of the 503 

influence of each quantile of the carbon futures market on the green bond market at 504 

each time scale. These results are shown in Figs. 8, 9, and 10. We mainly analyze the 505 

estimation of coefficients 𝑏0(𝜃, 𝜏)  and 𝑏1(𝜃, 𝜏) . The former 𝑏0(𝜃, 𝜏)  represents the 506 

constants of the regression analyses while 𝑏1(𝜃, 𝜏)  stands for the effect of the τ-th 507 

quantile of the ECX EUA carbon futures price on the θ-th quantile of the S&P green 508 

bond index.  509 

According to the short-term results (as displayed in Fig. 8), the negative effect of 510 

carbon futures on green bonds (the dark blue region in Fig. 8) is mainly concentrated at 511 

the lower quantiles (the adjacent areas with 𝜃 = 0.1 and 𝜃 = 0.3). At the same time, the 512 

impact rises rapidly to the highest point ( 𝑏1 = 0.0074 ) when both 𝜃  and 𝜏  are at 513 

extremely high quantiles (greater than 0.9). When the return of the ECX EUA carbon 514 

futures price increases by 1 unit, the return of the S&P green bond index will increase 515 

by 0.0074 units. This indicates that when both the green bonds and carbon futures 516 

markets are highly active, the carbon futures have the most apparent positive effect on 517 

the green bonds. However, this result may not be very significant in the short term. On 518 

the one hand, these two markets are less likely to concurrently stay in extreme 519 

conditions. On the other hand, when the green bond market state is excessive, the causal 520 

relationship between the two markets will be weaker, as mentioned in section 4.2. In 521 

most conditions, the immediate effect of the carbon futures market on the green bonds 522 

market is mild and positive. 523 

Considering the medium-term results (as displayed in Fig. 9) shows that the 524 

positive effect of the carbon futures market on the green bond market is relatively stable 525 
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(𝑏1 floating between 0.0031 and 0.0151). In the medium term, when the carbon futures 526 

price returns increase by 1 unit, the corresponding increase in green bond index returns 527 

fluctuates between 0.0031 and 0.0151. It is particularly noteworthy that when 𝜃 is in 528 

the lower quantiles (lower than 0.1), the carbon futures market will exert the most 529 

significant impact. It will also have an extremely positive effect if 𝜏 is simultaneously 530 

in the lower quantiles (the combination of market conditions for this highly optimistic 531 

impact is the opposite of that in the short term in Fig. 8). When 𝜃 gradually increases 532 

(in other words, when the green bond market has slowly stabilized from the downturn ), 533 

this effect becomes smaller until 𝜃 is approximately 0.4; then, there is a relatively strong 534 

positive effect area. The fluctuation among the other quantiles is not evident, indicating 535 

that the positive effect in the medium term is generally mild and not significantly 536 

different from that in the short term. 537 

Finally, we analyze the results of the long-term QQ regression estimation (as 538 

displayed in Fig. 10). In the long-term scenario, the impact of 𝜏 (which represents the 539 

state of the carbon futures market) is negligible, and the value of 𝜃 (the quantiles of the 540 

green bond returns, meaning the market conditions) affects the shape and trend of the 541 

graph. When 𝜃 is less than 0.2, the influence of the carbon futures on the green bond 542 

synchronously increases with it, and a short peak period of 𝑏1 occurs when 𝜃 reaches 543 

approximately 0.2 to 0.3. Then until 𝜃 equals 0.8, the positive impact of carbon futures 544 

on green bonds oscillates downward as the value of 𝜃  increases. Finally, when 𝜃 545 

exceeds 0.8, the coefficient 𝑏1 ushers in a continuous rising stage and the highest peak 546 

value of 0.0091 is attained. This characteristic of 𝑏1 represents the impact of the carbon 547 

futures price return on the green bond index return. In the long run, this effect does not 548 

have extreme points similar to that in the first two frequencies scenarios, and the shift 549 

is relatively gentle and does not change abruptly. Furthermore, the market condition of 550 

green bonds plays a decisive role at this time scale. 551 

Combined with the above results, the green bond market may be negatively 552 

impacted by the carbon futures price when it is in a relatively depressed state (i.e., a 553 

bear market) in the short term. Apart from this situation, the influence of the carbon 554 

futures market on the green bond market is almost entirely positive at each time scale 555 
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and quantile level. Still, when these two markets are in abnormal extreme market 556 

conditions, it is easy to cause extreme shocks. These results are obtained even when 557 

controlling for the uncertainty of economic policies, which increases the credibility of 558 

these results, and this further indicates that the carbon futures market has a significant 559 

effect on the green bond market. As the time scale increases, the role of the green bond 560 

market condition becomes increasingly important, which directly affects the extent of 561 

the effect. Arif et al. (2021) also use a quantile-based approach from three frequencies 562 

to study the relationship between the green bond index and other financial products. 563 

They confirm that the green bond market is becoming increasingly essential and can be 564 

used as a hedge market for equity investment and other financial strategies in the 565 

medium and long term. Our results also show the degree of price information 566 

acceptance of the green bond market to another market. Still, slightly different from 567 

their study, our decomposition of time is based on wavelet transform rather than the lag 568 

method.  569 

Moreover, our QQ regression approach demonstrates the relationship between two 570 

variables and the changing trend more comprehensively than the partial quantile 571 

method. We compare our results with those from the OLS method and quantile 572 

regression method to more comprehensively show the advantages of the QQ method,  573 

and Table 2 provides these results. The OLS method and quantile regression can also 574 

verify the overall impact of the carbon futures market on green bonds, but these results 575 

cannot conveniently reflect the asymmetric effect of different time scales and market 576 

conditions. For example, the area of positive influence in the short term (Fig. 8) cannot 577 

be displayed in the results of these two methods. The short-term regression results of 578 

the OLS and quantile methods are negative and are the opposite of the short-term 579 

outcomes of the QQ method. It is possible that these two methods are based on the 580 

regression of the mean value of the series and cannot capture fluctuations and extreme 581 

data. In contrast, the QQ regression method can show the relationship between the 582 

carbon futures market and the green bond market at different joint quantiles, making it 583 

more suitable for complex and changeable practical problems. 584 

Additionally, from the comparison of the results, we can also analyze the influence 585 
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of EPU on the green bond market more clearly. Economic policy uncertainty also has 586 

dramatic results under three different frequency scenarios. In the short term, EPU has 587 

no significant impact on the green bond market index. Still, its effect is pronounced in 588 

the medium and long term, showing positive and negative, respectively. As for the 589 

quantiles, when the green bond index sequence is in the lower quantiles, it will be more 590 

affected by the EPU. In other words, the green bond market is more vulnerable to 591 

economic policy uncertainty when it is in a downturn. Finally, the significant effect of 592 

economic policy uncertainty proves the appropriateness of using it as a control variable 593 

in our research. 594 

[Insert Figs. 8–10 about here] 595 

[Insert Table 2 about here] 596 

4.4 Robustness 597 

In this subsection, we test the robustness and accuracy of the QQ regression results 598 

by comparing them with those obtained using the quantile regression (QR) method. We 599 

have chosen to comparatively analyze the estimated OR parameters with the τ-averaged 600 

QQ regression parameters. The equation is as follows: 601 

𝛾0(𝜃) ≡ 𝑏̅̂0(𝜃) =
1

𝐷
∑ 𝑏̂0(𝜃, 𝜏)

𝜏

  , 603 

                                     (33) 602 

𝛾1(𝜃) ≡ 𝑏̅̂1(𝜃) =
1

𝐷
∑ 𝑏̂1(𝜃, 𝜏)

𝜏

. 605 

                                     (34)      604 

where D is the points number of the grid of 𝜏 , and Figs. 11, 12, and 13 are the test 606 

results. In terms of the overall trend, the results for the constants and influence 607 

coefficients obtained by the QR method (represented by the solid green lines) and the 608 
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QQ regression method (represented by the dashed red lines) are not very different, 609 

regardless of the time scales. However, in the short-term (Fig. 11) and medium-term 610 

(Fig. 12) scenarios, the estimation results of the impact coefficient of the carbon futures 611 

price on the green bond index have some minor deviations, and the approximate curve 612 

trend is consistent. In the short term, the coefficient estimate of the OO method is less 613 

than the value measured by the QR approach (the dotted red line is lower than the solid 614 

green line in all quantiles), while in the medium term, the result is reversed. However, 615 

in the long run (Fig. 13), the resulting curves of these two methods almost coincide. 616 

The occurrence of partial errors indicates that there may be some noise caused by 617 

the impact of short-term events, which results in some minor deviations in the estimates 618 

of these two methods (the QQ regression considers the average effect on the τ-quantile 619 

in this test). In the medium term, the sequence becomes more stable, and the QQ method 620 

may better capture the impact of the carbon futures market, so the value of the impact 621 

coefficient will be slightly larger. However, our results remain qualitatively robust, 622 

regardless of the intercept estimation or the influence coefficients assessment. 623 

[Insert Figs. 11–13 about here] 624 

5. Conclusion 625 

Motivated by the importance and implications of COP26, we study the 626 

interrelationship between two derivative financial markets with the same function of 627 

environmental protection (i.e., the carbon market and the green bond market) under 628 

different time frequencies and market conditions. We combine the wavelet transform 629 

and quantile methods. First, we decompose the ECX EUA carbon futures price, the S&P 630 

green bond index, and the essential control variable, economic policy uncertainty, into 631 

different time scales sequences. Through the quantile Granger test, we find that the 632 

global green bond market does not statistically Granger-cause the European ECX EUA 633 

carbon futures market. Meanwhile, the carbon futures market significantly impacts the 634 

green bond market, regardless of frequency or market conditions. This result shows that 635 
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there is indeed a one-way rather than two-way relationship between the two markets. It 636 

reflects the European carbon futures market’s ability to predict the global green bond 637 

market, and proves that the current influence of the green bond market may be relatively 638 

weak once again. 639 

Then, we use the quantile-on-quantile regression method, an improved quantile 640 

regression method, to explore the specific function of the carbon futures price on green 641 

bonds. We find that the carbon futures market will have certain adverse effects in the 642 

short term when the green bond market is in a relatively low state (i.e., a bear market 643 

condition). Otherwise, the impact is positive for most time frames and market 644 

conditions. Furthermore, there are some synergies between these two markets. When 645 

both markets are in recession or prosperity, the effect of the carbon futures price on the 646 

green bond index is more likely to be small or sharply positive. This shows that the 647 

effect of the carbon futures on the green bonds is undoubted and positive in most 648 

situations, indicating that there may be a particular channel between these two markets, 649 

which leads to an inevitable interrelationship. As the time scale increases, the influence 650 

of the condition of the green bond market is more critical than that of the carbon futures 651 

market. The QQ regression method can be used to examine the influence of the carbon 652 

futures market on the green bond market more comprehensively by comparing the OLS 653 

and QR methods, which could help elucidate the specific relationship between these 654 

two in multiple dimensions. Our results survive several robustness tests. In addition, 655 

we also confirmed that economic policy uncertainty does have a significant impact on 656 

the green bond market. In particular, the effects of the EPU obtained by quantile 657 

regression are slightly different from those of OLS in the long run. Our results indicate 658 

that empirical analysis methods may perform differently under numerous scenarios, 659 

suggesting the necessity of our research framework in different quantiles and time 660 

ranges with wavelet decomposition and the quantile-on-quantile way. 661 

This research has supplemented the relevant literature on carbon trading and green 662 

bond markets and confirmed a one-way correlation with new empirical evidence. Our 663 

results at different frequencies and market conditions help different types of investors 664 

related to these two markets to obtain corresponding information, presenting a picture 665 
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with more details. It is beneficial for investors to make more reasonable or scientific 666 

investment decisions. For example, the synergies we found between the two markets 667 

can help investors predict the possible situation when the two markets are extremely 668 

active and irrational investments in some extreme market scenarios may be avoided. 669 

Our findings also carry other important implications. For example, regulators can 670 

better grasp the interrelationship between the carbon futures market and the green bond 671 

market from our analysis. The results could help them improve the supervision and 672 

management measures for these two markets through policy adjustment, enabling these 673 

two markets to jointly play their role in environmental protection and forming an 674 

effective network for low-carbon transformation. Although many regulators have 675 

consciously incorporated a carbon trading market and green financial products such as 676 

green bonds into their future policy planning, they often seem to have only parallel 677 

relations without in-depth exchanges. Our analysis can help regulators pay attention to 678 

the differences in the links between the two under different conditions and make 679 

targeted policy arrangements. In addition, the role of the green bond market in the 680 

carbon trading market is not significant enough. Regulators should reasonably 681 

strengthen the financial support role of the green bond market in the carbon market and 682 

promote the integration and innovation of the two markets. Finally, we verify the 683 

existence and specific performance of the relationship between these two markets, but 684 

their influence channels and other aspects have not been investigated, leaving ample 685 

space for other researchers to improve or expand our analysis. 686 

  687 
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Table 1. Descriptive statistics of the return series of sample sequences 865 

Table 2. Results of the OLS and quantile regression methods. 866 
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Table 1. Descriptive statistics of the return series of sample sequences 868 

 Green bond Carbon futures EPU 

Minimum -0.0105  -0.3526  -1.3673  

Maximum 0.0087  0.2703  1.3170  

25th Quartile -0.0007  -0.0146  -0.1647  

75th Quartile 0.0008  0.0177  0.0897  

Mean 0.0000  0.0014  -0.0312  

Std.dev 0.0014  0.0330  0.2196  

Skewness -0.6644  -0.2937  -0.0500  

Kurtosis 6.7369  11.3247  2.4779  

JB test 4146.7174***  11305.9036***  541.6598***  

ADF test -13.8141***  -14.4755***  -13.0639***  

Note: (i) This table is the descriptive statistics of the return series of ECX EUA Carbon futures price, S&P green bond index, and 869 

the EPU index of the united states. (ii) The time is from Jan 08, 2013, to Mar 10, 2021. (iii) * represents the 10% significance level; 870 

** corresponds to the 5% significance level; *** corresponds to the 1% significance level. 871 

  872 



 

35 
 

Table 2. Results of the OLS and quantile regression methods 873 

Panel A: OLS and quantile regression results (short-term) 

 OLS Quantile regression 

  0.1 0.5 0.9 

Intercept 0.0000  -0.0249***  -0.0003  0.0253***  

 (0.9841) (0.0000) (0.5863) (0.0000) 

Carbon -1.1389**  -2.7378***  -1.2823**  -0.4223  

 (0.0378) (0.0008) (0.0219) (0.6947) 

EPU -0.0002  -0.0001  -0.0002  0.0001  

 (0.1748) (0.6403) (0.2464) (0.7502) 

Panel B: OLS and quantile regression results (medium-term) 

 OLS Quantile regression 

  0.1 0.5 0.9 

Intercept 0.0000  -0.0004***  0.0000  0.0004***  

 (0.9817) (0.0000) (0.4612) (0.0000) 

Carbon 0.0096***  0.0052***  0.0029***  0.0061***  

 (0.0000) (0.0003) (0.0026) (0.0003) 

EPU 0.0013***  0.0016***  0.0009***  0.0014***  

 (0.0000) (0.0000) (0.0013) (0.0001) 

Panel C: OLS and quantile regression results (long-term) 

 OLS Quantile regression 

  0.1 0.5 0.9 

Intercept 0.0000  -0.0002***  0.0000**  0.0002***  

 (-0.9808) (0.0000) (-0.0213) (0.0000)  

Carbon 0.0047***  0.0025  0.0029**  0.0044***  

 (0.0000)  (-0.2382) (-0.0234) (-0.0005) 

EPU -0.0020***  -0.0027***  -0.0019***  -0.0023***  

 (0.0000) (0.0000) (0.0000) (0.0000) 

Note: (i) This table reports estimations of the ordinary least squares regression (OLS) and quantile regression on different quantiles 874 

(i.e., α = 0.1, α = 0.5 and α = 0.9) regarding impacts of the ECX EUA (Carbon) futures price return and EPU index of US (EPU) 875 

on the S&P green bond index return. (ii) P values are in parentheses. * denotes the 10% significance level; ** denotes the 5% 876 

significance level; *** denotes the 1% significance level. 877 
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Figures 879 

Fig. 1. Time series plots of the daily return of S&P green bond index, ECX EUA 880 

carbon futures prices, and US EPU from 2013-01-08 to 2021-03-10. 881 

Fig. 2. Density plots of the daily return of S&P green bond index, ECX EUA carbon 882 

futures prices, and US EPU from 2013-01-08 to 2021-03-10. 883 

Fig. 3. Maximum overlapping discrete wavelet decomposition of the S&P green bond 884 

index return. 885 

Fig. 4. Maximum overlapping discrete wavelet decomposition of the ECX EUA 886 

carbon futures price return. 887 

Fig. 5. Maximum overlapping discrete wavelet decomposition of the US EPU  888 

Fig. 6. Quantile Granger causality test of the ECX EUA carbon futures price on the 889 

S&P green bond index (from left to right, it represents short-, medium- and long-term 890 

in turn) 891 

Fig. 7. Quantile Granger causality test of the S&P green bond index on the ECX EUA 892 

carbon futures price (from left to right, it represents short-, medium- and long-term in 893 

turn)  894 

Fig. 8. QQR estimates for the impacts of the ECX EUA carbon futures price returns 895 

on the S&P green bond index returns (short-term) 896 

Fig. 9. QQR estimates for the impacts of the ECX EUA carbon futures price returns 897 

on the S&P green bond index returns (medium-term). 898 

Fig. 10. QQR estimates for the impacts of the ECX EUA carbon futures price returns 899 

on the S&P green bond index returns (long-term). 900 

Fig. 11. The robustness check: comparisons of the results from the QR and the QQR 901 

method (short-term). 902 

Fig. 12. The robustness check: comparisons of the results from the QR and the QQR 903 

method (medium-term). 904 

Fig. 13. The robustness check: comparisons of the results from the QR and the QQR 905 

method (long-term). 906 



 

37 
 

 

Fig. 1. Time series plots of the daily return of S&P green bond index, ECX EUA carbon futures prices, and 

US EPU from 2013-01-08 to 2021-03-10. 

 907 
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Fig. 2. Density plots of the daily returns of S&P green bond index, ECX EUA carbon futures prices, and 

US EPU from 2013-01-08 to 2021-03-10. 

Note: (i) The dotted black line represents the standard normal distribution, and the solid black line represents the actual 

distribution of each sequence. (ii) As can be seen from the figure, all three sequences are non-normal distributions. 
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 911 

Fig. 3. Maximum overlapping discrete wavelet decomposition of S&P green bond index return 

Note : (i) From d1 to d6, the decomposition layers of the MODWT method are getting bigger, and the time range represented is 912 

getting longer. 𝑑𝑗 corresponds to the time scale: from 2𝑗 to 2𝑗+1 trading days. (ii) The larger the time scale, the gentler the change 913 

curve is. 914 
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Fig. 4. Maximum overlapping discrete wavelet decomposition of ECX EUA carbon futures price return 

Note : (i) From d1 to d6, the decomposition layers of the MODWT method are getting bigger, and the time range represented is 916 

getting longer. 𝑑𝑗 corresponds to the time scale: from 2𝑗 to 2𝑗+1 trading days. (ii) The larger the time scale, the gentler the change 917 

curve is. 918 
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Fig. 5. Maximum overlapping discrete wavelet decomposition of the US EPU 

Note : (i) From d1 to d6, the decomposition layers of the MODWT method are getting bigger, and the time range represented is 921 

getting longer. 𝑑𝑗 corresponds to the time scale: from 2𝑗 to 2𝑗+1 trading days. (ii) The larger the time scale, the gentler the change 922 

curve is. 923 

 924 
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Fig. 6. Quantile Granger causality test of the ECX EUA carbon futures price on the S&P green bond index 

(from left to right, it represents short-, medium- and long-term in turn) 

Note: (i) The horizontal red solid line represents the 5% critical value. (ii) The vertical axis reports test statistics of the null 

hypothesis of the Granger causality test, and the horizontal axis indicates quantiles. 

926 
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 927 

Fig. 7. Quantile Granger causality test of the S&P green bond index on the ECX EUA carbon futures price 928 

(from left to right, it represents short-, medium- and long-term in turn)  929 

Note: (i) The horizontal red solid line represents the 5% critical value. (ii) The vertical axis reports test statistics of the null 930 

hypothesis of the Granger causality test, and the horizontal axis indicates quantiles. 931 
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(a)𝑏0（𝜃，𝜏） 

 

(b)𝑏1（𝜃，𝜏） 

Fig. 8. QQR estimated impacts of the ECX EUA carbon futures price returns on the S&P 

green bond index returns (short-term) 

Note: (i) 𝑏0(𝜃, 𝜏) represents constants of the regression analyses while 𝑏1(𝜃, 𝜏) stands for the effect of the τ-th quantile of ECX 

EUA carbon futures price on the θ-th quantile of S&P green bond index. (ii) Different colors represent the numerical magnitude 

and sign (positive or negative) of the coefficients. 
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 934 

(a)𝑏0（𝜃，𝜏） 

 

(b)𝑏1（𝜃，𝜏） 

Fig. 9. QQR estimated impacts of carbon futures returns on green bond returns (medium-term) 

Note: (i) 𝑏0(𝜃, 𝜏) represents constants of the regression analyses while 𝑏1(𝜃, 𝜏) stands for the effect of the τ-th quantile of ECX 935 

EUA carbon futures price on the θ-th quantile of S&P green bond index. (ii) Different colors represent the numerical magnitude 936 

and sign (positive or negative) of the coefficients. 937 
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(a)𝑏0（𝜃，𝜏） 

 

(b)𝑏1（𝜃，𝜏） 

Fig. 10. QQR estimated impacts of carbon futures returns on green bond returns (long-term) 

Note: (i) 𝑏0(𝜃, 𝜏) represents constants of the regression analyses while 𝑏1(𝜃, 𝜏) stands for the effect of the τ-th quantile of ECX 938 

EUA carbon futures price on the θ-th quantile of S&P green bond index. (ii) Different colors represent the numerical magnitude 939 

and sign (positive or negative) of the coefficients. 940 
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(a) The intercept of the green bond index return 

 

(b) Impact of carbon futures price return on the green bond return 

Fig. 11. Robustness: Comparisons of the results from the QR and the QQR estimate(short-term). 

Note: (i) The graph plots and compares the estimates of the traditional quantile regression parameters (denoted by QR: 

continuous green line) and the averaged quantile-on-quantile parameters (represented by QQ: red dotted line). (ii) QQ method 

regarding averaged impacts of the ECX EUA carbon futures price returns on different S&P green bond index returns quantiles. 
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(a) The intercept of the green bond index return 

 

(b) Impact of carbon futures price return on the green bond return 

Fig. 12. Robustness: Comparisons of the results from the QR and the QQR estimate (medium-term). 

Note: (i) The graph plots and compares the estimates of the traditional quantile regression parameters (denoted by QR: 

continuous green line) and the averaged quantile-on-quantile parameters (represented by QQ: red dotted line). (ii) QQ method 

regarding averaged impacts of the ECX EUA carbon futures price returns on different S&P green bond index returns quantiles. 
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 941 
(a) The intercept of the green bond index return 

 

(b) Impact of carbon futures price return on green bond index return 

Fig. 13. Robustness: Comparisons of the results from the QR and the QQR estimate (long-term). 

Note: (i) The graph plots and compares the estimates of the traditional quantile regression parameters (denoted by QR: continuous 942 

green line) and the averaged quantile-on-quantile parameters (represented by QQ: red dotted line). (ii) QQ method regarding 943 

averaged impacts of the ECX EUA carbon futures price returns on different S&P green bond index returns quantiles. 944 
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