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In this letter, we give an analytical quantum description of a non-equilibrium polariton Bose-
Einstein condensate (BEC) based on the solution of the master equation for the full polariton
density matrix in the limit of fast thermalization. We find the density matrix of a non-equilibrium
BEC, that takes into account quantum correlations between all polariton states. We show that the
formation of BEC is accompanied by the build-up of cross-correlations between the ground state
and the excited states reaching their highest values at the condensation threshold. Despite the
non-equilibrium nature of polariton systems, we show the average population of polariton states
exhibits the Bose-Einstein distribution with an almost zero effective chemical potential above the
condensation threshold similar to an equilibrium BEC. We demonstrate that above threshold the
effective temperature of polariton condensate drops below the reservoir temperature.

Introduction. The theoretical prediction of BEC was
made at the dawn of modern statistical physics [1, 2].
However, the first experimental realization of the BEC
required more than 70 years of physicists’ efforts [3, 4].
BEC was first observed for atoms in a magneto-optical
trap at cryogenic temperatures [3, 4]. A rapid devel-
opment of semiconductor technologies made it possible
to experimentally realize polariton BEC in solid state at
elevated temperature [5–19]. Polaritons are hybrid quasi-
particles formed by the strong light-matter interaction of
photons in a cavity with excitons of a semiconductor ma-
terial or organic dyes [7, 20]. Due to their small effective
mass and low density of states [8, 9, 14, 15], the critical
temperature for a polariton BEC can be as high as tens
or even hundreds of kelvin [5, 6, 19]. Such light-matter
condensed states attract fundamental as well as practical
interest due to their potential in all-optical manipulation
and low-energy optoelectronic applications [16, 21].

Being open dissipative systems polariton condensates
intrinsically are far from equilibrium. To maintain the
number of polaritons at a certain level an external pump-
ing is required. Therefore, the methods of equilibrium
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thermodynamics must be applied with caution to the de-
scription of non-equilibrium polariton condensates [7, 22–
24]. The description of the dynamics of polariton con-
densates require more sophisticated approaches (for a
review, see the Supplement in [16]). Generally, com-
plete information about the polariton condensate can be
accessed through its full density matrix. When dissi-
pation processes are described in the Markov approxi-
mation, their dynamics obeys the corresponding Lind-
blad equation [23]. However, due to the large number
of excited states, the master equation for the polariton
density matrix cannot be solved exactly. Previous stud-
ies largely rely on the semiclassical Maxwell–Boltzmann
equations to the average population of polaritons in con-
densates [22, 25–28] or other mean-field theories [29–31].
This approach takes into account both dissipation and
pumping as well as the processes leading to the ther-
malization of the polaritons [23, 32]. The Maxwell–
Boltzmann equations reproduce the observed Gibbs dis-
tribution of the polaritons in the excited states [32, 33].
However, this approach does not provide any information
neither on the coherence of polaritons nor on the corre-
lations between the polariton states [23, 34]. Recently,
a theory beyond the mean-field approximation was de-
veloped [35]. This theory consistently describes lasing in
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weakly and strongly coupled organic systems with strong
exciton-vibron coupling. It takes two-time correlations
into account allowing to study evolution of coherence and
thermalization in such systems, albeit limited to the first-
order correlations.

A way to get information about the coherence of the
polariton BEC is to reduce the complete master equation
to an effective one for the density matrix of the ground
polariton state only, where the contribution of the ex-
cited polariton states is taken into account as a whole
effectively [27, 30, 34, 36–40]. Such reduced equation for
the density matrix allows one to obtain complete infor-
mation about the quantum state of the ground polariton
state upon the BEC formation [23, 34]. However, this
approach does not provide any information about the
coherence of the polaritons in the excited states, their
statistical properties and their cross-correlations between
the ground state.

In this letter, we propose a complete quantum-
mechanical approach for obtaining the density matrix of
non-equilibrium polariton condensates in the limit of fast
polariton thermalization. We find the stationary density
matrix of the polariton BEC, which allows us to analyze
the correlations between all polariton states. We show
that cross-correlations between polaritons in the ground
state and those in the excited states arises at the con-
densation threshold. This property is a unique feature
of non-equilibrium BEC. We show that the number of
polaritons in the ground and excited states obeys Bose–
Einstein distribution with effective temperature well be-
low the reservoir temperature and an almost zero effec-
tive chemical potential above condensation threshold.

Master equation for the lower polaritons. Strong light-
matter interaction of the cavity photons with an optical
transition of active material gives rise for new eigenstates,
namely lower and upper polariton branches. The polari-
tons of the upper branch and excitons [8, 18]) are able to
scatter towards lower polariton branch forming BEC at
high enough excitation density. There are several mech-
anisms allowing such energy relaxation in polariton sys-
tems. Scattering with electrons [41] acoustic [23] and
high-energy optical phonons [42] or vibrons in organic
materials [18, 43] are among them. Pair-particle scat-
tering processes can also contribute to energy relaxation
towards the low-lying polariton states at high polariton
densities [44].

At the same time polaritons undergo multiple scat-
tering at the lower polariton branch followed by thermal-
ization and condensation above critical polariton density.
Since the non-equilibrium BEC occurs in the lower polari-
ton branch, below we consider the dynamics of the lower
polariton branch only. We describe the energy trans-
fer from the upper polaritons or excitons to the lower
polaritons as an effective incoherent pumping which is
reasonable assumption for majority of experimental real-
izations [6, 13, 19]

We suppose that the polaritons with frequencies ωj of
the lower polariton branch near the minimum are de-

scribed by bosonic creation â†j and annihilation âj op-

erators [23, 34] which obey the commutation relation[
âj , â

†
j′

]
= δjj′ . In this case, the Hamiltonian of the

polaritons takes the form

ĤLP =

M∑
j=0

ωj â
†
j âj (1)

The state with j = 0 is the ground state.

We describe the dynamics of the polaritons in the lower
polariton branch through the density matrix ρ̂. We con-
sider the relaxation and pumping processes in the Born–
Markov approximation [45]. In such a case, the density
matrix is governed by the master equation in the Lind-
blad form. The dissipation of the lower polaritons is de-
scribed by the Lindblad superoperator

Ldiss (ρ̂) =

M∑
j=0

γj

(
âj ρ̂â

†
j −

1

2
ρ̂â†j âj −

1

2
â†j âj ρ̂

)
(2)

where γj is the dissipation rate of the j-th state. The
effective incoherent pumping of the lower polaritons can
be described by the Lindblad superoperator

Lpump (ρ̂) =

M∑
j=0

κj

(
âj ρ̂â

†
j −

1

2
ρ̂â†j âj −

1

2
â†j âj ρ̂

)

+

M∑
j=0

κj

(
â†j ρ̂âj −

1

2
ρ̂âj â

†
j −

1

2
âj â
†
j ρ̂

)
(3)

where κj is the pumping rate of the j-th state. The
operator Lpump (ρ̂) leads to the following dynamics of the

average polariton population in the j-th state
〈
â†j âj

〉
and the average polariton amplitude in the j-th state

〈âj〉:
(
d
〈
â†j âj

〉/
dt
)

pump
= κj and (d 〈âj〉/dt)pump = 0.

Therefore, the action of incoherent pumping (3) leads to
the excitation of a certain number of polaritons per unit
time in the corresponding state, without affecting their
phase [46].

Thermalization of the lower polaritons may occur due
to different physical processes depending on the system.
For example, in organic polariton systems thermalization
occurs due to their nonlinear interaction with low fre-
quency vibrations [31, 43, 47–52]. For polariton states in
inorganic semiconductors thermalization predominantly
goes through interactions with acoustic phonons or free
charges [23]. Also the thermalization of the polari-
tons can occur due to polariton-polariton scattering [14].
However, regardless of the mechanism, this thermaliza-
tion can be described through the Lindblad superopera-



3

tor [23, 34].

Ltherm (ρ̂) =

M∑
j=0

M∑
k=0

Γjk

(
âj â
†
kρ̂âkâ

†
j −

1

2
ρ̂âkâ

†
j âj â

†
k −

1

2
âkâ
†
j âj â

†
kρ̂

)
(4)

where Γjk is the transition rate from the j-th polariton
state to the k-th state. The thermalization rates Γjk

obey the Kubo–Martin–Schwinger relation Γjk/Γkj =
exp ((ωj − ωk) /T ), where T is the temperature of inter-
molecular oscillations of the organic dyes or the temper-
ature of the phonons in the semiconductors.

Thus, the complete master equation for the density
matrix of the polaritons at the lower polariton branch ρ̂
has the form

∂ρ̂

∂t
=
i

~

[
ρ̂, ĤLP

]
+Ldiss (ρ̂)+Lpump (ρ̂)+Ltherm (ρ̂) (5)

Usually it is difficult to solve the master equation (5). For
instance, if we take into account M + 1 polariton states
and N excitations in each state, then the total number

of differential equations given by (5) is (N + 1)
2(M+1)

.
Here we consider the fast thermalization limit and show
that in this case the master equation (5) can be reduced
to (N + 1) differential equations.

Below we describe our approach in two stages. First,
we find all possible thermalized density matrices of the
polaritons. We assume that thermalization is the fastest

process in the system, i.e., Γ0j(1 + 〈â†0â0〉)� κj , γj (see

Discussion). In such a case, at times t � γ−1
j , κ−1

j the
density matrix obeys the approximate differential equa-
tion

dρ̂

dt
=
i

~

[
ρ̂, ĤLP

]
+ Ltherm (ρ̂) (6)

After the time Γ0j
−1(1 + 〈â†0â0〉)−1 � t � γ−1

j , κ−1
j ,

the system reach its quasistationary state which is deter-
mined by the following equation:

i

~

[
ρ̂, ĤLP

]
+ Ltherm (ρ̂) = 0 (7)

In the limits κj/Γ0j(1 + 〈â†0â0〉) → 0 and γj/Γ0j(1 +

〈â†0â0〉) → 0, we can suppose that the system reaches
quasistationary state at instantaneous time that is de-
fined by the condition (7). Applying the theory [53],
we can obtain the general form of the density matrix
of this quasistationary state. Indeed, the relaxation op-
erator Ltherm (ρ̂), defined by the expression (4), con-
serves the total number of lower polaritons [23]. There-
fore the operator of total number of lower polaritons∑M

j=0 â
†
j âj is the integral of motion for the thermal-

ization process. According to [53], the presence of
this integral of motion implies that the system has
invariant subspaces |n0, n1, ..., nM 〉 〈n0, n1, ..., nM | with

the total number of polaritons equal to
∑M

j=0 nj =
N . Being in the invariant subspace at initial mo-
ment in time, the system stays in this invariant sub-
space in the subsequent moments. In each invariant
subspace the Gibbs distribution is established with a
temperature T [53]. The corresponding density matrix
is Z−1

N

∑
n0+...+nM=N wn0

0 ...wnM

M |n0, ..., nM 〉 〈n0, ..., nM |,
where wj = exp ((ω0 − ωj) /T ), and ZN is the partition
function given that the total number of polaritons is N

ZN =
∑

n0+...+nM=N

wn0
0 ...wnM

M (8)

Some properties of the partition function ZN are dis-
cussed in the Supplemental Material I A. The general ex-
pression for the density matrix ρ̂ (t) that fulfills the con-
dition (7) is the sum of the Gibbs distributions in each
invariant subspace taken with the coefficients PN (t)

ρ̂ (t) =
+∞∑
N=0

PN (t)
1

ZN

∑
n0+...+nM=N

wn0
0 ...wnM

M

× |n0, ..., nM 〉 〈n0, ..., nM | (9)

The coefficients PN (t) are the probabilities that there
are N polaritons in total in the low polariton branch,
consequently

∑+∞
N=0 PN (t) = 1.

On the second stage, we substitute the general ther-
malized density matrix (9) into the master equation (5)
to account for driven-dissipative behaviour of the system.
As a result, we get equations for the probabilities PN (t)
(see the Supplemental Material I B)

∂P0 (t)

∂t
=
d0

Z1
P1 (t)− p0

Z0
P0 (t) (10)

∂PN (t)

∂t
=

dN
ZN+1

PN+1 (t)− (dN−1 + pN )

ZN
PN (t)

+
pN−1

ZN−1
PN−1 (t) , for N > 0 (11)

where dN =
∑N

n=0 ZN−n
∑M

j=0 (γj + κj)w
n+1
j and pN =∑N

n=0 ZN−n
∑M

j=0 κjw
n
j .

In the case of steady-state non-resonant pumping the
stationary solution of Equations (10)-(11) can be written
in recurrent form:

P1 =
p0

d0

Z1

Z0
P0 (12)

PN+1 =
(dN−1 + pN )

dN

ZN+1

ZN
PN −

pN−1

dN

ZN+1

ZN−1
PN−1

(13)
On the basis of our theory one can find the complete den-
sity matrix of the polaritons at the low polariton branch.
Formation of non-equilibrium BEC. In this section we

apply the developed theory to a polariton system con-
sisting of M + 1 states equidistant in frequency. This
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condition on the frequencies of the polariton states cor-
responds to a constant density of states in the continu-
ous limit of the two-dimensional system with quadratic
dispersion. The frequency of the j-th polariton state is
∆ωj = (ωM − ω0) × j/M . We consider the decay rates
to be the same for the entire lower polariton branch and
equal γ. We also assume that the incoherent pumping
is characterized by a rate κ, which does not depend on
time, and acts only on the polariton state with j = M .

The stationary density matrix of the polariton system
under consideration has the form (9), where the coeffi-
cients PN (t) are time-independent given by the expres-
sions (12)-(13). Following Eq. (12)-(13) the stationary
density matrix is well-defined by two dimensionless pa-
rameters, namely, the ratio of incoherent pumping to dis-
sipation in the states κ/γ and the ratio (ωM − ω0) /T .
We analyze how κ affects the stationary density matrix
of polaritons in the lower branch (9).

The solution for the stationary density matrix (9)
with the coefficients PN , determined by (12)-(13), al-
lows us to find the average population of the polari-
tons 〈n̂j〉 = tr (n̂j ρ̂). At low pumping rates, the pop-
ulation exponentially decreases with an increase of the
state frequency (Fig. 1). In this case, the exponent does
not depend on κ. However, for κ exceeding a certain
threshold value (hereinafter, the condensation thresh-
old), a relatively large number of polaritons accumulates
in the ground state (Fig. 1). This behavior of the aver-
age population of polaritons was observed in the exper-
iments [6, 10, 13, 19] and associated with the formation
of a polariton BEC. Note that the average polariton den-
sity in the ground state 〈n̂j=0〉 sharply increases at the
condensation threshold (Fig. 1) as has been evidenced in
various experiments [6, 10, 13, 19].

The incoherent pumping drives the system out of ther-
modynamic equilibrium. Therefore, the applicability of
equilibrium statistical mechanics approaches to polari-
ton condensates is at least controversial. To explore dif-
ferences and similarities between equilibrium and non-
equilibrium BECs, first, we study the average number
of polaritons 〈n̂j〉 = Tr (ρ̂n̂j) and examine the resultant
polariton population with respect to Bose–Einstein dis-
tribution (see Fig. 1)

〈n̂j〉 =
A

exp ((ωj − ω0 − µeff)/Teff)− 1
(14)

where Teff , µeff and A are extracted by the least squares
fit. For a system in thermodynamic equilibrium Teff is
the equilibrium temperature of the system, µeff is the
chemical potential, and A is an effective parameter pro-
portional to the number of states around the ground
state [54] defined by size of a system. Like in thermody-
namic equilibrium, we assign Teff to the effective conden-
sate temperature, µeff to the effective chemical potential
of the polariton condensate. Analogously, we suppose
that A does not depend on Teff or µeff . Consequently, A
should not depend on the rate of incoherent pumping κ.
The non-equilibrium polariton condensate demonstrates

FIG. 1. The dependence of the average population of po-
laritons 〈n̂j〉 = 〈â†j âj〉 on the incoherent pumping rate κ at
M + 1 = 100, (ωM − ω0) /T = 1. (Inset) Average population
of polaritons in the ground state.

FIG. 2. Approximation of the average population of po-
laritons in non-equilibrium BEC by the equilibrium Bose–
Einstein distribution (14) at M +1 = 100, (ωM − ω0) /T = 1.
(Blue) The ratio of the effective temperature of polaritons to
the reservoir temperature as a function of the rate of incoher-
ent pumping. (Red) Effective chemical potential of polaritons
as a function of the rate of incoherent pumping.

the same trend of decrease µeff with increasing κ (Fig. 2),
like conventional BECs in equilibrium statistical mechan-
ics. When the condensation threshold is exceeded, µeff

becomes almost equal to zero. However, unlike BEC at
thermodynamic equilibrium the non-equilibrium conden-
sate exhibits nontrivial dependence of effective temper-
ature Teff on κ, as shown in the Figure 2. Indeed, Teff

collapses below the reservoir temperature T above con-
densation threshold leading to stimulated cooling of the
polariton gas (Fig. 2).

Quantum correlations in BEC at the condensation
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FIG. 3. Correlation properties of non-equilibrium polariton
BEC. Second-order autocorrelation function of polaritons in
the ground and excited states versus the rate of incoherent
pumping at M + 1 = 100, (ωM − ω0) /T = 1. (Inset) Second-
order autocorrelation function of the ground state.

threshold. The main advance enabled by an exact so-
lution (9) is that it accesses coherence and high-order
correlations of all the modes in polariton BEC. Figure 3
shows the second-order autocorrelation function for po-
laritons as a function of κ. As κ increases, two processes
take place: on the one hand, the degree of coherence in-
creases, and on the other, the frequency region, in which
coherence is formed, narrows. These two processes lead
to a non-monotonic behaviour of the second-order auto-
correlation function of the polaritons in the excited states
with respect to the rate of incoherent pumping. At the
same time, the coherence of the ground state monoton-
ically increases. Namely, when κ exceeds the condensa-
tion threshold, the second-order coherence function drops
from two to one, see Fig. 3.

Another peculiar aspect in the formation of polari-
ton BEC is the correlation between different polariton
states. Although we limit our consideration to cross-
correlations between the ground state and other excited
states (Fig. 4), one can extend the analysis on cross-
correlation between arbitrary polariton states. At the
condensation threshold, 〈n̂0n̂j 6=0〉 / 〈n̂0〉 〈n̂j 6=0〉 is signifi-
cantly less than unity. This means that the ground state
and the excited states become correlated in such a way
that occupations of ground and excited states at the same
time are incompatible events.

Discussion and conclusion In this letter, we report
on an analytical quantum description of non-equilibrium
BEC based on solving the master equation for the full po-
lariton density matrix in the limit of fast polariton ther-

FIG. 4. Second-order cross-correlation function between the
ground polariton state and excited states versus the rate of
incoherent pumping at M + 1 = 100, (ωM − ω0) /T = 1.

malization. While the average polariton density and the
effective chemical potential exhibit the usual properties
of BEC at thermal equilibrium, we find out the effective
temperature strongly deviates from the reservoir temper-
ature, namely polariton gas undergoes noticeable cooling
effect. We also demonstrate that the formation of po-
lariton BEC is accompanied by anti-correlations between
the ground polariton state and excited states gradually
increasing towards the condensation threshold.

It is worth to mention the developed analytical the-
ory strongly relies on the fast thermalization in bosonic
systems. In fact, dynamics of polariton thermalization
depends on the polariton density [14, 23]. Therefore, our
approach is valid for sufficiently intense pumping rate
nearby the condensate threshold [6, 10, 11, 14, 17]. How-
ever, for long-lived polariton and photon systems ther-
malization occurs at pumping rates significantly lower
condensation threshold [13, 55]. Alongside the conven-
tional strongly-coupled microcavities we would like to
highlight recently developed plasmonic arrays hybridized
with Frenkel excitons as a separate fascinating class of
systems demonstrating BEC phenomena at room tem-
perature with extreme thermalization rate on the order
of 200 fs [56, 57]. The ultra-fast thermalization makes
our theory especially reliable for such systems in general.

We described polaritons as harmonic oscillators (1)
thus neglecting polariton interactions in the system while
in some cases, this nonlinearity turns out to be decisive
for the formation of condensate [24, 44]. Overall, the
theory developed in this letter is applicable when the po-
lariton density is large enough for fast thermalization,
but not as high as required for polariton interactions to
show up in the substantial energy change of polariton
eigenstates.
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For the sake of simplicity, we considered the case when
the incoherent pump populates the highest-frequency
state only. Although in most experiments pumping con-
figuration is slightly different, there are experimental re-
alizations analogous to the considered one [8]. Never-
theless, in Supplemental Material I F we provide results
obtained under simultaneous incoherent pump of all con-
sidered polariton - the common scenario in experiments.
The dependencies do not exhibit any significant deviation
from the simplified picture considered above.

While the steady-state regime considered in this letter
is more illustrative, and the results are easy to inter-
pret, the general equations (10)–(11) are applicable to
the case of pulsed drive as well. Moreover, recent exper-
imental advances in quasi-continuous organic polariton
condensation [58, 59], bring this theory into the context
of room-temperature polariton BEC.

The work was supported by the Russian Science Foun-
dation (Grant No. 20-72-10145). E.S.A thanks the Foun-
dation for the Advancement of Theoretical Physics and
Mathematics Basis.
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[16] J. Keeling and S. Kéna-Cohen, Annual Review of Physi-
cal Chemistry 71, 435 (2020).

[17] M. Wei, S. K. Rajendran, H. Ohadi, L. Tropf, M. C.
Gather, G. A. Turnbull, and I. D. Samuel, Optica 6, 1124
(2019).

[18] A. V. Zasedatelev, A. V. Baranikov, D. Urbonas,
F. Scafirimuto, U. Scherf, T. Stöferle, R. F. Mahrt, and
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I. SUPPLEMENTAL MATERIAL

A. Properties of the partition function ZN

Some important properties of the partition function ZN , defined by (8), can be obtained using its generating
function

f (x) =

+∞∑
N=0

xNZN =

M∏
j=0

1

1− wjx
, (15)

where M + 1 is the total number of polariton states, wj = exp (−~ (ωj − ω0) /T ), ωj is the frequency of the jth state
and T is the reservoir temperature. The generating function f (x) is defined for 0 ≤ x < 1.

Using the generating function (15), one can obtain the following properties of ZN

lim
N→+∞

ZN = lim
x→1−0

(1− x) f (x) (16)

wj
∂ZN

∂wj
=

N∑
n=0

wn
j ZN−n − ZN (17)

B. Derivation of Eqs. (10)-(11)

Substitution of the general expression for the density matrix in the limit of fast thermalization (9) into the master
equation (5) leads to

+∞∑
N=0

∂PN (t)

∂t

1

ZN

∑
n0+...+nM=N

wn0
0 ...wnM

M r̂n0...nM
=

=

+∞∑
N=0

PN (t)

ZN

∑
n0+...+nM=N

wn0
0 ...wnM

M Ldiss (r̂n0...nM
) +

+∞∑
N=0

PN (t)

ZN

∑
n0+...+nM=N

wn0
0 ...wnM

M Lpump (r̂n0...nM
) (18)
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where r̂n0...nM
= |n0, ..., nM 〉 〈n0, ..., nM |. To obtain Equations (10)-(11) it is necessary to project Equation (18) to

states with the total number of polaritons N .

C. Density matrix of the polaritons in the ground state

Figure 5 shows the diagonal elements of the polariton density matrix ρcondensate
N,N for j = 0, defined by ρ̂0 =∑

N |N〉 〈N | ρcondensate
N,N , where ρ̂0 = tr1tr2...trM (ρ̂), ρ̂ is the full density matrix of the lower polaritons and trj is

partial trace over the jth state. As one can see from Figure 5, at pumping rates below the threshold, the maximal
diagonal element of the density matrix is ρcondensate

0,0 . However, at pumping rates above the threshold, the maximal

diagonal element of the density matrix ρcondensate
N,N corresponds to N > 0, and the shape of the distribution of the

diagonal elements of the density matrix is getting close to a coherent distribution.

D. Approximation of the average population of polaritons by the Bose–Einstein distribution

Figure 6 shows the calculated distribution of the average population of polaritons and its approximation by the
Bose–Einstein distribution. Figure 6 shows the relative error arising from this approximation. One can see that the
Bose–Einstein distribution approximates quite well the stationary distribution of the non-equilibrium polariton BEC.

E. Dynamics of the formation of non-equilibrium BEC.

Figure 8 shows the time dependence of the population of polaritons in the ground state above the threshold. One
can see that the build-up of a stationary population of the ground state occurs in a characteristic time equal to the
decay time of polaritons. In addition, the higher the rate of the incoherent pumping, the faster the build-up of the
stationary population in the ground state.

F. Formation of polariton BEC when all states of the lower polariton branch are pumped

Figure 9 shows the dependence of the average values of polariton population at different pumping rates. In this case,
incoherent pumping acts on all the polariton states in such a way that its effect on the polaritons can be described
by the Lindblad operator (3) from the main text with κj = κ for all polariton states. It can be seen from the figure
that there are no qualitative differences for the stationary average population of polaritons between the cases when
only the highest-frequency polariton state is pumped and when all polariton states are pumped simultaneously.
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FIG. 5. Formation of BEC. Diagonal elements of the density matrix of the ground state at different rates of incoherent
pumping.
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FIG. 6. (a) Calculated average population of polaritons. (b) Approximation of the average population of polaritons by the
Bose–Einstein distribution with parameter A = 1.9 (see (14)). (c) The relative error between the calculated population and
the Bose–Einstein distribution.

FIG. 7. A decrease in the effective temperature of polaritons with incoherent pumping rates above the threshold of the BEC
formation.
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FIG. 8. The ratio of the steady-state population of the ground state and current population of the ground state for pumping
rates above the condensate formation threshold.

FIG. 9. The average population of lower polaritons when all states are pumped simultaneously.
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