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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND THE ENVIRONMENT

Computational Engineering and Design

Doctor of Philosophy

MULTIDISCIPLINARY AIRCRAFT DESIGN OPTIMISATION USING AN

IMPROVED BLACKBOARD FRAMEWORK

by Nickolay D. Jelev

The commercial aircraft design process is controlled by chief engineers that meet at

regular intervals to make key decisions. This has remained largely unchanged since the

early days of aircraft design and has prompted researchers and industry practitioners

to explore various communication architectures under the topic of Multidisciplinary

Design Optimisation. Although many have been widely studied, they are rarely used

in industrial design primarily because they fail to integrate well within the existing

organisational structure of aircraft companies.

A legacy blackboard framework for Multidisciplinary Design Optimisation has been the

subject of this study. Blackboard frameworks promote concurrent engineering practices

using a database, some form of system level controller and a flexible arrangement of the

knowledge sources that make up the design process. The specific framework considered

in this thesis uses an automatic rule base to iteratively change the bounds on the shared

design variables until they converge to what is deemed to be a single optimal design. The

thesis covers the development and testing of a novel rule set, which has been given the

name “Multidisciplinary Pattern Search” by the author, to reflect that its logic combines

ideas from several well established heuristic optimisers.

Two aircraft design test cases demonstrate the merit of the Multidisciplinary Pattern

Search, as well as the work done on the database and visualisation modules. The results

indicate that the revised blackboard performs better than the distributed Collaborative

Optimisation approach, albeit sometimes worse than the monolithic Simultaneous Anal-

ysis and Design method that tends to be very organisationally disruptive to implement.

An additional 25% reduction in the convergence rate was achieved simply by reusing the

available data in the database.

Finally a team based application investigated the ease of use of the revised blackboard

method. The feedback highlighted that the process was intuitive and largely easy to

use, but further work is needed on a better human process interface.
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Chapter 1

Introduction

1.1 Background

Commercial aircraft start life as a set of specifications that are put together by the

manufacturer with the aid of aircraft operators, as each is anticipating changes in their

respective markets. The former sees potential to apply new technologies in the hope

to stimulate demand for the new aircraft, while the latter recognises limitations in its

existing fleet and aims to increase its competitiveness by modernising it [11]. Whether

a manufacturer decides to develop a completely new aircraft, improve an existing design

or commit to developing a family of similar aircraft, the process in each case follows a

number of predetermined steps.

The first key step defines the product in terms of performance requirements. Since the

early 1990s, it has become common practice for aircraft operators to help define some of

the requirements in exchange for contractually binding orders [62, 109, 130]. For example

range, payload, internal volume, procurement cost, etc., are some of the requirements

that can be defined by the airlines. The remaining specifications stem from safety,

legislatorial and airworthiness legislation. These often limit the noise, pollution output,

evacuation time, etc., of the airframe in the intended countries of operations. Combined

these culminate in the specification of a design problem with multiple objectives and

numerous constraints in engineering terms. The following stages in the process try to

solve this problem using a variety of tools and methods.

The conceptual stage marks the second step in the process. Designers assess several

configurations capable of meeting the earlier defined specifications using well calibrated

empirical models or low fidelity physics-based analyses. Analysis tools are often grouped

together in spreadsheet tools to enable numerous evaluation studies to be performed in

a relatively short period of time. A final design emerges after a formal optimisation

search or simply by means of manually trading the various design parameters using the

available tools [73].

1
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Towards the end of the conceptual stage, the key design variables are fixed and the

process begins to change shape. Organisational teams start break up the aircraft into a

number of domains, disciplines or sections. Engineers begin to analyse the various aspect

of the design separately and sequentially. The aerodynamic shape is generally fixed first

and the structural skeleton follows suit, as the whole aircraft moves through the various

disciplines in the process. At this stage, any significant changes to the design are largely

driven by the need to meet safety and airworthiness requirements [50, 106, 125], rather

than the desire to improve performance. Longer design cycles justify the application

of higher fidelity analysis tools, which are used to generate more accurate performance

estimates and provide guarantees to potential customers [62, 73]. Only when sufficient

orders have been received to indicate a return on investment, does the design proceed

to the final stage.

The majority of development costs ($10 - $15 billion) [44, 89] are committed by the man-

ufacturer at the start of the detailed design stage. Individual components are conceived

and refined asynchronously with the necessary manufacturing processes needed to fabri-

cate the aircraft. This is the most critical point in the development, where most delays

and budget cost increases occur [40]. These failures can bankrupt an airframer, which

was nearly the case the recent Bombardier C-Series aircraft [118]. While the problems

in this stage are not the focus of this thesis, many often originate from the preliminary

design stage where the proposed body of research lies. As a result, any improvements

in the preliminary design can have a large positive impact on the process. Figure 1.1

represents the main design stages and highlights the scope of the current body of work.

Also, the word aircraft is defined to mean fixed wing civil airliners in this thesis, in order

to avoid any confusion and ambiguity henceforth.
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1.2 Research Area

The traditional method of designing passenger aircraft sees a single configuration selected

fairly early and sequentially changed until it satisfies the multiple performance objectives

and regulatory constraints. To understand why this process can be inefficient, consider

the simple problem of selecting a single meal option for a large group of people, which

can only be reached electronically. The event organiser can propose a meal option as

a suggestion to everyone. The first person to respond dislikes that option and between

the two of them, they decide on an alternative that they propose to everyone again.

As more replies start to come in one by one, this forces the organiser to revise the

choice many times in order not to conflict with food allergies and other dietary requests.

Trying to reach a consensus in this way can take a long time, particularly when trying

to coordinate with a large group of busy individuals.

The traditional method of designing passenger aircraft sees a single configuration selected

fairly early and sequentially changed until it satisfies the multiple performance objectives

and regulatory constraints. To understand why this process can be inefficient, consider

the problem of organising a meeting between a large group of people, which can only be

reached electronically. An organiser starts by proposing a date and time to everyone.

If the first person to respond is unable to make this option, they will propose and

alternative to the organiser and between the two of them will agree on an alternative that

they submit to everyone again. As more replies start to come in, this forces the organiser

to revise the choice many times in order to fit within schedules of the participants.

Trying to reach a consensus in this way can be inefficient, particularly when trying to

coordinate with a large group of busy individuals. Using this very metaphor, Ward et

al. [156] highlighted these issues in the point-based design process in their paper - The

second Toyota paradox: how delaying decision making can make better cars. The authors

of the paper discussed two strategies to shorten the search in this design model.

The first option forces everyone to meet in person to discuss when to have a meeting.

In the scope of the design process, this corresponds to more frequent meetings between

engineers from the different organisational departments. In practice this can help reduce

the re-work by improving communication, but can also become inefficient because of the

need to collocate everyone together, which takes time away from design work.

The second option gives a few important members of the group the power to decide what

is best for the collective. This means that everyone has to accept that the final choices

may not be satisfactory or optimal for all. In engineering design, this often occurs at

key gates where the product is fixed. A small selection of chief engineers would meet

and often make decisions on behalf of all disciplines in order to meet set deadlines. This

approach is not only vulnerable to human factors in design, but also limits the knowledge

used in the decision making process. After all, only a few experienced engineers cannot
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represent the collective knowledge of several hundred designers that work behind the

scenes [128].

A third option (not discussed by [156]) forces every member to message their preferences

to one another. That way, each person is also considering the preferences of others when

proposing an alternative to the main meeting slot. A variant of this solution has been

used by Boeing and Airbus in the development of the B777 and A380 aircraft. “Design

Build Teams” [109] as they would be called in Boeing or “Component Management

and Integration Teams in Airbus [40] would combine experts from several organisational

domains. This strategy forces teams to work together and consider other’s constraints

in the face of conflicting aspirations.

While still considering the meeting planning problem, an altogether alternative strategy

is to let everybody propose a option and let the organiser find common ground from the

preferences. The organiser can then resubmit a smaller list of choices for another round

of selection and repeat the process until a single choice is left. This crude metaphor

illustrates the basics of set-based concurrent design. Such strategies seek to encourage

the exploration of multiple designs concurrently in order to avoid the re-work drawbacks

of the point-based design process [156]. The difficulty with this description is that set-

based design is an organisational principle. For those that wish to apply it, the generic

description does not specify how it would be realised as a computational entity. In other

words, given a problem to be solved, the set-based design principle gives a guideline,

which is a long way from a working solution.

Organising meetings has been addressed electronically by platforms such as Doodle poll,

Google forms and Microsoft calendar. Yet, the industrial design community still lacks

dedicated platforms for set-based design. Although there exist numerous mathemati-

cal and computational proposals, this thesis focuses on two categories of methods to

help advance the research on set-based design. The first uses the blackboard model,

which has proven suitable for managing communications across design teams working

in concurrent engineering. A database and controller unit manage the information that

is output by the various organisational domains and brings them into agreement over

successive iterations. Meanwhile, the maturity of optimisation methods and a growing

use of computational analysis tools in design, has motivated the development of a range

methods in the field of Multidisciplinary Design Optimisation (MDO). These methods

combine the analyses tools with formal optimisation search algorithms, to help engineers

exploit the tight domain interactions in order to generate better products [98].

The focus of the present research combines aspects from both classical MDO architec-

tures and the blackboard model. The work has been specifically developed for the early

preliminary aircraft design process, because it is an area that is yet to benefit greatly

from such modern design methodologies. It is however important to stress that the work
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has a wider applicability to other MDO problems and could easily be adapted to suite

ship, automotive and other forms of multidisciplinary design.

1.3 Hypothesis, Aim and Objectives

It is argued that by combining elements from the blackboard model and some classical

MDO architectures, researchers can achieve a framework that is more suitable for in-

dustrial design application, rather than the existing selection of distributed MDO archi-

tectures. Therefore the project’s aim has been to improve and test a legacy blackboard

framework to establish its suitability for industrial aircraft design.

This was achieved by addressing the following objectives:

1. Identify the main interaction and conflicts between domains in the current indus-

trial aircraft design process.

2. Develop a new robust system level rule base, a database and graphical user inter-

face for the legacy the blackboard structure.

3. Benchmark the rule base’s performance on several test cases and validate its output

against competing classical MDO architectures.

4. Develop a data mining module and investigate its ability to speed up the conver-

gence of the new process.

5. Test the intuitiveness and the ease of use the new blackboard system on a team-

based design problems.

1.4 Thesis Outline

This thesis is organised into seven chapters. Chapter 2 reviews the literature on the topic.

It begins with a survey of some of the most widely used methods in design optimisation

and follows with a section on the aircraft preliminary design process. It concludes with

a review of the current state of the art in MDO, highlights the opportunities for further

research and introduces the contributions in this thesis. Chapter 3 covers the main

aspects of the legacy framework and presents the main software architecture developed

as part of this work - the Multidisciplinary Pattern Search (MDPS). The following

chapter validates the performance of the method using two aircraft design test cases.

An Unmanned Aerial Vehicle (UAV) problem is used to calibrate the internal parameters

of the Multidisciplinary Pattern Search and a transonic wing design problem validates
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the performance of the blackboard against two alternative MDO architectures. Chapter

5 covers the development and testing of a previously unexplored area of blackboard

frameworks - the use of data mining module. Chapter 6 covers a team-based application

of the new blackboard system and finally, the conclusions and avenues for future research

are discussed in the last chapter of the thesis - Chapter 7.





Chapter 2

Literature Review

2.1 Introduction

What follows is a comprehensive review of multidisciplinary aircraft design optimisation.

MDO on its own is a large research area spanning multiple topics. Before moving

to specific MDO architectures, some of the most widely used numerical optimisation

algorithms are explored in Section 2.2. Then, Section 2.3 describes the most important

steps in the preliminary aircraft design process to highlight the needs of design engineers.

Finally, Sections 2.4, 2.5, 2.6 and 2.7 review the state of the art in MDO and explain

the apparent gaps that motivated this research.

2.2 Optimisation Methods

2.2.1 Introduction

In engineering design there are often numerous acceptable solutions that can satisfy a

problem. Limited time and resources make it impractical to evaluate every possible

solution manually, which means that a design that simply meets the requirements may

be implemented regardless of whether it is the best [12]. Thanks to recent advances in

computing there exist many optimisation methods are able to assist designers in the

search for the best - or at least an improvement on the current best - design. They are

particularly useful on problems with many design parameters or multiple objectives, as

they can automatically explore regions that might otherwise be missed using manually

driven trade studies [97].

Designers have a broad choice of optimisation algorithms that fall in one of two main

classes: gradient-based and gradient-free. Gradient-based methods require the first and

sometimes second order gradient of the objective function. This means they are highly

9
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suitable for problems with smooth objective and constraint functions, as they have often

been proven to converge significantly faster than gradient-free methods [97]. Gradient-

free methods on the other hand, rely solely on previous values of the objective function

to generate new trial designs. This means they are generally more suitable to problems

where the objective function is noisy or has many discontinuities [60]. Of course there

exist numerous exceptions to the contrary outside of these generic descriptions.

There are many different optimisation techniques in the literature. For an exhaustive list,

the interest reader is directed to the textbooks by Arora [12], Nocedal and Wright [108],

and Rao [124]. The following section reviews a number of methods that are commonly

used by design teams in many industries. This makes them relevant to the broader scope

of MDO, as well as to the specific research work described here. A significant section is

devoted to the Hooke and Jeeves, and Tabu search methods, because much of their logic

inspires of the new Multidisciplinary Pattern Search that follows in the next chapter.

But Section 2.2.2 covers several gradient-based methods.

2.2.2 Gradient-Based Methods

2.2.2.1 The Newton Method

The Newton method is perhaps the most well-known gradient-based optimisation algo-

rithm. It was originally developed to help solve non-linear equations, but has since has

become widely used as an optimisation algorithm [124]. It is highlighted here, to give

context to the more complex Sequential Quadratic Programming optimiser that follows

suit. Newton’s method assumes that the objective function can be approximated as a

quadratic in the region around the optimum and uses not only the first, but also second

derivative information to find a point where the gradient of the objective is zero. Equa-

tion 2.1 generates new candidate improvement points that minimise the single variable

function f(x). Here xj+1 is a new design point, xj is the current design point, f ′(xj)

and f ′′(xj) are the values that the first and second derivatives.

xj+1 = xj −
f ′(xj)

f ′′(xj)
(2.1)

For the multivariate case, the method generalises to:

xj+1 = xj −H−1J, (2.2)

where H and J are the Hessian and Jacobian matrices respectively. Standalone this

method has the fastest convergence property (known as quadratic convergence), because

it uses both the first and second order gradient information of the objective function



Chapter 2 Literature Review 11

[124]. Despite this benefit, it is not guaranteed to converge if the objective is non-

smooth or if a poor starting position is selected. In addition, it is unsuitable for many

practical engineering applications where the analytical gradients of the objective function

are unavailable. This has led to the development of quasi-Newton methods, which use

mathematical approximation techniques to calculate the gradients.

2.2.2.2 The Sequential Quadratic Programming Method

Arguably the most popular quasi-Newton method is Sequential Quadratic Programming

(SQP) [19]. It has seen widespread use in design optimisation [6, 7, 59, 121, 155] pri-

marily because it is efficient and robust even on certain non-smooth problems [90]. As

per most recent developments in optimisation, it is not one single algorithm, but rather

a combination of several different concepts. It combines Newton’s update formula with

the method of augmented Lagrange multipliers to handle the constraints [19]. Where

the Newton method requires the analytical gradients, SQP iteratively updates a model

of the inverse Hessian, which is particularly advantageous in engineering optimisation

where the precise Hessian is often unavailable. A description of the SQP method that

uses the Broyden Fletcher Goldfarb Shanno formula follows here.

First, the method approximates the objective function using a Taylor series quadratic

model, which can be expressed as:

f(xj+1) = f(xj) + Σf ′(xj+1 − xj) +
1

2
Σf ′′(xj+1 − xj)

2. (2.3)

In keeping with the previous notation and differentiating Equation 2.3, the gradient of

the quadratically approximated objective function at the point xj can be obtained by:

f ′(xj+1) = Jj + Hj(xj+1 − xj). (2.4)

Newton’s method sets gradient f ′(x) = 0 to determine the next iteration point. By

rearranging Equation 2.4 with the left side set to 0, the optimum step can be found to

be:

xj+1 − xj = −Hj
−1Jj. (2.5)

Equation 2.5 is mathematically equivalent to the Newton’s formula given by Equation

2.2. The left side of equation represents a step in the direction of the minimum. The

right side of the equation contains the Jacobian and Hessian matrices, for which accurate

approximations are needed. The Jacobian can be easily approximated by means of

numerical differentiation, such as finite differencing for example. There are also other
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differentiation methods such as complex step and adjoint method for this purpose, but

these are not considered any further.

As mentioned previously, the inverse of Hessian can be iteratively approximated. SQP

begins with an initial guess of the Hessian (usually the identity matrix [108]) and updates

with every new point. Although there are several ways to approximate the Hessian [119],

the method by Broyden Fletcher Goldfarb Shanno is presented here as it seems to be

most commonly used. An approximation of the inverse Hessian can be shown to equal

H̃−1j+1 = H̃−1
j +

wwT

wTs
−

H̃−1
j swTH̃−1

j

wTH̃−1
j s

, (2.6)

where

d = xj+1 − xj (2.7)

and

w = f ′(xj+1)− f ′(xj). (2.8)

Without a method of handling constraints, SQP is not very useful for many engineering

applications. SQP uses the method of Lagrange multipliers to satisfy constraints. The

Karush Kuhn Tucker conditions state that the gradient of the Lagrangian function

should be equal to zero. The Lagrangian can be represented by:

L(x, λg, λg) = f(x)− λTg g(x)− λThh(x), (2.9)

where g(x) and h(x) are the inequality and equality constraints and λg and λTh represent

the Lagrange multipliers.

g(x) ≥ 0

h(x) = 0
(2.10)

So to find the point ∇L(x, λg, λh) = 0, the Lagrange multipliers need to be solved

separately using the method of multipliers in an iterative scheme.
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2.2.3 Gradient-Free Methods

2.2.3.1 Genetic Algorithm

Genetic algorithms are one of the most widely used gradient-free optimisation meth-

ods. Arguably the most popular multiobjective optimiser - Non Dominated Genetic

Algorithm II (NSGA-II) [34] - has seen applications in morphing wing design [16], wing

control surfaces [84], families of aircraft [114], orbital re-entry vehicles [94] and hyper-

sonic nose cones [35]. Unlike the previously discussed gradient-based methods, this

gradient-free method generates new query points using only the output of the objective

and constraint functions - or fitness functions as normally referred in the optimisation

community.

Genetic algorithms mimic the biological natural selection process to generate new trial

solutions. The optimisation procedure starts with an initial pool of trial solutions,

which makes up the first generation of designs. Each design is then ranked and assigned

a probability that reflects their objective (or fitness) function value. For the multi-

objective case NSGA-II however, the Pareto rank is used to reflect this fitness. Designs

that improve the objective function assume a higher probability of selection, meaning

they are more likely to be chosen for the next step in the process. The second generation

of designs is created using pairs of designs from the previous generation. A crossover

method mixes design attributes in the pairs to produce new designs as offspring. These

make up the second generation of trial solutions. The process is repeated until either

the maximum allowable number of iterations/generations has been exhausted or there

is little or no change in objective function over successive generations. Mutation and

elitism are two phenomena that also play a role in the algorithm. Elitism guarantees

that the best designs are kept so over successive generations, while random mutations

in the attributes of offspring ensure that (at least in theory) all regions in the design

space are searched [24].

Although these methods are commonly criticised for being slow to converge, they possess

a number of appealing features. They are particularly good at avoiding local minima

and can perform well on problems that are both discrete or noisy [24]. Some are also

able to generate an entire Pareto Frontiers in a single optimisation run [34], making

them well suited for multiobjective problems. These are some of the reasons why they

remain a popular choice in academia and industry.

2.2.3.2 The Hooke and Jeeves Pattern Search

The Hooke and Jeeves method pre-dates genetic algorithms and is one of many pattern

search methods that exist in the literature [57]. Early versions (also known as systematic

or neighbourhood searches) usually divide the available design spaces into sectors, which
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are systematically explored until a minimum was found. The region that contains the

lowest observed value was magnified and new points with smaller separation generated

in the vicinity of the optimum. Although very simple and robust, these methods are

slow to converge because they ignore prior historical information when generating new

designs. Newer pattern search methods put emphasis on the use of previously generated

solutions to infer or disregard possible successive designs. The Hooke and Jeeves search

[57] is one of the most popular algorithms and was described by its authors as:

“the sequential examination of trial solutions involving comparison of each

trial solution with the best obtained up to that time together with a strategy

for determining (as a function of earlier results) what the next trial solution

should be.”

The method begins with an initial evaluation of the objective function at the starting base

point. A new trial solution is selected by perturbing one of the variables by an initial

step in an arbitrary direction. The trial solution is kept if it improves the objective

function, or otherwise a move in the opposite direction is explored. If neither move

improves the objective, the step is rejected and the procedure is continued to the next

variable. If however a move was successful, the design is set as the new point. An

iteration of the search concludes when the list of design variables has been exhauste,

which then establishes the new base pointd. Subsequent trials of this logic showed

that the movement direction is usually conserved over consecutive searches. Bell and

Pike [15] proposed that the successful directions of the moves should be used as the

primary direction in the next iteration of the search in order to reduce the number of

function evaluations. Similar use of memory was exploited in the original formulation

in the form of a pattern move [57]. The algorithm stores the magnitude and direction

of successful moves and applies a single move across all those variables that resulted

in an improvement at the end of a neighbourhood search. The move accumulates and

grows over successive searches when its outcome is a success. Overall it acts as a short-

cut bypassing what would otherwise be several neighbourhood searches in the same

direction. If the pattern move is rejected however, the legacy information stored within

it is no longer useful and it is therefore re-set.

The final part of the method sees the step size reduce if both the search and pattern move

fail to produce improvements. This ensures that the precision of the search increases

when no further progress can be made during the searching stage. The process is deemed

converged when the algorithm reaches a predetermined step size limit.

2.2.3.3 The Tabu Search

The Hooke and Jeeves search makes only limited use of memory to speed up the process.

This is perhaps because it was conceived during an era when computers had limited
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memory. As computational performance started to increase, an improvement on the

original was developed in the form of a Tabu search [46]. It uses several sophisticated

memory cycles in order to avoid the re-evaluation of designs and help avoid local minima.

The author of the Tabu search [46], and others after [154], recognised that the Hooke

and Jeeves method can sometimes re-evaluate designs that have been queried before.

This could be easily avoided by storing all moves in a database, which could be checked

before each new evaluation for duplicates. It is worth noting that in the description

of the Multidisciplinary Pattern Search that follows in Section 3.2, the this is rule is

referred as “duplicate check”, even though it is called a “Tabu move” in the scheme of

the Tabu search.

The Tabu search makes more sophisticated use of memory rather than simply checking

for duplicate designs. While a full description can be found in a number of references

[30, 46, 47], the description that follows uses the version presented in the publication

by Connor and Tillery [30]. Using the database, the algorithm would sometimes accept

results that degrade the objective function in order to explore wider areas in the design

space. To prevent re-evaluation and loss of optimal design, several memory cycles are

used to update the lists of forbidden or otherwise known as “Tabu” moves. Short term

Tabu moves are continuously updated in the database on a first in and first out basis,

giving the algorithm time to settle in a new area before removing them from the “Tabu”

list. Long term Tabu moves are kept to prevent the re-evaluation of the same designs.

These cycles were controlled using a set of rules supplementing the Hooke and Jeeves

search. The original method was developed for combinatorial problems, but has been

shown to work on continuous problems as well [61].

Although there exist a myriad of optimisation toolboxes containing sophisticated gradient-

based and other gradient-free methods, these relatively simple heuristic optimisers still

remain in use to date [92]. Their relative simplicity and robustness makes them partic-

ularly attractive for rapid in-house adaptation, which is why their logic underpins the

Multidisciplinary Pattern Search. These descriptions will prove useful to the reader as

Section 3.2 makes a comparison between the newly developed Multidisciplinary Pattern

Search and these two optimisers.

2.2.3.4 Constraint Handling Techniques

Both gradient-free and gradient-based optimiser augment the objective function in some

way to deal with constraints. The most popular form of constraint handling is the

penalty function. They work by augmenting the objective function with a value propor-

tional to the constraint violation. In practice, there is a trade-off in selecting the severity

of the applied penalty. If the optimum lies on a constraint boundary and the penalty

function is too high, the algorithm will likely be pushed inside the feasible region and
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stall to a sub optimal design [138]. Alternatively if the penalty is too low, the search

time may spend a lot of time exploring the infeasible design space and risks prematurely

converging to an undesirable design. Finding the optimal balance allows the penalty

function to score infeasible designs worse than feasible ones without adversely affecting

the convergence [29]. This can often be achieved using adaptive penalty functions that

vary depending on the constraint failure.

Separation approaches are also commonly used as constraint handling [117]. The un-

derlying idea is that feasible solution is better than an infeasible one. In other words,

the algorithm should first locate the feasible region, before searching for the optimal

solution inside it. As such, the method switches between minimising the objective or

minimising constraint failure throughout the search. Three rules [33] manipulate the

search algorithm to focus on improving feasibility or the objective. These are:

• When comparing two feasible solutions, the one with the best objective function

is chosen.

• When comparing a feasible and an infeasible solution, the feasible one is chosen.

• When comparing two infeasible solutions, the one with the lowest sum of constraint

violation is chosen.

An obvious disadvantage to these is they tend to be less effective in heavily constrained

problems [95].

Early surveys that reviewed penalty methods [29, 138] come to very similar conclusions.

Often individual penalty functions are given with elaborate mathematical justifications,

but most are derived from intuitive strategies much like the heuristics optimisers that

they are used with [138]. In reality they may or may not work on problems outside those

tested in the publications. It is up to the user to select and fine tune a strategy according

to the problem at hand [29]. A much more recent survey encompassing a wider array of

constraint handling techniques [102] highlights that the three rules are the most widely

used method in nature inspired constrained optimisation, while custom penalty fictions

still remained popular

2.3 Preliminary Wing Design Process

This section moves away from optimisation methods and instead focuses on the pre-

liminary wing design process used at Airbus UK. The aerodynamics team is the first



Chapter 2 Literature Review 17

discipline in a sequence. In theory, being first should allow them to dictate the external

shape of the wing, but experience from preceding designs heavily limits the available

design space. For example a maximum span limit is usually introduced to enable to air-

craft to fit inside set airport gates or a maximum wing root thickness to allow sufficient

spaces for the landing gear and fuel. The aim of this team is to define the external wing

shape such that it satisfies the desired stall and flight handling characteristics, without

degrading the aerodynamic efficiency.

Once the external shape is more or less fixed, the design moves to the loads depart-

ment, where engineers model the loads that the aircraft will experience during its use.

Experienced engineers then manually select several critical cases [105], which are next

passed to the structures team for analysis. It is noteworthy that the loads department

have their own analysis tools and do not explicitly rely on the Computational Fluid Dy-

namics (CFD) tools from the aerodynamics domain, which allows them to work fairly

independently from the aerodynamics and structures domains. Of course they have very

little freedom to change the design, as their main purpose is to generate the necessary

datasets for the structures domain.

From then on, there is very little opportunity to make major changes to the core external

shape without expensive and time consuming re-works. Instead, structural engineers

have significant freedom to design the internal wing structure that is not only able to

withstand the critical aerodynamic loads, but is also lightweight, cheap and easy to

manufacture, maintain and inspect. Separate teams of engineers look after the mass,

costing and manufacturing objectives, but they generally work closely together with the

structures domain. The final wing structure is usually decided by manually trading the

available design variables using Finite Element Modelling (FEM), however there is some

use of formal optimisation methods at this stage as well [49, 85].

When both the internal and external wing geometries have been fixed, the design moves

to the manufacturing domain. Using designated analysis tools, engineers modify the

wing structure to meet manufacturing constraints. In some cases the geometry is

changed from where the fabrication process is unable to the desired tolerances of the

optimised wing. Finally, the wing design moves to the costing and performance domains

where the contractually binding attributes of the design can be estimated in more detail.

Figure 2.1 illustrates the current, typical arrangement of the organisational domains in

preliminary wing design process at Airbus UK. While there are numerous other domains

including systems, controls, propulsion integration, etc., they tend to emerge later on in

the preliminary design process. Here they have been deliberately excluded to keep the

description of the process simple and to illustrate the desired application of the research

described in this thesis.
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Figure 2.1: Overview of the sequential design process followed in industry

These independent optimisations in series draw criticism for a number of reasons. The

most important design decisions are made at key gates, where designers from all of do-

mains meet to discuss different design options. Particularly in the early stages where

analysis data is scarce, the process often relies on experienced engineers to pick between

different design solutions. This means the process becomes heavily reliant on a few expe-

rienced individuals, which may be vulnerable to unintentional biasing from the human

aspects of design [73]. Secondly, the process is notorious for developing bottlenecks,

which occur because the domain analyses run at different speeds. The loads department

is a prime example of this, as engineers working in this domain require a considerable

time to evaluate and decide which critical load cases to pass down to the structures do-

main. And finally, there is the danger that engineers from the early domains may make

poor decisions because they lack information on how these will affect other domains

down the line. This can result in expensive and time consuming re-design, particularly

because the process has to satisfy the numerous internal communication loops, some of

which are illustrated in Figure 2.1.

The aircraft manufacturers have previously attempted to address these issues using

managerial changes. During the design of 777 (1988-1995), Boeing recognised that past

aircraft projects were overrun by communication problems between the many different

divisions in the organisation [130]. One somewhat successful solution has been the intro-

duction of “Design Build Teams”, which included representatives from different divisions

with the aim of addressing design problems through inter-disciplinary communication.

Although was applied at the detailed design stage, it was also implemented in such a

way as to promote group problem solving in the preliminary stage [109]. Airbus ap-

plied a similar approach in the design of the A380 (1994-2005). Aircraft Component

Management teams were established to oversee the design of major parts of the system

(e.g. wings, fuselage, empennage). Component Management and Integration Teams
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coordinated with Component Design and Build teams, each consisting of 40-50 people

[40].

Although the design process of the Boeing 777 is considered a success [130], the design

of A380 was seen as failure in terms of adhering to budgetary and time constraints [40].

This highlights that there continues to exist problems with the sequential design process,

particularly when applied to clean sheet designs. This is why many academics continue

to advocate the use of more elaborate concurrent design and optimisation methods

[86, 98].

2.4 Classical Multidisciplinary Design Optimisation (MDO)

Architectures

2.4.1 Introduction

MDO is a collection of methods and architectures which are able to solve complex prob-

lems partitioned into a number of disciplines, subsystems or domains. In the early days,

academics tackled MDO problems using a decomposition strategy specifically developed

for the problem at hand [38, 69, 101]. Successes in aero-structural optimisation however,

championed the development of more transferable methods that could be used across

multiple problems. These have now become a standalone research field, where the focus

is on the process, rather than the outcome of the design optimisation.

The works by Haftka [51] and Sobieszczanski-Sobieski [141] can be considered as the

beginning of MDO. Since then, numerous other architectures have been developed from

two contrasting trains of thought: monolithic or distributed. Figures 2.2 and 2.3 il-

lustrate differences between the two classes of methods using the disciplines from the

aircraft design process.

System Level Optimiser
Aerodynamics Loads Structures Manufacturing Costing Performance

Figure 2.2: Monolithic MDO design model

System Level
Optimiser

Optimiser
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Optimiser
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Optimiser
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Performance

Figure 2.3: Distributed MDO design model
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Monolithic architectures combine all discipline analyses under a single optimiser, which

controls the entire design process. One can simply imagine the monolithic approach as

a way of converting the multidisciplinary optimisation problem into a single disciplinary

one. These strategies can be quick and robust to converge when used with gradient-

based or surrogate-assisted optimisers. Because they are generally able to solve complex

problems in fewer analysis evaluations than distributed approaches [120, 146], their

application in certain aspects of industrial design engineering has seen a significant

increase [2].

There are three accepted ways to combine the multiple disciplines under a single op-

timiser. These were given the names Simultaneous Analysis and Design (SAND) [51],

Individual Discipline Feasible [32] and Multidisciplinary Feasible [32] by their authors.

Simultaneous Analysis and Design is covered in more detail later in Section 2.4.3 be-

cause it is used for comparison in the later sections of this work, while the others are

not discussed further here.

There remain a plethora of problems that hinder the merger of all analysis tools under

a single optimiser. In the preliminary aircraft design stage for example, proposed de-

signs need to be analysed by various black box programs. These are often spread across

multiple divisions in the organisation and require regular input from skilled design en-

gineers. In these cases, monolithic architectures would be unsuitable because they can

become notoriously difficult to operate and maintain. This is especially the case when

the analysis programs undergo regular updates [21] or necessitate different types of opti-

misers. Furthermore to benefit from the higher rate of convergence, these architectures

often require gradient or surrogate-based optimisers, which have separate obstacles to

implementation when gradients over the entire process are needed.

To make MDO applicable to organisationally dispersed problems, several multi-level (or

distributed) MDO architectures have emerged in recent years. Simply put, these permit

low level domains to control and optimise an aspect of the design using their preferred

methods, while a system level optimiser coordinates their interactions. This means that

organisational domains are able to conduct their individual analyses concurrently and

in isolation from others, all while utilising low cost distributed computational resources.

The main challenge in distributed optimisation is how to coordinate the multiple domains

into a single cohesive design. From a mathematical point of view, what links the multiple

organisational domains is the shared and state variables. Shared design variables are

those that are common across multiple domains, while state variables are output from

the analysis in one domain and are the inputs to another domain. One attractive method

to ensure convergence on the shared and state variables is to introduce a common vector

of targets that all domains can work towards. In other words, one can envision the chief

engineering team setting a set of design and state variables targets that each domain

tries to achieve. If these targets are unattainable, they are revised and new ones are
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generated based on the feedback from the individual design teams. Hence all domains

work towards a common vector of targets, thus ensuring system feasibility at the end

of the process. This model offer a strategy that is in theory well suited to industry,a

As aircraft design is often driven by contractual requirements rather than optimum

performance. This hypothetical model of the design process can be mathematically

simulated using several stages of optimisers. Sections 2.4.4, 2.4.5 and 2.4.6 review a

family of target-based architectures. These architectures are among the most widely

studied in the MDO field (Figure 2.4) suggesting greater simplicity and fewer obstacles

to implementation, which is why they have been reviewed next.

Although this thesis predominantly focuses on MDO application in the aircraft design

process, it must be stressed that MDO architectures have been applied to a wide variety

of problems outside the aerospace sectors including, but not limited to, water pumps

[8], supply chains [123], internal combustion engine [93], ship design [53, 163], stiffened

panels [25] and automotive suspension [71, 72, 79], chassis [96] and layout [80, 100].

A cursory examination of the literature on some of the most widely known methods

shows a growing interest in both academia and industry. What follows next is a review

of some of the most popular MDO architectures found in academia. Some of these

are illustrated in Figure 2.4, which shows the citation count of each architecture and

highlights the continuing growth of this academic topic.
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2.4.2 A Note on Notation and Architecture Presentation

It is common practise in academia to describe MDO architectures in a mathematical for-

mat. Before reviewing some of the most popular MDO architectures, a generic problem

notation is introduced to make the mathematical descriptions more digestible for the

reader. In its most general form, the global objective can be formulated as a weighted

sum of multiple domain objectives:

f0 =
N∑
i=1

aifi(xs,xl,y). (2.11)

Lower level domains perform analyses that generate coupling (or also known as state)

variables as given by:

y = Ri(xs,xl,y) (2.12)

and/or domain local objectives.

fi = Ri(xs,xl,y). (2.13)

Each local objective may have a number of domain local constraints in the form of

gi(xs,xl,y) ≤ 0 for i = 1, ..., N

hi(xs,xl,y) = 0 for i = 1, ..., N.
(2.14)

The variables xs,xl and y are vectors of domain local, shared and state variables, which

are the inputs to the local analyses. These analyses can be simple analytical functions,

dedicated black box routines or even experimental procedures, which are represented

here by the symbols Ri, gi and hi.

It is unusual to find design problems without limits (or otherwise known as bounds) to

the shared and local design variables. In the generic problem description, these bounds

can be expressed as:

lbs ≤ xs ≤ ubs

lbl ≤ xl ≤ ubl

(2.15)

where lb and ub denote vectors of the upper and lower bounds for the design variables

x, and the subscripts s and l clarify if they apply to the shared or local design variables.

It is also important to note that limits on state variables are actually constraints (as
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given by Equation 2.14), as state variables are the outputs of analysis routines and not

selected by a designer or optimiser.

Moving forward, it is also common for authors to provide graphical descriptions of their

proposed MDO architectures. Box diagrams are the most common way to graphically

represent new architectures [79, 86], however there has been recent a development on

more sophisticated eXtended Design Structure Matrix (XDSM) diagrams [88, 98]. Al-

though these offer much more detail and are less ambiguous than box diagrams, they

can be intimidating to readers outside of the MDO community. In the following sections

the mathematical formulation of each architecture, is combined within a box diagram

graphical format to help illustrate the decomposition structure. Any additional notation

specific to architectures will be given when necessary.

2.4.3 Simultaneous Analysis and Design (SAND)

Simultaneous Analysis and Design (SAND) is the oldest and also fittingly the first

architecture in this review [51]. It combines all disciplinary analyses under a single

optimiser. To ensure a consistent final design with respect to the state variables, the

analyses used to generate them are treated as constraints functions. Copies of the

state variables are put under the control of the optimiser, which tries to minimise the

difference between the outputs of these functions and the copies that were generated. As

all variables are under the control of a single optimiser, no distinction needs to be made

between shared and local variables, which is why all design variables here are covered

by the vector x. Figure 2.5 shows the mathematical decomposition of this architecture,

which is also inherently similar to single disciplinary optimisation.

Several aspects of the Simultaneous Analysis and Design architecture are noteworthy.

Simple MDO problems can often be solved very quickly with a gradient-based optimisers

[98]. This is assuming that the domain analyses are free from internal discontinuities.

Where this is not the case, non smooth analyse can render the gradient optimiser in-

effective. Although a gradient-free optimiser can be used instead, the convergence rate

advantage over the distributed architectures tends tp be lost.

2.4.4 Review of Collaborative Optimisation (CO)

Collaborative Optimisation is one of the earliest distributed architectures. It was con-

ceived in 1994 by researchers motivated to decompose multidisciplinary problems in a

way that would fit the natural divisions of aerospace companies and their preferred

methods of design [86]. A system-level optimiser minimises the global objective, while

domain level optimisers try to reduce the disagreements between various disciplines. The

main idea focusses around the concept of target variables.
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Simultaneous Analysis and Design

minimise:

f0 =

N∑
i=1

aifi(x,y)

subject to constraints:

y − Ri(x,y) = 0
gi(y,x) ≤ 0
hi(y,x) = 0

and variable bounds:

lb ≤ x ≤ ub

Figure 2.5: Mathematical formulation of Simultaneous Analysis and Design

The model assumes that the system level optimiser contains the global objective function

and each domain contains the analyses to generate the state variables. The system level

optimiser sets targets for the shared and state variables (xt). Domains then try to match

these targets my minimising a local consistency function Ji. During one system level

iteration, each domain has multiple attempts to reach those targets. If these targets

are unattainable, domains communicate this in the form of a constraint failure directly

to the system level optimiser. This forces the system level optimiser to modify the

targets over successive iterations until all domains are able to find the point where theit

consistency function Ji = 0. This is illustrated in Figure 2.6.

Since the analyses are solely computed at the domain level, this architecture is particu-

larly suitable for problems that do not have a natural hierarchical ordering, but rather

a collection of equally important domains [8]. Furthermore this decomposition strat-

egy eliminates communications between domains by channelling all analysis and design

information through a system level optimiser. This has made it suitable for a variety

of engineering applications including aircraft wing design [70, 87], launch vehicle design

[22], supersonic aircraft [115] and unmanned aircraft [139].

Collaborative Optimisation has been extensively studied and modified over the years.

In spite of the organisational advantages, several major shortcomings are observed in

the mathematical formulation. A number of researchers showed that it suffers from slow

convergence [4, 81, 120], as well as poor robustness [3, 86, 120] particularly when applied

to problems which have a high degree of disciplinary cross coupling and a large number of

shared variables. Alexandrov and Lewis [3] attributed these failures to the architecture’s
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Collaborative Optimisation

minimise:

f0 =

N∑
i=1

aifi(xt)

subject to constraints:

Ji = 0

Domain i

minimise:

Ji = (xs − xt)
2 + (y − xt)

2

subject to constraints:

gi(y,xl,xs) ≤ 0
hi(y,xl,xs) = 0

and variable bounds:

lbl ≤ xl ≤ ubl

lbs ≤ xs ≤ ubs

where:

yi = Ri(xs,xl,y)

Figure 2.6: Mathematical formulation of Collaborative Optimisation

problem decomposition. They observed that for certain problems the system level con-

straints can become non-smooth. Moreover, this feature was also confirmed by Tapetta

and Renaud [145] in the multiobjective formulation of the architecture. This therefore

hinders the application of most gradient-based optimisers, which explains why it has

been observed to fail when used with gradient-based optimisers on certain problems.

DeMiguel and Murrey [37] changed the format of the consistency functions Ji to address

this problem. Their “Modified Collaborative Optimisation” architecture demonstrated

better robustness using an exact penalty function in the system level constraints.

Overall, the main benefit of the original mathematical formulation is that it is relatively

simple in the scheme of MDO architectures. It also has very few tunable parameters,

which is perhaps why it continues to be widely used in academic comparison studies

[79, 81, 115, 120, 146, 128].
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2.4.5 Review of Analytical Target Cascading (ATC)

Michelena et al.[103] proposed the architecture termed Analytical Target Cascading,

to enable system level performance targets to be cascaded through the organisational

hierarchy of design teams in the automotive industry. The basic organisation of the

architecture is identical to the Collaborative Optimisation method. Where Analytical

Target Cascading differs, is in the mathematical formulation of the system level objec-

tive and constraint functions. Instead of the nested approach, a penalty function is

introduced in the system level objective to drive the difference between domain local

and target variables to zero. Here εx and εy make up penalty parameters that define

the precision of the final convergences. This change was shown to improve the speed of

convergence on tests performed by Roth [128] and Kim et al. [79] when compared to

Collaborative Optimisation.

Figure 2.7 shows an earlier version of Analytical Target Cascading by Kim et al. [79].

Similarly to the previous architectures, Analytical Target Cascading has also undergone

several refinements over the years. Perhaps the most notable derivative is a version

by Tosserams et al. [151], which showed that the Karush Kuhn Tucker criteria can be

satisfied using a Lagrangian penalty function. Other noteworthy variants explored a

non-hierarchical problem decomposition [152] as well as modifications for multiobjective

problems [71].

In theory, Analytical Target Cascading can be seen as a mathematical derivative of Col-

laborative Optimisation. The fundamental differences between the two is the presence of

additional penalty parameters, which means that the subsystem analysis are disjointed

from the system level optimiser, unlike the nested formulation used in Collaborative

Optimisation [128]. This offers some benefits, primarily the freedom to cascade target

variables down a hierarchy of design teams. However the original version by Kim et al.

[79] requires users to select suitable penalty parameter which can be difficult in practice.

Nevertheless this architecture has been applied to a wide variety of design problems

including, but not limited to automotive [71, 72, 79, 93], aerospace [9, 152] and supply

chain design optimisation [123].

2.4.6 Review of Enhanced Collaborative Optimisation (ECO)

The original formulations of Collaborative Optimisation and Analyticity Target Cas-

cading restrict inter-domain communications and channel decisions about target vari-

ables solely through higher levels. In 2008, Roth developed a non-hierarchical MDO

architecture called Enhanced Collaborative Optimisation (ECO) with the motivation to

eliminate the majority of the numerical difficulties associated with Collaborative Opti-

misation and increase the influence of low level domains to better reflect the processes

followed in industry [128].
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Analytical Target Cascading

minimise:

f0 =
N∑
i=1

aifi(xt) +
∑

εx +
∑

εy

subject to constraints:

εxi − (xsi − xt)
2 ≤ 0

εyi − (yi − xt)
2 ≤ 0

Domain i

minimise:

Ji = (xs − xt)
2 + (y − xt)

2

subject to constraints:

gi(y,xl,xs) ≤ 0
hi(y,xl,xs) = 0

and variable bounds:

lbl ≤ xl ≤ ubl

lbs ≤ xs ≤ ubs

where:

yi = Ri(xs,xl,y)

Figure 2.7: Mathematical formulation of Analytical Target Cascading

The core idea of the architecture is that design teams should control the objective

function, rather than chase targets imposed by chief engineers (i.e. the system level

optimiser). Instead the chief engineering team should try and bring the teams into

agreement. Therefore in Enhanced Collaborative Optimisation, a system level optimiser

minimises inconsistencies between the domains using the target variables xt, while low

level domains minimise their portion of the global objective function.

The inter-domain communications occur in the form of constraint preferences, which are

communicated across different disciplines. Mathematically, the system level optimiser

is unconstrained and solely aims to minimise the disagreements between the domains.
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The formulation of the domain objective function is substantially more complicated in

comparison to Collaborative Optimisation and Analytical Target Cascading. It consists

of a quadratic model of the global objective, a compatibility penalty function to reduce

differences between shared and state variables and a set of slack functions, to ensure

feasibility. Furthermore each domain includes additional linear constraint functions

from other domains in addition to any domain local constraints. Here λC and λF are

compatibility constants, which the user sets before starting the process, while the slack

functions s are models of constraints from other domains.

Enhanced Collaborative Optimisation

minimise:

J =

N∑
i=1

(
(xs − xt)

2
i + (y − xt)

2
i

)
subject to constraints:

No Constraints

Domain i

minimise:

fi = aifi(xl,xs,y)+λC(xs−xt)
2 +λC(y−xt)

2 +λF
∑

s

subject to constraints:

gi(y,xl,xs) ≤ 0
hi(y,xl,xs) = 0

and variable bounds:

lbl ≤ xl ≤ ubl

lbs ≤ xs ≤ ubs

where:

yi = Ri(xs,xl,y)

Figure 2.8: Mathematical formulation of Enhanced Collaborative Optimisation

Applications of Enhanced Collaborative Optimisation have demonstrated a considerable

computational advantage over Collaborative Optimisation and Analytical Target Cas-

cading [127, 129], and there also exists a formal proof of convergence [128]. However

the most notable drawback is the complexity of the objective and constraints functions

within each domain. The architecture is shown in Figure 2.8 In its most basic form.

In practice however, the full detailed strategy, which can be found in the Thesis by
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Roth [128], is often needed for more complex problems. This is arguably why applica-

tions of Enhanced Collaborative Optimisation remain rare. These exist only two other

publications with this architecture to the knowledge of the author [162, 164].

2.5 Towards Multidisciplinary Design Optimisation for In-

dustry

Considerable progress has been made towards integrating industry tools into monolithic

MDO frameworks. This has been aided by development in integration software systems,

such as iSIGHTTM and ModelCenterTM, which enable users to integrate analysis tools

using their optimisation algorithm of choice in a single framework. For example, Piperni

et al. [116] combined Bombardier’s own KTRAN CFD solver with NastranTM and

the authors’ own TWSAP structures analyses tools inside the iSight software. The

subsequent coupled aero-structural optimisation was performed in a monolithic MDO

environment. In later work [116], the authors increased both the number of design

domains and the analysis fidelity in an attempt to extend the framework outside of the

conceptual design stage. Although promising, all the disciplines in the design process

remain under the control of a single optimiser, which is undesirable for the preliminary

design stage.

The above survey of distributed methods is by no means exhaustive, but rather offers a

snapshot of some of the MDO methods available in academia. In fact the most recent

survey in the field, by Martins & Lambe [98], which summarises the already mentioned

monolithic and distributed architectures, along with a number of others listed as follows:

Concurrent Subspace Optimisation [141], Bi-Level Integrated System Synthesis [142],

Quasi-Separable Decomposition [52], Exact and Inexact Penalty Decompositions [36]

and MDO of Independent Subspaces [137]. All these architectures illustrate that there

is an abundance of academic literature on the topic. Despite all this work, most of these

have failed to routine secure applications in industry, which is perhaps the best indicator

that more work and different is needed in this area [2, 98].

This is partly because researchers working on the “classical” distributed architectures

have often devoted significant effort to improve the speed of convergence, while disre-

garding the organisational and cultural functionalities of their architectures [2]. The

many derivatives of Collaborative Optimisation, and formal convergence proofs of An-

alytical Target Cascading [78, 150] and Enhanced Collaborative Optimisation [127] are

examples of just that.

Furthermore, the distributed architectures covered here assume that designers are ho-

mogeneous agents that will make the correct choice in every decision [14]. In industrial

design, this is certainly not the case. When developing MDO methods, one must not
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lose sight that it will be human engineers (and not optimisers) monitoring domain anal-

ysis and controlling the overall process. Hence why the closest industrial application of

a target-based method shares only a few similarities with the existing MDO literature

[96]. That specific application was applied at Schlumberger, where top level engineers

generated targets for the coupling variables using a sampling plan of simulation analyses.

Low level teams would then perform exhaustive searches to find groups of satisfactory

designs that met those targets as closely as possible. At the end, top level engineers

would manually evaluate the possible designs and pick one to be carried forward for

prototyping. The authors reported that this process enabled a more thorough search

of the design space, while retaining the ability for top level engineers to pick the final

design. Moreover the method demonstrated a way for low level domains to work con-

currently and still satisfy top level performance targets. Yet because the existing design

process at Schlumberger favoured prototyping over simulation, a direct comparison be-

tween the two methods was very difficult [96]. The key observation to make is that this

method does little by way of formal numerical optimisation, which highlights the need

for distributed MDO methods to take better account of organisational design.

Using the assessment from the work by Agte et. al [2], three groups of obstacles fac-

ing distributed MDO methods have been put together: technical, organisational and

cultural. An architecture that meets the following specifications, some of which were

compiled from an assessment of the works by [2, 45, 98, 115], would hopefully become

more appealing for use in industry.

Technical functionalities:

1. Have a high probability of convergence to a feasible result.

2. Converges in a similar number of analysis evaluation as the current design method

in use.

3. Enables automatic data transfer between domains.

4. Allows chief engineers to prematurely terminate the process and still obtain a

feasible design.

5. Can be extended to include multi-objective and reliability-based optimisation.

Organisational functionalities:

6. Enables designers to use their preferred analysis tools and search methods.

7. Allows of interchange of analysis tools for various levels of fidelity.

8. Allows easy addition, removal and division of organisational domains.
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9. Promotes a problem formulation compatible with the current organisational design

structure.

Cultural functionalities:

10. Allows chief designers to monitor and guide the search process at a system level.

11. Enables domain level engineers to monitor progress in other disciplines.

These functionalities highlight that methods that are compatible with the existing in-

dustrial processes are more likely to be applied in practical design because they will

have lower risks to implementation. Current state-of-the-art methods try to maintain

the way low level domains carry out their design. The underlying assumption is that

a domain generates inputs to an analysis by way of an optimiser or manually driven

method, in an attempt to minimise a local objective or satisfy a constraint. Models that

deviate from this assumption risks becoming organisationally unsuitable for industrial

applications.

One recent advance in this area is a version of the Bi-Level Integrated System Synthesis

currently under development at Institute of Technological Research (IRT) Saint Exu-

pery [45]. A top level optimiser controls the shared design variables and domain level

optimisers set the values for the local variables. Otherwise the internal procedures by

which domains perform design is kept the same. Over successive iterations between the

two levels, Gazaix et al. [45] showed that the process is able to converge to a feasible

optimal result when applied to academic and industrial test cases. One of the main

disadvantages of this method however, is that the shared variables are exclusively con-

trolled at a system level. This means that domains that only use shared variables will

have limited control over the search process and will be at the mercy of the top level

optimiser.

2.6 Design Space Reduction Frameworks

A broader search of the literature on distributed MDO yields many alternatives to the

system level optimiser including the use of classifiers [5, 135] and game theory approaches

[91, 165]. This section however focuses on design space reduction methods that are

considered more suitable for industrial application. Design space reduction frameworks

use a controlling algorithm to iteratively move and/or reduce the bounds on the design

variables until they concentrate in a region small enough to represent a single design.

The first of the two surveys by Wujek and Renaud [161] examine a various different

“Move-Limit Management Strategy”. In many ways this is a survey of trust region

methods, because it covers the bound move strategies controlling only approximations
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of the functions to be optimised. The focus of their work however shifts to an applica-

tion to MDO in the second survey [160]. There the authors apply the bound movement

strategies as the top level optimiser in the Concurrent Subspace Optimisation architec-

ture. The findings from the case studies concluded that strategies that rely solely on

gradient information or that use fixed bound reduction are inadequate for solving MDO

problems decomposed in the Concurrent Subspace Optimisation format.

Shahan and Seepersad [134], Price et al. [120] and Hannapel et al. [53] all proposed

MDO frameworks that reduce the design space by changing the bounds on the shared

design variables. Unlike the architecture by Gazaix et al. [45], organisational domains

are free to alter both their shared and local variables so long as the proposed designs

lie within the search space that is governed by the system level controller. Simply put,

these methods can be viewed as distributed MDO architectures, where the domains are

free to optimise their specific engineering objectives (such as drag, mass, cost, etc..)

and a system level controller coordinates the process using the bounds on the shared

variables. Overall bound changes are governed by the outputs from the disciplines at

each iteration.

Hannapel et al. [53] and Hannapel [54] used gradient-based optimiser to alter the bounds

on the shared design variables, whereas Price et al. [120] developed a set of rules to

control the bounds. The method by Price et al. [120] was successfully able to find the

minimum when applied to several academic and aerospace design test cases. However

for problems with a high number of shared variables, the rule base took significantly

more analysis evaluations than several competing MDO architectures. The method by

Hannapel et al. [54] on the other hand was only applied to a ship design problem.

Although the authors do not offer a comparison with alternative MDO methods or

comment on the rate of convergence, they compare the method with one that uses

independent optimisation in series and conclude that it is valuable to utilise the space

reducing technique before approaching the problem with a single point-based method.

Shahan and Seepersad [134] build an opinion poll in the form of a probability density

function for each shared variable. By overlapping these probability density functions,

the authors were able to mathematically represent the design preferences from each

domain and therefore contract the bounds in areas where the probability is lowest. The

authors demonstrate the method on a UAV design problem, but fail to give a comparison

with a competing distributed MDO method. Furthermore the chosen test problem is

unconstrained and therefore it is difficult to establish if the information from probability

density functions would be sufficient to satisfy contained problems.

The methods of Shahan and Seepersad [134], Price et al. [120] and Hannapel et al. [53]

are standalone in the field of MDO and seem to have no continuation. This may be be-

cause they have not reached maturity due to the earlier discussed failures. Nevertheless,
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such approaches remain appealing primarily because they keep the preferred analysis

and search routines with the various organisational domains.

The work by Ollar et al. [110] is perhaps the most recent development in the area

and is an application of a trust region optimisation method applied to MDO problems.

Because at its core it uses the monolithic MDO architecture, it is not directly comparable

to the other three methods already discussed in this section, but none-the-less it is

worth noting. The proposed framework uses the Multidisciplinary Feasible architecture

with the mid-range approximation method [148, 149] as the optimiser of choice. This

effectively means that the optimiser iteratively reduces the bounds on selected design

variables at a top level. At a subspace level however, a sampling plan is used to build

surrogate models of the individual domain’s responses. The authors demonstrate that

the number of analysis evaluations can be reduced using this method, provided that the

design has made correct assumptions on which variables are significant for each domain.

2.7 Architecture Benchmarking Challenges

When faced by so many different options for distributed MDO, academics need ways to

assess emerging MDO architectures. They often apply their own architecture on test

cases and compare its performance against other established MDO architectures. The

most often used metrics for comparison are efficiency - how many analysis evaluations

does it need to converge, and accuracy - how close is the outcome to the (usually) known

global minimum.

There are many factors which influence how quickly and accurately a given architec-

ture will converge. The following list includes some of those: chosen problem, problem

decomposition, optimisers used, optimiser settings, starting design, starting point strat-

egy, dissimilarities in programming style, chosen internal architecture tuning parameters

and for methods that use surrogates models, a number of factors related to the type of

surrogate, data selection and tuning. This makes the process of comparing new, against

well-established alternatives extremely vulnerable to unintentional biasing. There exist

specific benchmarking frameworks, such as iSight, ModelCenter, pyMDO[99], OpenMDO

[55], that allow MDO problems to be defined once and reused across multiple architec-

tures. However because optimisers and surrogate models may serve different purposes

in the architectures, the use of such frameworks does not guarantee a fair comparison.

It is also worth noting that they require considerable additional effort for academics

unfamiliar with their use.

In general, few authors can replicate the exact results provided by others in comparison

studies. At best the results capture generic trends, but there are cases where they

disagree. For example Tedford and Martins [146] observed 8601 fewer analysis calls

than Perez et al. [115] when Collaborative Optimisation was applied on an identical
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problem. On the other hand, the paper by Perez et al. presented 1382 fewer analysis

calls in their application of Concurrent Subspace Optimisation in comparison to Telford

and Martins. Similar differences can be also found in other publications [3, 10, 26, 81,

83, 99, 120], which is why accuracy and efficiency can be a misleading metrics when

ranking architectures.

It is also not possible to fully compare architectures with the accuracy and efficiency

metrics alone. A number of researchers have therefore ranked architectures using qual-

itative metrics [3, 115, 168]. Yi et al. [168] used a “Required Information” metric to

describe complexity of a given architecture. Perez et al. [115] proposed three alternative

qualitative metrics. Simplicity describes the ease of implementing on a problem and is

measured by the total number of optimisation variables. Transparency is a metric that

describes the ease with which an outsider can modify the architecture to include capa-

bilities such as probability-based analysis and multiobjective formulation. It is derived

by the subjective view of the mathematical complexity of an architecture. The third and

final metric, portability, quantifies how easily an architecture could be implemented in

an existing organisational design structure. Although much more encompassing and ar-

guably more important, such assessments are only valid if they are made by independent

researchers not involved in development of the architectures being tested.

These difficulties motivated some developers to forgo the classical benchmarking tech-

niques and instead to compare their proposed methods against a model of the sequential

design process [27, 53]. This presents a different challenge because to accurately model

the design process is not easy. Both Hannapel et al.[54] and Chittick and Martins [27]

use a model of a design process that optimises one domain after the other, but their test

problems have constraints only in one of the two domains. Such comparisons would be

difficult on problems where more than one domain has internal constraints as there would

be no formal mathematical way to communicate constraint information across domain

boundaries. Besides, these models also fail to capture the experience that industrial de-

signers have, which ultimately risks under representing the abilities of real-world design

teams.

2.8 Concluding Remarks

The preliminary aircraft design process is often defined as sequence of analyses, per-

formed by various organisational domains one after the other. Current methods largely

rely on the designer’s experience to foresee how changes in one domain, may affect oth-

ers down the chain. Because this requires considerable human input, there is a shared

consensus in the research community that this process can be improved by using dedi-

cated MDO architectures, which can better exploit the interactions between the various

organisational domains [27].
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Monolithic MDO architectures have matured and seen increasing application on indus-

trial problems. Although they can be very efficient and robust, they are less suitable for

organisationally dispersed design problems, such as ones facing engineers in the prelim-

inary aircraft design stage. There is an abundance of more suitable distributed MDO

architectures that claim to emulate the industrial design processes, however, the review

presented here highlighted numerous drawbacks and obstacles to implementation.

Despite the growing number of state-of-the-art distributed MDO architectures, there is

evidence that aircraft manufacturers continue to use well-established sequential design

processes [50, 106, 125]. This leads to the conclusion that many of the existing dis-

tributed MDO methods and architectures fail to work in industry simply because they

do not fit the organisational structure of the company [2]. A MDO method that devi-

ates too far from the established processes, can be perceived as risky and therefore deter

designers from using it. Current state-of-the-art methods seek to incorporate a MDO

strategy by using the existing practices used by design teams. Many are still under de-

velopment or have not reached the level of maturity to allow for industrial application.

This highlights an interesting opportunity to develop a MDO framework that is more

industrially suitable than existing methods.

Out of all the methods reviewed in this chapter, the work by Price et al [120] is the most

promising avenue for further research. Although it sacrifices any formal guarantees for

global convergence, its formulation offers engineers an intuitive mechanism to control

multidisciplinary domains. The following chapters describe progress in this area and

how the work has addressed the gaps in the literature.





Chapter 3

The Blackboard Framework

3.1 Introduction

Aircraft design requires the cooperation of a large number of individuals with expertise

in different fields. How to get these individuals to cooperate in the face of conflicting

objectives and also enable a concurrent working environment has been the subject of

substantial recent research. Current industrial practices deal with these conflicts via

regular face to face meetings involving chief engineers representing the various organisa-

tional domains. Each representative then attempts to influence decision makers towards

their optimum by presenting engineering analysis or historical experience to support

their design solution [106]. The growing number of sophisticated digital analysis, stor-

age and communication tools has motivated research in so called “blackboard frame-

works” [41, 58, 107, 157]. These share numerous similarities with the classical MDO

architectures and have been previously proposed for use on concurrent engineering and

distributed design problems.

Nii [107] described the generic blackboard model as a collection of three elements: knowl-

edge sources, a controller and a database. Much as in distributed MDO problems, the

model assumes that individual knowledge sources (the organisational domains) are in-

capable of solving the problem alone, but instead must cooperate with others to reach

a solution. Communication between domains is done solely via the database. Each

domain periodically updates the database with information that they have generated.

Equally, other domains can extract information from the database, which they require

for individual analyses. The database in other words facilitates the exchange of analysis

data between domains. The entire process is managed by a controlling algorithm, which

periodically evaluates the information in the database and guides the knowledge sources

to a feasible solution[107].

This generic description offers nothing more than guidance for developing blackboard

frameworks, without a step-by-step recipe for its application on specific problems. Price

37
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et al. [120] used this concept to formulate a design space reduction framework that was

shown to solve MDO problems. Figure 3.1 illustrates how this would typically work for

a wing design problem, while the process can be described in the following phases:

User Interface 

Final Design 
Rule 
base 

Blackboard 

Data 
Mining 

Database 

To domains: Search Space From domains: Preferred Designs 

Aerodynamics 
Group  

Weights 
Group  

Starting Design 

Manufacturing 
Group  

Loads Group  Controls Group  

Figure 3.1: Blackboard framework layout for MDO (adapted from Price et. al
[120])

Phase 1 : Chief engineer selects a common starting design and defines the available

search space in the form of upper and lower variable bounds.

Phase 2 : Engineering teams (the knowledge sources) can then explore the available

design space using their preferred optimisation and analysis methods. They are free to

develop what they consider to be an optimal design in relative isolation from all other

domains.

Phase 3 : As domains are analysing and altering their preferred designs, they populate

a central repository (a database), which is accessible to all other domains. Therefore

when one domain requires coupling information from another, they can simply query

the database and obtain the latest design status from there.

Phase 4 : At the end of a search, each domain uploads their preferred design to the

database.

Phase 5 : A rule set then evaluates the uploaded designs and proposes new upper/lower

bounds on the shared design variables accordingly. The process is repeated from Phase

2 until the available design space is so small that it can be assumed to represent a single

final design. This convergence can be illustrated using a two variable MDO problem as

shown in Figure 3.2.



Chapter 3 The Blackboard Framework 39

x1

x2
Minimum

Direction of
Reducing
Bounds

Figure 3.2: Bound reduction strategy illustrated on a problem with two shared
variables

This method can be viewed as a distributed MDO architecture, where organisational

domains optimise their specific engineering objectives and a system level blackboard

coordinates the process. As already discussed in Section 1.2, it is often preferable to

narrow down a design from multiple good solutions, rather than iteratively change a

single design. These attributes make the blackboard process particularly suitable for

problems in the early preliminary design stage where a target concept is already selected

and parametrised, but the values for the key geometric variables are not yet fixed, just

enclosed by upper and lower bounds.

The three main elements in the blackboard serve separate functions. The rule base plays

the role of the chief engineer and contracts the bounds towards a design minimum. The

user interface allows chief engineers to monitor the process and steer low level domain

searches. And finally, the database enables information to flow between the various

domains involved in the design process. Therefore a transition from the present process

that uses independent optimisation in series to the proposed concurrent MDO method

should in theory be straight forward, because the inner structure of the design domains

remains the same, while already existing data communication, storage and management

protocols can be easily adapted to accommodate the blackboard.

While the original framework described in the reference is sound, it lacks a user inter-

face and data mining modules, and its rule base suffered from a number of problems.

The original rule base made limited use of the history of previously evaluated solutions,

which meant it was slow to converge on problems with multiple shared variables [120].
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Furthermore, the legacy rules were challenging to comprehend and can be shown to

fail on problems outside those tested in the original publication [64]. Moreover, Price

et al. [120] offered limited guidance with respect to suitable magnitudes for of bound

contraction/movement at each step. This work aims to address many of these shortfalls

by proposing a the newly developed rule set, which has been given the name “Multidis-

ciplinary Patten Search” (MDPS).

3.2 The Multidisciplinary Pattern Search (MDPS)

3.2.1 Introduction

The Multidisciplinary Pattern Search manipulates the domain level optimisations by

changing the bounds on the shared design variables. Its primary role is to automatically

evaluate a number of locally optimal designs and set the search space for the following

iteration. The rules that govern the bound changes have gone through an extensive

development over the course of this research project. An early version of the algorithm

[64] used either multidisciplinary feasibility or optimality as the deciding factor which

guide the bound movements to a singular point. This final version of the algorithm

however shares a number of key concepts with two legacy pattern search optimisers

from Section 2.2.3: the Hooke and Jeeves and Tabu searches. Both these methods are

based on sound and well tested heuristics and have a well established reputation for

being simple and robust [92], which is why their logic makes up the foundation of the

Multidisciplinary Pattern Search. Unlike the legacy optimisers which only set the next

evaluation point, the Multidisciplinary Pattern Search controls the position of the design

space described by the upper and lower bounds. This requires the original logic to be

modified, with the differences illustrated by Figures 3.3 and 3.4.

The description that follows contains a number of independent sections to help explain

the logic and draw parallels where possible with the legacy optimisers described in

Chapter 2. Table 3.1 summarises the main rules, while Figure 3.5 illustrates the process

structure.

3.2.2 The Global Fitness Function

The Multidisciplinary Pattern Search calculates a global objective from the various

output designs of the individual domains. So strictly speaking the global objective

comprises of a set of disjointed locally optimal designs from each domain, which are

used as an assessment of a search region, rather than an evaluation of any single design

as in the conventional optimisation terminology.
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Figure 3.3: Actions in the Hooke
and Jeeves pattern search
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Figure 3.4: Actions in the Multidis-
ciplinary Pattern Search

The global objective function is assumed to consist of a weighted sum of the domain

local objectives, as given by f0 =
∑
aifi. This type of objective function is commonly

found in academic multi-objective optimisation test cases [143], yet the author is aware

that in practical design the choice of weights for each objective can be rather arbitrary.

So an alternative approach may use a goal-based objective function, which aims to

minimise the difference between a user desired target and the actual output objectives.

Numerical experiments concluded that this function can also work equally well with

the Multidisciplinary Pattern Search, provided that the user defined targets are well

selected. The function format in this case would be f0 =
∑

(fi−Qi)
2, where Qi are user

defined objective targets, while fi and ai are the local objectives and their associated

weightings. Because this function forgoes the measure of global optimality, it has not

been used further here.

The global function includes a separate penalty to deal with constraint violations. These

often occur if a domain is unable to find a feasible design in the available search space

that has been set by the Multidisciplinary Pattern Search. The review of constraints

handling techniques in Section 2.2.3.4 concluded that the choice of penalty function is

largely at the discretion of the developer, which is why the following penalty function

that worked well for the problems at hand was used here.
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Table 3.1: Summary of main rules and actions in the Multidisciplinary Pattern
Search

Rules Actions

R1 - Bound scope is below the cur-
rent convergence factor?

Yes - Lock bounds on variables
that have converged and proceed to
R2.

No - Perform exploratory search.

R2 - Are bounds on all variables
locked?

Yes - Reduce the convergence fac-
tor; unlock variable bounds and
perform exploratory search.

No - Perform exploratory search.

R3 - Exploratory search resulted in
success* ?

Yes - Set move as base point, per-
form pattern move and proceed to
R4.

No - Reject move and force
bound contraction for all unlocked
variables.

R4 - Pattern move resulted in suc-
cess* ?

Yes - Set move as base point and
proceed to R5.

No - Reject move and proceed to
R5.

R5 - Is the current convergence
factor below the minimum conver-
gence factor?

Yes - Terminate Search.

No - Proceed to R1.

*success denotes an outcome that improves the objective function or reduces any excessive
constraints violations.

First a scaled constraint failure is calculated:

ciFAIL =
1

m̃
(g(x)− m̃) (3.1)

ciFAIL =
1

ñ
|h(x)− ñ| (3.2)

for constraint functions in the form of

h(x)− ñ = 0 and g(x)− m̃ ≤ 0. (3.3)

Here m̃ and ñ are the constraint limits and g(x) and h(x) are the analyses that compute

the constraints. A penalty proportional for each constraint violation is then calculated

from
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Figure 3.5: Process flow for the Multidisciplinary Pattern Search

pi =
√
|ciFAIL |. (3.4)

When a constraint violation occurs the following logic modifies the global objective

function.
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f0(ubs, lbs) =


f0 if, ∀ciFAIL < 0

f0 +
N∑
i=1

pi if, 0 < ∀ciFAIL ≤ 0.01

max(pi) if, 0.01 < ∀ciFAIL

(3.5)

This complexity is introduced to avoid the condition where feasible designs might be

rejected in favour a one which is infeasible, but has a better objective value. Of course for

Equation 3.5 to work best, f0 should be scaled using the weighing parameters somewhere

in the range of −1→ 1.

3.2.3 The Neighbourhood Search

In its most basic form, the Multidisciplinary Pattern Search uses the neighbourhood

search logic with several additional rules that exploit the history of already evaluated

solutions. Although its logic is equivalent to the description given in Section 2.2.3.2,

it differs in that a perturbation describes a move of both upper and lower bounds in a

given direction, rather than a change in design variables. At the start both bounds on

each shared design variable are moved together and by an equal distance either upwards

or downwards, effectively changing the searchable design region for the domains. Each

domain then independently searches this new region and returns a point that minimises

their local objective and satisfies their local constraints. The term preference describes

this local domain minima, which, in the context of a real world design problem can

be obtained from an optimisation search, a single domain analysis or even an accurate

engineering guess. This means that local domains are not required to use any formal

optimisation at all, which should appeal to industrial aircraft designers where trade

studies are often used in favour of more sophisticated optimisation methods.

In this context, an iteration of the multidisciplinary neighbourhood search terminates

when all possible bound movements have been exhausted. In the event that success

was observed, a sole pattern move follows or otherwise a bound contraction follows.

The bound contraction forces reduces the searchable design region and ensures that

the algorithm converges. Often however, this causes short term deterioration in the

objective function that can be corrected by the successive exploratory search. The rules

do not allow for a design space expansion, as the main philosophy in use here is that the

bounded space should gradually shrink as the design approaches the optimum. Alone the

combination of the multidisciplinary neighbourhood search rules with bound contraction

can converge MDO problems to a user desired final bound spacing. Yet much like the

single disciplinary case, they are inefficient without the additional pattern move and

data mining checks.
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3.2.4 The Pattern Move

When an exploratory search generates an improvement across some or all of the variables,

the direction the bound movement that generated the improvement is saved and stored

in the form of a pattern move. When all variable directions have been exhausted, a

pattern move is applied in the direction of previous successful moves, in the hope that

it will bypass what might otherwise be several exploratory searches following the same

path. This logic is very similar to the pattern move by the Hooke and Jeeves search.

By how much the pattern move alters the bounds depends on the success rate of previous

neighbourhood searches. At first the bound movement magnitude equals that of the

original move, but as pattern moves are accepted, the movement distance doubles after

every successful application. If the outcome of the pattern move is rejected, the pattern

bound movement factor is reset. For its application in the wider scope of the algorithm,

see rules R3 and R4 in Table 3.1.

3.2.5 The Rule-Based Data Mining

The generic blackboard model gives the Multidisciplinary Pattern Search access to a

database, which can be used to extract information of previously evaluated design re-

gions. The notion of using short and long term memory to prevent certain moves from

firing has been applied here in order to speed up convergence.

3.2.5.1 Duplicate Rule

Duplicate evaluations of the same design region often occur after two successive neigh-

bourhood searches. To prevent this, every design region is encoded and stored in the

database for later use by a duplicate check rule. Before each new region is evaluated,

the duplicate check queries the database and bypasses a move that has already been

evaluated. This rule is very similar to the short term memory application in the Tabu

search [30] and updated version of the Hooke and Jeeves search purposed by Vazquez et

al. [154].

3.2.5.2 Bell and Pike Rule

The Bell and Pike [15] proposal on the original Hooke and Jeeves search was also im-

plemented here. The rule stores the direction of a successful the bound movement on

a variable, so that it can be used as the primary search direction for the next neigh-

bourhood search. This rule assumes that the objective function follows a set movement

direction and it is more likely to observe success and kept without evaluating the opposite

direction. Figure 3.5 shows how this rule is implemented here.
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3.2.5.3 The Tabu Rule

Towards the later stages of the neighbourhood search, the same bound movements tend

to cause constraint violations over consecutive iterations. A rule, similar to that used in

the Tabu search algorithm has been added to identify the bound moves that consistently

break the constraints by a significant margin. More specifically, the rule identifies when

a move causes two consecutive constraint failures over previous iterations.The rule skips

these “Tabu” moves over the next three neighbourhood searches, giving enough time for

the search procedure to settle to an area where the move can be reinstated.

On a side note, this opportunity to avoid recalculation of moves that are likely to pro-

duce high constraint violations has not been implemented in a single disciplinary search

algorithm to the author’s knowledge. Therefore this simple rule can be introduced to

the single disciplinary optimiser, such as the Hooke and Jeeves search for instance, as a

means to further improve the rate of convergence on constrained problems.

3.2.6 Additional Bound Checks

The generic description of the Multidisciplinary Pattern Search covers the reasoning

behind the main bound control rules and checks. Without a number of additional rules,

unguided bound reductions and movements can cause the algorithm to exhibit unwanted

behaviour.

3.2.6.1 Constant Bound Separation

Figure 3.5 shows the first set of additional checks under the term “Constant Bound

Separation”. Successive bound movements in one direction can cause the search space

on a variable to be pushed towards one of the absolute limits. This can lead premature

tightening on the bounds on certain variables and thus ultimately trap the algorithm in

an infeasible search space. To avoid this, the algorithm uses an outer loop to maintain

a constant bound separation among all variables. The process locks the bounds on

the variables that reach a predetermined bound separation, thus preventing further

bound contractions and movements. When all variables reach this bound separation,

the bounds are unlocked and the threshold for bound separation is reduced. Rules R1

and R2 in Table 3.1 cover this logic.

3.2.6.2 Pre-Optimisation Checks

Before the Multidisciplinary Pattern Search sets a new space to the various domains,

three rules check the feasibility of the design space. They ensure that the new bounds
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remain within the absolute values set by the user and the starting point for each domain

falls inside the new search space. Table 3.2 summarises these checks.

Table 3.2: Summary of the rules and actions before a search space is communi-
cated to the domains

Rules Actions

R6 - An upper or lower bound is
outside of its absolute value?

Yes - Make the exceeding bound
equal to the absolute value and pro-
ceed to R7.

No - Continue to rule R8.

R7 - Has the bound change caused
the lower bound to exceed the upper
bound or is the bound spacing below
the current minimum bound spacing?

Yes - Modify the bounds so they
have a bound spacing equal to the
current minimum bound spacing.
R3.

No - Continue to rule R8.

R8 - Does the current starting
point for all domains falls inside the
bounds?

Yes - Proceed with local domain
optimisation.

No - Move the starting point so they
fall inside bounds and proceed with
local domain optimisation.

3.2.7 Control Factors

The original Hooke and Jeeves search had two control factor - the initial step size

and the step reduction factor. The additional complexity of moving design variable

bounds requires several more control factors in the Multidisciplinary Pattern Search.

This section describes five factors that can be set by the user to control the algorithm

convergence. These are the starting convergence factor εcinit , the final convergence

factor εcmin , the factor reduction value r1, the bound contraction factor εcb and the

bound movement factor εmb. To help with the explanation, the term bound separation

is defined to mean the difference between the upper and lower bounds. The convergence

factor (εcj ) is a term used to describe the ratio between the current and the starting

bound separations. So for a single variable, the convergence factor can be given by

Equation 3.6, where ub and lb are the current ubinit and lbinit denote the initial bound

limits.

εcj =
ubs − lbs

ubinit − lbinit
. (3.6)

Earlier in Section 3.2.6.1 described why all variables need to maintain a constant bound

spacing during a given iteration. The convergence factor εcj acts as a threshold for
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maintaining this constant bound separation. In practice, it is reduced by the reduction

value r1 in an outer loop over successive iterations. Hence why the algorithm needs the

additional starting convergence factor εcinit and the relaxation value r1 to reach the final

convergence factor εcmin . The final convergence factor εcmin describes the desired ratio

of initial to final bound spacing that will terminate the search. For example εcmin = 0.01

will terminate the Multidisciplinary Pattern Search when the current bounds reach 1%

of the starting bound spacing. Users can set these as they desire, but values around 0.5

were observed to produced good results for both εcinit and r1. The bound movement εmb

and contraction εcb factors control the magnitude of bound movements and contractions.

Both move or contract the bounds proportionally to the current bound spacing. Hence

for example, a bound movement factor of 1 or higher will move the bounds in either

direction with no overlap, whereas a bound contraction factor of 0.5 will narrow them

by 50%. Tests in Section 4.2.3 show that a contraction factor between 0.2-0.5 and the

movement factor of 0.5 can produced good results.

3.2.8 Pseudo-Code of the Multidisciplinary Pattern Search

This section covers the mathematical control of the factors and mound movements in

the form of pseudo-code. Illustrated within are the two nested iterations loops of the

algorithm. The outer loop consists of the “Bound Convergence”, “Algorithm Conver-

gence” and “All Bounds Locked” checks, which maintain constant bound separation

and terminate when the desired bound separations is reached. The remaining rules and

moves cover the inner iteration loop, which searches the design spaces.

Algorithm Convergence Check (R5):

if εcj ≤ εcmin

Terminate search.

else

Proceed to R1.

end

Bound Convergence Check (R1):

if any (ubsj − lbsj) ≤ εcj (ubinit − lbinit)

Lock bounds on variables whose bound spacing is below threshold and continue

to R2.

else

Continue to Exploratory Search.

end
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All Bounds Locked Check (R2):

if all variables are locked

Unlock all variables and reduce the current convergence factor by:

εcj+1 = εcjr1. (3.7)

else

Continue to Exploratory Search.

end

Exploratory Search:

for all shared variables that have remained unlocked

Step 1 Move bounds in the direction that previously resulted in success:

ubsj+1 = ubsj ± εmb(ubsj − lbsj ), (3.8)

lbsj+1 = lbsj ± εmb(ubsj − lbsj ). (3.9)

Step 2 Check if move is duplicate or Tabu and needs to be skipped.

Step 3 Apply the additional pre-optimisation checks.

Step 4 Minimise local domain objectives fi.

Step 5 Evaluate the augmented global objective function according to:

f0(ubsj+1
, lbsj+1

) =


f0 if, ∀ciFAIL < 0

f0 +
N∑
i=1

pi if, 0 < ∀ciFAIL ≤ 0.01

max(pi) if, 0.01 < ∀ciFAIL .

(3.10)

if f0(ubsj+1
, lbsj+1

) < f0(ubsj , lbsj)

Set current bounds as base point by:

f0(ubsj , lbsj) = f0(ubsj+1
, lbsj+1

), (3.11)

ubsj = ubsj+1
, (3.12)

lbsj = lbsj+1
. (3.13)

else

if this is the first move direction

Repeat Step 1 to Step 5.

else

Move to next unlocked variable.

end
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end

end

Exploratory Search and Pattern Move Success Checks (R3 and R4):

if the Exploratory Search results in success:

Perform Pattern Move on unlocked variable.

else

Force bound contraction only on unlocked variables by:

ubsj+1
= ubsj −

εcb
2

(ubsj − lbsj), (3.14)

lbsj+1
= lbsj +

εcb
2

(ubsj − lbsj). (3.15)

Minimise local domain objectives fi.

Set current the augmented global objective function as base point:

f0(ubsj , lbsj) = f0(ubsj+1
, lbsj+1

), (3.16)

ubsj = ubsj+1
, (3.17)

lbsj = lbsj+1
. (3.18)

end

Pattern Move:

Move bounds in the directions of successful moves by:

ubsj+1
= ubsj ± εpat(ubsj − lbsj), (3.19)

lbsj+1
= lbsj ± εpat(ubsj − lbsj). (3.20)

Repeat Step 2 to Step 5.

if f0(ubsj+1
, lbsj+1

) < f0(ubsj , lbsj)

Set current the augmented global objective function as base point:

f0(ubsj , lbsj) = f0(ubsj+j
, lbsj+j

), (3.21)

ubsj = ubsj+1
(3.22)

lbsj = lbsj+1
(3.23)

else

Reject pattern move.

end
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Here εpat is the pattern bound movement factor for each variable, which builds over

successive successful bound moves. All other symbols represent their already defined

values.

3.3 The Database

The Multidisciplinary Pattern Search alone can solve decoupled problems with no in-

terconnecting state variables, such as the conceptual aircraft test case in Section 4.3.

Two or more domains can perform their analyses in isolation and solely communicate

the objective and constraint statuses of their locally optimal designs directly via the

rule base. However, many problems such as the UAV problem that follows in Section

4.2, have state variables or even whole data sets that are output from one domain and

serve as inputs to others. Because coupled problems with multiple interconnecting/state

variables are much more common in industry, the rule base requires a way to transfer

information across organisational domains. The database facilitates this transfer, while

also storing bound movements in an encoded list for later use by the duplicate check

and Tabu checks.

In the sequential design process, organisational domains perform their analyses as a series

of independent optimisations. This ensures that the design being evaluated is consistent

with respect to the state variables. Because this can take a long time, a full linear

multidisciplinary analysis is generally unwanted in a MDO architecture. In the proposed

framework however, domains can work concurrently on their own individual designs.

This brings about the question of how to ensure that the proposed designs at the end of

a bound movement step are consistent. The simple answer is they don’t! The method

assumes that state variables have a benign behaviour and are free from severe non-linear

variations in the search space. This allows the domains to use the latest available state

variables from the database, regardless if it is one that will result in a consistent design.

In the early stages of the search where the bounds are wide, it is accepted that the

proposed designs from each domain will be inconsistent and globally infeasible. However

as the bounds start to reduce to a smaller region, the consistency of each local design

should improve as the domains are forced to search an ever reducing design space. Of

course there will be risk that this assumption may mislead the Multidisciplinary Pattern

Search at the early stages of the design process when the bounds are wide and if the state

variables have significant variations. However it is expected that this assumption will

generally hold true for industrial aircraft design, because even in the current sequential

process, designers often work to engineering (not mathematical) precision and tend to

have access to incomplete or uncertain data provided by other domains. One way to

address this assumption without a full sequential multidisciplinary analysis is to use

surrogate models of other domains’ analyses. This certainly offers an avenue for future

research, which has been briefly discussed in more detail in Chapter 7.
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From an optimisation point of view, how often state variables are communicated across

the domains has an impact on the solution. The database stores all coupling information

in real time, so in theory one could simply allow each domain to load the latest state

variables when they are available in the database. This however can generate internal

oscillations, which can be sufficient to render the local domain optimisers altogether

ineffective. Ultimately it was found that using the last state variable from the previous

completed search in the other domain and keeping it fixed during a local searches (as

shown in Figure 3.6) solved these issues.

Domain 1 

Optimisation Runs 

Domain 2 

Optimisation Runs 

Current 

Analysis 

H
is

to
ry

 o
f 

A
n

a
ly

si
s 

E
v

a
lu

a
ti

o
n

s 

H
is

to
ry

 o
f 

S
ta

te
 V

a
ri

a
b

le
s 

Previous Searches  

Figure 3.6: Fixed point iteration strategy for state variables

3.4 The System Interface

An interface between designers and the method is one area that is often overlooked by

researchers working on MDO architectures. Most automatic MDO search architecture

try to replace the chief engineers with a system level optimiser or algorithm as is the case

in the proposed blackboard method. Without an adequate human-process interaction,

the model can take the chief designer completely out of the loop. It is necessary to

allow engineers maintain control over the system level controller and take action if the

automatic process starts to converge to infeasible region.

One way for top level designers monitor in real time the process is via a Graphical

User Interface (GUI). Figure 3.7 illustrates one way for chief engineers to monitor the

process in real time. The figure illustrates many aspects of the convergence history for

the simplified version of the UAV wing design problem described in Section 4.2.1.8. The

interface uses the database to populate the eleven windows in real-time. The top four

graphs illustrate where the locally optimum designs lie in the available search space and

next two graphs show the objective and constraint statuses of these designs.

The five smaller graphs at the bottom of the interface show the constraints and the

objectives, and update during the domain local searches. So for one bound movement,
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the lower graphs update multiple times as they search for an optimal geometry in the

available design space. The central display combines feasible designs from both domains

on one parallel axis plot. Shown in red are the two optimal designs from each domain, in

orange are the next five best designs and in green the remaining pool of feasible designs.

Either side, two “Stop” buttons give the user the option to terminate the local domain

searches prematurely in the event that the domains are failing to find feasible designs.

Overall this can be easily scaled to more complex problems to allow top level designers

to monitor and direct the searches of the individual organisational domains.

3.5 Concluding Remarks

Price et al. [120] developed a blackboard MDO framework that can force competing

design domains to reach a compromise by iteratively contracting the shared search space.

This framework is suitable for industrial MDO problems because it can preserve each

domain’s existing way of performing design, while using a set of pre-defined rules to

guide the design process. Although the concept is sound, the original formulation had

not reached a level of maturity to warrant its application to industrial test cases. Its

rule set was difficult to comprehend and slow to converge on problems with many shared

design [120].

The work in this thesis addresses some of the many issues in the legacy framework.

More specifically the work in this chapter describes a newly developed rule base, given

the name the Multidisciplinary Pattern Search. It borrows the logic from a number of

well-established pattern search optimisers to control the design space for the various

domains. Unlike the legacy rule base, the Multidisciplinary Pattern Search uses infor-

mation learned from previous moves to better predict next move and discard a potential

moves that are unlikely to produce feasible designs. This means it shares many of the

same benefits as the gradient-free optimisers, which makes it suitable as a search space

controller.

The Multidisciplinary Pattern Search however makes one key assumption about the

MDO problem. It assumes that state variables are largely insensitive to changes in

design. The means the process is unsuitable for highly non-linear problems where large

oscillations in the state variables can occur. Given that in the current process, aircraft

designers often work with incomplete or inaccurate information, such assumptions should

hold true for many industrial applications.

The description of the blackboard search method and the Multidisciplinary Pattern

Search contains sufficient information to now proceed with its application to a number

of representative test cases.
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Chapter 4

Application Case Studies

4.1 Introduction

Perhaps the biggest reason why so few distributed architectures have seen application

in industrial design engineering is because they have mostly been developed to solve

academic test cases that are often unrepresentative of the processes followed in industry.

The now obsolete NASA MDO test suit contains many of the most common test cases

that researchers have used in past studies [81, 146]. Outside this collection of problems,

there exist the analytical two domain problem [64, 115, 127, 133, 146], the geometric

programming problem [71, 78, 129, 150] and a supersonic business jet problem [45, 81,

115]. These often re-appear in comparison case studies.

Observations based on practical experience with the analytical two domain and the

propane combustion problems, showed that such cases tend to have strong non-linearities

between the coupling variables and exhibit landscapes with narrow chasms, which re-

quired very high precision to find feasible results. These features are unlike the prelim-

inary aircraft design problem, where state variables relationships tend to be far more

benign and the solution landscape is a lot more forgiving. After all, designers regularly

make assumptions or work with incomplete or inaccurate data provided by other organ-

isational domains in the sequential design process, and still come up with aircraft that

meet the contractual objectives and regulatory constraints.

There is no shortage of alternative, problem specific engineering test cases [8, 9, 23, 27,

28, 21, 72, 76, 81, 120, 127, 134, 140], however, many are outside the scope of intended

application and some use black box analyses, which render replication studies difficult.

The two chosen test problems used here aim to capture aspects of the commercial aircraft

design process, but at a level that could be handled by a single designer. The first

uses simple empirical and physics-based formulas and simplified physics to make later

replication studies possible. The second test case has more design variables and is similar

in concept, but instead uses a calibrated industrial transonic wing design tool.

55
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For the purpose of the tests and unless otherwise stated, the blackboard has been con-

figured with the following default setting:

• the bound control factors are εcinit = 0.5, εmb = 0.5, εcb = 0.5 and εcmin = 0.01;

• the rule base was allowed to run its course, with the computational steering element

omitted for most tests in order to exclude any human element from the tests;

• the local domain searches were performed in parallel;

• most tests were started from a set of independent starting points arranged in a

Latin hypercube pattern to test the robustness of the process;

• each new domain local search uses the final value from a previous search as the

starting point;

• MatlabTM’s Sequential Quadratic Programming (SQP) optimiser within the func-

tion fmincon was used for the purpose of local domain optimisations.

4.2 The UAV Wing Design Problem

4.2.1 Introduction

The primary role of the UAV problem was to test the key features of the blackboard

search scheme. The problem assumes that an initial sizing of the fuselage, empennage

and power plant has been performed to address the mission requirements. Only the

wing geometry is optimised in this exercise. The approach adopted here decomposes

the wing optimisation process into seven sections that have been put together to reflect

stages in the preliminary aircraft design process. Solely for the purpose of illustration,

these have been arranged in a sequence as shown in Figure 4.1.

Aerodynamics

Loads

Structures

Mass Estimation

Manufacturing

Costing Performance

Figure 4.1: The UAV wing problem in a sequential decomposition
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The problem assumes that the outer wing shape will be manufactured from insulation

foam, while a single tubular main spar provides the stiffness. This class of wing structure

has been successfully applied to a number of flying UAV designs in the 1-30kg take off

weight class [75]. The ultimate goal is to identify the wing geometry that minimises the

global objective and satisfies the constraints. The wing and spar are described by six

variables in total, which are: span, root chord, taper, thickness to chord ratio, main spar

thickness and main spar diameter. An example candidate geometry is shown in Figure

4.2 for clarity and detailed descriptions of the stages follow in Sections 4.2.1.1 to 4.2.1.7.

This problem has been specifically devised to simulate the preliminary aircraft design

process described in Section 2.3. Where possible, different sections make reference on

how each aspect of this problem compares with the industrial engineering process.

Figure 4.2: An example UAV wing geometry

4.2.1.1 Aerodynamics Domain

The aerodynamics domain has three outputs as illustrated by Figure 4.3: the wing lift

L, drag D, and loading W
S . Total wing drag can be calculated using:

D =
1

2
ρV 2S (CDi + CDp) (4.1)

with the symbols ρ, V and S representing the air density, cruise speed and reference wing

area, and CDi and CDp denoting the lift induced and profile drag coefficients. These can

be estimated from Equations 4.2 and 4.3 respectively:

CDi =
C2
L

πARe
. (4.2)
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In Equation 4.2, CL is the coefficient of lift, AR as the aspect ratio and e the span

efficiency. The profile drag coefficient (CDp) is assumed to equal the product of the flat

plate mean skin friction coefficient (Cf ), thickness form factor (ftc) and the ratio of the

wetted (Swet) and reference (S) wing areas from:

CDp = Cf ftc
Swet

S
. (4.3)

The Blasius relationships for 100% laminar flow [147] is used for the mean skin friction

coefficient

Cf =
1.328√
Re

, (4.4)

where Re is the Reynolds number based on the mean aerodynamic chord. The form

factor is obtained from Torenbeek’s [147] empirical formula:

ftc = 1 + 2.7

(
t

c

)
max

+ 100

(
t

c

)4

max

(4.5)

with
(
t
c

)
max

denoting the airfoil maximum thickness to chord ratio. The wetted wing

area is estimated using an equation found in Gudmundsson’s book [50] as given by

Swet = 2

(
1 + 0.5

(
t

c

)
max

)
S. (4.6)

Finally the lift and the wing loading can simply be calculated using Equations 4.7 and

4.8, respectively:

L = mtotg (4.7)

and

W

S
=
mtotg

S
. (4.8)

Here mtot is the total mass of the aircraft, g is the gravitational constant and S is the

reference wing area.
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Aerodynamics
b, c,Λ, t

c L,D, W
S

mwing

Figure 4.3: Inputs and outputs of aerodynamics analyses

4.2.1.2 Loads Domain

The critical loads in commercial aircraft design are usually calculated and selected by

a separate engineering team. A single 7g vertical gust load case has been considered as

the critical load case to replicate this to a suitable level of simplicity. The span-wise

loads and subsequent bending moments were calculated using a method loosely based

on lab notes from the Massachusetts Institute of Technology OpenCourseWare [153].

This method was chosen over other analytical [1, 132] or CFD-based methods as it does

not require separate wing inertia estimates. The analysis neglects any torsional forces

resulting from the drag or chord-wise lift and assumes a one dimensional distribution

along the span. The chosen method assumes that the span-wise loading q(y) is a function

of local chord length as it changes along the span. It can be estimated by:

q(y) =
nWexcl.wing

b(1 + Λ)
(1 + (Λ− 1)

y

b
), (4.9)

with n, Wexcl.wing and y denoting the maximum load factor, the aircraft’s weight ex-

cluding the wing and span-wise location. The span-wise moment can be subsequently

obtained by twice integrating the span-wise loads,

M(y) =

∫ b

0

∫ b

0
q(y) dy dy, (4.10)

which was achieved here using the trapezium integration method with 50 points. This

method also neglects any inertial relief from additional masses that might be located on

the wing. Figure 4.4 shows the three inputs and single output of this domain.

Loads

b,Λ

mwing

Mroot

Figure 4.4: Inputs and outputs of loads analyses
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4.2.1.3 Structures Domain

Structures teams in commercial aircraft design try to find the lightest or cheapest struc-

ture that can withstand the stresses arising from the critical load cases. The problem

studied here assumes that the wing stiffness is provided entirely by a tubular main spar

running the length of the span. Therefore the sole purpose of the structures domain is to

calculate the stress and vertical deflections in the main spar resulting from the maximum

bending moment. Therefore the stress in the main spar can simply be calculated using

the formula:

σ =
Mrootz

Iy
(4.11)

with Mroot representing the root bending moment, z denoting the vertical distance from

the neutral axis and Iy referring to the second moment of area around the neutral axis.

The maximum tip deflection, δ, can be calculated using:

δ =
Mrootb

2

2EIy
(4.12)

where E is the modulus of elasticity of the chosen material and the remaining symbols

maintain their already defined values. Figure 4.5 shows the main inputs and outputs in

this domain.

Strucutres

b, tspar, dspar

Mroot

σ, δ

Figure 4.5: Inputs and outputs of structures analyses

4.2.1.4 Mass Estimation Domain

The wing mass is calculated from the sum of the foam section and spar masses. To

keep the problem simple, it is assumed that the wing profile can be described using the

combined areas of a semi-ellipse and trapezium as shown in Figure 4.6. This way the

wing mass can be calculated without defining a specific airfoil. The step-by-step guide

for the mass calculation follows next. First, the profile area can be estimated using

Equation 4.13,

Aroot = pcut

[
1

4
πc2t%

(
t

c

)
max

+
1

2
c2(1− t%)

(
t

c

)
max

(
1 + 0.03 +

t%
10

)]
(4.13)
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where t% is a fixed the chord-wise location of maximum thickness and pcut is a the

cut-out fraction calculated from Equation 4.14.

Trapezium section 

𝑐𝑡% 𝑐(1 − 𝑡%) 

𝑐
𝑡

𝑐 𝑚𝑎𝑥
 

  
  

𝑐
𝑡

𝑐 𝑚𝑎𝑥
0.03 +

𝑡%
10

 

Spar cut-out 

Estimated cut-out area 

Semi-ellipse section 

Figure 4.6: Cross-section of the wing profile and internal structure

pcut = 1−
(
t

c

)
max

. (4.14)

The mass of the foam section can be calculated using the equation for the volume of a

frustum:

mfoam =
2

3
b(Aroot +

√
ArootAtip +Atip)ρfoam. (4.15)

Here Aroot is the profile area at the root, ρfoam is the density of the foam and Atip is

the profile area at the tip obtained by:

Atip = Λ2Aroot. (4.16)

The mass of the spar is simply:

mspar = 2Asparbρspar (4.17)

where Aspar is the cross-sectional area of the spar and ρspar is density of the spar material.

Therefore the total mass is then:

mwing = mfoam +mspar +maux (4.18)

where maux denotes any auxiliary masses on the wing (i.e. servos, wiring, sensors, ets...).

One noteworthy feature of this domain is that it lacks state variables, which is shown in

Figure 4.7.
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Mass Estimation

b, c,Λ, t
c
,

tspar, dspar
mwing

Figure 4.7: Inputs and outputs of mass analyses

4.2.1.5 Manufacturing Domain

As shown in Figure 4.2, the main spar has to fit flush inside the foam geometry, with

sufficient buffer between the edges of the spar and upper and lower surfaces of the wing.

The model assumes that the spar is positioned at the maximum thickness to chord

location chord-wise and calculates the spacing at the tip, where it is usually smallest

because of any taper that may be present in the wing. The manufacturing domain

calculates the spacing between the spar and the wing surfaces using Equation 4.19:

tbuff =

(
t

c

)
cΛ− tspar, (4.19)

where t
c is the maximum thickness to chord ration, c is the chord length at the root and

Λ is the taper ratio. The input/output diagram for the manufacturing domain is shown

in Figure 4.8. This domain also does not require any state variables in its analysis.

Manufacturing

c,Λ, t
c
,

tspar, dspar
tbuff

Figure 4.8: Inputs and outputs of manufacturing analyses

4.2.1.6 Costing Domain

This domain estimates the material costs needed for the wing. Table 4.1 provides the

information to estimate the cost of the main spar. The foam material used for the body

of the wing comes in standard sections with dimensions 0.6m by 2.5m by 0.1m. The

method estimates how many pairs of wings can fit in one standard sheet of foam. Each

pair of wings wing then absorbs a fraction the total cost of a foam block. The first step

estimates how many semi-span (b) and chord (c) sections can fit in the width and length

of the sheet. Equation 4.20 and 4.21 represent this by:

NoX = d0.6
c
e (4.20)
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and

NoY = d2.5
b
e. (4.21)

Here NoX and NoY represent the number of wings that can fit in the width and height

dimensions of the block, whereas c and b represent the wing chord and semi-span. The

model adopts a logic statement for the thickness of the block. If the combined thickness

of the wing tip and root profiles exceeds a minimum value, only one wing half is consid-

ered to fit inside the thickness of the foam block. Otherwise an estimate for the number

of full wings can be calculated.

This logic can be described in pseudo-code by:

if t(1 + Λ) + 0.02 < 0.1:

NoZ = d 0.1
t(1+Λ)e

else

NoZ = 0.5

end

The symbol NoZ denotes the number of wings that can fit in the height dimension of

the foam block and, t and Λ signify the absolute root profile thickness in m and wind

taper respectively. Equation 4.22 estimates the total number of wings that can fit side

a sheet of foam by

Nowings = NoXNoYNoZ . (4.22)

From Equation 4.22, the cost of foam per wing pair can be calculated as follows:

Cfoam =
Cblock

Nowings
. (4.23)

The combined cost of the foam and the spar make up the cost of the wing using:

C = Cfoam + Cspar. (4.24)

Figure 4.9 shows the inputs and outputs in this domain and highlights that this domain

also does not have any state variables.
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Table 4.1: Costing data for a carbon fibre main spar. All cost entries exclude
VAT and reflect the cost of 1m long, off the shelf spar from Easy Composites
Ltd. in September 2017.

Type of Spar Thickness, tspar Diameter, dspar Cost, C

Pultruded Rod 0.0015 0.0030 3.300
0.0020 0.0040 4.850
0.0025 0.0050 8.150
0.0030 0.0060 9.600
0.0040 0.0080 13.10
0.0050 0.0100 17.55
0.0060 0.0120 21.15

Pultruded Tube 0.0005 0.0040 2.900
0.0010 0.0050 5.950
0.0010 0.0060 6.850
0.0010 0.0070 7.200
0.0010 0.0080 8.600
0.0010 0.0120 11.55

Roll Wrapped Tube 0.0010 0.0100 12.61
0.0014 0.0127 12.84
0.0014 0.0155 13.97
0.0014 0.0167 14.62
0.0014 0.0208 17.37

Costing
tspar, dspar

b, c,Λ, t
c

C

Figure 4.9: Inputs and outputs of cost analyses

4.2.1.7 Performance Domain

The final domain calculates the still air range of the aircraft assuming certain properties

about the fuselage drag and the propulsions system on the UAV. The equation used in

this domain is given by:

R =
1

1000
E∗ηtotal

1

g

L

(D +Dfuse)

mbatt

(mwing +mfuse)
(4.25)

where E∗ is the mass specific energy content of the battery in Wh/kg, ηtotal is the total

efficiency of the power plant, g is the gravitational constant, L is the lift produced by the

wing, D and Dfuse are the wing and fuselage drag contributions, mbatt is the mass of the

battery and, mwing and mfuse are the mass of the wing and fuselage. It is noteworthy

that all the input variables for this domain are output variables from other domains as

shown in Figure 4.10.



Chapter 4 Application Case Studies 65

Performance
mwing, L,D

R

Figure 4.10: Inputs and outputs of performance analyses

4.2.1.8 Two Versions

Sections 4.2.1.1 to 4.2.1.7 provide the building blocks for the UAV wing design prob-

lem. How to best organise these inside the blackboard model is an interesting research

question, but one that is outside of the scope of this thesis. Here two slightly different

decomposition strategies are proposed for two distinct versions of this problem.

The global objective function (f0) in the first version comprises of range R (in km) and

cost C (in £) objectives. This is because in most real world design problems, engineers

often have to trade performance with cost. Equation 4.26 gives the global objective

mathematically as:

f0 = C −R. (4.26)

No weighting factors were used in f0, because the magnitudes of range and cost were

comparable. In addition, there are five constraints in this problem. The stall speed

is generally the leading constraint in industrial aerodynamic design. But because of

the absence of simple empirical or physics-based methods for estimating stall speeds

accurately, the maximum wing loading (WS ) limit was used instead. This is given by

Equation 4.27 as:

W

S
≤ 40. (4.27)

The following two constraints apply to the aspects of the design. As discussed earlier,

the internal wing structure has to withstand numerous critical loads and satisfy min-

imal deflection and twisting movements to avoid aerodynamic flutter and divergence

phenomenon. A maximum stress σ and deflection δ constraints aim to replicate these

real world design limits and thus are given by Equations 4.28 and 4.29 by:

σ ≥ FOSσUTS (4.28)

and

δ ≤ 0.05. (4.29)
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The symbol in Equation 4.28 FOS refers to the selected factor of safety.

The final two constraints aim to capture some of the many manufacturing limitations

that exist in the industrial design engineering process. Equation 4.30 ensures that there

is significant buffer (tbuff ) between the main spar and the upper and lower skin surfaces

of the wing and Equation 4.31 ensures that the spar thickness (tspar) does not exceed

half the value of the diameter (dspar):

tbuff ≥ 0.01 (4.30)

and

tspar ≤
dspar

2
. (4.31)

Figures 4.11 and 4.12 illustrate how the different domains are organised within the

blackboard. It is noteworthy that the structures, manufacturing and mass estimation

domains are grouped under one optimiser. This effectively means these three domains

evaluate the same design, which is generated by this optimiser.
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A design,
(b, c,Λ, t

c
)

mwing L
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S mwing Mroot

Mroot
mwing
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Multidisciplinary Pattern Search

Optimiser

Aerodynamics
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Optimiser

Structures Manufacturing Mass Estimation

Database

Figure 4.11: Domain arrangement in the simple UAV problem version

Now because multiple repeat runs of the blackboard were needed to tune and analyse

the behaviour of the Multidisciplinary Pattern Search, it would have been prohibitively

time consuming and therefore impractical to use this version of the problem for all tests.

So a simplified variant that omitted the range and costing objectives, along with the

deflection constraint, was used in many of the repeated tests that follow. Overall this

lowers the computational budget, while still retaining a similar level of similarity to the

industrial design process. The absence of the costing domain removes any discontinuities,

which also allows the problem to lend itself better for the Simultaneous Analysis and

Design architecture using a gradient-based optimiser. The simplified version has also

been used in the team-based case study described in Chapter 6, while the more complex

version has been on the surrogate assisted work described in Chapter 5.
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A weighted sum of mass (m in kg) and the drag (D in N) was used for the simplified

version of the problem in lieu of the combined cost and range objective function. It

is given by Equation 4.32, where the weightings α1 = 0.4 and α2 = 1 were selected

arbitrarily:

f0 = α1D + α2mwing. (4.32)

Figure 4.11 illustrates the blackboard decompositions for the simplified variant. The

reader will also notice that the analysis loads domain directly uses the optimal geometry

from aerodynamics domain in the simplified version. In most sequential aircraft design

processes, the loads analysis follows the aerodynamic analyses and thus this formulation

tries to adhere to that model in the simpler version of the problem. In the more complex

version of the problem however, the loads analyses comes after the structural optimisa-

tion domain. The rational behind this is that bending moment calculations are solely

needed for the structural optimisation. Given that the aerodynamics and structural

optimisation domains usually develop conflicting geometries in the blackboard format,

it is more intuitive for the loads domain to analyse the final structural geometry. This

difference is illustrated in Figures 4.11 and 4.12 by the input arrow to the loads domain.
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Optimiser
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Optimiser
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Performance

Database

Figure 4.12: Domain arrangement in the complex UAV problem version

In addition, an exhaustive search over the simplified problem has been performed and

using quadratic regression, a hierarchical axis plot has been put together to help visualise

the available design space. Each small contour plot represents an exhaustive search

across of wing taper (Λ) and thickness to chord ratio ( t
c), while the semi-span (b) and

root chord ratio (c) have been kept constant. Highlighted in colour is the range of

global optimality of the feasible design region. Note that most of the design space is

deliberately left infeasible to help visualise the blackboard convergence using Figure 4.15.

Finally, Table 4.2 summarises all the variables, including a number of fixed quantities

not mentioned above.
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Figure 4.13: Hierarchical surface plot in four dimensions showing the global
objective and constraints

4.2.1.9 Implementation

4.2.2 Both versions of the problem have implemented in Matlab. The local drag, mass,

range and cost objectives are optimised using the Sequential Quadratic Programming

optimiser built in the Matlab function fmincon. Each local constraint was scaled using

the fixed limits as given by Equations 3.1 and 3.2 earlier in Section 3.2.2. The inter-

nal searches were terminated when the scaled failures reached a value below 0.001 or

exhausted the maximum number of analysis evaluations, which were at 20 for the aero-

dynamics and 26 for the structures domains. In addition, domain optimisations were

performed concurrently using the parallel computing toolbox in Matlab for the purpose

of all tests. No user input was applied through the user interface throughout the entire

search in order to obtain objectionable and comparative results.

4.2.2 Contribution of Each Rule

In an effort to improve the convergence rate of the algorithm, the Multidisciplinary

Pattern Search has been augmented by the use of several additional rules beyond the

simple neighbourhood search logic. This section investigates how each additional rule

in Multidisciplinary Pattern Search affected the search process.

Starting from the basic multidisciplinary neighbourhood search (NS) logic, each indi-

vidual aspect of the algorithm was enabled one after the other in the order of: the

pattern move (PM), followed by the duplicate check (DC) and finally the Tabu rule

(TR). Table 4.3 shows the mean objectives, constraint failures and analysis calls from

150 independent runs for these tests.
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Table 4.2: UAV wing design objectives, variables and constraints. All atmo-
spheric properties are fixed at International Standard Atmosphere (ISA) sea
level conditions.

Objectives Lower limit Symbol Upper limit Units
Fixed
value

Minimise:
Global objective - f0 - - -
Wing drag - D - N -
Wing mass - mwing - kg -

Shared optimisation design variables
Semi-span 0.7 b 0.9 m -
Root chord 0.16 c 0.25 m -
Taper 0.5 Λ 1.0 - -
Maximum thickness to chord ratio 0.09 t

c 0.17 - 0.1200

Spar
Wall thickness 0.0010 tspar 0.0080 m -
Outer diameter 0.0020 dspar 0.0160 m -

Fixed variables
Chord-wise location of
maximum profile thickness

- t% - - 0.4000

Cruise speed - V - m/s 13
Oswald efficiency - e - - 0.84
Fuselage and empennage mass - mfuse - kg 1.150
Auxiliary mass on wing - maux - kg 0.150
Factor of safety - FOS - - 1.4
Fuselage and empennage drag - Dfuse - - 0.55
Spar density - ρspar - kg/m3 1550
Foam density - ρfoam - kg/m3 30
Maximum allowable stress - σUTS - MPA 590
Modulus of elasticity - E - GPA 228
Load factor - n - - 7
Battery mass - mbatt - kg 0.188
Battery energy content - E∗ - Wh/kg 432000
Power plant efficiency - ηtotal - - 0.3
Cost of foam block - Cblock - 25.7
Gravitational acceleration - g - m/s2 9.81

Domain local constraints
Spar buffer 0.01 tbuff - m -
Wing loading - W

S 40 N/m2 -
Tensile stress - σ 421.4 MPa -
Vertical tip deflection - δ 0.05 m -

Table 4.3 shows a general decrease in the number of analysis evaluations with increased

complexity of the rules. With the exception of the pattern move, all other additional

rules reduced the number of analysis evaluations without significantly affecting the fi-

nal outcome. The increase in function count for the pattern move evaluations can be

attributed to two factors. Firstly, both the duplicate check and Tabu moves prevent

certain rules from firing, therefore saving on what would otherwise be wasted analysis

evaluations. On the other hand the pattern move adds an additional move at the end
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Table 4.3: Effect of additional rules on final outcome

MDPS
(NS)*

MDPS
(NS+PM)*

MDPS
(NS+PM+DC)*

MDPS
(NS+PM+DC+TM)*

MDPS
(NS+DC+TM)*

Mean objectives:
Global objective 0.5204 0.5226 0.5231 0.5249 0.5208
Drag 0.5363 0.5404 0.5419 0.5445 0.5368
Mass 0.3059 0.3064 0.3064 0.3071 0.3061

Mean scaled constraints failure
0.49% 0.23% 0.40% 0.21% 0.46%

Mean Iteration count
Moves 132 135 116 113 127
Drag
minimisation

1780 1849 1612 1600 1761

Mass
minimisation

2468 2587 2228 2152 2361

*The abbreviations are denoted as follows: Multidisciplinary Pattern Search (MDPS), Neigh-
bourhood Search (NS), Pattern Move (PM), Duplicate Check (DC) and Tabu Rule (TM).

of a neighbourhood search, which in some cases may be discarded, thus increasing the

number of analysis evaluations.

Secondly, the blackboard uses a fixed point iteration scheme for the state variables

between local domain searches. Because the current preference value depends on the

outcome of the previous search (see description on state variable strategy in Section

3.3), there is an element of randomness in the process, which can perturb the search to

follow a longer path to the minimum and increase the number of analysis evaluations.

When the search was run without the pattern move (but including the duplicate and

Tabu rules as shown in the final column of Table 4.3) the convergence rate increased.

Furthermore when local searches were started from a random point, rather than the

previous optimum value, the addition of the pattern move alone was observed to reduce

the total number of analysis evaluations by 13%.

Ultimately, the rule convergence for one optimisation run can be visualised using Figures

4.15 and 4.14. These plots are arguably the most important in thesis as they visualise

how the Multidisciplinary Pattern Search converges. Figure 4.14 is similar to the user

interface presented in Figure 3.7, with the main difference being that all design evalu-

ations are shown along the x-axes. The top four graphs in each column show how the

bounds on each converging over successive iterations. The third line that falls between

the bounds represents the value each variable takes at a given iteration. The bottom

two graphs in each column represent the objectives and show the normalised constraint

failures in each domain. Figure 4.14 overlays the changes in search space on the hi-

erarchical axis plot, whereby the darkest region show the area where the bounds have

converged.
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Figure 4.14: Bound movements superimposed on linear axis plot
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Figure 4.15: Bound movements superimposed on hierarchical surface plot

4.2.3 Bound Control Parameter

This section examines how changes in bound movement and contraction factors affected

the performance of the rule base. The problem was started from the fixed starting point

given in Table 4.2 and solved for an exhaustive range of bound movement and contraction

factors, while keeping all other parameters fixed at their earlier defined default values.

Figures 4.16 and 4.17 show how these impact the final objective function and number

of analysis evaluations respectively. The darker (blue and green) tones indicate a low

objective value and a low number of analysis evaluations. It can be seen that the

magnitude of the bound movement factor (as displayed by εmb on the y-axes) has very

little impact on both the number of analysis evaluations and the objective as a whole.

On the other hand the choice of bound contraction factor has a more noticeable impact,

as can be seen by colour changes along the x-axes in both figures. As one would expect,

the algorithm converges much faster with a higher bound contraction factor in general.

With the higher bound contraction factor however, the algorithm is also more likely to

converge to a local minimum or a design with a constraint failure, hence one can see a

general worsening in the final objective value. Ultimately the outcomes of these tests

motivated the selection of the previously detailed default bound control factors.

It is important to mention that these contour plots are made from 156 analysis evalu-

ations for various combinations of factors. Regions between each data point are inter-

polated by Matlab’s contour plotting function to generate a smooth contoured surface.

There is significant noise in the figures, which can be attributed to a number of factors.

The main reason is that there is no guarantee that the two adjacent combinations of

factors will converge to a similar result. This is because different combinations of fac-

tors could in theory take a different (or longer) path to the global minimum or even
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Figure 4.16: Effect of bound move-
ment and contraction magnitude on
the final design for simplified UAV
version

Figure 4.17: Effect of bound move-
ment and contraction magnitude on
the number of analysis evaluations
for simplified UAV version

terminate to a local minimum. Secondly, the sharp steps and spikes are the result of

the linear interpolation algorithm linking relatively sparsely populated points. With a

higher density of points, one should see less severe discontinuities in the plots.

4.2.3.1 Starting Bound Separation

The Multidisciplinary Pattern Search has two main tasks: firstly to find the optimal

design region and secondly reduce the searchable design space. So far, the Multidisci-

plinary Pattern Search has been run from the absolute until the desired bound spacing.

It was interesting to determine if there was any benefit to starting the process from a

smaller bound spacing (still within the original bounds) and let the rule base focus more

on the searching task. Five separate tests investigated the ability of the algorithm to

find the global minimum from different starting bound spacing. All tests were started

from the same 150 starting points, which were arranged in a Latin Hypercube and their

initial bounds were centred around the starting point.

Figure 4.18: Starting bound separation 5%

Figures 4.18 to 4.22 show that starting the process from tighter bounds was more likely

drive the final result to a local minimum. This is visible in the difference in scatter
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Figure 4.19: Starting bound separation 25%

Figure 4.20: Starting bound separation 50%

Figure 4.21: Starting bound separation 75%

Figure 4.22: Starting bound separation 100%

between the five figures. Although that the process converged slightly faster when

started from narrower bounds, there seems to be little benefit in starting the search

from the narrower bound spacing.

The results presented in Figures 4.18 to 4.22 also show that the Multidisciplinary Pattern

Search sometimes finds a slightly better result than the Simultaneous Analysis and
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Design architecture. This is because the blackboard method generated results with a

slightly higher constraints failure, although still below our scaled 1% threshold that has

been used in Figures 4.18 to 4.22.

4.2.4 Comparison with Existing MDO architectures

The final tests serve as a comparison between the proposed blackboard approach and

the two classical MDO architectures. The original formulation of Collaborative Op-

timisation is designed to minimise a single objective, which means that the problem

structure has to be changed slightly. The most suitable problem decomposition requires

all domain objectives to be computed at the system level, with only certain selected

analyses performed at domain level. If the internal analyses modules were modified to

accommodate this decomposition, the UAV problem would fail to emulate the assumed

industrial engineering process, which it has been specifically designed to do. So instead,

the tests were run with the same analysis modules used in the Multidisciplinary Pattern

Search, but using the Multiobjective Collaborative Optimisation (MOCO) decomposi-

tion [145], which better suits this type of problem. The Simultaneous Analysis and

Design on the other hand has a set problem decomposition, which was implemented

without modification.

Table 4.4: Comparison between three MDO architectures

Performance metrics
and design variables

Mean results Lowest objective design

SAND* MOCO* MDPS* SAND* MOCO* MDPS*

Objectives
Global objective 0.5225 0.5559 0.5249 0.5213 0.5224 0.5200
Drag 0.5360 0.5709 0.5445 0.5355 0.5372 0.5355
Mass 0.3081 0.3276 0.3071 0.3071 0.3076 0.3058

Scaled constraints failure
0% 0% 0.21% 0% 0% 0.0018%

Iteration count
Drag analysis runs 80 123811 1600 59 120659 1363
Mass analysis runs 80 122135 2152 59 90170 1786

Design variables
Semi-span 0.9000 0.8962 0.8982
Root chord 0.2152 0.2171 0.1986
Taper 0.8445 0.8378 0.9948
Maximum thickness to chord ratio 0.0900 0.0902 0.0900
Wall thickness 0.0010 0.0010 0.0010
Outer diameter 0.0064 0.0063 0.0064

*SAND and MOCO are abbreviations for Multiobjective Collaborative Optimisation and
Simultaneous Analysis and Design. MDPS stands for Multidisciplinary Pattern search used
with the blackboard method.



76 Chapter 4 Application Case Studies

Table 4.4 shows that the Multidisciplinary Pattern Search is significantly faster to con-

verge than Multiobjective Collaborative Optimisation and achieves results comparable

with the Simultaneous Analysis and Design, but in a fully distributed and concurrent

fashion. Although every effort has been made to ensure a direct and fair comparison

between the architectures, the results presented in Table 4.4 should be viewed with a

degree of caution. Both comparison architectures have some (though few) internally

tuneable parameters, which makes them susceptible to unintentional biasing [64]. This

can of course mislead some the conclusions, hence why the results presented in Table

4.4 are viewed as a broad comparison rather than a critique of any given architecture.

4.3 Transonic Wing Design Problem

4.3.1 Introduction

The second test case uses a decommissioned, cut down version of an industrial engineer-

ing tool for transonic aircraft design [31, 74]. The tool is a single entity that calculates

numerous aerodynamic, structures and costing parameters using analytical and em-

pirical functions. It has been previously used in sensitivity studies investigating how

certain geometric parameters affect the performance of the aircraft. There are around

70 variables in total that define various aspects from the wing, fuselage, empennage and

power-plant. To keep the problem manageable here however, most of these have been

kept fixed to describe a regional aircraft in 220 seat category, with a fixed wing area of

130m2, maximum take off mass of 97 tonnes and operating at Mach 0.785. Only 10 wing

variables were varied to find a compromise between the wing weight and aerodynamic

drag. As the tool is single a black box evaluator, it was artificially decomposed into two

domains for the purpose of this problem.

There are two key sections embedded in the tool for the wing analysis: aerodynamics and

structures. The aerodynamics aspect of the problem uses an analytical method, which

has been calibrated using commercial aerofoil sections to estimate transonic wing drag

and the pitch-up parameter. The aerodynamic drag is the objective in this domains,

while a pitch-up margin acts a constraint in the problem. Pitch-up is a form of high

speed stall that can occur in swept wings flying in the transonic regime and well below

the maximum coefficient of lift [131]. The total wing drag D/q is given in units of

Newtons per unit dynamic pressure in Pascals, whereas the pitch-up value has no units.

The structures domain calculates the mass of the wing by splitting the structures into

two categories. The primary load bearing structure is sized using Torenbeek’s [147]

stress-based method that was modified by Cousin and Metcalfe [31]. The aerodynamics

loads that generate the torsional and bending stresses are calculated separately using

the ESDU 83040 [1] method. A separate calibrated empirical method is used to size
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the secondary wing components (such as flaps, ailerons, spoilers, slats etc..) to remain

consistent with the load bearing elements. A minimum wing volume and undercarriage

bay length form the two constraints in this domain.

Two separate versions of the tool were grouped together with Matlab’s SQP optimiser

and incorporated in the blackboard model. Figure 4.23 illustrates this decomposition.

In some respects this problem is somewhat simpler than the previous one, because

the domains are standalone and have no interconnecting state variables. The difficulty

however comes from the higher number of design variables, as well as the internal domain

non-linearities, which for this problem are largely unknown.

Multidisciplinary
Pattern Search

Objectives:
D
Q ,Wwg

Constraints

Aerodynamics
Optimisation

Objective:
D
Q

Constraints

Search Space:
ubs, lbs

Start Point:
x0

Shared VariablesShared Variables

Structural
Optimisation

Objective:
Wwg

Constraints

Search Space:
ubs, lbs

Start Point:
x0

Database

Figure 4.23: Blackboard data transfer for the transonic wing design problem

For the purpose of the MDO problem, a combined objective function

f0 = 0.15D/q + 0.00000405Wwg, (4.33)

and several constraint functions

p̃ ≤ 5.4, (4.34)

l̃U ≥ 2.1, (4.35)

and

Ṽ ≥ 23 (4.36)
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were devised to collectively minimise the wing drag and mass at the system level. Here

D/q and Wwg represent the ratio of wing drag to dynamic pressure and wing weight,

while the two weighting factors for the objectives were chosen arbitrarily. The symbols

p̃, l̃U and Ṽ describe the pitch-up, undercarriage bay length and wing fuel volume

constraints. The design variables, objectives and constraints are all summarised in

Table 4.5.The problem was solved using the blackboard as well as the two classical MDO

architectures for the purpose of comparison and the results are discussed in Section 4.6.

Table 4.5: Design variables, objectives and constraints in the transonic aircraft
design problem

Performance metrics
and design variables

Upper limit Lower limit Units

Find variables:
Aspect ratio 6.0 12.0 -
Leading edge sweep 25.0 45.0 deg
Spanwise kink position 0.2 0.45 -
Inner taper ratio 0.4 0.7 -
Outer taper ratio 0.2 0.6 -
Root thickness to chord ratio 0.1 0.18 -
Kink thickness to chord ratio 0.06 0.14 -
Tip thickness to chord ratio 0.06 0.14 -
Wing washout 2.0 5.0 deg
Fraction tip washout at kink 0.65 0.85 -
That minimise:
Objective, f0 - - -
Drag, D/q - - m2

Weight, Wwg - - N
Subject to:
Pitch-up margin,p 5.4 - -

Wing volume, Ṽ - 23.0 m3

Undercarriage bay length, lU - 2.1 m

4.3.2 Comparison with Existing MDO architectures

Table 4.6 presents the results from multiple analysis runs of the blackboard, Simultane-

ous Analysis and Design and Collaborative Optimisation architectures. It is well known

from the findings in the report by Price et. al [120] that this problem does not suit many

of the existing distributed and monolithic architectures. Collaborative Optimisation in

particular failed to converge both here and when applied on a problem variant by Price

et. al [120]. Failures with the architectures have been noted by Alexandrov and Lewis

[3] and attributed to the problem decomposition. They observed that for certain prob-

lems the system level constraints can become non-smooth, a feature which was have also

confirmed by Tapetta and Renaud [145] for the Multiobjective version of Collaborative
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Optimisation that was used here. This therefore explains why the solutions failed under

Matlab’s SQP optimiser.

For provably convex problems, the application of the Simultaneous Analysis and Design

with the SQP optimiser should always converge to the global minimum. As this prob-

lem has known discontinuities in the structures domain, the global optimum cannot be

guaranteed and as such, the focus of the search shifts to a demonstration of an ability

to improve the initial design.

The results presented in Table 4.6 confirm that the Multidisciplinary Pattern Search

is better equipped at avoiding the local minima when compared to the Simultaneous

Analysis and Design architecture. The blackboard converges on average to a better

result and is able to find a lower absolute minimum value. It is still however considerably

slower to converge to a result than this monolithic architecture.

It is noteworthy that the best outcome from the Simultaneous Analysis and Design

architecture has a profile thickness at the kink that exceeds the thickness at the root.

While this geometry is entirely feasible according to our problem definition, it is unlikely

to be optimal in real life. This outcome is the result of the domain optimisers exploiting

weaknesses in the tool rather than a deficiency in the chosen MDO method, as a similar

outcome was observed in previous optimisation studies using the same analysis tool [73].

4.4 Concluding Remarks

Many legacy MDO architectures have been developed to solve academic test cases that

are artificiality far more complex than the intended real world applications. This has

sometimes driven researchers to overlook practical aspects of implementation in favour

of mathematical guarantees of convergence. To avoid these pitfalls, two aircraft de-

sign problems have been put forward that aim to replicate intended applications for

this method - the preliminary aircraft design process. The first test case is based on a

UAV wing design problem that has been developed in-house to tune and validate the

performance of the Multidisciplinary Pattern Search. The second problem uses a de-

commissioned industrial design tool, which has been artificially decomposed to simulate

a multidisciplinary design environment. Both studies demonstrate an investigative ap-

plication of the blackboard and provide measurable comparisons with two competing

MDO architectures.

A tuning study investigated how altering the rules, starting design space and bound

control factors affected the rate and accuracy of convergence for the UAV problem.

Increasing the complexity of the rule base improved the convergence rate without sig-

nificantly sacrificing the ability of the method to find the global minimum. The test
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Table 4.6: Aircraft design problem variables and results

Performance metrics
and design variables

Mean results Lowest objective design

SAND* MOCO* MDPS* SAND* MOCO* MDPS*

Objectives
Global objective 0.8754 fail 0.8692 0.8701 fail 0.8685
Drag 3.2753 3.2720 3.2650 3.2652
Weight 94839 93442 93920 93522

Scaled constraints failure
0% 0% 0% 0%

Iteration count
Drag analysis runs 430 18270 444 13763
Mass analysis runs 430 18270 444 21029

Design variables
Aspect ratio 10.40 10.22
Leading edge sweep 26.61 25.10
Spanwise kink position 0.213 0.446
Inner taper ratio 0.696 0.662
Outer taper ratio 0.200 0.202
Root thickness to chord ratio 0.100 0.123
Kink thickness to chord ratio 0.128 0.096
Tip thickness to chord ratio 0.060 0.060
Wing washout 5.000 4.994
Fraction tip washout at kink 0.650 0.792

*SAND and MOCO are abbreviations for Multiobjective Collaborative Optimisation and
Simultaneous Analysis and Design. MDPS stands for Multidisciplinary Pattern search used
with the blackboard method.

highlighted however that the use of the pattern move can increase the number of analy-

sis evaluation, when it is rejected too often. However when combined with the additional

Tabu and duplicate checks, the search provided the fastest converge on average for the

problem it was tested on. In addition, it is most beneficial to start the algorithm from the

absolute bound limits, rather than a smaller search space within the absolute bounds.

Starting from tighter bounds increased the likelihood for the process to converge to a

local minimum or infeasible design, even though the convergence rate was slightly faster.

The study also showed that given a default set values for the bound movement and re-

laxation factors, it is advisable that the bound contraction factor should lie in the range

of 0.2− 0.5.

The blackboard method was also compared against two competing MDO architectures.

It outperformed the alternative Collaborative Optimisation architecture for both test

cases that it was tested on and the converged to better result than the Simultaneous

Analysis and Design during the tests on the transonic wing design problem. This leads

to the conclusion that a fully integrated system like Simultaneous Analysis and Design

works best if the integration effort can be tolerated and if the problem is convex. If

a much less intrusive approach is needed, the blackboard (with the Multidisciplinary
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Pattern Search) allows this at a much lower cost than architectures such as Collaborative

Optimisation. Although these results are encouraging and a step in the right direction,

more work remains to be done to reduce the number of analysis evaluations used by the

blackboard. One possible way to improve the convergence, is to better utilise the history

of already evaluated designs to help guide future searches. This avenue of research is

the subject of the next chapter in this work.





Chapter 5

Data Mining Module

5.1 Introduction

Since design analysis is generally time consuming to compute and data storage increas-

ingly cheap, it is sensible to store as many design calculations as possible for later reuse

[74]. Sections 3.2.5 and 4.2.2 have already demonstrated how the Multidisciplinary Pat-

tern Search can make use of legacy data to avoid duplicating results and to make better

decisions about bound movements. This chapter explores a radically different concept

that uses the legacy data generated by the local domain optimisers to build and tune

surrogate models, which can be queried in place of the local domain analyses. This forms

the concept behind the data mining module in use by the final version of the blackboard.

In conventional surrogate optimisation, designers begin by sampling the available search

space [42]. The aim is to use as few data points as possible to build a cheap-to-evaluate

surrogate (or otherwise known as response surface), so that it can be queried by the

optimiser instead of the expensive analysis. This is subtly different to surrogate assisted

optimisation, where the data points are generated directly by the optimiser and the

surrogate then “mines” information from the history of evaluated solutions, so that it

can be used in some way to supplement the analysis process [65]. Such data mining

efforts have a rich history in the optimisation literature.

Several recent surveys of the topic discuss numerous methods [39, 65, 136] that are mostly

used in conjunction with gradient-free optimisation algorithms to help reduce the number

of analysis evaluations. The topic is well documented with research studies focussing on

clustering [122], radial basis functions [111, 112], polynomials [48] and Kriging [18, 144]

regression for the data mining process. Some authors have even combined multiple data

mining ideas together [60, 67, 166]. For example the work by Isaacs et al. [60] first

organises the data in clusters and then fits a separate surrogate model to each cluster.

Prediction of new candidate solutions is carried out by the surrogate instead only when

its cross validation error is deemed to be sufficiently low.

83
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Xu and Yang [166] on the other hand proposed a different approach. Their method builds

a Gaussian meta-model from a initial sampling plan, which is optimised to generate an

initial database of optimal designs. The best designs are used as a starting points for

the NSGA-II algorithm, which populates the database. Their data mining module uses

clustering to identify near replica query points in a generation of NSGA-II algorithm

before they are evaluated. By omitting these near replica solutions from the analysis

queue, the Xu and Yang observed an improvement in the convergence rate. These two

examples also illustrate that surrogate models serve different roles in a data mining

assisted optimiser. Surrogates can be used to analyse possible designs in a generation

and then give an indication on which ones are most likely to result in an improvement

[166], or they can directly replace the exact analysis routine [60]. As this area of research

is more relevant to domain level optimisation, it is beyond the scope of this thesis.

This short description however has been included to highlight the parallels between the

current state of the art in surrogate assisted optimisation and the idea proposed in this

chapter.

While these methods for reducing the number of analysis evaluations have been widely

studied in conventional single objective optimisation, they have seldom been applied in

distributed MDO. Surrogate models have been used in MDO architectures to achieve

design consistency or to replace the analysis functions altogether. Example of archi-

tectures in the former category are the original versions of the Concurrent Subspace

Optimisation, Bi-level Integrated System Synthesis architectures and Enhanced Collab-

orative OPtimisation which use simple linear approximations [128, 141, 142] to achieve

inter domain consistency. More recent versions of those demonstrated the use of more

sophisticated Neural Networks [133]. Polynomial [82] and Kriging-based [77] models

also work well. The main drawback of these architectures is that they require relatively

accurate surrogate models to converge. This means that organisational domains often

have to perform additional analyses evaluations, outside of their local design search,

to source data for surrogate models needed by the other domains. Ultimately this can

be seen as organisationally undesirable as design teams are no longer standalone and

require the integration of the surrogate models into their analyses.

The second category of methods replace local domain analyses altogether. Applica-

tions in Collaborative Optimisation, demonstrate that surrogate models can alleviate

the non-smoothness problems sometimes observed in the system level constraint func-

tions [25, 139, 163]. Although these examples illustrate an overall positive impact on the

process, the formulation of the Collaborative Optimisation architecture remains largely

unchanged. Therefore the design process would still have to conform to the Collaborative

Optimisation strategy, which can be undesirable as has already been discussed.

The Multidisciplinary Pattern Search (the combination of the rule base and the database)

has already been demonstrated to solve coupled MDO problems alone without the aid

of surrogates. What is noteworthy however, is that the process generates large amounts
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of data that is left unused between local domain searches. This data holds valuable

information that links design inputs with analysis outputs, which can be used to build

and tune surrogate models that represent the domain analyses. Much like the legacy

surrogate assisted optimisation methods [74], the outputs from response surface models

can replace the “true” analyses when deemed accurate. Contrary to the earlier described

architectures, which also employ surrogates, the proposed strategy does not require addi-

tional sampling of the design space, nor does it totally replace the domain analysis with

the surrogate. It simply provides a way to reduce the number of analysis evaluation

by exploiting information in the existing dataset without affecting the organisational

advantages of the blackboard - i.e. data mining.

To a large extent this idea is little bit like using a lower fidelity analysis, only when

the model is deemed to represent the “true” (high fidelity) analysis accurately. The

main benefit of course is that because response surface models only require access to

the database, they can be built in parallel and therefore need not take computational

resources away from the domain local analyses. Once built/tuned and validated, these

models can be queried in the same way as the analysis function inside the optimisation

routine. And finally, as they are generally cheap to evaluate [43] compared to a sin-

gle CFD or FEM analysis evaluation, their computational cost can be neglected from

the number of analysis evaluations. This idea forms the third and final aspect of the

blackboard - the data mining module. Because it is a completely new application in the

framework, it warrants its own chapter in the thesis.

5.2 A review of Kriging

The surrogate in use here is the regression modelling technique known as Kriging. There

are of course many other methods that can serve the data mining purpose. The textbooks

by Forrester et al. [43] and Bishop [17] provide overviews of this and other alternative

surrogate modelling methods. For this application, Kriging regression has been selected

because it is an unassuming method that tends to work well with a low number of

data points [43]. This section offers a condensed description of the process using the

derivation in the work by Jones [68], while more encompassing descriptions can be found

in a number of other references [42, 68].

Kriging is a way of fitting a model to an existing dataset as a realisation of a stochastic

process. The main assumption is that an output from the model at a point x can be

mapped to a random variable Y (x), which is normally distributed with a mean µ and

variance σ2.

This allows the model to correlate the random variables Y (x) based on input data x.

In other words, the random variables Y (x1) and Y (x2) will have a high correlation

when their input data points x1 and x2 are close together. How these correlate, can
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be expressed via a mathematical correlation function commonly known as a kernel.

In the wider field of Gaussian process regression, users can select different correlation

relationships (kernels). Kriging however, uses a specific function as given in Equation

5.1:

B = Corr[Y (xil), Y (xjl)] = exp

(
−

d∑
l=1

θ|xil − xjl|p
)
. (5.1)

This specific function has the intuitive property that if the Euclidean distance between

two data points is small (xil − xjl → 0), then the correlation is high and goes to 1.

On the other hand, if the distance is large (xil − xjl → ∞), the correlation goes to 0.

The additional tuning parameters θ and p influence the “width” and “smoothness” of

the correlation as described in Forrester et al. [43]. θ governs how far the influence of

a data point extends, whereas p governs how the correlation between two points drops

off. For example, large values of θ will produce outputs that change rapidly over small

distances, where as lower values for p (near 0) will model a discontinuity in the function.

Altogether, the random variables Y (x1) to Y (xd) for the d data points can be grouped

under a single vector Y as given by:

Y =


Y (x1)

...

Y (xd)

 , (5.2)

where the vector of query points is:

x =


x1

...

xd

 . (5.3)

Now because the model assumes that Y is a vector of random variables with a mean µ

and variance σ2, the covariance matrix can be represented as:

Cov(Y) = σ2B. (5.4)

Here B is the correlation matrix made up of elements calculated using Equation 5.1. The

distribution of Y characterises how the model output varies as one moves in different

coordinate directions. It therefore depends on the mean µ, variance σ2 and the two

tuning parameters θ and p. To estimate the best values that these can take, one is

interested in reducing the generalisation error of the model by maximising the likelihood

of the observed data. In other words, choosing the tuning parameters that maximise
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the likelihood function intuitively means that the model will be most consistent with

the available data. Given that the vector of observed values is :

ỹ =


ỹ1

...

ỹd

 , (5.5)

the maximum likelihood function can be written as:

LF =
1

(2π)
n
2 (σ2)

n
2 |B|

1
2

exp

(
−(ỹ − 1µ)′B−1(ỹ − 1µ)

2σ2

)
. (5.6)

In practice it is more convenient to maximise the logarithm of Equation 5.6. Its derivative

- ignoring constant terms - can be shown to equal:

∆ = −n
2
log(σ2)− 1

2
log(|B|)− (ỹ − 1µ)′B−1(ỹ − 1µ)

2σ2
. (5.7)

This derivative can then be set to zero to produce equations for the optimal values for

µ and σ2 as given by:

µ =
1′B−1ỹ

1′B−11
(5.8)

and

σ2 =
(ỹ − 1µ)′B−1(ỹ − 1µ)

n
. (5.9)

To obtain the optimal values θ and p, one simply needs to substitute the estimates for

σ2 and µ back into the log likelihood function and numerically optimise it:

− n

2
log(σ2)− 1

2
log(|B|). (5.10)

Because this, so-called concentrated log-likelihood function (as given by 5.10), is not

easily differentiable, one must use a numerical optimisation technique to find the values

for θ and p that will maximise it. Now that the values for µ, σ2, θ and p that maximise

the log likelihood function have been found, the Kriging model can be used to predict

the observed value ỹ∗ at a new point x∗. Logic dictates that the best estimate for ỹ∗
will be one that maximises the likelihood functions at the point x∗. Therefore, to make

a prediction, one can simply add the points x∗ and ỹ∗ to the vectors x and ỹ as the

(d+ 1)th observation. From this, one can derive the formula for ỹ∗ that maximises the
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likelihood function, which is given by 5.11. Solving this equation ultimately gives the

Kriging predictor:

y(x∗) = µ+ r′B−1(ỹ − µ), (5.11)

where r represents the vector of correlations between the observed data and the new

prediction as given by:

r =


Corr[Y (x∗), Y (x1)]

...

Corr[Y (x∗), Y (xn)]

 . (5.12)

So far this description covered the key concepts for Kriging interpolation, which is only

useful for predicting with data that is free from noise. Regression is more useful for the

purpose of data mining here, mainly because the fixed point iteration strategy for the

state variables introduces what can be described as noise, in otherwise noise-free domain

analyses. One way to build a regressing Kriging model is to add a small constant to the

leading diagonal of the B matrix [43, 56]. Following the same logic as given by Equations

5.1 to 5.11, but this time with the added λ regression constant, the prediction equation

can be shown to be:

y(x∗) = µ+ r′(R− λI)−1(ỹ − µ). (5.13)

The value of this constant λ can also be calculated during the search for the optimal

θ and p as described earlier. This concludes the tuning and evaluation descriptions for

the Kriging model.

5.3 Building and Trusting the Kriging Surrogate

5.3.1 Introduction

When building/tuning the Kriging model, the main assumption is that the database has

more than sufficient data to build an accurate surrogate. The general intuition in that

case, is that using all the data will generate a better model [126]. While this can be

true, there are several reasons why one might wish to filter the available data before it

is used in the tuning process of the Kriging model.

The main reason is to avoid numerical inaccuracies. Legacy datasets from domain local

optimisation searches are rarely uniformly distributed over the whole design space. This
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is often because they are not generated specifically for the surrogate model, but instead

are the product of formal optimisation routines or some form of human driven trade

studies. Formal optimisation routines are well known to distribute points in clusters

and in regions near potential optima [20]. Using this unfiltered data can lead to ill-

conditioning problems in the Kriging model, which can ultimately result in unreliable

predictions [43].

Another reason why it may be beneficial to discard some of the data is to reduce the

tuning time for the Kriging surrogate. The optimisation of the Kriging parameters

requires many matrix solutions, which can be computationally time consuming when

the datasets are large. Forrester et al. [43] showed that Kriging surrogates have data

saturation limits. Beyond that, additional data points will simply increase the tuning

time without improving the global model prediction. However, as the domain local

analyses are assumed to be prohibitively more time consuming in the grand scheme of

the MDO process, the tuning time for the Kriging surrogate is ignored when comparing

results.

Cross-validation is yet another reason why one might choose not to use all the data.

Cross-validation is a well known [17, 43] method for testing the prediction accuracy of

a model and requires the partitioning of the data, usually at random, into training and

validation sets. The former is used to tune the model, while the latter can be used to

test the how accurately the model predicts on independent data points that have not

been used in the tuning process.

The final aspect that needs consideration is the data outside the current bound space.

It is important to remember that the Multidisciplinary Pattern Search iteratively moves

the bounds on the shared variables. So at any stage the databases will be populated

with data points, some of which will lie well outside of the region of interest at that

particular iteration. It would be wasteful to build the model with all the available

data when only a subset of that data is needed. How much of the data outside of the

current area of interest is useful, is a question addressed by legacy trust region methods

[148, 149]. Figure 5.1 illustrates an example re-cycle region idea used in the monolithic

MDO method by Ollar et al. [110]. In a similar work, Toropov and Alvarez [148] give

guidance that the re-cycle region should be between 1.5 to 2.0 times larger than the

current search domain.

5.3.2 The Data Mining Module

The data mining module consists of a set of rules that automatically decide if there is

sufficient data to build a Kriging model and if the this model can be trusted to make

accurate predictions of the “true” analysis evaluation. Figure 5.2 illustrates the key steps

in the process. The Kriging toolbox in use here is a modified version of the programs
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x1

x2

Recycle Region
Bound Spacing

Points in bound spacing
Points in recycle region
Points not considered

Figure 5.1: Points outside of the re-cycle region are not used for tuning the
Kriging model (adapted from Ollar et al. [110])

published in the book by Forrester et al. [43], while the rules in the data mining module

have been put together in-house.

The first step tackles the question of how to select a subset of the data for efficient

Kriging training. Srivastava et al. [144] and Rennen et al. [126] tested several ways to

filter large legacy data sets for Kriging generation. The comparison study of Rennen

et al. [126] failed to provide a “best” method, but concluded that in general more

points resulted in a better prediction. This was also observed in the results presented

by Srivastava et al. [144], which is perhaps an indication that the original dataset was

both rich and uniformly populated.

The data mining module here has been specifically developed for use on the more complex

version of the UAV wing design test case, which is outlined in Section 4.2. This test

case is arguably a worst case scenario, because the data is generated using the SQP

gradient-based optimiser. This means that the available data is both scarce and found

in very tight clusters where gradients have been calculated using the finite differencing

method. So the first filter removes points that sit close together simply by rounding

data points to 7 decimal places and discarding duplicate solutions. This was done to

alleviate ill-conditioning problems, which may occur during the matrix inversions [43].
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Figure 5.2: Data mining process flow chart

During a search, it is better to build a model that is accurate in the region of interest,

rather than one that tries to capture the entire design space [60]. So the second filter

removes points outside the vicinity of the current bound spacing region. The re-cycle

region scheme was introduced to maximise the available data for building the Kriging

model. Figure 5.1 illustrates this concept, while Equation 5.14 was found to generate a

recycle region that varies with the bound spacing and RR worked well in practice:

RR = 0.3(ub− lb)
(

1− ub− lb
ubinit − lbinit

)3

. (5.14)

As a reminder, the values ub and lb signify the current upper and lower bounds, while

the symbols with subscript init refer to the initial starting bounds.
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The final data filter removes points with respect to the state variables. The data used

to tune the Kriging model takes in set of design variables, which also includes state

variables. This is because the prediction is generally more accurate when the Kriging

model includes state variables relevant to the analyses routine being in the training

set. However, the blackboard uses a fixed point iteration scheme, which means the

input state variables remain fixed throughout a domain local search. It is therefore

beneficial to discard points points from the training data which have radically different

state variables from the current query point. More specifically, this filter removes data

points that have more than 5% different, which can be defined as:

for all data points

if y∗
ỹ > 0.05

Disregard data point from training data.

end

end

The symbol y∗ is the fixed state variable in the current domain level iteration and ỹ

represents the state variable from the training dataset. This concludes the data filtering

section of the module. What follows next is the description of the pre-defined rules

that determine whether the Kriging model will be used in place of the “true” analysis

evaluation. The first rule checks if the remaining filtered dataset is sufficiently well

populated for use by the Kriging model. If it is not, the data mining module returns a

flag to indicate that a “true” analysis evaluation should be used instead.

The next step checks if a Kriging model was successfully used in the previous iteration.

This aims to use legacy θ, p and λ tuning parameter, because optimising these can be a

time consuming process [18]. Although it can be claimed that the time required to tune

these parameters is small in comparison to a single CFD or FEM analysis evaluation

[18], the need to run this process over multiple iterations necessitates every possible time

saving. Furthermore, given that bound movements generally overlap between different

areas of the designs, it would be wasteful to tune new Kriging parameters, when an set

has been tuned on a near identical data set. So Kriging parameters are inherited when

two successive datasets overlap by 80%.

In the event that no suitable previous Kriging parameters exist, the algorithm tunes

a new model with the filtered data. Regardless of whether new or existing Kriging

parameters are used, the “leave one out” cross validation method (using the filtered

training data) assesses the prediction accuracy [43] of the model. In addition the model

is also cross validated with the discarded data from inside the re-cycle region. Although,

this has much lower impact on the decision of whether to use the Kriging model because

this data is usually near identical to the data used in tuning the model.
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A 2% mean prediction error is used as a threshold for accepting or rejecting a model.

If either the new or legacy Kriging models pass this threshold, the prediction from the

Kriging model is accepted and saved to the database. If however the legacy Kriging

model fails, a new Kriging model is tuned using the dataset. A flag to indicate that the

query point should be evaluated with the “true” analyses is generated if a new Kriging

model fails the cross validation check. This concludes the description of the data mining

module.

5.4 A Case Study Using the Complex UAV Wing Design

Problem

This section evaluates the benefits of using the data mining module on the full version

of the UAV wing design problem from Section 4.2.1.8. Separate Kriging models were

built to evaluate the drag, wing loading, stress, mass and costing instead of the “true”

analysis functions. One would expect that with the addition of the data mining, the

Multidisciplinary Pattern Search would converge in fewer analysis evaluations. This is

certainly the case as shown by Figure 5.3, which illustrates the convergence from the

same point with and without the data mining module. More specifically, the figure

shows that the additional data mining modules reduces the number of “true” analysis

evaluations by around one third.
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Figure 5.3: Demonstration of improved convergence rate using the data mining
module

However, it is well known that to using the Kriging predictions can mislead optimisation

searches. This phenomenon was observed when the blackboard method was started from

multiple starting points. Figure 5.4 shows that the data mining module introduces much
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larger scatter and more frequent constraint failures in the final designs when compared

to the same version of the blackboard with the data mining disabled (Figure 5.5).

Figure 5.4: Data mining assisted Multidisciplinary Pattern Search convergence
for 150 points on the more complicated version of the UAV problem

Figure 5.5: Multidisciplinary Pattern Search Convergence for 150 points on the
more complicated version of the UAV problem without data mining

While there are numerous factors that affect the prediction accuracy of the Kriging

model, the biggest factor that contributes to these issues is the available data. When

building the Kriging model, most of the data has to be discarded to prevent ill-conditioning

or because the state variables do not match. This usually leaves insufficient and poorly

distributed data for tuning and cross-validation of the Kriging model, and as such makes

the decisions on whether to use the Kriging model challenging. Tests that investigated

tighter decisions thresholds showed diminishing improvements, further supporting the

conclusion that the available data was insufficient

It is also noteworthy that the blackboard without the data mining exhibited a higher

constraint failure than in previous applications. This indicates that the chosen penalty

function becomes less effective in dealing with constraints, when the absolute value of

the global objective increases.

Table 5.1 summarises the final designs points from both studies. It is interesting to note

that the even without the data mining module, the average constraint failure is much

larger than previous studies performed in Section 4.2.4. This is perhaps an indication

that the chosen constraint handling techniques function is less effective for problems

whose objective function takes on larger absolute value.



Chapter 5 Data Mining Module 95

Table 5.1: Summary of results for 150 runs started from different points arranged
in a Latin Hypercube pattern

Performance metrics
and design variables

Mean results Lowest objective design

Data mining
disabled

Data mining
enabled

Data mining
disabled

Data mining
enabled

Objectives
Global objective -2.6257 -3.6486 -7.4011 -9.5953
Cost 16.08 16.59 12.38 11.45
Range 18.71 20.24 19.78 21.05

Scaled constraints failure
1.83% 11.25% 3.99% 2.91%

Iteration count
Bound moves 338 386 451 430
Total domain calls 58009 43428 81731 48236

Design variables
Semi-span 0.8160 0.7728
Root chord 0.2345 0.2496
Taper 0.9973 0.8893
Maximum thickness
to chord ratio

0.1472 0.0910

Wall thickness 0.0008 0.0007
Outer diameter 0.0095 0.0092

*SAND and MOCO are abbreviations for Multiobjective Collaborative Optimisation and
Simultaneous Analysis and Design. MDPS stands for Multidisciplinary Pattern search used
with the blackboard method.

5.5 Concluding Remarks

Distributed MDO methods generally require an order of magnitude more analysis eval-

uations than the monolithic counterparts. As shown in previous chapters, the proposed

blackboard method with the newly developed Multidisciplinary Pattern Search is no

different. This chapter introduces a concept that aims to improve the rate of converge

simply by regressing among the existing data in order to replace the costly analyses

evaluations where possible.

This data mining module included a set of Kriging models, which were built and updated

only using legacy data from the database. Its use in the blackboard improved the

convergence by around 25% but inaccuracies in the Kriging model forced the method

to converge to designs with a significantly higher constraint failure. Basically the data

mining works best if optimisers in use by the domains generate data that is rich and well

spaced. When an optimiser, such as SQP is in use, which generally tends to produce

poorly spaced clusters of points, the data mining assisted search should be used with

caution as the Kriging models can mislead the search and drive it to converge to infeasible

designs.
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This final addition completes the work on the blackboard as a computational entity

for MDO. The next important question is how intuitive is the process and can it be

practically used by designers to help reach multidisciplinary optimal designs. This makes

up the topic of the next chapter.



Chapter 6

Team-Based Application

6.1 Introduction

Work on the blackboard framework has been developed as part of a collaborative part-

nership between Airbus UK. and the University of Southampton. A focus of this effort

is the continuous improvement of various aspects of the framework with the ultimate

intent being its application in an industrial setting. When developing a MDO process,

one must not lose sight of fact that the design teams will ultimately undertake the work.

Most researchers working on MDO to date tend to focus on running computational

experiments, which imitate the interactions between design teams. Although these are

useful because they allow researchers to quickly identify and address performance issues,

such experiments inevitably fail to capture the human factors involved in design. This

has resulted in a great deal of distributed MDO literature that has seen relatively little

use in industry, primarily because the architectures have been developed without due

regard to the needs of the design teams that will ultimately use them [73].

Directly testing a novel MDO architecture in an industrial setting risks disrupting the

design cycle and could contribute to costly delays inside the organisation. Hence why,

excluding a small number of select cases studies [96], it is rare to see new distributed

MDO approaches being directly tested by industrial design engineering teams. One way

to avoid this issue, is to use student design teams instead. The abundance and shorter

time scales of academic design projects, as well as the much lower consequences of failure,

makes this form of real world testing a good stepping stone in the validation process of

a new method.

There are numerous examples where engineering students have been subject to research

studies. Perhaps the most relevant is a study by Austin-Breneman and Honda [14], where

the authors investigated how student teams coped with distributed MDO problems. The

results concluded that in all cases the student teams failed to find the optimal design

97



98 Chapter 6 Team-Based Application

when compared to more formal optimisation strategies. This was largely attributed to

the teams’ use of trial and error-based approaches instead of formal optimisation meth-

ods. Factors related to team dynamics also played a role in the failure. Other studies

have also investigated engineering negotiation strategies [66], team performance on aca-

demic projects [167] and how decision making differed between experts and students

[13].

Computational trials using the blackboard have thus far provided satisfactory design

solutions on representative problems. So the focus of this chapter has been the applica-

tion of the blackboard in a team-based design environment, with the goal of obtaining

qualitative feedback on its intuitiveness, effectiveness and ease of use.

6.2 The Research Approach

Undergraduates undertaking the FEEG2001 Systems Design and Computing module at

the University of Southampton were tasked to design and build of an airplane wing as

part of their coursework. They were provided with a standard fuselage, empennage and

power plant for a sub 2kg UAV, and were given considerable freedom to design and build

a wing. At the end of the module, the student built wings were scored on two main

criteria as part of their assessment.

These criteria are the two main objectives in the student design problem. The first

objective was to maximise aerodynamic efficiency. This was defined as the difference

between the maximum speed in level flight and minimum (stall) speed. The second

objective pushed students to maximise the structural efficiency of their wings. This is

defined as the a ratio between the wing deflections and its mass when a point load was

applied to the structure.

This problem lends itself very nicely to the analyses used by the simple UAV wing design

problem described in Section 4.2. A spreadsheet-based design tool was put together to

help minimise certain aspects of the two objectives in this exercise. The tool included a

simplified variant of the blackboard framework to help size the main wing variables in

the early preliminary design stage.To keep the tool simple to use, the automatic Multi-

disciplinary Pattern Search and data mining module were omitted from this formulation

of the framework. Instead students had to play the role of the pattern searcher and

manually move and reduce the bounds on the shared variables space to find an optimal

design region. Microsoft Excel was specifically chosen to host the blackboard design

tool, in order not to deter students with unfamiliar software. After all, the teams were

free to use it at their discretion and therefore making the application itself easy to use

was fundamental to the test. The tool incorporated the analyses from the simplified ver-

sion of the UAV problem into two optimisation domains as shown in Figure 6.1. Each



Chapter 6 Team-Based Application 99

domain was optimised with Excel’s “Solver” optimiser and used the simplified problem

decomposition as described in Section 4.2 with the added deflection constraint.

The Student
Designer

Objectives:
mwing, D

Constraints:
W
S , tbuff , σ

Drag
Minimisation

Objective:
D

Constraints:
W
S

State:
mwing

Shared VariablesShared Variables

Search Space:
ubs, lbs

Start Point:
x0

Mass
Minimisation

Objective:
mwing

Constraints:
tbuff , σ

State:
Mroot

Search Space:
ubs, lbs

Start Point:
x0

Database

Figure 6.1: Blackboard analysis tool used for the student design exercise

Figure 6.2 shows the main GUI that facilitates the bound movements. Along the left

side of the GUI, there are two scrollbars that control the bounds for each variable. The

outermost scrollbar moves both bounds either upwards or downwards, while the other

controls the bound separation. Once the student selects a desired search region with the

scrollbars, domain level optimisations can be trigged using the “Start Analysis” button

on the right side. The five central graphs then become populated with the preferred

final designs from each local optimiser. The top four graphs display the preferred design

values from each domain, while the last graph displays the best obtainable drag and

mass, and any scaled constraint failures for the region of interest. The two colours

distinguish the outputs from the different domains. In many ways and deliberately, this

GUI is very similar to the one presented in Section 3.4.

What is notable to see in Figure 6.2 is that the domains disagree on three of the four

design variables over successive iterations. This is indicative of the presence of conflicting

objectives and is up to the student to manage these manually. Effectively the student

replaces the Multidisciplinary Pattern Search, as they set the available search space for

automatic domain level optimisation. To comprehend why the Multidisciplinary Pattern

Search has been omitted, one must remember that the subject students are second

year undergraduates, with little to no prior knowledge of the aircraft design process or

MDO. Although this makes them good candidates, as they will likely have no prejudices

towards certain design practices, they are largely unfamiliar with basic concepts in design

optimisation. So they were given direct control over the bound movements to prevent a

“push-button” MDO solver and to make the overall search simpler to grasp. This also
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allowed students’ design logic to be observed by noting their choices of moves and to

focus on establishing how easy it is to find feasible designs using bound movements.

In addition, it was deemed unnecessary to introduce a weighted objective function,

because objective weightings have no physical meaning real world design and would

further complicate the process. Instead, the compromise between drag and mass was

achieved by students visually monitoring changes over consecutive iterations.

6.3 Results and Discussion

The course was composed of a mixture of mechanical and aerospace students altogether

numbering 80, which were randomly allocated into 16 teams. In total 11 of the 16 groups

used the output from the spreadsheet tool as the starting geometry for their preliminary

assessment stage. Three groups found the program unintuitive, one group had decided

on a wooden skeleton wing and used other methods to generate an initial geometry and

one group gave no reason. Individually, students that attempted to use the tool were

asked to complete a focus group type questionnaire, which can be found in Appendix A.

The questionnaire obtained feedback on three elements of the tool: how intuitive they

perceived the process to be, how easy it was to find a final design and the effectiveness

of the GUI and process combination. There were also comment sections that allowed

students to provide specific feedback, as to why they did not use tool (if they didn’t)

and any changes they would propose.

The questionnaires were filled out during a presentation review of each group’s progress

at the mid-way stage. As not every member in each group attempted to use the tool,

only those that did were asked to fill out the questionnaire. 28 anonymous responses

were collected, of which 21 had answered that they had successfully used the tool in

their design.

Although most students that attempted to use the tool were successful, nearly half

of participants noted that the provided guidance notes had insufficient detail. This

indirectly contributed to students failing to understand the types of inputs required or

failing to enable the “Solver” optimiser add-in in Microsoft Excel. Nevertheless those

students that sought help during the weekly sessions and were present at the introductory

lecture were able to use the tool to generate candidate wing geometries. Figures 6.3, 6.4

and 6.5 summarise the responses to the three questions from the 21 participants that

answered positively.

Overall, Figure 6.4 shows that most students found the process intuitive. This indicates

that manually altering the bounds on the shared design variables using the provided

spreadsheet tool was concept that easy to grasp. What is interesting however, is that a

lot of students did not find it easy to locate a final result. Some of the written feedback
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14.29 %

Very Intuitive

57.14 %

Intuitive

19.05 %

Neither

9.52 %

Unintuitive

Figure 6.3: Answers to the question: How intuitive did you find bound move-
ments as a design method?

4.76 %

Very Easy

33.33 %

Easy

57.14 %

Neither

4.76 %

Difficult

Figure 6.4: Answers to the question: How easy was it to find a final design?

from students indicated that it was not clear why certain bound movements caused

constraint failures. Student wished to see not only which constraints were failing, but

also what could be done to remedy the failures. This is supported by Figure 6.5 where

a third of participants wished to see more information presented by the GUI.

The selected starting inputs could have also introduced difficulties in finding a final

answer. As students were free to choose the bound limits and constraints, they may

have inadvertently over-constrained the MDO problem, which would make the manual

search harder. It is difficult to tell how much this bedevilled the search, however the
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33.33 %

More needed

61.90 %

Enough

4.76 %

Less needed

Figure 6.5: Answers to the question: Was there enough information displayed?

feedback suggested that the process was easy to use once the rather steep learning curve

in the initial set-up was overcome.

Moving forward, it is worth reiterating that the results presented here are an evalua-

tion of the difficulty of manually altering the bounds to find a multidisciplinary feasible

result. The automatic search using the Multidisciplinary Pattern Search has been ex-

cluded from the tool, to keep the complexity of the method at a level, which could

be easily understood by undergraduate by students. This can makes the process much

more intensive for the student designer, than the version presented in Chapter 3, which

requires no designer input altogether.

This explains why some students found the GUI inadequate for the purpose and wished

to see more information on the causes of constraint failures as well as advisable moves

that would improve the objectives. This feedback opens an avenue for future research

on a hybrid automated blackboard approach. The rule base in the proposed approach

would continue to automatically set new design regions, but the chief designer would

maintain the ability to override these decisions. They could manually move the search

in directions of their preference and query the rule base for suggested future moves.

This hybrid approach which might give the best of both worlds - efficient convergence,

while keeping designers engaged. For such a method to work well, the blackboard would

require a rule base that can handle human interruption and a more sophisticated GUI.

In many ways this would be a return to the concept of computational steering, which

has been applied to analysis and optimisation methods in the past [104, 158, 159].
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6.4 Concluding Remarks

Perhaps the best result of the student tests is the ability to demonstrate that a MDO

method based on simple bound movements can be successfully used in a team-based

environment. Such tests are rarely found in industry because engineers have very little

bandwidth outside of their daily tasks to undertake academic studies. This is why a

student-based research exercise was undertaken to establish how intuitive of the of the

blackboard framework when applied to a team-based design problem.

A bespoke version of the blackboard search process was made available to 16 student

groups in a standalone spreadsheet-based design optimisation tool. The version excluded

the Multidisciplinary Pattern Search and the data mining modules to keep the process

complexity to a level where it could be easily understood by relatively inexperienced

design students. Instead designers had to manually move the bounds on the shared

variables in their search for an optimal design region.

The study provided numerous findings and highlighted several avenues for further re-

search. First, to keep designers engaged with the process, they require considerable

information regarding the outcomes of bound alterations. The status of objectives and

constraints alone is insufficient to make good design choices. The students, which had

the role of the chief engineers, wished to see why certain bound movements resulted in

design improvements. More importantly, they required feedback on why certain bound

movements resulted in failures and suggestions on future moves that could improve

those. The feedback from this study highlighted scope for future research on a mixed

human-automated search process, which could offer benefits over the automatic or maul

driven bound movements process explored in this and previous chapters.



Chapter 7

Conclusions

7.1 Discussion

The lack of industrial application of distributed and automated MDO architectures,

particularly in aircraft design, has been the main motivation of this research work. A

legacy blackboard framework was deemed the most promising avenue for further research

and provided the foundation for the work covered in this thesis. The core concept centres

around the use of a rule base to iteratively reduce the bounds on shared design variables

until they converge on a search space representative of a single multidisciplinary optimal

design.

This thesis covers two main advancements on the legacy framework. The first is a newly

developed rule base has been given the name Multidisciplinary Pattern Search by the

author to highlight that it has been inspired by several well established heuristic optimis-

ers. It was developed and tested on two aircraft design problems and its performance was

validated against two competing MDO architectures. The results indicated that when

combined with a blackboard, it converges faster than the distributed Collaborative Op-

timisation. Yet it was shown that for a convex MDO problem, it was not able to match

both the accuracy and lower convergence rate of the monolithic Simultaneous Analy-

sis and Design architecture. However, the gradient based optimisers often used with

such fully integrated architectures were shown to become less effective when faced with

problems with internal discontinuities. Simultaneous Analysis and Design was found to

be sensitive to starting points and performed less competitively than Multidisciplinary

Pattern Search.

Despite the improvements in the rule base used by the blackboard, the process still

requires a considerably high number of analysis evaluations to convergence. This is

well beyond what is practically achievable in the preliminary aircraft design stage using

high fidelity physics-based codes. For this reason a separate data mining module was

105
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developed to reduce the number of analysis evaluations by reusing legacy data stored

in the database. More specifically, a set of Kriging regression models were built using

legacy data, which were then used instead of the “true” analysis evaluations. Tests

on the UAV design problem indicate that 25% reduction in the number of analyses

evaluations can be achieved. A sacrifice in robustness was necessary, as the surrogate

models can sometimes mislead the search process and divert it towards infeasible design

regions.

The blackboard model with manual bound controls was made available to groups of

engineering students for a UAV design task. Their feedback suggested that the process

altogether was intuitive, but the provided GUI required more work. The students wanted

to see specifically which manual bound movements caused constraint failures and what

could be done to remedy those.

Finally, it is worth reiterating a fully integrated monolithic architecture works best on

MDO problems whose domain analyses are well suited to gradient based optimisation.

That way the integration cost and organisational impact can be offset by guarantees and

high rates of convergence. If a less intrusive method is needed, the blackboard process

offers an intuitive way to control and monitor the activity of organisational domains,

which might appeal to chief designers without a specialist MDO background.

7.2 Suggestions for Future Work

Significant progress has been made towards getting the legacy blackboard framework to

a stage where it could be applied to industrial design. However, more work still remains

to be done as the process is some way away from being ready for industrial trials.

First, the core logic in the Multidisciplinary Pattern Search is robust and has reached a

level of maturity where it could be applied to more complex problems. However more

work needs to be done on the constraints penalty function. As discussed in Section 5.4, a

significant constraint failure was observed in the final design found by the process. This

is indicative that the chosen penalty function is sensitive to the absolute value of the

global objective. Hence a better penalty function would be the first avenue for future

work.

Second, there is much more to be done with the data mining module. The author is well

aware the blackboard is unsuitable for some highly non-linear problems, which are often

found in academic test suits [113]. This is because it uses a fixed point iteration strategy

to communicate state variables across domains and has been implemented to avoid a full

multidisciplinary analysis at every iteration. There is scope to apply regression models

in the domain local analyses, which should improve the consistency of the individual
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domain preferences. This will likely also improve the performance of the blackboard

when applied to non-linear MDO problems.

Finally, a practical application on a team-based design problem concluded that more

work is needed on the human process interaction in the blackboard. A fully automated

approach takes the designer out of the loop, while manually controlling the bounds

can be inefficient, especially when performing routine exploratory bound movements.

Perhaps a hybrid human/automated blackboard would offer the best of both worlds -

efficient use of designer time, while keeping chief designers engaged with the process.

This could be as simple as pre-determined breaks in the Multidisciplinary Pattern Search

to enable human input or a complete re-design of the rules to allow for unpredictable

human interruption of the search process. This avenue offers the broadest scope for work

and future research in this area can be tailored to specific applications.





Appendix A

Student Questionnaire
Did you use the UAV Design Spreadsheet in your wing design? 

 

 Yes 

 No 

If no, why not?  

 

 

How intuitive did you find bound movements as a design method? 

 

 Very Intuitive 

 Intuitive 

 Neither 

 Unintuitive 

 Very unintuitive 

How easy was it to find a final design? 

 

 Very easy 

 Easy 

 Neither easy 

 Difficult 

 Very difficult 

Was there enough information in the “User Control” to help you make 
decisions about the bounds? 

 

 More information was needed 

 Information displayed was enough 

 There was too much information 

Is there anything that you would change? 
 

 

Figure A.1: Student feedback questionnaire for the Blackboard analysis tool
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Appendix B

List of Publications

This research project has resulted in the following publications:

1. N. Jelev, A. Keane, and C. Holden. A pattern search algorithm for blackboard

based multidisciplinary design optimisation frameworks. Journal of Aircraft,

0(0):1–16, 2018.

2. N. Jelev, A. Keane, C. Holden, and A. Sóbester. Rule based architecture for

collaborative multidisciplinary aircraft design optimisation. International Journal

of Aerospace and Mechanical Engineering, 11(5):1006–1015, 2017.
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collaborative multidisciplinary aircraft design optimisation. International Journal

of Aerospace and Mechanical Engineering, 11(5):1006–1015, 2017.

[65] Y. Jin. A comprehensive survey of fitness approximation in evolutionary compu-

tation. Soft Computing, 9(1):3–12, 2005.

[66] Y. Jin and M. Geslin. A study of argumentation-based negotiation in collaborative

design. Artificial Intelligence for Engineering Design, Analysis and Manufacturing,

24(1):35–48, 2010.

[67] Y. Jin and B. Sendhoff. Reducing fitness evaluations using clustering techniques

and neural network ensembles. In K. Deb, editor, Genetic and Evolutionary Com-

putation – GECCO 2004, Seattle, Washington, USA, pages 688–699, Berlin, Hei-

delberg, 2004.

[68] D. R. Jones. A taxonomy of global optimization methods based on response

surfaces. Journal of Global Optimization, 21(4):345–383, 2001.

[69] R. T. Jones. The spanwise distribution of lift for minimum induced drag of wings

having a given lift and a given bending moment. NACA Technical Report 2249,

1950.

[70] S. Jun, Y. Jeon, J. Rho, and D. Lee. Application of collaborative optimization

using genetic algorithm and response surface method to an aircraft wing design.

Journal of Mechanical Science and Technology, 20(1):133, 2006.



REFERENCES 119

[71] N. Kang, M. Kokkolaras, and P. Y. Papalambros. Solving multiobjective opti-

mization problems using quasi-separable mdo formulations and analytical target

cascading. Structural and Multidisciplinary Optimization, 50(5):849–859, 2014.

[72] N. Kang, M. Kokkolaras, P. Y. Papalambros, S. Yoo, W. Na, J. Park, and D. Feath-

erman. Optimal design of commercial vehicle systems using analytical target cas-

cading. Structural and Multidisciplinary Optimization, 50(6):1103–1114, 2014.

[73] A. Keane and P. Nair. Computational approaches for aerospace design: the pursuit

of excellence. John Wiley & Sons, 2005.

[74] A. Keane and J. Scanlan. Design search and optimization in aerospace engineer-

ing. Philosophical Transactions of the Royal Society of London A: Mathematical,

Physical and Engineering Sciences, 365(1859):2501–2529, 2007.

[75] A. Keane, A. Sóbester, and J. Scanlan. Small unmanned fixed-wing aircraft design:

a practical approach. John Wiley & Sons, 2017.

[76] G. K. Kenway and J. R. R. A. Martins. Multipoint high-fidelity aerostructural

optimization of a transport aircraft configuration. Journal of Aircraft, 51(1):144–

160, 2014.

[77] H. Kim, S. Ragon, G. Soremekun, B. Malone, and J. Sobieszczanski-Sobieski.

Flexible approximation model approach for bi-level integrated system synthesis.

In 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,

Albany, New York, USA, page 4545, 2004.

[78] H. M. Kim, W. Chen, and M. M. Wiecek. Lagrangian coordination for enhancing

the convergence of analytical target cascading. AIAA Journal, 44(10):2197–2207,

2006.

[79] H. M. Kim, N. F. Michelena, P. Y. Papalambros, and T. Jiang. Target cascading

in optimal system design. Journal of Mechanical Design, 125(3):474–480, 2003.

[80] H. M. Kim, D. G. Rideout, P. Y. Papalambros, and J. L. Stein. Analytical target

cascading in automotive vehicle design. Journal of Mechanical Design, 125(3):481–

489, 2003.

[81] S. Kodiyalam. Evaluation of methods for multidisciplinary design optimization

(MDO) part 1. NASA CR-1998-208716, 1998.

[82] S. Kodiyalam and J. Sobieszczanski-Sobieski. Bilevel integrated system synthesis

with response surfaces. AIAA Journal, 38(8):1479–1485, 2000.

[83] S. Kodiyalam, C. Yuan, and J. Sobieski. Evaluation of methods for multidis-

ciplinary design optimization (mdo). part 2. Technical report, NASA CR-2000-

210313, 2000.



120 REFERENCES

[84] R. M. Kolonay and M. H. Kobayashi. Optimization of aircraft lifting surfaces

using a cellular division method. Journal of Aircraft, 52(6):2051–2063, 2015.

[85] L. Krog, A. Tucker, and G. Rollema. Application of topology, sizing and shape

optimization methods to optimal design of aircraft components. In Procceedings

of 3rd Altair UK HyperWorks Users Conference, 2002.

[86] I. Kroo, S. Altus, R. Braun, P. Gage, and I. Sobieski. Multidisciplinary optimiza-

tion methods for aircraft preliminary design. In 5th Symposium on Multidisci-

plinary Analysis and Optimization, Panama City Beach, Florida, USA, volume

4325, page 1994, 1994.

[87] I. Kroo and V. Manning. Collaborative optimization-status and directions. In 8th

Symposium on Multidisciplinary Analysis and Optimization, Long Beach, Califor-

nia, USA, page 4721, 2000.

[88] A. B. Lambe and J. R. R. A. Martins. Extensions to the design structure matrix for

the description of multidisciplinary design, analysis, and optimization processes.

Structural and Multidisciplinary Optimization, 46(2):273–284, 2012.

[89] T. Legget. A350: The aircraft that airbus did not want to build. BBC News, 2013,

retrieved 16/09/2018, from https://www.bbc.co.uk/news/business-22803218.

[90] A. S. Lewis and M. L. Overton. Nonsmooth optimization via quasi-newton meth-

ods. Mathematical Programming, 141(1):135–163, 2013.

[91] K. Lewis and F. Mistree. Modeling interactions in multidisciplinary design: A

game theoretic approach. AIAA Journal, 35(8):1387–1392, 1997.

[92] R. M. Lewis, V. Torczon, and M. W. Trosset. Direct search methods: then and

now. Journal of Computational and Applied Mathematics, 124(1):191–207, 2000.

[93] H. Liu, W. Chen, M. Kokkolaras, P. Y. Papalambros, and H. M. Kim. Proba-

bilistic analytical target cascading: a moment matching formulation for multilevel

optimization under uncertainty. Journal of Mechanical Design, 128(4):991–1000,

2006.

[94] M. A. Lobbia. Multidisciplinary design optimization of waverider-derived crew

reentry vehicles. Journal of Spacecraft and Rockets, 54(1):233–245, 2016.

[95] H. Lu and W. Chen. Dynamic-objective particle swarm optimization for con-

strained optimization problems. Journal of combinatorial optimization, 12(4):409–

419, 2006.

[96] K. Madhavan, D. Shahan, C. C. Seepersad, D. A. Hlavinka, and W. Benson. An

industrial trial of a set-based approach to collaborative design. In Proceedings of



REFERENCES 121

ASME 2008 International Design Engineering Technical Conferences and Com-

puters and Information in Engineering Conference, Brooklyn, New York, USA,

2008.

[97] J. R. R. A. Martins. A coupled-adjoint method for high-fidelity aero-structural

optimization. PhD thesis, Stanford University, Stanford, California, USA, 2002.

[98] J. R. R. A. Martins and A. B. Lambe. Multidisciplinary design optimization: A

survey of architectures. AIAA Journal, 51(9):2049–2075, 2013.

[99] J. R. R. A. Martins, C. Marriage, and N. Tedford. pymdo: an object-oriented

framework for multidisciplinary design optimization. ACM Transactions on Math-

ematical Software (TOMS), 36(4):20, 2009.

[100] C. D. McAllister, T. W. Simpson, K. Hacker, K. Lewis, and A. Messac. Integrating

linear physical programming within collaborative optimization for multiobjective

multidisciplinary design optimization. Structural and Multidisciplinary Optimiza-

tion, 29(3):178–189, 2005.

[101] T. McGeer. Wing design for minimum drag with practical constraints. Journal of

Aircraft, 21(11):879–886, 1984.

[102] E. Mezura-Montes and C. A. C. Coello. Constraint-handling in nature-inspired

numerical optimization: past, present and future. Swarm and Evolutionary Com-

putation, 1(4):173–194, 2011.

[103] N. Michelena, H. M. Kim, and P. Papalambros. A system partitioning and opti-

mization approach to target cascading. In Proceedings of the 12th International

Conference on Engineering Design, Munich, Germany, volume 2, pages 1109–1112,

1999.

[104] J. D. Mulder, J. J. Van Wijk, and R. Van Liere. A survey of computational steering

environments. Future Generation Computer Systems, 15(1):119–129, 1999.

[105] R. Nazzeri, M. Haupt, F. Lange, and C. Sebastien. Selection of Critical Load

Cases Using an Artificial Neural Network Approach for Reserve Factor Estimation.

Deutsche Gesellschaft für Luft-und Raumfahrt-Lilienthal-Oberth eV, 2015.

[106] L. M. Nicolai and G. Carichner. Fundamentals of Aircraft and Airship Design:

Volume 1, Aircraft Design. AIAA 2010.

[107] H. P. Nii. The blackboard model of problem solving and the evolution of black-

board architectures. AI Magazine, 7(2):38, 1986.

[108] J. Nocedal and S. Wright. Numerical Optimization. Springer-Verlag New York,

2006.



122 REFERENCES

[109] G. Norris and M. Wagner. Airbus A380: superjumbo of the 21st century. Zenith

Imprint, 2005.

[110] J. Ollar, V. Toropov, and R. Jones. Sub-space approximations for mdo problems

with disparate disciplinary variable dependence. Structural and Multidisciplinary

Optimization, 55(1):279–288, 2017.

[111] Y. Ong, A. Keane, and P. B. Nair. Surrogate-assisted co-evolutionary search. In

At Proceedings of the 4th Asia Pacific Conference on Simulated Evolution and

Learning, Singapore, pages 1140-1145. IEEE, 2002.

[112] Y. S. Ong, P. B. Nair, A. Keane, and K. W. Wong. Surrogate-Assisted Evolutionary

Optimization Frameworks for High-Fidelity Engineering Design Problems, Studies

in Fuzziness and Soft Computing, pages 307–331. Springer Berlin Heidelberg,

2005.

[113] S. L. Padula, N. Alexandrov, and L. L. Green. Mdo test suite at nasa lang-

ley research center. In 6th AIAA/SASA/ISSMO Symposium on Multidisciplinary

Analysis and Optimization, Bellevue, Washington, USA, pages 410–420, 1996.

[114] D. J. Pate, M. D. Patterson, and B. J. German. Optimizing families of reconfig-

urable aircraft for multiple missions. Journal of Aircraft, 49(6):1988–2000, 2012.

[115] R. E. Perez, H. H. Liu, and K. Behdinan. Evaluation of multidisciplinary optimiza-

tion approaches for aircraft conceptual design. In AIAA/ISSMO multidisciplinary

analysis and optimization conference, Albany, New York, USA, 2004.

[116] P. Piperni, M. Abdo, F. Kafyeke, and A. T. Isikveren. Preliminary aerostructural

optimization of a large business jet. Journal of Aircraft, 44(5):1422–1438, 2007.

[117] D. J. Poole, C. B. Allen, and T. C. Rendall. A generic framework for handling con-

straints with agent-based optimization algorithms and application to aerodynamic

design. Optimization and Engineering, 18(3):659–691, 2017.

[118] N. V. Praet. Bombardier hands control of c series airliner to airbus, October

2017, retrieved 16/09/2018, from https://www.theglobeandmail.com/report-on-

business/bombardier-sells-majority-stake-in-c-series-to-airbus/article36610340/.

[119] W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, et al. Numerical

recipes The Art of Scientific Computing. Cambridge University Press, Cambridge,

3rd edition, 1986.

[120] A. R. Price, A. Keane, and C. M. Holden. On the coordination of multidisciplinary

design optimization using expert systems. AIAA Journal, 49(8):1778–1794, 2011.

[121] A. O. Pugachev, A. V. Sheremetyev, V. V. Tykhomirov, and O. I. Shpilenko. Struc-

tural dynamics optimization of rotor systems for a small-size turboprop engine.

Journal of Propulsion and Power, 31(4):1083–1093, 2015.



REFERENCES 123

[122] G. T. Pulido and C. A. Coello Coello. Using clustering techniques to improve

the performance of a multi-objective particle swarm optimizer. In Proceedings

of Genetic and Evolutionary Computation Conference GECCO 2004, Seattle,

Washington, USA, pages 225–237, 2004.

[123] T. Qu, G. Q. Huang, V.-D. Cung, and F. Mangione. Optimal configuration of

assembly supply chains using analytical target cascading. International Journal

of Production Research, 48(23):6883–6907, 2010.

[124] S. S. Rao. Engineering Optimization: Theory and Practice. John Wiley & Sons,

2009.

[125] D. P. Raymer. Aircraft Design: A Conceptual Approach. American Institute of

Aeronautics and Astronautics, 2006.

[126] G. Rennen. Subset selection from large datasets for kriging modeling. Structural

and Multidisciplinary Optimization, 38(6):545, 2009.

[127] B. Roth and I. Kroo. Enhanced collaborative optimization: Application to an

analytic test problem and aircraft design, (2008). In 12th AIAA/ISSMO Multidis-

ciplinary Analysis and Optimization Conference, Victoria, Canada, 2008.

[128] B. D. Roth. Aircraft family design using enhanced collaborative optimization. PhD

thesis, Stanford University, Stanford, California, USA, 2008.

[129] B. D. Roth and I. M. Kroo. Enhanced collaborative optimization: a decomposition-

based method for multidisciplinary design. In Proceedings of the ASME design

engineering technical conferences, Brooklyn, New York, USA, pages 3–6, 2008.

[130] K. Sabbagh. Twenty First Century Jet: Making and Marketing the Boeing 777.

Scribner Book Company, 1996.

[131] M. Sadoff. Pitch-up problem: A criterion and method of evaluation. NASA-

MEMO-3-7-59A, 1959.

[132] O. Schrenk. A simple approximation method for obtaining the spanwise lift dis-

tribution. The Aeronautical Journal, 45(370):331–336, 1941.

[133] R. Sellar, S. Batill, and J. Renaud. Response surface based, concurrent subspace

optimization for multidisciplinary system design. In 34th Aerospace Sciences Meet-

ing and Exhibit, Reno, Nevada, USA, number 96-0714, 1996.

[134] D. Shahan and C. C. Seepersad. Bayesian networks for set-based collaborative

design. In Proceedings of the ASME 2009 International Design Engineering Tech-

nical Conferences and Computers and Information in Engineering Conference,

San Diego, California, USA, American Society of Mechanical Engineers, pages

303–313, 2009.



124 REFERENCES

[135] D. W. Shahan and C. C. Seepersad. Bayesian network classifiers for set-based

collaborative design. Journal of Mechanical Design, 134(7):071001, 2012.

[136] L. Shi and K. Rasheed. A survey of fitness approximation methods applied in

evolutionary algorithms. In Computational intelligence in expensive optimization

problems, pages 3–28. Springer, 2010.

[137] M.-K. Shin and G.-J. Park. Multidisciplinary design optimization based on inde-

pendent subspaces. International Journal for Numerical Methods in Engineering,

64(5):599–617, 2005.

[138] J. N. Siddall. Optimal engineering design: principles and applications. CRC Press,

1982.

[139] I. Sobieski, V. Manning, and I. Kroo. Response surface estimation and refinement

in collaborative optimization. In 7th AIAA/USAF/NASA/ISSMO Symposium on

Multidisciplinary Analysis and Optimization, St. Louis, Missouri, USA, page 4753,

1998.

[140] I. P. Sobieski and I. M. Kroo. Collaborative optimization using response surface

estimation. AIAA Journal, 38(10):1931–1938, 2000.

[141] J. Sobieszczanski-Sobieski. Optimization by decomposition: a step from hierarchic

to non-hierarchic systems. Recent Advances in Multidisciplinary Analysis and

Optimization, page 51, 1988.

[142] J. Sobieszczanski-Sobieski, J. S. Agte, and R. R. Sandusky. Bilevel integrated

system synthesis. AIAA Journal, 38(1):164–172, 1998.

[143] N. Srinivasan and K. Deb. Multi-objective function optimisation using non-

dominated sorting genetic algorithm. Evolutionary Computation, 2(3):221–248,

1994.

[144] A. Srivastava, K. Hacker, K. Lewis, and T. Simpson. A method for using legacy

data for metamodel-based design of large-scale systems. Structural and Multidis-

ciplinary Optimization, 28(2-3):146–155, 2004.

[145] R. Tappeta and J. Renaud. Multiobjective collaborative optimization. Journal of

Mechanical Design, 119(3):403–411, 1997.

[146] N. P. Tedford and J. R. R. A. Martins. Benchmarking multidisciplinary design

optimization algorithms. Optimization and Engineering, 11(1):159–183, 2010.

[147] E. Torenbeek. Synthesis of subsonic airplane design. Springer Science & Business

Media, 1982.

[148] V. Toropov and L. Alvarez. Development of mars–multipoint approximation

method based on the response surface fitting. AIAA Journal, 98:4769, 1998.



REFERENCES 125

[149] V. Toropov, A. Filatov, and A. Polynkin. Multiparameter structural optimization

using fem and multipoint explicit approximations. Structural Optimization, 6(1):7–

14, 1993.

[150] S. Tosserams, L. Etman, P. Papalambros, and J. Rooda. An augmented lagrangian

relaxation for analytical target cascading using the alternating direction method

of multipliers. Structural and Multidisciplinary Optimization, 31(3):176–189, 2006.

[151] S. Tosserams, L. Etman, and J. Rooda. Augmented lagrangian coordination for

distributed optimal design in mdo. International Journal for Numerical Methods

in Engineering, 73(13):1885–1910, 2008.

[152] S. Tosserams, M. Kokkolaras, L. Etman, and J. Rooda. A nonhierarchical formula-

tion of analytical target cascading. Journal of Mechanical Design, 132(5):051002,

2010.

[153] Unified Teaching Staff. Aeronautics and astronautics: Wing structural

analysis and bending test (s/l10). MIT OpenCourseWare, 2005, retrieved

16/09/2018, https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-01-

unified-engineering-i-ii-iii-iv-fall-2005-spring-2006/systems-labs-06/spl10.pdf.

[154] S. Vázquez, M. J. Mart́ın, B. B. Fraguela, A. Gómez, A. Rodriguez, and B. El-
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